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Abstract

Background: Liver cancer is the second leading cause of cancer-related deaths worldwide.
Hepatocellular carcinoma (HCC) risk factors include chronic hepatitis, cirrhosis, and alcohol
abuse, whereby tumorigenesis is induced through inflammation and subsequent fibrotic
response. However, a subset of HCC arises in non-cirrhotic livers. We characterized the
genomic and transcriptomic landscape of non-cirrhotic HCC to identify features underlying the
disease’s development and progression.

Methods: Whole genome and transcriptome sequencing was performed on 30 surgically
resectable tumors comprised of primarily of non-cirrhotic HCC and adjacent normal tissue.
Using somatic variants, capture reagents were created and employed on an additional 87 cases
of mixed cirrhotic/non-cirrhotic HCC. Cases were analyzed to identify viral integrations, single
nucleotide variants (SNVs), insertions and deletions (INDELS), copy number variants, loss of
heterozygosity, gene fusions, structural variants, and differential gene expression.

Results: We detected 3,750 SNVs/INDELS and extensive CNVs and expression changes.
Recurrent TERT promoter mutations occurred in >52% of non-cirrhotic discovery samples.
Frequently mutated genes included TP53, CTNNB1, and APOB. Cytochrome P450 mediated
metabolism was significantly downregulated. Structural variants were observed at MACROD?2,
WDPCP and NCKAPS in >20% of samples. Furthermore, NR1H4 fusions involving gene
partners EWSR1, GNPTAB, and FNIP1 were detected and validated in 2 non-cirrhotic samples.
Conclusion: Genomic analysis can elucidate mechanisms that may contribute to non-cirrhotic
HCC tumorigenesis. The comparable mutational landscape between cirrhotic and non-cirrhotic
HCC supports previous work suggesting a convergence at the genomic level during disease
progression. It is therefore possible genomic-based treatments can be applied to both HCC
subtypes with progressed disease.

Keywords: non-cirrhotic HCC; NR1H4; APOB

Highlights

e Non-cirrhotic HCC genomically resembles cirrhotic HCC

e Comprehensive genome- and transcriptome-wide profiling allows detection of novel
structural variants, fusions, and undiagnosed viral infections

e NR1H4 fusions may represent a novel mechanism for tumorigenesis in HCC

e Non-cirrhotic HCC is characterized by genotoxic mutational signatures and
dysregulated liver metabolism

e Clinical history and comprehensive omic profiling incompletely explain underlying
etiologies for non-cirrhotic HCC highlighting the need for further research

Short Description
This study characterizes the genomic landscape of hepatocellular carcinomas (HCCs) in

non-cirrhotic livers. Using 117 HCCs tumor/normal pairs, we identified 3,750 SNVs/INDELS with
high variant frequency in TERT, TP53, CTNNB1, and APOB. CYP450 was significantly
downregulated and many structural variants were observed. This characterization could assist
in elucidating non-cirrhotic HCC tumorigenesis.

Introduction

Worldwide, there are approximately 750,000 new cases of hepatocellular carcinoma (HCC)
each year [1]. Although HCC has the 5th highest incidence rate in men and 9th highest
incidence rate in women, it has the second highest mortality rate of all cancer types [1]. HCC is
traditionally associated with inflammation-inducing risk factors, which promote liver cirrhosis
including: chronic hepatitis infections, such as hepatitis b virus (HBV) and hepatitis ¢ virus
(HCV), alcohol abuse, and non-alcoholic fatty liver disease [2]. However, approximately 20% of
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patients present with non-cirrhotic HCC in the absence of these risk factors [3]. If diagnosed
early, patients with non-cirrhotic HCC maintain adequate liver function, allowing for effective
tumor resection with exceptional prognosis when compared to patients with cirrhotic HCC [4].
However, late-stage diagnosis of non-cirrhotic HCC typically presents with larger and more
aggressive tumors that are prone to metastasis [5]. Even with extensive tumor resection,
approximately 50% of patients relapse within three years post-treatment [6].

Using high-throughput sequencing, researchers have previously characterized the genomic
landscape of cirrhotic HCC [7-13]. These studies included whole genome, whole exome, and/or
transcriptome sequencing with a focus on analyzing HCC induced by HBV, HCV, and/or
cirrhosis. Prior studies, which have evaluated the genomics of cirrhotic and non-cirrhotic HCC,
report that among the most significant and recurrent alterations are TERT mutations which
typically occur at the promoter region [8,9,14]. Mutations within this region have been observed
in a variety of cancer types beyond cirrhotic HCC, suggesting a common role of activating TERT
promoter variants in oncogenesis and metastasis [15-17]. TERT expression in terminally
differentiated cells promotes telomere maintenance and elongation [18]. Telomere maintenance
is required for late stage cancer propagation with TERT misregulation being harnessed by
human cancers to evade mitotic catastrophe and apoptosis [19]. Previous studies have
recognized that increases in TERT expression could serve as a proxy for telomere
maintenance; however, late-stage tumors exhibit shortened telomeres in comparison to their
normal counterparts, due to high turnover rates [20,21]. Among studies specific to cirrhotic HCC,
the putative mechanisms of TERT activation can be divided into three categories: 1) HBV
integration events in the TERT promoter [8,22], 2) point mutations (C228T and C250T) in the
promoter region mutually exclusive of HBV integration [9,23], and 3) structural variations of the
TERT promoter region [8,14].

This study characterizes biomarkers and elucidates recurrent anomalies in non-cirrhotic HCC.
We identified somatic variants in 117 tumor samples whereby 52 samples were cirrhotic, 63
samples were non-cirrhotic, and 2 samples had an unspecified cirrhotic status. Using this
cohort, we analyzed single nucleotide variants (SNVs), insertions and deletions (INDELSs),
structural variation (SV), copy number variation (CNV), loss of heterozygosity (LOH), differential
expression, and viral integration events. This comprehensive approach uncovered the genomic
features implicated in non-cirrhotic HCC to improve its diagnosis, prognosis, and treatment.

Methods
Refer to supplementary methods for more details.

Sample Procurement

The discovery cohort consisted of 30 primary tumor and adjacent matched non-tumor liver
samples obtained through surgical resection from adult patients diagnosed with HCC between
2000 to 2011 at the Washington University School of Medicine. Within this cohort, 13 were male
and 17 were female. Additionally, 2 were African American and 28 were Caucasian. None of
these samples exhibited evidence of hepatocellular adenoma (HCA) and the non-cirrhotic
samples did not show signs of advanced fibrosis. 1 sample was HBV positive and 4 samples
were HCV positive according to clinical data. All other samples within the discovery cohort had
an unknown clinical etiology. The extension-alpha and extension-beta cohorts had 16 HCC
tumors with matched non-tumor liver and 71 tumor-only HCC samples, respectively. Discovery
and extension-alpha cohort samples were flash-frozen prior to banking and extension-beta
samples were derived from formalin fixed paraffin embedded (FFPE) blocks. Across both
extension cohorts, 27 were female and 58 were male. Furthermore, 2 were Asian, 13 were
African American, and 70 were Caucasian. Within the extension-alpha cohort, two samples
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were HCV positive, one had chronic cholestasis, and the others had no known clinical etiology.
Clinical data for the extension-beta cohort was as follows: 5 had known alcohol use, 8 were
HBV positive, 29 were HCV positive, 2 were diagnosed with primary sclerosing cholangitis
(PSC), and 6 samples were diagnosed with non-alcoholic steatohepatitis (NASH). From the
extension-alpha cohort, 2 patients did not provide information on race and gender (Table S1).
All patient samples were acquired after informed consent to an approved study by the
Washington University School of Medicine Institutional Review Board (IRB 201106388).

Sample Preparation and Sequencing

DNA and RNA from samples in the discovery cohort were extracted using the QlAamp DNA
Mini kit and Qiagen RNeasy Mini kit, respectively. Whole genome sequencing libraries were
constructed using Kapa HYPER kits for use on the Illlumina HiSeq 2000 platform. The Ovation
RNA-seq System V2 (NuGen Inc) kit was used to generate RNAseq libraries. Resulting
barcoded libraries were pooled prior to lllumina sequencing. To validate variants identified from
WGS, a hybrid capture panel (CAP1) was designed and executed on the lllumina platform to
capture fragments from the WGS libraries. The QlAamp DNA Mini kit was used to extract DNA
from extension-alpha samples, which was subsequently sequenced using the CAP1 strategy.
Finally, CAP1 sequencing was used to identify variants from the DNA extracted from
extension-beta samples with the QlAamp DNA FFPE Tissue kit. A second hybrid capture panel
(CAP2) utilized Nimblegen and spiked-in IDT probes that hybridized to the TERT promoter locus
and HBV genome (designed against a consensus sequence for 10 common HBYV strains, see
supplementary methods). CAP2 sequencing was employed on all 117 samples. TERT promoter
variants were also detected in the discovery and extension-alpha cohorts with Sanger
sequencing. cDNA capture was performed on pooled samples from the extension cohorts.

Sequencing Alignment

WGS and CAP1 data were aligned to GRCh37 via the Genome Modeling System (GMS) using
BWA [24,25]. Reads from the CAP2 data were competitively aligned using BWA [25] against the
human reference genome (GRCh37) along with ten HBV genotypes for which complete
genomes were available. RNAseq data were aligned with bowtie/tophat and expression was
evaluated with cufflinks [26,27]. All raw RNAseq reads from the discovery cohort were also
aligned against the HBV genomes for evidence of HBV expression at the RNA level. The
predominant HBV strain was determined using relative coverage for competitive alignments.
The precise location of the HBV integration site was identified from discordant read pairs from
realigning HBV CAP2 reads to GRCh37 and the predominant HBV strain’s genome. A similar
procedure was performed for HCV whereby both WGS and RNAseq reads were aligned against
six HCV genotypes. The predominant HCV strain was determined using the total read support.
To detect AAV1 and AAV2 integration, RNAseq reads were competitively aligned using kallisto
[28] against AAV1 and AAV2 sequences.

Telomere Length Determination

Telomeric tumor:normal read ratios were determined from WGS data using the GMS and
visualized in R. A Wilcoxon-Mann-Whitney test measured the significance of differences
between telomere length in tumor and normal samples.

Variant Calling

Somatic variant analysis for single nucleotide variants (SNV) and insertions/deletions (INDEL)
were performed on all three cohorts while germline variant analysis for these variants was
performed on the discovery and extension-alpha cohort. Several computational tools within and
outside of the GMS [29] were employed to facilitate variant calling and subsequent filtering
based on variables including variant allele frequency, read count, and predicted pathogenicity.
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Structural Variant, Copy Number Variant, and Loss of Heterozygosity Analysis

WGS data from samples within the discovery cohort were analyzed for structural variants (SV),
copy number variation (CNV), and loss of heterozygosity (LOH). Manta [30] was used to identify
SV events. Manta-reported breakpoints, along with a 10kb flank were annotated with biomaRt
and ensembl (GRCh37.p13). Regions of CNV were identified with the GMS and LOH were
identified using VarScan2 [29,31]. The DNAcopy circular binary segmentation algorithm
generated segments of LOH and CNV, which served as input for GISTIC [32] to conduct a
recurrence analysis.

NanoString nCounter Elements'™ Tagsets: NR1H4 Fusion Validation

Fusion detection algorithms identified samples in the discovery cohort harboring gene fusions
from RNAseq data. Fusion predictions involving NR1H4 were validated across all 117 samples
using a NanoString nCounter® Elements™ TagSets assay. Sequences for predicted transcripts
of the fusion calls that met certain read support criteria (=10 spanning + encompassing reads
and 21 spanning read) were sent to NanoString for probe design.

Survival and Clinical Analysis

The R “survival” package [33] was used to associate SV-affected genes and CNV/LOH-affected
genomic regions with overall survival and recurrence free survival. Only mutated genes and
genomic regions occuring in = 4 discovery cohort samples were included in this analysis. A
survival analysis was also applied to SNV/INDELs observed in all non-cirrhotic samples from the
three cohorts. All Kaplan-Meier survival plots were created in R. Fisher’s exact test was used to
test for clinical associations with variables: lymphovascular space invasion (LVSI), tumor
differentiation status, cirrhosis, and liver disease. Samples without relevant clinical data were
excluded. Significance was measured with a multiple test correction using the FDR
methodology (g-value < 0.05).

Differential Expression and Pathway Analysis

Read counts for genes mutated in non-cirrhotic tumors and matched normal samples of the
discovery cohort were used by the DEseq2 Bioconductor package [34] to perform differential
gene expression analysis using a negative binomial distribution with samples as a blocking
factor. Significance was measured with a Wald test and Benjamini & Hochberg multiple test
correction (g-value < 0.5). Pathway analysis was performed using log2 differential expression
data.

Results

Discovery Cohort

There were 30 patients included in the discovery cohort with tumors which were surgically
resectable. These surgically resectable tumors were untreated, providing the opportunity to
study HCC in the absence of chemotherapeutic intervention, which is normally incorporated in
the treatment of cirrhotic HCC. Three of the patients within this cohort developed HCC in the
setting of cirrhosis, all of which had been previously diagnosed with HCV. The remaining 27
individuals developed non-cirrhotic HCC, two of these individuals were diagnosed with HBV and
another two individuals were diagnosed with HCV. To elucidate the genomic landscape of
resected, primarily non-cirrhotic HCC, we performed whole genome sequencing (WGS), hybrid
capture sequencing (CAP1), and transcriptome sequencing (RNAseq) on these 30 samples
(Table 1). WGS failed for one tumor sample in the discovery cohort, therefore the final data for
this cohort included WGS and CAP1 data for 29 samples (26 non-cirrhotic, 3 cirrhotic), and
RNAseq data for 30 samples (27 non-cirrhotic, 3 cirrhotic). The sequencing analysis revealed a
single previously unknown and undiagnosed HBV case with viral integration occurring at the
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TERT promoter (Figure S1, Table S1). Median haploid coverage for WGS data was 35.6x
(range: 28.5-39.3) and 58.4x (range: 46.8-94.4) for normal and tumor samples, respectively.

Somatic mutations in the Discovery Cohort

After filtering, we observed a median mutation burden of 1.31 mutations/Mb (range: 0.033-3.28),
comprised of 2,633 SNVs and INDELs across all samples (range: 2-200, median: 77.5,
mean=87.8) (Figure 1, Table S1). These variants were discovered across 2,245 genes with 258
of these genes mutated in more than one sample. Using WGS data from the 26 non-cirrhotic
samples, we identified 6 genes that were significantly mutated above background mutation rates
according to MuSiC: ALB, APOB, CTNNB1, TP53, RB1, and RPS6KA3 (Figure 1, Table S1).
With regards to all methods of sequencing (WGS, RNAseq, CAP1, and CAP2), the most
frequently encountered variant was a SNV in the telomerase reverse transcriptase (TERT)
promoter (C228T; G1295228A), which was identified in 17/30 samples and resulted in
overexpression of TERT (Figure S2, Table S2). Within the exome, TP53 was the most
recurrently mutated gene and was observed in 8/29 of samples (Table S1). Beta catenin 1
(CTNNBT) was also significantly mutated within this cohort (6/29), whereby the majority of
variants occurred at amino acids S37 and S45, both of which reside in a putative GSK3B
phosphorylation site in exon 3 (ENST00000349496) (Figure S3) [35]. Frameshift mutations in
APOB were observed in 4/29 of samples (Table S1). Mutation signatures using the COSMIC
database for the discovery cohort were investigated. Signatures 5 (unknown etiology), 4
(smoking damage association), 16 (unknown etiology), and 12 (liver damage association) were
most prevalent and contributed to the overall cohort signature at 23%, 14%, 8%, and 7%,
respectively (Figure S4).

Transcriptome Analysis of the Discovery Cohort

Differential gene expression analysis performed on the non-cirrhotic samples revealed that 11%
of genes, including TERT, were upregulated (4,468/39,392) and 10% of genes, including
CTNNB1 and WISP2, were downregulated (4,114/39,392) compared to adjacent non-tumor liver
tissue (g-value < 0.1) (Table S1). Comparison of gene log2 fold changes derived from the
differential expression analysis revealed the cell cycle pathway as upregulated in the KEGG
signaling and metabolism database (g-value < 0.05). Similarly, we observed 16 pathways as
down-regulated (g-value < 0.05), most of which are related to metabolic liver processes. Genes
such as ADH5 and EHHADH were observed with reduced expression levels and participate in
38% (6/16) of these pathways. Using the Gene Ontology biological process database, we
observed 107 pathways as significantly upregulated (g-value < 0.05). The majority of the
upregulated pathways were related to cellular division and DNA repair. In addition, 28 pathways
were identified as significantly downregulated (g-value < 0.05), many of which were related to
liver metabolism (Table S2).

Telomere lengths in the Discovery Cohort

When evaluating the samples within the discovery cohort for telomere length at the DNA level,
we observed that the majority of tumor samples exhibited shortened telomeres compared to
their paired normal sample (p-value = 0.00011) (Figure S2). One exception was seen in sample
HCC16_D, which was distinguished by abnormally high expression of TERT (FPKM=36)
(Figure S5).

Copy Number Variants and Loss of Heterozygosity in the Discovery Cohort

We observed recurrent large scale amplification of the g-arm of chromosome 1 in = 50% of the
discovery cohort. Similarly, large scale deletions of the p-arms of chromosomes 8 and 17 were
found in = 40% of the cohort (Figure 2). In total, analysis with GISTIC and subsequent manual
review revealed 75 unique regions across 17 chromosomes as recurrently amplified and 45
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unique regions across 17 chromosomes as significantly deleted (q < 0.05) (Table S1). No
significant associations with tumor differentiation status were made (a=0.05). Each CNV and
LOH event was tested for their association with overall survival and recurrence free survival but
no significant association could be made following multiple test correction. A total of 33 genes
identified as recurrently deleted by GISTIC showed concordant decreased expression in tumor
samples (Table 81). These include genes previously characterized as relevant to HCC
development and progression: HEYL [36] (g-value = 0.032), UQCRH [37] (g-value = 0.032), and
MUTYH [38] (g-value = 0.048). A subset of these genes have also been implicated in
tumorigenesis, metastasis, and progression of other cancer types and may prove to be relevant
for HCC development and progression: RPL11 [39] (g-value = 0.048), UBE2D3 [40] (g-value =
0.032), ARRB1 [41] (g-value = 0.032), ENG [42] (g-value = 0.049), and ABLIM2 [43] (g-value =
0.032).

A GISTIC analysis coupled with manual review identified 8 unique regions exhibiting recurrent
LOH affecting the chromosomal arms of 6q, 8p, 13q, and 17p (Figure 2, Table S1). The 8p and
17p chromosomal arms were most susceptible to LOH, each occurring in = 30% of samples.
The 8 genomic regions identified as recurrently affected by LOH contain the coding regions for:
TP53, RB1, DLC1, PFN1, ARID1B, LAMA2, and CLU (Table S1).

Structural Variation in the Discovery and Extension Cohorts

We identified 4,745 SV events affecting 3,801 genes across the discovery cohort, of which 737
were deletions, 1,650 were duplications, 450 were inversions, and 1,908 were translocations.
Three genes were affected by SVs in = 20% of samples, NCKAP5 (N=11), WDPCP (N=6), and
MACROD2 (N=6) (Table S1). Translocations near the TERT promoter region occurred in 2/29
samples, both of which were non-cirrhotic (Figure S5). Additionally, we detected a recurrent
fusion involving NR1H4 with a diverse set of gene partners (173 fusion predictions) (Table S1).
NanoString nCounter Elements™ Technology was used to assess 21 of these fusions.
NanoString validated three NR1H4 fusions that were partnered with EWSR1, GNPTAB, and
FNIP1 in 2 samples (Figure 3). One fusion (CDK17-NR1H4) was called by both Integrate and
ChimeraScan but was not validated using NanoString. BLAT alignments revealed that these
fusions result in sequence frameshifts and thereby likely inactivate the function of NR7H4.

Variant Detection in Extension Cohorts

To further study recurrently mutated genes and discover novel events intrinsic to non-cirrhotic
HCC, we employed CAP1 on extension-alpha and extension-beta samples (N=87). In addition
to variants identified in the discovery cohort, this extension study elucidated 69 and 1,022
variants in the extension-alpha and extension-beta cohorts, respectively (Figure $6). Using the
variants identified with CAP1, we classified a total of 17 genes as significantly mutated (g-value
< 0.05) (Table S1). Of the significantly mutated genes in the discovery cohort, all were
confirmed as significantly mutated in the extension cohorts with the exception of RB7 and
RPS6KA3. We tested for differences between mutated genes based on cirrhosis status within all
cohorts using CAP1, but we were unable to identify any significant differences (g-value < 0.05).

Germline mutations in Discovery and Extension-Alpha Cohorts

Within the discovery cohort and extension-alpha cohorts, there were 4 genes recurrently
mutated (=4 tumors) in germline DNA after filtering, including: AL356585.1, MUC19, SVIL, and
DNAHS5. In addition, when evaluating deleterious calls predicted by four different methods (SIFT
[44], Polyphen [45], ClinVar [46], CADD [47]), there were 11 variants that were identified as
pathogenic. Of these 11 variants, 5 were in autosomal genes (LAMA2, CYP4V2, SLC22A5,
BMPR2, SLC26A4) and 6 were in mitochondrial genes (MT-CO1, MT-CO1, MT-ND3, MT-ND3,
MT-CYB, MT-ND1) (Table S1).
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Viral Integration and TERT Promoter Mutation in Discovery and Extension Cohorts

Viral detection of HBV and HCV in samples from the discovery and extension cohorts was
conducted using CAP2. This analysis validated the clinical diagnosis of HBV in 7 of 9 HBV+
HCC samples. Additionally, a clinically undiagnosed sample in the discovery cohort (HCC18_D)
was shown to possess HBV infection both at the RNA and DNA level (Table S1). Manual review
and BLAT analysis confirmed that HBV integrated at the TERT promoter locus in 1 out of the 10
HBV positive samples (Figure S1). Similarly HCV, a RNA virus, was detected in 5 samples in
the discovery cohort, 3 of which confirmed a clinical HCV diagnosis. Within the extension cohort,
29 samples were clinically diagnosed with HCV. Competitive alignments using kallisto [28] were
performed to detect integration of AAV1 and AAV2 in samples from the discovery cohort. AAV1
and AAV2 were both detected in one sample. AAV2 was detected in two other samples (Table
S1).

Mutations in the TERT promoter region were detected in samples in the discovery and
extension cohorts with WGS, Sanger sequencing, and the CAP2 panel using Nimblegen and
spiked-in IDT probes. Point mutations in this region (C228T or C250T) were observed in 52.4%
of the samples. Samples infected with HCV, determined by clinical assay, were found to be
significantly enriched for TERT promoter mutations (p-value = 0.0051, Table S$1); however this
was no longer significant following a multiple test correction (g>0.05).

Clinical Associations and Survival Analysis

Among non-cirrhotic HCC samples in the discovery cohort, TERT promoter alterations (point
mutations, HBV integration, and translocations) were not significantly associated with overall
survival or recurrence free survival (Figure 4). No significant associations were observed
between any other variants (SNV/INDEL, CNV, LOH, and SV) and clinical variables including
lymphovascular space invasion, tumor differentiation, and tumor predisposition (e.g. HBV/HCV
infection, alcohol abuse, cirrhosis, etc.).

Discussion

Genomic Landscape of Non-cirrhotic HCC Largely Resembles that of Cirrhotic HCC

The overarching purpose of this study was to test if genomic differences exist between
non-cirrhotic HCC and HCC developed in the background of cirrhosis. Within our non-cirrhotic
discovery cohort of 26 patients sequenced by WGS, the median mutation burden and recurrent
somatic/germline mutations closely resembled those previously reported in cirrhotic HCC [48].
Recurrently mutated genes in the discovery cohort included TERT (55%), TP53 (28%), CTNNB1
(21%), and APOB (13%), all of which have been previously observed in cirrhotic HCC at similar
frequencies [9,48]. We did not find any significant difference when comparing recurrently
mutated genes between 52 cirrhotic and 63 non-cirrhotic samples for which cirrhotic status was
available using CAP1. The LOH events [10,49-52] and CNVs [9-11,52,53] observed within our
cohort are similar to those previously observed in cirrhotic HCC using alternative, investigative
approaches including SNP array analysis. Within these regions, several genes such as LAMAZ2,
ATK3, EFF1A1, and PFN1 [14,54-56] have been previously investigated in the context of HCC
development and progression.

Structural variants identified in non-cirrhotic patients’ samples were also largely similar to SVs
reported in cirrhotic HCC. However, of the three genes that were mutated in over 20% of
samples in the discovery cohort, only MACRODZ2 had been previously described. With its
ADP-ribosyl-hydrolase activity, MACRODZ2 has a well characterized role in reversing
ADP-ribosylation of proteins involved in a variety of cellular processes, including the DNA repair
pathway [57]. A study in Japan identified 32/268 HCC samples (cirrhosis status not specified)
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with SVs involving MACROD2, which was associated with a better overall prognosis [8]. Though
our data did not support this same clinical association, our findings suggest a similar mutation
frequency of MACRODZ in non-cirrhotic HCC. The observed TERT structural variants, which
occurred in 2 non-cirrhotic samples, have also been detected in cirrhotic HCC. This study
corroborates previous findings of TERT activation via SVs, HBV integration, and point mutations
in HCC patients [8,9].

Several studies have associated accumulation of 3-catenin with cirrhotic HCC tumorigenesis
[58]. However, in cases of HCC with reduced inflammation and fibrosis, researchers have
observed an absence of (3-catenin accumulation [59]. It is therefore intriguing that despite
observing activating mutations within exon 3 of CTNNB1, we observe CTNNB1 downregulation
in non-cirrhotic samples of the discovery cohort. Accumulation of B-catenin is possible in the
context of CTNNB1 down-regulation since exon 3 mutations serve to prevent the degradation of
the B-catenin protein [58]. The majority of other studies observe accumulation of B-catenin in the
context of a primarily asian cohort whereas our cohort represents a western population. Future
investigations are required to understand the role of CTNNB1 expression and 3-catenin
accumulation in non-cirrhotic HCC.

Biological Pathways in Liver are Dysregulated

Investigations into significantly enriched pathways in non-cirrhotic samples from the discovery
cohort revealed broad downregulation of pathways related to liver metabolism (GO [60,61],
KEGG [62-64]) and upregulation of pathways involved in cellular division and replication (GO)
(Table S2). This is expected given that tumor cells are dividing more frequently and losing
normal liver function. We observed downregulation of pathways linked to cytochrome P450
(CYP450) mediated xenobiotic metabolism. Previous investigations of CYP activity and
expression in cirrhotic and HBV infected HCC demonstrate that CYP activity is dysregulated in
HCC tumor cells [65]. Given the potential for CYPs to facilitate individualized treatment options
for HCC patients, it is possible treatment strategies for non-cirrhotic HCC may also involve
CYPs.

Survival Analysis Does Not Identify Prognostic Potential for Observed Mutations

A survival analysis was performed on non-cirrhotic samples of the discovery cohort to identify
large scale mutational events (SVs, CNVs, and LOH) that may serve as prognostic biomarkers;
however, no significant association could be made. The survival analysis was also extended to
SNVs and INDELs. TERT promoter alterations have been associated with poor prognosis in
cancers such as glioblastomas [15,66] and melanomas [16]. In terms of HCC however, previous
reports that investigated TERT promoter status with respect to survival yield conflicting results
[23,67]. We found no association between TERT promoter mutations and prognosis. Taken as a
whole, it appears activating TERT mutations serve as a common mechanism for tumorigenesis
but additional investigations are required to definitively determine whether or not these
mutations can serve a prognostic role in patients afflicted with HCC.

Low-frequency, Novel Mutations in APOB and NR1H4 and Novel Structural Variants
Identified

In this study, we identified predicted loss of function/damaging somatic and germline APOB
mutations in 6/26 non-cirrhotic samples in the discovery cohort (Table $1). Among the somatic
APOB mutations, all were observed at a relatively high VAF (>0.25), suggesting these mutations
were present early in tumorigenesis and may be present in pre-malignant sites within these
tissues. It has been shown that abnormal glycosylation resulting from the formation of
bisecting-GIcNAc disrupts APOB function and leads to a fatty liver disease phenotype [68]. We
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observed APOB mutations outside of a fatty liver disease phenotype suggesting a more
prominent role in tumorigenesis.

We also identified a novel recurrent somatic, loss of function, gene fusion event involving
NR1H4 in 2 non-cirrhotic samples within the discovery cohort (Table S$1). Low sample quality
(particularly FFPE samples) and use of RNA-based validation methods may have prevented
sensitive detection of these fusion events resulting in underestimation of fusion frequency in
additional cases. Biologically, NR1H4 has a well-defined role to prevent the accumulation of bile
acid (BA) within the liver, which could otherwise lead to HCC development. /n vivo studies have
demonstrated that NR7H4 loss predisposes mice to spontaneous hepatocarcinogenesis [69,70]
and obstructs hepatocyte regeneration following partial hepatectomy [71]. NR1H4 fusions may
therefore represent a novel mechanism of HCC development.

Other novel SV events that were observed in the discovery cohort involved NCKAP5 and
WDPCP, both of which play a role in cilia function. NCKAPS5L, which is a paralog to NCKAP5,
functions to stabilize and strengthen microtubule structure [72]. Additionally, reduced expression
of WDPCP has been shown to inhibit proper ciliogenesis in the presence of proinflammatory
cytokines [73]. Given the previous association of ciliopathies with cancer, these recurrent
structural variants in non-cirrhotic HCC might play a role in tumorigenesis and metastasis [74].

Genotoxic and virologic etiologies partially explain Non-Cirrhotic HCC

Recent work by Zucman-Rossi et al. has outlined etiologies for HCC development [75]. Within
our discovery cohort, 23/29 samples exhibited a mutational signature of T->C mutations at an
ApTpN context (weight > 0.1) (Table 2, Figure S4). These signatures (signature 5,16) have
been associated with genotoxic injury and were previously observed in HCC patients with high
alcohol and tobacco consumption. We do not have data on tobacco consumption; however,
most of these cases did not have reported alcohol consumption (17/23), which suggests that
another unknown factor may be contributing to this observation. Among these 23 samples, a
non-cirrhotic case exhibited a signature consistent with aflatoxin exposure (signature 24) and
harbored an R249S mutation in TP53. Interestingly this case was clinically diagnosed with HBV,
which has been suggested to have a synergistic effect with aflatoxin exposure, facilitating HCC
development [75,76]. In addition, we observed a single HCV positive case which also
possessed signatures 5 and 16. It is curious that while HCV is a predisposing factor for liver
cirrhosis, and this patient exhibited cirrhosis, etiologies associated with signatures 5 and 16 are
not typically associated with cirrhosis [75]. With the exception of a final HBV case, we could not
identify an etiology for the remaining 5 samples. The dysregulation of liver metabolism identified
in the pathway analysis may represent a cause or symptom of the etiologies leading to
tumorigenesis. This could apply to the unknown etiologies in the remaining samples, suggesting
liver dysfunction is necessary for disease progression. Emerging evidence suggests that HCC
can develop in the context of nonalcoholic fatty liver disease (NAFLD) or NASH, even in the
absence of advanced fibrosis or cirrhosis [77—79]. Our understanding and recognition of the
clinical features associated with NASH and NAFLD has evolved. Therefore, it is likely that
patients were affected by these conditions, but not clinically diagnosed at the time, within our
discovery cohort. Further research is needed to elucidate the relationship between etiologies of
HCC and their association with liver metabolism.

Conclusion

It has been observed that the underlying etiologies contributing to tumorigenesis of non-cirrhotic
and cirrhotic HCC are unique [75]. Despite distinct evolutions of these tumor subtypes, our
findings describe a convergence of both subtypes onto a similar genomic landscape during
disease progression. This genomic similarity suggests in vitro and in vivo models for
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investigating HCC biology may be relevant to both HCC subtypes for advanced disease.
Clinically, genomic-based diagnostic, prognostic, and treatment strategies that were previously
established in patients with cirrhotic disease may also be extended to patients with progressed

non-cirrhotic HCC.
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Figure 1: Genomic landscape of the non-cirrhotic discovery cohort exhibits similarity
with cirrhotic HCC.

GenVisR [80,81] depiction of coding somatic mutations, structural variants, TERT promoter
mutations (G1295228A), and validated fusions are shown for samples in the discovery cohort
which were recurrently (>25%) or significantly mutated. Where there are multiple mutations for
the same gene/sample, the most severe mutation is displayed (severity follows the order listed
in the legend). The percentage of samples for which a gene is mutated is shown on the left.
Mutation Frequency represents the total number of mutations within individual samples.
DUP=duplication; DEL=deletion; TRA=translocation.
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Figure 2: Genome wide CNV and LOH in the discovery cohort

Recurrent regions of LOH (A) and CNV amplification/deletion (B) are shown for samples within
the discovery cohort using the Bioconductor package, GenVisR [80,81]. The proportion of
samples with LOH (dark blue), copy number gain (red), and copy number loss (blue) within each

chromosomal region are depicted at the top of the panel.
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Figure 3: NanoString validation of NR1H4 fusions observed in the discovery cohort

A. NanoString count values for fusions FNIP1-NR1H4, NR1H4-EWSR1, and NR1H4-GNPTAB
across samples in the discovery cohort. Fusion diagrams are shown for: (B) NR1H4-GNPTAB,
(C) NR1H4-EWSR1, and (D) FNIP1-NR1H4. E. The CDK17-NR1H4 fusion event was detected
by Integrate and ChimeraScan but not validated with NanoString.
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Figure 4: Overall and recurrence free survival analysis for TERT promoter mutations
Kaplan Meier curves for TERT mutation status (C228T/C250T promoter mutation, HBV
promoter integration or TERT structural variant) for all non-cirrhotic samples. The probability of
overall survival (OS) (A) and recurrence free survival (RFS) (B) across all non-cirrhotic samples
is shown.
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Figure S1: Evidence for a case of undiagnosed HBV integration at the TERT promoter

A. WGS reads originating from a competitive alignment between GRCh37 and HBV are shown
for HCC18_ D using the Integrative Genomics Viewer (IGV). B. The soft clipped sequence from
panel A (red box) was inputted into BLAT to show that it aligns upstream of the TERT
transcription start site (TSS). C. Reads which are soft clipped in panel A are shown aligning to
the intronic region of human chromosome 5 in the HCC18_D tumor sample upstream of the

TERT TSS.
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Figure S2: HCC tumors exhibit shortened telomeres

A. TERT expression (log1l0(FPKM + 1)) within each matched tumor and normal sample from the
discovery cohort, excluding HCC20 (top panel). B. Tumor:normal read ratios of telomeric
regions are plotted as vertical bars in the bottom panel. The black horizontal line represents a
read ratio of 1.
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Figure S3: GSK3B phosphorylation site mutational hotspotin CTNNB1 is observed in
non-cirrhotic HCC

ProteinPaint [78] diagram illustrating amino acid (AA) changes within the coding sequence of
CTNNB1. Legends describing the functional domains and variant types of the AA changes
along CTNNB1 from our dataset and that of COSMIC’s database are indicated at the bottom of
the figure. The light-blue highlighted region indicates exon 3 of the CTNNBL1 gene.
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Figure S4: Discovery cohort samples are primarily composed of 4 mutational signatures
The weights from 0 to 1 of relative COSMIC mutational signature distribution are shown for each
sample in the discovery cohort. Samples are hierarchically clustered using Euclidean distances
based on assigned weights, signatures are ordered from left to right by decreasing weight.
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Figure S5: Evidence for translocations involving TERT

Reads depicting translocation events involving TERT in tumor samples for (A) HCC23_D and
(B) HCC29 D are shown. In both figures, the left panels contain dark blue reads that align to
regions of chromosome 2 (HCC23_D) and chromosome 1 (HCC29_D). Their paired read aligns
to a region ~2-3kbp upstream of the TERT promoter on chromosome 5, shown on the right.
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Figure S6: Genomic landscape of the extension cohort

Manually reviewed coding, somatic mutations from the extension alpha and beta cohorts (N=87)
derived from CAP1. In situations where there are multiple mutations for the same gene/sample,

the most deleterious mutation is shown following the order of the mutation type legend. Clinical

variables for each sample are included at the bottom. Tumor mutational frequency for each

sample is plotted at the top.
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