

Paper Draft 9

1

2 **Population genomic analysis of the speckled dace species complex**

3 **(*Rhinichthys osculus*) identifies three species-level lineages in California**

4

5

6 Yingxin Su^{1¶*}, Peter B. Moyle^{2,3¶}, Matthew A. Campbell^{1&}, Amanda J. Finger¹, Sean M.

7 O'Rourke¹, Jason Baumsteiger³, Michael R. Miller^{1,3}

8

9

10

11 1. Department of Animal Science, University of California, Davis, California, United States of
12 America

13 2. Department of Wildlife, Fish, and Conservation Biology, University of California, Davis,
14 California, United States of America

15 3. Center for Watershed Sciences, University of California, Davis, California, United States of
16 America

17

20

21

22 *Corresponding author

23 E-mail: syxsu@ucdavis.edu

24

25

26 ¶These authors contributed equally to this work

Paper Draft 9

27 **Abstract**

28 The speckled dace (*Rhinichthys osculus*) is small cyprinid fish that is widespread in the Western
29 USA. Currently treated as a single species, speckled dace consists of multiple evolutionary
30 lineages that can be recognized as species and subspecies throughout its range. Recognition of
31 taxonomic distinctiveness of speckled dace populations is important for developing
32 conservation strategies. In this study, we collected samples of speckled dace from 38 locations
33 in the American West, with a focus on California. We used RAD sequencing to extract
34 thousands of SNPs across the genome from samples to identify genetic differences among seven
35 California populations informally recognized as speckled dace subspecies: Amargosa, Owens,
36 Long Valley, Lahontan, Klamath, Sacramento, and Santa Ana speckled dace. We performed
37 principal component analysis, admixture analysis, estimated pairwise Fst, and constructed a
38 phylogeny to explore taxonomic relationships among these groups and test if these subspecies
39 warrant formal recognition. Our analyses show that the seven subspecies fit into three major
40 lineages equivalent to species: western (Sacramento-Klamath), Santa Ana, and Lahontan
41 speckled dace. Death Valley speckled dace were determined to be two lineages (Amargosa and
42 Long Valley) within Lahontan speckled dace. Western and Lahontan speckled dace lineages
43 had branches that can be designated as subspecies. These designations fit well with the
44 geologic history of the region which has promoted long isolation of populations. This study
45 highlights the importance of genetic analysis for conservation and management of freshwater
46 fishes.

47

48 **Introduction**

Paper Draft 9

49 The speckled dace (*Rhinichthys osculus*) is a small (usually <10 cm total length) cyprinid fish that
50 is widely distributed across western North America. It is found from northern Mexico and
51 southern California through central and northern California, the Great Basin, the Pacific
52 Northwest, to southwestern Canada [1-3]. Despite its wide distribution, the speckled dace is
53 considered to be one highly variable species, albeit with numerous subspecies, many of which
54 are undescribed [3]. Here we refer to the species as the speckled dace complex (SDC). The
55 SDC diverged from the longnose dace *R. cataractae* species complex of eastern North America
56 over 6 million years ago [4]. The common ancestor of the SDC was presumably initially
57 isolated in the ancestral waterway of the Columbia River and then spread throughout the
58 western USA and British Columbia as the result of geologic events that connected and
59 disconnected watersheds [3]. Populations are found in a wide array of habitats, from desert
60 springs to large rivers and lakes, but most typically to small to medium-sized streams. Their
61 morphology is highly variable but generally reflects the habitat in which a particular
62 population lives. For example, narrow caudal peduncles and large pectoral fins characterize
63 swift-water populations and more robust bodies, thicker caudal peduncles and smaller pectoral
64 fins characterize quiet-water populations [3,5,6].

65

66 Historically, many populations of the SDC were described as separate species. Jordan and
67 Evermann (1896) list 10 species, which had mostly been described based partially on their
68 isolation from other populations and partially on morphological and meristic characteristics
69 even though these characters overlapped among populations [7]. The species were all placed in
70 the genus *Apocope* (now a subgenus of *Rhinichthys*). Subsequently, most of these forms were
71 united under *R. osculus* and considered at best to be subspecies [8]. However, the presence of
72 many isolated populations of speckled dace with similar adaptations to local environments and

Paper Draft 9

73 hence convergent morphologies suggests that cryptic species [9] exist within the SDC and
74 that some of the recognized subspecies (listed in [3]) could be considered as species.

75

76 In California, based on the early taxonomic literature descriptions of life history traits, and co-
77 occurrence in isolated basins with other endemic fishes, Moyle (2002) recognized speckled dace
78 as one species with seven subspecies: Lahontan speckled dace (*R. o. robustus*), Klamath speckled
79 dace (*R. o. klamathensis*), Sacramento speckled dace (*R. o. subsp.*), Owens speckled dace (*R. o.*
80 *subsp.*), Long Valley speckled dace (*R. o. subsp.*), Amargosa speckled dace (*R. o. nevadensis*), and
81 Santa Ana speckled dace (*R. o. subsp.*) [1]. Differences in morphology and meristics among
82 these subspecies are small and may reflect local adaptations rather than fixed characteristics
83 (Smith et al. 2017).

84

85 The advent of molecular genetic techniques has resulted in renewed efforts to examine
86 diversity within the SDC. Genetic information is used to develop hypotheses of evolutionary
87 relationships among populations and to generate biogeographic scenarios relating speckled
88 dace to the history of the western aquatic landscape [3]. To date, the primary genetic approach
89 used to investigate the systematics of speckled dace was analyses of mitochondrial DNA
90 [3,10]. Oakey et al. (2004) used 112 restriction sites found in the mitochondrial genome of dace
91 distributed across the western USA to construct a molecular phylogeny of the speckled dace
92 species complex [10] and found a close match between MtDNA patterns and the geologic
93 history and isolation of drainage basins. They concluded that the SDC consisted of three main
94 evolutionary lineages [9]: (1) Colorado River Basin and Los Angeles Basin, (2) Great Basin
95 (Snake River, Bonneville, Death Valley and Lahontan) and (3) Columbia and Klamath-Pit
96 Rivers. Pfrender et al (2004) showed that MtDNA patterns reflected long isolation of

Paper Draft 9

97 populations in five river basins in Oregon and suggested that some of the lineages were distinct
98 enough to be considered species [11]. In contrast, Billman et al (2010) did not find species-
99 level differences in MtDNA among SDC from Great Basin waterways (Snake, Bonneville,
100 Lahontan) [12].

101

102 More narrowly, Ardren et al. (2010) applied MtDNA analysis to the Foskett Spring speckled
103 dace population in the Warner Basin, Oregon [13]. They concluded that this dace was not
104 sufficiently different from other dace to be considered even a subspecies, although members of
105 the SDC from throughout the Warner Basin together were distinct at the species level.

106 Hoekzema and Sidlauskas (2014) also examined SDC fish from the Warner Basin, along with
107 dace from five other isolated populations in the Great Basin in Oregon [14]. They used
108 MtDNA as well as nuclear DNA (nuclear s7 intron) and found that dace in the Warner Basin
109 were different, potentially at the species level, from dace in the other four basins.

110

111 The most comprehensive study of the SDC was that of Smith et al. (2017) who compared dace
112 populations from throughout western North America, using MtDNA, morphology, fossils, and
113 the geologic record of the entire region. While their analyses indicated multiple lineages, they
114 concluded that there was considerable, if sporadic, gene flow among populations, reflecting
115 complex geologic events that promoted both connectivity and isolation. According to their
116 analysis, gene flow prevented the formation of morphologically distinct populations that might
117 be defined as species, through the process of reticulate evolution.

118

119 Recognizing the limitations of MtDNA for determining evolutionary lineages, Mussman et al.
120 (2020) compared populations of speckled dace from throughout the Death Valley region, in the

Paper Draft 9

121 Owens and Amargosa river basins, using double-digest RAD [15]. They found that Death
122 Valley has four distinct evolutionary lineages that they placed in one subspecies of *R. osculus*:
123 the Amargosa speckled dace (*R.o. nevadensis*) with each of the lineages being treated as a
124 Distinct Population Segment (DPS) for management purposes [15].

125

126 Overall, genetic studies have produced mixed results as to whether or not any evolutionary
127 lineages in the SDC are distinct enough to be designated as species or subspecies. The default
128 position is to follow Smith and Dowling (2008) and Smith et al. (2017) that the SDC is a single
129 species throughout its range because the various populations lack unique morphometric
130 characteristics that would allow them to be described as species [3-4]. However, this default
131 position is particularly problematic for California, a region rich in endemic fish species, many of
132 which are threatened with extinction [1,16]. California SDC populations are also among those
133 most distant from the hypothesized region of origin in the Columbia River and are among the
134 most southern of the taxon. These SDC populations thus reflect their remarkable record of
135 colonizing new regions during the wetter periods of the Pleistocene and then adapting to new
136 conditions as areas became drier [3] and more isolated.

137

138 In this paper, we analyze speckled dace relationships using genomics, more specifically,
139 restriction-site associated DNA sequencing (RAD-seq). This approach is well suited for
140 analyzing the SDC because it uses thousands of loci distributed across the genome from each
141 individual rather than only a single locus or handful of loci as was possible with previous
142 methods. For further discussion of this approach to resolving issues with identifying cryptic
143 fish species, see Baumsteiger et al. (2017) [17].

144

Paper Draft 9

145 We investigated the following questions using a genome-wide data set: (1) Is the SDC just one
146 species or multiple species throughout its native range but especially in California? (2) Are the
147 subspecies of speckled dace found in California, as listed in Moyle (2002), supported by genomic
148 analysis? (3) Do analyses of the SDC using genomic techniques confirm evolutionary
149 relationships inferred from other methods of analysis, especially use of MtDNA? (4) Can we
150 designate species and subspecies of speckled dace base on genetic distinctiveness, monophyly,
151 and geographical isolation?

152

153

154 **Methods**

155 **1.1 Sampling and DNA sequencing**

156 To delineate the lineages of SDC, we obtained samples from 38 locations across the major
157 zoogeographic regions (Fig 1 & S1 Appendix). Fin clips were taken from live adults or from
158 whole fish stored in ethanol and dried on Whatman qualitative filter paper and stored at room
159 temperature. DNA was extracted from fin clips with a magnetic bead-based protocol [18] and
160 quantified using Quant-iT PicoGreen dsDNA Reagent (Thermo Fisher Scientific) with an
161 FLx800 Fluorescence Reader (BioTek Instruments). Genomic DNA was used to generate *SbfI*
162 RAD libraries [18] and sequenced with paired-end 100-bp reads on an Illumina HiSeq 2500.
163 Demultiplexing was performed requiring an exact match with well and plate barcodes [18].
164 Sequencing coverage was assessed at the 50 bp position of each *de novo* RAD contig (see below)
165 across all individuals using the depth function in SAMtools [19].

166

167 **1.2 RAD De Novo Assembly and Alignments**

Paper Draft 9

168 To generate a reference sequence for speckled dace, we performed RAD *de novo* assembly on 8
169 individuals from the Walker River (S1 material). Specific details of the *de novo* assembly
170 methods may be found in Baumsteiger et al. (2017), but, briefly, a bioinformatic pipeline
171 including a genome assembler was used to construct a partial reference for speckled dace [17].
172 After *de novo* assembly, the mem in the Burrows–Wheeler aligner (BWA) was used to align
173 each sample to the reference under the default parameters. SAMtools was used to convert SAM
174 files to BAM files, calculate the percentage of aligned reads, remove PCR duplicates, filter for
175 the proper pairs, and merge the alignments if needed [19]. After the removal of PCR
176 duplicates, we removed low-coverage individuals with less than 70,000 mapped reads.

177

178 **1.3 Genetic population structure with PCA**

179 To begin investigating population structure, we used Analysis of Next Generation Sequencing
180 Data (ANGSD) to call SNPs (-SNP_eval1e-12), infer major and minor alleles (-doMajorMinor
181 1), and estimate allele frequencies (-doMaf 2). Only reads with a mapping quality score above
182 20 (-minMapQ 20) and only bases with a quality score above 20 (-minQ 20) were used in this
183 process [20]. Furthermore, only SNPs with a minor allele frequency of at least 0.01 (-minMaf)
184 that were represented in at least 50% of the included samples (-minInd 88). These SNPs were
185 then used to calculate a covariance matrix (-doCov 1), which was used to generate eigenvalues
186 and eigenvectors for Principal Component Analysis (PCA). The percentage of total genetic
187 variation explained by each PC was calculated, and PCs explaining a relatively large proportion
188 of genetic variation were plotted with ggplot2. To view the substructures within groups from
189 the initial PCA, subsequent PCAs were performed on samples from each group using the same
190 methods described above. The number of SNPs used in each substructure analysis is listed in
191 S1 Table.

Paper Draft 9

192

193 **1.4 Genetic population structure with Admixture analysis**

194 To further assess population structure in speckled dace, we generated genotype likelihoods
195 with ANGSD using the same parameters as above. The beagle output file was then used as the
196 input file for NGSadmix [21]. The parameter K, which means the number of clusters that
197 samples are partitioned assumed in each analysis, were run from 2 to 9, and each has a minor
198 allele frequency filter of 0.01. After population structure was initially characterized, we
199 repeated the procedure as described above on subsets of samples to investigate substructure
200 within each group.

201

202 **1.5 Quantifying pairwise divergence between genetic lineages**

203 To quantify the genetic divergence among populations, we calculated genome-wide F_{st} for
204 population units identified by the analysis above. The individual BAM files were grouped by
205 seven subspecies designated in Moyle (2002) and undesigned speckled dace were grouped by
206 the geographical range. The folded site allele frequencies (SAF) were estimated for each group.
207 The SAF file for the pairwise locations were the input to estimate two-dimensional site
208 frequency spectrum (SFS). SAF for each location and two-dimensional SFS were used to
209 estimate weighted genome-wide F_{st} . All the steps are processed in RealSFS set in ANGSD.

210

211 **1.6 Molecular Phylogeny**

212 To further investigate the relationships among different genetic lineages, a range-wide
213 phylogenetic tree was generated using SVDQuartets [22-23]. Relict dace (*Relictus solitarius*)
214 and tui chub (*Siphatales bicolor*) were used as the outgroup to root the molecular phylogeny

Paper Draft 9

215 because both species are western cyprinids (material S2). The tips were assigned to the
216 subspecies described in Moyle (2002). Undesignated speckled dace were represented by the
217 location where they were collected. If a significant genetic difference was shown between the
218 locations in one region or between subspecies in PCA or admixture analysis, the group was
219 separated into two tips based on genetic differences shown in the other analysis.

220

221 We used ANGSD to perform genotype calling, and we used the same parameters as mentioned
222 above, except generating a VCF file (-dovcf 1). BCFTOOLS were used to prune the SNPs with
223 r^2 greater than 0.9 within each RAD contig [24]. The pruned VCF file was transformed into
224 NEXUS format by vcf2phylip [25]. The pruned NEXUS file was analyzed by SVDQuartets
225 loaded within PAUP* 4.0 [26]. We selected multispecies coalescent model to construct the
226 phylogeny with 1,000,000 random quartets and 100 bootstraps.

227

228 **1.7 Designation of species and subspecies**

229 The genomic methods described above were used to determine the evolutionary relationships
230 among the sampled populations. Our assumption is that evolutionary distances among
231 populations provide support for designation of species and subspecies within the SDC.

232

233 For this study, we started with the accepted designation of speckled dace as a single species
234 throughout its wide, geographically diverse range [3]. We then used the Unified Species
235 Concept to evaluate evidence that there are multiple lineages within the accepted speckled dace
236 subspecies that might be distinct enough to qualify as species [27]. We selected the Unified
237 Species Concept because it provides flexibility in determining species, given that speckled dace
238 hybridize readily with other cyprinid species, a common phenomenon among cyprinids.

Paper Draft 9

239

240 Evidence needed to support likely species using genomics included (a) previous designation as a
241 species based on conventional taxonomy, using morphological and meristic traits, (b) co-
242 occurrence with other fishes endemic to a particular region, and (c) distribution limited to a
243 geographically defined area with an underlying geology that indicates a high likelihood of long
244 reproductive isolation. Sample sites were selected based on these criteria before the project
245 started. Subspecies determination used the same criteria although we do not expect subspecies
246 to be as differentiated from one another as species.

247

248

249 **Results**

250 **2.1 Sequencing, de novo RAD assembly, alignment**

251 To assess the sequencing quality, we calculated the depth at 50 bp in each RAD contig. The
252 mean individual coverage (i.e., the average coverage across all the contigs in one individual)
253 was 7.69, with a maximum 24.88, a minimum of 2.50, and a standard deviation of 3.92 (S1 Fig).
254 The final assembly contained 17,639 contigs, with a mean of contig length of 456.20, a
255 maximum length of 788, and a minimum length of 89 (S3 material). After filtering individuals
256 with sequencing and mapping quality, there were 175 individuals and 421,929 SNPs for further
257 analyses (S1 Appendix).

258

259 **2. 2 Range-Wide**

Paper Draft 9

260 Across all speckled dace samples range-wide, the first two PCs explained 16.7% of the total
261 variance (S2A Fig) and our samples were divided into three clusters (Fig 2A). Group One
262 (upper right) consists of the Klamath speckled dace and Sacramento speckled dace subspecies as
263 well as undesignated speckled dace collected from Warner Basin and Butte Lake. Group Two
264 (upper left) is made up of the following designated subspecies: Amargosa, Long Valley, Owens,
265 and Lahontan speckled dace. Group Three (lower middle) is composed of the Santa Ana
266 speckled dace subspecies as well as undesignated speckled dace from the Bonneville Basin,
267 Washington Coast, Columbia River, and Lower Colorado River. Speckled dace from the latter
268 four regions are outside of California but serve to indicate that California populations sampled
269 herein are distinct from populations in the rest of the range of speckled dace. We next used an
270 admixture analysis of all the samples to complement our PCA analysis. The admixture analysis
271 was run with $K = 2-9$ (S3 Fig). At $K=3$, members of each group in admixture analysis comprise
272 Group One, Group Two and Group Three as indicated by PCA (Fig 2B). Furthermore,
273 pairwise F_{st} calculated between subspecies varied from 0.16 (Owens and Amargosa speckled
274 dace) to 0.68 (Amargosa and Santa Ana speckled dace) (S2 Table). Taken together, these results
275 revealed that the subspecies in Moyle (2002) [1] have highly variable levels of genetic
276 divergence and taxonomic revision may be warranted.

277

278

279 Our SVDQuartets range-wide phylogenetic analyses indicated that the speckled dace
280 subspecies in California recognized by Moyle (2002) are mainly distributed into two
281 monophyletic groups, with the exception Santa Ana speckled dace which is a distinct
282 evolutionary lineage (Fig 2C). Similar to the results of PCA and admixture analyses,
283 Sacramento, Klamath speckled dace and undesignated speckled dace collected from Butte Lake

Paper Draft 9

284 and Warner Basin belong to the same monophyletic group (Group One). Lahontan, Long
285 Valley, Amargosa, and Owens speckled dace are located in another monophyletic group (Group
286 Two), which is the sister group of Group One. Santa Ana speckled dace are clustered with
287 speckled dace from the lower Colorado River drainages, and they are a sister lineage to (a) all
288 other California speckled dace, (b) speckled dace from Bonneville and Snake River (separated
289 from Columbia region because of admixture), and (c) speckled dace from Washington Coast and
290 the Columbia River. Overall, the genetic structure/divergence of speckled dace in California is
291 hierarchical rather than evenly distributed among the subspecies listed in Moyle (2002) (Fig 2).

292

293 **Fig 1. Sampling map.** Map of sampling sites in which speckled dace were collected in this
294 study. The location represented by each number can be found in the supplementary material,
295 Appendix 1.

296

297 **Fig 2. Range-wide speckled dace population structure.** **A.** Principal Component analysis
298 (PC) of all samples. Color and shape represent locations and subspecies designated in Moyle
299 (2002), respectively. 16.71% genetic variation is explained in total (PC1 explains 8.64%
300 variation while PC2 explains 8.07% variation). Three groups are distinguishable. Group One
301 includes Sacramento speckled dace, Klamath speckled dace, and speckled dace collected from
302 Butte Lake and Warner Basin. Group Two includes Amargosa, Long Valley, Owens, and
303 Lahontan speckled dace subspecies. Group Three includes Santa Ana speckled dace and
304 speckled dace from outside California which were collected from Washington Coast, Columbia
305 River, Bonneville Basin, and Colorado River Basin. **B.** Admixture analysis of all samples when
306 $K = 3$, which means we assumed the current populations are admixed by three populations in
307 the past. The upper label represents the locations, and the lower label represents the subspecies
308 designated in Moyle (2002). Washington, Colorado, and Bonneville are abbreviated as WA,
309 CO, and B. PC analysis results are supported by results from Admixture analysis; the colors in
310 three graphs therefore correspond. **C.** SVDQuartets results of the range-wide samples. Relict
311 dace and tui chub were used as the outgroup. Speckled dace taxa designated in Moyle (2002)
312 are split into three groups. Group One and Group Two are monophyletic and are the sister
313 groups of each other, while Santa Ana speckled dace were clustered with Colorado Speckled
314 dace and were the sister group of all the other speckled dace included in this study.

315

316 **2.2 Group One**

317 Group One speckled dace include Klamath and Sacramento speckled dace subspecies plus
318 speckled dace collected from Butte Lake and Warner Basin which were not designated in

Paper Draft 9

319 Moyle (2002). After our range-wide data set indicated Group One, we performed additional PC
320 and admixture analyses using only Group One samples. For this PCA, the first three PCs
321 explain the largest proportion of the genetic variation (S2B Fig). PC1 explains 7.59% genetic
322 variation and split Warner Basin from speckled dace from the other regions. PC2 explains
323 4.69% genetic variation, and split Klamath from Sacramento speckled dace (Fig 3A). PC3
324 explains 3.73% genetic variation and separates the subregions within Sacramento speckled
325 dace: speckled dace in Central Coast are separated from speckled dace in the Sacramento region
326 (Pit River, Goose Lake, and Sacramento River) (Fig 3B). Speckled dace from Butte Lake cluster
327 with Sacramento speckled dace in all the PCs, indicating genetic similarity. Admixture analysis
328 support the results from PCA: Klamath speckled dace, Sacramento speckled dace, speckled dace
329 collected from Warner Basin and Butte Lake were split gradually. More specifically, admixture
330 analysis split speckled dace from Warner Basin when $K = 2$, and then Klamath and Sacramento
331 speckled dace are distinct when $K = 3$. At $K=4$, Butte Lake are split from Sacramento speckled
332 dace. Pairwise F_{st} analysis also support the results from PC and admixture analyses; the highest
333 F_{st} values are found between Warner and the other locations (mean: 0.32) (S2A Table), whereas
334 the F_{st} value between Klamath speckled dace and Sacramento speckled dace is 0.18. The F_{st}
335 value between Sacramento speckled dace and Butte Lake speckled dace is only 0.086.

336 **Fig 3. Sacramento-Klamath-Warner speckled dace population structure.** **A.** Principal
337 Component analysis of samples in group one; color and shape represent locations and
338 subspecies designated in Moyle (2002), respectively. 12.28% of the genetic variation is
339 explained by PC1(7.59%) and PC2 (4.69%). **B.** PC analysis of samples in group one when
340 genetic variation is explained by PC1 (7.59%) and PC3(3.73%). **C.** Admixture analysis of
341 samples in group one when $K = 2, 3, 4, 5$. The upper label represents locations, and the lower
342 label represents subspecies in Moyle (2002).
343

344 The range-wide SVDQuartets analysis is concordant with the above results. The phylogeny
345 placed, Sacramento, Klamath, Central California, Warner Basin and Butte Lake speckled dace
346 into one clade (Bootstrap support =100). Within this clade, Sacramento and Butte Lake show

Paper Draft 9

347 great genetic similarity in PC and admixture analyses, and F_{st} . Klamath speckled dace is the
348 sister group to Sacramento speckled dace and Butte Lake, and accordingly Klamath was split
349 from Sacramento speckled dace in PC and admixture analyses and F_{st} . Warner speckled dace,
350 which is the sister group of all the other groups, has the split in the smallest K value in
351 admixture analysis, and based on pairwise Fst and PC analysis is the most differentiated from
352 Sacramento and Klamath populations.

353

354 **2.3 Group Two**

355 Speckled dace clustered in Group Two include samples from three locations in the Death
356 Valley region (Amargosa, Owens, and Long Valley) and Lahontan speckled dace. Each of these
357 four locations are designated as a subspecies in Moyle (2002). To investigate the genetic
358 structure within Group Two, we performed PC analysis, admixture analysis only on these
359 samples. The first two PCs explain the largest proportion of the genetic variation (Fig S2C):
360 PC1 explains 10.30% and PC2 explains 9.83% of the genetic variation among these samples.
361 Amargosa and Owens speckled dace are very close to each other in both PCs; both PC1 and
362 PC2 split Lahontan and Long Valley speckled dace from Owens and from Amargosa (Fig 4A).
363 Admixture analysis supports the results of the PC analysis. Lahontan speckled dace are split
364 from all the other speckled dace when K = 2, and Long Valley is split from Owens and
365 Amargosa when K = 3. At K=4 and K=5, we observed the local substructure in Amargosa
366 speckled dace which is not discussed in this paper (Fig 4B). Although not as obvious as in
367 Group One, F_{st} results support the PC and admixture analyses. The F_{st} between Owens and
368 Amargosa speckled dace is 0.16, which was the smallest value in all the pairwise F_{st} values in
369 Group Two; this is consistent with their close distance in PC analysis and differentiation at
370 higher K values using admixture analyses. The F_{st} values between Long Valley-Owens and

Paper Draft 9

371 between Long Valley-Amargosa are 0.38 and 0.30, respectively, which is concordant with their
372 separation in the PC analyses and early split in admixture analyses (S2B Table). However,
373 Lahontan speckled dace, the first lineage to split in the admixture analysis, did not show the
374 highest pairwise F_{st} values. Though the F_{st} value between Amargosa and Lahontan speckled
375 dace is 0.33, this value was intermediate between F_{st} values for Lahontan-Owens and
376 Lahontan-Long Valley. This presumably is the result of multiple evolutionary events such as
377 hybridization between taxa or genetic drift in a dynamic landscape. The region has been active
378 geologically during the Pleistocene with major filling and drying of lakes and a huge volcanic
379 eruption that created the crater in Long Valley [1,3].

380
381 **Fig 4. Death Valley speckled dace and Lahontan speckled dace population structure. A.**
382 Principal Component analysis of samples in Group Two; color and shape represent locations
383 and subspecies in Moyle (2002), respectively. 20.13% of the genetic variation is explained by
384 PC1(10.30%) and PC2 (9.83%). **B.** Admixture analysis of samples in Group Two when K =
385 2,3,4,5. The top labels are sample locations, and the bottom labels are subspecies designated in
386 Moyle (2002).

387
388
389 The range-wide SVDQuartets analysis is concordant with PC and admixture analyses in Group
390 2. Lahontan speckled dace, which split at the beginning of admixture analysis, is the sister
391 group of all Death Valley speckled dace. Owens and Amargosa, which show little genetic
392 divergence in the PC and admixture analyses, are sister lineages in the SVDQuartets analysis.
393 The position of Long Valley speckled dace in the SVDQuartets analysis is also supported by
394 admixture analysis, where Long Valley splits after Lahontan but before Amargosa and Owens
395 (Bootstrap support = 100). Although PC analyses and pairwise F_{st} indicate that Long Valley
396 speckled dace is a separate lineage from Amargosa and Owens, this incongruence could be
397 caused by overestimation of genetic divergence due to genetic drift in a small population under
398 long isolation.

399

Paper Draft 9

400 2.4 Group Three

401 The only California speckled dace sample in Group Three is the Santa Ana speckled dace,
402 which clusters with non-California speckled dace (S1 Appendix). Group Three includes Santa
403 Ana speckled dace, which is designated as a subspecies in Moyle (2002) and speckled dace
404 collected from four non-California locations. To investigate the distinctiveness of Santa Ana
405 speckled dace, we performed PC analysis, admixture analysis, and estimated pairwise F_{st} for
406 sample collections in Group Three. PC and admixture analyses show that Santa Ana speckled
407 dace are strikingly genetically different from non-California speckled dace in the group. In the
408 PC analysis for Group Three, the largest proportion of the genetic variation is explained by
409 PC1 and PC2 (S2D Fig). PC1 explains 21.5% and PC2 explains 12.9% genetic variation (Fig
410 5A). Strikingly, both PC1 and PC2 split Santa Ana from all other speckled dace lineages.
411 Admixture analysis for Group Three was run from $K = 2$ to $K = 5$, and Santa Ana speckled
412 dace split from the other locations such as Lower Colorado Basin, Bonneville, Columbia Basin,
413 and Washington coast from $K = 3$ to $K = 5$ (Fig 5B). The F_{st} also show that Santa Ana
414 speckled have high pairwise F_{st} values with all other California speckled dace and the non-
415 California speckled dace (S2 Table).

416

417 **Fig 5. Non-California and Santa Ana speckled dace population structure.** **A.** Principal
418 component analysis of samples in Group Three. Color and shape represent locations and
419 subspecies designated in Moyle (2002), respectively. 34.4% genetic variation is explained in
420 total (PC1 explains 21.5% variation while PC2 explains 12.9% variation). **B.** Admixture analysis
421 of samples in group three when $K = 2,3,4,5$. The upper label represents the locations, and the
422 lower label represents subspecies designated in Moyle (2002). Both PC and admixture analyses
423 support Santa Ana speckled dace as distinct from non-California speckled dace but have a
424 distant relationship to Colorado Basin dace.

425

426

427 The range-wide SVDQuartets analysis showed that Santa Ana speckled dace are clustered with
428 samples collected from Colorado Basin (Bootstrap support = 100). The results of admixture

Paper Draft 9

429 analysis and PCA support the genetic affinity between Santa Ana and the Colorado Basin:
430 Colorado speckled dace clusters with Santa Ana when $K = 2$ and Colorado speckled dace are the
431 closest lineage to Santa Ana in the PCA. However, due to the limited number of samples of
432 non-California speckled dace, we did not assess further the relationship between non-California
433 speckled dace and Santa Ana speckled dace.

434

435 **Discussion**

436 **3.1. The speckled dace is a complex of multiple species and**

437 **subspecies.**

438 Our genomic data analyses suggest that the speckled dace is not one species but rather a species
439 complex with hierarchical evolutionary lineages, some of which may be designated as species
440 and subspecies. In California, these lineages coincide with zoogeographic regions that are
441 largely isolated from one another and that contain other endemic fishes, suggesting long
442 isolation [1]. While some morphological and meristic differences exist among the lineages
443 within the speckled dace, as discussed in the introduction, they may reflect local adaptations to
444 diverse conditions rather than traits that allow species to be defined. Smith et al. (2017) [3]
445 indicated that the lack of clear morphological differences was the result of frequent
446 hybridization events that allowed gene flow among populations over wide areas. Because
447 hybridization is common in cyprinid fish, we rely on pre-mating isolation as the basis for
448 designating species and subspecies. We followed a combination of genetic and ecological
449 differences to designate species and subspecies. Ecological differences and allopatric isolation
450 ensure that genetic differences will accumulate. Thus, we hypothesize that a hybrid between
451 individuals from two distinct lineages is expected to be poorly adapted to the ecological system

Paper Draft 9

452 and therefore have reduced fitness [28]. We therefore find it appropriate to label
453 geographically isolated lineages with large genomic differences from other lineages as species
454 and geographically isolated lineages with less genomic differentiation as subspecies or as
455 distinct population segments [27]. A more comprehensive definition of species in the SDC
456 complex will be presented in a separate paper that describes species and subspecies in California
457 which are currently all under *R. osculus*.

458

459 **3.2 Group One: Klamath, Sacramento, and Warner speckled dace**

460 **together are a single species, with three subspecies.**

461 In all the analyses, Klamath speckled dace, Sacramento speckled dace, and undesignated
462 speckled dace from Warner Basin are in Group One. Speckled dace in Group One have
463 relatively low F_{st} values within them compared to F_{st} values between them and the other
464 groups. For example, F_{st} values between Sacramento and Klamath speckled dace and speckled
465 dace collected from Warner Basin are 0.18 and 0.30, but the F_{st} values between Sacramento
466 speckled dace and Death Valley speckled dace (Amargosa, Owens, Long Valley) are 0.56,
467 0.52 ,0.46 respectively. Samples from group one locations are also located in a monophyletic
468 group in phylogeny. As a result, Klamath, Sacramento, and Warner Basin speckled dace should
469 be considered a single species, the western speckled dace. In the genetic analysis of Group One,
470 Warner is distinct from Klamath and Sacramento. The Warner Basin is also comparatively
471 small, geographically well defined, and contains other endemic fishes. Therefore, we recognized
472 Warner speckled dace as a subspecies under western speckled dace. Although Klamath and
473 Sacramento speckled dace have less genetic divergence from each other than either does from
474 Warner, the geographic basins in which each occurs are well defined and contain endemic fishes
475 [1]. As a result, we also define Klamath speckled dace and Sacramento speckled dace each as a

Paper Draft 9

476 subspecies under western speckled dace. Speckled dace from the Central Coast of California
477 (San Luis Obispo Creek, Santa Maria River, Monterey Bay drainages) are clearly part of
478 Sacramento speckled dace lineage but show enough genetic differentiation that Central Coast
479 speckled dace can be recognized as a separate DPS of Sacramento speckled dace (California
480 coast speckled dace). Thus, Warner speckled dace, Klamath speckled dace, and Sacramento
481 speckled dace are three subspecies, each under western speckled dace, of which only one of the
482 three has been formally described, as *R. klamathensis* [29].

483

484 **3.3 Group One: speckled dace from Butte Lake in Lassen Volcanic 485 National Park is an introduced population.**

486 Butte Lake is located in Lassen Volcanic National Park and drains into the Lahontan basin, so
487 speckled dace from Butte Lake were assumed to be genetically tied to Lahontan speckled dace.
488 However, our analyses showed Butte Lake speckled dace to have much greater similarity to our
489 Sacramento speckled dace samples than to Lahontan speckled dace in all the analyses.
490 Therefore we classify speckled dace from Butte Lake as Sacramento speckled dace and
491 hypothesize that the population in Butte Lake most likely represents a bait-bucket introduction.
492 Butte Lake drains northward from Mount Lassen through Butte Creek (which has Sacramento
493 speckled dace) and may have been connected at one time to the Eagle Lake watershed in the
494 Lahontan Basin, although frequent lava flows have obscured drainage patterns. The three other
495 fishes present in Butte Lake, Tahoe sucker (*Catostomus tahoensis*), Lahontan redside
496 (*Richardsonius egregius*), and tui chub (*Siphatales bicolor*) are Lahontan basin fishes, lending
497 credence to the bait bucket hypothesis.

498

Paper Draft 9

499 **3.4 Group Two: Amargosa and Long Valley speckled dace are**

500 **Subspecies of Lahontan speckled dace.**

501 In our phylogenetic analysis, Owens, Amargosa, Long Valley, and Lahontan speckled dace are
502 in the same clade, which is in accordance with the results shown in range-wide PC and
503 admixture analyses. In the genetic analysis for Group Two, Amargosa and Owens only showed
504 show small genetic differences and a similar pairwise F_{st} value to the F_{st} value between
505 Sacramento and Klamath speckled dace which we designate as separate subspecies. Smith et al.
506 (2017) found that speckled dace from the Amargosa River shared haplotypes with speckled dace
507 from Owens Valley. Dace from Oasis Valley, Nevada, headwaters of the Amargosa River in
508 Death Valley and Ash Meadows (Bradford Spring), are sister lineages of Owens Valley speckled
509 dace. Mussman et al. (2020) also showed that speckled dace from Owens and Amargosa
510 watersheds had minimal genetic variance and that admixture exists between speckled dace from
511 these two regions. Unlike the situation for Klamath and Sacramento speckled dace, the Owens
512 River and Amargosa River watersheds are internal drainages that were connected via a chain of
513 large lakes during extended wet periods in the late Pleistocene, 16-18 thousand years ago [30-
514 31]. Given the results of our analyses and their recent geographic separation and isolation, we
515 place speckled dace from Amargosa and Owens Rivers in the same subspecies, named
516 Amargosa speckled dace. However, although Long Valley speckled dace are in the same
517 geographic basin as the Owens watershed, Long Valley speckled dace are genetically distinct
518 from Owens and Amargosa speckled dace. This was probably the result of genetic drift due to
519 isolation of small dace populations by a large volcanic eruption that created Long Valley and
520 isolated the Owens Valley from the Lahontan Basin. Therefore, we consider Long Valley
521 speckled dace to be a subspecies of Lahontan speckled dace. All other populations of speckled
522 dace in the Death Valley region (e.g., Owens Valley, Ash Meadows, Amargosa River, Oasis

Paper Draft 9

523 Valley) are best regarded together as one subspecies of Lahontan speckled dace, with each
524 designated as a Distinct Population Segment (as in [15]). Overall, our analyses points to
525 Amargosa speckled dace and Long Valley speckled dace each as being subspecies of Lahontan
526 speckled dace, which is discussed section 3.5.

527

528 **3.5. Group Two: Lahontan speckled dace are a species with three 529 subspecies in California.**

530 Speckled dace from the Walker River, Humboldt River, Eastern Sierra Nevada streams, and
531 Death Valley system streams are supported as one lineage, the Lahontan speckled dace, which
532 is a widely recognized taxon, as *R. o. robustus* [1,33,34]. The Owens, Amargosa and Long
533 Valley populations form lineages that have diverged from Lahontan speckled dace and could
534 arguably be recognized as a full species (Fig 2B). Although Lahontan speckled dace split at
535 $K=2$ in the admixture analysis for Group Two, F_{st} values between Lahontan-Owens and
536 Lahontan-Long Valley speckled dace are somewhat small: 0.25 and 0.26, respectively, and even
537 lower than the F_{st} between Long Valley-Owens speckled dace. This suggests that either a
538 hybridization event took place between Lahontan-Owens creating Long Valley speckled dace,
539 or that Lahontan and Long Valley share an early evolutionary history and were separated by
540 geologic change. Ancestral Lahontan speckled dace were likely present in the Owens region
541 prior to a massive volcanic eruption that separated the Owens Valley from the Lahontan basin
542 about 760,000 years ago [35]. The presence of Owens tui chub (*Siphatales bicolor snyderi*) and
543 Owens sucker (*Catostomus fumeiventris*) support this concept because the closest relatives of both
544 taxa are in the Lahontan basin [1]. Therefore, we consider Lahontan speckled dace to have two
545 subspecies in California: Amargosa speckled dace and Long Valley speckled dace. However, the

Paper Draft 9

546 presence of other *R. osculus* subspecies, some described, in the Lahontan Basin indicates that
547 additional subspecies will likely eventually be added to the list [34].

548

549

550 **3.6 Group Three: Santa Ana speckled dace is a full species**

551 Our range-wide analyses reveal that Santa Ana speckled dace are strikingly different from all
552 other speckled dace collected in California. Santa Ana speckled dace share more genetic
553 similarities with speckled dace from Lower Colorado Basin, Bonneville, Washington Coast, and
554 the Columbia River than with other dace in California. Due to the small number of samples, the
555 genetic diversity within the Colorado Basin, Washington Coast streams and the Columbia
556 River are not discussed in this paper. The evolutionary history of Santa Ana speckled dace can
557 be linked most closely with speckled dace in the Lower Colorado Basin because they did not
558 split from each other in the admixture analysis with all the samples from $K = 3$ to $K = 8$ (S3
559 Fig). In Smith et al. 2017, speckled dace collected from Colorado Basin and speckled dace
560 collected from Los Angeles Basin are sister lineages in the Colorado Group with a relatively
561 weak bootstrapping support in the MtDNA phylogeny. In the Fst values, we find Santa Ana
562 speckled dace has high genetic divergence from both California and non-California speckled
563 dace. The lower bootstrapping in Smith et al. (2017) [3] is likely caused by high genetic
564 divergence and relatively few diversity in MtDNA.

565

566 In our study, we clarify the genetic distinctness of Santa Ana speckled dace. All analyses show
567 that Santa Ana speckled dace have remarkably high genetic differences from the other
568 subspecies in Moyle (2002) [1] and the other speckled dace in Group Three (S2A and S2B
569 Tables). Due to the distinct genetic structure separating Santa Ana from other sampled

Paper Draft 9

570 California speckled dace in addition to those from the Columbia and Colorado river basins,
571 Santa Ana speckled dace clearly merit full species recognition. This same basic conclusion was
572 reached by Cornelius (1969) [32] who conducted a detailed study of the morphometrics and
573 meristics of Santa Ana speckled dace, as well as of dace from neighboring streams (Sacramento
574 basin), the Virgin River (Lower Colorado basin), and Lake Tahoe (Lahontan basin). His study
575 was the first to link the origins of Santa Ana dace to the lower Colorado River basin. Using
576 genomics, Mussman (2020) [15] came to the conclusion: that Santa Ana speckled dace are very
577 different and are linked to a Colorado River clade.

578

579 **3.7 Conservation Implications**

580 We found that genetic divergence in speckled dace is concordant with geographical regions and
581 has a hierarchical structure: the populations across geographical regions are genetically
582 divergent in different levels, depending on time and degree of isolation from other speckled
583 dace populations. If we view the SDC as a single widespread species, it would not be considered
584 as a species that needs conservation because of its wide distribution and large population size.
585 Species and subspecies in different geographical regions face different environmental problems.
586 We can combine our knowledge of genetic divergence with that of ecosystem status and
587 characteristics to design distinct conservation management and policy strategies for different
588 populations of speckled dace. Such information can also help set priorities for conservation:
589 which lineages of speckled dace need conservation attention now in order to protect genetic
590 diversity.

591

592 **4. Conclusion**

Paper Draft 9

593 Based on the genetic analyses, we found that the relationships within the seven subspecies
594 designated in Moyle (2002) [1] are hierarchical. In other words, they are genetically divergent
595 at different levels as opposed to having relatively uniform relatedness as might be expected for
596 a single taxonomic level. This result supports merging lineages with relatively small genetic
597 differences into single subspecies and treating the most genetically distinct lineages as species.
598 More specifically, our genetic analyses place all California populations into three species:
599 western speckled dace, Lahontan speckled dace, and Santa Ana speckled dace. Western speckled
600 dace contains, as subspecies, Warner speckled dace, Sacramento speckled dace, and Klamath
601 speckled dace. Lahontan speckled dace is a species that is widely distributed in the Great Basin
602 but that also encompasses two lineages of speckled dace from the Death Valley region: Long
603 Valley speckled dace and Amargosa speckled dace. Santa Ana speckled dace is also a full species
604 showing extreme genetic divergence from all other speckled dace. The focus of this paper is
605 speckled dace in California so how our findings relate to speckled dace outside of California
606 remains unclear. However, it seems likely that there are non-California lineages that can also be
607 designated (or redesignated) as full species when genomic methods are applied to uncover
608 cryptic species. These taxonomic issues will be further explored in a paper devoted solely to
609 taxonomy of the speckled dace complex in California.

610

611 **Acknowledgements**

612 The authors thank Amber Manfree for making the maps (Fig 1) for this project as well as Scot
613 Lucas (Klamath River), Mollie Ogaz (Sacramento system), and Steve Parmenter (Owens Valley,
614 Lahontan) for providing samples for this analysis.

615

616 References

- 617 1. Moyle PB. Inland fishes of California, revised and expanded. Berkeley: University of
618 California Press; 2002.
- 619 2. Wydoski RS, Whitney RR. Inland fishes of Washington. Second edition. Seattle:
620 University of Washington Press; 2003.
- 621 3. Smith GR, Chow J, Unmack PJ, Markle DF, Dowling TE. Evolution of the
622 *Rhinichthys osculus* complex (Teleostei: Cyprinidae) in western North America.
623 Miscellaneous Publications Museum of Zoology University of Michigan. 2017;
624 204(2), 1–83.
- 625 4. Spencer JE, Smith GR, Dowling TE. Middle to late Cenozoic geology, hydrography,
626 and fish evolution in the American Southwest. In Reheis, M.C., Hershler, R., and
627 Miller, D.M., editors., Late Cenozoic drainage history of the southwestern Great
628 Basin and Lower Colorado River region: geologic and biotic perspectives:
629 Geological Society of America Special Paper 2008; 439: 279–299.
- 630 5. Page LM, Peterson BM. Guide to freshwater fishes of North America North of
631 Mexico. Second edition. New York: Houghton Mifflin; 2011.
- 632 6. Sada DW, Britten HB, Brussard PF. Desert aquatic ecosystems and the genetic and
633 morphological diversity of Death Valley system speckled dace. American Fisheries
634 Society Symposium. 1995; 17: 350–359.
- 635 7. Jordan DS, Evermann BW. The Fishes of North and Middle America. Bulletin, US
636 National Museum. 1896; 47: part 1.
- 637 8. Hubbs CL, Miller RR, Hubbs LC. Hydrographic history and relict fishes of the
638 north-central Great Basin. California Academy of Sciences Memoir. 1974; 7:1–259.
- 639 9. Bickford D, Lohman DJ, Sodhi NS, Ng PK, Meier R, Winker K et al. Cryptic species
640 as a window on diversity and conservation. Trends in Ecology & Evolution 2007;
641 22(3): 148–155.
- 642 10. Oakey DD, Douglas ME, Douglas MR. Small fish in a large landscape:
643 diversification of *Rhinichthys osculus* (Cyprinidae) in western North
644 America. Copeia 2004; (2):207–221.
- 645 11. Pfrender ME, Hicks J, Lynch M. Biogeographic patterns and current distribution of
646 molecular-genetic variation among populations of speckled dace, *Rhinichthys osculus*
647 (Girard). Molecular Phylogenetics and Evolution 2004; 30(3):490–502.
- 648 12. Billman EJ, Lee JB, Young DO, McKell MD, Evans RP, Shiozawa DK. Phylogenetic
649 divergence in a desert fish: differentiation of speckled dace within the Bonneville,
650

Paper Draft 9

661 Lahontan, and upper Snake River basins. *Western North American Naturalist* 2010;
662 70(1):39-48.

663

664 13. Ardren WR, Baumsteiger J, Allen CS. Genetic analysis and uncertain taxonomic
665 status of threatened Foskett Spring speckled dace. *Conservation Genetics* 2010;
666 11(4): 1299-1315.

667

668 14. Hoekzema K, Sidlauskas BL. Molecular phylogenetics and microsatellite analysis
669 reveal cryptic species of speckled dace (Cyprinidae: *Rhinichthys osculus*) in Oregon's
670 Great Basin. *Molecular Phylogenetics and Evolution* 2014; 77: 238-250.

671

672 15. Mussman SM, Douglas MR, Oakey DD, Douglas ME. Defining relictual
673 biodiversity: conservation units in speckled dace (Leuciscidae: *Rhinichthys osculus*) of
674 the Greater Death Valley Ecosystem. *Ecology and Evolution*. 2020; 10:10798-
675 10817. doi: 10.1002/ece3.6736.

676

677 16. Leidy RA, Moyle PB. Keeping up with the status of freshwater fishes: A California
678 (USA) perspective. *Conservation Science and Practice*. 2021; 3:e474. doi
679

680 17. Baumsteiger J, Moyle PB, Aguilar A, O'Rourke SM, Miller MR. Genomics clarifies
681 taxonomic boundaries in a difficult species complex. *PLoS ONE*. 2017; 12(12):
682 e0189417. doi: [10.1371/journal.pone.0189417](https://doi.org/10.1371/journal.pone.0189417)

683

684

685 18. Ali OA, O'Rourke SM, Amish SJ, Meek MH, Luikart G, Jeffres C, et al. RAD
686 Capture (Rapture): flexible and efficient sequence-based genotyping. *Genetics*.
687 2016;202: 389-400. pmid:26715661.

688

689 19. Li H, Handsaker B, Wysoker A, Fennell T, Ruan J, Homer N et al., and 1000
690 Genome Project Data Processing Subgroup, The Sequence alignment/map (SAM)
691 format and SAMtools. *Bioinformatics*. 2009; 25(16) 2078-9.

692

693

694 20. Korneliussen TS, Albrechtsen A, Nielsen R. ANGSD: Analysis of next generation
695 sequencing data. *BMC Bioinformatics*. 2014;15: 356. pmid:25420514.

696

697 21. Skotte L, Korneliussen TS, Albrechtsen A. Estimating individual admixture
698 proportions from next generation sequencing data. *Genetics*.2013; 195(3), 693-702.
699 doi:10.1534/genetics.113.154138

700

701 22. Chifman J, Kubatko L. Quartet inference from SNP data under the coalescent.
702 *Bioinformatics*. 2014; 30(23): 3317-3324.

703

704 23. Chifman J, Kubatko L. Identifiability of the unrooted species tree topology under the
705 coalescent model with time-reversible substitution processes, site-specific rate
706 variation, and invariable sites, *Journal of Theoretical Biology*. 2015; 374: 35-47.

707

Paper Draft 9

708 24. Danecek P, Schiffels S, Durbin R. Multiallelic calling model in bcftools (-m). 2016.
709 Available from: samtools.github.io/bcftools/call-m.pdf

710

711 25. Ortiz EM. vcf2phylip v2.0: convert a VCF matrix into several matrix formats for
712 phylogenetic analysis. 2019. Available from:
713 (<https://github.com/edgardomortiz/vcf2phylip>). DOI:10.5281/zenodo.2540861

714

715 26. Swofford DL. PAUP*. Phylogenetic analysis using parsimony (* and other method).
716 Version 4. Sinauer Associates, Sunderland, Mass. 2002.

717

718 27. de Querioz K. Species concepts and species delimitation. Systematic Biology. 2007;
719 56(6):879-886.

720

721 28. Coyne JA, Orr HA. Speciation. Sinauer Associate, Sunderland, MA; 2004.

722

723

724 29. Evermann BW, Meek SB. A report upon salmon investigations in the Columbia
725 River and elsewhere on the Pacific Coast in 1896. Bulletin of the U.S. Fish
726 Commission. 1898; 17:15-84.

727

728 30. Hershler R, DB Madsen, DR Currey, editors. Great Basin Aquatic Systems History.
729 Smithsonian Contributions to the Earth Sciences 33; 2002.

730

731 31. Hubbs CL and RR Miller. The Zoological Evidence. The Great Basin, with
732 Emphasis on Glacial and Postglacial Times. Bulletin, University of Utah 1948; 38
733 (20):17-166.

734

735 32. Cornelius RH. The Systematics and Zoogeography of *Rhinichthys osculus* (Girard) in
736 southern California. M.A. thesis, California State University Fullerton. 1969.

737

738 33. Rutter C. 1904. Notes on fishes from streams and lakes of northeastern California
739 not tributary to the Sacramento basin. U. S. Fish Commission Bulletin, 1902.
740 22:145-148.

741

742 34. Deacon JE, Williams JE. Annotated list of the fishes of Nevada. Proceedings of the
743 Biological Society of Washington. 1984; 97(1):113-118.

744

745 35. Holohan EP, Troll VR, Vries B van Wyk de, Walsh JJ, Walter TR. (2008-04-
746 01) Unzipping Long Valley: An explanation for vent migration patterns during an
747 elliptical ring fracture eruption. Geology. 36 (4): 323-326. doi: [10.1130/G24329A.1](https://doi.org/10.1130/G24329A.1)

748

749

750

751

752 Supporting Information

Paper Draft 9

753 **S1 Fig. Contig Depth.** The distribution of mean depth of all the contigs at 50 bp in each
754 individual.

755

756 **S2 Fig. Genetic variation explained by each PC.** **A.** The percentage of genetic variation
757 explained by first 30 PCs for all samples PCA. **B.** The percentage of genetic variation explained
758 by first 30 PCs for PCA for California speckled dace, Warner speckled dace and speckled dace
759 in Butte Lake (Group one). **C.** The percentage of genetic variation explained by first 30 PCs for
760 PCA for Death Valley speckled dace and Lahontan speckled dace (Group two). **D.** The
761 percentage of genetic variation explained by first 30 PCs for PCA for Non-California and Santa
762 Ana speckled dace (Group three).

763

764 **S3 Fig. Admixture analysis of all the samples from K = 2-9.** K refers to the number of the
765 ancestral populations that the current populations are admixed from. Each color represents one
766 of the ancestral populations. Upper and lower x-axis refers to locations and subspecies,
767 respectively.

768

769 **S1 Appendix. Information for all samples included in the analysis.** It includes the location
770 and GPS coordinates and number of the samples after the sequencing and alignment qualifying
771 filtering.

772

773 **S1 Table. Number of SNPs in the analyses for each group.** It counts number of SNPs that
774 are genotype called in PCA and admixture analyses for investigating the population structures
775 in group 1-3.

776

777 **S2 Table. Pairwise F_{st} for speckled dace.** The smaller the number the closer the evolutionary
778 relationship between the two populations. **A.** Pairwise F_{st} of California samples and samples
779 that share the same node with California samples. **B.** Pairwise F_{st} between non-California
780 samples (Washington, Columbia, Colorado, Washington) and Santa Ana speckled dace.

781

782 **S1 material. Individuals selected for reference genome.** The file names of the filtered BAM
783 files of 8 speckled dace collected from Walker River, which are selected to generate reference
784 genome.

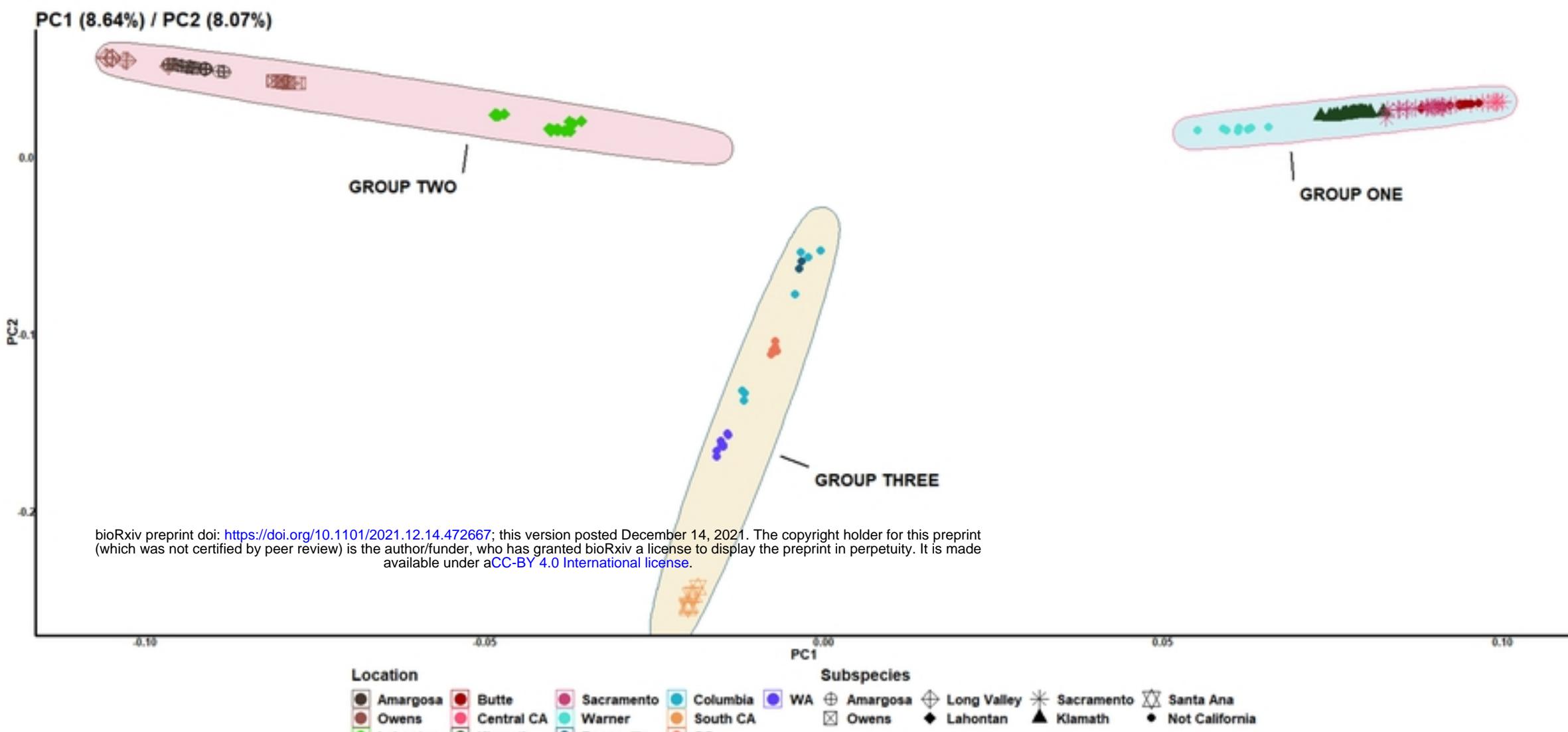
785

786 **S2 material. Outgroup Sequence.** It includes the sequence of tui chub and relict dace used as
787 outgroup for phylogenetic analysis.

788

789 **S3 material. The list of Contigs in the reference genome.** This file contains all the contigs
790 included in the reference genome with the average, minimum, and maximum length.

791


792

793

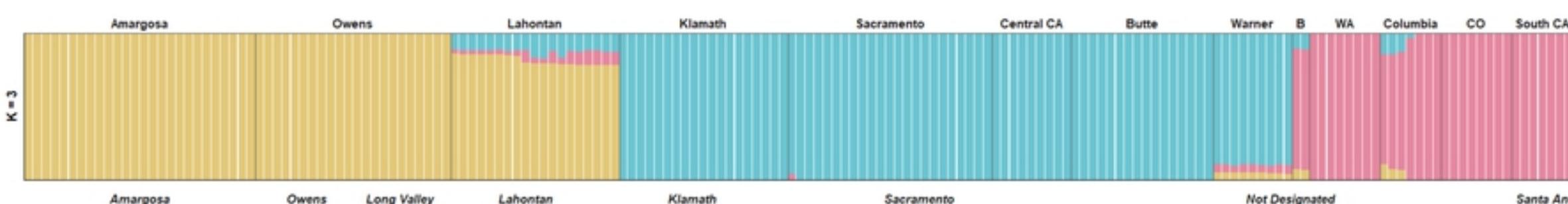


Figure 1

A

B

C

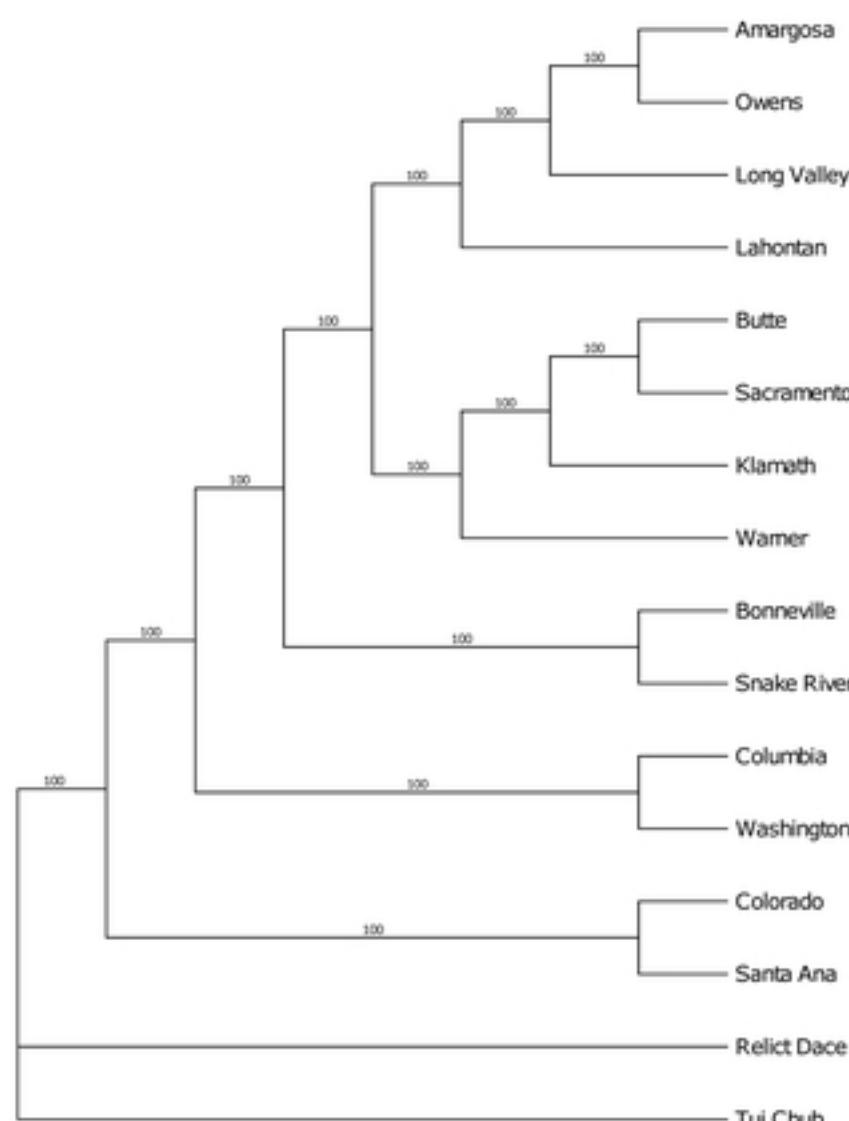
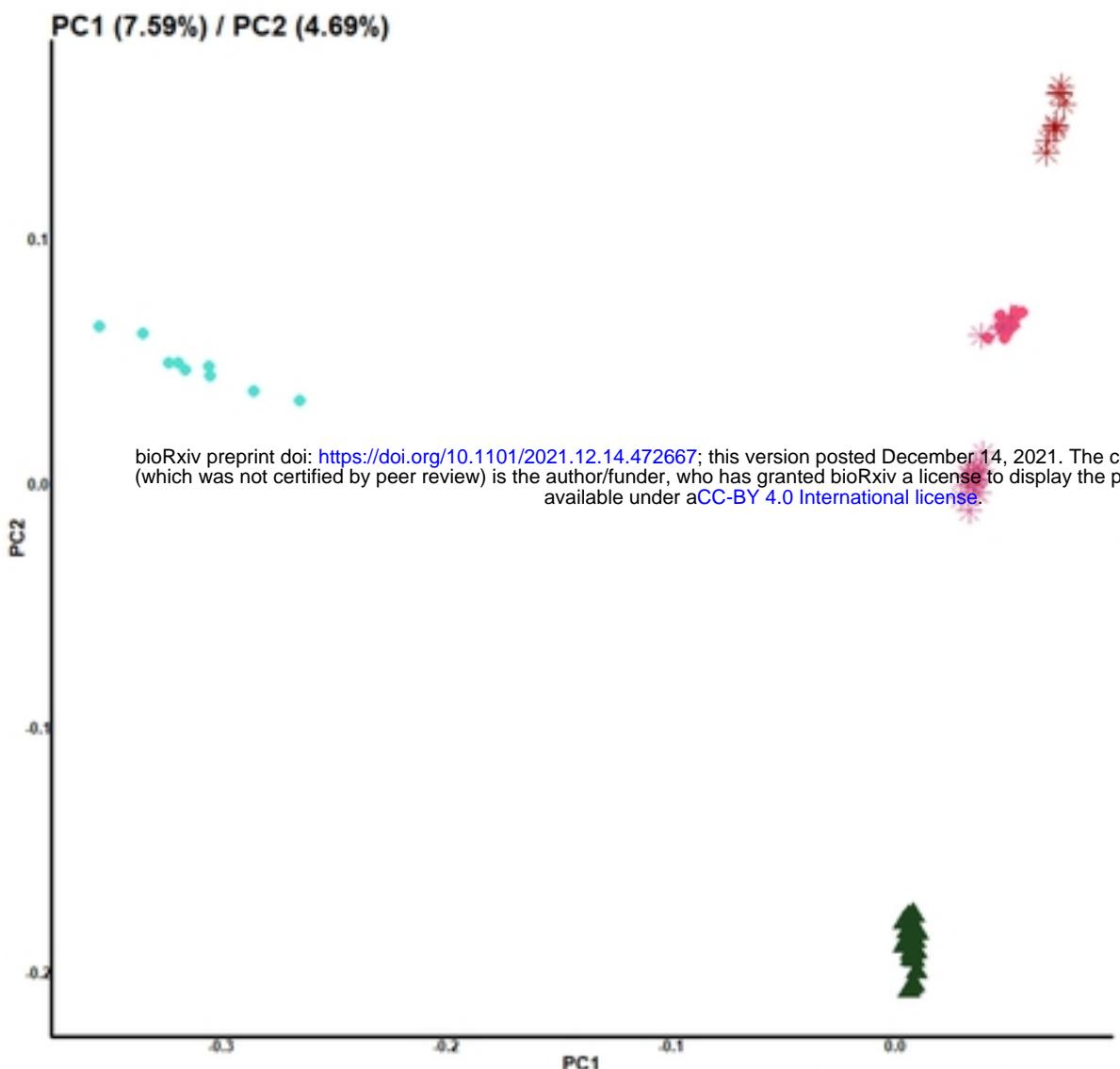
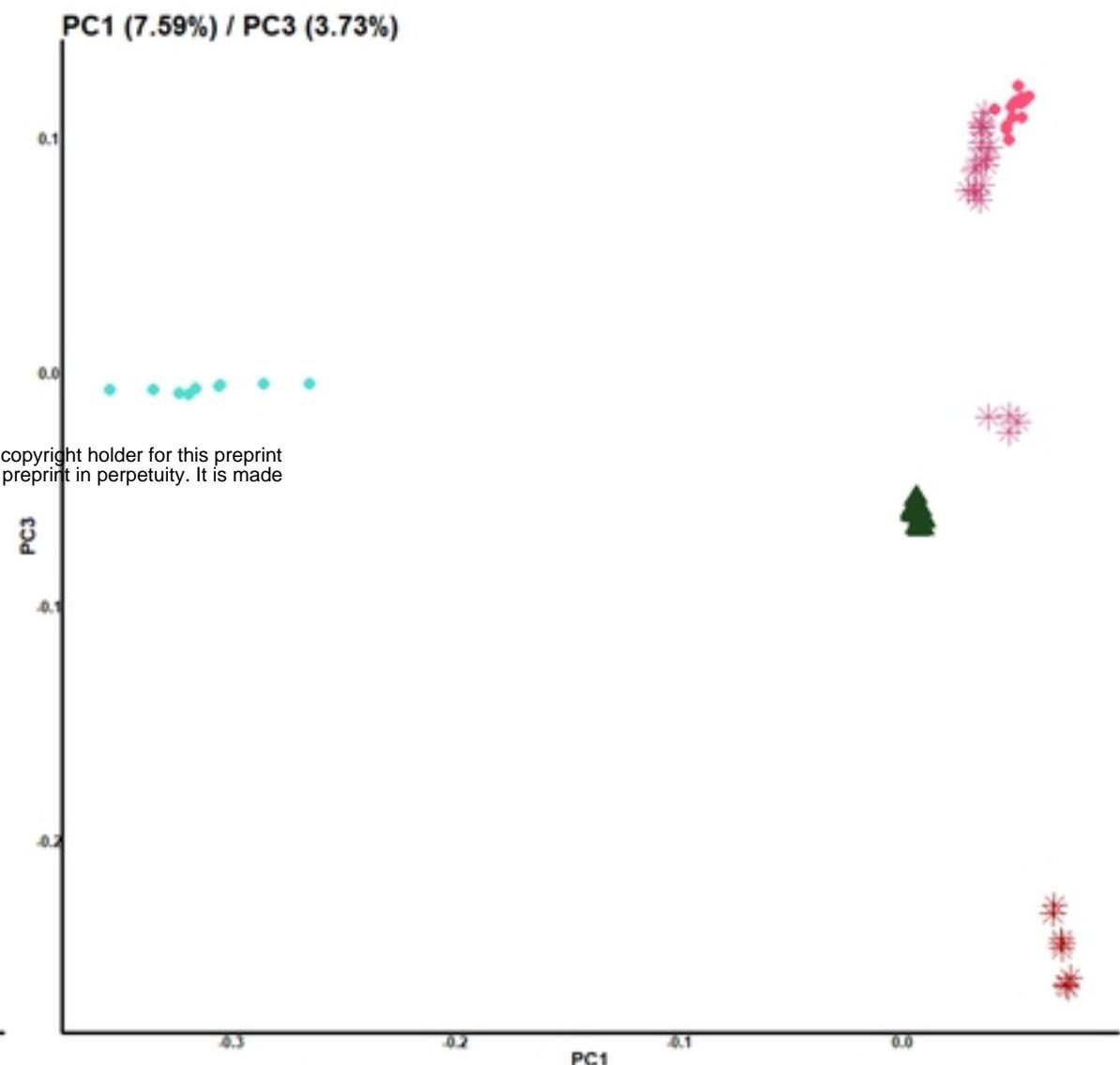




Figure2

A

B

C

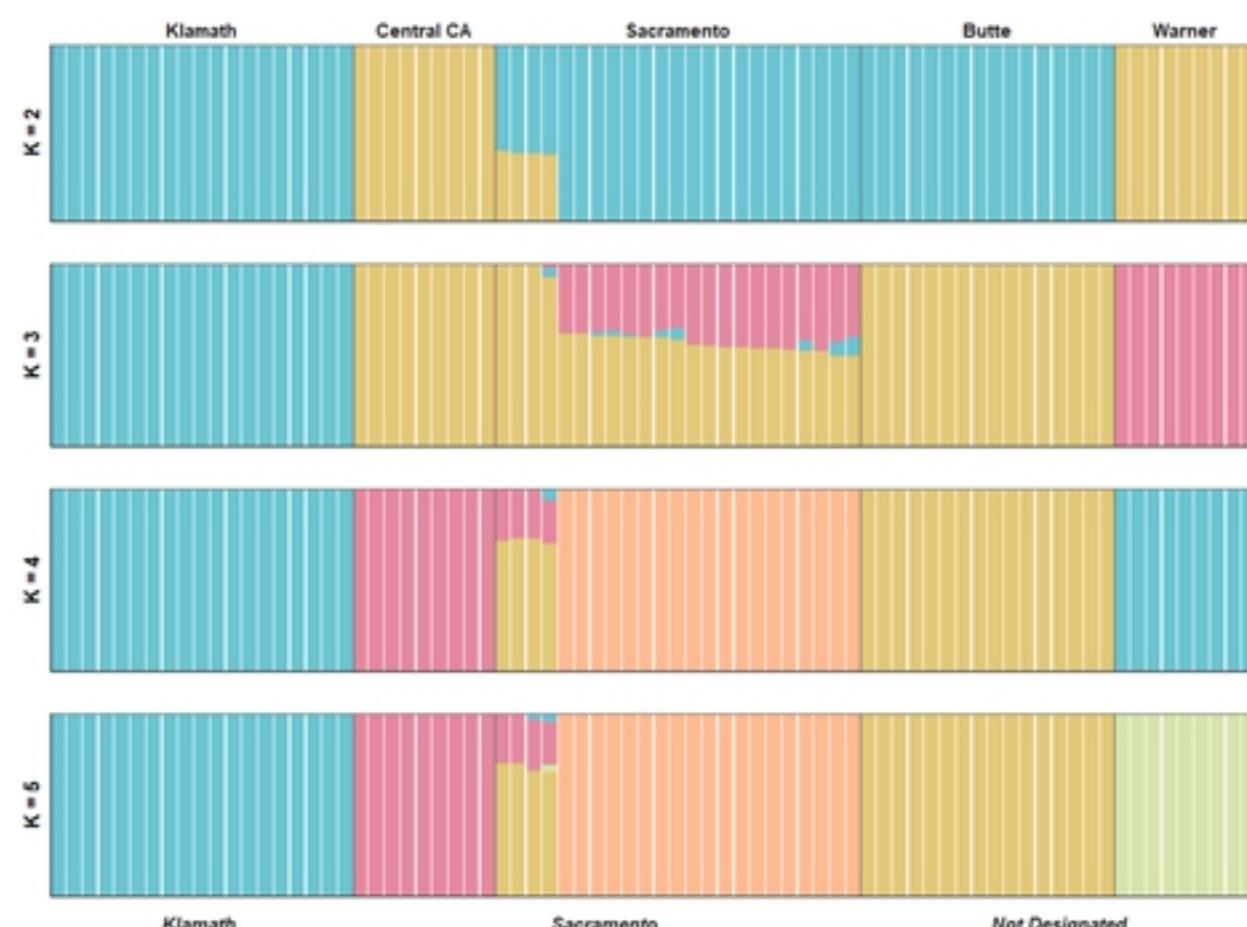
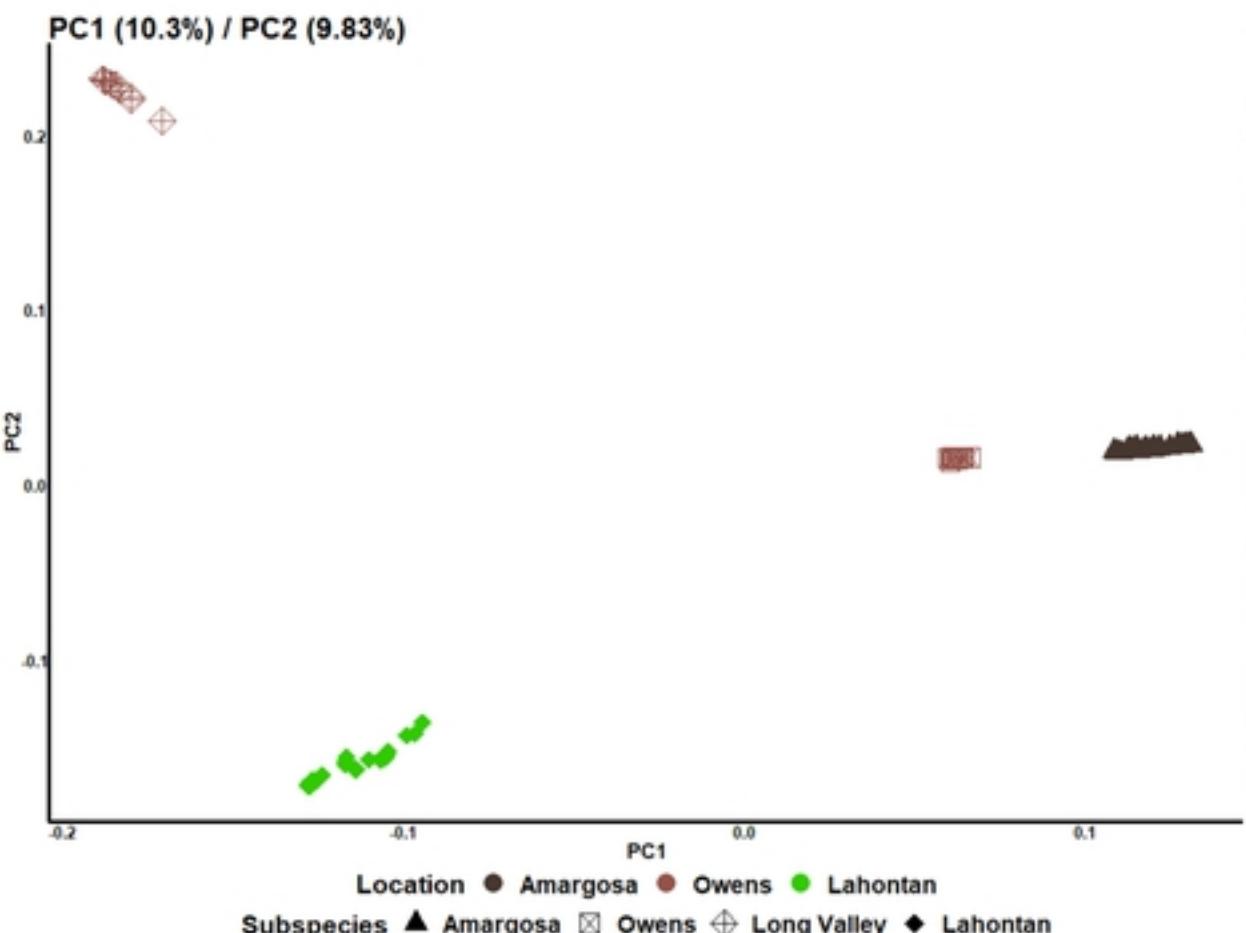



Figure3

A

B

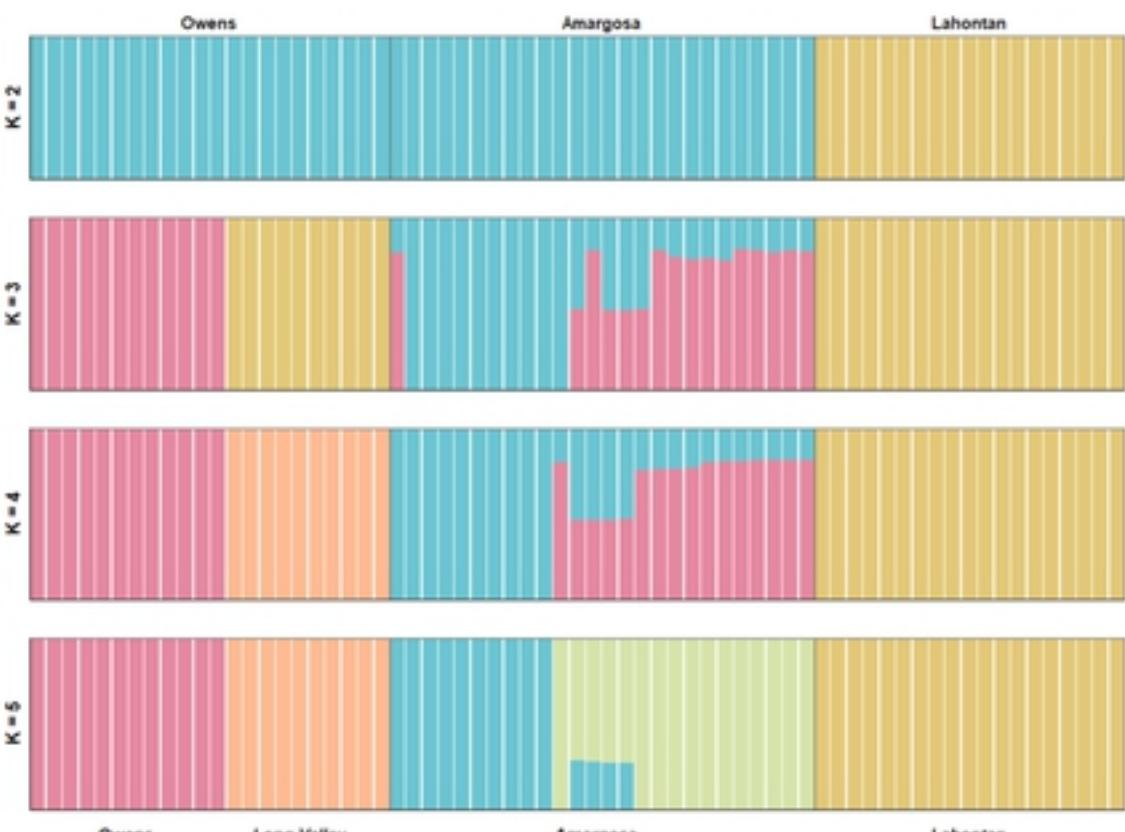
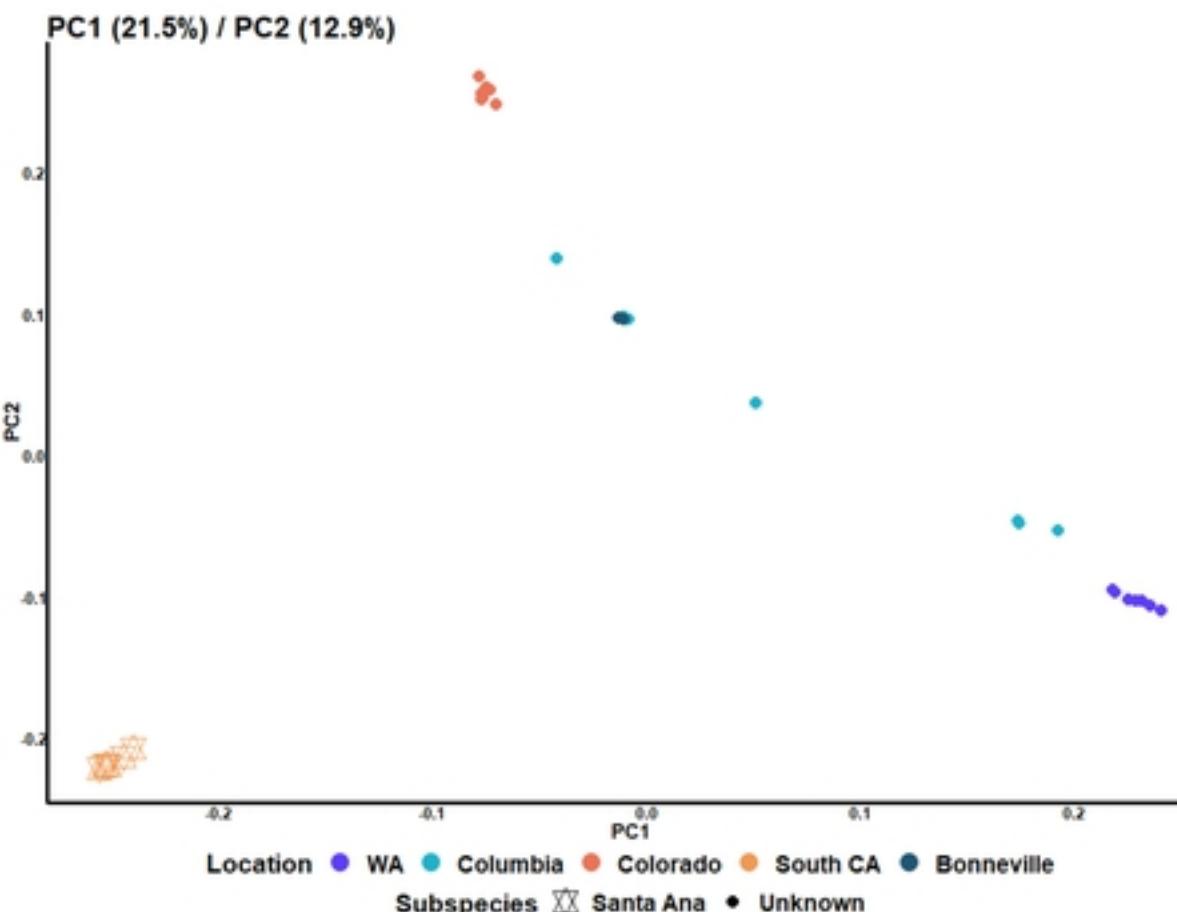



Figure 4

A

B

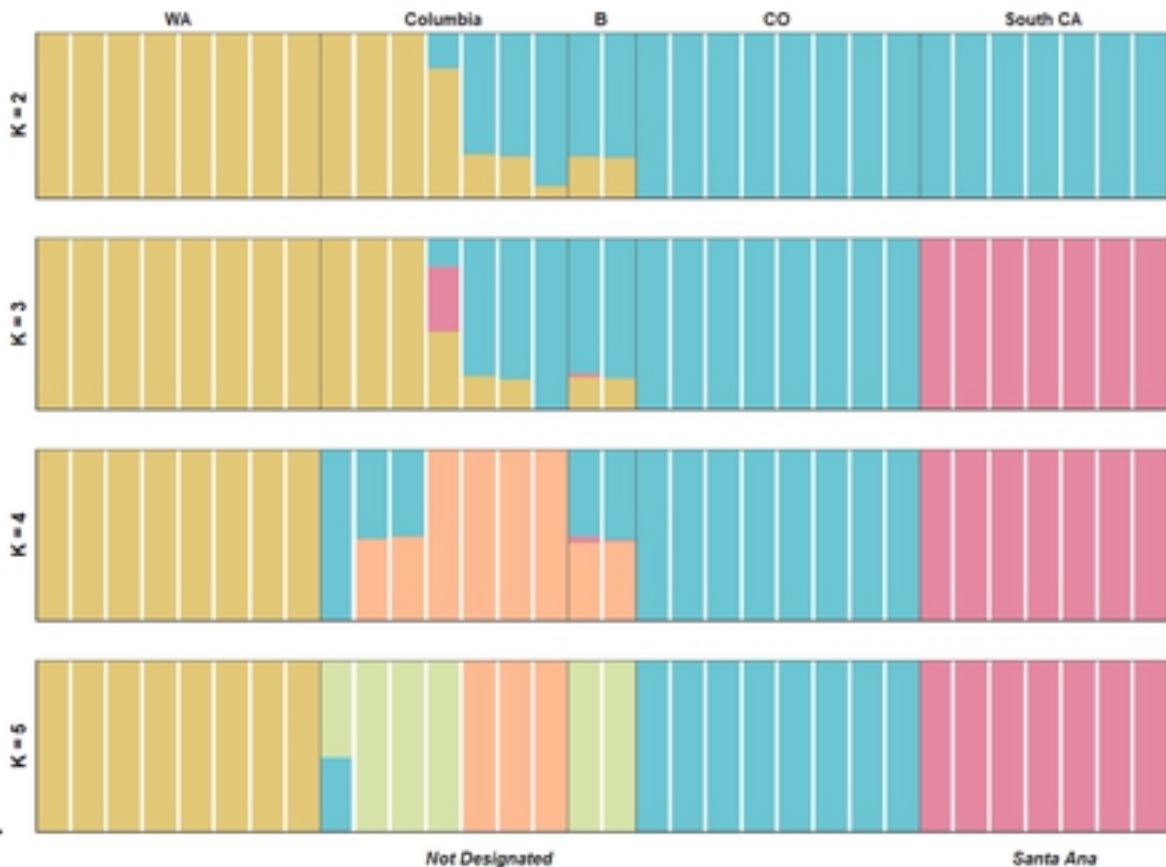


Figure 5