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Summary

Neuroblastoma is a lethal childhood solid tumor of developing peripheral nerves. Two percent of
children with neuroblastoma develop Opsoclonus Myoclonus Ataxia Syndrome (OMAS), a
paraneoplastic disease characterized by cerebellar and brainstem-directed autoimmunity, but
typically with outstanding cancer-related outcomes. We compared tumor transcriptomes and
tumor infiltrating T- and B-cell repertoires from 38 OMAS subjects with neuroblastoma to 26 non-
OMAS associated neuroblastomas. We found greater B- and T-cell infiltration in OMAS-
associated tumors compared to controls, but unexpectedly showed that both were polyclonal
expansions. Tertiary lymphoid structures (TLS) were enriched in OMAS-associated tumors. We
identified significant enrichment of the MHC Class Il allele HLA-DOB*01:01 in OMAS patients.
OMAS severity scores were associated with the expression of several candidate autoimmune
genes. We propose a model in which polyclonal autoreactive B lymphocytes act as antigen
presenting cells and drive TLS formation, thereby crucially supporting both sustained polyclonal

T-cell-mediated anti-tumor immunity and paraneoplastic OMAS neuropathology.
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Introduction:

Immune surveillance, the idea that the immune system plays an important role in eliminating
tumor cells, was first introduced over a hundred years ago by Paul Erlich (Erlich P 1909). The
complex process of immune modulation (“immune editing”) of tumor growth is robustly supported
by multiple mouse studies that demonstrate spontaneous tumor generation and metastasis
(reviewed in e.g. Swann and Smyth, 2007) This editing process involving early elimination of
tumor cells, an equilibrium of evolving tumor and immune restriction, and eventual tumor escape,
finds abundant support in human disease as well. The complete spontaneous regression of
certain types of neural crest cancers, like neuroblastoma and melanoma (McGovern, 1975)
demonstrates the potential of effective immune surveillance in eliminating cancer in humans.
Careful investigation of rare patient populations that exhibit particularly effective deployment of

immune surveillance is therefore warranted.

In rare instances in a naturally occurring setting, individuals with solid tumors develop
autoimmunity triggered by the tumor, a condition termed paraneoplastic autoimmune disease.
Many of these paraneoplastic diseases involve self antigens that are expressed in endogenous
tissue of the central nervous system (CNS), causing severe neurological symptoms that range
from psychosis (e.g. NMDA-receptor encephalitis, driven by teratoma; reviewed in Dalmau, et al
2019) to motor deficits, mood and behavioral changes, paralysis, and other symptoms (e.g. limbic
encephalitis associated with non-small cell lung cancer [NSCLC], Shen et al 2018). The
autoimmunity is presumed to be driven by a shared epitope between tumor and brain (Graus et
al, 2004). Consistent with an important role for immune mechanisms in controlling tumor growth,
patients with paraneoplastic diseases often have better tumor-related outcomes than patients with
the same cancer but no autoimmune component (Darnell, R.B. and Posner, J.B. 2003; Smith and

Stehlin 1965; Byrne and Turk 2011; Nordlund,et al 1983). Improved tumor outcomes may arise in
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the context of complete or partial tumor elimination; paraneoplastic disease may persist even in

the absence of remaining tumor cells.

A hallmark of adaptive immunity is the remarkable combinatorial potential of lymphocytes, which
are able to generate diverse antigen receptors, permitting broad and potent immunity. However,
the same diversity that protects from a broad array of foreign antigens carries greater risk for
autoimmunity. Therefore, in mammals, negative selection in the thymus and the bone marrow is
needed to cull self-reactive immune receptors to prevent targeting of self, causing autoimmunity.
The paradox of paraneoplastic disease, then, is that patients with autoimmunity possess a
broader repertoire of immune reactivity with which to restrict or eradicate solid tumors than
patients with proper immune selection, even as it leads to pathology of native tissue. Further
evidence of this tenuous relationship is the observation that cancer patients treated with
checkpoint inhibitors often develop autoimmunity (Zekeridou and Lennon, 2019; Valencia-
Sanchez and Zekeridou 2021). Understanding how the delicate balance between powerful anti-
tumor immunity and deleterious anti-self pathology is achieved is of critical importance in
improving immunotherapy strategies for treatment of a wide range of cancers. The molecular
analysis of anti-tumor immunity in rare patients with paraneoplastic disease is therefore of great

interest.

Both antigen reactivity in neuroimmunity (e.g., NMDA receptor encephalitis; Sansing et al 2007)
and immune repertoires in solid tumors (e.g., metastatic breast cancer; De Mattos-Arruda et al
2019) have been separately investigated. But to date, to our knowledge, no study has linked
molecular characterization of tumor and its immune infiltrate with the paraneoplastic autoimmune
phenotypes of the same patients, to permit elucidation of the immune process underlying
paraneoplastic disease. Integrated analysis of paraneoplastic disease-associated tumors offers
a unique setting for the evaluation of systemic immune features driving both powerful anti-tumor

immunity and often severe native tissue pathology.
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Pediatric Opsoclonus Myoclonus Ataxia Syndrome (OMAS) is a rare but devastating autoimmune
disorder characterized by sudden onset of uncontrollable, irregular, multivectorial eye
movements, myoclonic jerking of the limbs, ataxia, and disordered mood/behavior in a previously
well child (Kinsbourne 1962). These prominent neurological symptoms, which often result in
lifelong sequelae, often precipitate diagnosis of the underlying tumor. OMAS is often associated
with neuroblastoma, a solid tumor of the peripheral sympathetic nervous system that arises from
the neural crest during development, but can also occur when no tumor is detectable. Most OMAS
patients have localized, low-risk neuroblastoma disease, infrequent MYCN amplification (a strong
negative prognostic determinant for neuroblastoma associated with low MHC expression;
Bernards et al 1986), and often harbor other genomic copy number profiles that ordinarily
accompany higher risk tumors, but that are nevertheless favorably resolved (Hero et al 2018).
Importantly, as with other paraneoplastic diseases, patients with OMAS and neuroblastoma have
better tumor outcomes than even low-risk neuroblastoma patients without OMAS (Altman and
Baehner 1976). Here, we carried out a systematic study of OMAS-associated neuroblastoma
tumors accrued on prospective Children’s Oncology Group (COG) clinical trial ANBLOOP3 (de
Alarcon et al 2018) to define the mechanisms for improved anti-tumor immunity as well as
molecular correlates of the neuroimmune disease phenotype in neuroblastoma patients with

OMAS.
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Results

Tumor gene expression profiling shows highly diverse tumor lymphoid infiltrate.

To identify gene expression differences underlying differential anti-tumor immunity and
neuroreactivity, we performed RNA sequencing on the 38 archival primary neuroblastoma
samples from patients with OMAS treated on COG clinical trial ANBLOOP3 (de Alarcon et al 2018),
with 13 low-risk and 13 high-risk (7 with MYCN ampilification) neuroblastomas from age-matched
patients without OMAS, obtained through the COG neuroblastoma biology study ANBLOOB1 as
comparators. RNA quality was poor in many of these archival samples, necessitating use of an
exome capture RNA sequencing protocol for this study (Schuierer et al 2017). Differential
expression analysis was consistent with significant lymphoid infiltrate in the OMAS tumors, as
expected, but showed enrichment of memory B and T cells, and not antibody secreting plasma
cells as we expected (Figure 1A-B, Table S1). Among the most differentially expressed genes
between OMAS neuroblastomas and low-risk non-OMAS neuroblastomas were CD22 and
BANK1, both of which modulate B cell activity, and CCRL1, a regulator of immune and cancer
cell migration. Notably, OMAS-associated neuroblastoma showed significant increased
differential expression of TCF7, a marker of stem-cell like CD8+ T cells and regulator of
autoimmunity (Table S1, reviewed in Escobar et al 2020). In contrast, GLUDZ2, which has been
reported to be an OMAS autoantigen (Berridge et al 2018), was not significantly differentially
expressed in our OMAS-associated neuroblastoma dataset (Figure 1A). Highly expressed outlier
genes in OMAS compared to non-OMAS also included CR2, a complement receptor that is
expressed on dendritic cells and on B cells where it enhances binding of B cells to immune
complexes and BCR signaling in autoimmunity (Kulik et al 2019). In line with prominent B cell
infiltration, we observed significant differential expression of B cell chemokine, CXCL13, and its
receptor, CXCRS5 (Figure 1A). Gene set enrichment analysis using ENRICHR (Chen et al 2013)
showed several hallmarks of T cell activation and differentiation, Th17 subtype specification, and

B cell activation among functions of genes upregulated in OMAS tumors (Figure 1C). GSEA of
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genes significantly less expressed in OMAS compared to non-OMAS neuroblastoma highlighted
extracellular matrix, including low expression of NCAN, a CNS-specific matrix protein, and
synthesis and metabolism of chondroitin sulfate and dermatan sulfate, two extracellular matrix
proteins important for neural crest cell migration and reported to have immune modulatory

properties (Figure 1D; Su et al 2017).

OMAS associated tumor gene expression reveals increased inflammation.

We next explored immune landscape signatures derived from OMAS transcriptomes compared
to non-OMAS tumor samples (Figure 2A). OMAS neuroblastomas showed significantly higher
mean expression of CD8, B cell score, cytotoxic lymphocyte immune signature (CLIS), T cell co-
stimulatory molecules, CD28, markers of activation, (CTLA4), and exhaustion, (PD1). These data
are consistent with previously published reports of increased lymphocytic infiltration in OMAS
tumors (Fukushima et al 2017; Gambini et al 2003; Cooper et al 2001), and also, with the
enhanced T cell activation we show here by transcriptome profiling. OMAS samples segregate
into roughly three subgroups: one with higher expression of immune gene features, one with more
moderate expression, and one in which OMAS samples cluster together with high risk non-OMAS
neuroblastoma samples exhibiting low immune marker scores (Figure 2A). The lone high-risk,
MYCN amplified OMAS-associated neuroblastoma in the present cohort, PARSCY, did not

appear in this cluster.

Finally, to probe more deeply the differences in the tumor microenvironment in OMAS patient
samples, we adapted a recently developed approach for classification of immune responses to
tumor using RNA expression (Thorsson et al 2018; Figure 3A). We found that dominant immune
signaling pathways in OMAS tumors were significantly different from either low-risk or high-risk
neuroblastomas. Fifty percent of OMAS-associated neuroblastoma were classified as “IFNy-

dominant”, a classifier phenotype that predicts association with strong CD8+ signal and greatest
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TCR diversity, while only 10-15% of non-OMAS tumors had this classification (Figure 3B,C).
Indeed, we observed an increased fraction of CD8" T cells in OMAS tumors, as estimated from
RNA-seq data using CIBERSORT (Figure 1B) (Chen et al, 2019; Newman et al 2015). The C2
classifier phenotype and the IFNy and CLIS features of the immune landscape signature (Figure
2) converge on the strong differential T cell signature in OMAS associated tumors. In contrast,
50% of HR neuroblastomas were classified as “wound-healing dominant’, a phenotype
associated with a high proliferative index and angiogenic gene expression, as well as Th2 cell
bias, and importantly, a poor overall prognosis (Thorsson et al, 2018; Figure 3B,C). We observed
a small but significant increase in the proportion of OMAS tumors over non-OMAS tumors
classified as C3, or “inflammatory” subtype, a classification associated with lower levels of cell
proliferation, aneuploidy and somatic copy number variation, and superior outcomes (sCNV;

OMAS vs non-OMAS, FDRq =0.046).

Global gene expression profiling and clustering of OMAS vs non-OMAS neuroblastomas appear
to be driven by the degree and type of their immune infiltrate. Therefore, we also used a machine
learning classifier, XGBoost (Chen and Guestrin 2016), to determine whether a distinguishing
gene expression profile of OMAS-associated neuroblastoma could be identified. The algorithm
was able to clearly distinguish OMAS from non-OMAS (auROC=0.94; Figure S1A,D), and to
distinguish OMAS from either high risk (auROC=0.69; Figure S1B,E) or low risk neuroblastoma
(auROC=0.69; Figure S1C,F) to a lesser degree. It is noteworthy that the classification was
driven by very few genes, as opposed to a broader gene expression signature. The top 10
features that were, on average, most important for the correct prediction of patient population
(Figure S$1G) included MRPS2, RMB15B, and MRPS17, encoding mitochondrial proteins. Lower
expression of each of these genes drives the prediction towards OMAS (Figure 1A, dark blue;

Figure S1A,G), which may be attributable to an increased proportion of dead or dying cells in the
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OMAS samples (llicic et al 2016).

Though OMAS-associated neuroblastoma is expected to have a modest mutational load typical
of neuroblastoma (Pugh et al 2013; Brady et al 2020), we investigated potential sources of
neoepitope variation that could contribute to increased anti-tumor immunity by analysis of SNV
burden using RNA sequencing data. We identified 94 genes enriched for SNV variation that were
significantly different between OMAS and non-OMAS samples, of which 47 genes are significant
compared to HR alone (FDR q value <0.20; Table S2). However, we did not identify any single
source of epitope variation in all patients that obviously underlies the observed immune response

to OMAS-associated neuroblastomas.

Expression of several CNS cell surface genes are correlated with OMAS disease severity.

OMAS can present with neurological symptoms ranging from mild to severe and debilitating, and
a semi-quantitative grading system has been devised (De Grandis et al 2009). We examined
whether gene expression or immune features in the tumor correlated with disease severity scores
of OMAS collected at the time of diagnosis. Expression of two neuronal cell surface receptors:
the serotonin receptor, HTR6, and an alpha 2 adrenergic receptor, ADRA2C, correlated
significantly with severity of OMAS neuroimmune symptoms (Figure S2). The gene NCAN, a
CNS specific extracellular matrix protein whose expression has been linked to malignant behavior
of neuroblastoma (Su et al 2017), also correlated significantly with OMAS neuroimmune
symptoms. This candidate is also noteworthy, since it is among the most differentially expressed
genes in OMAS tumors compared to non-OMAS tumors (Figure 1). Expression of additional
genes relevant for adhesion of neurons and leukocytes (DSCAML1, MADCAM1) was also

significantly correlated with OMAS symptom severity.
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MHC Class Il alleles distribution in OMAS-associated neuroblastoma.

Susceptibility to many autoimmune diseases has been linked to genes encoded by the major
histocompatibility complex (MHC) (reviewed in (Dendrou et al 2018). We inferred HLA types from
tumor derived RNA using the RNA Access library platform, as described above. We then used
HLAprofiler, a published computational tool for HLA calling from RNA-seq data with >99%
concordance with direct DNA sequencing (Buchkovich et al 2017). To establish background HLA
allele frequencies in neuroblastoma, we inferred HLA types from a large set of neuroblastoma
transcriptomes from the NCI-TARGET neuroblastoma dataset (Pugh et al 2013) using HLAprofiler
and compared allele frequencies from our OMAS cohort to non-OMAS controls from this study
and non-redundant set of TARGET transcriptomes. The non-classical class Il allele, HLA-
DOB*01:01, was significantly enriched in OMAS (FDR q Value=0.002; Table 1 and Table S2).
HLA-DO regulates MHC class Il peptide loading and is almost exclusively expressed in B cells
and in thymic epithelial medullary cells but not other professional APCs (Karlsson et al 1991).
HLA-DOB was also significantly differentially expressed in OMAS tumors compared to non-OMAS
tumors (Table S1). Use of a less stringent FDR threshold of 0.2 to allow for discovery of additional
alleles from our relatively small cohort of cases (with false discovery rate of 20%) allowed
detection of HLA-DRB1*01:01 as being enriched in our OMAS cohort, consistent with a previous
report (Hero et al 2005; HLA DRB1*01; FDR q=0.18), as well as HLA-DRB*13:02 (FDR g= 0.16)
and one MHC Class | allele, HLA-C*04:01 (FDR g=0.16). The most skewed HLA alleles we
identified were two different alleles of the MHC Class | pseudogene HLA-L. HLA-L is highly

expressed in EBV transformed B-cells, however its functional significance is unknown.

Tumor infiltrating T cells exhibit greater antigen receptor diversity in OMAS-associated

neuroblastoma.

A link between the OMAS autoimmune response and improved anti-tumor immunity would predict

that the repertoires of tumor infiltrating T cells and B cells would be strongly shaped by OMAS

10
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causative antigen(s). We hypothesized that the OMAS tumor lymphocytic infiltrate would be
predominantly oligoclonal. We used genomic DNA from tumors to sequence TCR B and the
immunoglobulin heavy chain (IgH) repertoires (Robins et al 2009; Carlson et al 2013), and
analyzed lymphocyte repertoires from 31 OMAS samples, and 13 LR and 13 HR control samples.
We analyzed in-frame sequences corresponding to the TCRB and IgH CDR3 regions, which
provide most of the antigen binding specificity to the receptor, and therefore are used as a proxy
for antigen specificity of each receptor type in this analysis. OMAS-associated neuroblastoma
TCR repertoires were significantly larger than those recovered from HR neuroblastoma samples
(Figure 4A, FDR g=0.001), and 2-fold larger than low-risk neuroblastoma samples (Figure 4A,
FDR g= 0.071). These T cell number estimates based on genomic DNA sequencing of TCRf
repertoires are consistent with RNA-seq estimates of higher T cell numbers in OMAS samples,
using differential marker gene expression and as detected by CIBERSORT (Figure 1), and the

immune landscape signature (Figure 2).

We next evaluated the diversity and clonality of the TCRp repertoires. To minimize the effect of
sample size on diversity estimates, we down-sampled all repertoires to a common size (reducing
the analysis to 49 samples out of 57 total). We then computed Shannon entropy (a measure for
diversity) and Gini index (a measure for clonal inequality) for each sample, averaging over 100
iterations of subsampling. We found that OMAS repertoires are significantly more diverse than
either high-risk (Figure 4B; FDRq=0.014) or low-risk (FDRq=0.053), while the latter non-OMAS
cohorts were similarly diverse (p= 0.456). The higher diversity of OMAS TILs is in line with the
observation of increased TCR diversity for tumors of immune classifier subtype C2 (Thorsson et

al 2018), which is dominant among our OMAS samples (Figure 3C, D).

TCR repertoires within OMAS samples had significantly lower Gini indices, a measure of clonal

evenness, than non-OMAS neuroblastoma samples (Figure 4C), indicating more even

11
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distribution of clone sizes, without considerable expansion. In accordance with their Gini indices,
we found that the summed frequencies of the top clones were also significantly lower in OMAS
compared to either low risk or high risk (Figure 4D, Figure S3). Together, these results
invalidated our original prediction of oligoclonality in TIL repertoires and instead support the notion

that OMAS-associated neuroblastomas harbor diverse, polyclonal repertoires of T cells.

TCRB repertoires from OMAS patients share highly public TCR CDR3B sequences.

We then compared similarity of tumor infiltrating TCR repertoires from patients with and without
OMAS using the Morisita-Horn index to capture the degree of similarity between samples. To
minimize the bias of the larger repertoire size of OMAS samples, the Horn index was calculated
after down-sampling repertoires to a common size (1382 sequences, which reduced the total
cohort to 49 total samples). Figure 4E shows average Horn Index values for pairwise comparisons
between patients in each class; greater index value indicates greater similarity. OMAS repertoires
exhibited greater similarity than control neuroblastoma repertoires, though the Horn index values
are relatively small, suggesting that the sharing is limited. To rule out more subtle, convergent
specificity, we conducted an independent and somewhat more permissive search for similarity
across repertoires. We used TCRdist (Dash et al 2017), an algorithm that scores occurrence of a
TCR in different repertoires within a specified distance threshold of permitted substitutions or
gaps, with concomitant scoring penalties, and assesses overlap of clusters of similar TCRs with
a specified cohort. TCRdist also did not return any significant similarity of shared, cohort-specific

sequences (Table S3, sheets 1-3).

Plotting the histogram of sharing for the two groups nevertheless supports a somewhat greater
similarity between OMAS samples (Figure 4F). We captured the difference between the two
sharing distributions by comparing the number of sequences that appear in a single repertoire

(“private”) to the number of sequences shared by at least two samples. Out of 691,960 unique
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amino acid sequences in OMAS samples, 4.9% of them were shared by two or more OMAS
patients. In contrast, out of 208,357 unique sequences in non-OMAS neuroblastoma controls,
only 3.2% were shared by two or more patients (Fisher test; p<2.2x107'°). Greater sharing among
OMAS patients is also evident from the sharing distribution with the OMAS distribution uniformly
above the control sharing distribution (Figure 4F). Together, these observations suggest that the
observed greater sharing between OMAS repertoires is likely driven by a small number of TCR

sequences.

It is noteworthy that most of the highly shared CDR3[ sequences in OMAS repertoires, as well
as in non-OMAS neuroblastoma repertoires, are also highly shared in PBMCs of healthy donors
(found in >75% of 786 repertoires reported in Emerson et al, 2017) suggesting that these are
likely public sequences (Figure 4E, Table S3 sheet 4, “OMAS highly shared Public”). A subset of
OMAS-associated shared TCRs that are less shared among non-OMAS neuroblastoma patients
in our cohort (“OMAS overshared”) and another subset that are enriched in non-OMAS
neuroblastoma (“Control overshared”) are summarized in Table S3. While their specificity may
still be unknown, some shared enriched TCRs in different patient subgroups have been previously

reported in other disease contexts, which may yield additional insights from the literature.

Diversity of B cell IgH repertoire is associated with improved OMAS tumor-related outcomes.

B cell infiltration of solid cancers generally has positive prognostic value, and yet the role of B cell
infiltration of solid tumors is far less well understood than that of CD8+ T cells (reviewed in Nelson
2010). In contrast, the central role for B cells in OMAS neuropathology is underscored by the
efficacy of the anti-CD20 antibody rituximab in mitigating neurological symptoms in OMAS

(Pranzatelli et al 2006; Wilbur et al 2019). Given the significant B cell infiltrate evident from tumor
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RNAseq, we predicted an oligoclonal response which would be evident in analysis of IgH

repertoires from OMAS associated tumors.

As with TCRs, OMAS-associated neuroblastomas had larger BCR repertoires than either HR (p=
0.01) or LR (p=0.12); non-OMAS neuroblastoma repertoire sizes were not significantly different
in size (HR-LR: p=0.46) (Figure 5A). As for TCR[, we calculated the Shannon diversity index for
all IgH repertoires after down-sampling to a common size. We found that OMAS BCR repertoires
were significantly more diverse than in control neuroblastomas (Figure 5B). Shared clinical
features of OMAS may be associated with dominance of a few large clones responding to the
OMAS antigen(s) in the CNS compartment, which we predicted would also be represented in
OMAS tumors. We therefore investigated the clonal structure of OMAS tumor repertoires. LR and
HR tumors both possessed larger clones than patients with OMAS (Figure 5C; OMAS-HR,
FDRg=0.011; OMAS-LR, FDRqg=0.14; LR-HR, FDRqg= 0.16). We also examined whether VH or
JH differed in gene or gene family usage or in CDR3 length in OMAS. However, only very low

frequency events were detected as significant (Figure S4).

OMAS enriched clones exhibit similar sequence features.

Owing to the uneven sizes of the OMAS and control repertoires, and to the small repertoire sizes
for all samples, we were unable to test whether clones observed only in OMAS repertoires are
truly OMAS-specific. Figure 5D highlights clusters of sequences possessing 85% sequence
similarity and shared by at least 7 OMAS patients, grouped by VH and JH gene usage and junction
length. Several sequences were not observed at all in HR patients in this study; many were also
only shared by a single LR patient. We also characterized numbers of somatic mutations in IgH
V genes, as a marker of somatic hypermutation in B cell clones. Increased numbers of mutations
would be acquired in mature germinal center B cells and are used as a proxy for B cell clonal

selection. We detected a few significant increases in somatic mutation frequency in the IGHV
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genes in OMAS compared to LR or HR (Figure S4F, stars). However, we cannot infer any

biological relevance of these mutation rates from the current cohort.

Taken together, the significantly greater B cell infiltration in OMAS tumors was characterized by
paucity of large clonal expansions. The B cell infiltrates were significantly more polyclonal in
OMAS compared to control neuroblastoma patients. This diversity, as well as our limited number
of control samples and their small repertoire sizes precluded nomination of any specific BCR

clone or sequence as specifically correlated with OMAS or anti-tumor immunity.

OMAS tumors contain germinal centers and exhibit apparent neuronal localization of tumor

infiltrating lymphocytes.

Histological examination revealed numerous tertiary lymphoid structures (TLSs) resembling
germinal centers (GCs) in 10 of 14 OMAS tumors available for evaluation (Figure 6A; Figure S5)
usually accompanied by widespread interstitial lymphocyte infiltration. In contrast, 2 of 6 non-
OMAS low-risk neuroblastoma and 1 of 5 non-OMAS high risk neuroblastoma displayed similar
structures. The TLSs contained dense cores of CD20+ B cells surrounded by CD3+ T cells, and
were easily distinguished from neighboring tissue by morphology using differential interference
contrast (DIC) or bright field microscopy. Using an antibody against Ki67, a marker of cell
proliferation, we observed relatively few Ki67-positive cells within putative GCs in OMAS tumors
(Figure S5B). We also noted localization of B cells and T cells to putative neuronal processes
within small patches of differentiating neuroblasts in OMAS tumors (Figure 6B, Figure S5C).

This often included B cells at the center with T cells enriched nearby.
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Discussion

Here, we sought to understand the underlying mechanisms of neuroblastoma-associated
autoimmunity with a characterization of tumors from patients enrolled on the only prospective
OMAS clinical trial reported to date (de Alarcon et al, 2018). To our surprise, we found that the
robust immune cell infiltrate is dominated by polyclonal B and T cells, absent the identification of
a unifying single antigenic stimulus, as has been seen in other paraneoplastic diseases (e.g.,
NMDAR encephalitis [Dalmau J et al, 2007; Jones BE et al 2019). We confirmed a major role for
autoreactive B cells in neuroblastoma associated OMAS, and here highlights a major role for T
cells in antitumor reactivity and likely neuropathology, importantly, in the context of TLSs. We also
identify an MHC Class Il allele, HLA DOB*01:01, as significantly enriched in OMAS compared to

NB controls.

In this work, we compared OMAS to non-OMAS neuroblastoma, with additional contrast of OMAS
vs low-risk neuroblastoma, to highlight the influence of paraneoplastic autoimmunity on superior
anti-tumor reactivity, and to pinpoint foci of OMAS neuroimmune targeting. While no clear, single
molecular target of neuroimmunity emerged, we identified four conspicuous differences between
OMAS and non-OMAS-associated neuroblastomas, also remarkable in OMAS vs low-risk NB,
which align with reported signatures from solid tumor literature as having positive prognostic
value. These same features accompany tissue infiltrates in human autoimmune disease,
supporting their relevance for CNS tissue pathology in OMAS, and supporting their centrality in a
systemic OMAS disease process. These are: 1) increased numbers and activation of B cells in
tumor infiltrate, rich in memory B cells, 2) localization of B cell infiltrate to tertiary lymphoid
structures rich in T cells, 3) polyclonality of lymphocytic infiltrate and 4) differential expression of
TCF7, CXCR5 and CXCL13. These features accompany significant TCR and BCR diversity in
OMAS tumors compared to controls, which is a defining feature of OMAS associated NB, but one

whose relevance to disease outcomes is less clear. Combining these observed differences with
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insights from both cancer and autoimmunity, we propose a framework to explain how systemic

autoimmunity drives superior tumor outcomes and neurological damage in OMAS.

For anti-tumor immunity, it is striking that the same defining features of OMAS mirror the immune
characteristics of tumors from other cancers with positive response to immune checkpoint
blockade, including another neural crest-derived cancer, melanoma (Helmink et al 2020; Cabrita
et al 2020). While CD8+ T cells are considered the workhorses of tumor destruction, OMAS
tumors exhibit greatest differences in B cell numbers, exceeding even low-risk neuroblastomas
which also have excellent outcomes; OMAS tumor transcriptional profiles suggest enrichment of
memory B cells, and histopathological evaluation finds that OMAS neuroblastomas contain more
tertiary lymphoid structures (Table S7; Fukushima et al 2017; Gambini et al 2003). The presence
of TLSs in tumors has been identified as a strongly predictive prognostic factor for positive tumor
outcomes across cancer types (Ruffin et al 2021, Dieu-Nosjean et al 2016), and has been noted
after successful cancer immunotherapies (reviewed in Trub and Zippelius 2021; Sautes-Fridman
et al 2019). While it is not known what drives TLS formation, we observe differential expression
of B cell chemokine CXCL13 and its receptor CXCR5 in OMAS tumors compared to non-OMAS
(Table S1), two features correlated strongly with ectopic lymphoid structure formation in a variety
of settings in both cancer and autoimmunity (reviewed in Kazanietz et al 2019). A TCF7+ T cell
subset has independently been identified as enriched in TLSs of an oral solid tumor, and
predictive of positive tumor outcomes (Peng et al 2021). Consistent with both TLS enrichment
and superior outcomes in OMAS associated tumors, TCF7 is strongly differentially expressed in
OMAS tumors. The signature of TCF7, CXCR5/CXCL13 in B cell rich TLSs was found as a
predictor of survival in melanoma independently of all other variables (Cabrita et al 2020),
underscoring their importance for outstanding tumor outcomes across cancer types. The extreme
diversity and significant polyclonality of OMAS lymphocytic infiltrate is not easily nor universally

aligned with solid tumor outcomes in other cancers, where diversity and clonality may accompany
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either positive or negative outcomes. For example, increased diversity of TCR repertoires has
been linked to improved tumor outcomes after immune checkpoint blockade (Robert et al 2014;
Valpione et al, 2021), but increased, not diminished, clonality was predictive of positive outcomes
(Valpione et al 2021). Taken together, we therefore identify TLS with diverse polyclonal
lymphocytic infiltrate, and strong expression of B cell chemokines and TCF7, as the signature of
paraneoplastic autoimmunity most prominently associated with superior tumor outcomes in

OMAS.

These same features of OMAS-associated neuroblastoma have also been noted in pathological
tissue infiltrates in human autoimmune disease (reviewed in Jones and Jones, 2015). B cells and
their trafficking to sites of inflammatory cytotoxicity are emerging as central to disease severity in
autoimmunity, as well. In autoimmune encephalitis caused by multiple sclerosis (MS), B cell
follicles and B cell chemokine CXCL13 expression are enriched at brain lesions associated with
severe, progressive disease presentation (Magliozzi et al 2007), while loss of CXCL13 in a mouse
MS model mitigates severe disease phenotypes (Bagaeva et al 2006). Similarly, high levels of
CXCL13 have been found in inflamed synovia of patients with severe rheumatoid arthritis (RA;
Bugatti et al 2014), while loss of CXCR5 in mouse models of RA reduced joint damage and
impaired TLS formation (Wengner et al 2007, Moschovakis et al 2017). In previous studies of
OMAS, high levels of CXCR5 and CXCL13 were noted in cerebrospinal fluid (CSF) of patients
with  OMAS, correlated with increased disease severity (Pranzatelli et al 2012). This
chemokine/receptor pair mediates migration of B cells, which we now link to trafficking both to
tumor and CNS in OMAS. The presence of tertiary lymphoid structures accompanies disease
severity and target tissue damage in a range of autoimmune diseases (reviewed in Pipi et al
2018), and predict similar pathology in the CNS of OMAS patients, though TLSs in the brains of

living OMAS patients cannot be investigated.
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Tertiary lymphoid follicles are sites of antigen presentation that arise in peripheral tissues upon
chronic inflammatory stimulation that often accompanies autoimmunity or infection (reviewed in
Trub et al 2021, Sautes-Fridman et al, 2019). They support memory B cell formation, auto-
reactive T- and B- cell activation, and can also lead to production of high affinity antibodies, via
plasma cell differentiation. Germinal centers are those TLSs with mature plasmablasts that have
undergone somatic hypermutation to produce high affinity, presumably cytotoxic antibodies
(Shlomchik and Weisel, 2012). In OMAS associated neuroblastomas, we identify TLSs and
memory B cell enrichment, as well as B cell follicles rich in T cells. However, Ki67, a histological
marker of proliferation often associated with clonal expansions of antibody rearranged B cells,
was largely absent from these structures in our cohort (Figure 6; Figure S5). Furthermore, in
our data, we observe an absence of dominant species of expanded B cell clones in IgH repertoire
analysis, and the absence of strong BLIMP1 expression, a marker of germinal centers, alongside
strong differential expression of CD22, a B cell marker that is not expressed in mature plasma
cells. Together, these findings could suggest either that we have observed a snapshot of TLS
maturation that precedes a complete germinal center reaction, or that the antibody function of

OMAS B cells may not be its essential one.

We propose that the critical function of B cells in OMAS tumor and CNS immunity is not only the
production of pathogenic antibodies but as potent antigen presenting cells (APCs) in long-lived
tertiary lymphoid structures. In the context of neuroimmunity, B cells function crucially as APCs in
a lupus-prone mouse model (Giles et al., 2015) and in the EAE murine model of multiple sclerosis
(Molnarfi et al 2013). EAE model mice expressing the MOG-specific B cell receptor but unable to
secrete antibodies are fully susceptible to EAE induction by MOG in an MHC Class Il dependent
manner (Molnarfi et al 2013). Since antigen-experienced B cells of animals with autoimmunity
function as APCs, and may spontaneously drive TLS formation, these interactions result in CNS

targeting and T cell mediated cytotoxicity in both neuroimmune disease models and human
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patients, resulting in neuropathology. Further support for B cell function as APCs in OMAS comes
from the increased frequency in OMAS of HLA-DOB*01, an HLA allele expressed predominantly
in B cells that modulates presentation of immunodominant epitopes (reviewed in Welsh and
Sadegh-Nasseri, 2020; Jiang et al 2019). Finally, the observation of B cell trafficking, TLS-
promoting chemokines in OMAS support the central role of B cells in TLS prevalence and B cell-

T cell interactions accompanying both positive tumor outcomes and neuropathology.

If indeed a single mechanism underlies both CNS pathology and anti-tumor immunity in OMAS
neuroblastoma patients, then OMAS tumors (and indeed, tumors of other paraneoplastic disease
associated with neuroimmunity) may offer a system in which to study the cellular basis of neuronal
damage in the CNS, which cannot be addressed in living patients. It is still unclear whether the
observed diversity and polyclonality of tumor infiltrate in OMAS arises because of lymphocytic
influx from the periphery, which would be consistent with the dominance of public TCRs in tumor
like their representation in peripheral blood. Specific predictions made in the current study, such
as the properties of OMAS-associated TLS B cells and selected T cells in in tumor control, and
the putative role of auto-reactive T cells in brain neuropathology in OMAS, should be addressed
in future work, using freshly isolated and cell-sorted CSF and tumor samples and in humanized
mouse models. Our work supports renewed focus on antigen-presenting B cells as potentiators
of cancer immunotherapy, through generation of long-lasting tertiary lymphoid structures to
promote tumor destruction. Modulation of accompanying autoimmunity will be a critical bottleneck

for clinical applications.
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METHODS.

Patient tumor samples. We retrospectively procured all primary tumor samples (N=38) available
from the COG ANBLOOP3 clinical trial, in which the efficacy of IV immunoglobulins (lvig) in
neuroblastoma patients with OMAS was tested (de Alarcon et al 2018). All patients enrolled were
<8 years old with biopsy-proven, newly diagnosed neuroblastoma and OMAS. Samples collected
from each patient included tumor tissue, cerebrospinal fluid (CSF) and blood sera from time of
diagnosis. We also sequenced 13 patients each with low-risk (LR) and high-risk (HR) non-OMAS
neuroblastomas as comparators. We obtained reliable data from all samples, using the lllumina
RNA Access platform, an exon capture kit designed to salvage usable data from low-quality RNA
samples. However, as a consequence of using this platform, our ability to harmonize our data

with existing neuroblastoma RNA-seq datasets (using other platforms) was rather limited.

RNA sequencing. Patient tumor RNA was sequenced with 2 x 150 bp, paired end sequencing,
using the TruSeq RNA Access kit from lllumina (now called TruSeq RNA Exome; Qiagen,
Valencia CA, USA) and quantified on a NanoDrop spectrophotometer. RNA purity and integrity
was assessed by Agilent 4200 Tapestation. RNA integrity (RIN) scores for the samples varied
from 1 to 7.9, though all samples had DV200 values of >30%. Sequencing libraries were prepared
from 100ng total RNA from each sample, and were run on high output flowcells on an lllumina
NextSeq 500, yielding an average of 30M reads per sample. Paired-end sequence reads were
analyzed according to currently available best practices for whole-transcriptome analysis, as

described below.

RNA-seq data analysis.

Raw FASTQs from both the OMAS/LR/HR cohort and NCI TARGET (Pugh TJ et al 2013) datasets
were processed using fastg-mcf (https://github.com/ExpressionAnalysis/ea-utils/blob/wiki/
FastqMcf.md):

http://expressionanalysis.github.io/ea-utils/; parameters: --max-ns 4 —qual-mean 25-H-p5-q 7 -
| 25). Clipping completely removed reads with large homopolymers, overall low base quality
scores or less than 25 nucleotides and removes low quality bases at the end of the sequence and
adapters. These clipped reads were aligned to the human reference genome hg19 using STAR

v2.4 (Dobin et al 2013) and a UCSC reference transcriptome supplemented with lincRNAs from
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Ensembl. RSEM v1.2.14 (https://github.com/ExpressionAnalysis/STAR-SEQR) was used for both
gene and isoform quantification. RNA fusion events were detected using STAR-SEQR v0.6.5
(Ritchie et al 2014) parameters: -m 1).

Differential expression analysis was performed using Q2 Solutions’ ensemble two group
comparisons suite. This method summarizes the differential expression p-values and
classification probabilities from five tools—t-test, limma4, DESeq2 ((Ritchie et al 2014), edgeR
(Anders and Huber, 2010) and EBSeq (Robinson MD, McCarthy DJ, Smyth GK 2010)—to
produce a new p-value for differential expression. For any given gene, the p-values of each
constituent model are input into a logistic regression model, which estimates the probability that
the gene is differentially expressed. This probability is transformed into a p-value for differential
expression by comparing it against its empirical cumulative distribution as estimated by bootstrap

resampling of TCGA data from various cancer types.

HLA Typing.

HLA types were identified in both OMAS/LR/HR and TARGET datasets using the default
parameters of HLAProfiler (Buchkovich ML et al. 2017) and each allele tested for enrichment. For
some genes, HLAProfiler identified alleles in less than 25% of samples. Alleles from these genes
or alleles identified in only a single sample were excluded from the enrichment analysis.
Significance of enrichment was determined by testing the distribution of each allele among patient
subgroups compared to all alleles for the gene in the population (n=2*number of samples).
Fisher's exact test p-values were adjusted for multiple hypothesis testing using a Benjamini-
Hochberg correction. Significantly enriched alleles are shown in Table 1 and complete results are

presented in Table S4.

Immune landscape signatures.

Immune landscape signatures, including cytotoxic lymphocyte activity (esp. CD8 T cells), B cell
activity, IFNy levels, T cell trafficking, immune suppression activity from myeloid-derived cells
(M2TAM cells, TGFB1 levels, PD-L1, etc), checkpoint ratios, and stromal responses, were
detected in each sample as described in (Jones WD et al 2020). These immune signature scores
represent weighted averages of (log) expression levels of genes within each signature. Immune
subtypes were tested for enrichment in OMAS patients using a Fisher’s exact test with correction
for multiple testing using Benjamini-Hochberg. Features that show statistically significant
differences between OMAS and non-OMAS samples were plotted in a separate box (top), and

features not showing significant differences between groups were plotted in a heatmap below.
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Clustering of samples was performed according to maximize similarity of gene expression

patterns in heatmap for significant features in upper box.

Variant Identifications

Raw FASTQ were processed with a pipeline optimized for variant calling in RNA-seq data. First,
raw reads were processed using FASTP v0.19.4 (Chen S et al 2018) and the parameters: --
trim_poly_g, --trim_poly x, --cut_by quality3, --cut_mean_quality 20, --n_base_limit 4, --
qualified_quality_phred 15, --length_required 25, --complexity threshold 30, --
low_complexity_filter, --correction, --html. Trimmed reads were aligned against the GRCh37
reference genome and GENCODE v27 transcriptome using the STAR v2.5.4b aligner
(parameters: --runMode alignReads, --alignSJDBoverhangMin 2, --alignSJoverhangMin 8, --
chimFilter None, --chimJunctionOverhangMin 10, --chimMainSegmentMultNmax 10, --
chimOutType  SeparateSAMold, --chimScoreDropMax 30, --chimScoreMin 1, --
chimScoreSeparation 7, --chimSegmentMin 10, --chimSegmentReadGapMax 3, --
outFilterintronMotifs RemoveNoncanonicalUnannotated, --outFilterMultimapNmax 20, --
outFilterMultimapScoreRange 1, --outFilterScoreMinOverLread 0.66, --outMultimapperOrder
Random, O0-outSAMstrandField intronMotif, --outSAMunmapped Within, --quantMode
TranscriptomeSAM, --readFilesCommand zcat, --twopassMode, Basic). Variants were detected
using “GATK best practices for variant calling on RNA-seq”, using Sentieon’s suite of tools (Freed
F, Aldana R, Weber JA, Edwards JS BioRxiv) in place of GATK. Gene expression was evaluated
in-pipeline using RSEM v1.3.0. These gene counts, as well as other metrics such as coverage
statistics, gene region annotations, RNA editing sites, and clinVar and dbSNP annotations, were
input as features into a random forest model which further filtered variants and removed false
positive variant predictions. Genes containing exonic variants in one or more samples were
examined for enrichment of these variants in OMAS patients. Significance was determined using
Fisher’'s exact test and corrected for multiple tests using Benjamini-Hochberg. Significant genes
were further examined to identify any single variants driving the significance results. For each
significant gene, SNPs within the gene were tested independently for enrichment in OMAS

patients, with Benjamini-Hochberg correction for multiple tests.

Immune Subtype Classifier. The Immune Subtype classifer, as described in (Thorsson et al
2018) and updated in Gibbs DL (BioRXiv) was applied to the RNA-seq data collected in the current
study, as well as to previously published neuroblastoma data from TARGET (Pugh TJ et al 2013)
and to data from the Pan Cancer Atlas (Hoadley KA et al 2018)
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TCR repertoire analysis.

Tumor genomic DNA. Tumor genomic DNA was obtained from COG, and 31 OMAS, 13 LR and
13 HR patient samples were sequenced for TCRp locus, using the Adaptive Biotechnologies
Immunoseq platform. Since input genomic DNA samples were not of uniform concentration, to
compute repertoire size, total number of sequence reads obtained were normalized for the

amount of input DNA loaded into the sequencing assay.

Data cleaning and normalization. For repertoire analysis, CDR3[8 sequence reads that are in-
frame and have no stop codon were considered; all other sequences were filtered out. For each
amino acid sequence in a given sample, we summed the frequencies of all its nucleotide variants
(due to convergent recombination) to obtain the frequency associated with the amino acid

sequence in the given sample.

Data analysis. All computations were done using R (R version 3.6.3), running on a CentOS Linux
7 core. Data manipulation, plotting, and standard statistical tests were done by base R and
standard packages. All computations involving, clonality, diversity and Horn similarity, were done
using the same subsampling scheme. We subsampled all patient TCRf repertoires to a common
size (1,382 reads), computed the statistic and averaged the value of the statistic over 100 such
iterations. Sampling was done by the sample function in base R. Shannon index and Horn
similarity were computed using the vegan community ecology package (version 2.5-6). Average
values over 100 subsampling iterations were plotted using ggplot, with the mean value for each
patient group indicated with a red line. Unless otherwise indicated, comparisons between groups

were made using Wilcoxon rank sum test, and FDR corrected for number of tests.

TCR Sharing Level. For each amino acid CDR3 sequence, we calculated its sharing level in the
cohort, i.e., to how many samples it belongs. For each sharing level, we calculated the number of
sequences that have this sharing level. Figure 4F describes in log-log scale the relative frequency
of sequences in each sharing level. In Figure S3A, we compared the sharing level within
neuroblastoma patient group to the sharing level in PBMC of healthy individuals as captured by
the Emerson data set (Emerson et al 2017). Each sequence was plotted according to its Emerson
sharing level (X axis) and Patient Group sharing level (OMAS/LR/HR; Y axis). Some of the

sequences highlighted in color are given in the “Overshared” sequences in Table S6.

24


https://doi.org/10.1101/2021.12.14.471886
http://creativecommons.org/licenses/by-nc-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2021.12.14.471886; this version posted December 14, 2021. The copyright holder for this preprint
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made

O© 00 9 O U1 o W N =

W W W W W N DN DN DN DNDNMNDNDNDNDNDNR R R 2 R 2R R ==
BW N PO O 00 NN U WY RO O 0NN YU AW N e O

available under aCC-BY-NC-ND 4.0 International license.

Emerson data set. To estimate background frequencies of TCR[ receptor sequences, we used
the Emerson data set (Emerson RO et al 2017), a set of 786 patient repertoires healthy volunteers
(666 bone marrow samples from one cohort, and 120 peripheral blood samples from a second
cohort). The observed frequencies of the public TCRs in this study are concordant with computed
probabilities based on recombination frequencies and selection from the lab of Alexandra
Walczak. The Emerson Dataset data was downloaded from the Adaptive web site
(https://www.adaptivebiotech.com/immuneACCESS DOl https://doi.org/10.21417/B7001Z ).

BCR repertoire analysis.
For this analysis, we included available material from 37 OMAS-associated neuroblastomas, 13
LR, and 13 HR non-OMAS-associated neuroblastomas. IgH sequencing was performed on

genomic DNA using the Adaptive Biotechnologies platform.

Data Analysis. For BCR analysis, we used the immcantation portal packages to compute gene
usage, clonality, clustering, mutation frequency and diversity. All computations were done using
R (R version 3.6.3), running on ubuntu 16. Data manipulation, plotting, and standard statistical
tests were done using base R and standard packages. Diversity and Shannon index analysis was
done using alakazam and shazam R packages from immcantation (Gupta NT and Vander Heiden
JA et al 2015). Shannon index was subsampled to 219 sequences per sample. Clonality was
performed using Change-O from immcantation. Unless otherwise indicated, comparisons
between groups were made using Wilcoxon rank sum test, and FDR corrected for number of

tests.

IgH Gene assignment. IgH sequences were aligned to IGHV, IGHD, and IGHJ genes by
applying IgBlast (Ye J et al 2013) using a reference germline that was downloaded from IMGT in
2017. The repertoires were sequenced using the Adaptive Biotechnologies ImmunoSeq platform,
which returns only a partial V 25ssignme. This can cause mis-assignment of the V gene. Thus,
for better clone inference for each patient, clones were defined as the same V family, J gene, and
junction length using Change-O (Gupta NT and Vander Heiden JA et al 2015 et al., 2015). The
cutoff threshold was determined with the shazam package (Gupta NT and Vander Heiden JA et
al 2015 et al., 2015).

IgH Clusters. To define clusters of sequences, all subjects’ repertoires were pooled, and clusters

were inferred by the DefineClones function from Change-O using the complete linkage method.
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The clusters were defined as sequences that share the same V family, J gene, and junction length.
We also required a minimum of 85% amino acid identity across the junction sequence for
inclusion. Clusters containing at least one sequence from at least 7 OMAS subjects were chosen

for plotting.

Diversity analysis. Diversity analysis, using Shannon diversity index, was performed using the
alakazam package (Gupta et al., 2015), where each sample was subsampled 100 times to a
minimum repertoire size (219 sequences) with sequence replacement. Significance was

determined using the Wilcoxon test and p-values were corrected for multiple tests with FDR.

Mutation analysis. Mutation frequency of a sequence was calculated as the number of mutation
compared to the V germline sequence devided by the length of the V region sequences. For each
subject the sequences for each V family were grouped and the median mutation frequency was
selected. Significance was determined using the Wilcoxon test and p-values were corrected for

multiple tests with FDR.

IGHV gene usage. IgH sequences obtained using the ImmunoSeq platform carry only a partial V
region, which hinders accurate 26ssignment of V gene identity. To avoid mis-assignment biases,
uncertain or unreliable gene assignments were filtered out using the RAbHIT package (Peres at
al., 2019). Then, relative gene usage was calculated using the alakazam package (Gupta et al.,
2015). Significance was determined using the Wilcoxon test and p-values were corrected for

multiple tests with FDR.

XG Boost: building a binary classifier out of RNA-seq data

Machine learning procedures were carried out using the python scikit-learn (version 0.18.2) and
XGBoost package. We chose Gradient Boosting Decision Trees (specifically eXtreme Gradient
Boosting, XGBoost (Chen et al., 2016)) as the prediction algorithm for its ability to capture non-
linear interactions between features, its efficiency and the fact that is has been successfully used

in a wide range of applications.

Due to the relatively low number of samples available, we used leave-one-out as the cross-
validation scheme and did not perform hyperparameter optimization to avoid reducing the sample
size even further by putting aside a dedicated subset used only for model optimization. For each

iteration, XGBClassifier was trained on FPKM values from all but one sample, and the resulting
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model was used to predict the class of the left out sample (either OMAS vs non-OMAS, OMAS
vs HR, or OMAS vs LR). The performance was scored using the area under the ROC curve as a
metric. ROC curves for each comparison, as well as top features for each XGBoost model, are
given in Figure S1. Feature importance and effect on the model was determined using SHAP

analysis (Lundberg et al., 2020).

Immunohistochemistry, TLS imaging, and histological scoring. Paraffin embedded sections
from OMAS and non-OMAS patient tumors (5 micron sections, charged slides, air dried) were
obtained from primary tumor resection (with two exceptions, which were optained from biopsies).
Sections were obtained on slides from Children’s Oncology Group. Images of H&E stained
sections from the same specimens, which had been prepared, stained using standard methods,

and imaged previously by COG at 40X magnification, were also obtained for scoring.

Immunohistochemistry. Unstained slides of formalin-fixed, paraffin-embedded sections were
stained as follows: Slides were rinsed in 2 changes of xylene for 5 min each, then rehydrated in
a series of descending concentrations of ethanol. Slides were then treated in a pressure cooker
with antigen unmasking solution (Vector Laboratories H-3300) for 30 minutes. After cooling,
slides were rinsed in 0.1M Tris Buffer, and then blocked in 0.1M Tris buffer, 0.01% tween with 2%
fetal bovine serum for 15 min. For primary antigen detection, the following primary antibody
combinations were used: a) Rabbit anti-CD3 (1:50, Dako A0452), incubated overnight, and
mouse anti-CD20 (1:500, Dako M0755), which were incubated with the slides for 1 hour at room
temperature, and b) Goat anti-human CD4 (1:400, R&D Systems AF-379-NA) and Rabbit anti-
human CD8 (1:400, Thermo RB-9009-P0), which were both incubated for 1hr at room
temperature. After primary antibody staining, slides were again rinsed several times in 0.1M Tris
Buffer with 0.01% Tween, and then incubated with the following secondary antibody
combinations: For CD3/CD20 detection, Alexa 488 anti-Rabbit (Life Technologies, A21206), with
Alexa 594 Anti-Mouse (Life Technologies, A11032) were used. For CD4/ CD8 detection, Alexa
488 anti-Goat (Life Technologies, A11055) with Alexa 594 anti-Rabbit (Life Technologies,
A21207) at a 1:400 dilution were used. All slides were incubated with secondary antibodies for
1hr at room temp. Slides were rinsed several times in 0.1M Tris/0.01% Tween, then
counterstained for 5min in DAPI Hydrochloride (Sigma 32670). Slides were then rinsed, and then
coverslipped with Prolong Gold (Life Technologies, P36930). Slides were digitally scanned at

20x magnification (Aperio IF, Leica Biosystems).
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For Ki67 staining, coverslips from stained slides were removed by incubating the slides in 1xPBS
at 37°C overnight, and then washed for 2 hours in 1x PBST with several changes, before
proceeding to Ki67 staining. Without removing prior staining (CD3-alexa 488/CD20 alexa
594/DAPI), slides were further stained using Rabbit monoclonal anti-Ki-67:Alexafluor 647 direct
conjugate (Abcam ab196907, 1:100) at 4°C overnight. Slides were then washed in 1x PBST with
several changes for 2 hours before mounting and coverslipping in Slow-fade Gold mounting

medium (ThermoFisher).

Histological and immunohistochemical examination of tumor specimens

Formalin-fixed paraffin-embedded tissue sections stained with hematoxylin and eosin (HE) from
each of the tumor samples included in the study were histologically revised to confirm the initial
diagnosis of neuroblastomas or ganglioneuroblastomas applying the criteria for classification of
neuroblastic tumors suggested by the International Neuroblastoma Pathology Committee
(Shimada H et al 1999). Signs of differentiation tendency in the neuroblastic tumors, such as
presence of neuropils, Homer-Wright rosettes, and different stages of maturation towards
ganglion cells were recorded. Additionally, we assessed the possible presence of tertiary
lymphoid structures containing lymphatic follicles with or without germinal centers according to
previously published quantification criteria (none= 0; present in <10% of tumor tissue = 1+;
present in 10% to 50% of tumor tissue = 2+; present in >50% of tumor tissue = 3+; Hudlebusch
et al, 2011).

Lymphocytic populations in the tumor-associated lymphoid structures and elsewhere in the
tumors were assessed by immunofluorescent staining of tissue sections using primary antibodies
against human CD20 and CD3, a B-cell and T-cell marker, respectively, as described above.
Proliferation activity in the germinal centers of lymphatic follicles was assessed using

immunofluorescent staining against human Ki67, as described above.
Imaging of TIL immunohistochemistry. Images were acquired on a Leica LMD upright

widefield microscope driven by the LAS X acquisition software, with a 20X objective. Raw images

were identically scaled and then exported as TIFFs.
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ALLELE
MODEL
HLA OMAS | LR | HR | NonOMS | OMASVLR | OMASVHR | OMASvnon- | LRVHR
Allele freq | freq | freq freq FDR FDR OMAS FDR FDR

L*01:01 0.67 |10.43]0.27 0.28 0.38 8.21E-08 5.90E-08 1
L*01:02 0.28 |0.09]0.09 0.00 0.49 0.0056 0.0016 1
DOB*01:01 0.63 |0.26 | 0.38 0.36 0.01 0.0118 0.0016 1
DRB1*13:02 0.12 |0.04 | 0.04 0.03 1 0.28 0.16 1
C*04:01 0.21 |0.11]0.09 0.09 1 0.19 0.16 1
DRB1*01:01 0.2 |0.09]0.09 0.09 1 0.28 0.18 1
POPULATION

MODEL

HLA OMAS | LR | HR | NonOMS | OMASVLR | OMASVHR | OMASvnon- | LRVHR
Allele freq | freq | freq freq FDR FDR OMAS FDR FDR

L*01:01 0.89 |0.44]0.35 0.35 0.04 1.79E-07 5.69E-08 1
L*01:02 0.50 |0.11]0.16 0.16 0.09 0.0064 0.0015 1
DOB*01:01 0.71 10.33]0.41 0.40 0.21 0.10 0.04 1
DRB1*01:01 0.39 |10.19]0.16 0.16 1 0.14 0.07 1
DRB1*13:02 0.24 |0.07 | 0.07 0.06 1 0.18 0.10 1
DQB1*05:01 0.50 ]0.33]0.25 0.25 1 0.18 0.10 1
DQB1*06:04 0.16 | 0.04 | 0.03 0.03 1 0.18 0.10 1
DQA1*01:01 0.42 |0.22]0.20 0.19 1 0.22 0.13 1
DQA1*05:01 0.42 |0.26|0.21 0.21 1 0.22 0.15 1

1

2

3 Table 1. Enrichment of HLA alleles in OMAS compared to control neuroblastoma patient

4  groups. Two different models were used to test for enrichment of HLA alleles that may contribute

5 to OMAS autoimmunity. (A) Allele model. This model assesses occurrence of each HLA allele in

6 the pool of total alleles found in patients of one subtype compared to another subtype. Allele

7  frequency calculated as # of observed alleles/total number of alleles in that population pool (2x #

8 samples). (B) Population model. This model for enrichment tests for each HLA allele in patients

9  from each population compared to another. Here, the number of patients containing the allele,
10 regardless of copy number, is compared to the total number of patients in the pool. The total
11  sample size for each population= the number patients; patients homozygous for the allele are
12  counted only once.
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Figure Legends

Figure 1. RNA-seq analysis highlights enhanced lymphocytic infiltration and activation in
OMAS-associated neuroblastoma compared to control neuroblastoma. (A) A volcano plot
comparing expression (Log2 fold change) of transcripts (as dots) in OMAS-associated
neuroblastoma compared to non-OMAS neuroblastoma. X axis indicates enrichment of
expression in OMAS. Significance of differential expression (LogP value) is given on the Y axis.
Adjusted P value <0.05 indicated in red. Gene names in black are given for genes with expression
differences of greater than Log.(2.25 fold) between groups. Gene names referred to in
subsequent analyses labeled in light and dark blue and purple. B-B”) CIBERSORT analysis of
gene expression values from tumor RNA-seq permit estimates of immune cell fractions in OMAS
vs control neuroblastoma tumor infiltrate, including (B) memory B cells; (B’) CD8+ T cells; and
(B”) Resting CD4+ T cell fractions. (C-D) ENRICHR analysis of significantly differentially
expressed genes. Genes with 22 fold difference in expression between groups were used as input
for gene set enrichment analysis using ENRICHR. GO terms for Biological processes for over-
represented in upregulated genes (C; red) and downregulated genes (D; blue) are shown, as bar
graphs of combined significance score.

Figure 2. Immune landscape signature defines distinctive immune features of OMAS-
associated neuroblastoma. Immune signatures were detected in each sample from RNA-seq
gene expression as previously described (Jones et al 2020). Immune signature scores are
weighted averages of (log) expression levels of genes within each signature. (A) Patients are
ordered by immune score relative to mean centered values within this cohort, and clustered
according to similarity of scores across signatures. Immune subtypes were tested for enrichment
among the OMAS population compared to non-OMAS neuroblastoma, using a Fisher’s exact test
with correction for multiple testing using Benjamini-Hochberg. Immune features that are
statistically different between OMAS and non-OMAS are plotted in the upper box. Patient subtype
is indicated by color at the top (green-OMAS, orange- LR non-OMAS, purple- HR non-OMAS),
patient sample ID indicated below along the X axis. “*” indicates NMYC-amplified tumor. (B)
Adjusted p values (q values) from statistical tests of enrichment for immune signature features in
OMAS and plotted in the upper box of panel A are indicated. Significant values are shaded bright
yellow at left margin.

Figure 3. Cancer immune subtype classification identifies dominant immune signaling
pathways in neuroblastoma patient cohort. Immune subtype classifications were applied using
normalized RNA-seq (log) expression levels for each patient, as previously described (Thorsson
etal 2018). (A) Features of immune subtypes. Distinctive features of immune response correlated
with each subtype C1-C6 based on meta-analysis of TCGA cancer dataset are indicated. (B)
Distribution of immune subtypes in OMAS and control neuroblastomas in this cohort. (C)
Enrichment of immune subtypes in OMAS relative to other control neuroblastoma patient groups
are indicated. Significant values are shaded in grey.

Figure 4. OMAS tumor infiltrating T cell receptor repertoire analysis reveals significant
diversity and small clones, with limited similarity and sharing of primarily public
sequences. (A) Shannon diversity index of OMAS-associated and non-OMAS-associated
neuroblastoma TCRp repertoires. Repertoires were subsampled to 1382 sequences and
Shannon index computed. Average over 100 iterations plotted for each patient. Median value
indicated in red. (B) Gini index of evenness of OMAS-associated and non-OMAS neuroblastoma
TCRB repertoires. Average over 100 iterations plotted for each patient. Median value indicated in
red. (C) Sums of clonal frequencies for top 100 clones of TCRp repertoires. Cumulative individual
frequencies of top 100 clones in each patient repertoire were summed and plotted as a single
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point. Median value in each patient subgroup indicated in Red. (D) Horn index. Scatter plot of
Horn Index values (after downsampling with replacement to 1382 sequences) of pairwise
comparisons between patients within each patient subgroup. Average result over 100 iterations
is plotted. Median value indicated in red. | Sequence sharing in OMAS and non-OMAS patient
TCRp repertoires. Sharing value computed for each CDR3 as two numbers: 1) sharing level
between OMAS samples (the number of OMAS samples that have the given CDR3) and sharing
level in the control samples (sum of sharing levels within the HR and LR samples). Each dot
represents the fraction of sequences in the given sharing level, normalized by the number of
samples in each group. The figure is in log10-log10 scale.

Figure 5. IgH repertoire analysis of tumor infiltrating lymphocytes reveals greater diversity,
reduced clonality of OMAS-associated neuroblastoma BCR repertoires. (A) Shannon
diversity index of OMAS and non-OMAS-associated neuroblastoma IgH repertoires. Mean index
value after 100 iterations of downsampling and index calculation is plotted as one point for each
patient. Red line indicates median for each patient group. (B) Clone size of OMAS and non-
OMAS-associated neuroblastoma TIL repertoires. Summed frequency of top 100 clones in each
patient is given as a point. Red line indicates median value for each patient group. (C) IgH clusters
enriched in OMAS. Clusters of IgH sequences with at least 85% sequence similarity, and
comprising at least 7 OMAS patients and not more than 2 LR or HR patients are shown, with V
family, J family junction length and cluster index indicated.

Figure 6. Lymphocyte localization to tertiary lymphoid structures resembling germinal
centers, and to cells resembling ganglia, in OMAS-associated neuroblastoma masses. (A-
A’’) Representative tertiary lymphoid structure in OMAS-associated neuroblastoma, containing
(A) B cells (anti-CD20+; red), (A’) T cells (anti-CD3+; green). (A”) Merge of green and red
channels; (A”’) DIC image of the same field. (B-B”’)

Supplementary Figure Legends.

Figure S1. A machine learning classifier, XGBoost, identifies gene expression signatures
that distinguish OMAS neuroblastoma from non-OMAS neuroblastoma. (A-C) Shap
plots for signatures of models distinguishing OMAS neuroblastoma from control
neuroblastoma. Normalized, transcriptome-wide expression was compared for all samples in
comparison groups, except one sample set aside for model validation (using Leave-one-out). For
each model, SHAP value (a score indicating feature importance for model; Lundberg et al 2020)
is indicated on the X axis, gene features are given on the Y axis. Individual patients represented
as dots, gene expression value for each feature given as a color (range at right). Pink=high
expression, blue=low expression. Distance from x=0 indicates contribution of gene feature to
model. (A) Top twenty gene features of model distinguishing OMAS neuroblastoma from non-
OMAS neuroblastoma. (B) Top twenty gene features of model distinguishing OMAS from HR non-
OMAS neuroblastoma. (C) Top twenty features of model distinguishing OMAS neuroblastoma
from LR non-OMAS neuroblastoma. (D-F) auROC curves for each XGB model. For

each model in (A-C), performance was scored using the area under the ROC curve as a metric.
auROC=1 indicates 100% prediction accuracy for classification of left out sample. For each curve,
true postive rate (Y-axis) is plotted against corresponding false positive rate (X-axis). Blue curve=
XGB model, grey dotted line= neutral model. (D) auROC curve for OMAS vs non-OMAS model.
(E) auROC curve for OMAS vs HR non-OMAS model. (F) auROC curve for OMAS vs LR non-
OMAS model. (G) Top ten single gene features driving OMAS vs non-OMAS neuroblastoma
model from XGBoost. For each gene, a box plot is given of FPKM values (Y axis) for the gene
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features in each patient (scatter), with median value indicated for each patient group. OMAS=
red, non-OMAS=green.

Figure S2. Correlation of single gene expression with neurological symptom severity
scores nominates candidate OMAS autoantigens. Correlation of expression values
(normalized RPKM) for single gene features with neurological severity score (range 0-14) was
tested using Spearman correlation. (A) Table of genes with significant correlation of expression
with neurological severity score. For each gene, gene, Spearman correlation (R), p value, gene
name, gene ID, and gene function (via Genecards) are given. Genes whose expression in OMAS
is negatively correlated with severity score are highlighted in red. For genes with positive
correlation of gene expression with symptom severity: Green boxes= neuronal cell surface
receptors/channels, dark blue boxes= cell adhesion molecules. (B-D) Single candidate gene plots
of gene expression level (RPKM) as a function of symptom severity score. (B) NCAN. (C) HTR6.
(D) ADRA2C.

Figure S3. TCR sharing and clonal structures of patient TCR repertoires in this study. (A)
TCR sharing levels of TIL TCRp sequences compared to sharing in Emerson data set. For each
patient group, sharing level of individual TCRs (dots) are plotted according to their within-group
sharing level (Y axis) and their Emerson sharing level (X axis; range 0-786). Colored dots indicate
sequences that are more highly shared within their group than within the Emerson dataset
(“overshared”). (B) Clonal structures of TCR repertoires for each patient. Clonal frequencies for
the top 1 (dark orange), top 10 (green), top 50 (light blue) and top 100 (light orange) TCRs in each
patient repertoire were summed, and plotted as a stacked bar to fraction of the repertoire occupied
by each clonal subset. Samples are plotted along X axis, with stacked bars for summed
frequencies within repertoire plotted on Y axis. (C) Sharing levels of TCRs in each patient
repertoire compared to Emerson sharing levels. For each patient, repertoires are represented as
stacked bars indicating the fraction of each patient repertoire that is shared by patients in the
Emerson dataset. Dark blue indicates sequences not represented in Emerson (private
sequences). Yellow= shared by <25% of patients in Emerson; Green= shared by 25-50% of
patients in Emerson; Light blue= shared by 50-75% of patients in Emerson; Orange=share by 75-
100% of patients in Emerson.

Figure S4. BCR Repertoires of OMAS-associated neuroblastoma are largely similar to non-
OMAS neuroblastoma in IGH gene usage and other junction features. For all plots shown,
samples are color coded according to patient group: Green=OMAS, orange= LR, purple= HR.
Combinations whose differential usage between groups have FDRq<0.05 indicated with a *;
orange star indicates HR-LR is significant, dark blue star indicates OMAS-LR is significant, brown
star indicates OMAS-HR combination is significant. (A) IGHV gene usage. Box plot showing
observed frequencies for each gene (X axis) for each patient (dots) and within each group. (B)
IGHJ gene usage. Box plot showing observed frequencies for each gene (X axis) for each patient
(dots) and within each group. (C) V gene family- J gene family usage. V gene-J gene family
combinations were scored for observed frequencies in each patient group. Top 30 combinations
are plotted. (D) Junction length. Violin plot of observed junction lengths for all BCRs in each
patient repertoire. (E) V gene family- J gene family- Junction length. VJ- Junction length
combinations were scored for observed frequencies in each patient group.

Figure S5. Additional immunohistochemical study of tertiary lymphoid structures in OMAS
neuroblastomas. For panels (A-C), B cells are labeled with anti-CD20 antibody (red) and CD8+
T cells are labeled in green. (A) Tertiary lymphoid structures in OMAS tumors. (B) Nuclear Ki67
staining of proliferating cells in and around tertiary lymphoid structures in OMAS tumors. Arrows
indicate nuclei labeled with anti-Ki67 antibody (purple); membrane associated staining was
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scored as background. (C) Localization of tumor infiltrating lymphocytes to spindle-like processes
resembling neuronal processes. (D) Summary and quantification of tumor histopathology findings.
Presence of tertiary lymphoid structures and germinal centers were scored utilizing a previously
published scale (Hudlebusch, et al 2011), as follows: in none = 0; present in <10% of tumor tissue
= 1+; present in 10% to 50% of tumor tissue = 2+; present in >50% of tumor tissue = 3+). Patient
group is indicated by color: red= HR non-OMAS; yellow= LR non-OMAS; green= OMAS.

Supplementary Table Legends

Table S1. Differential gene expression analysis. Sheet one (samplesOMSnonOMS) lists the
samples in the comparison. Sheet two (OMSnonOMS_genes) lists features of differential
expression analysis, filtered for FDRq<0.05. Samples colored in red have Log2(FC)z1, and were
used as input for ENRICHR (Figure 1 panel B). Samples colored in blue have Log2(FC)=-1, and
were used as input for ENRICHR (Figure 1 panel C). Sheet three (OMSnonOMS_genes.support)
provides additional information to support values given in sheet 2. Sheet four (samplesLROMS)
lists the samples in the comparison. Sheet five (LROMS_genes) lists features of differential
expression analysis, filtered for FDRq<0.05. Samples colored in red have Log2(FC)=1; samples
colored in blue have Log2(FC)=-1. Sheet six (LROMS_ genes.support) provides additional
information to support values given in sheet 5.

Table S2. Complete SNP burden enrichment by gene, and complete table of HLA allele
enrichment in OMAS in this study comparing OMAS tumors in this study to LR and HR
non-OMAS controls from this study and TARGET. P values and adjusted P values <0.05 are
labeled in yellow.

Table S3: TCR sharing. Sheets 1-3: TCRdist results. Output of TCRdist (Dash P et al 2017) for
all TCR repertoires sequenced in the current study (OMAS=31, LR=13, HR=13). For TCRdist100,
results are given for similarity search using only the top 100 clones in each patient repertoire.
TCRdist1000 indicates results using top 1000 clones in each patient repertoire. TCRdistALL
contains output using all TCRs in each patient repertoire for comparison. P values were adjusted
using FDR correction for number of tests. Sheet 4: Over-shared TCRs. For each TCR sequence,
sharing level is defined as number of individuals in the patient group with that sequence in their
repertoire. For TCR repertoires, the total number of patients in each cohort are: OMAS=31,
LR=13, HR=13.
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