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ABSTRACT

Agrochemicals often contaminate freshwater bodies, affecting microbial communities
that underlie aquatic food webs. For example, Roundup, a widely-used glyphosate-
based herbicide (GBH), has the potential to indirectly select for antibiotic resistant
bacteria. Such cross-selection could occur, for example, if the same genes (e.qg.
encoding efflux pumps) confer resistance to both glyphosate and antibiotics. To test for
cross-resistance in natural aquatic bacterial communities, we added Roundup to 1,000-
L mesocosms filled with water from a pristine lake. Over 57 days, we tracked changes
in bacterial communities with shotgun metagenomic sequencing, and annotated
metagenome-assembled genomes (MAGS) for the presence of known antibiotic
resistance genes (ARGS), plasmids, and resistance mutations in the enzyme targeted
by glyphosate (enolpyruvyl-shikimate-3-phosphate synthase; EPSPS). We found that
high doses of GBH significantly increased ARG frequency and selected for multidrug
efflux pumps in particular. The relative abundance of MAGs after a high dose of GBH
was predictable based on the number of ARGs encoded in their genomes (17% of
variation explained) and, to a lesser extent, by resistance mutations in EPSPS.
Together, these results indicate that GBHs have the potential to cross-select for

antibiotic resistance in natural freshwater bacteria.

IMPORTANCE

Glyphosate-based herbicides (GBHs) such as Roundup may have the unintended
consequence of selecting for antibiotic resistance genes (ARGSs), as demonstrated in
previous experiments. However, the effects of GBHs on ARGs remains unknown in
natural aquatic communities, which are often contaminated with pesticides from
agricultural runoff. Moreover, the resistance provided by ARGs compared to canonical
mutations in the glyphosate target enzyme, EPSPS, remains unclear. Here we used
freshwater mesocosm experiments to show that GBHs strongly select for ARGs,
particularly multidrug efflux pumps. These selective effects are evident after just a few
days, and at glyphosate concentrations that are high but still within short-term (1-4 day)
regulatory limits. The ability of bacteria to survive and thrive after GBH stress was

predictable by the number of ARGs in their genomes, and to a lesser extent by
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mutations in EPSPS. GBHs are therefore likely to select for higher ARG frequencies in
natural streams, lakes, and ponds.

KEYWORDS Antibiotic resistance genes, indirect selection, herbicide, antibiotic efflux

pump, metagenomics
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INTRODUCTION

Glyphosate-based herbicides (GBHSs) are by far the most extensively used weed-killers
worldwide, especially since the introduction of transgenic glyphosate-resistant crops in
the 1990s [1,2]. Glyphosate residues can spread widely and accumulate in soil, water,
and plant products, raising concerns over human and environmental health [3]. A recent
systematic review and risk analysis concluded that glyphosate poses a moderate to
high risk to freshwater biodiversity in 20 of the countries investigated [4]. Some of the
highest aquatic concentrations of glyphosate were found in countries with the largest
production of genetically engineered glyphosate-tolerant crops globally, including the

United States, Brazil, and Argentina [2,4].

Although designed to control weed growth, glyphosate may also affect microorganisms
that use the herbicide’s molecular target, the enzyme enolpyruvyl-shikimate-3-
phosphate synthase (EPSPS), to synthesize aromatic amino acids [5]. The EPSPS is
classified into four classes according to mutations in the enzyme active site that confer
differential sensitivities to glyphosate [6]. In bacteria, EPSPS classes | and Il, which are
respectively sensitive and tolerant to glyphosate, are the most frequently found, while
classes lll and IV are rarer and both confer glyphosate resistance [6]. The EPSPS class
Il sequence isolated from a strain of Agrobacterium tumefaciens is used as the

transgene in most commercially available glyphosate-resistant crops [7,8].

Experiments conducted in diverse environments, such as soil and freshwater [9-11] and
the bee gut microbiome [12], have shown that bacterial taxa from natural ecosystems
vary in their sensitivity to glyphosate. Some of this variation is explained by the
distribution of different EPSPS classes. However, while strains with the EPSPS class |
are known to be sensitive, they have also been observed to tolerate glyphosate through
unknown mechanisms [12], indicating that additional EPSPS-independent glyphosate

resistance mechanisms likely exist in nature.

Studies with bacterial cultures have shown an increased resistance to antibiotics after

exposure to high concentrations of glyphosate and other herbicides [13-17]. In the
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presence of glyphosate, the expression of membrane transporters may confer
resistance to glyphosate and antibiotics simultaneously [18]. Specifically, multidrug
efflux pumps have been experimentally shown to confer resistance to both glyphosate
and antibiotics, presumably by exporting a variety of small molecules [13,14, 18]. This is
an example of cross-resistance, a mechanism of indirect selection through which one
resistance gene or biochemical system confers resistance to other antimicrobial agents
[19,20].

Direct selection of antibiotic resistance arises when bacteria are exposed to an antibiotic
agent and mutations conferring resistance to this agent are selected [21]. In contrast,
indirect selection for antibiotic resistance occurs in the absence of the antibiotic, either
via cross- or co-resistance [19,20]. Cross-resistance occurs when the same gene
confers resistance to multiple antibiotic agents, while co-resistance occurs when a
resistance gene is genetically linked to another gene that is not necessarily an antibiotic

resistance gene (ARG), but that is under positive selection.

Most studies of cross-resistance induced by herbicides focused on bacterial isolates in
laboratory experiments [13-16,22]. A recent study has shown that herbicide selection
increases the prevalence of ARGs in soil bacterial communities, using observational
and experimental field data [23]. However, we still lack evidence for aquatic
communities, which are of particular interest because herbicides often reach
waterbodies through leaching, runoff, and spray drift from agricultural fields [4,24].
Moreover, the extent of direct selection on EPSPS mutations compared to indirect
selection on ARGs is unclear. In a previous study, we used 16S ribosomal gene
amplicon sequencing to assess how the composition of freshwater bacterioplankton
communities respond to a GBH applied alone or in combination with a widely-used
neonicotinoid insecticide [11]. As part of the same experiment, we also showed how
phytoplankton undergo community rescue in response to lethal GBH doses [25], and
how zooplankton community properties were differentially affected by pesticides, even
at glyphosate concentrations below North American water quality guidelines [26].

Because GBH was the main driver of changes in the composition of the bacterial
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101 community, we expand on our previous work and investigate the effects of the GBH on
102 ARG frequencies in aquatic bacterial communities in this study, using the same outdoor
103  array of experimental ponds (Fig. 1A).

104

105 To test the extent to which contamination with GBH cross-selects for ARGs in complex
106  aquatic communities over time, we performed an 8-week experiment in which we

107  exposed freshwater mesocosms to two glyphosate concentrations for six weeks (0.3
108 and 15 mg/L; Phase I) and to a higher dose for 2 weeks (40 mg/L; Phase Il) (Fig. 1B).
109 We sequenced metagenomes from each mesocosm and reconstructed Metagenome-
110  Assembled Genomes (MAGS) of bacteria, which were annotated according to their

111  taxonomy, presence of ARGs, plasmids, and resistance mutations in the EPSPS

112 enzyme. We hypothesize that the frequency of ARGs in bacterial communities

113  increases after exposure to a high concentration of glyphosate, and that efflux pumps
114  are among the main resistance mechanisms promoted by GBH. We also expect that
115 MAGs encoding many ARGs or the resistant classes of the EPSPS gene will be the
116  most likely to survive and proliferate after GBH exposure. Consistent with these

117  expectations, we find that high doses of GBH (15 and 40 mg/L glyphosate) cross-select
118 for ARGs, particularly multidrug efflux pumps. These results show how severe

119 contamination of aquatic systems with GBH could indirectly select for antibiotic

120  resistance.

121

122 RESULTS

123  Glyphosate-based herbicide treatment increases antibiotic resistance gene

124 frequency

125 To test the effects of a GBH on ARGs frequency along the experiment, we tracked

126  variation in the number of metagenomic reads mapped to the Comprehensive Antibiotic
127  Resistance Database (CARD), hereafter referred to as ARG reads, and in the counts of
128 unigue ARGs over time, both normalized by the total number of reads in each sample
129  (Fig. 2). In Phase | of the experiment, two pulses of a GBH were applied to reach

130 concentrations of 0.3 mg/L and 15 mg/L glyphosate. Only the latter increased ARG

131 frequencies over time, either when measured as the number of unique ARGs (GAM
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132  F=15.65 p<0.001, Table 1, Fig. S1), or as the number of ARG reads (GAM F=15.78
133  p<0.001, Table 1, Fig. S1). The concordance of these two metrics suggests that the
134  effect of GBH on ARGs was not due to a few highly responsive resistance genes, but to
135 multiple unique genes. In Phase Il, a single dose of 40 mg/L glyphosate was applied to
136  all mesocosms except for the Phase Il controls, triggering an increase in ARG

137  frequencies across all treated ponds (Fig. 2). ARG frequencies increased over time, due
138 mainly to the Phase Il GBH pulse (Table 1, Fig. S1). Nutrient enrichment produced a
139  weak but significant effect only when considered alone, not in interaction with time

140 (Table 1). Overall, these results support the hypothesis that the GBH treatment has the
141  most dominant and strongest positive effect on ARG frequencies over time.

142

143 GBH selects for specific gene functions, including antibiotic efflux

144  To assess how GBH affected known gene functions beyond ARGs in the bacterial

145  communities, we built Principal Response Curves (PRCs) based on SEED annotations
146  of genes in the metagenomes. The PRCs revealed a clear effect of GBH on the

147  composition of gene functions (Fig. S2). In Phase I, the first pulse of 15 mg/L

148  glyphosate induced greater deviations from controls than the second pulse. In Phase II,
149  all ponds receiving 40 mg/L glyphosate deviated from the controls. Resistance to

150 antibiotics is among the functions positively affected by GBH treatment, as indicated by
151  the positive scores of the SEED subsystems “Virulence, Disease and Defense”, at level
152 1 (Fig. S2A), and “Resistance to antibiotics and toxic compounds”, at level 2 (Fig. S2B).
153 Table S1 shows the complete list of PRC scores for all SEED subsystems at levels 1
154 and 2. Membrane transport (level 1, Fig. S2A), such as the ATP-binding cassette (ABC)
155 transporters (level 2, Fig. S2B), are among the positively selected functions. These

156 genes could plausibly change cell permeability to various molecules, including

157  glyphosate.

158

159 To assess the effects of GBH on ARGs at a higher level of resolution, we built another
160 set of PRCs based on ARG profiles predicted from reads mapping to CARD. The

161 resulting PRC plot showed a prominent effect of the first and second pulses of 15 mg/L

162  of glyphosate in Phase | (Fig. 3). In Phase I, the GBH had an effect in all treatments
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that received a last pulse (40 mg/L glyphosate). This result is consistent with the greater
effect of the large Phase Il pulse compared to smaller Phase | pulses on total ARG
frequencies (Fig. 2 and Fig. S1). The two principal resistance mechanisms of the ARGs
annotated by CARD are antibiotic efflux and antibiotic inactivation (shown respectively
in blue and red text in Fig. 3). Genes encoding antibiotic efflux functions were more
often found with positive PRCs scores (Fisher’s exact test, p=0.013), suggesting that
they tend to be selected more often than other ARGs in the presence of GBH. This
result supports the hypothesis that membrane transporters used for antibiotic efflux

could also play a role in exporting glyphosate from bacterial cells.

Connecting resistance genes to genomes and plasmids

Thus far, our results have only considered ARGs outside the context of the bacterial
genomes or plasmids in which they occur. On average, 71% (x 3; range = 45-94%,
Table S2) of ARG reads across samples (those mapping to CARD) also mapped to
MAGs, meaning that MAGs captured a large fraction of ARG reads in the
metagenomes. We identified putative plasmids in 390 MAGs, with an average of 43
plasmid contigs per MAG (min=1, max=520, SE=3.5, Table S3). However, only 27
plasmid contigs were annotated with ARGs. Out of a total of 188 MAGs with ARGs, only
24 (13%) of them had at least one ARG identified in a potential plasmid. Although some
ARGs are certainly encoded on plasmids, ARGs are better associated with genomes

than with MAG plasmids in our study.

Of the 426 total MAGs, only 20 recruited 100 or more ARG reads, and the classification
of their EPSPS genes varied (Fig. S3, S4). To visualize which ARGs were more
abundant in GBH treatments and in which MAGs they were found, we examined the
frequency of metagenomic reads mapped to ARGs according to their antibiotic
resistance ontology (ARO) classification (top graphs in Fig. S3 and Fig. S4) as well as
the proportion of these reads that were mapped to MAGs (bottom graphs in Fig. S3 and
Fig. S4). These visualizations confirmed the response of efflux pumps (e.g. mex genes)
to GBH. The relative abundance of mex genes is strongly associated with a

Pseudomonas putida MAG (Fig. S3; bottom right panel) but are sometimes also
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194  associated with other MAGs such as Aeromonas veronii (Fig. S3), Oxalobacteraceae,
195 and Azospirillum (Fig. S4). Itis thus likely that GBH selects for efflux pump genes in
196  multiple different genomic backgrounds.

197

198 The number of ARGs encoded in a MAG predicts its frequency after severe GBH
199 exposure

200  Our results thus far suggest an important role for ARGs, and efflux pumps in particular,
201 in allowing bacterioplankton to survive and grow in the presence of a GBH. We next
202 asked, what is the importance of ARGs relative to genetic variation in the glyphosate
203 target enzyme, EPSPS? Based on known sequence variation in the EPSPS encoding
204  gene, we were able to classify MAGs as putatively glyphosate resistant, sensitive, or
205 unclassified. We also defined a MAG's antibiotic resistance potential as the number of
206  ARGs identified in their genomes (i.e. number of RGI strict hits). We then tested the
207  extent to which these genomic features were predictive of a MAG's average relative
208 abundance across ponds at the end of the experiment, after receiving 40 mg/L

209 glyphosate in Phase II. We found that MAGs encoding more unique ARGs tended to
210 have higher relative abundance after receiving the Phase Il GBH pulse (Fig. 4A, Table
211  2). The effect of antibiotic resistance potential was highly significant (multiple linear
212  regression model, t=9.53 p<0.001, Table 2), and was not observed in control ponds that
213  did not receive the Phase Il pulse (Fig. S5A; t=2.26 p=0.025; not significant after

214  Bonferroni correction, Table S1). The relative abundance of MAGs at the end of the
215 experiment in these control ponds was predicted by their relative abundance in phase |
216  (40% of variance explained; Table S4), consistent with temporal autocorrelation (e.qg.
217  due to random fluctuations in species abundances). In contrast to the strong effect of
218 ARGs on predicting MAG relative abundance post-glyphosate stress (17% of variance
219 explained; Table 2), EPSPS classification explained only 2% of the variation — in both
220 Phase Il treatment and control ponds.

221

222  To further explore these results, we used a regression tree analysis to identify primary
223  drivers of MAG abundance at the end of Phase Il. Instead of combining the three major

224  classes of ARGs (antibiotic target alteration, antibiotic inactivation and antibiotic efflux),
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225 we used each of them as a separate predictor in the regression tree. The first division
226  splits MAGs with at least one antibiotic efflux gene (Fig. 4B, node 7) which were on

227  average more abundant post-GBH pulse than those without efflux genes (Fig. 4B, node
228  2). Among MAGs with efflux genes, the more genes they had, the higher their

229  abundance. Among MAGs without antibiotic efflux genes, the EPSPS classification was
230 an important driver of their abundance, followed by the MAG's average abundance in
231 Phase I. In the absence of a GBH pulse in Phase II, the primary driver of MAG

232 abundance in Phase Il controls was their mean relative abundance in Phase | (Fig. S5).
233  Control pond regression trees also included a split between resistant/sensitive and

234  unclassified EPSPS, which is difficult to interpret biologically and likely attributable to
235 noise. This could also explain why 2% of the variation in MAG relative abundance in
236  control ponds was explained by EPSPS class. Together, these results indicate that a
237 bacterial genome's ARG coding potential is predictive of its ability to persist in the face
238 of GBH stress — more so than the class of EPSPS enzyme it encodes.

239

240 Discussion

241  Our mesocosm experiment used deep metagenomic sequencing to detect the effect of
242  a GBH Roundup on microbial genes and genomes in semi-natural freshwater bacterial
243  communities. We show that exposure to GBH in high concentrations (15 mg/L and 40
244  mg/L glyphosate) increases the frequency of ARGs in freshwater bacterioplankton.

245  Moreover, we show that the abundance of MAGs after severe contamination (40 mg/L
246  glyphosate) was predicted based on the number of ARGs they encoded, and these

247  'successful' MAGs tended to have at least one antibiotic efflux gene annotated in their
248 genome. The effect of GBH on ARGs is likely due to cross-resistance, since the

249  multidrug efflux pumps which rise in frequency in response to GBH could potentially
250 transport glyphosate in addition to antibiotics [18]. Alternatively, co-resistance could play
251 arole if GBH selects for bacterial genomes (rather than specific genes) that happen
252 also to encode ARGs. While we cannot exclude a role for co-resistance entirely, the
253  cross-resistance model is more plausible since efflux genes are strongly affected, likely

254  in multiple independent genomic backgrounds. As discussed in detail below, direct

10
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255  selection for EPSPS appears to be weak, implying that ARGs are unlikely to achieve
256  high frequency due to genetic linkage with resistant EPSPS alleles.

257

258 An association between glyphosate and increases in ARGs and mobile genetic

259 elements has been previously found in soil microbiomes, as demonstrated in a recent
260  study combining experimental microcosms and environmental data from agricultural
261 field sites in China [23]. Through laboratory assays in three bacterial strains, the authors
262 quantified the conjugation frequency of a multidrug resistance plasmid induced by

263  glyphosate and further investigated changes in cell membrane permeability. They

264  detected a significant increase in conjugation frequency and augmented cell membrane
265 permeability in the presence of glyphosate, suggesting that glyphosate stress increases
266 membrane permeability, thereby promoting plasmid movement. Here, we provide

267  additional support for the hypothesis that cell membrane permeability is altered in the
268 presence of glyphosate, as demonstrated by the selection of membrane transport

269  mechanisms, such as ABC transporters [27] among the annotated gene functions most
270  responsive to the GBH treatments. In contrast, although we did not quantify the

271  frequency of conjugation in our experiment, we did identify some ARGs located on

272  putative plasmids. Of the MAGs encoding ARGs, only 13% contained a plasmid-

273 encoded ARG. It is possible that unassembled plasmids or plasmids not associated with
274  MAGs could harbor ARGs. Including such plasmids would not be expected to change
275  our major conclusion that ARGs are more predictive of MAG frequency post-GBH

276  exposure than EPSPS. In addition to plasmids, other mechanisms also contribute to
277  horizontal gene transfer between bacteria, such as phage-mediated transduction and
278 transformation [28], and future studies could test how these processes may be affected
279 by GBH stress.

280

281  Strikingly, antibiotic resistance potential, particularly the presence of antibiotic efflux
282  genes, was more important than the EPSPS classification in explaining variation in

283 MAG abundance in Phase I, after a high GBH pulse. This evidence of cross-resistance
284  in semi-natural communities may help explain why, in previous experiments also

285 performed with complex communities, bacterial strains with the sensitive EPSPS

11
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286  encoding gene were resistant to glyphosate, as it is the case of two strains of

287  Snodgrassella alvi in the bee gut microbiome [12]. Although EPSPS alleles were weakly
288  predictive of MAG relative abundance after the phase Il GBH pulse, their effects were
289 clearly secondary to the strong effects of ARGs. Computational gene annotations of
290 both ARGs and resistant or sensitive EPSPS have limitations because they are based
291 on sequence similarity, not on phenotypic measurements. Therefore, we cannot entirely
292 exclude arole for EPSPS alleles in conferring GBH resistance in nature, but their

293 effects were small in our experiment. Together, our results strongly suggest that ARGs
294  (and efflux pumps in particular) could be more relevant to glyphosate resistance in

295 nature than mutations in the glyphosate target enzyme.

296

297  Our study also aligns with previous single-strain laboratory evidence that antibiotic

298 resistance may enhance bacterial survival in the presence of pesticides. Laboratory

299 assays of bacterial isolates showed accelerated rates of antibiotic resistance selected
300 by exposure to agrochemicals [15,16]. Additionally, it has been shown that the targeted
301 deletion of efflux pump genes can neutralize the increased tolerance to kanamycin and
302 ciprofloxacin in Escherichia coli and Salmonella enterica serovar Typhimurium in the
303 presence of GBH [13,14]. As we further show in a more natural system, efflux pumps
304  may provide resistance to both glyphosate and certain antibiotics. Whether all efflux
305 pumps are equally capable of transporting various molecules out of the cell remains to
306 be seen, and other resistance mechanisms could also play a role.

307

308 It should be noted that we used a commercial Roundup formulation of the herbicide

309 glyphosate, which includes other constituents that may also influence microbial

310 communities and cellular physiology. For example, the surfactant polyethoxylenamine
311 (POEA) has produced negative effects on Vibrio fischeri at lower doses than glyphosate
312 acid [29]. However, given that our results are in general agreement with previous soil
313 experiments using pure glyphosate [23], we believe that our findings are at least in part
314  attributable to an effect of glyphosate itself. Furthermore, regardless of whether it is

315 glyphosate or other constituents of GBH that drive cross-selection of ARGs, assessing

12


https://doi.org/10.1101/2021.12.13.472531
http://creativecommons.org/licenses/by-nc-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2021.12.13.472531; this version posted December 16, 2021. The copyright holder for this preprint
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY-NC-ND 4.0 International license.

316 the risks associated with commercial formulations is more ecologically realistically, as
317  these formulations are used in agriculture fields and lawns [30].

318

319 On an applied level, the safety assessment process for pesticides such as glyphosate,
320 currently based on toxicity to model organisms [31,32], should consider the potential
321 effects on bacterioplankton and selection for ARGs. Our results highlight the role of
322 GBH contamination as an indirect selective pressure favouring ARGs in natural

323 communities. Although glyphosate concentrations as high as the ones inducing this
324  effect (i.e. 15 mg/L and 40 mg/L) are rarely found in nature, there are reports of

325 glyphosate levels up to 105 mg/L detected during the rainy season close to agricultural
326 fields; as observed in Argentina [4], for example. Additionally, currently regulated

327  acceptable concentrations of glyphosate in freshwaters in the USA and Canada for
328  short-term exposure (1-4 days) are close to the concentrations used in our experiment
329  (respectively 49.9 mg/L [32] and 27 mg/L [31]). Here we have shown that ARG

330 frequencies can rise dramatically just a few days after GBH treatment, suggesting that
331 even currently acceptable short-term glyphosate exposure could provoke similar

332 selection for ARGs in natural water bodies. The extent to which these ARGs, and the
333 bacteria that encode them, can be mobilized across aquatic ecosystems, and from

334  these ecosystems into animals and humans, remains to be seen.

335

336 METHODS
337
338 Experimental design

339  An eight-week mesocosm experiment was conducted at the Large Experimental Array
340 of Ponds (LEAP) facility (Fig. 1A) located at McGill University’s Gault Nature Reserve
341 (QC, Canada) from August 17" (day 1) to October 12" (day 57) 2016, as previously
342  described [11,25,26]. Pond mesocosms were filled with 1,000 L of water and planktonic
343 communities from Lake Hertel (45°32" N, 73°09’ W). Lake water was passed through a
344  coarse sieve to prevent fish introduction, while retaining lake bacterioplankton,

345 zooplankton and phytoplankton, whose responses to experimental treatments have

346  been described in previous studies [11,25,26].

347
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348  Fig. 1B illustrates the experimental design of a subset of eight treatments selected for
349 the metagenomic sequencing analyses reported here (see [25] for a full description of
350 all treatments at the LEAP facility in 2016). The eight ponds were sampled at 11

351 timepoints throughout phases | and Il of the experiment. In Phase | (days 1-44), all

352  ponds received nutrient inputs biweekly, simulating mesotrophic or eutrophic lake

353 conditions with additions of a concentrated nutrient solution. Four ponds were treated
354  with a GBH to reach target concentrations of 0.3 or 15 mg/L of the active ingredient
355  (glyphosate; acid equivalent), while the other four were kept as control ponds. The GBH
356 was applied in two pulses in Phase I, at days 6 and 33. In Phase Il (days 45-57), two
357  control ponds (hereafter referred to as Control Phase I) and the four treatment ponds
358 received one pulse of the GBH at a higher dose (40 mg/L glyphosate) on day 44, while
359 other two other control ponds (hereafter referred to as Control Phase Il) received no
360 pulse.

361

362 Target doses of the active ingredient were calculated based on the glyphosate acid
363 content in Roundup Grass and Weed Control Super Concentrate (Bayer ©), the

364  formulation used for the experiment. We used a commercial formulation to mimic

365 environmental contamination, and because the costs of using pure glyphosate salt

366  would be prohibitive in a large-scale field experiment. Treatments are referred to by
367 their glyphosate acid concentration to allow comparison with other formulations.

368  Nutrients were added in the form of nitrate (KNO3s) and phosphate (KH2PO4 and K2POa),
369  with target concentrations of 15 pug P/L and 231 pg N/L in the low-nutrient (mesotrophic)
370 treatment ponds and 60 pg P/L and 924 ug N/L for in the high-nutrient (eutrophic)

371 treatment ponds. The concentrated nutrient solution had an N:P molar ratio of 33

372  comparable to our source lake. Target doses of glyphosate acid and nutrients were
373 achieved reasonably well, as reported in previous studies [11,25].

374

375 DNA extraction and metagenomic sequencing

376  The eight experimental ponds were sampled for bacterioplankton DNA at 8 timepoints
377 during Phase | (days 1, 7, 15, 30, 35, 38, 41 and 43) and 3 timepoints during Phase Il
378 (days 45, 49 and 57). Water samples were collected with 35 cm long integrated
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379  samplers (2.5 cm diameter PVC tubing) at multiple locations in the same pond and

380 stored in 1 L dark Nalgene bottles, at 4 °C until being filtered within 4 hours. We

381 filtered 250 mL of each sample on site, through 0.22 um pore size Millipore hydrophilic
382 polyethersulfone membranes of 47 mm diameter (Sigma-Aldrich, St. Louis, USA).

383  Filters were stored at -80 °C until DNA extraction.

384

385 We extracted DNA from a total of 88 filter samples using the PowerWater DNA Isolation
386 kit (MoBio Technologies Inc.) following the manufacturer’s guidelines. Shotgun

387 metagenomic sequencing was performed using the Illumina HiSeq 4000 technology
388  with 100 bp paired-end reads. Libraries were prepared with 50 ng of DNA using the

389 NEBNext Ultra Il DNA Library Prep kit for lllumina (New England Biolabs®) as per the
390 manufacturer's recommendations, and had an average fragment size of 390 bp.

391

392 Metagenomic read trimming, functional annotation and ARGs inference from

393 metagenomic reads

394  We removed lllumina adapters and quality filtered metagenomic reads using

395  Trimmomatic [33] in the paired-end mode. We used FragGeneScan [34] for gene

396 prediction from trimmed metagenomic reads and annotated predicted genes with SEED
397  subsystems [35]. To identify known ARGs in the metagenomic reads, we used the

398 Resistance Gene Identifier (RGI) ‘bwt’ function that maps FASTQ files of reads passing
399 quality control to CARD [36] using Bowtie2 (version 2.4) as an aligner [37]. Only

400 alignments with mapping quality (MAPQ) higher than 10 and gene coverage of 50%
401  were retained. To calculate the proportion of metagenomic reads mapped to CARD that
402 have been assembled and binned to genomes, we extracted reads that aligned to

403 CARD using Samtools [38] and mapped them to MAGs using Bowtie2 [37]. Table S2
404  shows the total number of reads by sample after trimming and a summary of the RGI
405  output by sample for hits with minimum gene coverage of 50% and average MAPQ>10.
406

407 Metagenomic de novo co-assembly, binning, dereplication and curation of MAGs
408 We organized the dataset into eight sets of metagenomes, each of them containing

409 samples of the same mesocosm pond (Fig. 1B) from multiple timepoints. We co-
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410 assembled reads from each of the 8 timeseries using MEGAHIT v1.1.1 [39], with a
411  minimum contig length of 1 kbp. We used anvi’o v5.1 [40] to profile contigs, to identify
412  genes using Prodigal v2.6.3 [41] and HMMER v3.2.1 [42], to infer the taxonomy of
413  genes with Centrifuge v1.0.4 [43], to map metagenomic reads to contigs using Bowtie2
414  v2.4.2 [37], and then to estimate depth of read coverage across contigs. Finally, we
415 used anvi’o to cluster contigs according to their sequence composition and coverage
416  across samples with the automatic binning algorithm CONCOCT [44] and we manually
417  refined the bins (n=830) using the anvi’o interactive interface, as suggested by

418 developers [40], by removing splits that diverged in the differential coverage and/or
419 tetra-nucleotide frequency of most splits in the same bin.

420

421  We dereplicated bins as described in [45]. In summary, we calculated the Pearson
422  correlation coefficient between the relative abundance (i.e. the mean coverage

423 calculated by the function ‘anvi-summarize’ within anvi’'o) for each pair of bins in the
424  metagenomic samples, using the ‘cor’ function in R [46], and the average nucleotide
425 identity (ANI) of bins affiliated to the same phylum, using NUCmer [47]. Taxonomy
426  assignment of redundant bins was done using CheckM [48]. Bins with a Person

427  correlation coefficient above 0.9 and ANI of 98% or more were considered redundant. In
428 atotal of 830 bins obtained before performing the dereplication, we found 607 non-
429 redundant bins, of which 426 were classified as MAGSs, as they had at least 70%

430 completeness and no more than 10% redundancy (see Table S2). We then created a
431 non-redundant genomic database of these 426 MAGs to which we mapped

432  metagenomic reads to calculate the relative abundance of each MAGs across the
433 different samples. Here we define a MAG's relative abundance as the number of

434  metagenomic reads recruited to a MAG divided by the total metagenomic reads in a
435 given sample.

436

437 Identification of ARGs, EPSPS and plasmids in MAGs

438 We annotated ARGs within MAG contigs with the RGI ‘main’ function, that compares
439 predicted protein sequences from contigs to the CARD protein reference sequence
440 data. Within RGI, we used the BLAST [49] alignment option and the strict algorithm
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441  (excluding nudge of loose hits to strict hits) for low quality contigs (<20,000 bp). The
442  RGI low sequence quality option uses Prodigal anonymous mode [41] for the prediction
443  of open reading frames, supporting calls of partial ARGs from short or low quality

444  contigs.

445

446  To identify EPSPS sequences from MAG contigs we first used Anvi'o to predict amino
447  acid sequences of the non-redundant MAGs with the flag ‘report-aa-seqs-for-gene-calls’
448  of the function ‘anvi-summarize’. Gene calls of all the MAGs were concatenated

449  conserving the original split names, and transformed into a fasta file. We then blasted
450 the predicted amino acid sequences against a custom database with sequences of the
451 EPSPS enzyme, using BLASTp [49] and a minimum e-value of 1e-5. After selecting the
452  gene call with the best match (i.e. lowest e-value) to an EPSPS sequence in each of the
453 426 MAGs, we used the EPSPSClass web server [6] to classify the retrieved sequences
454 according to resistance to glyphosate. Sequences were classified as EPSPS class I,
455  class Il or class IV if they contained all the amino acid markers from the respective

456  reference, i.e. if the percent identity was equal to 1; and classified as class Ill when they
457  contained at least one complete motif out of 18 of the resistance-associated sequences,
458 as explained in [6]. MAGs whose EPSPS sequences did not match these criteria of

459  having at least one motif of class Ill or 100% percent identity with class I, Il or IV, or

460 those in which no predicted amino acid sequence matched a known EPSPS sequence
461 were set as unclassified (roughly 27% of MAGs). EPSPS sequences matching class |
462  were considered as putative sensitive and those with at least one motif of class Il or
463  matching class Il as putative resistant. No sequences were found that matched to class
464 IV.

465

466  To identify potential plasmid contigs assembled to MAGs we used the plasmid classifier
467  PlasClass [50]. We counted all contigs classified as plasmid with a minimum of 70%
468 probability, as well as how many of these potential plasmid contigs were annotated with
469  ARGs through RGI. Table S2 summarizes MAG information, including the predicted
470 EPSPS sequence found in the genome, the EPSPS classification, the number of

471  estimated plasmid contigs and how many of them contained ARG sequences.
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472

473  Statistical analyses

474 All statistical analyses were conducted in R v.4.0.2 [46]. Time series of (log-

475  transformed) ARG counts and ARG reads per million metagenomic reads were

476  modelled using additive models (GAM) using the ‘mgcv’ R package [51]. We used

477  GAMSs to account for nonlinear relationships among the response variable and the

478  predictors. Some predictors (nutrient and herbicide treatment levels) were coded as
479  ordered factors; Table 1 lists all factors and predictors of the model. We built the models
480 using the ‘gam’ function and assessed significance of effects with the ‘summary.gam’
481 function. We validated the models with the ‘gam.check’ function, inspecting the

482  distribution of model residuals, comparing fitted and observed values, and checking if
483  the basis dimension (k) of smooth terms were large enough.

484

485  We used Principal Response Curves (PRCSs) to test for the effect of treatments on the
486 composition of ARGs and gene functional profiles over time. PRCs are a special case of
487  partial redundancy analysis (pRDA) used in temporal experimental studies where

488 treatments and the interaction between treatment and time are used as explanatory
489  variables [52]. Time is the covariable (or conditioning variable) whose effect is partialled
490 out and the response variable is the matrix containing compositional data (taxa or gene
491 family relative abundances). We built PRCs using relative abundances of predicted

492  genes grouped according to the SEED subsystem levels 1 and 2. In a more focused
493  analysis, we built a PRC for the matrix of ARGs found in each sample, i.e. metagenomic
494  reads mapped to each ARG from the CARD reference classified according to their

495  Antibiotic Resistance Ontology (ARO). The matrices were transformed using the

496  Hellinger transformation [53]. The PRC diagram displays the treatment effect on the y-
497  axis, expressed as deviations from the experimental controls at each time point. It also
498 shows species scores on the right y-axis, which here can be interpreted as the

499  contribution of each function or gene to the treatment response curves. We assessed
500 the significance of the first PRC axis by permuting the treatment label of ponds while
501 keeping the temporal order, using the ‘permute’ package [54] followed by a permutation
502 test (999 permutations) using the ‘vegan’ package [55]. For the PRC based on ARG
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503 composition, we tested if the distribution of PRC positive and negative scores was

504 different among the resistance mechanisms of the identified ARGs using the ‘fisher.test’
505 function in the ‘stats’ package in R [46].

506

507 To test if MAG abundance in Phase |l glyphosate treatments was correlated with their
508 antibiotic resistance potential, we built a multiple linear regression with the ‘Im’ function
509 of the R package ‘stats’ [46]. The response variable was the average relative

510 abundance of a MAG in glyphosate-treated ponds in Phase Il. The three predictors

511 were: the MAG's antibiotic resistance potential (defined as the number of RGI strict hits
512  found in the MAG), the average MAG relative abundance in the same ponds of Phase I,
513 and their EPSPS sequence classification (resistant, sensitive or unclassified). To

514  assess the relative contribution of the different predictors to MAG survival in Phase I,
515 we performed a variance partitioning analysis with the ‘varpart’ function of the R

516 package ‘vegan’ [55]. Finally, to visualize the hierarchy among predictors we

517  constructed a conditional inference regression tree. Response variable and predictors
518 were the same as described above, except that instead of grouping all ARG hits, we
519 transformed them into three variables, according to their function: antibiotic target

520 alteration, antibiotic inactivation, or antibiotic efflux. The regression tree was fitted with
521 the ‘ctree’ function in the R package ‘party’ [46]. As a negative control, we repeated the
522 same analyses for MAGs found in control ponds of Phase II.

523

524  As multiple predictors were tested, we performed a Bonferroni correction for the additive
525 and linear models, whereby the p-value significance threshold of 0.05 was divided by
526  the number of statistical tests.

527

528  Graphs and heatmaps for timeseries data visualization were built using the functions
529 ‘geom_point’ and ‘geom_tile’, respectively, in the R package ‘ggplot2’ [56].

530

531 Data accessibility

532  Sequence data of the 88 metagenomic samples were submitted to NCBI SRA

533 (BioProject PRINA767443, accession numbers SRR16126824-SRR16126911) and the

19


https://doi.org/10.1101/2021.12.13.472531
http://creativecommons.org/licenses/by-nc-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2021.12.13.472531; this version posted December 16, 2021. The copyright holder for this preprint
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY-NC-ND 4.0 International license.

534 genomes of 426 predicted MAGs have been deposited and associated to the same

535 BioProject (BioSample accession numbers in Table S3). The data will be publicly

536 available once the manuscript is accepted for publication, and it can be now accessed
537  through the following reviewer link:

538  https://dataview.ncbi.nlm.nih.gov/object/PRINA767443?reviewer=vk907uf95h5cm1d8m
539  1mgnrc5fk.

540
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725

726  Main figures legends

727 Fig. 1 Experimental area and design. (A) Aerial photograph of the Large Experimental
728  Array of Ponds (LEAP) at Gault Nature Reserve, in Mont Saint-Hilaire (Canada). The
729  laboratory facility and inflow reservoir, where water from our source lake was redirected
730 to before filling the mesocosms, can be seen at the top of the photograph. Our source
731 lake, Lake Hertel, is located upstream (not shown in the photograph). (B) Schematic
732 representation of the subset of mesocosms selected for metagenomic sequencing in
733  this study. A total of eight ponds were sampled 11 times over the course of the 8-week
734  experiment, which was divided in two phases: Phase | (6 weeks) and Phase Il (2

735 weeks). Phase | included two pulse applications (doses) of GBH, with three target

736  glyphosate concentrations (0, 0.5, and 15 mg/L). In Phase I, all ponds except for two
737  controls, shown in grey, received a higher dose of glyphosate (40 mg/L). Phase |

738 included four control ponds (grey and yellow) while Phase Il only included two controls
739  (grey). Note that yellow ponds only received GBH in Phase Il. Nutrients were also

740 added to ponds to reproduce mesotrophic or eutrophic conditions, represented

741  respectively by circles and squares (target phosphorus concentrations are indicated).
742  TP: total phosphorus.

743

744  Fig. 2 ARG frequencies increase in GBH treatments over time. (A) Number of

745  unique ARGs per million metagenomic reads and (B) number of metagenomic reads
746  mapped to ARGs per million metagenomic reads vary according to treatment and time.
747  Dashed vertical lines indicate the application of Phase | GBH pulses and solid vertical
748 line the Phase Il pulse. The colour code refers to the target glyphosate concentrations in
749  Phase | (pulse 1 and pulse 2), while in Phase 1l all treated ponds received a target of 40

750 mg/L glyphosate.
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751

752  Fig. 3 GBH skews composition of ARGs in favour of antibiotic efflux pumps.

753  Principal Response Curves (PRCSs) illustrating divergence (relative to controls) in the
754  composition of ARGs in response to GBH exposure. The left y-axis represents the

755 magnitude or ARG compositional response, while the right y-axis represents individual
756  gene scores (i.e., relative contribution to overall compositional changes). Gene names
757  (ARO) are colour-coded based on their mechanism of resistance. Dashed vertical lines
758 indicate the timing of GBH pulses in Phase |, and the solid vertical line represents the
759 pulse in Phase Il. The zero line (y=0) represents the low nutrient control pond from both
760 Phase | and Il. The PRC explains 30% of the total variance (PERMUTEST, F=22.8,
761 p=0.024). Treatments and time interactively explain 74.8% of the variance while 25% is
762  explained by time alone.

763

764  Fig. 4 Antibiotic resistance potential predicts MAG relative abundance after

765 severe GBH stress. (A) Boxplots show a positive correlation between MAGs

766  abundance in Phase Il and their potential for antibiotic resistance. Each dot represents
767 a MAG that is color-coded based on the predicted resistance of their EPSPS. A slight
768  offset on x-axis (jitter) was introduced to facilitate data visualization. See Table 2 for
769  regression coefficients. (B) Regression tree confirms the significance of the correlation
770  seenin (A), particularly for antibiotic efflux genes. Two other factors were also included,
771  and have small effects on MAG relative abundance in Phase Il: the EPSPS

772  classification and the average abundance of MAGs in Phase I.

773

774  Supplementary Material
775

776 Tables

e

778 Table S1 PRC scores from functional annotations shown in Fig. S2
779
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780 Table S2 Metagenomic sample information, summary of RGI output for hits above

781  mapping threshold (MAPQ>10 and minimum of 50 gene percent coverage) and

782  proportion of sample reads mapped to CARD (ARG reads) that mapped back to MAGs.
783

784  Table S3 MAG information, predicted EPSPS amino acid sequence, summary of ARGs
785 and plasmids. For each predicted EPSPS sequence, the putative classification

786 regarding glyphosate resistance is shown. The number of potential plasmid contigs and
787  how many of these had ARGs annotated is also shown. Number of ARGs annotated to
788  MAG contigs (total RGI strict hits) are provided in the last column.

789

790 Table S4 Multiple linear regression model and variance partitioning of MAGs

791 abundance in Phase Il in control mesocosms. P-values are reported for each predictor,
792  asterisks indicate significant p-values after Bonferroni correction (p<0.0125) and reports
793  of significant factors are highlighted in bold. Adjusted R-squared equals 43.2 % for MAG
794  abundance in controls as response variable (n=425, F-statistic: 78.7).

795

796  Supplementary figures

797

798 Fig. S1 Glyphosate increases ARG frequencies in experimental ponds. GAMs

799 illustrating the time-dependent effect of GBH and nutrient treatments on unique ARGs in
800 Phase | (A), in both Phase | and Il (B), on ARG reads in Phase | (C), in both Phase |
801 and Phase Il (D). Dashed vertical lines indicate the application of Phase | GBH pulses
802 and solid vertical line the Phase Il pulse. Glyphosate acid concentration of pulses

803 applied in Phase | (dose 1 and dose 2) are indicated in the legend, while in Phase ll, all
804 treatments received 40 mg/L, except the Control Phase Il. Shades indicate a confidence
805 interval of 95%.

806

807 Fig. S2 Principal Response Curves of the experimental treatment effect on the

808 composition of gene functional profiles predicted from metagenomic reads

809 grouped according to (A) SEED subsystem level 1 and (B) level 2. Treatment effect

810 is shown in the left y-axis while scores of genes (proportional to their contribution to the
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811 treatment effect) are shown in the right y-axis. Dashed vertical lines indicate the

812  application of Phase | glyphosate pulses and solid vertical line the Phase Il glyphosate
813 pulse. Glyphosate concentration of pulses applied in Phase | (dose 1 and dose 2) are
814 indicated by the legend, while in Phase Il all treatments received 40 mg/L of glyphosate,
815 except the Phase Il controls. Treatment effect zero is equivalent to the low nutrient
816  control Phase Il pond. Function of resistance to antibiotics is highlighted in red

817 according to how it is named in (A) SEED subsystem level 1 (50.9% of total variance
818 explained, PERMUTEST F=43.1 p=0.023) and (B) SEED subsystem level 2 (33.1% of
819 total variance explained, PERMUTEST F=25.8 p=0.027), where only scores with

820 absolute values larger than 0.05 are reported (all scores are shown in Table S1).

821

822 Fig. S3 Metagenomic reads mapped to ARGs classified according to their ARO
823 (top graph) and ARG reads mapped to MAGs (bottom graph) in low nutrient

824  ponds. MAG identities are followed by their finest taxonomic assignment (o=order,
825 f=family, g=genus, s=species). Only alignments with MAPQ>10 were tallied. Dashed
826  vertical lines represent Phase | GBH and solid vertical lines are Phase Il pulses (all at
827 40 mg/L glyphosate).

828

829 Fig. S4 Metagenomic reads mapped to ARGs classified according to their ARO
830 (top graph) and ARG reads mapped to MAGs (bottom graph) in high nutrient

831 ponds. MAG identities are followed by their finest taxonomic assignment (o=order,
832 f=family, g=genus, s=species). Only alignments with MAPQ>10 were tallied. Dashed
833 vertical lines represent Phase | GBH pulses and solid vertical lines are Phase Il pulses
834  (all at 40 mg/L glyphosate).

835

836 Fig. S5 MAG mean relative abundance in controls of Phase Il as a function of
837 antibiotic resistance potential (or the amount of ARGs annotated to their

838 genomes) and the classification of EPSPS enzyme (resistant, sensitive or

839 unclassified). (A) Series of boxplots show the absence of correlation between MAGs
840 abundance in Phase Il and their potential for antibiotic resistance. Each dot represents

841 a MAG that is color-coded according to the potential resistance of their EPSPS. To
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842 facilitate visualization, a small amount of random variation (jitter) was added so dots
843  would not overlap. Table 2 reports statistics of a linear model that tested how MAG

844  abundance in Phase Il controls could be explained by EPSPS classification, antibiotic
845 resistance potential and MAG abundance in Phase I. (B) Regression tree with MAG
846  abundance in controls of Phase Il as the response variable and the following predictors:
847 the EPSPS enzyme classification, the number of ARGs classified as antibiotic efflux,

848 antibiotic inactivation or target alteration, and the MAG relative abundance in Phase I.
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Table 1. Summary of GAMs showing the effect of GBH on ARG frequencies in phase I only and in both phases. The top rows show
unique ARGs as response variable, and the bottom rows show ARG reads. For each predictor of the model, when it is a parametric term we
report the respective parameter estimate with standard error (SE) and ¢ value. For smooth terms, we report the effective degrees of freedom
(EDF) and F statistic. Smooths terms are described as mgcv syntax (‘ti()’ are tensor product interactions). P-values are reported for each
predictor and reports of significant factors after Bonferroni correction (p<0.0125) are highlighted in bold with an asterisk. A Gaussian
residual distribution was used.

Resgz?z:tzgrfl;ble/ Predictors Factors' Estimate (SE) or EDF t value or F p-value
Unique ARG counts Parametric terms Phase I Both phases Phase 1 Both phases | Phase ] Both
per million phases
metagenomic reads -0.001 0.018
(log10(x+1)) Control Phase 1 (£0.006) (£0.006) -0.1 2.9 0.890 0.005*
0.003 0.023
Adjusted R?= 65.1% Treatment Glyphosate 0.3 mg/L (£0.006) (£0.006) 0.5 3.8 0.633 <0.001*
(phase I, n=64)/ 74.6% 0.035 0.040
(both phases, n=88) Glyphosate 15 mg/L (20.006) (20.006) 6.2 6.7 <0.001* <0.001*
. . . -0.012 -0.011 . %
Nutrient High nutrient (£0.004) (£0.004) -3.0 -2.7 0.005 0.009
Smooth terms
ti(day) - 1.0 6.8 0.02 2.71 0.903 0.010%
' Control Phase 1 1.0 3.2 0.03 10.04 0.861 <0.001*
ti(day, Glyphosate 0.3 mg/L 1.0 4.7 0.57 7.47 0.453 <0.001*
by=treatment) P &
Glyphosate 15 mg/L 3.9 4.3 15.65 5.01 <0.001* 0.002*
ti(day, - High nutrient 1.0 1.0 0.60 0.25 0.444 0.620
g
by=nutrient)
Parametric terms Phase | Both phases Phase | Both phases | Phase | i?;gs
ARG reads per million 20.028 0322 P
metagenomic reads Control Phase I ( iO. 105) ( id 103) -0.3 3.1 0.790 0.003*
(log0(x+1)) 0.013 0320
Treatment Glyphosate 0.3 mg/L (ﬂ:(i 105) (i(i 103) 0.1 3.1 0.899 0.003*
Adjusted R*= 66.6% 0.678 0.804
(phase I, n=64)/ 77.3% Glyphosate 15 mg/L ( W 105) ( 0 103) 6.5 7.8 <0.001*  <0.001*
(both phases, n=88) 0'197 0.185
Nutrient High nutrient o s -2.7 -2.6 0.010* 0.013

(£0.074) (£0.073)
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Smooth terms

ti(day)

ti(day,
by=treatment)

ti(day,
by=nutrient)

Control Phase 1
Glyphosate 0.3 mg/L
Glyphosate 15 mg/L

High nutrient

1.0
1.0
1.0
3.9

1.0

6.7
3.5
2.6
4.6

1.0

0.21
0.11
0.47
15.78

3.92

2.77
12.27
8.93
6.90

1.52

0.648

0.737

0.497
<0.001*

0.053

0.009*
<0.001*
<0.001*
<0.001*

0.222

" When factor is absent it means the respective predictor variable is continuous (“day”)
*Significant p-values after Bonferroni correction (p<0.0125)
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Table 2 Multiple linear regression model and variance partitioning of MAGs abundance in Phase II in treatment mesocosms. P-
values are reported for each predictor, asterisks indicate significant p-values after Bonferroni correction (p<0.0125) and reports of significant
factors are highlighted in bold with asterisks. Adjusted R-squared equals 21.1% for MAG persistence in treatments (n=426, F-statistic: 29.5).

Response variable Predictors Estimate (SE) t value p-value Explained variance
EPSPS classification: 2%
- Sensitive 0.002 (+0.127) | 0.02 0.987
- Resistant 0.413 (£0.133) |3.11 0.002*
MAG mean
abundance in Phase I | MAG antibiotic resistance potential 0.496 (£0.052) | 9.53 <0.001* 17%

treatment mesocosms

MAG mean abundance in Phase 1 0.178 (£0.066) 2.69 0.007 1%
treatment mesocosms (logj)

Residuals: 79%
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Herbicide treatment (glyphosate acid mg/L)

Phase | (2 pulses - 6 weeks) Phase Il (1 pulse - 2 weeks)

Nutrient background
(O Mesotrophic (15 pg TP/L)
[] Eutrophic (60 ug TP/L)
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