

Title: A glyphosate-based herbicide cross-selects for antibiotic resistance genes in bacterioplankton communities

Running title: Selection of antibiotic resistance genes by pesticides

Authors: Naïla Barbosa da Costa^{1,2}, Marie-Pier Hébert^{2,3,4}, Vincent Fugère^{2,5,6}, Yves Terrat¹, Gregor F. Fussmann^{2,3,5}, Andrew Gonzalez^{3,5}, B. Jesse Shapiro^{1,2,5,7,8†}

¹ Département des sciences biologiques, Université de Montréal, Montreal, Canada

² Groupe de Recherche Interuniversitaire en Limnologie et environnement aquatique (GRIL), Montreal, Canada

³ Department of Biology, McGill University, Montreal, Canada

⁴ Département des sciences biologiques, Université du Québec à Montréal, Montreal, Canada

⁵ Québec Centre for Biodiversity Science (QCBS), Montreal, Canada

⁶ Département des sciences de l'environnement, Université du Québec à Trois-Rivières, Trois-Rivières, Canada

⁷ Department of Microbiology and Immunology, McGill University, Montreal, Canada

⁸ McGill Genome Centre, McGill University, Montreal, Canada

† Corresponding author: jesse.shapiro@mcgill.ca

1 **ABSTRACT**

2 Agrochemicals often contaminate freshwater bodies, affecting microbial communities
3 that underlie aquatic food webs. For example, Roundup, a widely-used glyphosate-
4 based herbicide (GBH), has the potential to indirectly select for antibiotic resistant
5 bacteria. Such cross-selection could occur, for example, if the same genes (e.g.
6 encoding efflux pumps) confer resistance to both glyphosate and antibiotics. To test for
7 cross-resistance in natural aquatic bacterial communities, we added Roundup to 1,000-
8 L mesocosms filled with water from a pristine lake. Over 57 days, we tracked changes
9 in bacterial communities with shotgun metagenomic sequencing, and annotated
10 metagenome-assembled genomes (MAGs) for the presence of known antibiotic
11 resistance genes (ARGs), plasmids, and resistance mutations in the enzyme targeted
12 by glyphosate (enolpyruvyl-shikimate-3-phosphate synthase; EPSPS). We found that
13 high doses of GBH significantly increased ARG frequency and selected for multidrug
14 efflux pumps in particular. The relative abundance of MAGs after a high dose of GBH
15 was predictable based on the number of ARGs encoded in their genomes (17% of
16 variation explained) and, to a lesser extent, by resistance mutations in EPSPS.
17 Together, these results indicate that GBHs have the potential to cross-select for
18 antibiotic resistance in natural freshwater bacteria.

19

20 **IMPORTANCE**

21 Glyphosate-based herbicides (GBHs) such as Roundup may have the unintended
22 consequence of selecting for antibiotic resistance genes (ARGs), as demonstrated in
23 previous experiments. However, the effects of GBHs on ARGs remains unknown in
24 natural aquatic communities, which are often contaminated with pesticides from
25 agricultural runoff. Moreover, the resistance provided by ARGs compared to canonical
26 mutations in the glyphosate target enzyme, EPSPS, remains unclear. Here we used
27 freshwater mesocosm experiments to show that GBHs strongly select for ARGs,
28 particularly multidrug efflux pumps. These selective effects are evident after just a few
29 days, and at glyphosate concentrations that are high but still within short-term (1-4 day)
30 regulatory limits. The ability of bacteria to survive and thrive after GBH stress was
31 predictable by the number of ARGs in their genomes, and to a lesser extent by

32 mutations in EPSPS. GBHs are therefore likely to select for higher ARG frequencies in
33 natural streams, lakes, and ponds.

34

35 **KEYWORDS** Antibiotic resistance genes, indirect selection, herbicide, antibiotic efflux
36 pump, metagenomics

37

38 **INTRODUCTION**

39

40 Glyphosate-based herbicides (GBHs) are by far the most extensively used weed-killers
41 worldwide, especially since the introduction of transgenic glyphosate-resistant crops in
42 the 1990s [1,2]. Glyphosate residues can spread widely and accumulate in soil, water,
43 and plant products, raising concerns over human and environmental health [3]. A recent
44 systematic review and risk analysis concluded that glyphosate poses a moderate to
45 high risk to freshwater biodiversity in 20 of the countries investigated [4]. Some of the
46 highest aquatic concentrations of glyphosate were found in countries with the largest
47 production of genetically engineered glyphosate-tolerant crops globally, including the
48 United States, Brazil, and Argentina [2,4].

49

50 Although designed to control weed growth, glyphosate may also affect microorganisms
51 that use the herbicide's molecular target, the enzyme enolpyruvyl-shikimate-3-
52 phosphate synthase (EPSPS), to synthesize aromatic amino acids [5]. The EPSPS is
53 classified into four classes according to mutations in the enzyme active site that confer
54 differential sensitivities to glyphosate [6]. In bacteria, EPSPS classes I and II, which are
55 respectively sensitive and tolerant to glyphosate, are the most frequently found, while
56 classes III and IV are rarer and both confer glyphosate resistance [6]. The EPSPS class
57 II sequence isolated from a strain of *Agrobacterium tumefaciens* is used as the
58 transgene in most commercially available glyphosate-resistant crops [7,8].

59

60 Experiments conducted in diverse environments, such as soil and freshwater [9–11] and
61 the bee gut microbiome [12], have shown that bacterial taxa from natural ecosystems
62 vary in their sensitivity to glyphosate. Some of this variation is explained by the
63 distribution of different EPSPS classes. However, while strains with the EPSPS class I
64 are known to be sensitive, they have also been observed to tolerate glyphosate through
65 unknown mechanisms [12], indicating that additional EPSPS-independent glyphosate
66 resistance mechanisms likely exist in nature.

67

68 Studies with bacterial cultures have shown an increased resistance to antibiotics after
69 exposure to high concentrations of glyphosate and other herbicides [13–17]. In the

70 presence of glyphosate, the expression of membrane transporters may confer
71 resistance to glyphosate and antibiotics simultaneously [18]. Specifically, multidrug
72 efflux pumps have been experimentally shown to confer resistance to both glyphosate
73 and antibiotics, presumably by exporting a variety of small molecules [13,14, 18]. This is
74 an example of cross-resistance, a mechanism of indirect selection through which one
75 resistance gene or biochemical system confers resistance to other antimicrobial agents
76 [19,20].

77

78 Direct selection of antibiotic resistance arises when bacteria are exposed to an antibiotic
79 agent and mutations conferring resistance to this agent are selected [21]. In contrast,
80 indirect selection for antibiotic resistance occurs in the absence of the antibiotic, either
81 via cross- or co-resistance [19,20]. Cross-resistance occurs when the same gene
82 confers resistance to multiple antibiotic agents, while co-resistance occurs when a
83 resistance gene is genetically linked to another gene that is not necessarily an antibiotic
84 resistance gene (ARG), but that is under positive selection.

85

86 Most studies of cross-resistance induced by herbicides focused on bacterial isolates in
87 laboratory experiments [13–16,22]. A recent study has shown that herbicide selection
88 increases the prevalence of ARGs in soil bacterial communities, using observational
89 and experimental field data [23]. However, we still lack evidence for aquatic
90 communities, which are of particular interest because herbicides often reach
91 waterbodies through leaching, runoff, and spray drift from agricultural fields [4,24].
92 Moreover, the extent of direct selection on EPSPS mutations compared to indirect
93 selection on ARGs is unclear. In a previous study, we used 16S ribosomal gene
94 amplicon sequencing to assess how the composition of freshwater bacterioplankton
95 communities respond to a GBH applied alone or in combination with a widely-used
96 neonicotinoid insecticide [11]. As part of the same experiment, we also showed how
97 phytoplankton undergo community rescue in response to lethal GBH doses [25], and
98 how zooplankton community properties were differentially affected by pesticides, even
99 at glyphosate concentrations below North American water quality guidelines [26].
100 Because GBH was the main driver of changes in the composition of the bacterial

101 community, we expand on our previous work and investigate the effects of the GBH on
102 ARG frequencies in aquatic bacterial communities in this study, using the same outdoor
103 array of experimental ponds (Fig. 1A).

104

105 To test the extent to which contamination with GBH cross-selects for ARGs in complex
106 aquatic communities over time, we performed an 8-week experiment in which we
107 exposed freshwater mesocosms to two glyphosate concentrations for six weeks (0.3
108 and 15 mg/L; Phase I) and to a higher dose for 2 weeks (40 mg/L; Phase II) (Fig. 1B).
109 We sequenced metagenomes from each mesocosm and reconstructed Metagenome-
110 Assembled Genomes (MAGs) of bacteria, which were annotated according to their
111 taxonomy, presence of ARGs, plasmids, and resistance mutations in the EPSPS
112 enzyme. We hypothesize that the frequency of ARGs in bacterial communities
113 increases after exposure to a high concentration of glyphosate, and that efflux pumps
114 are among the main resistance mechanisms promoted by GBH. We also expect that
115 MAGs encoding many ARGs or the resistant classes of the EPSPS gene will be the
116 most likely to survive and proliferate after GBH exposure. Consistent with these
117 expectations, we find that high doses of GBH (15 and 40 mg/L glyphosate) cross-select
118 for ARGs, particularly multidrug efflux pumps. These results show how severe
119 contamination of aquatic systems with GBH could indirectly select for antibiotic
120 resistance.

121

122 **RESULTS**

123 **Glyphosate-based herbicide treatment increases antibiotic resistance gene 124 frequency**

125 To test the effects of a GBH on ARGs frequency along the experiment, we tracked
126 variation in the number of metagenomic reads mapped to the Comprehensive Antibiotic
127 Resistance Database (CARD), hereafter referred to as ARG reads, and in the counts of
128 unique ARGs over time, both normalized by the total number of reads in each sample
129 (Fig. 2). In Phase I of the experiment, two pulses of a GBH were applied to reach
130 concentrations of 0.3 mg/L and 15 mg/L glyphosate. Only the latter increased ARG
131 frequencies over time, either when measured as the number of unique ARGs (GAM

132 F=15.65 $p<0.001$, Table 1, Fig. S1), or as the number of ARG reads (GAM F=15.78
133 $p<0.001$, Table 1, Fig. S1). The concordance of these two metrics suggests that the
134 effect of GBH on ARGs was not due to a few highly responsive resistance genes, but to
135 multiple unique genes. In Phase II, a single dose of 40 mg/L glyphosate was applied to
136 all mesocosms except for the Phase II controls, triggering an increase in ARG
137 frequencies across all treated ponds (Fig. 2). ARG frequencies increased over time, due
138 mainly to the Phase II GBH pulse (Table 1, Fig. S1). Nutrient enrichment produced a
139 weak but significant effect only when considered alone, not in interaction with time
140 (Table 1). Overall, these results support the hypothesis that the GBH treatment has the
141 most dominant and strongest positive effect on ARG frequencies over time.

142

143 **GBH selects for specific gene functions, including antibiotic efflux**

144 To assess how GBH affected known gene functions beyond ARGs in the bacterial
145 communities, we built Principal Response Curves (PRCs) based on SEED annotations
146 of genes in the metagenomes. The PRCs revealed a clear effect of GBH on the
147 composition of gene functions (Fig. S2). In Phase I, the first pulse of 15 mg/L
148 glyphosate induced greater deviations from controls than the second pulse. In Phase II,
149 all ponds receiving 40 mg/L glyphosate deviated from the controls. Resistance to
150 antibiotics is among the functions positively affected by GBH treatment, as indicated by
151 the positive scores of the SEED subsystems “Virulence, Disease and Defense”, at level
152 1 (Fig. S2A), and “Resistance to antibiotics and toxic compounds”, at level 2 (Fig. S2B).
153 Table S1 shows the complete list of PRC scores for all SEED subsystems at levels 1
154 and 2. Membrane transport (level 1, Fig. S2A), such as the ATP-binding cassette (ABC)
155 transporters (level 2, Fig. S2B), are among the positively selected functions. These
156 genes could plausibly change cell permeability to various molecules, including
157 glyphosate.

158

159 To assess the effects of GBH on ARGs at a higher level of resolution, we built another
160 set of PRCs based on ARG profiles predicted from reads mapping to CARD. The
161 resulting PRC plot showed a prominent effect of the first and second pulses of 15 mg/L
162 of glyphosate in Phase I (Fig. 3). In Phase II, the GBH had an effect in all treatments

163 that received a last pulse (40 mg/L glyphosate). This result is consistent with the greater
164 effect of the large Phase II pulse compared to smaller Phase I pulses on total ARG
165 frequencies (Fig. 2 and Fig. S1). The two principal resistance mechanisms of the ARGs
166 annotated by CARD are antibiotic efflux and antibiotic inactivation (shown respectively
167 in blue and red text in Fig. 3). Genes encoding antibiotic efflux functions were more
168 often found with positive PRCs scores (Fisher's exact test, $p=0.013$), suggesting that
169 they tend to be selected more often than other ARGs in the presence of GBH. This
170 result supports the hypothesis that membrane transporters used for antibiotic efflux
171 could also play a role in exporting glyphosate from bacterial cells.

172

173 **Connecting resistance genes to genomes and plasmids**

174 Thus far, our results have only considered ARGs outside the context of the bacterial
175 genomes or plasmids in which they occur. On average, 71% (± 3 ; range = 45–94%,
176 Table S2) of ARG reads across samples (those mapping to CARD) also mapped to
177 MAGs, meaning that MAGs captured a large fraction of ARG reads in the
178 metagenomes. We identified putative plasmids in 390 MAGs, with an average of 43
179 plasmid contigs per MAG (min=1, max=520, SE=3.5, Table S3). However, only 27
180 plasmid contigs were annotated with ARGs. Out of a total of 188 MAGs with ARGs, only
181 24 (13%) of them had at least one ARG identified in a potential plasmid. Although some
182 ARGs are certainly encoded on plasmids, ARGs are better associated with genomes
183 than with MAG plasmids in our study.

184

185 Of the 426 total MAGs, only 20 recruited 100 or more ARG reads, and the classification
186 of their EPSPS genes varied (Fig. S3, S4). To visualize which ARGs were more
187 abundant in GBH treatments and in which MAGs they were found, we examined the
188 frequency of metagenomic reads mapped to ARGs according to their antibiotic
189 resistance ontology (ARO) classification (top graphs in Fig. S3 and Fig. S4) as well as
190 the proportion of these reads that were mapped to MAGs (bottom graphs in Fig. S3 and
191 Fig. S4). These visualizations confirmed the response of efflux pumps (e.g. *mex* genes)
192 to GBH. The relative abundance of *mex* genes is strongly associated with a
193 *Pseudomonas putida* MAG (Fig. S3; bottom right panel) but are sometimes also

194 associated with other MAGs such as *Aeromonas veronii* (Fig. S3), Oxalobacteraceae,
195 and *Azospirillum* (Fig. S4). It is thus likely that GBH selects for efflux pump genes in
196 multiple different genomic backgrounds.

197

198 **The number of ARGs encoded in a MAG predicts its frequency after severe GBH
199 exposure**

200 Our results thus far suggest an important role for ARGs, and efflux pumps in particular,
201 in allowing bacterioplankton to survive and grow in the presence of a GBH. We next
202 asked, what is the importance of ARGs relative to genetic variation in the glyphosate
203 target enzyme, EPSPS? Based on known sequence variation in the EPSPS encoding
204 gene, we were able to classify MAGs as putatively glyphosate resistant, sensitive, or
205 unclassified. We also defined a MAG's antibiotic resistance potential as the number of
206 ARGs identified in their genomes (i.e. number of RGI strict hits). We then tested the
207 extent to which these genomic features were predictive of a MAG's average relative
208 abundance across ponds at the end of the experiment, after receiving 40 mg/L
209 glyphosate in Phase II. We found that MAGs encoding more unique ARGs tended to
210 have higher relative abundance after receiving the Phase II GBH pulse (Fig. 4A, Table
211 2). The effect of antibiotic resistance potential was highly significant (multiple linear
212 regression model, $t=9.53$ $p<0.001$, Table 2), and was not observed in control ponds that
213 did not receive the Phase II pulse (Fig. S5A; $t=2.26$ $p=0.025$; not significant after
214 Bonferroni correction, Table S1). The relative abundance of MAGs at the end of the
215 experiment in these control ponds was predicted by their relative abundance in phase I
216 (40% of variance explained; Table S4), consistent with temporal autocorrelation (e.g.
217 due to random fluctuations in species abundances). In contrast to the strong effect of
218 ARGs on predicting MAG relative abundance post-glyphosate stress (17% of variance
219 explained; Table 2), EPSPS classification explained only 2% of the variation – in both
220 Phase II treatment and control ponds.

221

222 To further explore these results, we used a regression tree analysis to identify primary
223 drivers of MAG abundance at the end of Phase II. Instead of combining the three major
224 classes of ARGs (antibiotic target alteration, antibiotic inactivation and antibiotic efflux),

225 we used each of them as a separate predictor in the regression tree. The first division
226 splits MAGs with at least one antibiotic efflux gene (Fig. 4B, node 7) which were on
227 average more abundant post-GBH pulse than those without efflux genes (Fig. 4B, node
228 2). Among MAGs with efflux genes, the more genes they had, the higher their
229 abundance. Among MAGs without antibiotic efflux genes, the EPSPS classification was
230 an important driver of their abundance, followed by the MAG's average abundance in
231 Phase I. In the absence of a GBH pulse in Phase II, the primary driver of MAG
232 abundance in Phase II controls was their mean relative abundance in Phase I (Fig. S5).
233 Control pond regression trees also included a split between resistant/sensitive and
234 unclassified EPSPS, which is difficult to interpret biologically and likely attributable to
235 noise. This could also explain why 2% of the variation in MAG relative abundance in
236 control ponds was explained by EPSPS class. Together, these results indicate that a
237 bacterial genome's ARG coding potential is predictive of its ability to persist in the face
238 of GBH stress – more so than the class of EPSPS enzyme it encodes.

239

240 **Discussion**

241 Our mesocosm experiment used deep metagenomic sequencing to detect the effect of
242 a GBH Roundup on microbial genes and genomes in semi-natural freshwater bacterial
243 communities. We show that exposure to GBH in high concentrations (15 mg/L and 40
244 mg/L glyphosate) increases the frequency of ARGs in freshwater bacterioplankton.
245 Moreover, we show that the abundance of MAGs after severe contamination (40 mg/L
246 glyphosate) was predicted based on the number of ARGs they encoded, and these
247 'successful' MAGs tended to have at least one antibiotic efflux gene annotated in their
248 genome. The effect of GBH on ARGs is likely due to cross-resistance, since the
249 multidrug efflux pumps which rise in frequency in response to GBH could potentially
250 transport glyphosate in addition to antibiotics [18]. Alternatively, co-resistance could play
251 a role if GBH selects for bacterial genomes (rather than specific genes) that happen
252 also to encode ARGs. While we cannot exclude a role for co-resistance entirely, the
253 cross-resistance model is more plausible since efflux genes are strongly affected, likely
254 in multiple independent genomic backgrounds. As discussed in detail below, direct

255 selection for EPSPS appears to be weak, implying that ARGs are unlikely to achieve
256 high frequency due to genetic linkage with resistant EPSPS alleles.

257

258 An association between glyphosate and increases in ARGs and mobile genetic
259 elements has been previously found in soil microbiomes, as demonstrated in a recent
260 study combining experimental microcosms and environmental data from agricultural
261 field sites in China [23]. Through laboratory assays in three bacterial strains, the authors
262 quantified the conjugation frequency of a multidrug resistance plasmid induced by
263 glyphosate and further investigated changes in cell membrane permeability. They
264 detected a significant increase in conjugation frequency and augmented cell membrane
265 permeability in the presence of glyphosate, suggesting that glyphosate stress increases
266 membrane permeability, thereby promoting plasmid movement. Here, we provide
267 additional support for the hypothesis that cell membrane permeability is altered in the
268 presence of glyphosate, as demonstrated by the selection of membrane transport
269 mechanisms, such as ABC transporters [27] among the annotated gene functions most
270 responsive to the GBH treatments. In contrast, although we did not quantify the
271 frequency of conjugation in our experiment, we did identify some ARGs located on
272 putative plasmids. Of the MAGs encoding ARGs, only 13% contained a plasmid-
273 encoded ARG. It is possible that unassembled plasmids or plasmids not associated with
274 MAGs could harbor ARGs. Including such plasmids would not be expected to change
275 our major conclusion that ARGs are more predictive of MAG frequency post-GBH
276 exposure than EPSPS. In addition to plasmids, other mechanisms also contribute to
277 horizontal gene transfer between bacteria, such as phage-mediated transduction and
278 transformation [28], and future studies could test how these processes may be affected
279 by GBH stress.

280

281 Strikingly, antibiotic resistance potential, particularly the presence of antibiotic efflux
282 genes, was more important than the EPSPS classification in explaining variation in
283 MAG abundance in Phase II, after a high GBH pulse. This evidence of cross-resistance
284 in semi-natural communities may help explain why, in previous experiments also
285 performed with complex communities, bacterial strains with the sensitive EPSPS

286 encoding gene were resistant to glyphosate, as it is the case of two strains of
287 *Snodgrassella alvi* in the bee gut microbiome [12]. Although EPSPS alleles were weakly
288 predictive of MAG relative abundance after the phase II GBH pulse, their effects were
289 clearly secondary to the strong effects of ARGs. Computational gene annotations of
290 both ARGs and resistant or sensitive EPSPS have limitations because they are based
291 on sequence similarity, not on phenotypic measurements. Therefore, we cannot entirely
292 exclude a role for EPSPS alleles in conferring GBH resistance in nature, but their
293 effects were small in our experiment. Together, our results strongly suggest that ARGs
294 (and efflux pumps in particular) could be more relevant to glyphosate resistance in
295 nature than mutations in the glyphosate target enzyme.

296

297 Our study also aligns with previous single-strain laboratory evidence that antibiotic
298 resistance may enhance bacterial survival in the presence of pesticides. Laboratory
299 assays of bacterial isolates showed accelerated rates of antibiotic resistance selected
300 by exposure to agrochemicals [15,16]. Additionally, it has been shown that the targeted
301 deletion of efflux pump genes can neutralize the increased tolerance to kanamycin and
302 ciprofloxacin in *Escherichia coli* and *Salmonella enterica* serovar Typhimurium in the
303 presence of GBH [13,14]. As we further show in a more natural system, efflux pumps
304 may provide resistance to both glyphosate and certain antibiotics. Whether all efflux
305 pumps are equally capable of transporting various molecules out of the cell remains to
306 be seen, and other resistance mechanisms could also play a role.

307

308 It should be noted that we used a commercial Roundup formulation of the herbicide
309 glyphosate, which includes other constituents that may also influence microbial
310 communities and cellular physiology. For example, the surfactant polyethoxylamine
311 (POEA) has produced negative effects on *Vibrio fischeri* at lower doses than glyphosate
312 acid [29]. However, given that our results are in general agreement with previous soil
313 experiments using pure glyphosate [23], we believe that our findings are at least in part
314 attributable to an effect of glyphosate itself. Furthermore, regardless of whether it is
315 glyphosate or other constituents of GBH that drive cross-selection of ARGs, assessing

316 the risks associated with commercial formulations is more ecologically realistically, as
317 these formulations are used in agriculture fields and lawns [30].

318

319 On an applied level, the safety assessment process for pesticides such as glyphosate,
320 currently based on toxicity to model organisms [31,32], should consider the potential
321 effects on bacterioplankton and selection for ARGs. Our results highlight the role of
322 GBH contamination as an indirect selective pressure favouring ARGs in natural
323 communities. Although glyphosate concentrations as high as the ones inducing this
324 effect (i.e. 15 mg/L and 40 mg/L) are rarely found in nature, there are reports of
325 glyphosate levels up to 105 mg/L detected during the rainy season close to agricultural
326 fields; as observed in Argentina [4], for example. Additionally, currently regulated
327 acceptable concentrations of glyphosate in freshwaters in the USA and Canada for
328 short-term exposure (1-4 days) are close to the concentrations used in our experiment
329 (respectively 49.9 mg/L [32] and 27 mg/L [31]). Here we have shown that ARG
330 frequencies can rise dramatically just a few days after GBH treatment, suggesting that
331 even currently acceptable short-term glyphosate exposure could provoke similar
332 selection for ARGs in natural water bodies. The extent to which these ARGs, and the
333 bacteria that encode them, can be mobilized across aquatic ecosystems, and from
334 these ecosystems into animals and humans, remains to be seen.

335

336 **METHODS**

337

338 **Experimental design**

339 An eight-week mesocosm experiment was conducted at the Large Experimental Array
340 of Ponds (LEAP) facility (Fig. 1A) located at McGill University's Gault Nature Reserve
341 (QC, Canada) from August 17th (day 1) to October 12th (day 57) 2016, as previously
342 described [11,25,26]. Pond mesocosms were filled with 1,000 L of water and planktonic
343 communities from Lake Hertel (45°32' N, 73°09' W). Lake water was passed through a
344 coarse sieve to prevent fish introduction, while retaining lake bacterioplankton,
345 zooplankton and phytoplankton, whose responses to experimental treatments have
346 been described in previous studies [11,25,26].

347

348 Fig. 1B illustrates the experimental design of a subset of eight treatments selected for
349 the metagenomic sequencing analyses reported here (see [25] for a full description of
350 all treatments at the LEAP facility in 2016). The eight ponds were sampled at 11
351 timepoints throughout phases I and II of the experiment. In Phase I (days 1-44), all
352 ponds received nutrient inputs biweekly, simulating mesotrophic or eutrophic lake
353 conditions with additions of a concentrated nutrient solution. Four ponds were treated
354 with a GBH to reach target concentrations of 0.3 or 15 mg/L of the active ingredient
355 (glyphosate; acid equivalent), while the other four were kept as control ponds. The GBH
356 was applied in two pulses in Phase I, at days 6 and 33. In Phase II (days 45-57), two
357 control ponds (hereafter referred to as Control Phase I) and the four treatment ponds
358 received one pulse of the GBH at a higher dose (40 mg/L glyphosate) on day 44, while
359 other two other control ponds (hereafter referred to as Control Phase II) received no
360 pulse.

361
362 Target doses of the active ingredient were calculated based on the glyphosate acid
363 content in Roundup Grass and Weed Control Super Concentrate (Bayer ©), the
364 formulation used for the experiment. We used a commercial formulation to mimic
365 environmental contamination, and because the costs of using pure glyphosate salt
366 would be prohibitive in a large-scale field experiment. Treatments are referred to by
367 their glyphosate acid concentration to allow comparison with other formulations.
368 Nutrients were added in the form of nitrate (KNO_3) and phosphate (KH_2PO_4 and K_2PO_4),
369 with target concentrations of 15 $\mu\text{g P/L}$ and 231 $\mu\text{g N/L}$ in the low-nutrient (mesotrophic)
370 treatment ponds and 60 $\mu\text{g P/L}$ and 924 $\mu\text{g N/L}$ for in the high-nutrient (eutrophic)
371 treatment ponds. The concentrated nutrient solution had an N:P molar ratio of 33
372 comparable to our source lake. Target doses of glyphosate acid and nutrients were
373 achieved reasonably well, as reported in previous studies [11,25].
374

375 **DNA extraction and metagenomic sequencing**

376 The eight experimental ponds were sampled for bacterioplankton DNA at 8 timepoints
377 during Phase I (days 1, 7, 15, 30, 35, 38, 41 and 43) and 3 timepoints during Phase II
378 (days 45, 49 and 57). Water samples were collected with 35 cm long integrated

379 samplers (2.5 cm diameter PVC tubing) at multiple locations in the same pond and
380 stored in 1 L dark Nalgene bottles, at 4 °C until being filtered within 4 hours. We
381 filtered 250 mL of each sample on site, through 0.22 µm pore size Millipore hydrophilic
382 polyethersulfone membranes of 47 mm diameter (Sigma-Aldrich, St. Louis, USA).
383 Filters were stored at -80 °C until DNA extraction.

384

385 We extracted DNA from a total of 88 filter samples using the PowerWater DNA Isolation
386 kit (MoBio Technologies Inc.) following the manufacturer's guidelines. Shotgun
387 metagenomic sequencing was performed using the Illumina HiSeq 4000 technology
388 with 100 bp paired-end reads. Libraries were prepared with 50 ng of DNA using the
389 NEBNext Ultra II DNA Library Prep kit for Illumina (New England Biolabs®) as per the
390 manufacturer's recommendations, and had an average fragment size of 390 bp.

391

392 **Metagenomic read trimming, functional annotation and ARGs inference from 393 metagenomic reads**

394 We removed Illumina adapters and quality filtered metagenomic reads using
395 Trimmomatic [33] in the paired-end mode. We used FragGeneScan [34] for gene
396 prediction from trimmed metagenomic reads and annotated predicted genes with SEED
397 subsystems [35]. To identify known ARGs in the metagenomic reads, we used the
398 Resistance Gene Identifier (RGI) 'bwt' function that maps FASTQ files of reads passing
399 quality control to CARD [36] using Bowtie2 (version 2.4) as an aligner [37]. Only
400 alignments with mapping quality (MAPQ) higher than 10 and gene coverage of 50%
401 were retained. To calculate the proportion of metagenomic reads mapped to CARD that
402 have been assembled and binned to genomes, we extracted reads that aligned to
403 CARD using Samtools [38] and mapped them to MAGs using Bowtie2 [37]. Table S2
404 shows the total number of reads by sample after trimming and a summary of the RGI
405 output by sample for hits with minimum gene coverage of 50% and average MAPQ>10.

406

407 **Metagenomic *de novo* co-assembly, binning, dereplication and curation of MAGs**

408 We organized the dataset into eight sets of metagenomes, each of them containing
409 samples of the same mesocosm pond (Fig. 1B) from multiple timepoints. We co-

410 assembled reads from each of the 8 timeseries using MEGAHIT v1.1.1 [39], with a
411 minimum contig length of 1 kbp. We used anvi'o v5.1 [40] to profile contigs, to identify
412 genes using Prodigal v2.6.3 [41] and HMMER v3.2.1 [42], to infer the taxonomy of
413 genes with Centrifuge v1.0.4 [43], to map metagenomic reads to contigs using Bowtie2
414 v2.4.2 [37], and then to estimate depth of read coverage across contigs. Finally, we
415 used anvi'o to cluster contigs according to their sequence composition and coverage
416 across samples with the automatic binning algorithm CONCOCT [44] and we manually
417 refined the bins ($n=830$) using the anvi'o interactive interface, as suggested by
418 developers [40], by removing splits that diverged in the differential coverage and/or
419 tetra-nucleotide frequency of most splits in the same bin.

420

421 We dereplicated bins as described in [45]. In summary, we calculated the Pearson
422 correlation coefficient between the relative abundance (i.e. the mean coverage
423 calculated by the function 'anvi-summarize' within anvi'o) for each pair of bins in the
424 metagenomic samples, using the 'cor' function in R [46], and the average nucleotide
425 identity (ANI) of bins affiliated to the same phylum, using NUCmer [47]. Taxonomy
426 assignment of redundant bins was done using CheckM [48]. Bins with a Person
427 correlation coefficient above 0.9 and ANI of 98% or more were considered redundant. In
428 a total of 830 bins obtained before performing the dereplication, we found 607 non-
429 redundant bins, of which 426 were classified as MAGs, as they had at least 70%
430 completeness and no more than 10% redundancy (see **Table S2**). We then created a
431 non-redundant genomic database of these 426 MAGs to which we mapped
432 metagenomic reads to calculate the relative abundance of each MAGs across the
433 different samples. Here we define a MAG's relative abundance as the number of
434 metagenomic reads recruited to a MAG divided by the total metagenomic reads in a
435 given sample.

436

437 **Identification of ARGs, EPSPS and plasmids in MAGs**

438 We annotated ARGs within MAG contigs with the RGI 'main' function, that compares
439 predicted protein sequences from contigs to the CARD protein reference sequence
440 data. Within RGI, we used the BLAST [49] alignment option and the strict algorithm

441 (excluding nudge of loose hits to strict hits) for low quality contigs (<20,000 bp). The
442 RGI low sequence quality option uses Prodigal anonymous mode [41] for the prediction
443 of open reading frames, supporting calls of partial ARGs from short or low quality
444 contigs.

445

446 To identify EPSPS sequences from MAG contigs we first used Anvi'o to predict amino
447 acid sequences of the non-redundant MAGs with the flag 'report-aa-seqs-for-gene-calls'
448 of the function 'anvi-summarize'. Gene calls of all the MAGs were concatenated
449 conserving the original split names, and transformed into a fasta file. We then blasted
450 the predicted amino acid sequences against a custom database with sequences of the
451 EPSPS enzyme, using BLASTp [49] and a minimum e-value of 1e-5. After selecting the
452 gene call with the best match (i.e. lowest e-value) to an EPSPS sequence in each of the
453 426 MAGs, we used the *EPSPSClass* web server [6] to classify the retrieved sequences
454 according to resistance to glyphosate. Sequences were classified as EPSPS class I,
455 class II or class IV if they contained all the amino acid markers from the respective
456 reference, i.e. if the percent identity was equal to 1; and classified as class III when they
457 contained at least one complete motif out of 18 of the resistance-associated sequences,
458 as explained in [6]. MAGs whose EPSPS sequences did not match these criteria of
459 having at least one motif of class III or 100% percent identity with class I, II or IV, or
460 those in which no predicted amino acid sequence matched a known EPSPS sequence
461 were set as unclassified (roughly 27% of MAGs). EPSPS sequences matching class I
462 were considered as putative sensitive and those with at least one motif of class III or
463 matching class II as putative resistant. No sequences were found that matched to class
464 IV.

465

466 To identify potential plasmid contigs assembled to MAGs we used the plasmid classifier
467 PlasClass [50]. We counted all contigs classified as plasmid with a minimum of 70%
468 probability, as well as how many of these potential plasmid contigs were annotated with
469 ARGs through RGI. **Table S2** summarizes MAG information, including the predicted
470 EPSPS sequence found in the genome, the EPSPS classification, the number of
471 estimated plasmid contigs and how many of them contained ARG sequences.

472

473 **Statistical analyses**

474 All statistical analyses were conducted in R v.4.0.2 [46]. Time series of (log-
475 transformed) ARG counts and ARG reads per million metagenomic reads were
476 modelled using additive models (GAM) using the 'mgcv' R package [51]. We used
477 GAMs to account for nonlinear relationships among the response variable and the
478 predictors. Some predictors (nutrient and herbicide treatment levels) were coded as
479 ordered factors; Table 1 lists all factors and predictors of the model. We built the models
480 using the 'gam' function and assessed significance of effects with the 'summary.gam'
481 function. We validated the models with the 'gam.check' function, inspecting the
482 distribution of model residuals, comparing fitted and observed values, and checking if
483 the basis dimension (k) of smooth terms were large enough.

484

485 We used Principal Response Curves (PRCs) to test for the effect of treatments on the
486 composition of ARGs and gene functional profiles over time. PRCs are a special case of
487 partial redundancy analysis (pRDA) used in temporal experimental studies where
488 treatments and the interaction between treatment and time are used as explanatory
489 variables [52]. Time is the covariate (or conditioning variable) whose effect is partialled
490 out and the response variable is the matrix containing compositional data (taxa or gene
491 family relative abundances). We built PRCs using relative abundances of predicted
492 genes grouped according to the SEED subsystem levels 1 and 2. In a more focused
493 analysis, we built a PRC for the matrix of ARGs found in each sample, i.e. metagenomic
494 reads mapped to each ARG from the CARD reference classified according to their
495 Antibiotic Resistance Ontology (ARO). The matrices were transformed using the
496 Hellinger transformation [53]. The PRC diagram displays the treatment effect on the y-
497 axis, expressed as deviations from the experimental controls at each time point. It also
498 shows species scores on the right y-axis, which here can be interpreted as the
499 contribution of each function or gene to the treatment response curves. We assessed
500 the significance of the first PRC axis by permuting the treatment label of ponds while
501 keeping the temporal order, using the 'permute' package [54] followed by a permutation
502 test (999 permutations) using the 'vegan' package [55]. For the PRC based on ARG

503 composition, we tested if the distribution of PRC positive and negative scores was
504 different among the resistance mechanisms of the identified ARGs using the 'fisher.test'
505 function in the 'stats' package in R [46].

506

507 To test if MAG abundance in Phase II glyphosate treatments was correlated with their
508 antibiotic resistance potential, we built a multiple linear regression with the 'lm' function
509 of the R package 'stats' [46]. The response variable was the average relative
510 abundance of a MAG in glyphosate-treated ponds in Phase II. The three predictors
511 were: the MAG's antibiotic resistance potential (defined as the number of RGI strict hits
512 found in the MAG), the average MAG relative abundance in the same ponds of Phase I,
513 and their EPSPS sequence classification (resistant, sensitive or unclassified). To
514 assess the relative contribution of the different predictors to MAG survival in Phase II,
515 we performed a variance partitioning analysis with the 'varpart' function of the R
516 package 'vegan' [55]. Finally, to visualize the hierarchy among predictors we
517 constructed a conditional inference regression tree. Response variable and predictors
518 were the same as described above, except that instead of grouping all ARG hits, we
519 transformed them into three variables, according to their function: antibiotic target
520 alteration, antibiotic inactivation, or antibiotic efflux. The regression tree was fitted with
521 the 'ctree' function in the R package 'party' [46]. As a negative control, we repeated the
522 same analyses for MAGs found in control ponds of Phase II.

523

524 As multiple predictors were tested, we performed a Bonferroni correction for the additive
525 and linear models, whereby the *p*-value significance threshold of 0.05 was divided by
526 the number of statistical tests.

527

528 Graphs and heatmaps for timeseries data visualization were built using the functions
529 'geom_point' and 'geom_tile', respectively, in the R package 'ggplot2' [56].

530

531 **Data accessibility**

532 Sequence data of the 88 metagenomic samples were submitted to NCBI SRA
533 (BioProject PRJNA767443, accession numbers SRR16126824-SRR16126911) and the

534 genomes of 426 predicted MAGs have been deposited and associated to the same
535 BioProject (BioSample accession numbers in Table S3). The data will be publicly
536 available once the manuscript is accepted for publication, and it can be now accessed
537 through the following reviewer link:
538 <https://dataview.ncbi.nlm.nih.gov/object/PRJNA767443?reviewer=vk9o7uf95h5cm1d8m1mgnrc5fk>.

540

541 **Acknowledgements**

542 We are grateful to D. Maneli, C. Normandin, A. Arkilanian and T. Jagadeesh for their
543 assistance in the field, to J. Marleau and O.M. Pérez-Carrascal for their assistance in
544 the laboratory and to O.M. Pérez-Carrascal for the advice on bioinformatic analyses.

545

546 **Funding information**

547 This study was supported by a Canada Research Chair and NSERC Discovery Grant to
548 B.J.S. N.B.C. was funded by FRQNT and NSERC-CREATE/GRIL fellowships. M-P.H.
549 was funded by NSERC and NSERC-CREATE/GRIL. V.F. was supported by an NSERC
550 postdoctoral fellowship. LEAP was built and operated with funds from a CFI Leaders
551 Opportunity Fund, NSERC Discovery Grant and the Liber Ero Chair to A.G.

552

553

554 **References**

555 [1] Duke SO, Powles SB. Glyphosate: a once-in-a-century herbicide. Pest Manag Sci
556 2008;63:1100–6. <https://doi.org/10.1002/ps>.

557 [2] Benbrook CM. Trends in glyphosate herbicide use in the United States and
558 globally. Environ Sci Eur 2016;28:1–15. <https://doi.org/10.1186/s12302-016-0070-0>.

559 [3] van Bruggen AHC, He MM, Shin K, Mai V, Jeong KC, Finch MR, et al.
560 Environmental and health effects of the herbicide glyphosate. Sci Total Environ
561 2018;617:255–68. <https://doi.org/10.1016/j.scitotenv.2017.10.309>.

562 [4] Brovini EM, Cardoso SJ, Quadra GR, Vilas-Boas JA, Paranaíba JR, Pereira R de
563 O, et al. Glyphosate concentrations in global freshwaters: are aquatic organisms

565 at risk? *Environ Sci Pollut Res* 2021. <https://doi.org/10.1007/s11356-021-14609-8>.

566 [5] Pollegioni L, Schonbrunn E, Siehl D. Molecular basis of glyphosate resistance:
567 Different approaches through protein engineering. *FEBS J* 2011;278:2753–66.
568 <https://doi.org/10.1111/j.1742-4658.2011.08214.x>.

569 [6] Leino L, Tall T, Helander M, Saloniemi I, Saikonen K, Ruuskanen S, et al.
570 Classification of the glyphosate target enzyme (5-enolpyruvylshikimate-3-
571 phosphate synthase) for assessing sensitivity of organisms to the herbicide. *J
572 Hazard Mater* 2020;408:1–8. <https://doi.org/10.1016/j.jhazmat.2020.124556>.

573 [7] Singh RK, Prasad M. Advances in *Agrobacterium tumefaciens*-mediated genetic
574 transformation of graminaceous crops. *Protoplasma* 2016;253:691–707.
575 <https://doi.org/10.1007/s00709-015-0905-3>.

576 [8] Pline-Srnic W. Physiological Mechanisms of Glyphosate Resistance. *Weed
577 Technol* 2006;20:290–300. <https://doi.org/10.1614/WT-04-131R.1>.

578 [9] Lu T, Xu N, Zhang Q, Zhang Z, Debognies A, Zhou Z, et al. Understanding the
579 influence of glyphosate on the structure and function of freshwater microbial
580 community in a microcosm. *Environ Pollut* 2020;260:1–9.
581 <https://doi.org/10.1016/j.envpol.2020.114012>.

582 [10] Wang Y, Lu J, Engelstädter J, Zhang S, Ding P, Mao L, et al. Non-antibiotic
583 pharmaceuticals enhance the transmission of exogenous antibiotic resistance
584 genes through bacterial transformation. *ISME J* 2020;2179–96.
585 <https://doi.org/10.1038/s41396-020-0679-2>.

586 [11] Barbosa da Costa N, Fugère V, Hébert MP, Xu CCY, Barrett RDH, Beisner BE, et
587 al. Resistance, resilience, and functional redundancy of freshwater
588 bacterioplankton communities facing a gradient of agricultural stressors in a
589 mesocosm experiment. *Mol Ecol* 2021;4771–88.
590 <https://doi.org/10.1111/mec.16100>.

591 [12] Motta EVS, Raymann K, Moran NA. Glyphosate perturbs the gut microbiota of
592 honey bees. *Proc Natl Acad Sci* 2018;201803880.
593 <https://doi.org/10.1073/pnas.1803880115>.

594 [13] Kurenbach B, Marjoshi D, Amábile-Cuevas CF, Ferguson GC, Godsoe W, Paddy
595 Gibson A, et al. Sublethal Exposure to Commercial Formulations of the

596 Herbicides Dicamba, 2,4-Dichlorophenoxyacetic Acid, and Glyphosate Cause
597 Changes in Antibiotic Susceptibility in *Escherichia coli* and *Salmonella enterica*
598 serovar Typhimurium. *MBio* 2015;6:1–9. <https://doi.org/10.1128/mBio.00009-15>.

599 [14] Kurenbach B, Gibson PS, Hill AM, Bitzer AS, Silby MW, Godsoe W, et al.
600 Herbicide ingredients change *Salmonella enterica* sv. Typhimurium and
601 *Escherichia coli* antibiotic responses. *Microbiology* 2017;163:1791–801.
602 <https://doi.org/10.1099/mic.0.000573>.

603 [15] Kurenbach B, Hill AM, Godsoe W, Van Hamelsveld S, Heinemann JA.
604 Agrichemicals and antibiotics in combination increase antibiotic resistance
605 evolution. *PeerJ* 2018;2018:1–20. <https://doi.org/10.7717/peerj.5801>.

606 [16] Xing Y, Wu S, Men Y. Exposure to Environmental Levels of Pesticides Stimulates
607 and Diversifies Evolution in *Escherichia coli* toward Higher Antibiotic Resistance.
608 *Environ Sci Technol* 2020. <https://doi.org/10.1021/acs.est.0c01155>.

609 [17] Ramakrishnan B, Venkateswarlu K, Sethunathan N, Megharaj M. Local
610 applications but global implications: Can pesticides drive microorganisms to
611 develop antimicrobial resistance? *Sci Total Environ* 2019;654:177–89.
612 <https://doi.org/10.1016/j.scitotenv.2018.11.041>.

613 [18] Staub JM, Brand L, Tran M, Kong Y, Rogers SG. Bacterial glyphosate resistance
614 conferred by overexpression of an *E. coli* membrane efflux transporter. *J Ind*
615 *Microbiol Biotechnol* 2012;39:641–7. <https://doi.org/10.1007/s10295-011-1057-x>.

616 [19] Murray AK, Zhang L, Snape J, Gaze WH. Comparing the selective and co-
617 selective effects of different antimicrobials in bacterial communities. *Int J*
618 *Antimicrob Agents* 2019;53:767–73.
619 <https://doi.org/10.1016/j.ijantimicag.2019.03.001>.

620 [20] Baker-Austin C, Wright MS, Stepanauskas R, McArthur J V. Co-selection of
621 antibiotic and metal resistance. *Trends Microbiol* 2006;14:176–82.
622 <https://doi.org/10.1016/j.tim.2006.02.006>.

623 [21] Gullberg E, Cao S, Berg OG, Ilbäck C, Sandegren L, Hughes D, et al. Selection of
624 resistant bacteria at very low antibiotic concentrations. *PLoS Pathog* 2011;7:1–9.
625 <https://doi.org/10.1371/journal.ppat.1002158>.

626 [22] Zhang H, Liu J, Wang L, Zhai Z. Glyphosate escalates horizontal transfer of

conjugative plasmid harboring antibiotic resistance genes. *Bioengineered* 2021;12:63–9. <https://doi.org/10.1080/21655979.2020.1862995>.

[23] Liao H, Li X, Yang Q, Bai Y, Cui P, Wen C, et al. Herbicide Selection Promotes Antibiotic Resistance in Soil Microbiomes. *Mol Biol Evol* 2021;38:2337–50. <https://doi.org/10.1093/molbev/msab029>.

[24] Brook D, Beaton T. Pesticide Contamination of Farm Water Sources. 2015.

[25] Fugère V, Hébert M, Barbosa da Costa N, Xu CCY, Barrett RDH, Beisner BE, et al. Community rescue in experimental phytoplankton communities facing severe herbicide pollution. *Nat Ecol Evol* 2020;4:578–588. <https://doi.org/10.1038/s41559-020-1134-5>.

[26] Hébert M-P, Fugère V, Beisner BE, Barbosa da Costa N, Barrett RDH, Bell G, et al. Widespread agrochemicals differentially affect zooplankton biomass and community structure. *Ecol Appl* 2021. <https://doi.org/10.1002/eap.2423>.

[27] Davidson AL, Chen J. ATP-binding cassette transporters in bacteria. *Annu Rev Biochem* 2004;73:241–68. <https://doi.org/10.1146/annurev.biochem.73.011303.073626>.

[28] Wiedenbeck J, Cohan FM. Origins of bacterial diversity through horizontal genetic transfer and adaptation to new ecological niches. *FEMS Microbiol Rev* 2011;35:957–76. <https://doi.org/10.1111/j.1574-6976.2011.00292.x>.

[29] Tsui MTK, Chu LM. Aquatic toxicity of glyphosate-based formulations: Comparison between different organisms and the effects of environmental factors. *Chemosphere* 2003;52:1189–97. [https://doi.org/10.1016/S0045-6535\(03\)00306-0](https://doi.org/10.1016/S0045-6535(03)00306-0).

[30] Mesnage R, Antoniou MN. Ignoring Adjuvant Toxicity Falsifies the Safety Profile of Commercial Pesticides. *Front Public Heal* 2018;5:1–8. <https://doi.org/10.3389/fpubh.2017.00361>.

[31] CCME. Canadian Water Quality Guidelines for the Protection of Aquatic Life: Glyphosate. Winnipeg, Manitoba: 2012.

[32] EPA. Aquatic Life Benchmarks and Ecological Risk Assessments for Registered Pesticides 2019:35. https://www.epa.gov/pesticide-science-and-assessing-pesticide-risks/aquatic-life-benchmarks-and-ecological-risk#ref_4.

[33] Bolger AM, Lohse M, Usadel B. Trimmomatic: A flexible trimmer for Illumina

658 sequence data. *Bioinformatics* 2014;30:2114–20.
659 <https://doi.org/10.1093/bioinformatics/btu170>.

660 [34] Rho M, Tang H, Ye Y. FragGeneScan: Predicting genes in short and error-prone
661 reads. *Nucleic Acids Res* 2010;38:1–12. <https://doi.org/10.1093/nar/gkq747>.

662 [35] Overbeek R, Olson R, Pusch GD, Olsen GJ, Davis JJ, Disz T, et al. The SEED
663 and the Rapid Annotation of microbial genomes using Subsystems Technology
664 (RAST). *Nucleic Acids Res* 2014;42:206–14. <https://doi.org/10.1093/nar/gkt1226>.

665 [36] Alcock BP, Raphenya AR, Lau TTY, Tsang KK, Bouchard M, Edalatmand A, et al.
666 CARD 2020: antibiotic resistome surveillance with the comprehensive antibiotic
667 resistance database. *Nucleic Acids Res* 2020;48:D517–25.
668 <https://doi.org/10.1093/nar/gkz935>.

669 [37] Langmead B, Salzberg SL. Fast gapped-read alignment with Bowtie 2. *Nat*
670 *Methods* 2012;9:357–9. <https://doi.org/10.1038/nmeth.1923>.

671 [38] Li H, Handsaker B, Wysoker A, Fennell T, Ruan J, Homer N, et al. The Sequence
672 Alignment/Map format and SAMtools. *Bioinformatics* 2009;25:2078–9.
673 <https://doi.org/10.1093/bioinformatics/btp352>.

674 [39] Li D, Liu CM, Luo R, Sadakane K, Lam TW. MEGAHIT: An ultra-fast single-node
675 solution for large and complex metagenomics assembly via succinct de Bruijn
676 graph. *Bioinformatics* 2015;31:1674–6.
677 <https://doi.org/10.1093/bioinformatics/btv033>.

678 [40] Eren AM, Esen ÖC, Quince C, Vineis JH, Morrison HG, Sogin ML, et al. Anvi'o:
679 an advanced analysis and visualization platform for 'omics data. *PeerJ*
680 2015;3:e1319. <https://doi.org/10.7717/peerj.1319>.

681 [41] Doug Hyatt, Gwo-Liang Chen, Philip F LoCascio, Miriam L Land, Frank W Larimer
682 LJH. Prodigal: prokaryotic gene recognition and translation initiation site
683 identification. *BMC Bioinformatics* 2010;11:1–8.

684 [42] Eddy SR. Accelerated profile HMM searches. *PLoS Comput Biol* 2011;7.
685 <https://doi.org/10.1371/journal.pcbi.1002195>.

686 [43] Kim D, Song L, Breitwieser FP, Salzberg SL. Centrifuge: rapid and sensitive
687 classification of metagenomic sequences. *Genome Res* 2016;gr.210641.116.
688 <https://doi.org/10.1101/gr.210641.116>.

689 [44] Alneberg J, Bjarnason BS, De Brujin I, Schirmer M, Quick J, Ijaz UZ, et al. Binning
690 metagenomic contigs by coverage and composition. *Nat Methods* 2014;11:1144–
691 6. <https://doi.org/10.1038/nmeth.3103>.

692 [45] Delmont TO, Quince C, Shaiber A, Esen ÖC, Lee ST, Rappé MS, et al. Nitrogen-
693 fixing populations of Planctomycetes and Proteobacteria are abundant in surface
694 ocean metagenomes. *Nat Microbiol* 2018;3:963. <https://doi.org/10.1038/s41564-018-0209-4>.

695 [46] R Core Team. R: A Language and Environment for Statistical Computing 2020.

696 [47] Delcher AL, Phillippy A, Carlton J, Salzberg SL. Fast algorithms for large-scale
697 genome alignment and comparison 2002;30:2478–83.

698 [48] Parks DH, Imelfort M, Skennerton CT, Hugenholtz P, Tyson GW. CheckM:
699 Assessing the quality of microbial genomes recovered from isolates, single cells,
700 and metagenomes. *Genome Res* 2015;25:1043–55.
701 <https://doi.org/10.1101/gr.186072.114>.

702 [49] Altschul SF, Gish W, Miller W, Myers EW, Lipman DJ. Basic local alignment
703 search tool. *J Mol Biol* 1990;215:403–10. [https://doi.org/10.1016/S0022-2836\(05\)80360-2](https://doi.org/10.1016/S0022-2836(05)80360-2).

704 [50] Pellow D, Mizrahi I, Shamir R. PlasClass improves plasmid sequence
705 classification. *PLoS Comput Biol* 2020;16:1–9.
706 <https://doi.org/10.1371/journal.pcbi.1007781>.

707 [51] Wood S. Generalized Additive Models. 2nd ed. New York: Chapman and
708 Hall/CRC; 2017.

709 [52] Auber A, Travers-Trolet M, Villanueva M-C, Ernande B. A new application of
710 principal response curves for summarizing abrupt and cyclic shifts of communities
711 over space. *Ecosphere* 2017;8:e02023. <https://doi.org/10.1002/ecs2.2023>.

712 [53] Legendre P, Gallagher ED. Ecologically meaningful transformations for ordination
713 of species data. *Oecologia* 2001;129:271–80.
714 <https://doi.org/10.1007/s004420100716>.

715 [54] Simpson MGL. *permute*: Functions for Generating Restricted Permutations of
716 Data. R package version 0.9-5. 2019.

717 [55] Oksanen J, Blanchet FG, Friendly M, Kindt R, Legendre P, Mcglinn D, et al.

720 vegan: Community Ecology Package. R package version 2.5-5. <https://CRAN.R-project.org/package=vegan>. Community Ecol Packag 2019;2:1–297.

722 [56] Wickham H. ggplot2: Elegant Graphics for Data Analysis. Media 2009;35:211.
723 <https://doi.org/10.1007/978-0-387-98141-3>.

724

725

726 **Main figures legends**

727 **Fig. 1 Experimental area and design.** (A) Aerial photograph of the Large Experimental
728 Array of Ponds (LEAP) at Gault Nature Reserve, in Mont Saint-Hilaire (Canada). The
729 laboratory facility and inflow reservoir, where water from our source lake was redirected
730 to before filling the mesocosms, can be seen at the top of the photograph. Our source
731 lake, Lake Hertel, is located upstream (not shown in the photograph). (B) Schematic
732 representation of the subset of mesocosms selected for metagenomic sequencing in
733 this study. A total of eight ponds were sampled 11 times over the course of the 8-week
734 experiment, which was divided in two phases: Phase I (6 weeks) and Phase II (2
735 weeks). Phase I included two pulse applications (doses) of GBH, with three target
736 glyphosate concentrations (0, 0.5, and 15 mg/L). In Phase II, all ponds except for two
737 controls, shown in grey, received a higher dose of glyphosate (40 mg/L). Phase I
738 included four control ponds (grey and yellow) while Phase II only included two controls
739 (grey). Note that yellow ponds only received GBH in Phase II. Nutrients were also
740 added to ponds to reproduce mesotrophic or eutrophic conditions, represented
741 respectively by circles and squares (target phosphorus concentrations are indicated).
742 TP: total phosphorus.

743

744 **Fig. 2 ARG frequencies increase in GBH treatments over time.** (A) Number of
745 unique ARGs per million metagenomic reads and (B) number of metagenomic reads
746 mapped to ARGs per million metagenomic reads vary according to treatment and time.
747 Dashed vertical lines indicate the application of Phase I GBH pulses and solid vertical
748 line the Phase II pulse. The colour code refers to the target glyphosate concentrations in
749 Phase I (pulse 1 and pulse 2), while in Phase II all treated ponds received a target of 40
750 mg/L glyphosate.

751

752 **Fig. 3 GBH skews composition of ARGs in favour of antibiotic efflux pumps.**

753 Principal Response Curves (PRCs) illustrating divergence (relative to controls) in the
754 composition of ARGs in response to GBH exposure. The left y-axis represents the
755 magnitude or ARG compositional response, while the right y-axis represents individual
756 gene scores (i.e., relative contribution to overall compositional changes). Gene names
757 (ARO) are colour-coded based on their mechanism of resistance. Dashed vertical lines
758 indicate the timing of GBH pulses in Phase I, and the solid vertical line represents the
759 pulse in Phase II. The zero line ($y=0$) represents the low nutrient control pond from both
760 Phase I and II. The PRC explains 30% of the total variance (PERMUTEST, $F=22.8$,
761 $p=0.024$). Treatments and time interactively explain 74.8% of the variance while 25% is
762 explained by time alone.

763

764 **Fig. 4 Antibiotic resistance potential predicts MAG relative abundance after**
765 **severe GBH stress.** (A) Boxplots show a positive correlation between MAGs
766 abundance in Phase II and their potential for antibiotic resistance. Each dot represents
767 a MAG that is color-coded based on the predicted resistance of their EPSPS. A slight
768 offset on x-axis (jitter) was introduced to facilitate data visualization. See Table 2 for
769 regression coefficients. (B) Regression tree confirms the significance of the correlation
770 seen in (A), particularly for antibiotic efflux genes. Two other factors were also included,
771 and have small effects on MAG relative abundance in Phase II: the EPSPS
772 classification and the average abundance of MAGs in Phase I.

773

774 **Supplementary Material**

775

776 **Tables**

777

778 **Table S1** PRC scores from functional annotations shown in Fig. S2

779

780 **Table S2** Metagenomic sample information, summary of RGI output for hits above
781 mapping threshold (MAPQ>10 and minimum of 50 gene percent coverage) and
782 proportion of sample reads mapped to CARD (ARG reads) that mapped back to MAGs.

783

784 **Table S3** MAG information, predicted EPSPS amino acid sequence, summary of ARGs
785 and plasmids. For each predicted EPSPS sequence, the putative classification
786 regarding glyphosate resistance is shown. The number of potential plasmid contigs and
787 how many of these had ARGs annotated is also shown. Number of ARGs annotated to
788 MAG contigs (total RGI strict hits) are provided in the last column.

789

790 **Table S4** Multiple linear regression model and variance partitioning of MAGs
791 abundance in Phase II in control mesocosms. P-values are reported for each predictor,
792 asterisks indicate significant p-values after Bonferroni correction ($p<0.0125$) and reports
793 of significant factors are highlighted in bold. Adjusted R-squared equals 43.2 % for MAG
794 abundance in controls as response variable ($n=425$, F-statistic: 78.7).

795

796 *Supplementary figures*

797

798 **Fig. S1 Glyphosate increases ARG frequencies in experimental ponds.** GAMs
799 illustrating the time-dependent effect of GBH and nutrient treatments on unique ARGs in
800 Phase I (A), in both Phase I and II (B), on ARG reads in Phase I (C), in both Phase I
801 and Phase II (D). Dashed vertical lines indicate the application of Phase I GBH pulses
802 and solid vertical line the Phase II pulse. Glyphosate acid concentration of pulses
803 applied in Phase I (dose 1 and dose 2) are indicated in the legend, while in Phase II, all
804 treatments received 40 mg/L, except the Control Phase II. Shades indicate a confidence
805 interval of 95%.

806

807 **Fig. S2 Principal Response Curves of the experimental treatment effect on the**
808 **composition of gene functional profiles predicted from metagenomic reads**
809 **grouped according to (A) SEED subsystem level 1 and (B) level 2.** Treatment effect
810 is shown in the left y-axis while scores of genes (proportional to their contribution to the

811 treatment effect) are shown in the right y-axis. Dashed vertical lines indicate the
812 application of Phase I glyphosate pulses and solid vertical line the Phase II glyphosate
813 pulse. Glyphosate concentration of pulses applied in Phase I (dose 1 and dose 2) are
814 indicated by the legend, while in Phase II all treatments received 40 mg/L of glyphosate,
815 except the Phase II controls. Treatment effect zero is equivalent to the low nutrient
816 control Phase II pond. Function of resistance to antibiotics is highlighted in red
817 according to how it is named in (A) SEED subsystem level 1 (50.9% of total variance
818 explained, PERMUTEST $F=43.1$ $p=0.023$) and (B) SEED subsystem level 2 (33.1% of
819 total variance explained, PERMUTEST $F=25.8$ $p=0.027$), where only scores with
820 absolute values larger than 0.05 are reported (all scores are shown in Table S1).

821

822 **Fig. S3 Metagenomic reads mapped to ARGs classified according to their ARO**
823 **(top graph) and ARG reads mapped to MAGs (bottom graph) in low nutrient**
824 **ponds.** MAG identities are followed by their finest taxonomic assignment (o=order,
825 f=family, g=genus, s=species). Only alignments with MAPQ>10 were tallied. Dashed
826 vertical lines represent Phase I GBH and solid vertical lines are Phase II pulses (all at
827 40 mg/L glyphosate).

828

829 **Fig. S4 Metagenomic reads mapped to ARGs classified according to their ARO**
830 **(top graph) and ARG reads mapped to MAGs (bottom graph) in high nutrient**
831 **ponds.** MAG identities are followed by their finest taxonomic assignment (o=order,
832 f=family, g=genus, s=species). Only alignments with MAPQ>10 were tallied. Dashed
833 vertical lines represent Phase I GBH pulses and solid vertical lines are Phase II pulses
834 (all at 40 mg/L glyphosate).

835

836 **Fig. S5 MAG mean relative abundance in controls of Phase II as a function of**
837 **antibiotic resistance potential (or the amount of ARGs annotated to their**
838 **genomes) and the classification of EPSPS enzyme (resistant, sensitive or**
839 **unclassified).** (A) Series of boxplots show the absence of correlation between MAGs
840 abundance in Phase II and their potential for antibiotic resistance. Each dot represents
841 a MAG that is color-coded according to the potential resistance of their EPSPS. To

842 facilitate visualization, a small amount of random variation (jitter) was added so dots
843 would not overlap. Table 2 reports statistics of a linear model that tested how MAG
844 abundance in Phase II controls could be explained by EPSPS classification, antibiotic
845 resistance potential and MAG abundance in Phase I. (B) Regression tree with MAG
846 abundance in controls of Phase II as the response variable and the following predictors:
847 the EPSPS enzyme classification, the number of ARGs classified as antibiotic efflux,
848 antibiotic inactivation or target alteration, and the MAG relative abundance in Phase I.

Table 1. Summary of GAMs showing the effect of GBH on ARG frequencies in phase I only and in both phases. The top rows show unique ARGs as response variable, and the bottom rows show ARG reads. For each predictor of the model, when it is a parametric term we report the respective parameter estimate with standard error (SE) and *t* value. For smooth terms, we report the effective degrees of freedom (EDF) and F statistic. Smooths terms are described as mgcv syntax ('ti()' are tensor product interactions). *P*-values are reported for each predictor and reports of significant factors after Bonferroni correction (*p*<0.0125) are highlighted in bold with an asterisk. A Gaussian residual distribution was used.

Response variable/ Adjusted R ²	Predictors	Factors [†]	Estimate (SE) or EDF		<i>t</i> value or F		<i>p</i> -value		
Unique ARG counts per million metagenomic reads (log10(x+1)) Adjusted R ² = 65.1% (phase I, n=64)/ 74.6% (both phases, n=88)	<i>Parametric terms</i>	Treatment	Phase I		Both phases		Phase I		
			Control Phase I		-0.001 (±0.006)		-0.1		
			Glyphosate 0.3 mg/L		0.003 (±0.006)		2.9		
			Glyphosate 15 mg/L		0.035 (±0.006)		0.5		
		Nutrient	High nutrient		0.040 (±0.006)		3.8		
			-0.012 (±0.004)		6.2		6.7		
			-0.011 (±0.004)		-3.0		-2.7		
		<i>Smooth terms</i>							
			ti(day)		1.0		6.8		
			Control Phase I		0.02		2.71		
			ti(day, by=treatment)		1.0		3.2		
			Glyphosate 0.3 mg/L		0.03		10.04		
ARG reads per million metagenomic reads (log10(x+1)) Adjusted R ² = 66.6% (phase I, n=64)/ 77.3% (both phases, n=88)	<i>Parametric terms</i>	Treatment	Glyphosate 15 mg/L		1.0		4.7		
			High nutrient		3.9		4.3		
			15.65		5.01		<0.001*		
			ti(day, by=nutrient)		1.0		0.60		
		Nutrient	High nutrient		0.25		0.444		
			Phase I		Both phases		Phase I		
			Control Phase I		-0.3		3.1		
			Glyphosate 0.3 mg/L		0.1		3.1		
			Glyphosate 15 mg/L		6.5		7.8		
								<0.001*	
								<0.001*	

	<i>Smooth terms</i>							
ti(day)	-		1.0	6.7	0.21	2.77	0.648	0.009*
ti(day, by=treatment)	Control Phase I		1.0	3.5	0.11	12.27	0.737	<0.001*
	Glyphosate 0.3 mg/L		1.0	2.6	0.47	8.93	0.497	<0.001*
	Glyphosate 15 mg/L		3.9	4.6	15.78	6.90	<0.001*	<0.001*
ti(day, by=nutrient)	High nutrient		1.0	1.0	3.92	1.52	0.053	0.222

[†] When factor is absent it means the respective predictor variable is continuous (“day”)

*Significant *p*-values after Bonferroni correction (*p*<0.0125)

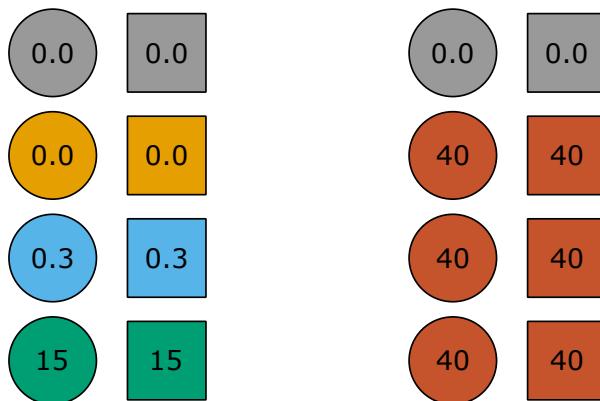
Table 2 Multiple linear regression model and variance partitioning of MAGs abundance in Phase II in treatment mesocosms. *P*-values are reported for each predictor, asterisks indicate significant *p*-values after Bonferroni correction (*p*<0.0125) and reports of significant factors are highlighted in bold with asterisks. Adjusted R-squared equals 21.1% for MAG persistence in treatments (*n*=426, F-statistic: 29.5).

Response variable	Predictors	Estimate (SE)	<i>t</i> value	<i>p</i> -value	Explained variance
MAG mean abundance in Phase II treatment mesocosms	EPSPS classification: - Sensitive - Resistant	0.002 (\pm 0.127) 0.413 (\pm0.133)	0.02 3.11	0.987 0.002*	2%
	MAG antibiotic resistance potential	0.496 (\pm0.052)	9.53	<0.001*	17%
	MAG mean abundance in Phase I treatment mesocosms (\log_{10})	0.178 (\pm0.066)	2.69	0.007	1%
					Residuals: 79%

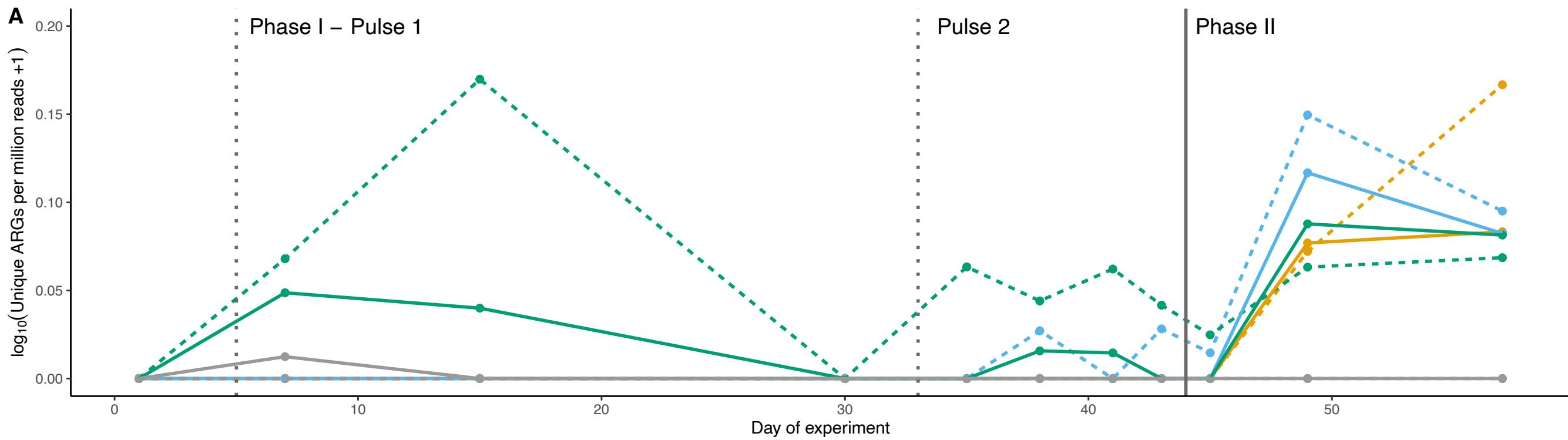
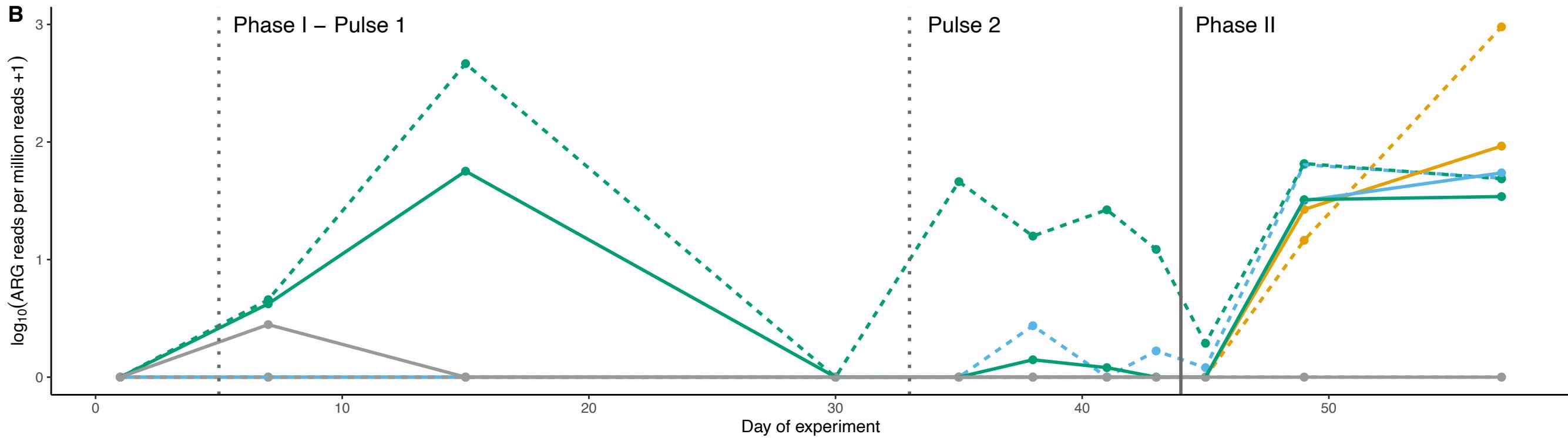
A**B**

Herbicide treatment (glyphosate acid mg/L)

Phase I (2 pulses - 6 weeks) Phase II (1 pulse - 2 weeks)



Nutrient background
○ Mesotrophic (15 μg TP/L)
□ Eutrophic (60 μg TP/L)



Nutrient concentration — high - - low Pesticide treatment ● Control Phase II ● Control Phase I ● Glyphosate 0.3 mg/L ● Glyphosate 15 mg/L

