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ABSTRACT 1 

Agrochemicals often contaminate freshwater bodies, affecting microbial communities 2 

that underlie aquatic food webs. For example, Roundup, a widely-used glyphosate-3 

based herbicide (GBH), has the potential to indirectly select for antibiotic resistant 4 

bacteria. Such cross-selection could occur, for example, if the same genes (e.g. 5 

encoding efflux pumps) confer resistance to both glyphosate and antibiotics. To test for 6 

cross-resistance in natural aquatic bacterial communities, we added Roundup to 1,000-7 

L mesocosms filled with water from a pristine lake. Over 57 days, we tracked changes 8 

in bacterial communities with shotgun metagenomic sequencing, and annotated 9 

metagenome-assembled genomes (MAGs) for the presence of known antibiotic 10 

resistance genes (ARGs), plasmids, and resistance mutations in the enzyme targeted 11 

by glyphosate (enolpyruvyl-shikimate-3-phosphate synthase; EPSPS). We found that 12 

high doses of GBH significantly increased ARG frequency and selected for multidrug 13 

efflux pumps in particular. The relative abundance of MAGs after a high dose of GBH 14 

was predictable based on the number of ARGs encoded in their genomes (17% of 15 

variation explained) and, to a lesser extent, by resistance mutations in EPSPS. 16 

Together, these results indicate that GBHs have the potential to cross-select for 17 

antibiotic resistance in natural freshwater bacteria.  18 

 19 

IMPORTANCE 20 

Glyphosate-based herbicides (GBHs) such as Roundup may have the unintended 21 

consequence of selecting for antibiotic resistance genes (ARGs), as demonstrated in 22 

previous experiments. However, the effects of GBHs on ARGs remains unknown in 23 

natural aquatic communities, which are often contaminated with pesticides from 24 

agricultural runoff. Moreover, the resistance provided by ARGs compared to canonical 25 

mutations in the glyphosate target enzyme, EPSPS, remains unclear. Here we used 26 

freshwater mesocosm experiments to show that GBHs strongly select for ARGs, 27 

particularly multidrug efflux pumps. These selective effects are evident after just a few 28 

days, and at glyphosate concentrations that are high but still within short-term (1-4 day) 29 

regulatory limits. The ability of bacteria to survive and thrive after GBH stress was 30 

predictable by the number of ARGs in their genomes, and to a lesser extent by 31 
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mutations in EPSPS. GBHs are therefore likely to select for higher ARG frequencies in 32 

natural streams, lakes, and ponds. 33 

 34 

KEYWORDS Antibiotic resistance genes, indirect selection, herbicide, antibiotic efflux 35 

pump, metagenomics 36 

  37 
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INTRODUCTION 38 

 39 

Glyphosate-based herbicides (GBHs) are by far the most extensively used weed-killers 40 

worldwide, especially since the introduction of transgenic glyphosate-resistant crops in 41 

the 1990s [1,2]. Glyphosate residues can spread widely and accumulate in soil, water, 42 

and plant products, raising concerns over human and environmental health [3]. A recent 43 

systematic review and risk analysis concluded that glyphosate poses a moderate to 44 

high risk to freshwater biodiversity in 20 of the countries investigated [4]. Some of the 45 

highest aquatic concentrations of glyphosate were found in countries with the largest 46 

production of genetically engineered glyphosate-tolerant crops globally, including the 47 

United States, Brazil, and Argentina [2,4]. 48 

 49 

Although designed to control weed growth, glyphosate may also affect microorganisms 50 

that use the herbicide’s molecular target, the enzyme enolpyruvyl-shikimate-3-51 

phosphate synthase (EPSPS), to synthesize aromatic amino acids [5]. The EPSPS is 52 

classified into four classes according to mutations in the enzyme active site that confer 53 

differential sensitivities to glyphosate [6]. In bacteria, EPSPS classes I and II, which are 54 

respectively sensitive and tolerant to glyphosate, are the most frequently found, while 55 

classes III and IV are rarer and both confer glyphosate resistance [6]. The EPSPS class 56 

II sequence isolated from a strain of Agrobacterium tumefaciens is used as the 57 

transgene in most commercially available glyphosate-resistant crops [7,8].  58 

 59 

Experiments conducted in diverse environments, such as soil and freshwater [9–11] and 60 

the bee gut microbiome [12], have shown that bacterial taxa from natural ecosystems 61 

vary in their sensitivity to glyphosate. Some of this variation is explained by the 62 

distribution of different EPSPS classes. However, while strains with the EPSPS class I 63 

are known to be sensitive, they have also been observed to tolerate glyphosate through 64 

unknown mechanisms [12], indicating that additional EPSPS-independent glyphosate 65 

resistance mechanisms likely exist in nature.  66 

 67 

Studies with bacterial cultures have shown an increased resistance to antibiotics after 68 

exposure to high concentrations of glyphosate and other herbicides [13–17]. In the 69 
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presence of glyphosate, the expression of membrane transporters may confer 70 

resistance to glyphosate and antibiotics simultaneously [18]. Specifically, multidrug 71 

efflux pumps have been experimentally shown to confer resistance to both glyphosate 72 

and antibiotics, presumably by exporting a variety of small molecules [13,14, 18]. This is 73 

an example of cross-resistance, a mechanism of indirect selection through which one 74 

resistance gene or biochemical system confers resistance to other antimicrobial agents 75 

[19,20].  76 

 77 

Direct selection of antibiotic resistance arises when bacteria are exposed to an antibiotic 78 

agent and mutations conferring resistance to this agent are selected [21]. In contrast, 79 

indirect selection for antibiotic resistance occurs in the absence of the antibiotic, either 80 

via cross- or co-resistance [19,20]. Cross-resistance occurs when the same gene 81 

confers resistance to multiple antibiotic agents, while co-resistance occurs when a 82 

resistance gene is genetically linked to another gene that is not necessarily an antibiotic 83 

resistance gene (ARG), but that is under positive selection. 84 

 85 

Most studies of cross-resistance induced by herbicides focused on bacterial isolates in 86 

laboratory experiments [13–16,22]. A recent study has shown that herbicide selection 87 

increases the prevalence of ARGs in soil bacterial communities, using observational 88 

and experimental field data [23]. However, we still lack evidence for aquatic 89 

communities, which are of particular interest because herbicides often reach 90 

waterbodies through leaching, runoff, and spray drift from agricultural fields [4,24]. 91 

Moreover, the extent of direct selection on EPSPS mutations compared to indirect 92 

selection on ARGs is unclear. In a previous study, we used 16S ribosomal gene 93 

amplicon sequencing to assess how the composition of freshwater bacterioplankton 94 

communities respond to a GBH applied alone or in combination with a widely-used 95 

neonicotinoid insecticide [11]. As part of the same experiment, we also showed how 96 

phytoplankton undergo community rescue in response to lethal GBH doses [25], and 97 

how zooplankton community properties were differentially affected by pesticides, even 98 

at glyphosate concentrations below North American water quality guidelines [26]. 99 

Because GBH was the main driver of changes in the composition of the bacterial 100 
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community, we expand on our previous work and investigate the effects of the GBH on 101 

ARG frequencies in aquatic bacterial communities in this study, using the same outdoor 102 

array of experimental ponds (Fig. 1A).  103 

 104 

To test the extent to which contamination with GBH cross-selects for ARGs in complex 105 

aquatic communities over time, we performed an 8-week experiment in which we 106 

exposed freshwater mesocosms to two glyphosate concentrations for six weeks (0.3 107 

and 15 mg/L; Phase I) and to a higher dose for 2 weeks (40 mg/L; Phase II) (Fig. 1B). 108 

We sequenced metagenomes from each mesocosm and reconstructed Metagenome-109 

Assembled Genomes (MAGs) of bacteria, which were annotated according to their 110 

taxonomy, presence of ARGs, plasmids, and resistance mutations in the EPSPS 111 

enzyme. We hypothesize that the frequency of ARGs in bacterial communities 112 

increases after exposure to a high concentration of glyphosate, and that efflux pumps 113 

are among the main resistance mechanisms promoted by GBH. We also expect that 114 

MAGs encoding many ARGs or the resistant classes of the EPSPS gene will be the 115 

most likely to survive and proliferate after GBH exposure. Consistent with these 116 

expectations, we find that high doses of GBH (15 and 40 mg/L glyphosate) cross-select 117 

for ARGs, particularly multidrug efflux pumps. These results show how severe 118 

contamination of aquatic systems with GBH could indirectly select for antibiotic 119 

resistance.  120 

 121 

RESULTS 122 

Glyphosate-based herbicide treatment increases antibiotic resistance gene 123 

frequency  124 

To test the effects of a GBH on ARGs frequency along the experiment, we tracked 125 

variation in the number of metagenomic reads mapped to the Comprehensive Antibiotic 126 

Resistance Database (CARD), hereafter referred to as ARG reads, and in the counts of 127 

unique ARGs over time, both normalized by the total number of reads in each sample 128 

(Fig. 2). In Phase I of the experiment, two pulses of a GBH were applied to reach 129 

concentrations of 0.3 mg/L and 15 mg/L glyphosate. Only the latter increased ARG 130 

frequencies over time, either when measured as the number of unique ARGs (GAM 131 
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F=15.65 p<0.001, Table 1, Fig. S1), or as the number of ARG reads (GAM F=15.78 132 

p<0.001, Table 1, Fig. S1). The concordance of these two metrics suggests that the 133 

effect of GBH on ARGs was not due to a few highly responsive resistance genes, but to 134 

multiple unique genes. In Phase II, a single dose of 40 mg/L glyphosate was applied to 135 

all mesocosms except for the Phase II controls, triggering an increase in ARG 136 

frequencies across all treated ponds (Fig. 2). ARG frequencies increased over time, due 137 

mainly to the Phase II GBH pulse (Table 1, Fig. S1). Nutrient enrichment produced a 138 

weak but significant effect only when considered alone, not in interaction with time 139 

(Table 1). Overall, these results support the hypothesis that the GBH treatment has the 140 

most dominant and strongest positive effect on ARG frequencies over time. 141 

 142 

GBH selects for specific gene functions, including antibiotic efflux 143 

To assess how GBH affected known gene functions beyond ARGs in the bacterial 144 

communities, we built Principal Response Curves (PRCs) based on SEED annotations 145 

of genes in the metagenomes. The PRCs revealed a clear effect of GBH on the 146 

composition of gene functions (Fig. S2). In Phase I, the first pulse of 15 mg/L 147 

glyphosate induced greater deviations from controls than the second pulse. In Phase II, 148 

all ponds receiving 40 mg/L glyphosate deviated from the controls. Resistance to 149 

antibiotics is among the functions positively affected by GBH treatment, as indicated by 150 

the positive scores of the SEED subsystems “Virulence, Disease and Defense”, at level 151 

1 (Fig. S2A), and “Resistance to antibiotics and toxic compounds”, at level 2 (Fig. S2B). 152 

Table S1 shows the complete list of PRC scores for all SEED subsystems at levels 1 153 

and 2. Membrane transport (level 1, Fig. S2A), such as the ATP-binding cassette (ABC) 154 

transporters (level 2, Fig. S2B), are among the positively selected functions. These 155 

genes could plausibly change cell permeability to various molecules, including 156 

glyphosate. 157 

 158 

To assess the effects of GBH on ARGs at a higher level of resolution, we built another 159 

set of PRCs based on ARG profiles predicted from reads mapping to CARD. The 160 

resulting PRC plot showed a prominent effect of the first and second pulses of 15 mg/L 161 

of glyphosate in Phase I (Fig. 3). In Phase II, the GBH had an effect in all treatments 162 
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that received a last pulse (40 mg/L glyphosate). This result is consistent with the greater 163 

effect of the large Phase II pulse compared to smaller Phase I pulses on total ARG 164 

frequencies (Fig. 2 and Fig. S1). The two principal resistance mechanisms of the ARGs 165 

annotated by CARD are antibiotic efflux and antibiotic inactivation (shown respectively 166 

in blue and red text in Fig. 3). Genes encoding antibiotic efflux functions were more 167 

often found with positive PRCs scores (Fisher’s exact test, p=0.013), suggesting that 168 

they tend to be selected more often than other ARGs in the presence of GBH. This 169 

result supports the hypothesis that membrane transporters used for antibiotic efflux 170 

could also play a role in exporting glyphosate from bacterial cells. 171 

 172 

Connecting resistance genes to genomes and plasmids 173 

Thus far, our results have only considered ARGs outside the context of the bacterial 174 

genomes or plasmids in which they occur. On average, 71% (± 3; range = 45–94%, 175 

Table S2) of ARG reads across samples (those mapping to CARD) also mapped to 176 

MAGs, meaning that MAGs captured a large fraction of ARG reads in the 177 

metagenomes. We identified putative plasmids in 390 MAGs, with an average of 43 178 

plasmid contigs per MAG (min=1, max=520, SE=3.5, Table S3). However, only 27 179 

plasmid contigs were annotated with ARGs. Out of a total of 188 MAGs with ARGs, only 180 

24 (13%) of them had at least one ARG identified in a potential plasmid. Although some 181 

ARGs are certainly encoded on plasmids, ARGs are better associated with genomes 182 

than with MAG plasmids in our study. 183 

 184 

Of the 426 total MAGs, only 20 recruited 100 or more ARG reads, and the classification 185 

of their EPSPS genes varied (Fig. S3, S4). To visualize which ARGs were more 186 

abundant in GBH treatments and in which MAGs they were found, we examined the 187 

frequency of metagenomic reads mapped to ARGs according to their antibiotic 188 

resistance ontology (ARO) classification (top graphs in Fig. S3 and Fig. S4) as well as 189 

the proportion of these reads that were mapped to MAGs (bottom graphs in Fig. S3 and 190 

Fig. S4). These visualizations confirmed the response of efflux pumps (e.g. mex genes) 191 

to GBH. The relative abundance of mex genes is strongly associated with a 192 

Pseudomonas putida MAG (Fig. S3; bottom right panel) but are sometimes also 193 
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associated with other MAGs such as Aeromonas veronii (Fig. S3), Oxalobacteraceae, 194 

and Azospirillum (Fig. S4). It is thus likely that GBH selects for efflux pump genes in 195 

multiple different genomic backgrounds. 196 

 197 

The number of ARGs encoded in a MAG predicts its frequency after severe GBH 198 

exposure  199 

Our results thus far suggest an important role for ARGs, and efflux pumps in particular, 200 

in allowing bacterioplankton to survive and grow in the presence of a GBH. We next 201 

asked, what is the importance of ARGs relative to genetic variation in the glyphosate 202 

target enzyme, EPSPS? Based on known sequence variation in the EPSPS encoding 203 

gene, we were able to classify MAGs as putatively glyphosate resistant, sensitive, or 204 

unclassified. We also defined a MAG's antibiotic resistance potential as the number of 205 

ARGs identified in their genomes (i.e. number of RGI strict hits). We then tested the 206 

extent to which these genomic features were predictive of a MAG's average relative 207 

abundance across ponds at the end of the experiment, after receiving 40 mg/L 208 

glyphosate in Phase II. We found that MAGs encoding more unique ARGs tended to 209 

have higher relative abundance after receiving the Phase II GBH pulse (Fig. 4A, Table 210 

2). The effect of antibiotic resistance potential was highly significant (multiple linear 211 

regression model, t=9.53 p<0.001, Table 2), and was not observed in control ponds that 212 

did not receive the Phase II pulse (Fig. S5A; t=2.26 p=0.025; not significant after 213 

Bonferroni correction, Table S1). The relative abundance of MAGs at the end of the 214 

experiment in these control ponds was predicted by their relative abundance in phase I 215 

(40% of variance explained; Table S4), consistent with temporal autocorrelation (e.g. 216 

due to random fluctuations in species abundances). In contrast to the strong effect of 217 

ARGs on predicting MAG relative abundance post-glyphosate stress (17% of variance 218 

explained; Table 2), EPSPS classification explained only 2% of the variation – in both 219 

Phase II treatment and control ponds.  220 

 221 

To further explore these results, we used a regression tree analysis to identify primary 222 

drivers of MAG abundance at the end of Phase II. Instead of combining the three major 223 

classes of ARGs (antibiotic target alteration, antibiotic inactivation and antibiotic efflux), 224 
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we used each of them as a separate predictor in the regression tree. The first division 225 

splits MAGs with at least one antibiotic efflux gene (Fig. 4B, node 7) which were on 226 

average more abundant post-GBH pulse than those without efflux genes (Fig. 4B, node 227 

2). Among MAGs with efflux genes, the more genes they had, the higher their 228 

abundance. Among MAGs without antibiotic efflux genes, the EPSPS classification was 229 

an important driver of their abundance, followed by the MAG's average abundance in 230 

Phase I. In the absence of a GBH pulse in Phase II, the primary driver of MAG 231 

abundance in Phase II controls was their mean relative abundance in Phase I (Fig. S5). 232 

Control pond regression trees also included a split between resistant/sensitive and 233 

unclassified EPSPS, which is difficult to interpret biologically and likely attributable to 234 

noise. This could also explain why 2% of the variation in MAG relative abundance in 235 

control ponds was explained by EPSPS class. Together, these results indicate that a 236 

bacterial genome's ARG coding potential is predictive of its ability to persist in the face 237 

of GBH stress – more so than the class of EPSPS enzyme it encodes. 238 

 239 

Discussion 240 

Our mesocosm experiment used deep metagenomic sequencing to detect the effect of 241 

a GBH Roundup on microbial genes and genomes in semi-natural freshwater bacterial 242 

communities. We show that exposure to GBH in high concentrations (15 mg/L and 40 243 

mg/L glyphosate) increases the frequency of ARGs in freshwater bacterioplankton. 244 

Moreover, we show that the abundance of MAGs after severe contamination (40 mg/L 245 

glyphosate) was predicted based on the number of ARGs they encoded, and these 246 

'successful' MAGs tended to have at least one antibiotic efflux gene annotated in their 247 

genome. The effect of GBH on ARGs is likely due to cross-resistance, since the 248 

multidrug efflux pumps which rise in frequency in response to GBH could potentially 249 

transport glyphosate in addition to antibiotics [18]. Alternatively, co-resistance could play 250 

a role if GBH selects for bacterial genomes (rather than specific genes) that happen 251 

also to encode ARGs. While we cannot exclude a role for co-resistance entirely, the 252 

cross-resistance model is more plausible since efflux genes are strongly affected, likely 253 

in multiple independent genomic backgrounds. As discussed in detail below, direct 254 
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selection for EPSPS appears to be weak, implying that ARGs are unlikely to achieve 255 

high frequency due to genetic linkage with resistant EPSPS alleles.  256 

 257 

An association between glyphosate and increases in ARGs and mobile genetic 258 

elements has been previously found in soil microbiomes, as demonstrated in a recent 259 

study combining experimental microcosms and environmental data from agricultural 260 

field sites in China [23]. Through laboratory assays in three bacterial strains, the authors 261 

quantified the conjugation frequency of a multidrug resistance plasmid induced by 262 

glyphosate and further investigated changes in cell membrane permeability. They 263 

detected a significant increase in conjugation frequency and augmented cell membrane 264 

permeability in the presence of glyphosate, suggesting that glyphosate stress increases 265 

membrane permeability, thereby promoting plasmid movement. Here, we provide 266 

additional support for the hypothesis that cell membrane permeability is altered in the 267 

presence of glyphosate, as demonstrated by the selection of membrane transport 268 

mechanisms, such as ABC transporters [27] among the annotated gene functions most 269 

responsive to the GBH treatments. In contrast, although we did not quantify the 270 

frequency of conjugation in our experiment, we did identify some ARGs located on 271 

putative plasmids. Of the MAGs encoding ARGs, only 13% contained a plasmid-272 

encoded ARG. It is possible that unassembled plasmids or plasmids not associated with 273 

MAGs could harbor ARGs. Including such plasmids would not be expected to change 274 

our major conclusion that ARGs are more predictive of MAG frequency post-GBH 275 

exposure than EPSPS. In addition to plasmids, other mechanisms also contribute to 276 

horizontal gene transfer between bacteria, such as phage-mediated transduction and 277 

transformation [28], and future studies could test how these processes may be affected 278 

by GBH stress. 279 

 280 

Strikingly, antibiotic resistance potential, particularly the presence of antibiotic efflux 281 

genes, was more important than the EPSPS classification in explaining variation in 282 

MAG abundance in Phase II, after a high GBH pulse. This evidence of cross-resistance 283 

in semi-natural communities may help explain why, in previous experiments also 284 

performed with complex communities, bacterial strains with the sensitive EPSPS 285 
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encoding gene were resistant to glyphosate, as it is the case of two strains of 286 

Snodgrassella alvi in the bee gut microbiome [12]. Although EPSPS alleles were weakly 287 

predictive of MAG relative abundance after the phase II GBH pulse, their effects were 288 

clearly secondary to the strong effects of ARGs. Computational gene annotations of 289 

both ARGs and resistant or sensitive EPSPS have limitations because they are based 290 

on sequence similarity, not on phenotypic measurements. Therefore, we cannot entirely 291 

exclude a role for EPSPS alleles in conferring GBH resistance in nature, but their 292 

effects were small in our experiment. Together, our results strongly suggest that ARGs 293 

(and efflux pumps in particular) could be more relevant to glyphosate resistance in 294 

nature than mutations in the glyphosate target enzyme. 295 

 296 

Our study also aligns with previous single-strain laboratory evidence that antibiotic 297 

resistance may enhance bacterial survival in the presence of pesticides. Laboratory 298 

assays of bacterial isolates showed accelerated rates of antibiotic resistance selected 299 

by exposure to agrochemicals [15,16]. Additionally, it has been shown that the targeted 300 

deletion of efflux pump genes can neutralize the increased tolerance to kanamycin and 301 

ciprofloxacin in Escherichia coli and Salmonella enterica serovar Typhimurium in the 302 

presence of GBH [13,14]. As we further show in a more natural system, efflux pumps 303 

may provide resistance to both glyphosate and certain antibiotics. Whether all efflux 304 

pumps are equally capable of transporting various molecules out of the cell remains to 305 

be seen, and other resistance mechanisms could also play a role.  306 

 307 

It should be noted that we used a commercial Roundup formulation of the herbicide 308 

glyphosate, which includes other constituents that may also influence microbial 309 

communities and cellular physiology. For example, the surfactant polyethoxylenamine 310 

(POEA) has produced negative effects on Vibrio fischeri at lower doses than glyphosate 311 

acid [29]. However, given that our results are in general agreement with previous soil 312 

experiments using pure glyphosate [23], we believe that our findings are at least in part 313 

attributable to an effect of glyphosate itself. Furthermore, regardless of whether it is 314 

glyphosate or other constituents of GBH that drive cross-selection of ARGs, assessing 315 
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the risks associated with commercial formulations is more ecologically realistically, as 316 

these formulations are used in agriculture fields and lawns [30]. 317 

 318 

On an applied level, the safety assessment process for pesticides such as glyphosate, 319 

currently based on toxicity to model organisms [31,32], should consider the potential 320 

effects on bacterioplankton and selection for ARGs. Our results highlight the role of 321 

GBH contamination as an indirect selective pressure favouring ARGs in natural 322 

communities. Although glyphosate concentrations as high as the ones inducing this 323 

effect (i.e. 15 mg/L and 40 mg/L) are rarely found in nature, there are reports of 324 

glyphosate levels up to 105 mg/L detected during the rainy season close to agricultural 325 

fields; as observed in Argentina [4], for example. Additionally, currently regulated 326 

acceptable concentrations of glyphosate in freshwaters in the USA and Canada for 327 

short-term exposure (1-4 days)  are close to the concentrations used in our experiment 328 

(respectively 49.9 mg/L [32] and 27 mg/L [31]). Here we have shown that ARG 329 

frequencies can rise dramatically just a few days after GBH treatment, suggesting that 330 

even currently acceptable short-term glyphosate exposure could provoke similar 331 

selection for ARGs in natural water bodies. The extent to which these ARGs, and the 332 

bacteria that encode them, can be mobilized across aquatic ecosystems, and from 333 

these ecosystems into animals and humans, remains to be seen.  334 

 335 

METHODS 336 

 337 

Experimental design  338 

An eight-week mesocosm experiment was conducted at the Large Experimental Array 339 

of Ponds (LEAP) facility (Fig. 1A) located at McGill University’s Gault Nature Reserve 340 

(QC, Canada) from August 17th (day 1) to October 12th (day 57) 2016, as previously 341 

described [11,25,26]. Pond mesocosms were filled with 1,000 L of water and planktonic 342 

communities from Lake Hertel (45°32’ N, 73°09’ W). Lake water was passed through a 343 

coarse sieve to prevent fish introduction, while retaining lake bacterioplankton, 344 

zooplankton and phytoplankton, whose responses to experimental treatments have 345 

been described in previous studies [11,25,26].  346 

 347 
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Fig. 1B illustrates the experimental design of a subset of eight treatments selected for 348 

the metagenomic sequencing analyses reported here (see [25] for a full description of 349 

all treatments at the LEAP facility in 2016). The eight ponds were sampled at 11 350 

timepoints throughout phases I and II of the experiment. In Phase I (days 1-44), all 351 

ponds received nutrient inputs biweekly, simulating mesotrophic or eutrophic lake 352 

conditions with additions of a concentrated nutrient solution. Four ponds were treated 353 

with a GBH to reach target concentrations of 0.3 or 15 mg/L of the active ingredient 354 

(glyphosate; acid equivalent), while the other four were kept as control ponds. The GBH 355 

was applied in two pulses in Phase I, at days 6 and 33. In Phase II (days 45-57), two 356 

control ponds (hereafter referred to as Control Phase I) and the four treatment ponds 357 

received one pulse of the GBH at a higher dose (40 mg/L glyphosate) on day 44, while 358 

other two other control ponds (hereafter referred to as Control Phase II) received no 359 

pulse.  360 

 361 

Target doses of the active ingredient were calculated based on the glyphosate acid 362 

content in Roundup Grass and Weed Control Super Concentrate (Bayer ©), the 363 

formulation used for the experiment. We used a commercial formulation to mimic 364 

environmental contamination, and because the costs of using pure glyphosate salt 365 

would be prohibitive in a large-scale field experiment. Treatments are referred to by 366 

their glyphosate acid concentration to allow comparison with other formulations. 367 

Nutrients were added in the form of nitrate (KNO3) and phosphate (KH2PO4 and K2PO4), 368 

with target concentrations of 15 µg P/L and 231 µg N/L in the low-nutrient (mesotrophic) 369 

treatment ponds and 60 µg P/L and 924 µg N/L for in the high-nutrient (eutrophic) 370 

treatment ponds. The concentrated nutrient solution had an N:P molar ratio of 33 371 

comparable to our source lake. Target doses of glyphosate acid and nutrients were 372 

achieved reasonably well, as reported in previous studies [11,25]. 373 

 374 

DNA extraction and metagenomic sequencing 375 

The eight experimental ponds were sampled for bacterioplankton DNA at 8 timepoints 376 

during Phase I (days 1, 7, 15, 30, 35, 38, 41 and 43) and 3 timepoints during Phase II 377 

(days 45, 49 and 57). Water samples were collected with 35 cm long integrated 378 
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samplers (2.5 cm diameter PVC tubing) at multiple locations in the same pond and 379 

stored in 1 L dark Nalgene bottles, at 4 °C until being filtered within 4 hours. We 380 

filtered 250 mL of each sample on site, through 0.22 µm pore size Millipore hydrophilic 381 

polyethersulfone membranes of 47 mm diameter (Sigma-Aldrich, St. Louis, USA). 382 

Filters were stored at -80 ºC until DNA extraction. 383 

 384 

We extracted DNA from a total of 88 filter samples using the PowerWater DNA Isolation 385 

kit (MoBio Technologies Inc.) following the manufacturer’s guidelines. Shotgun 386 

metagenomic sequencing was performed using the Illumina HiSeq 4000 technology 387 

with 100 bp paired-end reads. Libraries were prepared with 50 ng of DNA using the 388 

NEBNext Ultra II DNA Library Prep kit for Illumina (New England Biolabs®) as per the 389 

manufacturer’s recommendations, and had an average fragment size of 390 bp. 390 

 391 

Metagenomic read trimming, functional annotation and ARGs inference from 392 

metagenomic reads 393 

We removed Illumina adapters and quality filtered metagenomic reads using 394 

Trimmomatic [33] in the paired-end mode. We used FragGeneScan [34] for gene 395 

prediction from trimmed metagenomic reads and annotated predicted genes with SEED 396 

subsystems [35]. To identify known ARGs in the metagenomic reads, we used the 397 

Resistance Gene Identifier (RGI) ‘bwt’ function that maps FASTQ files of reads passing 398 

quality control to CARD [36] using Bowtie2 (version 2.4) as an aligner [37]. Only 399 

alignments with mapping quality (MAPQ) higher than 10 and gene coverage of 50% 400 

were retained. To calculate the proportion of metagenomic reads mapped to CARD that 401 

have been assembled and binned to genomes, we extracted reads that aligned to 402 

CARD using Samtools [38] and mapped them to MAGs using Bowtie2 [37]. Table S2 403 

shows the total number of reads by sample after trimming and a summary of the RGI 404 

output by sample for hits with minimum gene coverage of 50% and average MAPQ>10. 405 

 406 

Metagenomic de novo co-assembly, binning, dereplication and curation of MAGs 407 

We organized the dataset into eight sets of metagenomes, each of them containing 408 

samples of the same mesocosm pond (Fig. 1B) from multiple timepoints. We co-409 

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted December 16, 2021. ; https://doi.org/10.1101/2021.12.13.472531doi: bioRxiv preprint 

https://doi.org/10.1101/2021.12.13.472531
http://creativecommons.org/licenses/by-nc-nd/4.0/


 16 

assembled reads from each of the 8 timeseries using MEGAHIT v1.1.1 [39], with a 410 

minimum contig length of 1 kbp. We used anvi’o v5.1 [40] to profile contigs, to identify 411 

genes using Prodigal v2.6.3 [41] and HMMER v3.2.1 [42], to infer the taxonomy of 412 

genes with Centrifuge v1.0.4 [43], to map metagenomic reads to contigs using Bowtie2 413 

v2.4.2 [37], and then to estimate depth of read coverage across contigs. Finally, we 414 

used anvi’o to cluster contigs according to their sequence composition and coverage 415 

across samples with the automatic binning algorithm CONCOCT [44] and we manually 416 

refined the bins (n=830) using the anvi’o interactive interface, as suggested by 417 

developers [40], by removing splits that diverged in the differential coverage and/or 418 

tetra-nucleotide frequency of most splits in the same bin. 419 

 420 

We dereplicated bins as described in [45]. In summary, we calculated the Pearson 421 

correlation coefficient between the relative abundance (i.e. the mean coverage 422 

calculated by the function ‘anvi-summarize’ within anvi’o) for each pair of bins in the 423 

metagenomic samples, using the ‘cor’ function in R [46], and the average nucleotide 424 

identity (ANI) of bins affiliated to the same phylum, using NUCmer [47]. Taxonomy 425 

assignment of redundant bins was done using CheckM [48]. Bins with a Person 426 

correlation coefficient above 0.9 and ANI of 98% or more were considered redundant. In 427 

a total of 830 bins obtained before performing the dereplication, we found 607 non-428 

redundant bins, of which 426 were classified as MAGs, as they had at least 70% 429 

completeness and no more than 10% redundancy (see Table S2). We then created a 430 

non-redundant genomic database of these 426 MAGs to which we mapped 431 

metagenomic reads to calculate the relative abundance of each MAGs across the 432 

different samples. Here we define a MAG's relative abundance as the number of 433 

metagenomic reads recruited to a MAG divided by the total metagenomic reads in a 434 

given sample. 435 

 436 

Identification of ARGs, EPSPS and plasmids in MAGs 437 

We annotated ARGs within MAG contigs with the RGI ‘main’ function, that compares 438 

predicted protein sequences from contigs to the CARD protein reference sequence 439 

data. Within RGI, we used the BLAST [49] alignment option and the strict algorithm 440 
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(excluding nudge of loose hits to strict hits) for low quality contigs (<20,000 bp). The 441 

RGI low sequence quality option uses Prodigal anonymous mode [41] for the prediction 442 

of open reading frames, supporting calls of partial ARGs from short or low quality 443 

contigs. 444 

 445 

To identify EPSPS sequences from MAG contigs we first used Anvi’o to predict amino 446 

acid sequences of the non-redundant MAGs with the flag ‘report-aa-seqs-for-gene-calls’ 447 

of the function ‘anvi-summarize’. Gene calls of all the MAGs were concatenated 448 

conserving the original split names, and transformed into a fasta file. We then blasted 449 

the predicted amino acid sequences against a custom database with sequences of the 450 

EPSPS enzyme, using BLASTp [49] and a minimum e-value of 1e-5. After selecting the 451 

gene call with the best match (i.e. lowest e-value) to an EPSPS sequence in each of the 452 

426 MAGs, we used the EPSPSClass web server [6] to classify the retrieved sequences 453 

according to resistance to glyphosate. Sequences were classified as EPSPS class I, 454 

class II or class IV if they contained all the amino acid markers from the respective 455 

reference, i.e. if the percent identity was equal to 1; and classified as class III when they 456 

contained at least one complete motif out of 18 of the resistance-associated sequences, 457 

as explained in [6]. MAGs whose EPSPS sequences did not match these criteria of 458 

having at least one motif of class III or 100% percent identity with class I, II or IV, or 459 

those in which no predicted amino acid sequence matched a known EPSPS sequence 460 

were set as unclassified (roughly 27% of MAGs). EPSPS sequences matching class I 461 

were considered as putative sensitive and those with at least one motif of class III or 462 

matching class II as putative resistant. No sequences were found that matched to class 463 

IV. 464 

 465 

To identify potential plasmid contigs assembled to MAGs we used the plasmid classifier 466 

PlasClass [50]. We counted all contigs classified as plasmid with a minimum of 70% 467 

probability, as well as how many of these potential plasmid contigs were annotated with 468 

ARGs through RGI. Table S2 summarizes MAG information, including the predicted 469 

EPSPS sequence found in the genome, the EPSPS classification, the number of 470 

estimated plasmid contigs and how many of them contained ARG sequences. 471 
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 472 

Statistical analyses 473 

All statistical analyses were conducted in R v.4.0.2 [46]. Time series of (log-474 

transformed) ARG counts and ARG reads per million metagenomic reads were 475 

modelled using additive models (GAM) using the ‘mgcv’ R package [51]. We used 476 

GAMs to account for nonlinear relationships among the response variable and the 477 

predictors. Some predictors (nutrient and herbicide treatment levels) were coded as 478 

ordered factors; Table 1 lists all factors and predictors of the model. We built the models 479 

using the ‘gam’ function and assessed significance of effects with the ‘summary.gam’ 480 

function. We validated the models with the ‘gam.check’ function, inspecting the 481 

distribution of model residuals, comparing fitted and observed values, and checking if 482 

the basis dimension (k) of smooth terms were large enough. 483 

 484 

We used Principal Response Curves (PRCs) to test for the effect of treatments on the 485 

composition of ARGs and gene functional profiles over time. PRCs are a special case of 486 

partial redundancy analysis (pRDA) used in temporal experimental studies where 487 

treatments and the interaction between treatment and time are used as explanatory 488 

variables [52]. Time is the covariable (or conditioning variable) whose effect is partialled 489 

out and the response variable is the matrix containing compositional data (taxa or gene 490 

family relative abundances). We built PRCs using relative abundances of predicted 491 

genes grouped according to the SEED subsystem levels 1 and 2. In a more focused 492 

analysis, we built a PRC for the matrix of ARGs found in each sample, i.e. metagenomic 493 

reads mapped to each ARG from the CARD reference classified according to their 494 

Antibiotic Resistance Ontology (ARO). The matrices were transformed using the 495 

Hellinger transformation [53]. The PRC diagram displays the treatment effect on the y-496 

axis, expressed as deviations from the experimental controls at each time point. It also 497 

shows species scores on the right y-axis, which here can be interpreted as the 498 

contribution of each function or gene to the treatment response curves. We assessed 499 

the significance of the first PRC axis by permuting the treatment label of ponds while 500 

keeping the temporal order, using the ‘permute’ package [54] followed by a permutation 501 

test (999 permutations) using the ‘vegan’ package [55]. For the PRC based on ARG 502 
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composition, we tested if the distribution of PRC positive and negative scores was 503 

different among the resistance mechanisms of the identified ARGs using the ‘fisher.test’ 504 

function in the ‘stats’ package in R [46]. 505 

 506 

To test if MAG abundance in Phase II glyphosate treatments was correlated with their 507 

antibiotic resistance potential, we built a multiple linear regression with the ‘lm’ function 508 

of the R package ‘stats’ [46]. The response variable was the average relative 509 

abundance of a MAG in glyphosate-treated ponds in Phase II. The three predictors 510 

were: the MAG's antibiotic resistance potential (defined as the number of RGI strict hits 511 

found in the MAG), the average MAG relative abundance in the same ponds of Phase I, 512 

and their EPSPS sequence classification (resistant, sensitive or unclassified). To 513 

assess the relative contribution of the different predictors to MAG survival in Phase II, 514 

we performed a variance partitioning analysis with the ‘varpart’ function of the R 515 

package ‘vegan’ [55]. Finally, to visualize the hierarchy among predictors we 516 

constructed a conditional inference regression tree. Response variable and predictors 517 

were the same as described above, except that instead of grouping all ARG hits, we 518 

transformed them into three variables, according to their function: antibiotic target 519 

alteration, antibiotic inactivation, or antibiotic efflux. The regression tree was fitted with 520 

the ‘ctree’ function in the R package ‘party’ [46]. As a negative control, we repeated the 521 

same analyses for MAGs found in control ponds of Phase II. 522 

 523 

As multiple predictors were tested, we performed a Bonferroni correction for the additive 524 

and linear models, whereby the p-value significance threshold of 0.05 was divided by 525 

the number of statistical tests. 526 

 527 

Graphs and heatmaps for timeseries data visualization were built using the functions 528 

‘geom_point’ and ‘geom_tile’, respectively, in the R package ‘ggplot2’ [56]. 529 

 530 

Data accessibility 531 

Sequence data of the 88 metagenomic samples were submitted to NCBI SRA 532 

(BioProject PRJNA767443, accession numbers SRR16126824-SRR16126911) and the 533 
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genomes of 426 predicted MAGs have been deposited and associated to the same 534 

BioProject (BioSample accession numbers in Table S3). The data will be publicly 535 

available once the manuscript is accepted for publication, and it can be now accessed 536 

through the following reviewer link: 537 

https://dataview.ncbi.nlm.nih.gov/object/PRJNA767443?reviewer=vk9o7uf95h5cm1d8m538 

1mqnrc5fk. 539 
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 724 

 725 

Main figures legends 726 

Fig. 1 Experimental area and design. (A) Aerial photograph of the Large Experimental 727 

Array of Ponds (LEAP) at Gault Nature Reserve, in Mont Saint-Hilaire (Canada). The 728 

laboratory facility and inflow reservoir, where water from our source lake was redirected 729 

to before filling the mesocosms, can be seen at the top of the photograph. Our source 730 

lake, Lake Hertel, is located upstream (not shown in the photograph). (B) Schematic 731 

representation of the subset of mesocosms selected for metagenomic sequencing in 732 

this study. A total of eight ponds were sampled 11 times over the course of the 8-week 733 

experiment, which was divided in two phases: Phase I (6 weeks) and Phase II (2 734 

weeks). Phase I included two pulse applications (doses) of GBH, with three target 735 

glyphosate concentrations (0, 0.5, and 15 mg/L). In Phase II, all ponds except for two 736 

controls, shown in grey, received a higher dose of glyphosate (40 mg/L). Phase I 737 

included four control ponds (grey and yellow) while Phase II only included two controls 738 

(grey). Note that yellow ponds only received GBH in Phase II. Nutrients were also 739 

added to ponds to reproduce mesotrophic or eutrophic conditions, represented 740 

respectively by circles and squares (target phosphorus concentrations are indicated). 741 

TP: total phosphorus. 742 

 743 

Fig. 2 ARG frequencies increase in GBH treatments over time. (A) Number of 744 

unique ARGs per million metagenomic reads and (B) number of metagenomic reads 745 

mapped to ARGs per million metagenomic reads vary according to treatment and time. 746 

Dashed vertical lines indicate the application of Phase I GBH pulses and solid vertical 747 

line the Phase II pulse. The colour code refers to the target glyphosate concentrations in 748 

Phase I (pulse 1 and pulse 2), while in Phase II all treated ponds received a target of 40 749 

mg/L glyphosate. 750 
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 751 

Fig. 3 GBH skews composition of ARGs in favour of antibiotic efflux pumps. 752 

Principal Response Curves (PRCs) illustrating divergence (relative to controls) in the 753 

composition of ARGs in response to GBH exposure. The left y-axis represents the 754 

magnitude or ARG compositional response, while the right y-axis represents individual 755 

gene scores (i.e., relative contribution to overall compositional changes). Gene names 756 

(ARO) are colour-coded based on their mechanism of resistance. Dashed vertical lines 757 

indicate the timing of GBH pulses in Phase I, and the solid vertical line represents the 758 

pulse in Phase II. The zero line (y=0) represents the low nutrient control pond from both 759 

Phase I and II. The PRC explains 30% of the total variance (PERMUTEST, F=22.8, 760 

p=0.024). Treatments and time interactively explain 74.8% of the variance while 25% is 761 

explained by time alone.  762 

 763 

Fig. 4 Antibiotic resistance potential predicts MAG relative abundance after 764 

severe GBH stress. (A) Boxplots show a positive correlation between MAGs 765 

abundance in Phase II and their potential for antibiotic resistance. Each dot represents 766 

a MAG that is color-coded based on the predicted resistance of their EPSPS. A slight 767 

offset on x-axis (jitter) was introduced to facilitate data visualization. See Table 2 for 768 

regression coefficients. (B) Regression tree confirms the significance of the correlation 769 

seen in (A), particularly for antibiotic efflux genes. Two other factors were also included, 770 

and have small effects on MAG relative abundance in Phase II: the EPSPS 771 

classification and the average abundance of MAGs in Phase I. 772 

 773 

Supplementary Material 774 

 775 

Tables 776 

 777 

Table S1 PRC scores from functional annotations shown in Fig. S2 778 

 779 
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Table S2 Metagenomic sample information, summary of RGI output for hits above 780 

mapping threshold (MAPQ>10 and minimum of 50 gene percent coverage) and 781 

proportion of sample reads mapped to CARD (ARG reads) that mapped back to MAGs. 782 

 783 

Table S3 MAG information, predicted EPSPS amino acid sequence, summary of ARGs 784 

and plasmids. For each predicted EPSPS sequence, the putative classification 785 

regarding glyphosate resistance is shown. The number of potential plasmid contigs and 786 

how many of these had ARGs annotated is also shown. Number of ARGs annotated to 787 

MAG contigs (total RGI strict hits) are provided in the last column. 788 

 789 

Table S4 Multiple linear regression model and variance partitioning of MAGs 790 

abundance in Phase II in control mesocosms. P-values are reported for each predictor, 791 

asterisks indicate significant p-values after Bonferroni correction (p<0.0125) and reports 792 

of significant factors are highlighted in bold. Adjusted R-squared equals 43.2 % for MAG 793 

abundance in controls as response variable (n=425, F-statistic:  78.7). 794 

 795 

Supplementary figures 796 

 797 

Fig. S1 Glyphosate increases ARG frequencies in experimental ponds. GAMs 798 

illustrating the time-dependent effect of GBH and nutrient treatments on unique ARGs in 799 

Phase I (A), in both Phase I and II (B), on ARG reads in Phase I (C), in both Phase I 800 

and Phase II (D). Dashed vertical lines indicate the application of Phase I GBH pulses 801 

and solid vertical line the Phase II pulse. Glyphosate acid concentration of pulses 802 

applied in Phase I (dose 1 and dose 2) are indicated in the legend, while in Phase II, all 803 

treatments received 40 mg/L, except the Control Phase II. Shades indicate a confidence 804 

interval of 95%. 805 

 806 

Fig. S2 Principal Response Curves of the experimental treatment effect on the 807 

composition of gene functional profiles predicted from metagenomic reads 808 

grouped according to (A) SEED subsystem level 1 and (B) level 2. Treatment effect 809 

is shown in the left y-axis while scores of genes (proportional to their contribution to the 810 
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treatment effect) are shown in the right y-axis. Dashed vertical lines indicate the 811 

application of Phase I glyphosate pulses and solid vertical line the Phase II glyphosate 812 

pulse. Glyphosate concentration of pulses applied in Phase I (dose 1 and dose 2) are 813 

indicated by the legend, while in Phase II all treatments received 40 mg/L of glyphosate, 814 

except the Phase II controls. Treatment effect zero is equivalent to the low nutrient 815 

control Phase II pond. Function of resistance to antibiotics is highlighted in red 816 

according to how it is named in (A) SEED subsystem level 1 (50.9% of total variance 817 

explained, PERMUTEST F=43.1 p=0.023) and (B) SEED subsystem level 2 (33.1% of 818 

total variance explained, PERMUTEST F=25.8 p=0.027), where only scores with 819 

absolute values larger than 0.05 are reported (all scores are shown in Table S1). 820 

 821 

Fig. S3 Metagenomic reads mapped to ARGs classified according to their ARO 822 

(top graph) and ARG reads mapped to MAGs (bottom graph) in low nutrient 823 

ponds. MAG identities are followed by their finest taxonomic assignment (o=order, 824 

f=family, g=genus, s=species). Only alignments with MAPQ>10 were tallied. Dashed 825 

vertical lines represent Phase I GBH and solid vertical lines are Phase II pulses (all at 826 

40 mg/L glyphosate). 827 

 828 

Fig. S4 Metagenomic reads mapped to ARGs classified according to their ARO 829 

(top graph) and ARG reads mapped to MAGs (bottom graph) in high nutrient 830 

ponds. MAG identities are followed by their finest taxonomic assignment (o=order, 831 

f=family, g=genus, s=species). Only alignments with MAPQ>10 were tallied. Dashed 832 

vertical lines represent Phase I GBH pulses and solid vertical lines are Phase II pulses 833 

(all at 40 mg/L glyphosate). 834 

 835 

Fig. S5 MAG mean relative abundance in controls of Phase II as a function of 836 

antibiotic resistance potential (or the amount of ARGs annotated to their 837 

genomes) and the classification of EPSPS enzyme (resistant, sensitive or 838 

unclassified). (A) Series of boxplots show the absence of correlation between MAGs 839 

abundance in Phase II and their potential for antibiotic resistance. Each dot represents 840 

a MAG that is color-coded according to the potential resistance of their EPSPS. To 841 
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facilitate visualization, a small amount of random variation (jitter) was added so dots 842 

would not overlap. Table 2 reports statistics of a linear model that tested how MAG 843 

abundance in Phase II controls could be explained by EPSPS classification, antibiotic 844 

resistance potential and MAG abundance in Phase I. (B) Regression tree with MAG 845 

abundance in controls of Phase II as the response variable and the following predictors: 846 

the EPSPS enzyme classification, the number of ARGs classified as antibiotic efflux, 847 

antibiotic inactivation or target alteration, and the MAG relative abundance in Phase I. 848 
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Table 1. Summary of GAMs showing the effect of GBH on ARG frequencies in phase I only and in both phases.  The top rows show 

unique ARGs as response variable, and the bottom rows show ARG reads. For each predictor of the model, when it is a parametric term we 

report the respective parameter estimate with standard error (SE) and t value. For smooth terms, we report the effective degrees of freedom 

(EDF) and F statistic. Smooths terms are described as mgcv syntax (‘ti()’ are tensor product interactions). P-values are reported for each 

predictor and reports of significant factors after Bonferroni correction (p<0.0125) are highlighted in bold with an asterisk. A Gaussian 

residual distribution was used. 

 
Response variable/ 

Adjusted R2 
Predictors Factors

†
 Estimate (SE) or EDF t value or F p-value 

Unique ARG counts 

per million 

metagenomic reads 

(log10(x+1)) 

 

Adjusted R2= 65.1% 

(phase I, n=64)/ 74.6% 

(both phases, n=88) 

Parametric terms 
 

Phase I Both phases Phase I Both phases Phase I 
Both 

phases 

Treatment 

Control Phase I 
-0.001 

(±0.006) 

0.018 

(±0.006) 
-0.1 2.9 0.890 0.005* 

Glyphosate 0.3 mg/L 
0.003 

(±0.006) 

0.023 

(±0.006) 
0.5 3.8 0.633 <0.001* 

Glyphosate 15 mg/L 
0.035 

(±0.006) 

0.040 

(±0.006) 
6.2 6.7 <0.001* <0.001* 

Nutrient High nutrient 
-0.012 

(±0.004) 

-0.011 

(±0.004) 
-3.0 -2.7 0.005* 0.009* 

Smooth terms 
       

ti(day) - 1.0 6.8 0.02 2.71 0.903 0.010* 

ti(day, 

by=treatment) 

Control Phase I 1.0 3.2 0.03 10.04 0.861 <0.001* 

Glyphosate 0.3 mg/L 1.0 4.7 0.57 7.47 0.453 <0.001* 

Glyphosate 15 mg/L 3.9 4.3 15.65 5.01 <0.001* 0.002* 

ti(day, 

by=nutrient) 
High nutrient 1.0 1.0 0.60 0.25 0.444 0.620 

ARG reads per million 

metagenomic reads 

(log10(x+1)) 

 

Adjusted R2= 66.6% 

(phase I, n=64)/ 77.3% 

(both phases, n=88) 

Parametric terms 
 

Phase I Both phases Phase I Both phases Phase I 
Both 

phases 

Treatment 

Control Phase I 
-0.028 

(±0.105) 

0.322 

(±0.103) 
-0.3 3.1 0.790 0.003* 

Glyphosate 0.3 mg/L 
0.013 

(±0.105) 

0.320 

(±0.103) 
0.1 3.1 0.899 0.003* 

Glyphosate 15 mg/L 
0.678 

(±0.105) 

0.804 

(±0.103) 
6.5 7.8 <0.001* <0.001* 

Nutrient High nutrient 
-0.197 

(±0.074) 

-0.185 

(±0.073) 
-2.7 -2.6 0.010* 0.013 
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† 
When factor is absent it means the respective predictor variable is continuous (“day”) 

*Significant p-values after Bonferroni correction (p<0.0125) 

 

 

 

  

Smooth terms 
       

ti(day) - 1.0 6.7 0.21 2.77 0.648 0.009* 

ti(day, 

by=treatment) 

Control Phase I 1.0 3.5 0.11 12.27 0.737 <0.001* 

Glyphosate 0.3 mg/L 1.0 2.6 0.47 8.93 0.497 <0.001* 

Glyphosate 15 mg/L 3.9 4.6 15.78 6.90 <0.001* <0.001* 

ti(day, 

by=nutrient) 
High nutrient 1.0 1.0 3.92 1.52 0.053 0.222 
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Table 2 Multiple linear regression model and variance partitioning of MAGs abundance in Phase II in treatment mesocosms. P-

values are reported for each predictor, asterisks indicate significant p-values after Bonferroni correction (p<0.0125) and reports of significant 

factors are highlighted in bold with asterisks. Adjusted R-squared equals 21.1% for MAG persistence in treatments (n=426, F-statistic: 29.5). 

 

Response variable Predictors Estimate (SE) t value p-value Explained variance 

MAG mean 

abundance in Phase II 

treatment mesocosms 

EPSPS classification: 

- Sensitive 

- Resistant 

 

MAG antibiotic resistance potential 

 

MAG mean abundance in Phase I 

treatment mesocosms (log10) 

 

0.002 (±0.127) 

0.413 (±0.133) 

 

0.496 (±0.052) 

 

0.178 (±0.066) 

 

0.02 

3.11 

 

9.53 

 

2.69 

 

 

0.987 

0.002* 

 

<0.001* 

 

0.007 

2% 

 

 

 

17% 

 

1% 

 

Residuals: 79% 
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B

A

Nutrient background

     Mesotrophic (15 μg TP/L)

     Eutrophic (60 μg TP/L)

Herbicide treatment (glyphosate acid mg/L)

0.0 0.0

0.0 0.0

0.3 0.3

15 15

0.0 0.0

40 40

40 40

40 40

Phase I (2 pulses - 6 weeks) Phase II (1 pulse - 2 weeks)
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