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Abstract 

The number of colors that can be used in fluorescence microscopy to image the 

live-cell anatomy and organelles’ interactions is far less than the number of 

intracellular organelles and compartments. Here, we report that deep 

convolutional neuronal networks can predict 15 subcellular structures from super-

resolution spinning-disk microscopy images using only one dye, one laser 

excitation, and two detection channels. Comparing to the colocalization images, 

this method achieves pixel accuracies of over 91.7%, which not only bypasses the 

fundamental limitation of multi-color imaging but also accelerates the imaging 

speed by more than one order of magnitude. 

Maintext 

Until now, up to six colors excited by multiple lasers in fluorescence imaging can be 

used to simultaneously observe the interaction and coordination between organelles1-4. 

Further increase in color will be intrinsically limited by the dyes’ cross-talks in the 

spectrum domain, requiring special design of probes5. Besides, the labeling procedure 

becomes tedious and their labeling efficiency will drop exponentially when increasing 

the types of fluorophores. The long duration, as a result of the multiple excitations and 

image acquisition steps, is essentially required in multi-color fluorescence imaging, and 

consequently the phototoxicity further becomes a concern in live-cell imaging. Deep 

learning has been recently introduced to in-silico prediction of multi-color images from 

transmitted bright field images6-9. Nevertheless, they are all spatially diffraction-limited, 

suffering from low resolution and low contrast, therefore the prediction accuracy in 

recognizing the intracellular organelles is yet to be satisfactory6. 

Super-resolution microscopy, by taking advantage of their high resolution and contrast, 

has enabled the live-cell imaging of subcellular structures and dynamics10-13. Here we 

explore the segmentations of super-resolution images obtained from a commercial 

super-resolution spinning disk microscope (Fig. S1)14. To simplify both the labeling 

process and image collections, we universally stain all the subcellular lipid membranes 

with a lipid dye Nile Red. We further employ a two-color detection to discriminate 
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vesicle organelles with similar shapes and sizes, as the emission spectrum of the dye 

responds to the lipid polarity of membranes14. We demonstrate such a simple 

preparation of cell staining and rapid acquisition of spatial and spectral imaging data 

can empower deep convolutional neural network (DCNN) to predict intracellular 

anatomy images with high accuracy and throughput, providing a new paradigm for 

multiplexing imaging inside the living cells.  

 

Fig. 1 – Imaging cell anatomy via super-resolution microscopy and deep learning. 

(a) Super-resolution image of a U2-OS cell with its membranous structures stained by 

Nile Red. The pseudo color represents the spectral ratio between the yellow channel 

(Em: 580-653 nm) and the red channel (Em: 665-705 nm) under single laser excitation 

at 488 nm. (b) From the super-resolution intensity image and the spectral ratio image, 

the deep convolutional neural networks predict binary masks of 15 subcellular 
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structures. (c) The masks of cytosol, nucleus, and extracellular space segmented by 

VOLUME-net. (d) The masks of ER, nuclear reticulum, and nuclear membrane 

segmented by ER-net. (e) Golgi mask segmented by GOLGI-net and lipid droplet mask 

segmented by LD-net. (f) Mitochondria mask segmented by MITO-net and lysosome 

mask segmented by LYSO-net. (g) Early endosome mask segmented by EE-net and late 

endosome mask segmented by LE-net. (h) Peroxisome mask segmented by PERO-net 

and the masks of plasma membrane and filopodia segmented by PM-net. Scale bar: 5 

μm.  

Learning from the dual-color super-resolution images, our DCNN developed with 

multiple sub-models can predict 15 intracellular compartments (Fig. 1, supplementary 

Movie 1). Namely, LD-net is responsible for recognizing lipid droplets, GOLGI-net for 

Golgi apparatus, MITO-net for mitochondria, PERO-net for peroxisome, EE-net for 

early endosome, LE-net for late endosome, LYSO-net for lysosome. ER-net is used to 

recognize the three structures of endoplasmic reticulum (ER), nuclear membrane, and 

nuclear reticulum, PM-net is used to recognize plasma membrane and filopodia, and 

VOLUME-net is to recognize other three structures of nucleus, cytosol, and 

extracellular space (ECS).  

We segment each structure with a binary mask, which can further multiply the Nile Red 

image to obtain a corresponding intensity image (Fig. 2a, b). Compared with the 

prediction of multiple intensity levels, binary prediction simplifies the problem with 

true/false decisions and avoids the generation of fake signals. The binary masks are also 

sufficient for further quantitative analysis, such as organelles’ number, volume, and 

contact frequency, which can provide a full picture of the cell anatomy.  

To train the DCNN networks, the masks for nuclear membrane, nuclear reticulum, 

plasma membrane, filopodia, nucleus, cytosol, and ECS, are manually annotated on the 

super-resolution images. For other compartments, we acquire a green-channel 

colocalization image with organelle-specific probes. Since Nile Red has a broad 

emission band, we also use linear unmixing and the output of the pre-trained LD-net to 

exclude the Nile Red fluorescence in the colocalization channel (online Methods). An 

FG-net (Fig. S2b) has been trained to segment the colocalization image separating the 

foreground (in-focus) area from the background (out-focus or dark) area. Unlike 

conventional foreground extraction methods based on thresholding, where manual 

adjustment of parameters is needed for different structures, our deep learning approach 
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not only bypasses the image preprocessing and parameter adjustments but also shows 

superior performance in predicting masks of various organelles (Fig. S3).  

The super-resolution images and ground truth binary masks are used to train networks 

based on the attention U-Net architecture15, 16 (Fig. S2a). The input images are resized 

and cropped into 3D patches matching the size of a cell. Golgi-net, LD-net, MITO-net, 

PERO-net, EE-net, LE-net, and LYSO-net are binary segmentation networks optimized 

with sigmoid cross entropy loss, while ER-net, PM-net, and VOLUME-net are multi-

class segmentation networks optimized with softmax cross entropy loss. Since the 

abundance of different structures varies, we adjust the class weights for different 

networks. Details about the training datasets are included in Supplementary Table 1. 
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Fig. 2 – Comparison between the network predicted images and colocalization 

images. (a) The first column is colocalization images; the second column is Nile Red 

fluorescence images with magenta masks predicted by the networks; the third column 

is intensity images by multiplying the fluorescence image and the predicted masks; the 

fourth column is merged images of predicted masks (in magenta) and colocalization 

masks (in green, FG-net prediction of colocalization intensity images). In the merged 

images, magenta pixels indicate wrong prediction (false positive) and green pixels 

indicate missing prediction (false negative). (b) The predicted masks of nuclear 
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membrane, nuclear reticulum, plasma membrane, and filopodia on the fluorescence 

images and the masked intensity images. (c) Pixel accuracies of 15 structures. (d-f) 

Confusion matrixes of multi-classification networks including ER-net, PM-net, and 

VOLUME-net. (g-i) Recall, precision, and f1 score of binary segmentation networks. 

(j) The Manders’ overlapping coefficient of 15 structures between predicted masks and 

ground-truth masks. Scale bar: 5μm. 

As shown in Fig. 2a, b, the comparison between the typical network predicted images 

and the colocalization images shows high accuracies for these intracellular 

compartment structures. Fig. 2c further quantitatively reports the overall pixelwise 

accuracies of higher than 91.7%. Moreover, confusion matrixes are used to evaluate 

multi-class segmentation networks of ER-net, PM-net, and VOLUME-net (Fig. 2d-f), 

which reveals the large portion of true positive and true negative pixels. For binary 

segmentation networks, the recall, precision, and F1 score (Fig. 2g-i) are used to 

indicate their accurate prediction. From each structure, by calculating the Mander’s 

overlapping coefficient (MOC)17 between the predicted mask and the ground truth mask, 

masks of ER, lipid droplet, cytosol, nucleus, and ECS display strong colocalizations 

with ground truth (MOC>0.7); masks of all other structures show good colocalizations 

(MOC>0.5) (Fig. 2h).  

To explore the opportunity offered by the ratio images in segmentation accuracies, we 

found that the ratio image was critical for achieving the accurate segmentations of 

vesicle organelles with similar size and shape. Fig. S4b shows that the prediction 

accuracy of early endosome is much higher with the additional ratio image 

(F1score=0.59 vs 0.43). But for other structures, such as mitochondria, the additional 

ratio images did not add much value to the prediction accuracy, compared with the 

result by only using the intensity image (F1score=0.63 vs 0.62, Fig. S4a). Therefore, 

the segmentation accuracies rely on both super-resolution morphologies and organelle-

specific spectrum ratios. In comparison, the DCNN network with bright field images 

predicted the Golgi image with a low Pearson’s correlation coefficient (PCC<0.2)6, 

while our segmentation of the Golgi mask delivers a much better result of MOC=0.61.  

Here we demonstrate the multiplexed and highly accurate deep learning segmentation 

on a widely accessible LiveSR microscope. With this technique we further imaged the 

cell anamoty at different mitosis stages (Fig. S5, Supplementary Movie 2-7). Imaging 

subcellular structures using Nile Red staining has also been demonstrated with other 

super-resolution microscopy, including Structured Illumination Microscopy (SIM) 14, 
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STimulated Emission Depletion (STED) 18, or Single Molecule Localization 

Microscopy (SMLM) 19, which may also benefit the DCNN based segmentation 

approach. Our technique can be easily expanded in association with other fluorescent 

probes, to further study the subcellular interactions among organelles, cytoskeleton, and 

proteins. 

Methods 

Sample Preparation. Human osteosarcoma U2-OS cell lines (HTB-96, ATCC, USA) 

were cultured in Dulbecco's Modified Eagle's medium (DMEM, GIBCO, USA) 

containing 10% heat-inactivated fetal bovine serum (FBS, GIBCO, USA) and 100 U/ml 

penicillin and 100 µg/ml streptomycin solution (PS, GIBCO, USA) at 37°C in an 

incubator with 95% humidity and 5% CO2. For the living cell imaging, the cells were 

plated at the desired density on the µ-Slide 8 Well (80827, ibidi, USA) and 1 µg/ml Nile 

Red (N1142, Invitrogen, USA) was added into the culture medium 1 h before imaging 

and was present during imaging. For colocalization experiments, the cells were 

transfected 16 h before imaging with the plasmids of early endosome-GFP (Rab5a, 

C10586, BacMam 2.0, CellLight, USA), late endosome-GFP (Rab7a , C10588), ER-

GFP(ER signal sequence of calreticulin and KDEL, C10590), Golgi-GFP (Golgi-

resident enzyme N-acetylgalactosaminyltransferase 2, C10592), Mitochondria-GFP 

(leader sequence of E1 alpha pyruvate dehydrogenase, C10600) and incubated 

overnight. 1 µg/ml Nile Red was added into the culture medium 1 h before imaging. 

The colocalization of lysosome is obtained by LysoviewTM 488 (70067-T, Biotium) 

30min before imaging and without washing during imaging. 

System setup. The data were acquired from a commercial system based on the inverted 

fluorescence microscope (TI-E, Nikon) equipped with a TIRF objective (CFI 

Apochromat TIRF ×100 oil, NA 1.49, Nikon) and a spinning disk confocal system 

(CSUW1, Yokogawa). The super-resolution imaging module (Live SR, Gataca) could 

double the imaging resolution. One laser (iLAS 3, 488 nm-150mW) is used for 

excitation. Emission fluorescence was acquired by sCMOS camera (Prime 95B, 

Photometrics) after a multi-splitter module (CAIRN, MultiSplit V2) with three 

detection channels (green: S525/50m; yellow: S685/40m; red: S617/73m; Chroma). 

The acquisition process is performed on the Metamorph software. The resolution of the 
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system is analyzed by PSFj software (Fig. S1). 

Training data preparation. Multi-channel images are registered with chromatic 

aberration correction algorithm20. The emission ratio was calculated by dividing the red 

channel by the yellow channel. The fluorescence image is the average image between 

the red channel and yellow channel. The whole imaging FoV is 1200*1200*Nz px3 (Nz 

ranges from 12 to 30), which is resized into 802*802*24 px3 and is further cropped into 

random 256*256*24 px3 patches. 

For the structures of nuclear membrane, nuclear reticulum, plasma membrane, filopodia, 

nucleus, cytosol, and ECS, the ground truth masks are manually annotated. For other 

structures, the green-channel colocalization images are acquired. In green-channels 

images, Nile Red shows strong fluorescence in LD and weak fluorescence in other 

organelles. To exclude the week Nile Red fluorescence in other organelles, the green-

channel images are subtracted by a portion of the yellow-channel images (ChG-r*ChY, 

r=0.2). To exclude the strong Nile Red fluorescence in LD, the pixels within the LD 

mask, which is predicted by the pre-trained LD network, are set to zero intensity. The 

ground truth masks are segmented from the colocalization image by a pre-trained FG-

net (Fig. S2b), which is trained with 40 manually annotated colocalization images of 

various organelles.  

Model architecture and training. Our DCNN networks are based on the attention U-

Net architecture (Fig. S2a) and are implemented in Python using the PyTorch package. 

The FG-net takes 2D intensity images as input (1@256*256), and the subcellular 

segmentation networks take 3D intensity and ratio images as input (2@256*256*24). 

Both binary segmentation networks and multi-class segmentation networks are 

optimized by Adam optimizer with cross entropy loss functions. The starting learning 

rate of 0.0001, which is reduced on plateau with the factor of 0.3 and patience of 5. The 

class weights of different organelles are adjusted according to the abundance of 

corresponding organelles. For example, a cell consists of more pixels labeled as 

mitochondria than as peroxisome, so that the weight of mitochondria is 2 and the weight 

of peroxisome is 5 (Supplementary Table 1). The number of training patches varies 

from 160~204 for different structures, which are trained on the RTX 2080 Ti GPU 

within 12 h. 

Image analysis and display. The evaluation of predicted masks is performed by 
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custom-written Matlab. The predicted masks for each patch are merged and resized 

back, and the metrics between the ground truth and prediction are calculated as follows: 

Pixel accuracy = 
𝑁𝑡𝑝+𝑁𝑡𝑛

𝑁𝑡𝑝+𝑁𝑓𝑝+𝑁𝑡𝑛+𝑁𝑓𝑛
 

Recall = 
𝑁𝑡𝑝

𝑁𝑡𝑝+𝑁𝑓𝑛
 

Precision = 
𝑁𝑡𝑝

𝑁𝑡𝑝+𝑁𝑓𝑝
 

F1score = 
2∗𝑟𝑒𝑐𝑎𝑙𝑙∗𝑝𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛

𝑟𝑒𝑐𝑎𝑙𝑙+𝑝𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛
 

MOC = 
∑𝑥𝑦

𝑥2+𝑦2
 

where 𝑁𝑡𝑝, 𝑁𝑓𝑝, 𝑁𝑡𝑛, 𝑁𝑓𝑛  are the number of pixels for true-positive, false-positive, 

true-negative, and false-negative; 𝑥, 𝑦 are pixel values of the predicted mask and the 

ground truth mask. For the confusion matrixes, the value in the ith row, jth column (𝑁𝑖𝑗) 

is the number of pixels with label i in the ground truth image and label j in the predicted 

image. The 3D intensity images are generated in Imaris (https://imaris.oxinst.com/) by 

volumetric intensity rendering and the 3D volume of binary masks is generated by 

surface rendering.  
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