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 2 

Abstract  1 
 2 
Changes in the abundance of individual proteins in the proteome can be elicited by modulation of 3 
protein synthesis (the rate of input of newly synthesized proteins into the protein pool) or 4 
degradation (the rate of removal of protein molecules from the pool). A full understanding of 5 
proteome changes therefore requires a definition of the roles of these two processes in 6 
proteostasis, collectively known as protein turnover. Because protein turnover occurs even in the 7 
absence of overt changes in pool abundance, turnover measurements necessitate monitoring the 8 
flux of stable isotope labeled precursors through the protein pool such as labeled amino acids or 9 
metabolic precursors such as ammonium chloride or heavy water. In cells in culture, the ability to 10 
manipulate precursor pools by rapid medium changes is simple, but for more complex systems 11 
such as intact animals, the approach becomes more convoluted. Individual methods bring specific 12 
complications, and the suitability of different methods has not been comprehensively explored. In 13 
this study we compare the turnover rates of proteins across four mouse tissues, obtained from the 14 
same inbred mouse strain maintained under identical husbandry conditions, measured using either 15 
[13C6]lysine or [2H2]O as the labeling precursor. We show that for long-lived proteins, the two 16 
approaches yield essentially identical measures of the first order rate constant for degradation. For 17 
short-lived proteins, there is a need to compensate for the slower equilibration of lysine through the 18 
precursor pools. We evaluate different approaches to provide that compensation. We conclude that 19 
both labels are suitable, but careful determination of precursor enrichment kinetics in amino acid 20 
labeling is critical and has a considerable influence on the numerical values of the derived protein 21 
turnover rates.  22 
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 3 

Introduction 1 
 2 
Changes in the proteome can be achieved by adjustment of the input into a protein pool (synthesis) 3 
or removal of a protein from the pool (degradation), the two processes constituting protein turnover. 4 
The simplest model of proteostasis, which is undoubtedly an oversimplification, has three 5 
parameters (pool size, synthesis and degradation), linked by zero order synthesis (the rate of 6 
synthesis is insensitive to the pool size) and first order degradation (a proportion of the protein pool 7 
is degraded per unit time). At steady state, the unchanging pool size is given by the balance 8 
between the opposing fluxes of synthesis (molecules/time) and removal (protein pool multiplied by 9 
the fractional rate of degradation; thus, also with the dimensions of molecules/time). An adequate 10 
description of proteostasis requires that we can measure at least two of these parameters, from 11 
which the third can be calculated. Because protein turnover can occur in the absence of any change 12 
in pool size, it is evident that turnover parameters must be measured by the flux of a tracer through 13 
the protein pool. Most commonly, this is achieved in cells in culture with radiolabeled (e.g. 14 
[35S]methionine) or stable isotope labeled (e.g. [13C6]lysine) protein precursors (‘dynamic SILAC’ 1,2). 15 
The ability to exchange culture media quickly in vitro means that precursor pools can be rapidly 16 
manipulated and thus, a transition from labeled to unlabeled media, or vice versa, can be made 17 
very rapid, relative to protein turnover rates, which minimizes the effects of precursor pool 18 
equilibration 3.  19 
 20 
It is now clear that when compared with cells in culture, protein turnover in animal tissues occurs 21 
in completely different temporal regimes, with turnover rates spanning several orders of magnitude. 22 
Moreover, different tissues have distinct average turnover rates (for example, liver has a higher 23 
turnover rate than skeletal muscle 4–6) and larger animals have much lower average rates of protein 24 
turnover 6. This is in part due to the different energetics constraints between free living animals and 25 
cultured cells. The latter grow exponentially in excess nutrients and through cell division can also 26 
remove ‘old’ proteins via passive dilution, reducing the need for energetically costly proteostatic 27 
degradation. This casts doubt on the applicability of cell culture study to understanding turnover in 28 
organismal physiology, growth, and aging, and strongly calls for direct measurements of turnover 29 
in animal systems. 30 
 31 
Unlike cells in culture, in animal systems, the rapid exchange of precursor pools is not always 32 
feasible or practical. Isotopically labeled precursors can be administered enterally or parenterally 33 
but in both circumstances there is a delay in equilibration of the labeled precursor with the tissue 34 
pools, such that in the early phases of labeling, high turnover proteins are sampling a precursor 35 
pool that has yet to reach equilibrium. Early studies used radiolabeled amino acid precursors, and 36 
although scintillation counting permitted the measurement of very low levels of radiolabel 37 
incorporation, this approach was only suitable for total protein pools or measuring purified proteins 38 
7,8. The need to understand proteostasis on a proteome-wide scale has increased the need to 39 
measure protein turnover for multiple proteins in the same system, and requires the deployment of 40 
stable isotopes. Stable isotope labeling, in combination with proteomics, can yield turnover rates 41 
for individual members of the proteome. An additional complication in animal tissues is that turnover 42 
rates can be low, and it is difficult to measure very low levels of stable isotope in proteomics-43 
focused mass spectrometry. Thus, labeling duration must be sufficient to lead to discernible 44 
incorporation of the label. Stable isotope administration is largely oral, through diet or drinking water 45 
and inevitably, this route of administration introduces a delay in equilibration of the precursor with 46 
whole-body metabolic pools. This delay can introduce systematic underestimates of rates of 47 
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turnover, simply illustrated (Figure 1C) by modeling of a two-compartment model 9. 1 

 2 
 3 

Figure 1. Comparison of labeling strategies for turnover studies in intact adult animals 4 
A Mass spectrum features in AA labeling (left) which creates new peptide isotope clusters and 5 
elemental HW labeling (right) which shifts the endogenous isotopomer rightward in the mass 6 
spectrum. B. Schematic of precursor introduction and pool enrichment showing the availability of 7 
intracellular precursors for protein synthesis. C. The effect on protein labeling of a delay in precursor 8 
equilibration. The curves model the effect of a delay in precursor equilibration on labeling of protein 9 
pools, for three proteins with degradation rate constants of 0.01 d–1, 0.1 d–1 and 1 d–1 (half lives of 69 10 
d, 6.9 d and 0.69 d, respectively). Four precursor equilibration rates are modelled, with the purple line 11 
representing such a high rate (600 d–1) as to be equivalent to near-instantaneous equilibration through 12 
the body, giving no perceptible delay. As the delay becomes more prolonged, the protein labeling 13 
becomes commensurately slower, leading to an underestimate of the true degradation rate constant. 14 
D. Experimental design. Groups of mice, identical in strain (C57BL/6J), age, sex (male), supplier and 15 
husbandry were each labeled with either [13C6]lysine or [2H2]O for 30 days, sampling tissues throughout 16 
the labeling period. Subsequently, tissues were recovered and tryptic digests were prepared from 17 
tissue homogenates to gain protein identity and to assess the degree of isotopic incorporation into 18 
proteins. 19 
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 1 
For animal studies, two approaches are most used, both based on exposure of subjects to stable 2 
isotope precursors followed by measurement of the rate of isotope incorporation into individual 3 
proteins. First, a labeled essential amino acid can be provided in the diet, either with a relative 4 
isotope abundance (RIA) of 1, which requires a fully synthetic diet 10–12, or at a lower RIA by 5 
supplementation of a standard laboratory diet with pure labeled amino acid 4,5,13,14. Typically, the 6 
labeled amino acid incorporates multiple heavy atom centers, such that labeled peptides yield m/z 7 
values that are well resolved from the natural isotope distribution of the unlabeled amino acid 8 
(Figure 1A, left). Alternatively, animals can be provided with metabolically simple precursors, such 9 
as [2H]2O or [15N]H4Cl, that deliver a single labeled atom center to some or all amino acids 15–18. In 10 
this instance, the labeling trajectory leads to a gradual shift of the isotopic profile with considerable 11 
overlap between the unlabeled isotopomer profile and the labeled profile (Figure 1A, right). 12 
 13 
Thus, the incorporation of labels into proteins (and therefore, into peptides derived from those 14 
proteins; an essential element in the proteomics workflow) is very different with the two labeling 15 
protocols. For amino acid labeling (“AA”) strategies, the incorporation of one or more instances of 16 
the labeled amino acid creates ‘heavy’ peptides that are offset by the number of heavy atom centres 17 
in the amino acid (such as [13C6]lysine or [2H7]valine 5). By contrast, for example, the deuterium atoms 18 
in heavy water (“HW”) labeling strategies are incorporated stably into specific amino acids, leading 19 
to complex labeling patterns wherein labeled peptides have mass shifts from 1 to many Da higher 20 
17–22  (Figure 1A). 21 
 22 
A second difference between the AA and HW strategies pertains to the equilibration of the label 23 
with the amino acid pool that is the immediate precursor of protein synthesis. Dietary amino acids 24 
need to cross the intestinal mucosal barrier, pass through the hepatic system and are eventually 25 
transported to peripheral tissues through the blood (Figure 1B). By contrast, water crosses all 26 
membranes and is rapidly equilibrated across all tissues 18. If equilibration of the label with the 27 
precursor is considerably faster than the rate of turnover of the protein pool, then it can be assumed 28 
that the precursor enrichment is constant over the labeling period (Figure 1C). Under this 29 
circumstance, a simple monoexponential function will define the transition from unlabeled to 30 
labeled protein. In this regard, HW labeling should equilibrate rapidly, which can be aided by an 31 
initial bolus injection of pure [2H]2O. However, if the precursor pool equilibrates at rates similar to 32 
the fastest turnover proteins, then a more complex model is appropriate 5. It follows that the AA 33 
strategy could be compromised by a delay in pool equilibration, and this would be particularly 34 
evident in proteins that were substantially synthesized during the equilibration phase, specifically, 35 
high turnover proteins. Because of this unavoidable lag, there have been a number of different 36 
solutions to address slow precursor equilibration with amino acids 9,11,12,23,24. 37 
   38 
To explore the differences between the AA and HW strategies and to attempt to harmonize the two 39 
approaches, we compared the turnover profiles of multiple proteins, derived from four tissues, in 40 
mice that were otherwise identical in genotype, source, age, sex and husbandry (Figure 1D). This 41 
study allowed us to compare the two labeling approaches with a precision not previously realized. 42 
Here we present the outcomes of these experiments and show that whilst each approach yields 43 
quantitatively comparable results for slow turnover proteins, they are increasingly discrepant for 44 
high turnover proteins in a simple exponential kinetics model. In particular, a HW methodology 45 
seems to consistently yield turnover rate constants that are higher than those obtained by an AA 46 
strategy. When two-compartment models are used to correct for the delay in equilibration of the 47 
labeled precursor(s), the rate constants converge more closely. 48 
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Materials and Methods 1 
 2 
Both labeling studies were conducted with laboratory mice derived from the same supplier and 3 
maintained under identical conditions. Fully grown adult male C57BL/6JOlaHsd mice (obtained 4 
from Harlan UK Ltd, Shardlow, UK at 6-13 weeks of age) were previously group housed and used 5 
in non-invasive behavioral studies.  At the start of this experiment, males aged 15-16 months old 6 
were housed individually in 48 x 15 x 15 polypropylene cages (NKP Cages Ltd, Coalville, UK). Each 7 
cage contained substrate (Corn Cob Absorb 10/14; IPS Ltd, London, UK), paper wool nest material 8 
and environmental enrichment (hanging baskets, plastic tubes). Food (LabDiet 5002 Certified 9 
Rodent Diet, Purina Mills, St. Louise, USA) and water were provided ad libitum. The mice were 10 
maintained on a reversed photo-period (light 12h; dark 12h; lights on at 20:00 hrs) and at 19–21 oC. 11 
Animal use and care was in accordance with EU directive 2010/63/EU and UK Home Office code 12 
of practice for the housing and care of animals bred, supplied and used for scientific purposes. 13 
Heavy water labeling was carried out under UK Home Office licence under the Animals in Scientific 14 
Procedures Act 1986 (PPL 40/3492). The University of Liverpool Animal Welfare Committee 15 
approved the work. 16 
 17 
Labeling with [13C6]lysine 18 
This study used eleven mice. Standard laboratory diet (LabDiet 5002) was supplemented with pure, 19 
crystalline [13C6]lysine (Cambridge Isotope Laboratories) to bring the relative isotope abundance 20 
(RIA) to 0.5. The dietary pellets were dissociated with water containing the dissolved [13C6]lysine to 21 
form a thick paste and mixed extensively. Once homogeneous, the paste was then extruded into 22 
strips 1 cm across and dried in a commercial foodstuff drying oven at 40 oC. The mice had access 23 
to the labeled diet for varying amounts of time with randomized assignment: 0, 1, 2, 3, 4, 6, 9, 12, 24 
17, 22 or 30 days. The day that the animals were introduced to the labeled diet was staggered for 25 
all endpoints so that dissections took place on the same day. All mice were humanely killed on day 26 
30 and the animals were dissected to recover liver, kidney, heart and pooled hindlimb skeletal 27 
muscle from each animal. All tissues, and the carcasses, were frozen at –80 oC prior to analysis. 28 
 29 
Labeling with [2H2]O 30 
For the heavy water labeling protocol, all animals (13) were provided free access to LabDiet 5002. 31 
At the start of the experiment, mice were injected with two successive 0.5 mL injections, 4 hours 32 
apart, of 0.15 M sodium chloride dissolved in deuterated water. Thereafter, mice were given free 33 
access to 8% (v/v) [2H2]O for the duration of the experiment. After 0, 1, 2, 3, 6, 7, 9, 13, 16, 21, 24 34 
and 31 days, mice were killed and dissected exactly as described for the [13C6]lysine labeling 35 
experiment and tissues were stored at –80 oC prior to analysis. Additionally, plasma samples were 36 
obtained by post-mortem cardiac puncture. 37 
 38 
Preparation of samples for proteomics 39 
Small portions (typically 50–100 mg wet weight) from the frozen organs from both studies were 40 
further cut into small pieces to facilitate homogenization in 1 mL of lysis buffer (7 M urea, 2 M 41 
thiourea, 2 % [w/v] CHAPS, 5 mM DTT) using a Precellys lysis kit (Stretton Scientific Ltd., Stretton, 42 
UK). Total protein extracted was quantified using a Bradford assay. Protein (200 µg, AA; 100 µg, 43 
HW) was reduced, alkylated and digested with trypsin using a modified version of the filter-aided 44 
sample preparation (FASP) approach 25. The labeling protocols were designed so that all labeling 45 
time points for a single tissue (11 samples, AA; 12 samples HW) were prepared and analysed 46 
concurrently.  47 
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 1 
Non-targeted MS1-DDA analyses were conducted on a Q-Exactive HF quadrupole-Orbitrap mass 2 
spectrometer coupled to a Dionex Ultimate 3000 RSLC nano-liquid chromatograph (Hemel 3 
Hempstead, UK). One µg of peptides from each time-point were loaded onto a trapping column 4 
(Acclaim PepMap 100 C18, 75 µm x 2 cm, 3 µm packing material, 100 Å) using a loading buffer of 5 
0.1 % (v/v) TFA, 2 % (v/v) acetonitrile in water for 7 min at a flow rate of 12 µL min-1. The trapping 6 
column was in-line to an analytical column (EASY-Spray PepMap RSLC C18, 75 µm x 50 cm, 2 µm 7 
packing material, 100 Å) and peptides eluted using a linear gradient of 96.2 % A (0.1 % [v/v] formic 8 
acid): 3.8 % B (0.1 % [v/v] formic acid in water:acetonitrile [80:20] [v/v]) to 50 % A:50 % B over 90 9 
min at a flow rate of 300 nL min–1, followed by washing at 1% A:99 % B for 8 min and then re-10 
equilibration of the column to starting conditions. The column was maintained at 40 oC, and the 11 
eluent was introduced directly into the integrated nano-electrospray ionisation source operating in 12 
positive ion mode. The mass spectrometer was operated in data-dependent acquisition (DDA) 13 
mode with survey scans between m/z 350–2000 acquired at a mass resolution of 60,000 (FWHM) 14 
at m/z 200. The maximum injection time was 100 ms, and the automatic gain control was set to 15 
3e6. The 16 most intense precursor ions with charge states of 2+ to 5+ were selected for MS/MS 16 
with an isolation window of 1.2 m/z units. The maximum injection time was 45 ms, and the 17 
automatic gain control was set to 1e5. Fragmentation of the peptides was by higher-energy 18 
collisional dissociation using a stepped normalized collision energy of 28–30%. Dynamic exclusion 19 
of m/z values to prevent repeated fragmentation of the same peptide was used with an exclusion 20 
time of 20 sec.  21 
 22 
Experimental measurement of precursor enrichment 23 
Plasma samples (50 µL) were treated with 2 µL of 10 M sodium hydroxide (BDH, Poole, U.K.) and 24 
1 µL of acetone (Fisher, Loughborough, U.K.). After mixing, the samples were left overnight at 20 25 
oC to allow the exchange of deuterium from water to acetone to occur. To produce a calibration 26 
curve, 50 µL mixtures of between 0 and 10 % (v/v) deuterium oxide (Cambridge Isotope 27 
Laboratories, Andover, MA, USA) in HPLC grade water (VWR International, Fontenay-sous-Bois, 28 
France) were also treated and extracted. The acetone was then extracted from the samples using 29 
200 µL of chloroform (VWR, Poole, UK) for 15 s. Aliquots of the extracts were then analysed by gas 30 
chromatography – mass spectrometry (GC-MS) on a Waters GCT Premier gas chromatograph-31 
mass spectrometer (Waters, Wilmslow, UK). The chromatography column employed was a 30 m 32 
long, 0.25 mm internal diameter, 0.25 µm film thickness DB-17MS (Agilent J&W, Santa Clara, CA, 33 
USA). The carrier gas was helium (BOC, Guildford, UK) at 1 ml min-1. The injector was operated in 34 
the splitless mode at 220 oC and the injection volume was 1 µL. The oven temperature programme 35 
was 60 oC to 100 oC at 20 oC min-1 with a 1 min hold, then from 100 oC to 220 oC at 50 oC min-1. The 36 
mass spectrometer was operated in the positive ion electron ionisation mode with source 37 
temperature 200 oC, electron energy 70 eV and trap current 200 µA. Mass spectra were recorded 38 
in low sensitivity mode between 40 to 100 m/z with a scan time of 0.1 s. The spectral intensities of 39 
ions at m/z 58 and m/z 59 were measured using the MassLynx software supplied with the 40 
instrument. Comparison of the ratio of m/z 59 to m/z 58 for the biological samples against the curve 41 
generated from the calibration samples allowed the enrichment of deuterium oxide (HW) to be 42 
measured. 43 
 44 
  45 
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 8 

Direct analysis of tissue lysine pools 1 
Tissue homogenates (100 µL) were added to 350 µL methanol (LC-MS grade), cooled to –80 °C 2 
and maintained on dry ice during the addition. The mixture was vortexed vigorously and centrifuged 3 
at 13,300 rpm for 15 min at 4 °C to sediment proteins. Aliquots were subsequently dried in a vacuum 4 
centrifuge and stored at –80 °C until LC-MS/MS analysis. Prior to analysis, samples were 5 
resuspended in 52 µL water (LC-MS grade), centrifuged at 13,300 rpm for 15 min at 4 °C to remove 6 
any particulates and transferred to glass sample vials. Untargeted HPLC-MS/MS data acquisition 7 
was as published 26–28. Full-scan MS and data dependent MS/MS data were acquired using a 8 
ThermoFisher Scientific Vanquish HPLC system coupled to a ThermoFisher Scientific Q-Exactive 9 
mass spectrometer (ThermoFisher Scientific, UK) operating in positive ionisation mode as 10 
described 29.  Raw instrument data (.raw files) were exported to Compound Discoverer 3.1 for 11 
deconvolution, alignment and annotation, as described 29. The peak areas of [12C6]lysine and 12 
[13C6]lysine were retrieved and used to calculate the relative isotope abundance. 13 
 14 
Post processing of protein labeling data 15 
A summary of the workflow for data processing is given in Figure 2A. Thermo .raw mass spectrum 16 
files were converted to the mzML format using ThermoRawFileParser v.1.2.0 30. The centroid MS2 17 
spectra were searched against the Uniprot 31 Mus musculus reviewed database (retrieved 2021-18 
Apr-27) using Comet v.2020_01rev3 32 with contaminant proteins and decoys appended using 19 
Philosopher v.3.4.13 33. Search settings include: 20 ppm peptide mass tolerance, 0.02 fragment bin 20 
tolerance, 0/1/2/3 isotope error, trypsin specificity with 1 enzyme terminus (semi-tryptic) and 2 21 
allowed missed cleavages, and +15.9949 methionine variable modifications. Additionally, AA 22 
labeling experiments allowed +6.0201 lysine variable modifications. The Comet search results were 23 
post-processed and filtered using Percolator v.3.0.5 34 standalone distribution with the -Y, -i 20, 24 
and -P DECOY_ arguments. Peptides identified at the 1% FDR (Percolator q-value) threshold were 25 
used for downstream analysis. 26 
 27 
 28 

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted December 23, 2021. ; https://doi.org/10.1101/2021.12.13.472439doi: bioRxiv preprint 

https://doi.org/10.1101/2021.12.13.472439
http://creativecommons.org/licenses/by-nc-nd/4.0/


 9 

 1 
Figure 2. Data analysis workflows. 2 
A. Schematic for the data analysis workflow for HW and AA labeling data. B. The MS1 spectrum for 3 
peptide EFGIADPEEIMWFK 2+ of peroxisomal acyl-CoA oxidase (Q9R0H0) for AA labeling (left) and 4 
HW labeling (right) data. For AA labeling, the intensity values for the major isotope of light (m0) and 5 
heavy (m6) versions of a peptide are measured for each MS1 scan within a specified retention time 6 
window (+/- 30 sec); for HW labeling, the intensities for each successive isotopomer within the 7 
isotopomer envelope (m0 to m5) are measured. C. The intensity over time values within the retention 8 
time windows are then integrated as shown in the extracted ion chromatograms for AA and HW labeling 9 
here. D. The data from each labeling time point are processed in the manner described above, resulting 10 
in a peptide relative isotope abundance value for each peptide at each time point, which for AA labeling 11 
is defined as m6/(m0+m6) and for HW labeling defined as m0/(m0+m1+m2+m3+m4+m5). The data time 12 
series is then fitted to a simple exponential kinetics model using a quasi-Newton method to optimize 13 
for the protein turnover rate constant k that results in the least square error value. E. Same as panel D, 14 
but the time-series data fitted to a two-compartment model to adjust for slow label enrichment in the 15 
animal body. The two-compartment model fits the AA data better than the exponential model and leads 16 
to a higher estimated kdeg but has a less pronounced effect on HW labeling due to fast label 17 
equilibration. 18 

 19 
 20 
Peak integration 21 
To integrate the HW and AA labeling data, we wrote an in-house Python script, Riana v.0.6.4. Riana 22 
was written in Python (version >= 3.6) and accepts as input the path to the tab-delimited files 23 
generated from Percolator for each organ, labeling method, and experimental time point; and the 24 
path to the corresponding directory containing the mzML files to be integrated (Figure 2A). Riana 25 

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted December 23, 2021. ; https://doi.org/10.1101/2021.12.13.472439doi: bioRxiv preprint 

https://doi.org/10.1101/2021.12.13.472439
http://creativecommons.org/licenses/by-nc-nd/4.0/


 10 

uses the pymzml package (≥2.0.0) 35 to open mzML files and gathers the intensity values of the 1 
centroided peaks of all MS1 spectra for each isotopomer for each qualifying peptide within a 2 
retention time range and 25 ppm mass precision (Figure 2B). It then integrates and returns the 3 
areas-under-curve of the isotopomer chromatograms using the trapezoid method in scipy v.1.6.3 4 
36. Additional arguments in Riana specify the nth isotopomer to be integrated (--iso), which was set 5 
to 0,1,2,3,4,5,6,12 for both HW and AA data; the retention time window to integrate across (--rt), 6 
which was set to 0.5 min (Figure 2C). 7 
 8 
Kinetic models 9 
The collated (RIA, t) series for each peptide charge combination for each fraction in each time point 10 
in each organ in each labeling method are then used for kinetic curve-fitting with either a simple 11 
exponential (Figure 2D) or a two-compartment (Figure 2E) model. Kinetic curve-fitting was 12 
performed using a custom R script written in R (v.4.1.1) running on platform x86_64-apple-13 
darwin17.0 (64-bit). Optimization for the protein turnover rate constant kdeg was performed using 14 
the optim() function in the stats package of base R using the Broyden-Fletcher-Goldfarb-Shanno 15 
(BFGS) quasi-Newton method and a starting value of kdeg = 0.29. Fitting for the rate constant for 16 
precursors to reach plateau (kp) using the single exponential or Fornasiero double exponential model 17 
was optionally also performed using the nls() function with the default Gauss-Newton algorithm to 18 
retrieve the log likelihood and calculate the Akaike Information Criterion (prediction error, thus 19 
allowing model selection). Time series (𝑡, 𝐴!) data were fitted to two models (one-compartment 20 
simple exponential vs. two-compartment) to find the best estimate of protein turnover rate (kdeg) that 21 
minimizes sums of squares of error. The one-compartment exponential model used is given by: 22 
 23 

𝐴! = 𝐴!"# + (𝐴!→% − 𝐴!"#) ∗ (1 − 𝑒&'!) 24 
 25 
Where 𝐴! is the estimated time-dependent relative isotopomer abundance (RIA) of interest for a 26 
peptide under a label enrichment level of 𝑝, at a measured time point 𝑡, which for HW labeling data 27 
is defined as: 28 
 29 

 𝐴! = 𝑚("#/∑ 𝑚(
)
("#   30 

 31 
where 𝑚( is the chromatographic area under curve of the 𝑖!*isotopomer of the peptide integrated 32 
by Riana. 𝐴# is the initial pre-labeling RIA which for HW is the isotope abundance based on natural 33 
isotope distribution calculated from Berglund and Weiser 37 and 𝐴!→% is the asymptotic relative 34 
abundance, which for HW was defined by the number of accessible labeling sites at each amino 35 
acid based on tritiated water data in Commerford et al. 38 , the sequence of the peptide, and the 36 
deuterium enrichment level as previously described 15,17. For AA labeling, 𝐴! is defined as 𝑚+/(𝑚# +37 
𝑚+) and 𝐴# is 0% before enrichment which 𝐴!→% depends on the RIA of heavy amino acid in the 38 
feed and can be determined as previously stated. The fitting error of the one-compartment 39 
exponential model is given by: 40 
 41 

𝑑𝑘 =
𝑘	 ∗ 	𝑒

(𝐴!→% −	𝐴!"#) ∗ 𝜎𝐴
 42 

 43 
Where 𝜎𝐴 is the residual error of RIA after fitting. 44 
 45 
The two-compartment model used is given by: 46 
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𝐴! =	𝐴!"# + (𝐴!→% − 𝐴!"#) ∗ 	
1 − (𝑒&'!𝑘, −	𝑒&'!!𝑘)

𝑘, − 𝑘
 1 

 2 
Where 𝑘, is the first-order label accumulation rate constant. The fitting error of the two-3 
compartment model is given by: 4 
 5 

𝑑𝑘 = 		
𝜎𝐴 ∗ 	5𝑘, − 𝑘6

-

(𝐴!→% − 𝐴!"#) ∗ 5𝑡 ∗ 5𝑘 − 𝑘,6 − 16 ∗ 𝑒(&!∗	') + 𝑒(&!∗	'!) ∗ 𝑘,
 6 

 7 
The two-compartment, three-exponent model for peptides and precursor kinetics is as described 8 
in Fornasiero et al.11 For precursor fitting, the model was scaled to 50% heavy lysine. 9 
 10 
Additional data analysis 11 
Data analysis and visualizations were performed in R (v.4.1.1) unless otherwise specified. Robust 12 
correlation is performed using biweight midcorrelation implemented in the WGCNA 39 package 13 
(v.1.70-3). Data visualizations were generated with the aid of the ggplot2 40, gganatogram 41, ggpubr 14 
42, and plotly 43 packages in R. Kernel density estimations were performed using gaussian_kde in 15 
scipy (v.1.6.3) 36 in Python 3.8. Peptide isotopomer integration output and R code for kinetic curve-16 
fitting have been uploaded to a runnable container at CodeOcean 17 
(https://codeocean.com/capsule/3856272/tree/v1). 18 
 19 
Data and code availability 20 
Raw mass spectrometry data have been deposited to ProteomeXchange at PXD029639. The 21 
source code and instructions for Riana v.0.6.4 can be accessed at http://github.com/ed-lau/riana.  22 
 23 

Results 24 
For both labeling protocols (AA vs. HW), peptides followed the expected trajectory of gradual 25 
incorporation of label into peptides. For the AA protocol, the expected increase in intensity of 26 
[13C6]lysine terminated peptides led to clear separation between the unlabeled and labeled 27 
components of the peptide pool for all discernible isotopomers (m0, m0+6; m1, m1+6 etc.). There 28 
was no evidence for partial loss of single labeled atom centres from the amino acid; the isotopomer 29 
profiles for labeled or unlabeled peptides are identical. For the HW strategy, the mass shift for the 30 
peptide was more subtle, evidenced as a gradual shift from the monoisotopic m0 pool and increased 31 
intensity of the m1, m2…mn isotopomer intensities, reflecting gradual incorporation of deuterium into 32 
the peptides (Figure 1A).  33 
 34 
AA-labeled peptides conform to the kinetic model only when the peptide contains one lysine; for 35 
fair comparison we initially filtered peptides in the HW experiment identically. With this filter, the 36 
HW and AA labeling experiments yielded similar numbers of quantifiable peptides over the entire 37 
labeling curve (Figure 3A–B). As we have observed previously 4, liver and kidney give the highest 38 
number of peptides, with heart intermediate and the lowest, skeletal muscle, providing about half 39 
as many peptides. We attribute this to the more pronounced dynamic range in protein expression 40 
in the two muscle tissues, such that the column loading and analysis are dominated by those 41 
proteins that are strongly expressed. There is a modest decline in the number of quantifiable 42 
peptides over the labeling trajectory and this decline is slightly more pronounced with HW than AA 43 
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labeling. Nevertheless, the results suggest that the analytical approach was able to capture 1 
isotopically labeled peptides to comparable depths in each method, regardless of the extent of 2 
labeling within the limits here. We note that HW labeling is compatible in theory with any peptide 3 
sequence, whereas AA labeling is restricted to those peptides containing that residue. When all 4 
peptides, including miscleaved peptides are admitted, regardless of the number of lysine residues 5 
in the sequence, HW labeling nonetheless quantifies approximately twice the number of peptides 6 
(Supplemental Figure S1). 7 
 8 

 9 
Figure 3. Overall depths of the comparative analysis.  10 
A. For each tissue, each bar defines the number of peptides integrated with Riana over each 11 
experimental time point in the labeling period. Because AA labeling requires peptides with one lysine 12 
for turnover calculation, only peptide sequences with a single lysine residue are included here for fair 13 
comparison. B. For each tissue, the cumulative number of peptides (solid line) and proteins (dashed 14 
lines) quantified at increasing numbers of minimal time points quantified in the heavy water (HW) labeling 15 
(green) and amino acid (AA) labeling (blue) data sets. For instance, at x=6, the y-axis numbers denote 16 
the number of peptides or proteins quantified in at least 6 time points in a labeling method and tissue. 17 
 18 

 19 
Both labeling protocols were extended over 30 (AA) or 31 d (HW), with the first practical sampling 20 
point being at 1 d. This labeling window imposes limits on the range of degradation rate constants 21 
(kdeg) that can be recovered, further confounded by the differences in rates of precursor equilibration 22 
(kp). A protein that is extensively labeled (>80%) at 1 d would have a kdeg of at least 2 d–1 (half life 23 
less than 8 hours). At this rate of labeling, there is no opportunity for multiple time points to define 24 
the labeling curve, and the errors in kdeg determination would be high. At the other extreme, a protein 25 
that was no more than 10% labeled at 30 d would have a kdeg of 0.003 d–1 or less (a half life over 26 
over two hundred days), and once again, all of the time points would have high errors, due to the 27 
low degree of incorporation. This is an inevitable consequence of stable isotope analysis by 28 
proteomic-compatible mass spectrometry and imposes analytical restrictions on the range of rate 29 
constants that can be determined.  30 
 31 
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Analysis of raw isotopomer intensity data by non-linear curve fitting 1 
To compare HW and AA labeling, we first used a conventional one-compartment model that is 2 
widely used in cell culture experiments in vitro, excluding any slow rise in labeling kinetics. The 3 
asymptotic value of the label RIA for each method can be estimated from peptides that have 4 
reached their labeling plateau, and in this study is estimated to be 0.45 for AA labels and 0.046 for 5 
HW labels. To minimize uncertainty of isotopomer quantification we used a conservative filter to 6 
admit only peptides quantified at ≥9 time points and that fitted to the one-compartment model with 7 
R2 of ≥ 0.9 unless specified. For the one-compartment model, the best-fit peptide kdeg values from 8 
HW and AA labeling are concordant (biweight midcorrelation ≥ ~0.75). However, AA labeling 9 
generally reported lower peptide turnover rates compared to HW, especially apparent for peptides 10 
from proteins with relatively high turnover within a tissue (Supplemental Figure S2).  11 
 12 
As stated earlier, a major difference between labeling with water and a free amino acid in the diet 13 
is the rate at which the precursor pool equilibrates. The AA data within a tissue, particularly for 14 
relatively high turnover peptides, when compared to HW labeling, suggests that AA data require a 15 
kinetic model that acknowledges this delay in equilibration in preference to a simple, one 16 
compartment model that assumes near instantaneous equilibration of label precursor pool. We 17 
therefore investigated the application of a two-compartment model to fit the HW and AA data. In 18 
the two-compartment model described by Guan et al.23, peptide isotope enrichment is described 19 
using two rate constants: the protein turnover rate kdeg and a composite rate constant that 20 
encompasses precursor availability kinetics; kp. This model therefore requires knowledge of the 21 
value of kp in each tissue.  22 
 23 
A clear indication of the behaviors of the HW and AA precursors can be gleaned from the labeling 24 
trajectories of the major urinary proteins (MUPs). MUPs are synthesized in large quantities in the 25 
liver and are immediately secreted and exported into the circulation, efficiently filtered by the 26 
glomerulus and excreted into urine, where they play multiple semiochemical roles 44–46. Because of 27 
the speed of this secretion and the lack of any intermediate protein pool (MUPs are very difficult to 28 
detect in plasma), the isotopomer signatures of MUPs in the liver at any time point should reflect 29 
new synthesis and rapid secretion and thus act as efficient and high speed sensors of the precursor 30 
enrichment 47. For HW labeled MUPs, the proteins acquire label extremely rapidly, with an average 31 
rate constant (kp) of at least 2 d–1  – the rapidity of labeling precludes accurate measurement of the 32 
true rate constant, but in the context of this system can be considered to be near instantaneous. 33 
By contrast, for AA labeled MUPs, the rise to plateau was notably slower, yielding a kp of approx. 34 
0.5 d–1 (half-time of about 1.4 d). If we take the AA derived value to be closest to the “ground truth” 35 
of precursor behavior, then we can compare the AA kp rate constant with those obtained by the 36 
other approaches. Unfortunately, in the absence of true secreted proteins from other tissues that 37 
do not mix into a pre-existing pool, this insight is restricted to the liver (Figure 4). 38 
 39 
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 1 
 2 

Figure 4. Isotopic labeling of major urinary proteins (MUPs) in the liver.  3 
Single exponential kinetic curves for major urinary protein (MUP) peptides commonly quantified at ≥ 10 time 4 
points in both the A. AA and B. HW data sets. Peptides fitted at R2 ≥ 0.6 at the peptide level were combined in 5 
the fractional synthesis space then fitted to a single kinetic curve to estimate the overall MUP ksyn. Because 6 
MUPs are secreted from the liver as soon as they are synthesized, the quantified label trajectory  is assumed 7 
to be limited only by precursor availability. As expected, in AA labeling the MUPs reflect delayed precursor 8 
kinetics with kp of ~0.49; whereas precursor kinetics is rapid in HW labeling with kp >> 1. X-axis: time (days); y-9 
axis: fractional synthesis. Main panels show expanded views from day 1 to day 10 of labeling, insets show the  10 
full data range. Asterisks after protein names denote peptide sequences present in multiple MUPs. Red lines 11 
denote models of best-fit first-order rate constant ± fitting error. The curve plotted for HW labeling cannot be 12 
construed as an accurate fit but reflects the rapidity of HW incorporation. 13 

 14 
 15 
At the same time, because we collected both HW and AA labeling data, our experimental design 16 
allowed us to search for suitable kp values that would bring the AA labeling data into concordance 17 
with the HW labeling data (Figure 5A). If we assume the HW labeling data to be more accurate for 18 
our purpose, due to the rapid precursor equilibration of water, this would suggest that a “corrected” 19 
kp for AA labeling is 0.28–0.38 d–1 for heart and skeletal muscle and 0.43–0.60 d–1 for liver and the 20 
kidney, values substantially higher than those acquired experimentally. With these values of kp, the 21 
proteome-wide slope of log kdeg across shared peptides in HW and AA labeling approaches unity 22 
(Figure 5B). Therefore, although again a two-compartment model is sufficient to describe the 23 
behavior of AA labeling data with precursor delay, it is not clear a priori how to produce the requisite 24 
kp values to accurately describe tissue-specific precursor kinetics. Because the HW labeling-25 
derived kp values require the external reference of HW data, they are unsuitable for experiments 26 
where only AA labeling is performed. We therefore explored additional approaches that could 27 
provide a self-sufficient approach to the precursor kinetics parameters for two-compartment 28 
modeling of AA labeling. There are at least three methodological approaches by which this may be 29 
achieved: including: (1) direct empirical measurements of label in the subject; (2) a data-driven 30 
iterative approach to find the kp that best explains the peptide data in a two-compartment model 31 
fitting; and (3) calculation of RIA using mass isotopomer distribution analysis from peptides 32 
containing two labeling sites (i.e., dilysine peptides). 33 
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 1 
We first used LC-MS to directly measure free lysine RIA in each of the four tissues and for HW, we 2 
measured whole body water RIA enrichment by GC-MS (Supplemental Figure S3A). As water 3 
equilibrates rapidly across body compartments 18, it is assumed that the precursor kinetics for HW 4 
would be similar across tissues, but the same assumption cannot be made for AA labeling. The LC-5 
MS determined lysine RIA enrichment curves in the four tissues vary between tissues, and did not 6 
reach a true plateau until after 30 days. This is actually inconsistent with the peptide RIA data, as 7 
the precursor enrichment cannot be slower than the peptide turnover curve. This discrepancy may 8 
be due to lysine metabolism complications or the inability to access the true protein synthesis 9 
precursor pool of lysine within the tissues (Supplemental Figure S3B). In fact, the LC-derived AA 10 
kp values limit the rise of peptide RIA in the two-pool model with the consequence that the model 11 
cannot converge and does not explain the observed peptide RIA time series (Supplemental Figure 12 
S3C). We conclude that the LC-measured AA RIA as implemented underestimates true precursor 13 
enrichment rates and is unsuitable for explaining the peptide RIA curves and correcting for 14 
precursor delay. 15 
 16 

 17 
Figure 5. Calibrating AA labeling precursor kinetics using HW-derived rate constants. 18 
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A. 2D density plot of the log median absolute pairwise differences in peptide kdeg from HW vs. AA labeling data, 1 
against different values of plateau RIAp (x-axis) and kp (y-axis). Red dots show the kp values with minimal HW-2 
AA differences at RIAp=0.45, also shown in the blue numbers in the line plots below. B. 2D density plot of the 3 
log median absolute pairwise differences in peptide-level kdeg from HW vs. AA labeling data, against different 4 
values of plateau RIAp (x-axis) and kp (y-axis). Red dots show that in the values with minimal HW-AA differences 5 
(as in panel A), the slope of proteome-wide log HW vs. AA kdeg values approach 1. Blue numbers in the line 6 
plots below show the kp values where the slope between HW and AA kdeg are nearest to 1. 7 

 8 
 9 
 10 
We next assessed whether kp could be gained directly from the peptide RIA data using a proteome-11 
wide optimization approach, i.e., locate a kp value that gives the lowest sums-of-squares (fitting 12 
error) in all peptides from kinetic curve fitting to the two-compartment model. At very high kp, the 13 
two-compartment model approaches the one-compartment model, whereas an underestimated kp 14 
will prevent the theoretically allowable peptide (t, RIA) values from ever reaching their actual 15 
experimental measurements within the experimental time frame. Hence, the goal is to find the 16 
lowest kp that explains the data points better in a two-compartment model compared to the one-17 
compartment model, using the median fitting sums-of-squares of all qualifying peptides as the 18 
target. We had limited success with this nested optimization approach, and the results suggested 19 
that the strategy for finding best-fit precursor kinetics parameters will be tissue-specific. In the two 20 
low-turnover/ slow-equilibration tissues (heart and skeletal muscle), the two-compartment model 21 
outperformed the one-compartment model at a kp of ~0.25–0.35 d–1. The two-compartment model 22 
never fitted the data better than the one-compartment model in the liver nor the kidney 23 
(Supplemental Figure S4A–B). On the other hand, proteome-wide optimization over the fast-24 
equilibration tissues allowed the effective plateau precursor RIA (RIAp) in these tissues to be 25 
estimated directly from the data, which was not possible in the slow-turnover tissues. We interpret 26 
the results to suggest that although a two-compartment model is necessary to correct for labeling 27 
delay, the precise values of kp cannot be easily found in fast equilibration tissues as different 28 
combinations of kp and kdeg yield identical kinetic curves. Conversely, in some tissues, the best-fit 29 
kp learned from the data will not necessarily give accurate absolute values of peptide kdeg. 30 
 31 
Finally, we estimated precursor RIA over time using mass isotopomer analysis with dilysine 32 
peptides. This is a commonly used method in dynamic SILAC studies in animals, where the heavy-33 
heavy and heavy-light peaks of a peptide containing two labeled amino acids is used to reveal the 34 
true precursor RIA during the time when the peptides were made 5. However, there is no commonly 35 
accepted standard for selection of the dilysine peptide(s) for this calculation. We therefore 36 
calculated the precursor RIA, restricted to all dilysine peptides quantified at a minimum of 9 time 37 
points in each tissue. Whilst there is a noticeable increase in estimated precursor RIA as labeling 38 
proceeds (Supplemental Figure S5A), the calculated precursor RIA values from each peptide has 39 
high variance, especially at earlier time points. Using a Gaussian kernel density estimate, we 40 
estimated the mode RIA at each time point as the representative tissue precursor RIA 41 
(Supplemental Figure S5A). The resulting tissue RIA estimates fitted well to single exponential 42 
curves. However, the derived kp values remain lower than required to explain the peptide curves in 43 
AA labeling or the MUP-derived prediction, and the curve fitting is unable to converge to a 44 
satisfactory solution for a number of peptides. 45 
 46 
As an alternative to kernel density estimates, we used all qualifying tissue-wide RIAp values (dilysine 47 
peptides identified at ≥9 time points, 0 ≤ RIA ≤ 0.6) to define a single exponential kinetics model 48 
using weighted nonlinear least square fitting across each tissue to estimate the precursor rate 49 
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constant and plateau (Supplemental Figure S6). The contribution of each RIA data point to the 1 
fitted curve is weighted by the square of the peptide isotopomer normalized intensity. This approach 2 
produces kp values that align well with those derived from HW adjustment. For the liver, the MUP-3 
derived kp was essentially the same as the dilysine recovered parameter (0.49, cf. 0.52 d–1) 4 
 5 
Because the RIA curve in the weighted fitting exhibited biphasic behavior, we also fitted the tissue 6 
RIA curves to the two-exponent kinetic model described by Fornasiero et al.11, which accounts for 7 
label dilution from global protein degradation, using three parameters, the soluble precursor 8 
enrichment/breakdown rate constant, b, the global protein degradation rate constant, a, and the 9 
ratio of lysine pool in soluble vs. protein-bound pools in a tissue, r (Supplemental Figure S6). 10 
Reutilization, represented by a, contributes to the slow phase precursor rise following the initial 11 
plateau as the reutilized lysine residues originating from protein degradation products slowly 12 
become labeled. The two-exponent kinetic model fitted to dilysine peptides derived RIA values 13 
significantly better than the single exponent model, accounting for the extra number of parameters 14 
(Akaike weights 1 to 9e–44 in the heart; 1 to 1e–27 in the kidney; 1 to 1e–27 in the liver; 1 to 9e–18 15 
in the muscle). When incorporated into a two-compartment, three-exponent model (a, b, kdeg) for 16 
individual protein kdeg values, the Fornasiero et al.11 method yielded results comparable to the two-17 
compartment, two-exponent model in Guan et al.23 for slow-turnover peptides within a tissue, but 18 
was able to correct for fast turnover proteins within a tissue in the AA labeling experiments 19 
(Supplemental Figure 7A–B). Both two-compartment models led to higher intra-protein variance 20 
(Supplemental Figure 7C) than the single exponential model (see paragraphs below) across 21 
various R2 cutoffs. The different methodologies and resultant values for various precursor kinetics 22 
parameters are summarized in Table 1. 23 
 24 
From these analyses, and using the MUP-derived parameters as ground truth, we conclude that 25 
correction for slow equilibration (whether caused by slow uptake or reutilisation) is feasible, and 26 
that analysis of dilysine peptides, two-pool modelling or reutilisation correction give the best 27 
estimates.  28 
 29 
 30 
Method Details/Description Heart Kidney Liver Muscle 

MUP secretion Estimation of label delay in rapidly secreted 
proteins (major urinary proteins MUPs) from the 
liver with no pre-existing pools (using RIAp set 
to 0.45) 

– – kp: 0.49 – 

Experimental Measurement of free tissue lysine pool using 
LC-MS (using RIAp set to 0.45) 

kp: 0.10 kp: 0.12 kp: 0.20 kp: 0.06 

Global 
optimization to 
two-
compartment 
model 

Using nested optimization, learn from the data 
the kp values that minimize global fitting errors 
in the two-compartment model described in 
Guan et al.23 

kp: ~0.35 – – kp: ~0.25 

KK peptides - 
one-pass fitting 

Calculate RIA from m6 and m12 peaks of 
dilysine peptides at each time point, then fit all 
qualifying data points to a single exponential 
rise curve 

kp: 0.37 
RIAp: 
0.37 

kp: 0.58 
RIAp: 
0.38 

kp: 0.52 
RIAp: 
0.42 

kp: 0.31 
RIAp: 
0.35 
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KK peptides - 
one-pass fitting 
to two- 
exponent 
precursor 
model 

Calculate RIA from m6 and m12 peaks of 
dilysine peptides at each time point, then fit all 
qualifying data points to the double exponent 
model described in Fornasiero et al.11 that 
accounts for label dilution from proteome-wide 
degradation 

a: 0.12 
b: 0.84 
r: 9.08 

a: 0.11 
b: 1.37 
r: 11.2 

a: 0.15 
b: 1.05 
r: 5.52 

a: 0.08 
b: 0.42 
r: 6.04 

KK peptides - 
best estimate 
RIAs 

Calculate RIA from m6 and m12 peaks of 
dilysine peptides, find the estimated tissue RIA 
at each time point using kernel density 
estimation, then fit to a simple exponential rise 
curve 

kp: 0.19 
RIAp: 
0.39 

kp: 0.37 
RIAp: 
0.43 

kp: 0.30 
RIAp: 
0.42 

kp: 0.16 
RIAp: 
0.36 

KK peptides - 
median kp 

Calculate RIA from m6 and m12 peaks of 
dilysine peptides, fit each peptide time series 
to an exponential rise curve to derive, then take 
the median of all best-fit kp values 

kp: 0.17 kp: 0.30 kp: 0.33 kp: 0.12 

HW reference  Using nested optimization to the two-
compartment model described in Guan et al..23 
for AA, find the kp that minimizes total error 
between HW and AA labeling results 

kp: ~0.35 kp: 0.44–
0.45 

kp: 0.58–
0.60 

kp: 0.28–
0.38 

 1 
Table 1. Methods for determination of AA labeling precursor kinetics. 2 
kp: precursor relative isotope abundance kinetics rate constant; RIAp: asymptotic precursor relative isotope abundance. 3 
 4 
Comparison of peptide turnover rates between HW and AA labeling 5 
We next used the weighted dilysine peptide kp and asymptotic RIAp values in a two-compartment, 6 
two-exponent model to derive peptide kdeg for all qualifying single lysine peptides in each tissue. 7 
We were thus able to fit the AA (slow equilibration) and HW data (rapid equilibration) using either 8 
model for comparison. We compared the best-fit peptide kdeg from the one-compartment model to 9 
a two-compartment model that accounts for the delay in precursor equilibration. As anticipated, 10 
the two-compartment model influenced the kinetics of the AA labeling experiment more than HW 11 
labeling, particularly for higher turnover proteins within a tissue. This is evident from the off-diagonal 12 
distribution between one-compartment and two-compartment models in AA labeling as well as the 13 
absolute differences in high-turnover peptides (Figure 6A).  14 
 15 
Fitting to the two-compartment model brought the median turnover rates of peptides quantified 16 
from the two methods into closer correspondence (Figure 6B), and corrected the discrepancy 17 
between HW and AA labeling in relatively high turnover proteins within a tissue (Figure 6C). For 18 
peptides integrated over at least 9 time points and fitted with an R2 of ≥ 0.9, the agreement between 19 
the methods is good (robust correlation bicor: 0.758–0.862 in four tissues) when the two-20 
compartment model is used to fit the (peptide RIA,t) data. Both AA and HW labeling data showed 21 
excellent agreement with the turnover rates derived in a previous study of HW labeling of heart 22 
proteins an independent cohort of C57BL/6J mice 15 (biweight midcorrelation: 0.85–0.93; 23 
Supplemental Figure S8A) and good agreement with a more recent study of AA labeling of liver 24 
and skeletal muscle proteins in NSBGW mice 24 (biweight midcorrelation: 0.73–0.83; Supplemental 25 
Figure S8B–C). The kdeg values of peptides in HW and AA labeling are tabulated in Supplemental 26 
Data S1. All fitted peptide curves using the two-compartment model above in AA and HW labeling 27 
are in Supplemental Data S2–S5. 28 
 29 
A few peptides showed unexpectedly high turnover rates in AA labeling, possibly because the 30 
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precursor enrichment rate is underestimated, leading to overcorrection. For these peptides it is 1 
likely that kdeg could not be determined with high accuracy as the non-linear model would fail to 2 
converge when it is limited by kp, and these peptides may be more accurately categorized simply 3 
as having high turnover. Nevertheless, we conclude that the two-compartment model performed 4 
well in correcting the underestimation of kdeg for relatively high-turnover proteins (kdeg ≥ 1 d-1); 5 
proteins for which label enrichment is retarded measurably by the lag in precursor enrichment (~1 6 
d-1). This is more pronounced in tissues where the overall protein turnover rates are high, such as 7 
the kidney and the liver. 8 
 9 
Evaluation of data quality filters 10 
Using the one and two-compartment model results, we examined the effect of various data quality 11 
filters on the depth and reliability of protein turnover measurements. We varied the filtering criteria 12 
by two metrics: first, the number of time points in which the degree of label incorporation into 13 
protein was quantifiable; and secondly, the coefficient-of-determination (R2) of the one-14 
compartment and two-compartment kinetic models. We then considered their effects on interaction 15 
with the number of quantifiable peptides, and the precision of turnover rates. To estimate precision, 16 
we considered the median values of the geometric coefficient of variation (CV) in turnover rates 17 
among peptides uniquely mapping to the cognate protein, because peptides derived from the same 18 
protein should be synthesized and degraded together in vivo. Barring undocumented proteoforms, 19 
peptides from the same protein should yield identical turnover rates, if the measurement is precise.  20 
 21 
First, we observed an expected decrease in the number of available peptides as the thresholds for 22 
required time points and R2 were raised. There was a sharp decrease in quantifiable peptides at all 23 
time point cutoffs when the R2 threshold increased beyond ~0.8, suggesting a drastic decrease in 24 
profiling depth if too stringent a threshold is used (Figure 7A). Although the number of quantifiable 25 
peptides between the one-compartment and two-compartment models at each R2 threshold are 26 
similar, there is a noticeable difference in intra-protein geometric CV. We found that the two-27 
compartment model led to increased variance at all R2 cutoffs. This increase was especially 28 
noticeable in fast equilibration tissues (liver and kidney), and is especially severe in AA labeling 29 
(Figure 7B). This is probably attributable to the two-compartment model having more parameters 30 
that can vary, e.g., true kp may differ across cell types within a tissue, demanding more stringent 31 
time-point and R2 thresholds. In our experience, data quality and the ability to make inference about 32 
changes in turnover declined when the median geometric CV increased beyond ~0.33. 33 
 34 
When an R2 threshold of 0.8–0.95 is imposed, the inclusion of peptides quantified at fewer time 35 
points had a modest impact on intra-protein kdeg variance (Figure 7C) while allowing more 36 
quantifiable peptides (Figure 7A). Overall, we surmise that with a two-compartment model, a 37 
conservative R2 threshold is needed to minimize intra-protein variance whereas the number of 38 
quantifiable data points has a lesser impact. Hence, we selected an R2 threshold of 0.9 and a time 39 
point threshold of 6 to investigate proteome level features of protein turnover in the four tissues.  40 
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 1 
Figure 6. Comparisons of turnover rate constants across labels and kinetic models. 2 
A. Degradation rate constants (kdeg) were obtained for proteins from four tissues using amino acid (AA) 3 
or heavy water (HW) labeling, and were fitted using a one-compartment (x-axis) or two-compartment (y-4 
axis) kinetic model to derive the first order kdeg (plotted on a log base 10 scale). Data points are peptide 5 
time series with ≥ 9 time points and fitted with R2 ≥ 0.9. Red dashed line: unity. Marginal distribution 6 
shows data density. B. Scatterplots of shared proteins quantified by HW and AA in each tissue using the 7 
two-compartment model (quantified time points ≥ 9, R2 ≥ 0.9). Numbers denote robust correlation 8 
(biweight midcorrelation; bicor) coefficients. Each data point is one peptide-charge time series. C. 9 
Histogram showing distribution of kdeg across tissues and labels. Red dashed lines denote medians. 10 
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 1 
Figure 7. Relationship between R2 and time point filters on peptide count and variance.  2 
A. The number of quantified peptides (y-axis) vs. R2 coefficient-of-determination thresholds in kinetic curve-3 
fitting (x-axis) with various time point filters (colors). Both R2 and minimal time points have a large effect on the 4 
total number of fitted peptides. Red dash lines: R2 0.75. B. Intra-protein variance, measured as the geometric 5 
coefficient of variation (CV) of best-fit kdeg among peptides uniquely mapped to the same proteins (y-axis), vs. 6 
R2 thresholds (x-axis) and time point thresholds (color). Only peptides belonging to proteins with 3 or more 7 
quantified peptides were used for the analysis. Two-compartment models led to higher intra-protein variance. 8 
Horizontal red dash lines: geometric CV = 0.33; vertical red dash lines: R2 0.75. C. Intra-protein variance (y-9 
axis) as in panel B, against the minimal number of required time points, at different R2 thresholds. It can be 10 
seen that R2 has a more pronounced effect on kdeg precision than minimal time point thresholds.    11 

 12 
Protein-level data summary 13 
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 1 
Finally, we aggregated peptide-level turnover rates to the protein level, by selecting well-fitted 2 
peptides (R2 ≥ 0.9, 6 time points) and refitting all fractional synthesis data points to a single curve. 3 
We found little difference between an unweighted fitting and fitting weighted by normalized log 4 
peptide intensities. The kdeg values of proteins are tabulated in Supplemental Data S6. All individual 5 
protein-level kinetics curves using the two-compartment model above in AA and HW labeling are 6 
at Supplemental Data S7–S10. 7 

Discussion 8 
There is a need for rigorous assessment of the strategies used to measure protein turnover rates in 9 
intact animals. Irrespective of the labeling precursor, there is potential for a delay in the equilibration 10 
of the precursor pool. Although this can be ameliorated by the use of HW as a precursor label, 11 
knowing the precursor enrichment kinetic rate constant (kp) in animal studies is recognized as a 12 
challenge. The primary focus of our study is the comparison of two labeling methods (HW vs. AA) 13 
with different precursor equilibration rates across high- and low-turnover tissues. We also explore 14 
different approaches to derive the precursor RIA kinetics parameters in AA labeling, but none of the 15 
three approaches taken is entirely satisfactory for all tissues. If we assume the HW fitted data have 16 
higher reliability due to the minor impact of complications from precursor delay, then tissue-specific 17 
values of the precursor enrichment rate constants allow the AA data to align closely with the HW 18 
data. These values were ~0.28–0.35 d–1 for the adult mouse heart and muscle and ~0.44–0.6 d–1 for 19 
the liver and kidney, but it was not entirely clear how they might be reliably derived without the 20 
external reference of HW data.  21 
 22 
Surprisingly, direct LC-MS measurement of intracellular lysine pools gave kp values that were 23 
considerably lower than required to be compatible with label enrichment of peptides. There may be 24 
preferential label reutilisation of amino acids released by degradation for synthesis de novo, such 25 
that the measured free lysine is decoupled from the true precursor pool. Other complications may 26 
also cause the precursor enrichment rate to deviate from exponential rise kinetics, for instance, 27 
unlabeled lysine is dietary and delayed by digestion prior to transport, whereas labeled lysine is a 28 
free amino acid that is available to membrane transporters immediately. Analytical approaches 29 
might require complex measurements of precursor RIA in multiple “compartments”: plasma, 30 
interstitial fluid, intracellular fluid as well as in the aminoacyl tRNA pool. 31 
 32 
We therefore explored two alternatives to estimate kp, but neither approach was entirely 33 
satisfactory. We examined a two-compartment nested optimization method to gain the best fit kp 34 
that explains the labeling curves directly from the peptide data. This method may compensate for 35 
the time integral in the dilysine peptide analysis, and indeed appears to perform well for slow-36 
equilibration tissues such as the heart and the skeletal muscle. However, when kdeg << kp for most 37 
peptides in a fast-equilibration tissue such as the liver, the two-compartment model never 38 
outperformed the one-compartment model in minimising fitting errors, likely because the initial 39 
sigmoidal “bend” in the kinetic curve of the two-compartment model is not apparent and thus 40 
different combinatorial values of kp and kdeg can explain the peptide RIA data equally well.  41 
 42 
We have previously advocated an approach based on mass isotopomer analysis of peptides 43 
containing two instances of the amino acid 5. This approach has the potential to reveal the true 44 
precursor isotopic enrichment based on the immediate protein precursor pool (e.g., labeled 45 
aminoacyl tRNA), but there is a technical challenge associated with determination of precursor pool 46 
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behavior. Because all subsequent protein turnover measurements use these kinetics that define 1 
precursor behavior, it is important to analyse doubly-labeled peptides carefully, either by manually 2 
extracting clean and readily isolatable extracted ion MS1 chromatograms, or by automating 3 
analysis of all peptides and modeling the best estimates for each time point. Unexpectedly, there 4 
is a wide distribution of calculated RIA values from HH and HL peaks. A best-fit exponential model 5 
of RIA over time has large residuals but yields values of kp consistent with expectation. The RIA 6 
fitting also shows distinct best-fit RIAp plateaus in each tissue, which is counterintuitive - if the 7 
subject had been exposed to the labeled AA during uterine development and at all times 8 
subsequently, the RIAp for each tissue should be identical. Over the 30 d labeling window used 9 
here, the precursor pool would be diluted by unlabeled lysine derived from the pre-existing protein 10 
pool (the subjects are adult, non-growing). Further, this approach will suffer from coupling to the 11 
rate of turnover of the protein when kp is not constant or the protein has not completely turned over. 12 
A very high turnover protein (one that might not be measurable with any accuracy, as tissues cannot 13 
be sampled rapidly enough) would be replaced quickly, and thus become a high frequency sensor 14 
of the precursor pool. By contrast, a protein with a lower rate of replacement would retain a 15 
significant proportion of the protein pool that was synthesized in the early stages of precursor pool 16 
equilibration, thus giving a dampened measure of the rate of precursor rise to plateau, although the 17 
plateau value for RIA should be the same in either instance. However, empirically the kp values 18 
calculated from dilysine peptides are not correlated with the kdeg of the peptides.  19 
 20 
These complications serve to highlight the difficulties of using labeled amino acids in intact animal 21 
systems. All of the solutions that have been explored here are complicated and require additional 22 
analyses or complex modeling. Even direct measurement of the tissue free amino acid pool might 23 
not be suitable or representative of the true precursor of protein synthesis; the aminoacyl tRNA 24 
pool. Optimisation of complete data sets to derive precursor behavior may introduce uncertainty, 25 
and the error gradients are shallow for many combinations of kp and kdeg. 26 
 27 
Taken together, we proceeded with the kp values from automated dilysine analysis as they led to 28 
kdeg that agreed with HW data. A more complex two-compartment model 11 that accounts for  label 29 
dilution from global protein degradation further improved data fit and concordance with HW results 30 
incrementally. However, one is left with the same problem of having to learn the model parameters 31 
from the data without guarantee that such values can be found. Moreover, even if a complex model 32 
fits the data more closely, it cannot be guaranteed that the resulting optimized kdeg are in fact 33 
accurate values as they are inside the cell. Prior studies that compared fitting models largely used 34 
only two criteria to compare different models - (i) measures of model fit such as residual sums of 35 
square, coefficients of determination, or information criteria; (ii) the ability of the model to avoid 36 
unreasonable kinetic rate constants in the fitted results, e.g., negative values, or values that are out 37 
of the allowable numerical ranges given the sampling time points. Generally speaking, however, the 38 
introduction of additional parameters in a complex model will allow the kinetics function to move 39 
more freely to the data points, which can lead to trade-offs between variance and bias and the 40 
possibility of overfitting. 41 
 42 
At present, we are unaware of an accepted gold standard of turnover rates of proteins in vivo. 43 
Although premixed synthetic isotope analogs with known isotope ratios may be used as a standard 44 
for the accuracy of mass spectrometry quantification of isotopomer intensities, they cannot serve 45 
as a calibration target of in vivo turnover rates or precursor enrichment. Literature values of turnover 46 
rates in vivo remain few, and turnover rates vary greatly by species, tissues, age, and physiological 47 
states, making direct comparisons difficult. In the absence of kdeg standards, we propose that intra-48 
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protein variance should be examined as a criterion by which analytical methods to derive turnover 1 
rates are evaluated. This is based on the simple assumption that a protein is created and destroyed 2 
in its entirety (i.e., a protein is never partially excised from one terminus then repaired with 3 
replacement amino acids). Hence different peptides from the same protein should share similar 4 
turnover rates, if the modeling results are reliable, and by extension, this gives an estimate of 5 
whether the model will return identical kdeg for two polypeptide chains with equal true turnover rates. 6 
We found that the two-compartment model generally increases intra-protein variance at equal R2 7 
cutoffs, hence stringent data filtering strategies are needed for the two compartment model fitting 8 
in order to maximize the number of quantified peptides while minimizing intra-protein variance. 9 
 10 
For robust measurement of turnover rates in intact animals, we would recommend: (a) labeling with 11 
[2H2]O, (b) determination of labeling profiles in a peptide-specific analytical workflow to compensate 12 
for the specificity of HW labeling, (c) distribution of replicates in the time domain, to define as broad 13 
a range of turnover rates as possible, (d) aggregation of data from multiple peptides to increase 14 
confidence in the extraction of the MS1 isotopomer profiles, (e) stringent quality filters at the peptide 15 
level in the analysis methods to minimize intra-protein variance. In reporting turnover rates, care 16 
should be given to the limitations imposed by the sampling time points - these intervals set limits 17 
on the range of turnover rates that are accessible. This is eased by a temporally expanding sampling 18 
window. For example, sampling of 1, 2, 3, 4, 8, 10, 13, 16, 20, 32 d, and working on the assumption 19 
of a measurable abundance for labeled or unlabeled peptide of 5% of the total, over three data 20 
points, should yield measurable variation in the RIA for proteins with kdeg values between 0.002 d-1 21 
and 1 d-1. Beyond these limits is it only possible to say ‘less than 0.002 d-1’ and ‘greater than 1 d-1’. 22 
Ideally, sampling intervals less than 1 day would allow access to higher turnover proteins, arguably 23 
only feasible with HW strategies. At the other extreme, very low turnover proteins could require 24 
labeling periods of many months, with less frequent sampling. 25 
 26 
This study is a highly controlled comparison of HW and AA labeling strategies for measurement of 27 
peptide turnover rates in four tissues in intact animals. In this paper we have evaluated strategies 28 
for high quality measurements of turnover rates - discussion of the biological significance of these 29 
results will be addressed in a separate publication. It is possible to bring the two data sets into 30 
close agreement when the AA precursor behavior is addressed to provide a suitable kp correction. 31 
AA labeling is analytically simple but metabolically complex, with tissue-dependent variation in 32 
behavior. Given the challenge of determination of kp values for a two-compartment model in AA 33 
labeling, dilysine peptides and iterative two-compartment model fitting performed better than direct 34 
measurement of free lysine in tissues. These approaches provided kp values that are consistent with 35 
the observed peptide data. Improved methods to model the RIA values of double-labeled peptides, 36 
such as a time integral of protein pool replacement, could improve measurements using AA labeling 37 
approaches. By contrast, HW equilibrates quickly and non-enzymatically and hence kp is systems-38 
wide across tissues, and requires minimal correction in precursor pool equilibration. HW labeling is 39 
also cheaper and enables the quantification of a substantially greater number of peptides. However, 40 
isolation and analysis of the subtly shifting isotopomer profile is more challenging. 41 
 42 
Future studies of whole animal protein turnover will require even greater attention to a range of 43 
prerequisites, including choice of label - at present, the strongest case is for the use of heavy water. 44 
Further, the duration of the labeling experiment (to cover the broadest range of turnover rates that 45 
are required) is critical, although it will always be challenging to recover accurate rate constants for 46 
particularly high and low turnover proteins. There is also a case for an increased number of time 47 
points to scribe the labeling curve - we would argue that points distributed across the labeling curve 48 
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are preferable to replicate samples with fewer time points. Lastly, there is a case for a well 1 
conducted labeling study to be analysed by many of the analytical packages for turnover 2 
determination - a detailed comparison of the resultant output would be especially informative. This 3 
would lead us to a more open democratisation of the analytical workflow, and a clearer 4 
understanding of where there are variances in the final outputs. To this end, all raw data from this 5 
study are available for immediate download. Lastly, an animal that has been labeled in such studies 6 
is often the source of just one or a few tissues. The ‘3R’ principles underpinning animal research 7 
(Replacement, Reduction, Refinement), specifically, reduction, would be well served if, in future, 8 
labeling and turnover studies were enhanced by a willingness to share unused tissues, to allow 9 
others to replicate studies, improve data analysis and extend understanding. Indeed, in a recent 10 
review a future imperative was exactly this; “Data and tissue-sharing offer opportunities for more 11 
efficient use of information collected from animals and may avoid unnecessary repetition” 48.  12 
 13 
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Supplemental Figures 1 
 2 

 3 
Supp. Figure S1. Peptide quantification performance inclusive of all HW labeling peptides.  4 
A. As in Figure 3, for each tissue, each bar defines the number of peptides integrated over each experimental 5 
time point in the labeling period. Here only peptides containing one lysine are included in the AA labeling 6 
experiment, whereas all quantified peptides are included in the HW labeling experiment. B. For each tissue, the 7 
cumulative number of peptides (solid line) and unique proteins (dashed lines) quantified at increasing number 8 
of minimal time points in the heavy water (HW) labeling (green) and amino acid (AA) labeling (blue) data sets.   9 

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted December 23, 2021. ; https://doi.org/10.1101/2021.12.13.472439doi: bioRxiv preprint 

https://doi.org/10.1101/2021.12.13.472439
http://creativecommons.org/licenses/by-nc-nd/4.0/


 27 

 1 

 2 
Supp. Figure S2. Comparison of HW and AA labeling data in one-compartment fitting.   3 
A. Histogram showing distribution of kdeg across tissues and between HW and AA labels using a simple 4 
exponential model (quantified time points ≥ 9, R2 ≥ 0.9) where peptide isotope enrichment is described by a 5 
single rate constant (kdeg). Red dashed lines denote medians. B. Scatterplots of shared proteins quantified by 6 
HW and AA in each tissue using the one-compartment model (quantified time points ≥ 9, R2 ≥ 0.9). Numbers 7 
denote robust correlation (biweight midcorrelation; bicor) coefficients and numbers of compared peptides (n). 8 

 9 
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 1 

 2 
Supp. Figure S3. Empirical measures of tissue precursor RIA values at each time point.  3 
Precursor relative isotope abundance (RIAp) was measured using A. GC-MS of plasma samples in HW labeling 4 
and B. LC-MS of tissue free lysine in AA labeling. The precursor RIA over time data were fitted to a simple 5 
exponential model to find the best fit kp using nonlinear least squares. C. Using the empirically- derived kp 6 
values in a two-compartment model led to apparent high kdeg peptides in AA labeling, since the peptide RIA 7 
rise curves for fast-turnover peptides do not converge to the model when it is constrained by an underestimated 8 
kp. X-axis: log10 turnover rate constants (kdeg) of HW labeling; y-axis: log10 turnover rate constants of AA labeling. 9 
Each data point represents one peptide. Peptides integrated at ≥ 9 time points and fitted to a two-compartment 10 
model at R2 ≥ 0.9 are included. Red dash line: unity. Number: biweight midcorrelation (bicor) and number of 11 
individual peptides compared in HW vs. AA. In this panel, the marginal rugs refer to distributions of each 12 
individual axis regardless of whether a pairwise data point (commonly quantified peptide) is present. 13 

  14 
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 1 
 2 

 3 
Supp. Figure S4. Determination of precursor RIA kinetics using proteome-wide nested optimization. 4 
A. We performed multiple rounds of two-compartment model curve-fitting by iterating through different kp and 5 
plateau precursor RIAp values from 0.05 to 2.0 at 0.05 increments (x-axis). Peptides quantified at ≥ 9 time points 6 
and fitted with R2 ≥ 0.9 in the one-compartment model were used. The median sums-of-squares of the residuals 7 
of fitting of each peptide time series in the two-compartment model in each tissue (z-axis) were compared to 8 
that from the one-compartment model (horizontal mesh). B. Corresponding two-dimensional cross-sections at 9 
various kp values with asymptotic RIAp fixed at 0.45. Red dash line: median sums-of-squares of peptide fitting 10 
in the simple exponential (one-compartment) model. 11 

  12 
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 1 

 2 
Supp. Figure S5. Determining AA precursor kinetics from dilysine peptides using Gaussian KDE.  3 
A. Distribution of calculated RIA values derived from mass isotopomer analysis of the intensities of the m6 and 4 
m12 peaks of peptides containing two lysine residues and quantified at ≥ 9 time points (bars). The best-estimate 5 
single tissue precursor RIA values for each time point for each tissue were derived from the modes of Gaussian 6 
kernel density estimations (red curve). B. The estimated tissue-specific precursor RIA values were fitted to a 7 
simple exponential model to derive the precursor rate constant kp and asymptotic precursor RIA value RIAp.  8 
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 1 

 2 
Supp. Figure S6. Determining AA precursor kinetics from dilysine peptides using weighted fitting. 3 
The distributions of calculated RIA values using the m6 and m12 peaks of dilysine peptides (y-axis)  at each time 4 
point (x-axis) are shown across the four tissues, calculated as in Supplemental Figure S5. Data points with RIA 5 
between 0 and 0.6 are included and fitted directly to a simple exponential (red) model to find the best-fit kp and 6 
plateau RIAp; or the double exponential (blue) model described in Fornasiero et al.11 to find the best-fit values 7 
for the parameters a, b, and r in the Fornasiero model. Weighted nonlinear least squares fitting was performed 8 
using the square of normalized peptide intensity of each data point as weight. 9 
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 1 
Supp. Figure S7. Comparison of the two-compartment and three-exponent models. 2 
A. Scatterplots showing the log10 peptide turnover rate constants in each tissue from HW and AA labeling 3 
derived using the Guan et al. two-compartment model (x-axis) and the Fornasiero three-exponent model (y-4 
axis). Model parameters were derived using one-pass fitting to dilysine peptide RIA values as in Supplemental 5 
Figure S6. Each data point represents one common peptide quantified at ≥ 9 time points and fitted to each 6 
model as R2 ≥ 0.9. Red dashed lines: unity. B. Scatterplots comparing the log10 turnover rate constants in HW 7 
labeling (x-axis) derived using the two-compartment model with those in AA labeling (y-axis) derived using the 8 
three-exponent model. Numbers represent robust biweight midcorrelation (bicor) between HW and AA. C. 9 
Relationships between data variance as measured by intra-protein geometric coefficients of variation (CV) for 10 
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proteins quantified with ≥ 3 peptides across multiple fitting R2 threshold (x-axis), with different time point 1 
multiplicity filters (color), and different kinetics models. Variance increased significantly when peptide time-2 
series with lower fitting R2 were included, and the two compartment models showed higher variance than the 3 
simple exponential model.   4 
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Supplemental Figure S8. Comparison of turnover rate constants with a previous study. Scatterplots 1 
showing the log10 peptide turnover rates quantified with R2 ≥ 0.9 and at ≥ 9 time points in AA labeling (left) and 2 
HW labeling (right) in this study (x-axis) against the log10 peptide turnover rates in prior studies (y-axis): A. 3 
Peptides quantified with R2 ≥ 0.9 in C57BL/6J mouse heart in Lau et al. 2016 (HW labeling), vs. 4 
C57BL/6JOlaHsd mouse heart peptides in this study; B. reported peptides in NSBGW mouse liver in Rolfs et 5 
al. 2021, vs. C57BL/6JOlaHsd mouse liver peptides in this study; C. reported peptides in NSBGW skeletal 6 
(sternocleidomastoid) muscle in Rolfs et al. 2021, vs. C57BL/6JOlaHsd mouse skeletal muscle (pooled 7 
hindlimb) in this study. Bicor: biweight midcorrelation; n: number of compared peptides. Error bars: dkdeg of 8 
fitting. Dashed red line: unity.  9 
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Supplemental Data 1 
 2 
All Supplemental Data are available online on figshare at  3 
https://doi.org/10.6084/m9.figshare.17096636.v1  4 
 5 
Supplemental Data S1: Table containing turnover rate constants of peptides 6 
Supplemental Data S2: Fitted curves for common peptides in HW and AA labeling (≥ 9 time points; 7 
R2 ≥ 0.9) in the heart 8 
Supplemental Data S3: Fitted curves for common peptides in HW and AA labeling (≥ 9 time points; 9 
R2 ≥ 0.9) in the kidney 10 
Supplemental Data S4: Fitted curves for common peptides in HW and AA labeling (≥ 9 time points; 11 
R2 ≥ 0.9) in the liver 12 
Supplemental Data S5: Fitted curves for common peptides in HW and AA labeling (≥ 9 time points; 13 
R2 ≥ 0.9) in the muscle 14 
Supplemental Data S6: Table containing turnover rate constants of proteins 15 
Supplemental Data S7: Protein-level fitted curves for common peptides in HW and AA labeling (≥ 16 
9 time points; R2 ≥ 0.9) in the heart 17 
Supplemental Data S8: Protein-level fitted curves for common peptides in HW and AA labeling (≥ 18 
9 time points; R2 ≥ 0.9) in the kidney 19 
Supplemental Data S9: Protein-level fitted curves for common peptides in HW and AA labeling (≥ 20 
9 time points; R2 ≥ 0.9) in the liver 21 
Supplemental Data S10: Protein-level fitted curves for common peptides in HW and AA labeling 22 
(≥ 9 time points; R2 ≥ 0.9) in the muscle  23 
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