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Abstract 

Microbiome in the human body environment is related to the occurrence of a variety of disease 

phenotypes. Recent studies discovered that lung is an open organism with in touch of air and 

microbe in it, and the presence of some microbes in lung cancer tissues proved that there are 

many microbes in lungs. In this project, we collected lung tissue, feces and sputum from three 

Bioprojects of NCBI related to lung cancer (LC). Each project contains LC cases and lung normal 

(LN) controls. Those three projects contain a total of 339 samples of 16s rRNA sequencing data. 

By analyzing the composition of microbes in the three environments, and predicting their 

functions we found that compared with sputum, the ecological environment of fecal microbe is 

closer to tissue microbes in terms of evolutionary relationship, indicating that the impact of feces 

on tissue microbes is greater than that of the sputum. We used Picrust2 to predict the differential 

microbe function of lung cancer (LC) and the control (Lung Normal, LN) groups in the three 

environments, and found that at the microbe genetic level, compared to feces and sputum, 

sputum and tissues, feces and tissues have more common Differential genes, at the level of 

differential enzyme genes and differential pathways, feces and tissues have more common 

differences compared to feces and sputum, sputum and tissues. Our results showed that the 
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similarity of feces and tissue microbiome is closer than the similarity of sputum and feces 

microbe. Through Spearman correlation analysis based on the relative abundance of predicted 

pathways and the relative abundance of genus classified by LDA analysis as marker diseases and 

healthy samples. The results indicated that the activation of marker genus in sputum and feces 

and significantly changed pathways has an opposite trend, and there are many pathways 

contributing to glycolysis are correlated with marker genus. Patients with LC has potential to 

regulate the microbe composition of feces, tissues and sputum by regulating metabolism. 

 

Key Words: Lung cancer, 16s rRNA, Microbial ecology, Microbial function, Microbiome, Tissue 

microbiome, Fecal microbiome, Sputum microbiome 

Introduction 

In the clinical application of microbial ecology, the previous research has proved that fecal 

microbe transplantation (FMT) has the potential to evaluate the patient's abnormal and healthy 

phenotype[1, 2]. However, many mechanisms are currently lacking in research[3]. Current studies 

have shown that gut microbes can affect the host's metabolism by producing metabolite[4] and 

the immune system continuously monitors resident microbiota and utilizes constitutive 

antimicrobial mechanisms to maintain immune homeostasis[5]. Some molecules, such as 

lipopolysaccharide (LPS), short chain fatty acid (SCFA), and branched chain amino acids (AAs), 

have been found to be involved in the occurrence of diseases[6]. 

Some studies have shown that in addition to the enrichment of various microbial 

communities in the human gastrointestinal tract[7], there also contains microbes in the oral and 

tissue which is in direct contact with the air environment[8]. There are also existing microbes in 

cancer tumors[9], and the microbes in cancer tissues are very different from those in non-tumor 

tissues[10, 11]. Many studies have confirmed that there are many microbes in the lung 

tissue[12-15]. Existing studies have shown that gut microbes can affect the composition of lung 

microbes through gut-lung axis, thereby affecting the development of LC [16].  

Since the air way and lung tissue are connected, there are some researchers conducted that 

the air way microbes migrate to the lungs through air [17]. Studies have used mice to compare 

the influence of the environment and the intestine microbes on the lung microbes of mice and 

discovered the environment has more influence on the lung microbes of mice than the 

intestine[18]. Clinical studies have also shown that lung microbes can affected by oral microbes, 

lung microbes regulate lung inflammation by affecting Th17 in the lungs[19].  

Studies have found that the use of metabolites in sputum as metabolic markers has 

contribution to the diagnosis of lung cancer[20] and microbes of feces can predict early-stage 

lung cancer[21]. However, whether gut microbes have an impact on the sputum and tissues, and 

the differences on microbe ecological function between the gut microbes, lung tissue microbes 

and sputum microbes is still a lack of research. In this study, we collected and analyzed 339 16s 

rDNA public sequencing data and found that there is a strong correlation between tissue 

microbes and fecal microbes. By comparing the prediction results of the microbial function of 

lung cancer patients and healthy people, it is found that the microbial environment of lung 

cancer patients' tissues and feces have undergone more similar changes. As well as predicting the 

functions of microorganisms in three body environments, it was found that in the tissues, feces 
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and sputum of patients with lung cancer, the pathways related to glycolysis metabolism have 

undergone significant changes, and they are widely associated with pathogenic bacteria. 

Materials and Methods 

Data 

We searched for projects related to lung cancer microorganisms from the NCBI Bioproject 

database. Since there are few metagenomic data, we only collected projects that contained 16S 

rDNA sequencing data. We ended up using some of the data from the three projects. After 

removing the specimens not related to our subject needs, we finally collected 339 specimens, 

including 192 stool specimens, 97 sputum specimens, and 50 tissue specimens. The control group 

of tissue specimens is para-cancerous tissue. All of the runIDs from the three NCBI BioProjects 

are provided in Table S1 and can be downloaded from NCBI. We downloaded 16S rDNA 

sequencing data from the NCBI SRA database using the command-line tool fastq-dump of the 

SRA tools (https://github.com/ncbi/sra-tools, accessed in July 2018).  

Data processing and taxonomic assignment 

We used FastQC (ver. 0.11.8; downloaded from 

http://www.bioinformatics.babraham.ac.uk/projects/fastqc/) to evaluate the overall quality of 

the downloaded data, followed by Trimmomatic (ver. 0.35; 

https://github.com/usadellab/Trimmomatic) to remove vector sequences and low-quality bases. 

We directly used single-ended sequencing reads for subsequent analyses and merged the 

pair-ended reads using Casper (ver. 0.8.2)[22]. We used Qiime (qiime2-2021.2) [23] to obtain the 

relative abundance of bacteria table. Qiime2 classifier is trained and annotated using the SILVA 

database. We then used Picrust2[24] to predict the KO, EC, KEGG pathways and Metacyc 

pathways in the microbial community. 

Statistical analysis 

We uploaded all the processed data into R (ver. 4.1.0; downloaded from 

https://www.r-project.org). In order to remove the noise caused by low abundance bacteria, 

considering the bacteria in the tissue and sputum is quite a few, we removed bacteria with reads 

of less than 4 counts and relative abundance cutoff of 1K×K10−3. We used Picrust2 to predict the 

relative abundance, got the relative abundance of EC, KO and pathway, and remove the pathway 

data with relative abundance less than 10-6. In the LC group and the LN group, we calculated the 

median value of the pathway in each group, and the EC, KO and pathway of log2|Fold Change 

(FC)| >= 1 were defined as significant differences and used by next step analysis. The difference 

genus and the evolution relationship of difference genus are analyzed by LDA analysis in lefse 

software. 
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Results 

The microbial composition of feces, tissues and sputum is quite different between 

LC patients and LN. 

The feces, tissue and sputum flora of LC patients are significantly different from those of healthy 

people. Using PCoA analysis based on the Bray Curtis distance algorithm, we found that feces, 

tissue and sputum, the LC group and the LN group can be distinguished significantly (Fig1. A). It 

might indicate that in the relative abundance of bacteria, sputum, lung tissue and feces are 

significant differences between the healthy group and the control group. Among the consistent 

bacteria of these three groups, the microbiome in feces, sputum and tissues have different 

relative abundance (Fig1. B). The boxplot indicated that the overall trends of fecal microbe and 

sputum microbe are more resemblance, while the evolutionary tree also shows that bacteria 

enriched in feces, tissues and sputum have evolutionary similarities (Fig S1). The tissue microbe is 

very different from these of the feces and sputum (Fig1. B), indicating that most bacteria do not 

migrate directly.  

 

Figure 1. There are differences between tissues, sputum and fecal microbes, and there are also 

microbes that co-exist.  

(A) Principal coordinate analysis (PCoA) based on Bray-Curtis distance at genus level of feces, 

sputum and tissue showed that the overall microbiota composition was different between LC and 

LN. (B) The 18 genus co-existing in feces, tissues and sputum showed many differences on 
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relative abundance. 

Compared to the sputum microbiome, the lung tissue microbiome is more 

consistent with the fecal microbiome. 

 

Figure 2. The overall composition of fecal microbes and tissue microbes has the highest 

similarity. 

(A) Weighted unifrac emperor algorithm clusters the evolutionary relationship of the 16S data of 

bacteria, showed that the closest evolutionary relationship to the fecal microbe is the tissue 

microbe. (B) Permutational multivariate analysis of variance (Permanova) distance showed that 

the closest distance to sputum microbe is feces, and the next closest is tissue. (C) Box plot 

showed that the distance to fecal microbe with sputum and tissue didn’t have significant 

different. (D) Box plot showed that the distance to tissue microbe is feces, and the next closest is 

sputum. Level of significance: **, P < 0.01; *, P < 0.05; NS, P ≥ 0.05.  

 

 Cluster analysis is performed on the three sets of data based on the weighted unifrac emperor 

algorithm (Fig2. A). The results showed that the composition of fecal microbiome and sputum 

microbiome has a longer distance. Using the Permutational multivariate analysis of variance 

(Permanova) distance to visualize the distance between the three groups of samples (Fig2. B, C 

and D), it can be seen apparently that the distance between sputum, tissue, and feces. The 

closest distance to tissue is feces (Fig2. D), and the closest distance to feces is sputum (Fig2.C and 

E). The microbiome of feces has closest distance to sputum and tissue (Fig2. C and D). Those 

results showed a vital importance of fecal microbiome to tissue. 
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The relative abundance of bacteria can distinguish most LCs from LNs samples. 

In order to evaluate the different distinguishing ability of these body sets of data for LC, and 

explore the phenomenon causes the differences in classification ability. We used the random 

forest model to determine the most influential position of microbiome between LC and LN 

patient (Fig3. A).  

 

 

Figure 3. Relative abundance can recognized feces tissue and sputum between LC and LN, and 

the KO and EC have consistent differences on composition. 

(A) The Random Forest model classifies bacteria with relative abundance> 0.01%, and the results 

show that the relative abundance of bacteria can distinguish between the LC group and the LN 

group. (B) Analysis on the α diversity showed in LC group the diversity of tissues and feces 

decrease, and the diversity of sputum increases. (C) There was no significant difference (|log2 

FC| >=0) in categorical composition between the increased and decreased KOs in the LC group. (D) 

There was no significant difference (|log2 FC| >=0) in the classification composition between the 
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elevated and lowered ECs in the LC group. NS. Level of significance: P ≥ 0.05, using two-tailed 

t-test.  

 

We used the random forest model to determine the characterization of microorganisms in three 

environments. Defining the AUC greater than 0.5 indicates that the difference between the two 

groups of LC and LN samples is significant. The AUC of all 339 specimens is 0.733, the AUC of fecal 

samples is 0.674, and the AUC of tissue samples is 0.703 (Fig3. A). The highest classification result 

is sputum, with an AUC of 0.900, which is consistent with the previous study [25] (Fig3. A). Most 

of the top 15 genus that affect the classification effect are unrecognized bacteria (Fig S2). 

In order to find out the reason that RF model classification effect of sputum is the best, we 

did analysis on the α diversity of microbiome in these three environments (Fig3. B). The results 

of the diversity analysis showed that sputum had lower diversity than tissue and fecal samples 

(Fig3. B). Due to the lower microbial α diversity, there are fewer significant bacteria related to 

the occurrence and development of LCs. We then used Picrust2 to predict the relative abundance 

of enzyme genes in these samples, and calculated the count of each EC (Enzyme Commission’s 

classification) type of enzymes with significant differences (|log2 FC| > 1) between LCs and 

control LNs (Fig3. C and D). We calculated the ECs of three groups using two-tailed t-test, and 

found that there is no significant difference in composition classification between EC and KO in 

the three environments (Fig3. C and D). Among them, Veillonella in feces. Streptococcus in 

sputum and Streptococcus and Veillonella in tissues were also found in the lower airways of 

patients with lung cancer. Those genera were enriched for oral taxa, which was associated with 

up-regulation of the ERK and PI3K signaling pathways [26]. 

Significant different KO, EC and pathways in feces and tissues are more 

resemblance. 
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Figure 4. Fecal and tissue microbiome have more similarity on KO and EC. 

(A) Among the three sets of data, the KO that has undergone significant changes has the highest 

Jaccard Similarity in tissue and feces. (B) Among the three sets of data, the EC that has undergone 

significant changes has the highest Jaccard Similarity in tissue and feces. (C) At the EC level, most 

of (67.2%) the significantly different enzyme genes present in tissues and feces are also present 

in sputum, but there is no significant change. 

 

To explore the relationship between bacterial differences and functional differences between the 

LC and LN groups, we used picrust2 to predict the microbial community’s functional composition, 

and map the significant differences (|log2FC| >= 1) between the LC and LN groups. The Venn plot 

showed the count and intersections of significant different ECs and KOs (KEGG Orthology) 

between tissues, feces and sputum (Figure4. A and B). The genes and enzymes that have 

undergone significant changes in the three environments, and the feces and tissues have higher 

Jaccard similarity in enzymes and genes (Figure4. A). Then we plot a heatmap on the relative 

abundances of the two specific genes in these parts, and found that most of the common 

differential enzymes in feces and sputum does not exist in tissue (40/21; 52.5%), and the rest of 

have no relative abundance changes (FigureS3. A and B). Most of the differential enzyme genes in 

feces and tissues are also present in sputum (64/43; 67.2%), others have no significant change in 

sputum (Figure4. C). The relative abundance changes revealed the functional differences 

between tissues and fecal microbiome are closer than that of feces and sputum. The main 

common differential enzymes in feces and tissues are EC1, while the main differential enzyme 

type between feces and sputum is EC2, as well as tissue and sputum (Figure4. C and Figure S3).  
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The metabolic pattern of sputum microbe in LC patients is significantly different 

from that of feces and tissue. 

 

Figure 5. Significant changed metabolic pathways are caused by significant changes genera, and 

there are differences in glucose metabolism pathways between the LC and LN groups. 

(A) The genus that has undergone a significant change caused a significant change in the pathway. 

It can be seen that feces and tissues are closer in the pathway, and sputum is significantly 

different from feces and tissues. The green bar represents sputum, the purple bar represents 

tissue, and the yellow bar represents stool. The +, marked before genus means enrichment in the 

LC group, and -, means enrichment in the LN group. (B) The difference between D−galactarate 

degradation I pathway in tissue, LC of feces and sputum, LN group, feces and sputum have 

opposite trends. (C) The difference between lactose and galactose degradation I pathway in 

tissue, LC of feces and sputum, LN group, feces and sputum have same trends. (D) The difference 

between D−galactarate degradation I pathway in tissue, LC of feces and sputum, LN group, feces 

and sputum have opposite trends. (E) The difference between D−glucarate and D−galactarate 

degradation pathway in tissue, LC of feces and sputum, LN group, feces and sputum have 

opposite trends.  Level of significance:  **, P <  0.01; *, P < 0.05; NS, P ≥ 0.05. 

 

We used the LDA score (P<0.05) of the lefse software to screen out the genus that had significant 

changes in the three environments (Fig. S4). And by comparing the KEGG database and the 

Metacyc database, it is found that these marker genus and significantly different pathways have 

different relationships in different environments. The heat map shows that the sputum marker 

genus has significant differences in metabolic pathways (Fig. 5A and S5). The bacteria related 
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pathway enriched in the feces of healthy people is positively correlated with the D−galactarate 

degradation I, D−glucarate degradation I and superpathway of D−glucarate and D−galactarate 

degradation (Fig5. B, D, E and FigS5), while the pathway of sputum in healthy people is negatively 

correlated (Fig5. B, D, E and FigS5). The bacteria related pathway enriched in sputum and feces of 

LCs is positively correlated with lactose and galactose degradation I pathway, while the pathway 

of tissue in LCs is negatively correlated (Figure5 C). Indicating in intestinal microbes, the relative 

abundance of metabolic pathway using glucose in the in LC patients has decreased, while the 

glucose metabolism pathways of sputum have increased (Fig5. B, D, E), and the degradation 

activities of LCs also increased (Figure S5). This might explain why the sputum of LC patients has a 

higher microbial diversity, because of increase of glycan and degradation activity in the microbe 

of LC sputum. The reduction of biosynthetic activities and the increase of organic substances 

have made organic substances in the sputum environment more complicated [20]. Through 

enrichment analysis of the differential pathways and differential microbe in the three 

environments, we found that the microbe involved in monosaccharide metabolism decreased in 

the patient’s feces and increased in the sputum (Figure S5). The pathways related to glucose 

metabolism have the most extensive correlation with the marker genus that causes LC (Figure S6). 

These results indicating that the glycolysis metabolic feature has significantly changed between 

LCs and LNs.  

Discussion 

The microbial composition of the lung tissue is related to the malignant diseases of the lungs [8]. 

The respiratory tract, as an open connection environment with the lungs, exchanges flora with 

lung microorganisms, and is also related to the occurrence of lung disease [27]. We evaluated the 

tissues, feces and sputum specimens of 339 LC and LN, and found that feces and tissues had a 

higher similarity in bacterial composition and functional composition than sputum [Fig2 and 

Fig4].  

In this work, we found that the microbes in these three parts are different between the lung 

cancer and healthy groups, and there are 18 genera existing in all these three parts [Fig.1]. We 

used a Random Forest-based machine learning model to verify that the relative abundance of 

microbes can distinguish specimens of healthy people with lung cancer [Fig3]. We used LDA score 

to analyze the marker genus in the microbial sampling in the three human environments, and 

obtained the genus enriched in the LC and NC groups in those three environments [Fig. S4]. We 

used Picrust2 to predict the function of the microbial community, by analyzing the three groups 

of microbial environments, we found that the KO and EC that have significantly changed in tissues 

and feces have the highest Jaccard Similarity.  

Through Spearman correlation analysis of the relative abundance of differential pathways 

and differential genes, the correlation between the three groups of differential genus and 

differential pathways was demonstrated [Fig5. And Fig S5]. The genus enriched in the sputum of 

healthy people participates in the regulation of pathways and is enriched in tissues. The genus of 

the set is significantly different, and the pathways involved in glucose metabolism in feces and 

sputum in the LC and LN groups have a significant negative correlation. It may be related to the 
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Warburg effect of tumor cells[28]. We assumed that the metabolism of tissue microorganisms 

has the potential to be interfered by fecal microbe. 

The microbes in the tissues, sputum and feces of patients with lung cancer are very different 

from those of healthy people, and there are certain changes from composition to function. 

Through our analysis, we found that the microbial composition in the tissues, sputum and feces 

of lung cancer patients can distinguish lung cancer from healthy people. The changes in these 

microorganisms have resulted in changes in the genes encoding proteins, enzymes, and 

corresponding pathways in the genome of environmental microbes. The changes in tissue and 

stool are the most similar, and the functional changes between stool and sputum, tissue and 

sputum are very different. It is suggested that the changes in the characteristics of microbial 

metabolism in patients with lung cancer, especially the changes in the related characteristics of 

glucose metabolism, may be the cause of the microbial differences in tissues, feces and sputum. 
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