

Characterization of metabolic compartmentalization in the liver using spatially resolved metabolomics

Jiska van der Reest^{1,2,†}, Sylwia A. Stopka^{2,3,†}, Walid M. Abdelmoula², Daniela F. Ruiz^{2,4}, Shakchhi Joshi¹, Alison E. Ringel¹, Marcia C. Haigis^{1*}, Nathalie Y. R. Agar^{2,3,5*}

¹ Department of Cell Biology, Blavatnik Institute, Ludwig Center, Harvard Medical School, Boston, MA 02115, USA.

² Department of Neurosurgery, Brigham and Women's Hospital, Harvard Medical School, Boston, MA 02115, USA.

³ Department of Radiology, Brigham and Women's Hospital, Harvard Medical School, Boston, MA 02115, USA.

⁴ Bouvé College of Health Sciences, Northeastern University, Boston, MA 02115, USA

⁵ Department of Cancer Biology, Dana-Farber Cancer Institute, Boston, MA 02115, USA.

† Co-first authors

* Corresponding authors: Marcia C. Haigis, Nathalie Y. R. Agar.

Email: Marcia_Haigis@hms.harvard.edu, Nathalie_Agar@dfci.harvard.edu.

Keywords

Mass spectrometry imaging, MALDI, metabolism, liver, fasting, high fat diet

Author Contributions

J.vd.R. conceived the study, designed and performed experiments, analyzed and interpreted data, and wrote the manuscript. S.A.S. performed MSI method development, and assisted with data acquisition, analysis, and interpretation. W.M.A. performed UMAP analyses. D.R. assisted with pathway visualization. S.J. assisted with LC-MS data acquisition. A.E.R. provided the HFD animals. M.C.H. and N.Y.R.A. supervised the study.

Conflict of Interest Statement

In compliance with Harvard Medical School and Partners Healthcare guidelines on potential conflict of interest, we disclose that N.Y.R.A. is scientific advisor to BayesianDx and inviCRO, and key opinion leader to Bruker Daltonics; M.C.H. has received funding from Roche.

Abstract

Cells adapt their metabolism to physiological stimuli, and metabolic heterogeneity exists between cell types, within tissues, and subcellular compartments. The liver plays an essential role in maintaining whole-body metabolic homeostasis and is structurally defined by metabolic zones. These zones are well-understood on the transcriptomic level, but have not been comprehensively characterized on the metabolomic level. Mass spectrometry imaging (MSI) can be used to map hundreds of metabolites directly from a tissue section, offering an important advance to investigate metabolic heterogeneity in tissues compared to extraction-based metabolomics methods that analyze tissue metabolite profiles in bulk. We established a workflow for the preparation of tissue specimens for matrix-assisted laser desorption/ionization (MALDI) MSI and achieved broad coverage of central carbon, nucleotide, and lipid metabolism pathways. We used this approach to visualize the effect of nutrient stress and excess on liver metabolism. Our data revealed a highly organized metabolic compartmentalization in livers, which becomes disrupted under nutrient stress conditions. Fasting caused changes in glucose metabolism and increased the levels of fatty acids in the circulation. In contrast, a prolonged high-fat diet (HFD) caused lipid accumulation within liver tissues with clear zonal patterns. Fatty livers had higher levels of purine and pentose phosphate related metabolites, which generates reducing equivalents to counteract oxidative stress. This MALDI MSI approach allowed the visualization of liver metabolic compartmentalization at high resolution and can be applied more broadly to yield new insights into metabolic heterogeneity *in vivo*.

1 **Introduction**

2
3 Advances in single-cell analysis approaches have revealed that cells within tissues can be
4 metabolically distinct and have unique contributions to physiology and pathology (1). Metabolic
5 compartmentalization between cellular organelles, within organs, and at the whole-body level is
6 essential to meet the bioenergetic and anabolic demands of organisms. Additionally, metabolically
7 distinct microenvironments develop within tissues based on physiological factors such as proximity
8 to vasculature, which supplies nutrients and oxygen while removing metabolic waste products.
9

10 The liver is organized by regions of functional and spatial heterogeneity. Hepatocytes are structured
11 in neat rows along the liver lobule axis from the portal vein that receives venous blood from the gut
12 towards the central vein, which returns the blood into circulation (2). As such, the oxygen gradient
13 is highest for periportal hepatocytes and decreases towards the pericentral area (3). Opposing
14 gradients of oxygen and Wnt signaling along with the radial lobule axis drive differential gene
15 expression signatures (4): approximately half of all genes in mouse hepatocytes are expressed in
16 a zonated fashion in both space and time (5–7). This organization drives profound differences in
17 metabolism: periportal hepatocytes rely on the oxidation of fatty acids for energy and perform
18 metabolic functions such as gluconeogenesis, the urea cycle, and biosynthesis of cholesterol and
19 proteins (8). In contrast, pericentral hepatocytes display glycolytic energy metabolism and
20 synthesize lipids, bile, and glutamine.
21

22 The liver plays an essential role in maintaining whole-body metabolic homeostasis in response to
23 nutrient abundance and restriction (9). In a satiated state, hepatocytes oxidize glucose to generate
24 energy and synthesize fatty acids (10). Fatty acids are then esterified into triacylglycerols (TAGs)
25 and transported to the adipose tissue for storage. In fasted conditions, the adipose tissue releases
26 fatty acids for oxidation by the liver to yield ketone bodies that can fuel distant organs (11).
27 Additionally, the liver performs glycogenolysis and gluconeogenesis to restore circulating glucose
28 levels upon fasting. In contrast, upon prolonged nutrient excess conditions, the liver acts as an
29 overflow depot for lipids when the endocrine and storage functions of the adipose tissue become
30 compromised (12). With rising rates of obesity, nonalcoholic fatty liver disease (NAFLD) is an
31 increasing cause of morbidity and mortality.
32

33 Despite the liver's central role in metabolic homeostasis, liver metabolism is characterized mostly
34 on the gene, protein, and signaling levels. However, as hepatocytes make up over 80% of liver
35 mass (13), metabolite profiles obtained with conventional extraction-based metabolomic methods
36 skew towards hepatocellular metabolism at the expense of other resident cell types. Spatially
37 resolved metabolite profiling could yield new insights into metabolic heterogeneity and functional
38 specialization within the liver.
39

40 Matrix-assisted laser desorption/ionization (MALDI) mass spectrometry imaging (MSI) is a label-
41 free technique that allows for *in situ* spatial mapping and quantification of hundreds of metabolites
42 from a single tissue section (14–16). Recent mass spectrometric advances have led to an
43 increasingly higher spatial resolution that now approximates single-cell and sub-cellular analytic
44 capability (17, 18). However, several outstanding challenges in sample preparation and data
45 acquisition need to be addressed to ensure the robustness of metabolome-scale analyses (19, 20).
46 Unique adaptations are required to yield reproducible and biologically relevant data for small
47 metabolite analyses, including quenching metabolic activity, metabolite stabilization, matrix
48 optimization, and data acquisition (14).
49

50 In this study, we implemented MALDI MSI to spatially map the distribution of small metabolites to
51 faithfully recapitulate key bioenergetic activities. We interrogated the liver metabolic response to
52 nutrient stress and excess conditions with a spatial resolution of identified patterns of metabolic
53 specialization within liver tissues. We observed that fasting-induced fuel switching in the liver while
54 in conditions of prolonged nutrient excess induced by a high-fat diet, mice develop fatty livers that

55 remodel central carbon metabolism towards increased pentose phosphate pathway and purine
56 metabolism. Taken together, we show that introducing spatiality into metabolomic analyses reveals
57 an additional layer of metabolic complexity and that our workflow can be applied broadly to yield
58 new insights into metabolic heterogeneity *in vivo*.
59

60

61 **Materials and Methods**

62

63 **Mouse studies**

64 C57BL/6J (000664) and BALB/cJ (000651) mice were obtained from The Jackson Laboratory. Mice
65 were housed at 20-22°C on a 12 h light/dark cycle with ad libitum access to food (PicoLab Rodent
66 Diet 5053) and water. All animal studies were performed in accordance with Haigis lab protocols
67 approved by the Standing Committee on Animals, the Institutional Animal Care and Use Committee
68 at Harvard Medical School. For heat inactivation studies, 3 mice were used (C57BL/6J, female, 7
69 weeks old) and kidneys, brain halves, and liver lobes from the same individual animal were
70 subjected to the different heat inactivation treatments (overview in Supplementary Fig. 1A, E). For
71 desiccation experiments, 2 mice were used (C57BL/6J, male, 7 weeks old). For fasting
72 experiments, two independent cohorts of 5 mice were used per treatment group (BALB/cJ, female,
73 10-11 weeks old) and mice were subjected to a 16 hour overnight fast. For HFD experiments, two
74 independent cohorts of 4 mice were used per treatment group (C57BL/6J, female). Mice were
75 assigned at 5 weeks old to the control diet (PicoLab Rodent Diet 5053) or HFD (Research Diets,
76 Inc. #12492) and maintained on this diet for 4.5 months. The control diet is 4.07 Gross Energy
77 Kcal/g. The HFD is 5.21 Kcal/g. for 8-10 weeks. Comparative MALDI MSI and LC-MS analyses of
78 tissues were always performed on the same tissue specimens.
79

80

81 **Tissue isolation**

82 Mice were anesthetized with isoflurane and sacrificed by cervical dislocation. The gall bladder was
83 removed before livers, kidneys, and brains were harvested and carefully positioned into 15 mL flat
84 bottom specimen vials (Nalgene, Millipore Sigma), snap-frozen in liquid nitrogen, and stored at -80
°C until further processing.
85

86

87 **Tissue heat inactivation**

88 Freshly resected or snap-frozen tissues were placed in sealed Maintainor® tissue cards and placed
89 in the Stabilizor™ system (Denator AB). Sample state was specified (frozen or fresh) and the
90 instrument determined durations of heat treatment based on sample volume for consistent and
91 reproducible heat treatment, according to the manufacturers instructions. Next, tissues were
92 carefully positioned into 15 mL flat bottom specimen vials (Nalgene, Millipore Sigma), snap-frozen
93 in liquid nitrogen, and stored at -80 °C until further processing.
94

95

96 **MALDI tissue preparation**

97 Frozen tissues were placed at -20 °C before sectioning in a Microm HM550 cryostat (Thermo
98 Scientific™). Tissues were sectioned at 10 µm thickness and thaw mounted onto indium-tin-oxide
99 (ITO)-coated slides (Bruker Daltonics) for MALDI MSI analysis with serial sections mounted onto
100 glass slides for histological analyses. The microtome chamber and specimen holder were
101 maintained between -15 °C and -20 °C. Slides were stored at -80 °C until further processing. For
desiccation experiments, slides were subjected to desiccation in a tabletop vacuum desiccator
before freezing.
102

103

104 **Matrix deposition**

105 A 1,5-Diaminonaphthalene(DAN)-HCl matrix solution was used for all experiments. To generate
106 the hydrochloride derivative of 1,5-DAN, 39.5 mg of 1,5-DAN was dissolved in 500 µL of 1 mol/L
107 hydrochloride solution with 4 mL HPLC-grade water. The solution was sonicated for 20 minutes to
dissolve 1,5-DAN, after which 4.5 mL ethanol was added to yield the matrix solution. Matrices were
deposited on slides and tissues using a TM-sprayer (HTX imaging, Carrboro, NC). DAN-HCl matrix
108

108 spray conditions used where: a flow rate of 0.09 mL/min, spray nozzle temperature of 75 °C, and
109 spray nozzle velocity of 1200 mm/min. A four-pass cycle was used with 2 mm track spacing and
110 the nitrogen gas pressure was maintained at 10 psi. For fasting experiments, ¹⁵N₅-ATP (at 10 µM),
111 ¹⁵N₅-AMP (at 1 µM), and ¹⁵N-glutamate (at 100 µM) were spiked into the matrix and used as internal
112 calibrants.

113 **MALDI data acquisition**

114 A timsTOF fleX mass spectrometer (Bruker Daltonics) was used for data collection, and data was
115 acquired using FlexImaging 5.1 software (Bruker Daltonics). The instrument was operated in
116 negative ion mode covering the *m/z* range of 100-1350 for heat inactivation experiments and 100-
117 1250 for desiccation experiments; a spatial resolution of 50 µm was used to define a pixel. For
118 fasting experiments, the instrument was operated in negative ion mode covering the *m/z* range of
119 50-1000 *m/z*; a spatial resolution of 30 µm was used to define a pixel. Each pixel consisted of 800
120 laser shots, in which the laser frequency was set to 10,000 Hz. Mass calibration was performed
121 using the dual-source ESI option with Agilent tune mix solution (Agilent Technologies) on the
122 optimized method; for fasting experiments, the matrix was spiked with ¹⁵N₅-ATP, ¹⁵N₅-AMP, and
123 ¹⁵N-glutamate which were used as internal calibrants. The heat inactivation dataset was post-
124 calibrated using metabolites in the 133-700 *m/z* range with Data Analysis 5.3 software (Bruker
125 Daltonics).

126

127 **MALDI data analysis**

128 MSI data were analyzed and visualized using SCiLS Lab 2021a software (Bruker Daltonics).
129 Imported peaks were moved to the local max using the mean spectra with a minimal interval width
130 of 5 mDa. Peaks were then normalized to total ion current (TIC), except for desiccation
131 experiments, as these two datasets were acquired from separate slides and runs. Ion images for
132 metabolites of interest were generated based on peak lists containing theoretical *m/z* and ppm
133 errors associated with the assignments were calculated. To generate segmentation maps showing
134 regions of spectral similarity, bisecting *k*-means clustering was applied to all individual peaks in the
135 dataset using the correlation distance metric in SCiLS Lab 2021a software. Vascular regions were
136 defined based on the distribution of heme B, and tissue regions based on the segmentation maps,
137 and regions of interest (ROIs) were drawn by hand. For feature annotations, statistical analyses,
138 and quantitation; ROIs defined in SCiLS lab were exported to MetaboScape 6.0 (Bruker Daltonics).
139 Speckle size and number were adapted for each dataset to achieve maximum pixel coverage of
140 equal percentage for each ROI between the experimental groups. Features were annotated based
141 on theoretical *m/z* of 114,008 metabolite entries in the Human Metabolome Database (HMDB)
142 version 4.0 and curated based on ppm error associated with the assignment (38). To determine
143 which metabolite intensity changes reached statistical significance, Bucket Tables were normalized
144 for the Sum of Buckets and a two-sided student's t-test was performed using a significance
145 threshold of *p*<0.05 and a fold change >1.5. For extravascular tissue comparisons in fasting
146 experiments, one ROI was used per biological replicate (*n*=5 per group). For intravascular
147 comparisons, one ROI was used per biological replicate (*n*=3 per group), where the 3 replicates
148 were selected based on which tissue cross-sections contained vascular regions of comparable
149 size. For other comparisons, ROIs encapsulated the full tissue section.

150

151 **Dimensionality reduction and data visualization**

152 Dimensionality reduction was used to enable interpretable visualization of the high dimensional
153 spectra using Uniform Manifold Approximation and Projection (UMAP) (21). The UMAP learns
154 similarities of the mass spectra in the high-dimensional space and then projects it into a lower
155 dimensional space of two dimensions, where similar spectra are projected close to each other and
156 dissimilar ones are projected further away. UMAP (21) was performed in an unsupervised manner
157 and the reduced data was then colored based on the treatment (for heat inactivation experiments)
158 or treatment, mouse ID, or metabolite of interest (for fasting experiments). The analysis was
159 performed in R software (version 4.0.3) using the publicly available UMAP library and visualized
160 using ggplot2 (39).

161

162 **Pathway enrichment analysis**

163 Pathway analysis was performed using MetaboAnalyst 4.0 (40). Metabolite features identified as
164 significantly increased after fasting in Metaboscape were exported to MetaboAnalyst using the
165 associated HMDB ID. The enrichment method used was a hypergeometric test and the topology
166 analysis used was relative-betweenness centrality, with the KEGG reference library (41).

167

168 **Pathway visualization**

169 Pathways of interest were constructed in PathVisio 3.3.0 (42)and imported into MetaboScape 6.0
170 (Bruker Daltonics) using the “Pathway Mapping” tool to visualize the relative changes in metabolite
171 levels.

172

173 **Metabolite colocalization analysis**

174 To determine colocalization of DHA and ARA, metabolite intensity plots were generated in Fiji
175 (ImageJ 1.53c) (43). Ion images for DHA and ARA were exported from SCiLS Lab and converted
176 to 16-bit in Fiji. Windows were synchronized and freehand lines were drawn between adjacent
177 vessels. Metabolite intensity plots were then generated along this line, with metabolite intensity
178 (gray value) as a function of distance between vessels (in pixels). Data were exported and
179 visualized using GraphPad Prism 8.2.1 software (GraphPad Software).

180

181 **Metabolite extraction from tissue**

182 Frozen tissues were maintained under dry ice vapor to remain frozen until extraction, and 10-20
183 mg was excised with a razor blade and samples were transferred to pre-chilled Eppendorf tubes.
184 Extraction solution consisted of a pre-chilled (-20 °C) solution of 2:2:1 HPLC-grade
185 acetonitrile:methanol:water with 0.1 mol/L formic acid. Pre-chilled stainless-steel beads were
186 added to Eppendorf tubes containing tissue samples, before extraction solution was added to
187 achieve a concentration of 20 mg/mL before immediate lysis in a benchtop TissueLyser LT
188 (Qiagen) operated at 50 Hz for 3 minutes. Next, 15% ammonium bicarbonate solution (filtered,
189 room temperature) was added to achieve an 8% (v/v) solution and samples were lysed for another
190 3 minutes at 50 Hz. Samples were transferred to a benchtop shaker and vortexed at 4 °C for 15
191 minutes. Beads were removed and samples were centrifuged at 16,000 × g at 4 °C for 20 minutes.
192 Clear supernatant was transferred to glass HPLC vials for immediate HPLC-MS analysis.

193

194 **HPLC-MS analysis**

195 An iHILIC column (HILICON) was used with SII UPLC system (Thermo Fisher Scientific) coupled
196 to a Q-Exactive HF-X orbitrap mass spectrometer (Thermo Fisher Scientific) operated with
197 electrospray (ESI) ionization in negative ion mode at scan range *m/z* 75–1000 and a resolution of
198 60,000 at *m/z* 200. Buffer conditions used were: 20mM ammonium carbonate with 0.1% ammonium
199 hydroxide in water (buffer A) and acetonitrile (buffer B). A flow rate of 0.150 mL/min was used with
200 the following linear gradients: 0 – 20 min gradient from 80% to 20% B; 20 – 20.5 min gradient from
201 20% to 80% B; 20.5 – 28 min hold at 80% B; 28 – 30 min hold to waste at 80% B. Data were
202 acquired using Xcalibur software (Thermo Fisher Scientific) and peak areas of metabolites were
203 determined using TraceFinder 4.1 software (Thermo Fisher Scientific). Metabolites were identified
204 by matching mass and retention time of features to commercial metabolite standards acquired
205 previously on our instrument. Metabolite levels were normalized to tissue weight.

206

207 **Histology**

208 Serial sections (10 µm) were fixed and stained using hematoxylin and eosin (H&E) immediately
209 after sectioning and imaged using a bright field microscope (Zeiss Observer Z.1, Oberkochen,
210 Germany) equipped with a Plan-APOCHROMAT lens and AxioCam MR3 camera, using a 20x or
211 40x magnification. High-resolution images of whole stained tissue sections were obtained using
212 the stitching algorithm in Zeiss ZEN imaging software.

213

214 **Results**

215 **Broad coverage of small metabolites with spatial resolution**

216 Several experimental parameters needed to be assessed to faithfully recapitulate tissue
217 metabolism *in situ* to visualize regions of metabolism in the liver. As major concerns are residual
218 enzyme activity and non-enzymatic breakdown of labile metabolites, we evaluated whether enzyme
219 inactivation through desiccation or heat inactivation treatment would stabilize tissue metabolites for
220 MALDI MSI sample preparation. We compared procedures of storing cryosectioned tissue on slides
221 at -80 °C and thawing them in a vacuum desiccator to minimize rehydration due to condensation
222 (treatment_F, Fig. 1A) with desiccation immediately after tissue sectioning before storage
223 (treatment_{DF}). To assess tissue integrity, serial sections of liver were H&E stained for histological
224 analysis immediately after sectioning to evaluate the effects of freezing and desiccation. Minimal
225 differences were observed for gross tissue morphology (Fig. 1B). We used ATP stability as an
226 indicator of postmortem enzymatic activity and labile metabolite stability, as it is used by many
227 enzymes and is liable to degradation. Using both methods, the ATP, ADP, and AMP ion images
228 showed comparable spatial distributions and metabolite intensities (Fig. 1C). These metabolites
229 displayed a gradient pattern in relation to their proximity to the vasculature.
230

231 **Figure 1. Evaluation of MALDI MSI sample preparation for small metabolites analysis.** (A)
232 Schematic overview of treatments where serial tissue sections were either frozen at -80 °C
233 (treatment_F), desiccated before freezing (treatment_{DF}), or subjected to H&E staining directly after
234 sectioning (H&E). (B) Histological images (20x magnification) of two mouse livers subjected to the
235 treatments indicated in (A). (C) Spatial mapping (30 µm pixel) of ATP, ADP, and AMP from the two
236 liver tissue sections that underwent the treatments indicated in (A). MSI ion images showing relative
237 distribution of ATP, ADP, and AMP individually, or in relation to the vasculature indicated by heme
238 B. (D) Overlaid MALDI MSI mean spectra from serial tissue sections subjected to freezing
239 (treatment_F) and desiccation (treatment_{DF}). Inset highlights the small metabolite range between *m/z*
240 135-225 for the two treatments. (E) Schematic overview of the connected metabolic pathways of
241 glycolysis and the pentose phosphate pathway with corresponding ion images of the metabolites
242 indicated in green. Glucose phosphate and fructose phosphate are indicated as hexose phosphate;
243 phosphoglycerate and phosphoglycerate are indicated as phosphoglycerate; ribose phosphate,
244 ribulose phosphate, and xylulose phosphate are indicated as pentose phosphate, as these are
245 isobaric species. Dihydroxyacetone phosphate and glyceraldehyde phosphate are isobaric species
246 as well and are visualized together.
247

248 Heat inactivation was also investigated as an alternative strategy to desiccation using kidney and
249 brain tissues in addition to livers, as these organs have distinct anatomical features and metabolic
250 compositions (Supplementary Figure 1A). Control mouse tissues were resected and snap-frozen
251 in liquid nitrogen before sectioning (Freeze, treatment_F) and compared to fresh tissues subjected
252 to heat inactivation to denature enzymes before freezing and sectioning (Heat-Freeze,
253 treatment_{HF}). The third group of tissues was snap-frozen to preserve the metabolic state
254 immediately upon resection and then heat-treated to denature enzymes before re-freezing and
255 sectioning (Freeze-Heat-Freeze, treatment_{FHF}). Histological analysis of kidneys showed that heat
256 treatment disrupted tissue architecture, whereas this was preserved in control tissues
257 (Supplementary Fig. 1B-D).
258

259 MSI was performed on serial tissue sections to evaluate the effect of heat treatment on metabolite
260 levels. The three datasets showed a highly similar spectral coverage but pronounced differences
261 in individual ion intensities (Supplementary Figure 2A). To visualize whether heat treatment induced
262 changes in the metabolomes, we used Uniform Manifold Approximation and Projection (UMAP),
263 which visualizes similarities between mass spectra projecting close together, and dissimilar spectra

264 projected further away (21). Supplementary Figure 2B shows a clear separation of data points
265 based on heat treatment, indicating that the applied heat treatment modified the metabolome.
266

267 The tissue distribution of ATP, ADP, and AMP after heat treatment showed a relatively stable
268 distribution upon treatment_{HF} as compared to control tissues, but a loss of overall ATP levels upon
269 treatment_{FHF} (Supplementary Fig. 2C). MSI ion images we used to visualize the relative spatial
270 distribution of metabolite intensities, but these images do not inform the total metabolite pools
271 unless the MS signal is calibrated for each metabolite. Thus, we excised representative tissue
272 slices from the same tissues that were analyzed using MSI and determined total metabolite levels
273 using LC-MS (Supplementary Fig. 2D). As ATP use by enzymes will lead to increased levels of
274 AMP and ADP, successful heat stabilization of enzymes should lead to stable levels of ATP, ADP,
275 and AMP. This comparison showed that although heat stabilization of fresh tissue seemed to
276 maintain the spatial distribution of adenosine phosphate metabolites seen in control tissues,
277 absolute levels of ATP decreased due to thermal destabilization.
278

279 To visualize how heat treatment affected the abundance of all detected ions in an unbiased manner,
280 we constructed an ion segmentation map using bisecting *k*-means clustering on all identified
281 spectra. This showed that conductive heating applied with a commercial device (Denator,
282 Gothenburg, Sweden) set to optimize heat delivery based on frozen or fresh states and with
283 consideration to specimen dimensions led to an overall loss of spatial localization of metabolites
284 (Supplementary Fig. 2C and 2E). Since the whole tissues were processed, the heating profiles
285 needed to be optimized to provide uniform heating throughout the tissue; however, this was not
286 possible due to the tissue's thickness. Although regional clusters of metabolites in heat-treated
287 brains were largely maintained, they could not be accurately mapped to anatomical brain regions
288 due to the loss of tissue morphology. Together, these results indicate that the heat treatment
289 applied to the whole tissues prior to sectioning led to disruption of tissue structure and compromised
290 the integrity of anatomical regions. Further optimization of the heating profile for the denaturation
291 of enzymes and the preservation of metabolites is needed for uniform stabilization that would be
292 compatible with spatial metabolomics workflows.
293

294 Using the treatment_{DF} followed by MALDI MSI, several additional metabolites were detected. The
295 central carbon metabolism correlates with key energetic and biosynthetic pathways, including
296 glycolysis and the pentose phosphate pathway (PPP) (Figure 1D). As expected, hexoses were
297 highly abundant within the vasculature of the tissue, whereas intracellular metabolites generated
298 from glucose were enriched in extravascular compartments rather than in the vasculature.
299 Together, these results suggest that optimized MALDI MSI sample preparation and data acquisition
300 workflow achieve broad coverage of small metabolites to generate reproducible spatial profiles of
301 biologically relevant metabolic pathways.
302

Distinct spatially-resolved metabolic signatures were observed in fed and fasted livers.

303 Regions of metabolism were investigated in the liver in response to fasting by generating spatially-
304 resolved metabolic profiles. Livers from fasted mice showed marked histological differences in
305 hepatocyte shape due to the expected depletion of glycogen (Fig. 2A). We evaluated whether
306 tissue metabolomes remained stable during cryosectioning, as this is a lengthy process for
307 experiments with multiple biological replicates that need to be mounted onto the same slide for data
308 acquisition. No significant difference was observed between total ATP, ADP, or AMP levels,
309 indicating that these labile metabolites remained stable during cryosectioning (Fig. 2B), allowing
310 for comparison of metabolite levels under different biological conditions. As a result, we observed
311 that fasting led to a decrease in liver ATP content with a concomitant increase in AMP, indicative
312 of cellular nutrient stress. Using MSI, visualizing the ion intensities distributions of adenosine
313 phosphates showed similar results; decreasing ATP abundance and increasing AMP in
314 hepatocellular regions within the tissue were observed (Fig. 2C). A comparison of mean spectra
315 revealed marked differences in overall metabolite intensities between control and fasted mice

316 (Supplementary Figure 3A). To visualize these differences in an unbiased manner, we constructed
317 a segmentation map (Fig. 3D). This visualization showed distinct metabolic clusters within different
318 anatomical regions of the liver and between control and fasted mice, while all biological replicates
319 within each group clustered together (Supplementary Fig. 3C). Metabolite clusters were observed
320 for the vasculature, hepatocytes, bile ducts, and the common bile duct. These clusters
321 corresponded with co-registered ion images of heme B, a cofactor of hemoglobin that is enriched
322 within the vasculature, and taurocholate, the most abundant bile acid (Fig 3D) (22, 23).

323 **Figure 2. Spatially-resolved metabolic signatures in fed and fasted livers.** (A) Histological
324 images (40x magnification) of a representative liver section from *ad lib* fed mice and those
325 subjected to overnight fasting; n=5 per group. (B) LC-MS relative quantification of total ATP, ADP,
326 and AMP levels in liver tissues from control and fasted mice, before and after sectioning of serial
327 sections for MALDI MSI analyses. (C) H&E optical and MALDI MSI ion images (30 μ m pixel) of
328 representative serial tissue sections from control and fasted mice. MSI ion images show the relative
329 distribution of ATP, ADP, and AMP. (D) Segmentation map of the MALDI MSI data based on
330 bisecting k-means clustering ($k = 8$), where each cluster is represented as an individual color, and
331 MALDI MSI ion images of heme B as a marker of the vasculature corresponding to the red segment
332 and taurocholate as a marker of the bile tracts corresponding to the purple segment. (E) MALDI
333 MSI quantification of ATP, ADP, and AMP levels in liver tissues from control and fasted mice. (F)
334 Schematic representation of metabolic gradients along the liver lobular axis. Oxygen-rich blood
335 flows from the portal artery (dark red) and vein (light red) towards the central vein, whereas the bile
336 (green) secreted by hepatocytes (yellow) flows through bile canaliculi in the opposite direction
337 towards the draining bile duct. Opposing gradients of oxygen and Wnt signaling promote spatially
338 compartmentalization metabolic functions.
339

340 Furthermore, using spiked internal standards into the MALDI matrix, we observed that independent
341 mouse cohorts and replicates within each treatment group were highly reproducible in this study
342 (Supplementary Fig. 3A-C). Together, these results indicate that our workflow yielded consistent
343 and highly reproducible results to visualize metabolic compartments in the liver.

344 **Visualization of fasted liver metabolism shows disruption of metabolism and fuel switching.**

345 The liver acts as a metabolic rheostat to maintain whole-body energy homeostasis in times of
346 nutrient stress and excess. As MSI adds a spatial dimension to metabolomic analyses, we
347 dissected the metabolic compartmentalization in the fasting liver. We identified metabolic
348 differences using the unbiased UMAP approach, which showed separation of data clusters from
349 fasted compared to control livers (Supplementary Fig. 4A). Additional clusters were observed within
350 treatment groups, visualized by coloring UMAP distributions per individual mouse (Supplementary
351 Fig. 4B). The distribution of heme over the UMAP graphs indicated that these clusters could
352 represent distinct anatomical regions within tissues (Supplementary Fig. 4C). To explore
353 differences between liver and systemic metabolism, we extracted metabolite spectra from MSI data
354 on a pixel-by-pixel basis. As shown in Figure 3A, we used the segmentation map (Fig. 2D,
355 Supplementary Fig. 5A) to select regions-of-interest enriched for hepatocytes (extravascular tissue)
356 or heme B (intravascular tissue, circulating metabolites). In accordance with our previous
357 observations, ATP was significantly decreased and AMP significantly increased in extravascular
358 tissue upon fasting (Fig. 3B, left).

359 We also observed an increase in the fatty acid docosahexaenoic acid (DHA). This was
360 recapitulated in the UMAP distributions, where AMP and DHA were more abundant in fasted mice
361 (Supplementary Fig. 4D). The metabolite profiles from intravascular regions did not show
362 differences in adenosine phosphate metabolites, but several fatty acids were significantly enriched
363 in the circulation upon fasting (Fig. 3B, right) whereas they were not significantly changed within
364 extravascular regions of the tissue (Fig. C, Supplementary Figure 5C). It is well-understood that
365 the adipose tissue releases fatty acids for oxidation by the liver to yield ketone bodies that can fuel

366 distant organs, which is corroborated by these results and indicates that spatially-resolved
367 metabolomics can inform on metabolic compartmentalization within tissues.

368 **Figure 3. Liver metabolism and fuel switching.** (A) H&E, segmentation, and MALDI MSI ion
369 images of serial tissue sections from control and fasted mice indicating how extravascular and
370 intravascular tissue regions were defined for spatial metabolic analyses. Hepatocyte-enriched
371 regions (denoted as extravascular) were identified using the segmentation map of the MALDI MSI
372 data based on bisecting k-means clustering ($k = 8$), with control and fasted tissues represented as
373 dark and light orange, respectively. Intravascular regions were defined based on intensity of heme
374 B. ROIs depicted in blue indicate where metabolite spectra were extracted for further spatial
375 analysis. (B) Volcano scatterplot displaying log 2 metabolite intensity ratios vs. significance value
376 in fasted compared to control mouse liver extravascular (left) and intravascular tissue (right). Every
377 circle represents a unique metabolite; dark grey circles indicate metabolites depleted after fasting
378 and magenta circles indicate metabolites enriched after fasting, that showed a fold change >1.5
379 between treatments and reached statistical significance ($p\text{-value} < 0.05$). Highlighted green circles
380 are statistically significantly changed metabolites indicating cellular energy status (AMP/ATP) and
381 fatty acids with their corresponding names. Corresponding metabolites that were not statistically
382 significantly changed are highlighted in blue. (C) MALDI MSI relative quantification of selected
383 metabolites in the extravascular versus intravascular tissue regions. (D) Pathway enrichment
384 scatterplot displaying pathway impact scores vs. significance value in fasted compared to control
385 mouse vasculature. Increased circle size indicates pathway coverage of the identified metabolites
386 in the dataset. Pathways identified as enriched are displayed by name. (E) H&E and MALDI MSI
387 ion images (30 μm pixel) of serial tissue sections from representative control and fasted mouse
388 livers. MSI ion images show relative distribution of DHA and ARA in relation to heme B in red, with
389 indicated intensity scale. (F) Quantification of metabolite spatial distribution for DHA and ARA from
390 blood vessel to adjacent blood vessel, where the metabolite intensity is shown as a function of
391 distance between two vessels. Vasculature position is indicated in red. (G) H&E and MALDI MSI
392 ion images (30 μm pixel) of tissue serial sections from a representative control and fasted mouse
393 liver. MSI ion images show relative distribution of DHA, H6P, and 2(3)-PG, with indicated intensity
394 scale.

395 Indeed, pathway analysis of the intravascular regions showed that several lipid metabolic pathways
396 were enriched (Fig. 3D). Interestingly, comparing the spatial distribution of fatty acids showed that
397 the abundance of DHA and ARA follow a specific and compartmentalization pattern in fed livers
398 (Fig. 3E, Supplementary Fig. 5B). DHA is a 22-carbon polyunsaturated omega-3 fatty acid (22:6),
399 whereas arachidonic acid (ARA) is a 20-carbon polyunsaturated omega-6 fatty acid (20:4). Both
400 can be synthesized from alpha-linolenic acid, which in turn is produced from the essential fatty acid
401 linoleic acid. These fatty acids can also be released from complex lipids through lipolysis. Relative
402 quantification of the metabolite intensity as a function of the distance between blood vessels
403 confirmed that DHA is enriched in proximity to the vasculature while ARA displayed the opposite
404 enrichment pattern (Fig. 3F, Supplementary Fig. 5D). Upon fasting, this distinct spatial
405 compartmentalization within the extravascular regions is lost. In contrast to the increase in DHA
406 within liver cells, the levels of glycolytic intermediates decreased within liver tissue, indicating a fuel
407 switch upon fasting that decreases liver glucose use in favor of lipid metabolism. Together, these
408 results indicate that spatially dissecting metabolite profiles can yield new insights into metabolic
409 compartmentalization within tissues and between the local tissue environment and the circulation.

410 **Fatty livers show a metabolic signature indicative of oxidative stress in response to
411 prolonged nutrient excess.**

412 We also investigated how the liver's response to nutrient stress might contrast to its response to
413 nutrient excess by subjecting mice to a high-fat diet (HFD). Livers of HFD mice showed marked
414 histological differences, with hypertrophy and accumulation of lipid droplets that displayed in unique
415 patterns where lipid droplets were deposited away from the vasculature (Fig. 4A). In human, it has
416 been established that macrovesicular steatosis, where hepatocytes become displaced by lipid

417 droplets, is associated with advanced fatty liver disease, inflammation, fibrosis, and poor clinical
418 outcomes (24, 25). We evaluated the changes in metabolite levels, and subsequent pathway
419 analysis showed that several metabolic pathways were significantly enriched upon HFD feeding,
420 including the pentose phosphate pathway and purine metabolism (Fig. 4B). Cells increase PPP
421 activity in response to oxidative stress to generate NADPH, a reducing factor that is essential to
422 maintain reduced pools of glutathione, the main antioxidant in cells, and antioxidant enzymes that
423 help maintain cellular redox balance (Fig. 4C). That HFD livers experience increased redox stress
424 is corroborated by the observed increase in glutathione (GSH; Fig. 4C, D, E). Interestingly, although
425 the PPP intermediates pentose 5-phosphate (P5P) and sedoheptulose 7-phosphate (S7P) are
426 increased in fatty livers, levels of NADPH are decreased (Fig. 4D, E). This finding suggests that
427 despite the cellular reprogramming towards an antioxidant response that occurs in fatty livers, cells
428 have lower NADPH levels.

429 **Figure 4. Fatty livers face oxidative stress and increased purine metabolism in response to**
430 **prolonged nutrient excess.** (A) Histological images of a representative liver section from *ad lib*
431 fed mice on a control or high-fat diet for 4.5 months (n=5 per group, 2 independent experiments)
432 with the corresponding ion image of the fatty acid dihomo-linolenic acid (DGLA). (B) Pathway
433 enrichment scatterplot displaying pathway impact scores vs. significance value in HFD compared
434 to control mouse liver tissues. Increased circle size indicates pathway coverage of the identified
435 metabolites in the dataset. Pathways identified as enriched are displayed by name. (C) Schematic
436 overview of the connected metabolic pathways of glycolysis and the pentose phosphate pathway
437 with corresponding relative fold change intensities of HFD compared to control mice, with indicated
438 intensity scale. (D) H&E and MALDI MSI ion images of serial tissue sections from a representative
439 control and HFD mouse liver. The rectangles on the H&E image indicate the position of the images
440 displayed in (A). MSI ion images(30 μ m pixel) show relative distribution of the indicated metabolites,
441 with indicated intensity scale. (E) Absolute quantification of the indicated metabolites for control
442 (grey) compared to HFD (green) mice. (F) Schematic overview of purine metabolism with
443 corresponding relative fold change intensities of HFD compared to control mice, with indicated
444 intensity scale. (G) MALDI MSI ion images of serial tissue sections from a representative control
445 and HFD mouse liver showing relative distribution of the indicated metabolites, with indicated
446 intensity scale.

447 Pathway enrichment analysis showed that in addition to the PPP, purine metabolism was
448 significantly enriched in fatty livers (Fig. 4B). Purines are essential for supplying the building blocks
449 for nucleotides, thereby DNA/RNA synthesis, and nucleotide cofactors such as NAD and the major
450 energy carriers in cells (Fig. 4F, G). Increases in redox stress are known to increase DNA damage
451 and might trigger purine metabolism to aid DNA repair, whereas the disruption of cellular energy
452 status may converge upon the purine and pyrimidine pathways due to their important roles as
453 cellular energy carriers to maintain cellular homeostasis. Together, these results suggest that
454 spatially dissecting metabolite profiles and multiplexing tissue anatomical information with
455 metabolic characterization can promote our understanding of metabolic compartmentalization in
456 physiology and pathology.

457
458 **Discussion**
459

460 Metabolic heterogeneity within tissues and metabolic crosstalk between cells are essential
461 contributors to functional specialization in multicellular organisms. This emphasizes the need to
462 introduce spatiality into metabolomic analyses to better understand the role of metabolic
463 heterogeneity in physiology and disease. MALDI MSI has been used to study protein, drug and
464 metabolite distribution in tissues from model organisms and humans to yield new biological insights.
465 Spatially mapping endogenous metabolites can be applied to delineate metabolic properties of
466 distinct anatomical structures (26), inform on their biological functions (27), identify abnormal or
467 pathological regions within tissues (28), and their metabolic properties (29), and aid in surgical

468 decision-making (30). Advances in instrumentation and application have produced increased
469 molecular complexity and spatial resolution analyses leading to new insights into metabolic function
470 and heterogeneity at the single-cell scale (31, 32). With increasing sensitivity and specificity in ion
471 detection and annotation, MSI is now emerging as a tool for spatially-resolved, metabolome-scale
472 analyses that advance our understanding of cellular and organismal biology (32). Maintaining
473 metabolic fidelity of the tissue during sample processing is essential to yielding meaningful
474 analyses, especially in comparison with chromatography-based mass spectrometry approaches
475 where metabolomes are stabilized by quenching steps and samples are maintained at low
476 temperatures until analysis while several sample preparation steps for MALDI MSI occur at ambient
477 conditions. Here, we demonstrate an approach to prepare tissue samples for MSI that minimizes
478 conversion or breakdown of labile metabolites while broadening the range of small metabolites
479 detected to more broadly cover metabolic pathways and yield new insights into tissue metabolism.

480 Liver zonation is well-understood on the transcript level (3, 5, 6, 9, 33–35), but has not been
481 comprehensively visualized on the metabolite level. An important advance of profiling metabolic
482 heterogeneity on the metabolite rather than transcript level is that an immediate snapshot of
483 metabolism can be captured instead of indirect measures provided by enzyme transcripts or protein
484 levels. Direct metabolite profiling is enabled by the fact that MALDI MSI requires minimal sample
485 handling, and dissociation of distinct cell types is not necessary. We were able to validate and
486 visualize metabolic compartmentalization in liver tissues in distinct nutrient stress and excess
487 conditions. We observed distinct metabolic profiles within zones and between tissue
488 compartments, which may be obscured in extraction-based metabolomic analyses as the
489 hepatocyte fraction contributes most of the mass and metabolic content of the liver. By analyzing
490 metabolite spectra from distinct extra- and intravascular regions, we observed specific metabolic
491 profiles consistent with the known metabolic function of each compartment. We observed a strong
492 enrichment of fatty acids in blood vessels, consistent with the liver's function of converting fatty
493 acids released from the adipose tissue to generate alternative fuels for distant organs. In addition
494 to compartmentalization between the liver organ environment and the circulation, we also observed
495 distinct patterns of metabolite abundance within the tissue microenvironment, with hepatocytes
496 showing enrichment of specific fatty acids based on their proximity to the vasculature. This distinct
497 pattern was highly organized and reproducible between biological replicates in nutrient-replete
498 conditions but vanished when facing nutrient stress after fasting. This suggests that prolonged
499 nutrient stress induces metabolic adaptations that overrule the functional compartmentalization of
500 hepatocytes seen under nutrient-replete conditions. In prolonged nutrient excess conditions
501 induced by a high-fat diet, lipid droplets accumulate in the liver, forming distinct lipid depots
502 throughout the tissue.

503 In contrast to fasting conditions, where glycolytic metabolism were low, fatty livers displayed higher
504 levels of glycolytic and PPP metabolites. Together with the marked increase in GSH levels,
505 indicates levels of oxidative stress, which is constant with high levels of NADPH levels. Additionally,
506 we observed an increase in purine metabolism, which may produce nucleotides needed to repair
507 DNA damage, generate essential energy carriers, or provide precursors for metabolic cofactors
508 such as NAD, which can all become disturbed by cellular redox stress. These results indicate that
509 although the lipid content of the liver increases upon HFD feeding, the lipid droplets act as an
510 overflow depot rather than being effectively metabolized by the liver to dissipate excess energy.
511 Adding a temporal component to our spatial metabolomic analyses and multiplexing with
512 orthogonal modes of single-cell tissue imaging analyses (36, 37) may help further elucidate which
513 regulatory nodes govern the observed fuel switching in fasting and fatty liver. Taken together, our
514 described workflow enables the detection of endogenous metabolites and achieves a broad
515 coverage of the tissue metabolome that can be applied to characterize and interrogate metabolic
516 heterogeneity in physiology and pathology.

517 **Conclusions**

518 Cellular metabolism is spatiotemporally heterogeneous, yet leading metabolomics approaches do
519 not preserve spatial information. We present a MALDI MSI approach to map metabolic
520 heterogeneity in the liver in nutrient replete, stress, and excess conditions. Our data validate and
521 extend what is known about liver metabolic compartmentalization and visualize this at high
522 resolution with broad coverage of key pathways in central energy metabolism. The label-free
523 molecular imaging approach demonstrated here can be applied broadly to study metabolism in
524 tissues and reveal new insights into metabolic heterogeneity *in vivo* to better understand the role
525 of metabolism in physiology and pathology.

526

527

Acknowledgments

529

530 The authors thank members of the Haigis and Agar labs for helpful discussions, in particular Dr.
531 Elisa York for assistance with matrix calibration and Dr. Ilaria Elia and Giulia Notarangelo for
532 helpful comments on the manuscript. J.vd.R is supported by a Postdoctoral Fellowship from the
533 Human Frontier Science Program (LT000530/2020-L). S.A.S. is supported by an NIH T32 (award
534 number: T32EB025823) fellowship. D.R. is supported by the NCI CaNCURE grant (award
535 number: R25 CA174650). A.E.R is supported by postdoctoral fellowships from the American
536 Cancer Society (United States; 130373-PF-17-132-01-CCG) and Cell Biology Education and
537 Fellowship Fund (United States; Harvard Medical School). M.C.H. is supported by the Ludwig
538 Center at Harvard Medical School, the Paul F. Glenn Foundation for Medical Research, and NIH
539 grant R01DK127278. This work was funded in part by the Pediatric Low-Grade Astrocytoma
540 Program (award #9616692) at PBTF (N.Y.R.A.). The work was also funded by NIH U54
541 CA210180 MIT/Mayo Physical Science Oncology Center for Drug Distribution and Drug Efficacy
542 in Brain Tumors (N.Y.R.A.) and the Ferenc Jolesz Advanced Technologies National Center for
543 Image Guided Therapy NIH P41 EB028741. Schematic figures were created with
544 BioRender.com.

545

546

References

547

548

549

550

551

552

553

554

555

556

557

558

559

560

561

562

563

564

565

566

567

568

569

570

571

1. E. K. Neumann, T. D. Do, T. J. Comi, J. v. Sweedler, Exploring the Fundamental Structures of Life: Non-Targeted, Chemical Analysis of Single Cells and Subcellular Structures. *Angewandte Chemie - International Edition* **58**, 9348–9364 (2019).
2. S. Ben-Moshe, S. Itzkovitz, Spatial heterogeneity in the mammalian liver. *Nature Reviews Gastroenterology and Hepatology* **16**, 395–410 (2019).
3. C. P. S. C. C Torre, Molecular determinants of liver zonation. *Prog. Mol. Biol. Transl Sci.* **97**, 127–150 (2010).
4. C. Torre, C. Perret, S. Colnot, Transcription dynamics in a physiological process: β -Catenin signaling directs liver metabolic zonation. *International Journal of Biochemistry and Cell Biology* **43**, 271–278 (2011).
5. K. B. Halpern, Single-cell spatial reconstruction reveals global division of labour in the mammalian liver. *Nature* **542**, 352–356 (2017).
6. C. Droin, *et al.*, Space-time logic of liver gene expression at sub-lobular scale. *Nature Metabolism* **3**, 43–58 (2021).
7. S. Annunziato, J. S. Tchorz, Liver zonation—a journey through space and time. *Nature Metabolism* **3**, 7–8 (2021).
8. N. K. K. J. D Sasse, Functional heterogeneity of rat liver parenchyma and of isolated hepatocytes. *FEBS Lett.* **57**, 83–88 (1975).
9. L. Rui, Energy metabolism in the liver. *Comprehensive Physiology* **4**, 177–197 (2014).
10. L. O. Schwen, *et al.*, Zonated quantification of steatosis in an entire mouse liver. *Computers in Biology and Medicine* **73**, 108–118 (2016).
11. M. Defour, G. J. E. J. Hooiveld, M. van Weeghel, S. Kersten, Probing metabolic memory in the hepatic response to fasting. *Physiological Genomics* **52**, 602–617 (2020).

572 12. K. Qureshi, G. A. Abrams, Metabolic liver disease of obesity and role of adipose tissue in
573 the pathogenesis of nonalcoholic fatty liver disease. *World Journal of Gastroenterology*
574 **13**, 3540–3553 (2007).

575 13. P. Godoy, Recent advances in 2D and 3D in vitro systems using primary hepatocytes,
576 alternative hepatocyte sources and non-parenchymal liver cells and their use in
577 investigating mechanisms of hepatotoxicity, cell signaling and ADME. *Arch. Toxicol.* **87**,
578 1315–1530 (2013).

579 14. A. R. Buchberger, K. DeLaney, J. Johnson, L. Li, Mass Spectrometry Imaging: A Review
580 of Emerging Advancements and Future Insights. *Analytical Chemistry* **90**, 240–265
581 (2018).

582 15. K. A. Zemski Berry, *et al.*, MALDI imaging of lipid biochemistry in tissues by mass
583 spectrometry. *Chemical Reviews* **111**, 6491–6512 (2011).

584 16. R. J. A. Goodwin, Z. Takats, J. Bunch, A Critical and Concise Review of Mass
585 Spectrometry Applied to Imaging in Drug Discovery. *SLAS Discovery* **25**, 963–976 (2020).

586 17. J. M. Spraggins, *et al.*, High-Performance Molecular Imaging with MALDI Trapped Ion-
587 Mobility Time-of-Flight (timsTOF) Mass Spectrometry. *Analytical Chemistry* **91**, 14552–
588 14560 (2019).

589 18. L. A. McDonnell, *et al.*, Subcellular imaging mass spectrometry of brain tissue. *Journal of*
590 *Mass Spectrometry* **40**, 160–168 (2005).

591 19. T. J. A. Dekker, *et al.*, Towards imaging metabolic pathways in tissues. *Analytical and*
592 *bioanalytical chemistry* **407**, 2167–2176 (2015).

593 20. T. M. J. Evers, *et al.*, Deciphering Metabolic Heterogeneity by Single-Cell Analysis.
594 *Analytical Chemistry* **91**, 13314–13323 (2019).

595 21. L. McInnes, J. Healy, J. Melville, UMAP: Uniform Manifold Approximation and Projection
596 for Dimension Reduction. *arXiv* (2018) (December 7, 2020).

597 22. H. R. Brown, *et al.*, Drug-induced Liver Fibrosis: Testing Nevirapine in a Viral-like Liver
598 Setting Using Histopathology, MALDI IMS, and Gene Expression. *Toxicologic Pathology*
599 **44**, 112–131 (2016).

600 23. I. Rzagalinski, N. Hainz, C. Meier, T. Tschernig, D. A. Volmer, MALDI Mass Spectral
601 Imaging of Bile Acids Observed as Deprotonated Molecules and Proton-Bound Dimers
602 from Mouse Liver Sections. *Journal of the American Society for Mass Spectrometry* **29**,
603 711–722 (2018).

604 24. N. Chalasani, *et al.*, Relationship of steatosis grade and zonal location to histological
605 features of steatohepatitis in adult patients with non-alcoholic fatty liver disease. *Journal of*
606 *Hepatology* **48**, 829–834 (2008).

607 25. H. Alamri, *et al.*, Mapping the triglyceride distribution in NAFLD human liver by MALDI
608 imaging mass spectrometry reveals molecular differences in micro and macro steatosis.
609 *Analytical and Bioanalytical Chemistry* **411**, 885–894 (2019).

610 26. D. Trede, *et al.*, Exploring three-dimensional matrix-assisted laser desorption/ionization
611 imaging mass spectrometry data: Three-dimensional spatial segmentation of mouse
612 kidney. *Analytical Chemistry* **84**, 6079–6087 (2012).

613 27. E. K. Neumann, *et al.*, Spatial Metabolomics of the Human Kidney using MALDI Trapped
614 Ion Mobility Imaging Mass Spectrometry. *Analytical Chemistry* (2020)
615 <https://doi.org/10.1021/acs.analchem.0c02051> (October 13, 2020).

616 28. J. Wang, *et al.*, MALDI-TOF MS imaging of metabolites with a N -(1-Naphthyl)
617 ethylenediamine dihydrochloride matrix and its application to colorectal cancer liver
618 metastasis. *Analytical Chemistry* **87**, 422–430 (2015).

619 29. E. C. Randall, *et al.*, Localized metabolomic gradients in patient-derived xenograft
620 models of glioblastoma. *Cancer Research* **80**, 1258–1267 (2020).

621 30. S. S. Basu, *et al.*, Rapid MALDI mass spectrometry imaging for surgical pathology. *npj*
622 *Precision Oncology* **3** (2019).

623 31. J. M. Spraggins, *et al.*, High-Performance Molecular Imaging with MALDI Trapped Ion-
624 Mobility Time-of-Flight (timsTOF) Mass Spectrometry. *Analytical Chemistry* **91**, 14552–
625 14560 (2019).

626 32. I. S. Gilmore, S. Heiles, C. L. Pieterse, Metabolic Imaging at the Single-Cell Scale:
627 Recent Advances in Mass Spectrometry Imaging. *Annual Review of Analytical Chemistry*
628 **12**, 201–224 (2019).

629 33. S. Ben-Moshe, S. Itzkovitz, Spatial heterogeneity in the mammalian liver. *Nature Reviews*
630 *Gastroenterology and Hepatology* **16**, 395–410 (2019).

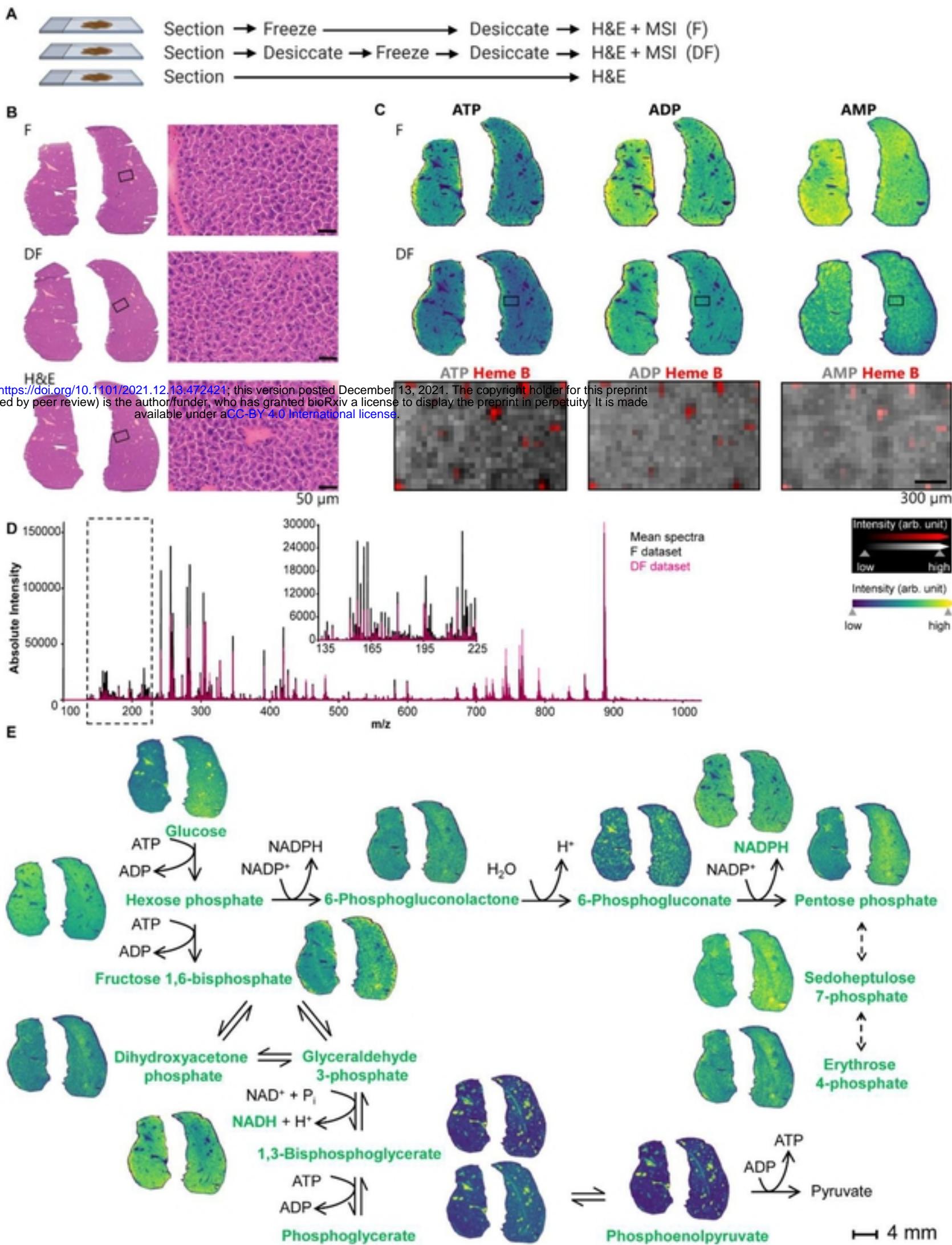
631 34. R. Gebhardt, M. Matz-Soja, Liver zonation: Novel aspects of its regulation and its impact
632 on homeostasis. *World journal of gastroenterology* **20**, 8491–504 (2014).

633 35. T. K. K Jungermann, Role of oxygen in the zonation of carbohydrate metabolism and
634 gene expression in liver. *Kidney Int.* **51**, 402–412 (1997).

635 36. E. K. Neumann, K. v. Djambazova, R. M. Caprioli, J. M. Spraggins, Multimodal Imaging
636 Mass Spectrometry: Next Generation Molecular Mapping in Biology and Medicine. *Journal*
637 *of the American Society for Mass Spectrometry* (2020)
638 <https://doi.org/10.1021/jasms.0c00232> (December 15, 2020).

639 37. J. R. Lin, *et al.*, Highly multiplexed immunofluorescence imaging of human tissues and
640 tumors using t-CyCIF and conventional optical microscopes. *eLife* **7** (2018).

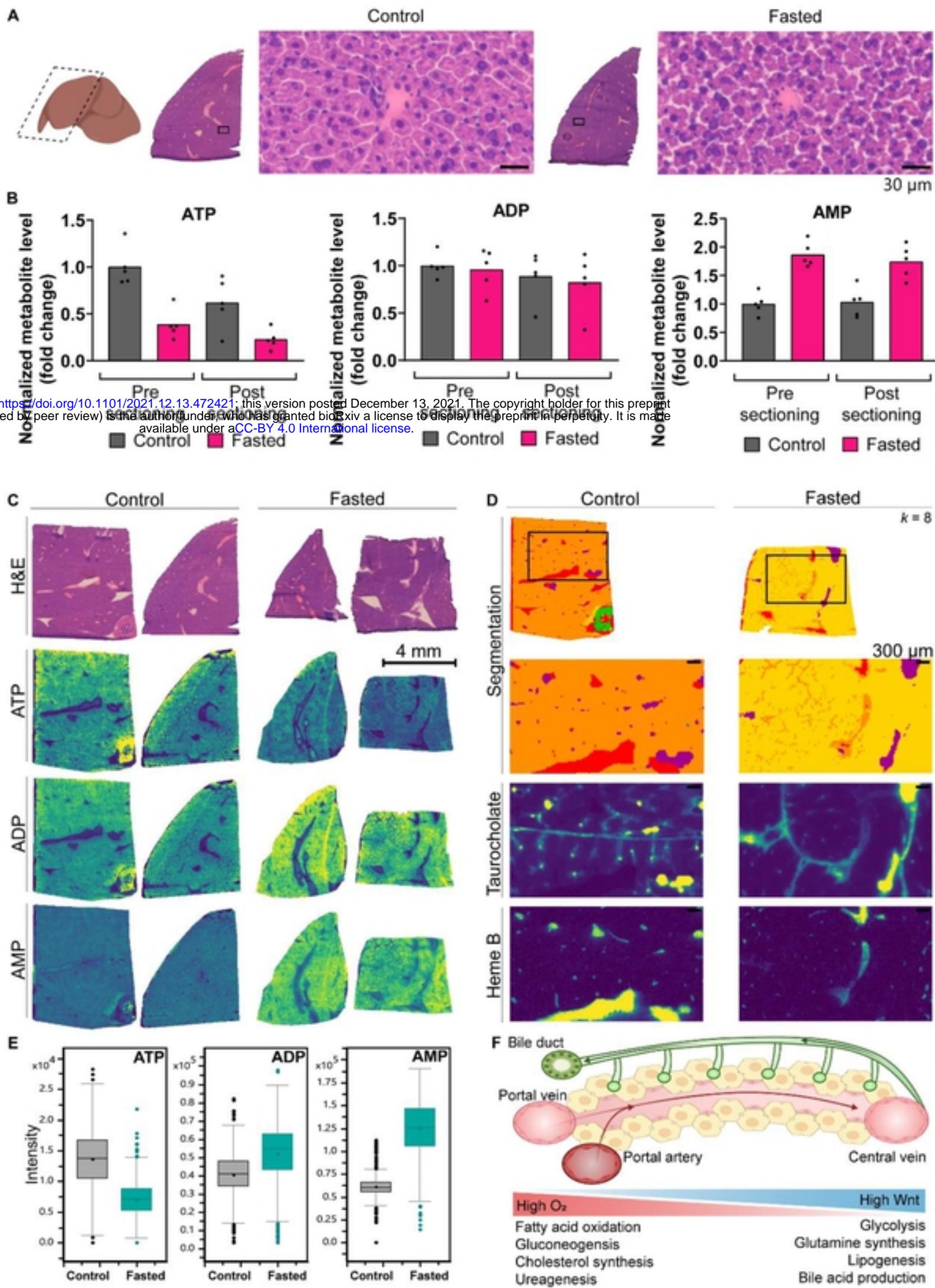
641 38. D. S. Wishart, *et al.*, HMDB 4.0: The human metabolome database for 2018. *Nucleic*
642 *Acids Research* **46**, D608–D617 (2018).


643 39. H. Wickham, *ggplot2* (Springer New York, 2009) <https://doi.org/10.1007/978-0-387-98141-3> (December 7, 2020).

645 40. J. Chong, *et al.*, MetaboAnalyst 4.0: Towards more transparent and integrative
646 metabolomics analysis. *Nucleic Acids Research* **46**, W486–W494 (2018).

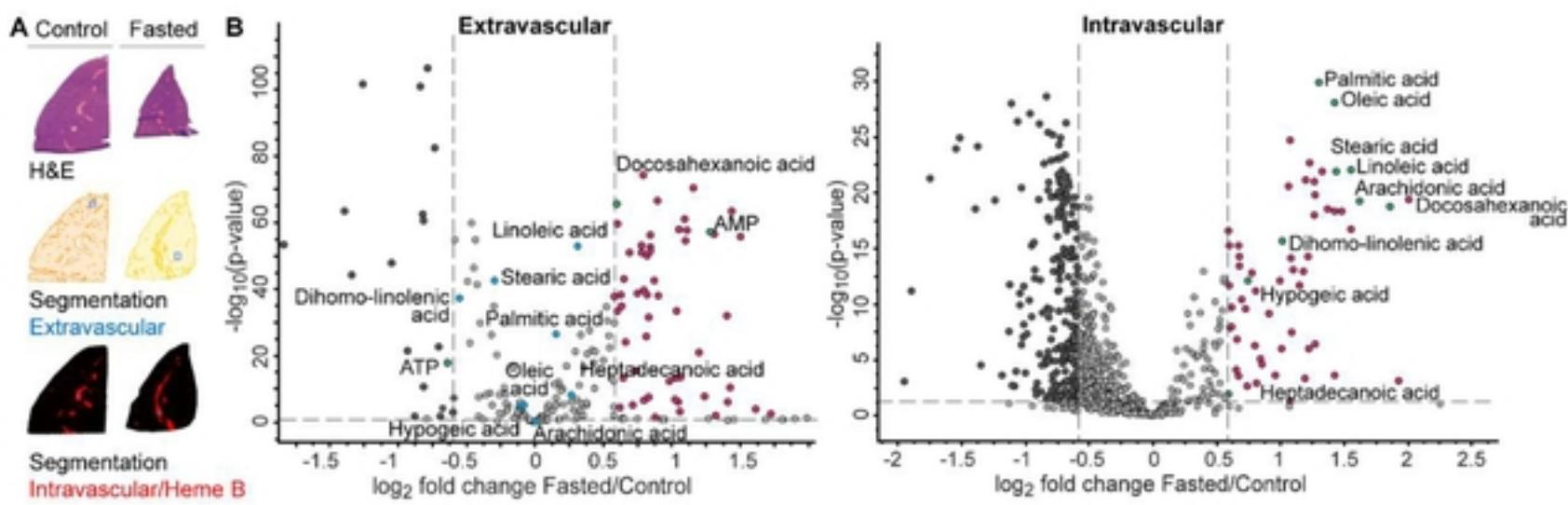
647 41. M. Kanehisa, S. Goto, KEGG: Kyoto Encyclopedia of Genes and Genomes. *Nucleic*
648 *Acids Research* **28**, 27–30 (2000).

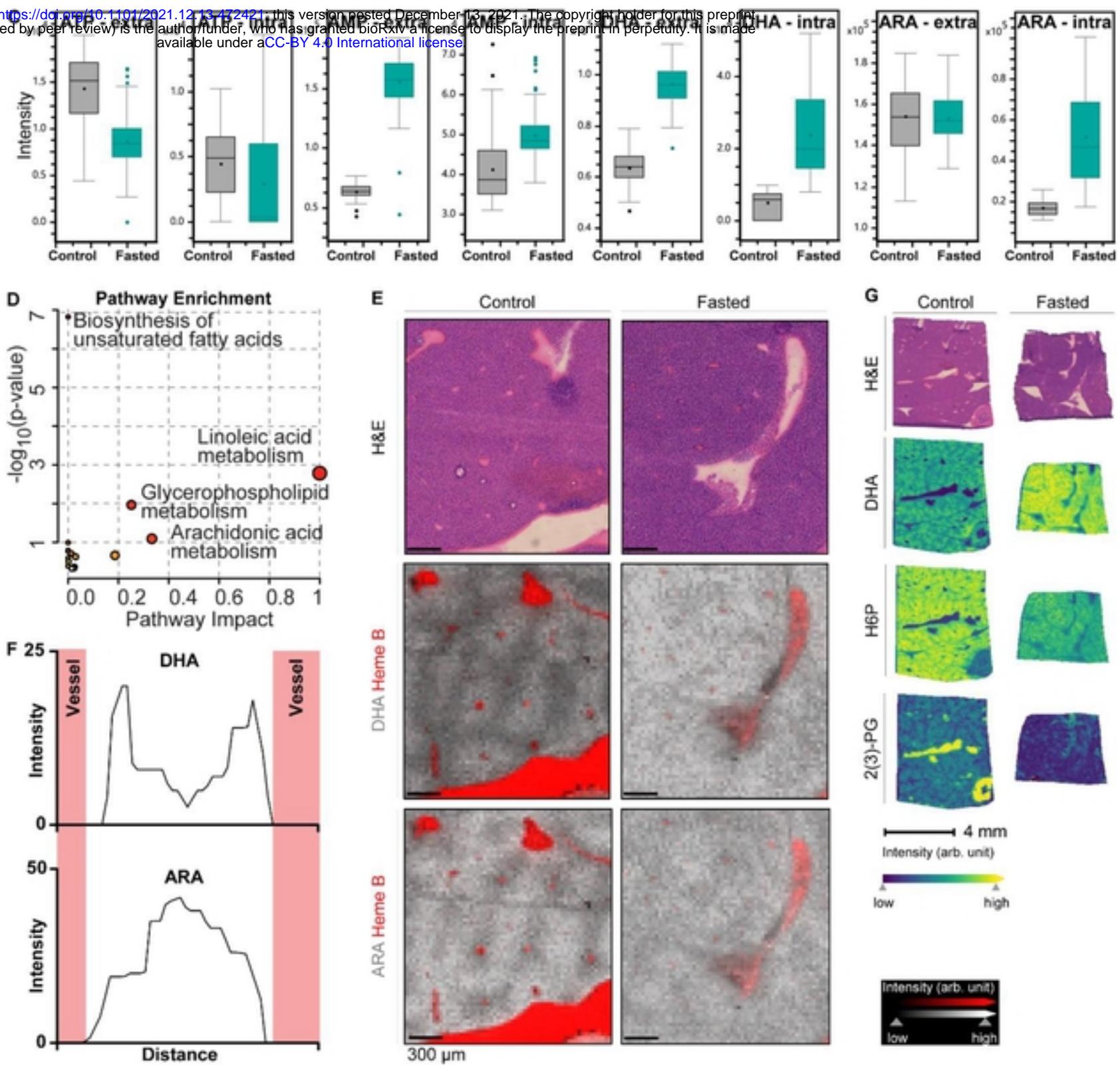
649 42. M. Kutmon, *et al.*, PathVisio 3: An Extendable Pathway Analysis Toolbox. *PLOS*
650 *Computational Biology* **11**, e1004085 (2015).


651 43. J. Schindelin, *et al.*, Fiji: An open-source platform for biological-image analysis.
652 *Nature Methods* **9**, 676–682 (2012).

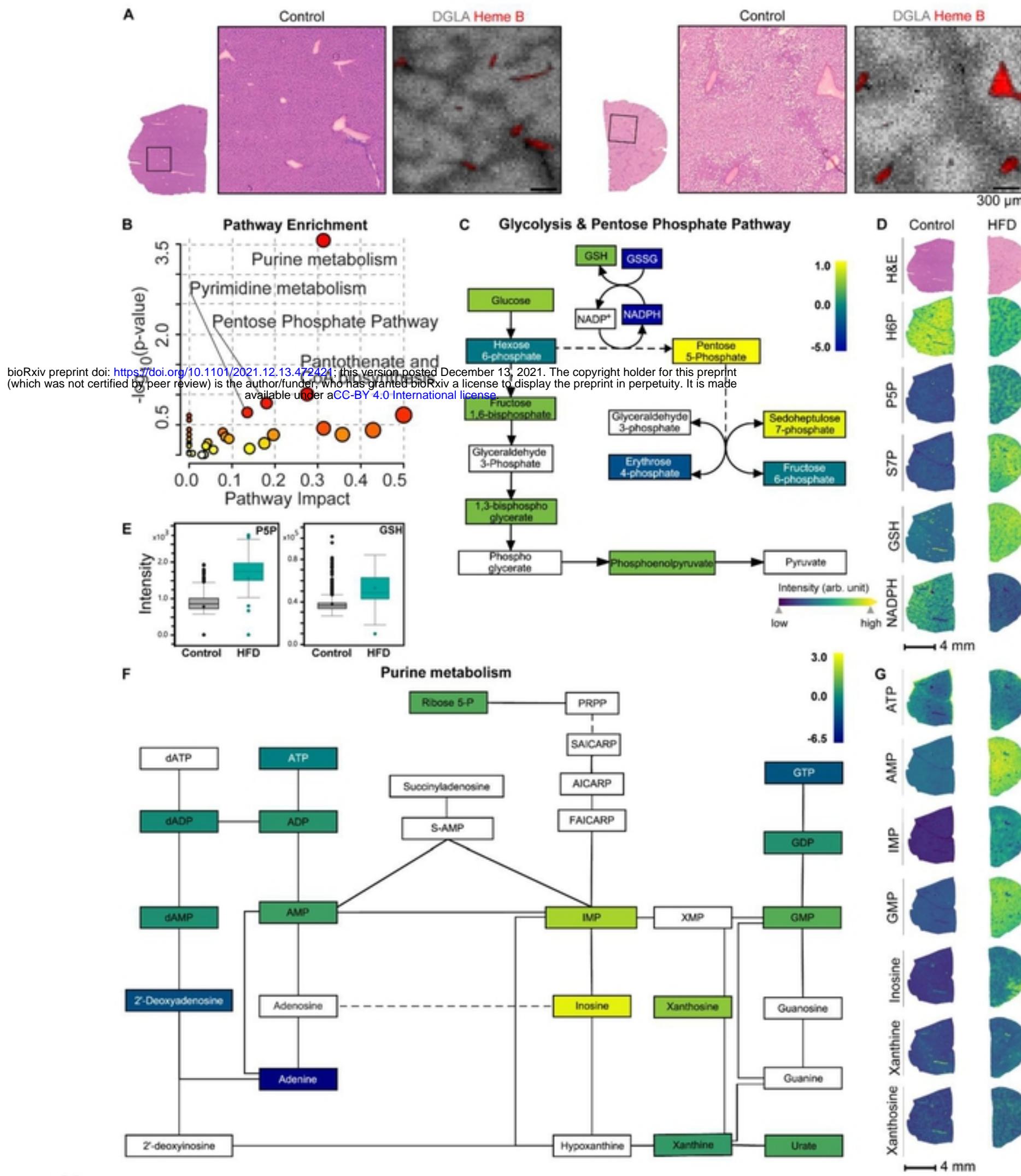
2 **Figure 1. Evaluation of MALDI MSI sample preparation for small metabolites analysis.** (A)
3 Schematic overview of treatments where serial tissue sections were either frozen at -80 °C
4 (treatment_F), desiccated before freezing (treatment_{DF}), or subjected to H&E staining directly after
5 sectioning (H&E). (B) Histological images (20x magnification) of two mouse livers subjected to the
6 treatments indicated in (A). (C) Spatial mapping (30 µm pixel) of ATP, ADP, and AMP from the two
7 liver tissue sections that underwent the treatments indicated in (A). MSI ion images showing relative
8 distribution of ATP, ADP, and AMP individually, or in relation to the vasculature indicated by heme
9 B. (D) Overlaid MALDI MSI mean spectra from serial tissue sections subjected to freezing
10 (treatment_F) and desiccation (treatment_{DF}). Inset highlights the small metabolite range between m/z
11 135-225 for the two treatments. (E) Schematic overview of the connected metabolic pathways of
12 glycolysis and the pentose phosphate pathway with corresponding ion images of the metabolites
13 indicated in green. Glucose phosphate and fructose phosphate are indicated as hexose phosphate;
14 phosphoglycerate and phosphoglycerate are indicated as phosphoglycerate; ribose phosphate,
15 ribulose phosphate, and xylulose phosphate are indicated as pentose phosphate, as these are
16 isobaric species. Dihydroxyacetone phosphate and glyceraldehyde phosphate are isobaric species
17 as well and are visualized together.

bioRxiv preprint doi: <https://doi.org/10.1101/2021.12.13.472421>; this version posted December 13, 2021. The copyright holder for this preprint
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY 4.0 International license.


18


20 **Figure 2. Spatially-resolved metabolic signatures in fed and fasted livers.** (A) Histological
21 images (40x magnification) of a representative liver section from ad lib fed mice and those
22 subjected to overnight fasting; n=5 per group. (B) LC-MS relative quantification of total ATP, ADP,
23 and AMP levels in liver tissues from control and fasted mice, before and after sectioning of serial
24 sections for MALDI MSI analyses. (C) H&E optical and MALDI MSI ion images (30 μ m pixel) of
25 representative serial tissue sections from control and fasted mice. MSI ion images show the relative
26 distribution of ATP, ADP, and AMP. (D) Segmentation map of the MALDI MSI data based on
27 bisecting k-means clustering (k = 8), where each cluster is represented as an individual color, and
28 MALDI MSI ion images of heme B as a marker of the vasculature corresponding to the red segment
29 and taurocholate as a marker of the bile tracts corresponding to the purple segment. (E) MALDI
30 MSI quantification of ATP, ADP, and AMP levels in liver tissues from control and fasted mice. (F)
31 Schematic representation of metabolic gradients along the liver lobular axis. Oxygen-rich blood
32 flows from the portal artery (dark red) and vein (light red) towards the central vein, whereas the bile
33 (green) secreted by hepatocytes (yellow) flows through bile canaliculi in the opposite direction
34 towards the draining bile duct. **Opposing gradients of oxygen and Wnt signaling promote spatially
35 compartmentalized metabolic functions.**

bioRxiv preprint doi: <https://doi.org/10.1101/2021.12.13.472421>; this version posted December 13, 2021. The copyright holder for this preprint
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY 4.0 International license.


36

bioRxiv preprint doi: <https://doi.org/10.1101/2021.12.13.472421>; this version posted December 13, 2021. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under aCC-BY 4.0 International license.

39 **Figure 3. Liver metabolism and fuel switching.** (A) H&E, segmentation, and MALDI MSI ion
40 images of serial tissue sections from control and fasted mice indicating how extravascular and
41 intravascular tissue regions were defined for spatial metabolic analyses. Hepatocyte-enriched
42 regions (denoted as extravascular) were identified using the segmentation map of the MALDI MSI
43 data based on bisecting k-means clustering ($k = 8$), with control and fasted tissues represented as
44 dark and light orange, respectively. Intravascular regions were defined based on intensity of heme
45 B. ROIs depicted in blue indicate where metabolite spectra were extracted for further spatial
46 analysis. (B) Volcano scatterplot displaying \log_2 metabolite intensity ratios vs. significance value
47 in fasted compared to control mouse liver extravascular (left) and intravascular tissue (right). Every
48 circle represents a unique metabolite; dark grey circles indicate metabolites depleted after fasting
49 and magenta circles indicate metabolites enriched after fasting, that showed a fold change >1.5
50 between treatments and reached statistical significance ($p\text{-value} < 0.05$). Highlighted green circles
51 are statistically significantly changed metabolites indicating cellular energy status (AMP/ATP) and
52 fatty acids with their corresponding names. Corresponding metabolites that were not statistically
53 significantly changed are highlighted in blue. (C) MALDI MSI relative quantification of selected
54 metabolites in the extravascular versus intravascular tissue regions. (D) Pathway enrichment
55 scatterplot displaying pathway impact scores vs. significance value in fasted compared to control
56 mouse vasculature. Increased circle size indicates pathway coverage of the identified metabolites
57 in the dataset. Pathways identified as enriched are displayed by name. (E) H&E and MALDI MSI
58 ion images ($30 \mu\text{m}$ pixel) of serial tissue sections from representative control and fasted mouse
59 livers. MSI ion images show relative distribution of DHA and ARA in relation to heme B in red, with
60 indicated intensity scale. (F) Quantification of metabolite spatial distribution for DHA and ARA from
61 blood vessel to adjacent blood vessel, where the metabolite intensity is shown as a function of
62 distance between two vessels. Vasculature position is indicated in red. (G) H&E and MALDI MSI
63 ion images ($30 \mu\text{m}$ pixel) of tissue serial sections from a representative control and fasted mouse
64 liver. MSI ion images show relative distribution of DHA, H6P, and 2(3)-PG, with indicated intensity
65 scale.

67 **Figure 4. Fatty livers face oxidative stress and increased purine metabolism in response to**
68 **prolonged nutrient excess.** (A) Histological images of a representative liver section from ad lib
69 fed mice on a control or high-fat diet for 4.5 months (n=5 per group, 2 independent experiments)
70 with the corresponding ion image of the fatty acid dihomo-linolenic acid (DGLA). (B) Pathway
71 enrichment scatterplot displaying pathway impact scores vs. significance value in HFD compared
72 to control mouse liver tissues. Increased circle size indicates pathway coverage of the identified
73 metabolites in the dataset. Pathways identified as enriched are displayed by name. (C) Schematic
74 overview of the connected metabolic pathways of glycolysis and the pentose phosphate pathway
75 with corresponding relative fold change intensities of HFD compared to control mice, with indicated
76 intensity scale. (D) H&E and MALDI MSI ion images of tissue serial sections from a representative
77 control and HFD mouse liver. The rectangles on the H&E image indicate the position of the images
78 displayed in (A). MSI ion images(30 μ m pixel) show relative distribution of the indicated metabolites,
79 with indicated intensity scale. (E) Absolute quantification of the indicated metabolites for control
80 (grey) compared to HFD (green) mice. (F) Schematic overview of purine metabolism with
81 corresponding relative fold change intensities of HFD compared to control mice, with indicated
82 intensity scale. (G) MALDI MSI ion images of tissue serial sections from a representative control
83 and HFD mouse liver showing relative distribution of the indicated metabolites, with indicated
84 intensity scale

bioRxiv preprint doi: <https://doi.org/10.1101/2021.12.13.472421>; this version posted December 13, 2021. The copyright holder for this preprint
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY 4.0 International license.

