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Abstract

Cells adapt their metabolism to physiological stimuli, and metabolic heterogeneity exists between
cell types, within tissues, and subcellular compartments. The liver plays an essential role in
maintaining whole-body metabolic homeostasis and is structurally defined by metabolic zones.
These zones are well-understood on the transcriptomic level, but have not been comprehensively
characterized on the metabolomic level. Mass spectrometry imaging (MSI) can be used to map
hundreds of metabolites directly from a tissue section, offering an important advance to investigate
metabolic heterogeneity in tissues compared to extraction-based metabolomics methods that
analyze tissue metabolite profiles in bulk. We established a workflow for the preparation of tissue
specimens for matrix-assisted laser desorption/ionization (MALDI) MSI and achieved broad
coverage of central carbon, nucleotide, and lipid metabolism pathways. We used this approach to
visualize the effect of nutrient stress and excess on liver metabolism. Our data revealed a highly
organized metabolic compartmentalization in livers, which becomes disrupted under nutrient stress
conditions. Fasting caused changes in glucose metabolism and increased the levels of fatty acids
in the circulation. In contrast, a prolonged high-fat diet (HFD) caused lipid accumulation within liver
tissues with clear zonal patterns. Fatty livers had higher levels of purine and pentose phosphate
related metabolites, which generates reducing equivalents to counteract oxidative stress. This
MALDI MSI approach allowed the visualization of liver metabolic compartmentalization at high
resolution and can be applied more broadly to yield new insights into metabolic heterogeneity in
vivo.
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Introduction

Advances in single-cell analysis approaches have revealed that cells within tissues can be
metabolically distinct and have unique contributions to physiology and pathology (1). Metabolic
compartmentalization between cellular organelles, within organs, and at the whole-body level is
essential to meet the bioenergetic and anabolic demands of organisms. Additionally, metabolically
distinct microenvironments develop within tissues based on physiological factors such as proximity
to vasculature, which supplies nutrients and oxygen while removing metabolic waste products.

OCoOoONOOTULIPWN PR

10  Theliveris organized by regions of functional and spatial heterogeneity. Hepatocytes are structured
11 in neat rows along the liver lobule axis from the portal vein that receives venous blood from the gut
12 towards the central vein, which returns the blood into circulation (2). As such, the oxygen gradient
13 is highest for periportal hepatocytes and decreases towards the pericentral area (3). Opposing
14 gradients of oxygen and Wnt signaling along with the radial lobule axis drive differential gene
15 expression signatures (4): approximately half of all genes in mouse hepatocytes are expressed in
16 a zonated fashion in both space and time (5-7). This organization drives profound differences in
17 metabolism: periportal hepatocytes rely on the oxidation of fatty acids for energy and perform
18 metabolic functions such as gluconeogenesis, the urea cycle, and biosynthesis of cholesterol and
19 proteins (8). In contrast, pericentral hepatocytes display glycolytic energy metabolism and
20 synthesize lipids, bile, and glutamine.

22 The liver plays an essential role in maintaining whole-body metabolic homeostasis in response to
23 nutrient abundance and restriction (9). In a satiated state, hepatocytes oxidize glucose to generate
24 energy and synthesize fatty acids (10). Fatty acids are then esterified into triacylglycerols (TAGS)
25 and transported to the adipose tissue for storage. In fasted conditions, the adipose tissue releases
26  fatty acids for oxidation by the liver to yield ketone bodies that can fuel distant organs (11).
27  Additionally, the liver performs glycogenolysis and gluconeogenesis to restore circulating glucose
28 levels upon fasting. In contrast, upon prolonged nutrient excess conditions, the liver acts as an
29 overflow depot for lipids when the endocrine and storage functions of the adipose tissue become
30 compromised (12). With rising rates of obesity, nonalcoholic fatty liver disease (NAFLD) is an
31 increasing cause of morbidity and mortality.

33 Despite the liver's central role in metabolic homeostasis, liver metabolism is characterized mostly
34 on the gene, protein, and signaling levels. However, as hepatocytes make up over 80% of liver
35 mass (13), metabolite profiles obtained with conventional extraction-based metabolomic methods
36  skew towards hepatocellular metabolism at the expense of other resident cell types. Spatially
37 resolved metabolite profiling could yield new insights into metabolic heterogeneity and functional
38  specialization within the liver.

40 Matrix-assisted laser desorption/ionization (MALDI) mass spectrometry imaging (MSI) is a label-
41 free technique that allows for in situ spatial mapping and quantification of hundreds of metabolites
42 from a single tissue section (14-16). Recent mass spectrometric advances have led to an
43 increasingly higher spatial resolution that now approximates single-cell and sub-cellular analytic
44 capability (17, 18). However, several outstanding challenges in sample preparation and data
45  acquisition need to be addressed to ensure the robustness of metabolome-scale analyses (19, 20).
46 Unique adaptations are required to yield reproducible and biologically relevant data for small
47 metabolite analyses, including quenching metabolic activity, metabolite stabilization, matrix
48  optimization, and data acquisition (14).

50 In this study, we implemented MALDI MSI to spatially map the distribution of small metabolites to
51 faithfully recapitulate key bioenergetic activities. We interrogated the liver metabolic response to
52 nutrient stress and excess conditions with a spatial resolution of identified patterns of metabolic
53 specialization within liver tissues. We observed that fasting-induced fuel switching in the liver while
54 in conditions of prolonged nutrient excess induced by a high-fat diet, mice develop fatty livers that
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55 remodel central carbon metabolism towards increased pentose phosphate pathway and purine

56 metabolism. Taken together, we show that introducing spatiality into metabolomic analyses reveals

57 an additional layer of metabolic complexity and that our workflow can be applied broadly to yield

58 new insights into metabolic heterogeneity in vivo.

59

60

61 Materials and Methods

62

63 Mouse studies

64  C57BL/6J (000664) and BALB/cJ (000651) mice were obtained from The Jackson Laboratory. Mice

65  were housed at 20-22°C on a 12 h light/dark cycle with ad libitum access to food (PicoLab Rodent

66  Diet 5053) and water. All animal studies were performed in accordance with Haigis lab protocols

67 approved by the Standing Committee on Animals, the Institutional Animal Care and Use Committee

68 at Harvard Medical School. For heat inactivation studies, 3 mice were used (C57BL/6J, female, 7

69  weeks old) and kidneys, brain halves, and liver lobes from the same individual animal were

70 subjected to the different heat inactivation treatments (overview in Supplementary Fig. 1A, E). For

71 desiccation experiments, 2 mice were used (C57BL/6J, male, 7 weeks old). For fasting

72 experiments, two independent cohorts of 5 mice were used per treatment group (BALB/cJ, female,

73 10-11 weeks old) and mice were subjected to a 16 hour overnight fast. For HFD experiments, two

74 independent cohorts of 4 mice were used per treatment group (C57BL/6J, female). Mice were

75 assigned at 5 weeks old to the control diet (PicoLab Rodent Diet 5053) or HFD (Research Diets,

76 Inc. #12492) and maintained on this diet for 4.5 months. The control diet is 4.07 Gross Energy

77  Kcal/lg. The HFD is 5.21 Kcal/g. for 8-10 weeks. Comparative MALDI MSI and LC-MS analyses of

78  tissues were always performed on the same tissue specimens.

79

80  Tissue isolation

81 Mice were anesthetized with isoflurane and sacrificed by cervical dislocation. The gall bladder was

82 removed before livers, kidneys, and brains were harvested and carefully positioned into 15 mL flat

83 bottom specimen vials (Nalgene, Millipore Sigma), snap-frozen in liquid nitrogen, and stored at -80

84 °C until further processing.

85

86 Tissue heat inactivation

87 Freshly resected or snap-frozen tissues were placed in sealed Maintainor® tissue cards and placed

88 in the Stabilizor™ system (Denator AB). Sample state was specified (frozen or fresh) and the

89 instrument determined durations of heat treatment based on sample volume for consistent and

90 reproducible heat treatment, according to the manufacturers instructions. Next, tissues were

91  carefully positioned into 15 mL flat bottom specimen vials (Nalgene, Millipore Sigma), snap-frozen

92 in liquid nitrogen, and stored at -80 °C until further processing.

93

94 MALDI tissue preparation

95 Frozen tissues were placed at -20 °C before sectioning in a Microm HM550 cryostat (Thermo

96 Scientific™). Tissues were sectioned at 10 ym thickness and thaw mounted onto indium-tin-oxide

97 (ITO)-coated slides (Bruker Daltonics) for MALDI MSI analysis with serial sections mounted onto

98 glass slides for histological analyses. The microtome chamber and specimen holder were

99  maintained between -15 °C and -20 °C. Slides were stored at -80 °C until further processing. For
100 desiccation experiments, slides were subjected to desiccation in a tabletop vacuum desiccator
101 before freezing.

102 Matrix deposition

103 A 1,5-Diaminonaphthalene(DAN)-HCI matrix solution was used for all experiments. To generate
104  the hydrochloride derivative of 1,5-DAN, 39.5 mg of 1,5-DAN was dissolved in 500 pL of 1 mol/L
105 hydrochloride solution with 4 mL HPLC-grade water. The solution was sonicated for 20 minutes to
106 dissolve 1,5-DAN, after which 4.5 mL ethanol was added to yield the matrix solution. Matrices were
107 deposited on slides and tissues using a TM-sprayer (HTX imaging, Carrboro, NC). DAN-HCI matrix
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108  spray conditions used where: a flow rate of 0.09 mL/min, spray nozzle temperature of 75 °C, and
109  spray nozzle velocity of 1200 mm/min. A four-pass cycle was used with 2 mm track spacing and
110  the nitrogen gas pressure was maintained at 10 psi. For fasting experiments, 5Ns-ATP (at 10 pM),
111 15Ns-AMP (at 1 pM), and °N-glutamate (at 100 uM) were spiked into the matrix and used as internal
112 calibrants.

113 MALDI data acquisition

114  AtimsTOF fleX mass spectrometer (Bruker Daltonics) was used for data collection, and data was
115 acquired using Fleximaging 5.1 software (Bruker Daltonics). The instrument was operated in
116 negative ion mode covering the m/z range of 100-1350 for heat inactivation experiments and 100-
117 1250 for desiccation experiments; a spatial resolution of 50 um was used to define a pixel. For
118  fasting experiments, the instrument was operated in negative ion mode covering the m/z range of
119 50-1000 m/z; a spatial resolution of 30 um was used to define a pixel. Each pixel consisted of 800
120 laser shots, in which the laser frequency was set to 10,000 Hz. Mass calibration was performed
121 using the dual-source ESI option with Agilent tune mix solution (Agilent Technologies) on the
122 optimized method; for fasting experiments, the matrix was spiked with 1°Ns-ATP, >Ns-AMP, and
123 15N.glutamate which were used as internal calibrants. The heat inactivation dataset was post-
124 calibrated using metabolites in the 133-700 m/z range with Data Analysis 5.3 software (Bruker
125 Daltonics).

126

127 MALDI data analysis

128  MSI data were analyzed and visualized using SCILS Lab 2021a software (Bruker Daltonics).
129 Imported peaks were moved to the local max using the mean spectra with a minimal interval width
130 of 5 mDa. Peaks were then normalized to total ion current (TIC), except for desiccation
131 experiments, as these two datasets were acquired from separate slides and runs. lon images for
132 metabolites of interest were generated based on peak lists containing theoretical m/z and ppm
133 errors associated with the assignments were calculated. To generate segmentation maps showing
134 regions of spectral similarity, bisecting k-means clustering was applied to all individual peaks in the
135 dataset using the correlation distance metric in SCILS Lab 2021a software. Vascular regions were
136 defined based on the distribution of heme B, and tissue regions based on the segmentation maps,
137  and regions of interest (ROIs) were drawn by hand. For feature annotations, statistical analyses,
138  and quantitation; ROIs defined in SCILS lab were exported to MetaboScape 6.0 (Bruker Daltonics).
139  Speckle size and number were adapted for each dataset to achieve maximum pixel coverage of
140  equal percentage for each ROI between the experimental groups. Features were annotated based
141 on theoretical m/z of 114,008 metabolite entries in the Human Metabolome Database (HMDB)
142 version 4.0 and curated based on ppm error associated with the assignment (38). To determine
143 which metabolite intensity changes reached statistical significance, Bucket Tables were normalized
144 for the Sum of Buckets and a two-sided student’'s t-test was performed using a significance
145 threshold of p<0.05 and a fold change >1.5. For extravascular tissue comparisons in fasting
146 experiments, one ROl was used per biological replicate (n=5 per group). For intravascular
147 comparisons, one ROI was used per biological replicate (n=3 per group), where the 3 replicates
148  were selected based on which tissue cross-sections contained vascular regions of comparable
149  size. For other comparisons, ROIs encapsulated the full tissue section.

150

151 Dimensionality reduction and data visualization

152 Dimensionality reduction was used to enable interpretable visualization of the high dimensional
153  spectra using Uniform Manifold Approximation and Projection (UMAP) (21). The UMAP learns
154  similarities of the mass spectra in the high-dimensional space and then projects it into a lower
155 dimensional space of two dimensions, where similar spectra are projected close to each other and
156 dissimilar ones are projected further away. UMAP (21) was performed in an unsupervised manner
157 and the reduced data was then colored based on the treatment (for heat inactivation experiments)
158 or treatment, mouse ID, or metabolite of interest (for fasting experiments). The analysis was
159 performed in R software (version 4.0.3) using the publicly available UMAP library and visualized
160 using ggplot2 (39).
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161

162 Pathway enrichment analysis

163 Pathway analysis was performed using MetaboAnalyst 4.0 (40). Metabolite features identified as
164  significantly increased after fasting in Metaboscape were exported to MetaboAnalyst using the
165 associated HMDB ID. The enrichment method used was a hypergeometric test and the topology
166 analysis used was relative-betweenness centrality, with the KEGG reference library (41).

167

168 Pathway visualization

169 Pathways of interest were constructed in PathVisio 3.3.0 (42)and imported into MetaboScape 6.0
170 (Bruker Daltonics) using the “Pathway Mapping” tool to visualize the relative changes in metabolite
171 levels.

172

173 Metabolite colocalization analysis

174  To determine colocalization of DHA and ARA, metabolite intensity plots were generated in Fiji
175 (ImageJ 1.53c) (43). lon images for DHA and ARA were exported from SCILS Lab and converted
176 to 16-bit in Fiji. Windows were synchronized and freehand lines were drawn between adjacent
177 vessels. Metabolite intensity plots were then generated along this line, with metabolite intensity
178 (gray value) as a function of distance between vessels (in pixels). Data were exported and
179 visualized using GraphPad Prism 8.2.1 software (GraphPad Software).

180 Metabolite extraction from tissue

181 Frozen tissues were maintained under dry ice vapor to remain frozen until extraction, and 10-20
182 mg was excised with a razor blade and samples were transferred to pre-chilled Eppendorf tubes.
183 Extraction solution consisted of a pre-chilled (-20 °C) solution of 2:2:1 HPLC-grade
184 acetonitrile:methanol:water with 0.1 mol/L formic acid. Pre-chilled stainless-steel beads were
185 added to Eppendorf tubes containing tissue samples, before extraction solution was added to
186 achieve a concentration of 20 mg/mL before immediate lysis in a benchtop TissueLyser LT
187 (Qiagen) operated at 50 Hz for 3 minutes. Next, 15% ammonium bicarbonate solution (filtered,
188 room temperature) was added to achieve an 8% (v/v) solution and samples were lysed for another
189 3 minutes at 50 Hz. Samples were transferred to a benchtop shaker and vortexed at 4 °C for 15
190 minutes. Beads were removed and samples were centrifuged at 16,000 x g at 4 °C for 20 minutes.
191 Clear supernatant was transferred to glass HPLC vials for immediate HPLC-MS analysis.

192

193 HPLC-MS analysis

194  An iHILIC column (HILICON) was used with SIl UPLC system (Thermo Fisher Scientific) coupled
195 to a Q-Exactive HF-X orbitrap mass spectrometer (Thermo Fisher Scientific) operated with
196 electrospray (ESI) ionization in negative ion mode at scan range m/z 75-1000 and a resolution of
197 60,000 at m/z 200. Buffer conditions used were: 20mM ammonium carbonate with 0.1% ammonium
198 hydroxide in water (buffer A) and acetonitrile (buffer B). A flow rate of 0.150 mL/min was used with
199 the following linear gradients: 0 — 20 min gradient from 80% to 20% B; 20 — 20.5 min gradient from
200 20% to 80% B; 20.5 — 28 min hold at 80% B; 28 — 30 min hold to waste at 80% B. Data were
201 acquired using Xcalibur software (Thermo Fisher Scientific) and peak areas of metabolites were
202 determined using TraceFinder 4.1 software (Thermo Fisher Scientific). Metabolites were identified
203 by matching mass and retention time of features to commercial metabolite standards acquired
204  previously on our instrument. Metabolite levels were normalized to tissue weight.

205

206 Histology

207 Serial sections (10 um) were fixed and stained using hematoxylin and eosin (H&E) immediately
208 after sectioning and imaged using a bright field microscope (Zeiss Observer Z.1, Oberkochen,
209 Germany) equipped with a Plan-APOCHROMAT lens and AxioCam MR3 camera, using a 20x or
210  40x magnification. High-resolution images of whole stained tissue sections were obtained using
211 the stitching algorithm in Zeiss ZEN imaging software.

212

213
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214 Results
215 Broad coverage of small metabolites with spatial resolution

216  Several experimental parameters needed to be assessed to faithfully recapitulate tissue
217  metabolism in situ to visualize regions of metabolism in the liver. As major concerns are residual
218 enzyme activity and non-enzymatic breakdown of labile metabolites, we evaluated whether enzyme
219  inactivation through desiccation or heat inactivation treatment would stabilize tissue metabolites for
220 MALDI MSI sample preparation. We compared procedures of storing cryosectioned tissue on slides
221  at-80 °C and thawing them in a vacuum desiccator to minimize rehydration due to condensation
222 (treatmentr, Fig. 1A) with desiccation immediately after tissue sectioning before storage
223 (treatmentor). To assess tissue integrity, serial sections of liver were H&E stained for histological
224  analysis immediately after sectioning to evaluate the effects of freezing and desiccation. Minimal
225 differences were observed for gross tissue morphology (Fig. 1B). We used ATP stability as an
226 indicator of postmortem enzymatic activity and labile metabolite stability, as it is used by many
227 enzymes and is liable to degradation. Using both methods, the ATP, ADP, and AMP ion images
228  showed comparable spatial distributions and metabolite intensities (Fig. 1C). These metabolites
229  displayed a gradient pattern in relation to their proximity to the vasculature.

230

231 Figure 1. Evaluation of MALDI MSI sample preparation for small metabolites analysis. (A)
232 Schematic overview of treatments where serial tissue sections were either frozen at -80 °C
233 (treatmentr), desiccated before freezing (treatmentor), or subjected to H&E staining directly after
234 sectioning (H&E). (B) Histological images (20x magnification) of two mouse livers subjected to the
235 treatments indicated in (A). (C) Spatial mapping (30 um pixel) of ATP, ADP, and AMP from the two
236 liver tissue sections that underwent the treatments indicated in (A). MSI ion images showing relative
237 distribution of ATP, ADP, and AMP individually, or in relation to the vasculature indicated by heme
238 B. (D) Overlaid MALDI MSI mean spectra from serial tissue sections subjected to freezing
239 (treatmentr) and desiccation (treatmentor). Inset highlights the small metabolite range between m/z
240 135-225 for the two treatments. (E) Schematic overview of the connected metabolic pathways of
241  glycolysis and the pentose phosphate pathway with corresponding ion images of the metabolites
242 indicated in green. Glucose phosphate and fructose phosphate are indicated as hexose phosphate;
243 phosphoglycerate and phosphoglycerate are indicated as phosphoglycerate; ribose phosphate,
244 ribulose phosphate, and xylulose phosphate are indicated as pentose phosphate, as these are
245 isobaric species. Dihydroxyacetone phosphate and glyceraldehyde phosphate are isobaric species
246 as well and are visualized together.

247

248 Heat inactivation was also investigated as an alternative strategy to desiccation using kidney and
249 brain tissues in addition to livers, as these organs have distinct anatomical features and metabolic
250 compositions (Supplementary Figure 1A). Control mouse tissues were resected and snap-frozen
251 in liquid nitrogen before sectioning (Freeze, treatmentg) and compared to fresh tissues subjected
252 to heat inactivation to denature enzymes before freezing and sectioning (Heat-Freeze,
253  treatmentwr). The third group of tissues was snap-frozen to preserve the metabolic state
254 immediately upon resection and then heat-treated to denature enzymes before re-freezing and
255 sectioning (Freeze-Heat-Freeze, treatmentrur). Histological analysis of kidneys showed that heat
256 treatment disrupted tissue architecture, whereas this was preserved in control tissues
257 (Supplementary Fig. 1B-D).

258

259 MSI was performed on serial tissue sections to evaluate the effect of heat treatment on metabolite
260 levels. The three datasets showed a highly similar spectral coverage but pronounced differences
261 in individual ion intensities (Supplementary Figure 2A). To visualize whether heat treatment induced
262 changes in the metabolomes, we used Uniform Manifold Approximation and Projection (UMAP),
263  which visualizes similarities between mass spectra projecting close together, and dissimilar spectra
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264 projected further away (21). Supplementary Figure 2B shows a clear separation of data points
265 based on heat treatment, indicating that the applied heat treatment modified the metabolome.

266

267 The tissue distribution of ATP, ADP, and AMP after heat treatment showed a relatively stable
268 distribution upon treatmentur as compared to control tissues, but a loss of overall ATP levels upon
269  treatmentrur (Supplementary Fig. 2C). MSI ion images we used to visualize the relative spatial
270 distribution of metabolite intensities, but these images do not inform the total metabolite pools
271 unless the MS signal is calibrated for each metabolite. Thus, we excised representative tissue
272 slices from the same tissues that were analyzed using MSI and determined total metabolite levels
273 using LC-MS (Supplementary Fig. 2D). As ATP use by enzymes will lead to increased levels of
274 AMP and ADP, successful heat stabilization of enzymes should lead to stable levels of ATP, ADP,
275 and AMP. This comparison showed that although heat stabilization of fresh tissue seemed to
276 maintain the spatial distribution of adenosine phosphate metabolites seen in control tissues,
277 absolute levels of ATP decreased due to thermal destabilization.

278

279 To visualize how heat treatment affected the abundance of all detected ions in an unbiased manner,
280 we constructed an ion segmentation map using bisecting k-means clustering on all identified
281 spectra. This showed that conductive heating applied with a commercial device (Denator,
282 Gothenburg, Sweden) set to optimze heat delivery based on frozen or fresh states and with
283 consideration to specimen dimensions led to an overall loss of spatial localization of metabolites
284 (Supplementary Fig. 2C and 2E). Since the whole tissues were processed, the heating profiles
285 needed to be optimized to provide uniform heating throughout the tissue; however, this was not
286 possible due to the tissue's thickness. Although regional clusters of metabolites in heat-treated
287 brains were largely maintained, they could not be accurately mapped to anatomical brain regions
288 due to the loss of tissue morphology. Together, these results indicate that the heat treatment
289 applied to the whole tissues prior to sectioning led to disruption of tissue structure and compromised
290 the integrity of anatomical regions. Further optimization of the heating profile for the denaturation
291 of enzymes and the preservation of metabolites is needed for uniform stabilization that would be
292 compatible with spatial metabolomics workflows.

293

294 Using the treatmentor followed by MALDI MSI, several additional metabolites were detected. The
295 central carbon metabolism correlates with key energetic and biosynthetic pathways, including
296 glycolysis and the pentose phosphate pathway (PPP) (Figure 1D). As expected, hexoses were
297  highly abundant within the vasculature of the tissue, whereas intracellular metabolites generated
298  from glucose were enriched in extravascular compartments rather than in the vasculature.
299  Together, these results suggest that optimized MALDI MSI sample preparation and data acquisition
300 workflow achieve broad coverage of small metabolites to generate reproducible spatial profiles of
301 biologically relevant metabolic pathways.

302 Distinct spatially-resolved metabolic signatures were observed in fed and fasted livers.

303 Regions of metabolism were investigated in the liver in response to fasting by generating spatially-
304 resolved metabolic profiles. Livers from fasted mice showed marked histological differences in
305 hepatocyte shape due to the expected depletion of glycogen (Fig. 2A). We evaluated whether
306 tissue metabolomes remained stable during cryosectioning, as this is a lengthy process for
307 experiments with multiple biological replicates that need to be mounted onto the same slide for data
308 acquisition. No significant difference was observed between total ATP, ADP, or AMP levels,
309 indicating that these labile metabolites remained stable during cryosectioning (Fig. 2B), allowing
310 for comparison of metabolite levels under different biological conditions. As a result, we observed
311 that fasting led to a decrease in liver ATP content with a concomitant increase in AMP, indicative
312 of cellular nutrient stress. Using MSI, visualizing the ion intensities distributions of adenosine
313 phosphates showed similar results; decreasing ATP abundance and increasing AMP in
314 hepatocellular regions within the tissue were observed (Fig. 2C). A comparison of mean spectra
315 revealed marked differences in overall metabolite intensities between control and fasted mice

8


https://doi.org/10.1101/2021.12.13.472421
http://creativecommons.org/licenses/by/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2021.12.13.472421; this version posted December 13, 2021. The copyright holder for this preprint
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY 4.0 International license.

316 (Supplementary Figure 3A). To visualize these differences in an unbiased manner, we constructed
317 a segmentation map (Fig. 3D). This visualization showed distinct metabolic clusters within different
318 anatomical regions of the liver and between control and fasted mice, while all biological replicates
319  within each group clustered together (Supplementary Fig. 3C). Metabolite clusters were observed
320 for the vasculature, hepatocytes, bile ducts, and the common bile duct. These clusters
321 corresponded with co-registered ion images of heme B, a cofactor of hemoglobin that is enriched
322  within the vasculature, and taurocholate, the most abundant bile acid (Fig 3D) (22, 23).

323 Figure 2. Spatially-resolved metabolic signatures in fed and fasted livers. (A) Histological
324  images (40x magnification) of a representative liver section from ad lib fed mice and those
325  subjected to overnight fasting; n=5 per group. (B) LC-MS relative quantification of total ATP, ADP,
326  and AMP levels in liver tissues from control and fasted mice, before and after sectioning of serial
327  sections for MALDI MSI analyses. (C) H&E optical and MALDI MSI ion images (30 pm pixel) of
328 representative serial tissue sections from control and fasted mice. MSl ion images show the relative
329 distribution of ATP, ADP, and AMP. (D) Segmentation map of the MALDI MSI data based on
330 bisecting k-means clustering (k = 8), where each cluster is represented as an individual color, and
331 MALDI MSI ion images of heme B as a marker of the vasculature corresponding to the red segment
332 and taurocholate as a marker of the bile tracts corresponding to the purple segment. (E) MALDI
333 MSI quantification of ATP, ADP, and AMP levels in liver tissues from control and fasted mice. (F)
334 Schematic representation of metabolic gradients along the liver lobular axis. Oxygen-rich blood
335 flows from the portal artery (dark red) and vein (light red) towards the central vein, whereas the bile
336 (green) secreted by hepatocytes (yellow) flows through bile canaliculi in the opposite direction
337  towards the draining bile duct. Opposing gradients of oxygen and Wnt signaling promote spatially
338 compartmentalization metabolic functions.

339

340 Furthermore, using spiked internal standards into the MALDI matrix, we observed that independent
341 mouse cohorts and replicates within each treatment group were highly reproducible in this study
342 (Supplementary Fig. 3A-C). Together, these results indicate that our workflow yielded consistent
343 and highly reproducible results to visualize metabolic compartments in the liver.

344 Visualization of fasted liver metabolism shows disruption of metabolism and fuel switching.

345  The liver acts as a metabolic rheostat to maintain whole-body energy homeostasis in times of
346  nutrient stress and excess. As MSI adds a spatial dimension to metabolomic analyses, we
347  dissected the metabolic compartmentalization in the fasting liver. We identified metabolic
348 differences using the unbiased UMAP approach, which showed separation of data clusters from
349  fasted compared to control livers (Supplementary Fig. 4A). Additional clusters were observed within
350 treatment groups, visualized by coloring UMAP distributions per individual mouse (Supplementary
351 Fig. 4B). The distribution of heme over the UMAP graphs indicated that these clusters could
352 represent distinct anatomical regions within tissues (Supplementary Fig. 4C). To explore
353 differences between liver and systemic metabolism, we extracted metabolite spectra from MSI data
354 on a pixel-by-pixel basis. As shown in Figure 3A, we used the segmentation map (Fig. 2D,
355 Supplementary Fig. 5A) to select regions-of-interest enriched for hepatocytes (extravascular tissue)
356 or heme B (intravascular tissue, circulating metabolites). In accordance with our previous
357  observations, ATP was significantly decreased and AMP significantly increased in extravascular
358  tissue upon fasting (Fig. 3B, left).

359 We also observed an increase in the fatty acid docosahexaenoic acid (DHA). This was
360 recapitulated in the UMAP distributions, where AMP and DHA were more abundant in fasted mice
361 (Supplementary Fig. 4D). The metabolite profiles from intravascular regions did not show
362 differences in adenosine phosphate metabolites, but several fatty acids were significantly enriched
363 in the circulation upon fasting (Fig. 3B, right) whereas they were not significantly changed within
364 extravascular regions of the tissue (Fig. C, Supplementary Figure 5C). It is well-understood that
365 the adipose tissue releases fatty acids for oxidation by the liver to yield ketone bodies that can fuel
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366  distant organs, which is corroborated by these results and indicates that spatially-resolved
367  metabolomics can inform on metabolic compartmentalization within tissues.

368 Figure 3. Liver metabolism and fuel switching. (A) H&E, segmentation, and MALDI MSI ion
369 images of serial tissue sections from control and fasted mice indicating how extravascular and
370 intravascular tissue regions were defined for spatial metabolic analyses. Hepatocyte-enriched
371 regions (denoted as extravascular) were identified using the segmentation map of the MALDI MSI
372 data based on bisecting k-means clustering (k = 8), with control and fasted tissues represented as
373 dark and light orange, respectively. Intravascular regions were defined based on intensity of heme
374 B. ROIs depicted in blue indicate where metabolite spectra were extracted for further spatial
375 analysis. (B) Volcano scatterplot displaying log 2 metabolite intensity ratios vs. significance value
376  infasted compared to control mouse liver extravascular (left) and intravascular tissue (right). Every
377 circle represents a unique metabolite; dark grey circles indicate metabolites depleted after fasting
378 and magenta circles indicate metabolites enriched after fasting, that showed a fold change >1.5
379 between treatments and reached statistical significance (p-value <0.05). Highlighted green circles
380 are statistically significantly changed metabolites indicating cellular energy status (AMP/ATP) and
381 fatty acids with their corresponding names. Corresponding metabolites that were not statistically
382 significantly changed are highlighted in blue. (C) MALDI MSI relative quantification of selected
383 metabolites in the extravascular versus intravascular tissue regions. (D) Pathway enrichment
384  scatterplot displaying pathway impact scores vs. significance value in fasted compared to control
385 mouse vasculature. Increased circle size indicates pathway coverage of the identified metabolites
386 in the dataset. Pathways identified as enriched are displayed by name. (E) H&E and MALDI MSI
387  ion images (30 um pixel) of serial tissue sections from representative control and fasted mouse
388 livers. MSI ion images show relative distribution of DHA and ARA in relation to heme B in red, with
389 indicated intensity scale. (F) Quantification of metabolite spatial distribution for DHA and ARA from
390 blood vessel to adjacent blood vessel, where the metabolite intensity is shown as a function of
391 distance between two vessels. Vasculature position is indicated in red. (G) H&E and MALDI MSI
392 ion images (30 um pixel) of tissue serial sections from a representative control and fasted mouse
393 liver. MSI ion images show relative distribution of DHA, H6P, and 2(3)-PG, with indicated intensity
394 scale.

395 Indeed, pathway analysis of the intravascular regions showed that several lipid metabolic pathways
396  were enriched (Fig. 3D). Interestingly, comparing the spatial distribution of fatty acids showed that
397 the abundance of DHA and ARA follow a specific and compartmentalization pattern in fed livers
398 (Fig. 3E, Supplementary Fig. 5B). DHA is a 22-carbon polyunsaturated omega-3 fatty acid (22:6),
399 whereas arachidonic acid (ARA) is a 20-carbon polyunsaturated omega-6 fatty acid (20:4). Both
400 can be synthesized from alpha-linolenic acid, which in turn is produced from the essential fatty acid
401 linoleic acid. These fatty acids can also be released from complex lipids through lipolysis. Relative
402  quantification of the metabolite intensity as a function of the distance between blood vessels
403 confirmed that DHA is enriched in proximity to the vasculature while ARA displayed the opposite
404 enrichment pattern (Fig. 3F, Supplementary Fig. 5D). Upon fasting, this distinct spatial
405 compartmentalization within the extravascular regions is lost. In contrast to the increase in DHA
406  within liver cells, the levels of glycolytic intermediates decreased within liver tissue, indicating a fuel
407  switch upon fasting that decreases liver glucose use in favor of lipid metabolism. Together, these
408 results indicate that spatially dissecting metabolite profiles can yield new insights into metabolic
409 compartmentalization within tissues and between the local tissue environment and the circulation.

410 Fatty livers show a metabolic signature indicative of oxidative stress in response to
411 prolonged nutrient excess.

412 We also investigated how the liver's response to nutrient stress might contrast to its response to
413 nutrient excess by subjecting mice to a high-fat diet (HFD). Livers of HFD mice showed marked
414 histological differences, with hypertrophy and accumulation of lipid droplets that displayed in unique
415 patterns where lipid droplets were deposited away from the vasculature (Fig. 4A). In human, it has
416 been established that macrovesicular steatosis, where hepatocytes become displaced by lipid
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417  droplets, is associated with advanced fatty liver disease, inflammation, fibrosis, and poor clinical
418  outcomes (24, 25). We evaluated the changes in metabolite levels, and subsequent pathway
419  analysis showed that several metabolic pathways were significantly enriched upon HFD feeding,
420 including the pentose phosphate pathway and purine metabolism (Fig. 4B). Cells increase PPP
421 activity in response to oxidative stress to generate NADPH, a reducing factor that is essential to
422 maintain reduced pools of glutathione, the main antioxidant in cells, and antioxidant enzymes that
423 help maintain cellular redox balance (Fig. 4C). That HFD livers experience increased redox stress
424 is corroborated by the observed increase in glutathione (GSH; Fig. 4C, D, E). Interestingly, although
425 the PPP intermediates pentose 5-phosphate (P5P) and sedoheptulose 7-phosphate (S7P) are
426 increased in fatty livers, levels of NADPH are decreased (Fig. 4D, E). This finding suggests that
427 despite the cellular reprogramming towards an antioxidant response that occurs in fatty livers, cells
428 have lower NADPH levels.

429 Figure 4. Fatty livers face oxidative stress and increased purine metabolism in response to
430 prolonged nutrient excess. (A) Histological images of a representative liver section from ad lib
431 fed mice on a control or high-fat diet for 4.5 months (n=5 per group, 2 independent experiments)
432 with the corresponding ion image of the fatty acid dihomo-linolenic acid (DGLA). (B) Pathway
433 enrichment scatterplot displaying pathway impact scores vs. significance value in HFD compared
434  to control mouse liver tissues. Increased circle size indicates pathway coverage of the identified
435 metabolites in the dataset. Pathways identified as enriched are displayed by name. (C) Schematic
436 overview of the connected metabolic pathways of glycolysis and the pentose phosphate pathway
437  with corresponding relative fold change intensities of HFD compared to control mice, with indicated
438 intensity scale. (D) H&E and MALDI MSI ion images of serial tissue sections from a representative
439 control and HFD mouse liver. The rectangles on the H&E image indicate the position of the images
440 displayed in (A). MSl ion images(30 um pixel) show relative distribution of the indicated metabolites,
441 with indicated intensity scale. (E) Absolute gquantification of the indicated metabolites for control
442 (grey) compared to HFD (green) mice. (F) Schematic overview of purine metabolism with
443 corresponding relative fold change intensities of HFD compared to control mice, with indicated
444 intensity scale. (G) MALDI MSI ion images of serial tissue sections from a representative control
445 and HFD mouse liver showing relative distribution of the indicated metabolites, with indicated
446 intensity scale.

447  Pathway enrichment analysis showed that in addition to the PPP, purine metabolism was
448 significantly enriched in fatty livers (Fig. 4B). Purines are essential for supplying the building blocks
449 for nucleotides, thereby DNA/RNA synthesis, and nucleotide cofactors such as NAD and the major
450 energy carriers in cells (Fig. 4F, G). Increases in redox stress are known to increase DNA damage
451 and might trigger purine metabolism to aid DNA repair, whereas the disruption of cellular energy
452 status may converge upon the purine and pyrimidine pathways due to their important roles as
453 cellular energy carriers to maintain cellular homeostasis. Together, these results suggest that
454  spatially dissecting metabolite profiles and multiplexing tissue anatomical information with
455 metabolic characterization can promote our understanding of metabolic compartmentalization in
456  physiology and pathology.

457

458 Discussion

459

460 Metabolic heterogeneity within tissues and metabolic crosstalk between cells are essential
461  contributors to functional specialization in multicellular organisms. This emphasizes the need to
462 introduce spatiality into metabolomic analyses to better understand the role of metabolic
463 heterogeneity in physiology and disease. MALDI MSI has been used to study protein, drug and
464  metabolite distribution in tissues from model organisms and humans to yield new biological insights.
465 Spatially mapping endogenous metabolites can be applied to delineate metabolic properties of
466  distinct anatomical structures (26), inform on their biological functions (27), identify abnormal or
467 pathological regions within tissues (28), and their metabolic properties (29), and aid in surgical

11


https://doi.org/10.1101/2021.12.13.472421
http://creativecommons.org/licenses/by/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2021.12.13.472421; this version posted December 13, 2021. The copyright holder for this preprint
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY 4.0 International license.

468 decision-making (30). Advances in instrumentation and application have produced increased
469  molecular complexity and spatial resolution analyses leading to new insights into metabolic function
470 and heterogeneity at the single-cell scale (31, 32). With increasing sensitivity and specificity in ion
471 detection and annotation, MSI is now emerging as a tool for spatially-resolved, metabolome-scale
472 analyses that advance our understanding of cellular and organismal biology (32). Maintaining
473 metabolic fidelity of the tissue during sample processing is essential to yielding meaningful
474  analyses, especially in comparison with chromatography-based mass spectrometry approaches
475  where metabolomes are stabilized by quenching steps and samples are maintained at low
476  temperatures until analysis while several sample preparation steps for MALDI MSI occur at ambient
477 conditions. Here, we demonstrate an approach to prepare tissue samples for MSI that minimizes
478 conversion or breakdown of labile metabolites while broadening the range of small metabolites
479 detected to more broadly cover metabolic pathways and yield new insights into tissue metabolism.

480 Liver zonation is well-understood on the transcript level (3, 5, 6, 9, 33-35), but has not been
481 comprehensively visualized on the metabolite level. An important advance of profiling metabolic
482 heterogeneity on the metabolite rather than transcript level is that an immediate snapshot of
483 metabolism can be captured instead of indirect measures provided by enzyme transcripts or protein
484 levels. Direct metabolite profiling is enabled by the fact that MALDI MSI requires minimal sample
485 handling, and dissociation of distinct cell types is not necessary. We were able to validate and
486  visualize metabolic compartmentalization in liver tissues in distinct nutrient stress and excess
487 conditions. We observed distinct metabolic profiles within zones and between tissue
488 compartments, which may be obscured in extraction-based metabolomic analyses as the
489  hepatocyte fraction contributes most of the mass and metabolic content of the liver. By analyzing
490 metabolite spectra from distinct extra- and intravascular regions, we observed specific metabolic
491 profiles consistent with the known metabolic function of each compartment. We observed a strong
492 enrichment of fatty acids in blood vessels, consistent with the liver's function of converting fatty
493 acids released from the adipose tissue to generate alternative fuels for distant organs. In addition
494 to compartmentalization between the liver organ environment and the circulation, we also observed
495 distinct patterns of metabolite abundance within the tissue microenvironment, with hepatocytes
496 showing enrichment of specific fatty acids based on their proximity to the vasculature. This distinct
497  pattern was highly organized and reproducible between biological replicates in nutrient-replete
498 conditions but vanished when facing nutrient stress after fasting. This suggests that prolonged
499  nutrient stress induces metabolic adaptations that overrule the functional compartmentalization of
500 hepatocytes seen under nutrient-replete conditions. In prolonged nutrient excess conditions
501 induced by a high-fat diet, lipid droplets accumulate in the liver, forming distinct lipid depots
502 throughout the tissue.

503 In contrast to fasting conditions, where glycolytic metabolism were low, fatty livers displayed higher
504 levels of glycolytic and PPP metabolites. Together with the marked increase in GSH levels,
505 indicates levels of oxidative stress, which is constant with high levels of NADPH levels. Additionally,
506  we observed an increase in purine metabolism, which may produce nucleotides needed to repair
507 DNA damage, generate essential energy carriers, or provide precursors for metabolic cofactors
508 such as NAD, which can all become disturbed by cellular redox stress. These results indicate that
509  although the lipid content of the liver increases upon HFD feeding, the lipid droplets act as an
510 overflow depot rather than being effectively metabolized by the liver to dissipate excess energy.
511  Adding a temporal component to our spatial metabolomic analyses and multiplexing with
512 orthogonal modes of single-cell tissue imaging analyses (36, 37) may help further elucidate which
513 regulatory nodes govern the observed fuel switching in fasting and fatty liver. Taken together, our
514  described workflow enables the detection of endogenous metabolites and achieves a broad
515 coverage of the tissue metabolome that can be applied to characterize and interrogate metabolic
516 heterogeneity in physiology and pathology.

517 Conclusions
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518 Cellular metabolism is spatiotemporally heterogeneous, yet leading metabolomics approaches do
519 not preserve spatial information. We present a MALDI MSI approach to map metabolic
520  heterogeneity in the liver in nutrient replete, stress, and excess conditions. Our data validate and
521 extend what is known about liver metabolic compartmentalization and visualize this at high
522 resolution with broad coverage of key pathways in central energy metabolism. The label-free
523 molecular imaging approach demonstrated here can be applied broadly to study metabolism in
524  tissues and reveal new insights into metabolic heterogeneity in vivo to better understand the role
525 of metabolism in physiology and pathology.

526
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Figure 1. Evaluation of MALDI MSI sample preparation for small metabolites analysis. (A)
Schematic overview of treatments where serial tissue sections were either frozen at -80 °C
(treatments), desiccated before freezing (treatmentor), or subjected to H&E staining directly after
sectioning (H&E). (B) Histological images (20x magnification) of two mouse livers subjected to the
treatments indicated in (A). (C) Spatial mapping (30 um pixel) of ATP, ADP, and AMP from the two
liver tissue sections that underwent the treatments indicated in (A). MS| ion images showing relative
distribution of ATP, ADP, and AMP individually, or in relation to the vasculature indicated by heme
B. (D) Overaid MALDI MSI mean spectra from serial tissue sections subjected to freezing
10 (treatmentr) and desiccation (treatmentor). Inset highlights the small metabolite range between m/z
11 135-225 for the two treatments. (E) Schematic overview of the connected metabolic pathways of
12  glycolysis and the pentose phosphate pathway with corresponding ion images of the metabolites
13 indicated in green. Glucose phosphate and fructose phosphate are indicated as hexose phosphate;
14  phosphoglycerate and phosphoglycerate are indicated as phosphoglycerate; ribose phosphate,
15 ribulose phosphate, and xylulose phosphate are indicated as pentose phosphate, as these are
isnbari;:losl%egies. Dihydroxyacetone gﬂtgrslghate and %!ycemldehyde phosphate are isobaric species
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Figure 2. Spatially-resolved metabolic signatures in fed and fasted livers. (A) Histological
images (40x magnification) of a representative liver section from ad lib fed mice and those
subjected to overnight fasting; n=5 per group. (B) LC-MS relative quantification of total ATP, ADP,
and AMP levels in liver tissues from control and fasted mice, before and after sectioning of serial
sections for MALDI MSI analyses. (C) H&E optical and MALDI MSI ion images (30 pum pixel) of
representative serial tissue sections from control and fasted mice. MSl ion images show the relative
distribution of ATP, ADP, and AMP. (D) Segmentation map of the MALDI MSI data based on
bisecting k-means clustering (k = 8), where each cluster is represented as an individual color, and
MALDI MSI ionimages of heme B as a marker of the vasculature corresponding to the red segment
and taurocholate as a marker of the bile tracts comresponding to the purple segment. (E) MALDI
MSI quantification of ATP, ADP, and AMP levels in liver tissues from control and fasted mice. (F)
Schematic representation of metabolic gradients along the liver lobular axis. Oxygen-rich blood
flows from the portal artery (dark red) and vein (light red) towards the central vein, whereas the bile
(green) secreted by hepatocytes {yelluw} flows through bile canaliculi in the opposite direction

rds the draining bile duct. O E':'E‘E;!Ql QE&F%‘E&%E& oxygen and Wnt signaling promote spatially

ece) r this preprint
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Figure 3. Liver metabolism and fuel switching. (A) H&E, segmentation, and MALDI MSI ion
images of serial tissue sections from control and fasted mice indicating how extravascular and
intravascular tissue regions were defined for spatial metabolic analyses. Hepatocyte-enriched
regions (denoted as extravascular) were identified using the segmentation map of the MALDI MSI
data based on bisecting k-means clustering (k = 8), with control and fasted tissues represented as
dark and light orange, respectively. Intravascular regions were defined based on intensity of heme
B. ROIls depicted in blue indicate where metabolite spectra were extracted for further spatial
analysis. (B) Volcano scatterplot displaying log 2 metabolite intensity ratios vs. significance value
in fasted compared to control mouse liver extravascular (left) and intravascular tissue (right). Every
circle represents a unique metabolite; dark grey circles indicate metabaolites depleted after fasting
and magenta circles indicate metabolites enriched after fasting, that showed a fold change >1.5
between treatments and reached statistical significance (p-value <0.05). Highlighted green circles
are statistically significantly changed metabolites indicating cellular energy status (AMP/ATP) and
fatty acids with their corresponding names. Corresponding metabolites that were not statistically

nificantl chang%zam th\I;uli%hted in blue. LG! MALDI MSI relative quantification of selected

; this versi d December 13, 2021. The copyright holder, for this preprint .

hdputhgde) acéﬂ.”miﬁﬁéﬂﬁ!’éﬁ?e.ﬂ” navasculardissus regions. (D) Pathway enrichment
scatterplot dispiaying pathway impact scores vs. significance value in fasted compared to control
mouse vasculature. Increased circle size indicates pathway coverage of the identified metabolites
in the dataset. Pathways identified as enriched are displayed by name. (E) H&E and MALDI MSI
ion images (30 um pixel) of serial tissue sections from representative control and fasted mouse
livers. MSI ion images show relative distribution of DHA and ARA in relation to heme B in red, with
indicated intensity scale. (F) Quantification of metabolite spatial distribution for DHA and ARA from
blood vessel to adjacent blood vessel, where the metabolite intensity is shown as a function of
distance between two vessels. Vasculature position is indicated in red. (G) H&E and MALDI MSI
ion images (30 um pixel) of tissue serial sections from a representative control and fasted mouse
liver. MSI ion images show relative distribution of DHA, HEP, and 2(3)-PG, with indicated intensity

scale.
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Figure 4. Fatty livers face oxidative stress and increased purine metabolism in response to
prolonged nutrient excess. (A) Histological images of a representative liver section from ad lib
fed mice on a control or high-fat diet for 4.5 months (n=5 per group, 2 independent experiments)
with the corresponding ion image of the fatty acid dihomo-linolenic acid (DGLA). (B) Pathway
enrichment scatterplot displaying pathway impact scores vs. significance value in HFD compared
to control mouse liver tissues. Increased circle size indicates pathway coverage of the identified
metabolites in the dataset. Pathways identified as enriched are displayed by name. (C) Schematic
overview of the connected metabolic pathways of glycolysis and the pentose phosphate pathway
with corresponding relative fold change intensities of HFD compared to control mice, with indicated
intensity scale. (D) H&E and MALDI MSI ion images of tissue serial sections from a representative
control and HFD mouse liver. The rectangles on the H&E image indicate the position of the images
displayedin (A). MSlionimages(30 um pixel) show relative distribution of the indicated metabolites,
with indicated intensity scale. (E) Absolute quantification of the indicated metabolites for control
{greﬂ cumpared to HFD (green) mice. (F) Schematic overview of purine metabolism with

relatwe fold change intensities of HFD co compa ared to control mice, with indicated

reprint

Vi aqth ?‘ =T it Nalmagessmit 3808 5@ wens from a representative control
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and HFD mouse liver showing relative distribution of the indicated metabolites, with indicated
intensity scale
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