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Abstract 

Cells adapt their metabolism to physiological stimuli, and metabolic heterogeneity exists between  
cell types, within tissues, and subcellular compartments. The liver plays an essential role in 
maintaining whole-body metabolic homeostasis and is structurally defined by metabolic zones. 
These zones are well-understood on the transcriptomic level, but have not been comprehensively 
characterized on the metabolomic level. Mass spectrometry imaging (MSI) can be used to map 
hundreds of metabolites directly from a tissue section, offering an important advance to investigate 
metabolic heterogeneity in tissues compared to extraction-based metabolomics methods that 
analyze tissue metabolite profiles in bulk. We established a workflow for the preparation of tissue 
specimens for matrix-assisted laser desorption/ionization (MALDI) MSI and achieved broad 
coverage of central carbon, nucleotide, and lipid metabolism pathways. We used this approach to 
visualize the effect of nutrient stress and excess on liver metabolism. Our data revealed a highly 
organized metabolic compartmentalization in livers, which becomes disrupted under nutrient stress 
conditions. Fasting caused changes in glucose metabolism and increased the levels of fatty acids 
in the circulation. In contrast, a prolonged high-fat diet (HFD) caused lipid accumulation within liver 
tissues with clear zonal patterns. Fatty livers had higher levels of purine and pentose phosphate 
related metabolites, which generates reducing equivalents to counteract oxidative stress. This 
MALDI MSI approach allowed the visualization of liver metabolic compartmentalization at high 
resolution and can be applied more broadly to yield new insights into metabolic heterogeneity in 
vivo.  
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Introduction 1 
 2 
Advances in single-cell analysis approaches have revealed that cells within tissues can be 3 
metabolically distinct and have unique contributions to physiology and pathology (1). Metabolic 4 
compartmentalization between cellular organelles, within organs, and at the whole-body level is 5 
essential to meet the bioenergetic and anabolic demands of organisms. Additionally, metabolically 6 
distinct microenvironments develop within tissues based on physiological factors such as proximity 7 
to vasculature, which supplies nutrients and oxygen while removing metabolic waste products. 8 
 9 
The liver is organized by regions of functional and spatial heterogeneity. Hepatocytes are structured 10 
in neat rows along the liver lobule axis from the portal vein that receives venous blood from the gut 11 
towards the central vein, which returns the blood into circulation (2). As such, the oxygen gradient 12 
is highest for periportal hepatocytes and decreases towards the pericentral area (3). Opposing 13 
gradients of oxygen and Wnt signaling along with the radial lobule axis drive differential gene 14 
expression signatures (4): approximately half of all genes in mouse hepatocytes are expressed in 15 
a zonated fashion in both space and time (5–7). This organization drives profound differences in 16 
metabolism: periportal hepatocytes rely on the oxidation of fatty acids for energy and perform 17 
metabolic functions such as gluconeogenesis, the urea cycle, and biosynthesis of cholesterol and 18 
proteins (8). In contrast, pericentral hepatocytes display glycolytic energy metabolism and 19 
synthesize lipids, bile, and glutamine.  20 
 21 
The liver plays an essential role in maintaining whole-body metabolic homeostasis in response to 22 
nutrient abundance and restriction (9). In a satiated state, hepatocytes oxidize glucose to generate 23 
energy and synthesize fatty acids (10). Fatty acids are then esterified into triacylglycerols (TAGs) 24 
and transported to the adipose tissue for storage. In fasted conditions, the adipose tissue releases 25 
fatty acids for oxidation by the liver to yield ketone bodies that can fuel distant organs (11). 26 
Additionally, the liver performs glycogenolysis and gluconeogenesis to restore circulating glucose 27 
levels upon fasting. In contrast, upon prolonged nutrient excess conditions, the liver acts as an 28 
overflow depot for lipids when the endocrine and storage functions of the adipose tissue become 29 
compromised (12). With rising rates of obesity, nonalcoholic fatty liver disease (NAFLD) is an 30 
increasing cause of morbidity and mortality.  31 
 32 
Despite the liver’s central role in metabolic homeostasis, liver metabolism is characterized mostly 33 
on the gene, protein, and signaling levels. However, as hepatocytes make up over 80% of liver 34 
mass (13), metabolite profiles obtained with conventional extraction-based metabolomic methods 35 
skew towards hepatocellular metabolism at the expense of other resident cell types. Spatially 36 
resolved metabolite profiling could yield new insights into metabolic heterogeneity and functional 37 
specialization within the liver.  38 
 39 
Matrix-assisted laser desorption/ionization (MALDI) mass spectrometry imaging (MSI) is a label-40 
free technique that allows for in situ spatial mapping and quantification of hundreds of metabolites 41 
from a single tissue section (14–16). Recent mass spectrometric advances have led to an 42 
increasingly higher spatial resolution that now approximates single-cell and sub-cellular analytic 43 
capability (17, 18). However, several outstanding challenges in sample preparation and data 44 
acquisition need to be addressed to ensure the robustness of metabolome-scale analyses (19, 20). 45 
Unique adaptations are required to yield reproducible and biologically relevant data for small 46 
metabolite analyses, including quenching metabolic activity, metabolite stabilization, matrix 47 
optimization, and data acquisition (14).   48 
 49 
In this study, we implemented MALDI MSI to spatially map the distribution of small metabolites to 50 
faithfully recapitulate key bioenergetic activities. We interrogated the liver metabolic response to 51 
nutrient stress and excess conditions with a spatial resolution of identified patterns of metabolic 52 
specialization within liver tissues. We observed that fasting-induced fuel switching in the liver while 53 
in conditions of prolonged nutrient excess induced by a high-fat diet, mice develop fatty livers that 54 
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remodel central carbon metabolism towards increased pentose phosphate pathway and purine 55 
metabolism. Taken together, we show that introducing spatiality into metabolomic analyses reveals 56 
an additional layer of metabolic complexity and that our workflow can be applied broadly to yield 57 
new insights into metabolic heterogeneity in vivo.  58 
 59 
 60 
Materials and Methods 61 
 62 
Mouse studies 63 
C57BL/6J (000664) and BALB/cJ (000651) mice were obtained from The Jackson Laboratory. Mice 64 
were housed at 20-22°C on a 12 h light/dark cycle with ad libitum access to food (PicoLab Rodent 65 
Diet 5053) and water. All animal studies were performed in accordance with Haigis lab protocols 66 
approved by the Standing Committee on Animals, the Institutional Animal Care and Use Committee 67 
at Harvard Medical School. For heat inactivation studies, 3 mice were used (C57BL/6J, female, 7 68 
weeks old) and kidneys, brain halves, and liver lobes from the same individual animal were 69 
subjected to the different heat inactivation treatments (overview in Supplementary Fig. 1A, E). For 70 
desiccation experiments, 2 mice were used (C57BL/6J, male, 7 weeks old). For fasting 71 
experiments, two independent cohorts of 5 mice were used per treatment group (BALB/cJ, female, 72 
10-11 weeks old) and mice were subjected to a 16 hour overnight fast. For HFD experiments, two 73 
independent cohorts of 4 mice were used per treatment group (C57BL/6J, female). Mice were 74 
assigned at 5 weeks old to the control diet (PicoLab Rodent Diet 5053) or HFD (Research Diets, 75 
Inc. #12492) and maintained on this diet for 4.5 months. The control diet is 4.07 Gross Energy 76 
Kcal/g. The HFD is 5.21 Kcal/g. for 8-10 weeks. Comparative MALDI MSI and LC-MS analyses of 77 
tissues were always performed on the same tissue specimens.  78 
 79 
Tissue isolation  80 
Mice were anesthetized with isoflurane and sacrificed by cervical dislocation. The gall bladder was 81 
removed before livers, kidneys, and brains were harvested and carefully positioned into 15 mL flat 82 
bottom specimen vials (Nalgene, Millipore Sigma), snap-frozen in liquid nitrogen, and stored at -80 83 
°C until further processing.  84 
 85 
Tissue heat inactivation  86 
Freshly resected or snap-frozen tissues were placed in sealed Maintainor® tissue cards and placed 87 
in the Stabilizor™ system (Denator AB). Sample state was specified (frozen or fresh) and the 88 
instrument determined durations of heat treatment based on sample volume for consistent and 89 
reproducible heat treatment, according to the manufacturers instructions. Next, tissues were 90 
carefully positioned into 15 mL flat bottom specimen vials (Nalgene, Millipore Sigma), snap-frozen 91 
in liquid nitrogen, and stored at -80 °C until further processing.  92 
 93 
MALDI tissue preparation 94 
Frozen tissues were placed at -20 °C before sectioning in a Microm HM550 cryostat (Thermo 95 
Scientific™). Tissues were sectioned at 10 µm thickness and thaw mounted onto indium-tin-oxide 96 
(ITO)-coated slides (Bruker Daltonics) for MALDI MSI analysis with serial sections mounted onto 97 
glass slides for histological analyses. The microtome chamber and specimen holder were 98 
maintained between -15 °C and -20 °C. Slides were stored at -80 °C until further processing. For 99 
desiccation experiments, slides were subjected to desiccation in a tabletop vacuum desiccator 100 
before freezing.  101 

Matrix deposition 102 
A 1,5-Diaminonaphthalene(DAN)-HCl matrix solution was used for all experiments. To generate 103 
the hydrochloride derivative of 1,5-DAN, 39.5 mg of 1,5-DAN was dissolved in 500 µL of 1 mol/L 104 
hydrochloride solution with 4 mL HPLC-grade water. The solution was sonicated for 20 minutes to 105 
dissolve 1,5-DAN, after which 4.5 mL ethanol was added to yield the matrix solution. Matrices were 106 
deposited on slides and tissues using a TM-sprayer (HTX imaging, Carrboro, NC). DAN-HCl matrix 107 
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spray conditions used where: a flow rate of 0.09 mL/min, spray nozzle temperature of 75 °C, and 108 
spray nozzle velocity of 1200 mm/min. A four-pass cycle was used with 2 mm track spacing and 109 
the nitrogen gas pressure was maintained at 10 psi. For fasting experiments, 15N5-ATP (at 10 µM), 110 
15N5-AMP (at 1 µM), and 15N-glutamate (at 100 µM) were spiked into the matrix and used as internal 111 
calibrants.  112 

MALDI data acquisition 113 
A timsTOF fleX mass spectrometer (Bruker Daltonics) was used for data collection, and data was 114 
acquired using FlexImaging 5.1 software (Bruker Daltonics). The instrument was operated in 115 
negative ion mode covering the m/z range of 100-1350 for heat inactivation experiments and 100-116 
1250 for desiccation experiments; a spatial resolution of 50 µm was used to define a pixel. For 117 
fasting experiments, the instrument was operated in negative ion mode covering the m/z range of 118 
50-1000 m/z; a spatial resolution of 30 µm was used to define a pixel. Each pixel consisted of 800 119 
laser shots, in which the laser frequency was set to 10,000 Hz. Mass calibration was performed 120 
using the dual-source ESI option with Agilent tune mix solution (Agilent Technologies) on the 121 
optimized method; for fasting experiments, the matrix was spiked with 15N5-ATP, 15N5-AMP, and 122 
15N-glutamate which were used as internal calibrants. The heat inactivation dataset was post-123 
calibrated using metabolites in the 133-700 m/z range with Data Analysis 5.3 software (Bruker 124 
Daltonics).  125 
 126 
MALDI data analysis 127 
MSI data were analyzed and visualized using SCiLS Lab 2021a software (Bruker Daltonics). 128 
Imported peaks were moved to the local max using the mean spectra with a minimal interval width 129 
of 5 mDa. Peaks were then normalized to total ion current (TIC), except for desiccation 130 
experiments, as these two datasets were acquired from separate slides and runs. Ion images for 131 
metabolites of interest were generated based on peak lists containing theoretical m/z and ppm 132 
errors associated with the assignments were calculated. To generate segmentation maps showing 133 
regions of spectral similarity, bisecting k-means clustering was applied to all individual peaks in the 134 
dataset using the correlation distance metric in SCiLS Lab 2021a software. Vascular regions were 135 
defined based on the distribution of heme B, and tissue regions based on the segmentation maps, 136 
and regions of interest (ROIs) were drawn by hand. For feature annotations, statistical analyses, 137 
and quantitation; ROIs defined in SCiLS lab were exported to MetaboScape 6.0 (Bruker Daltonics). 138 
Speckle size and number were adapted for each dataset to achieve maximum pixel coverage of 139 
equal percentage for each ROI between the experimental groups. Features were annotated based 140 
on theoretical m/z of 114,008 metabolite entries in the Human Metabolome Database (HMDB) 141 
version 4.0 and curated based on ppm error associated with the assignment (38). To determine 142 
which metabolite intensity changes reached statistical significance, Bucket Tables were normalized 143 
for the Sum of Buckets and a two-sided student’s t-test was performed using a significance 144 
threshold of p<0.05 and a fold change >1.5. For extravascular tissue comparisons in fasting 145 
experiments, one ROI was used per biological replicate (n=5 per group). For intravascular 146 
comparisons, one ROI was used per biological replicate (n=3 per group), where the 3 replicates 147 
were selected based on which tissue cross-sections contained vascular regions of comparable 148 
size. For other comparisons, ROIs encapsulated the full tissue section.  149 
 150 
Dimensionality reduction and data visualization 151 
Dimensionality reduction was used to enable interpretable visualization of the high dimensional 152 
spectra using Uniform Manifold Approximation and Projection (UMAP) (21). The UMAP learns 153 
similarities of the mass spectra in the high-dimensional space and then projects it into a lower 154 
dimensional space of two dimensions, where similar spectra are projected close to each other and 155 
dissimilar ones are projected further away. UMAP (21) was performed in an unsupervised manner 156 
and the reduced data was then colored based on the treatment (for heat inactivation experiments) 157 
or treatment, mouse ID, or metabolite of interest (for fasting experiments). The analysis was 158 
performed in R software (version 4.0.3) using the publicly available UMAP library and visualized 159 
using ggplot2 (39). 160 
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 161 
Pathway enrichment analysis 162 
Pathway analysis was performed using MetaboAnalyst 4.0 (40). Metabolite features identified as 163 
significantly increased after fasting in Metaboscape were exported to MetaboAnalyst using the 164 
associated HMDB ID. The enrichment method used was a hypergeometric test and the topology 165 
analysis used was relative-betweenness centrality, with the KEGG reference library (41).  166 
 167 
Pathway visualization  168 
Pathways of interest were constructed in PathVisio 3.3.0 (42)and imported into MetaboScape 6.0 169 
(Bruker Daltonics) using the “Pathway Mapping” tool to visualize the relative changes in metabolite 170 
levels. 171 
 172 
Metabolite colocalization analysis  173 
To determine colocalization of DHA and ARA, metabolite intensity plots were generated in Fiji 174 
(ImageJ 1.53c) (43). Ion images for DHA and ARA were exported from SCiLS Lab and converted 175 
to 16-bit in Fiji. Windows were synchronized and freehand lines were drawn between adjacent 176 
vessels. Metabolite intensity plots were then generated along this line, with metabolite intensity 177 
(gray value) as a function of distance between vessels (in pixels). Data were exported and 178 
visualized using GraphPad Prism 8.2.1 software (GraphPad Software).  179 

Metabolite extraction from tissue 180 
Frozen tissues were maintained under dry ice vapor to remain frozen until extraction, and 10-20 181 
mg was excised with a razor blade and samples were transferred to pre-chilled Eppendorf tubes. 182 
Extraction solution consisted of a pre-chilled (-20 °C) solution of 2:2:1 HPLC-grade 183 
acetonitrile:methanol:water with 0.1 mol/L formic acid. Pre-chilled stainless-steel beads were 184 
added to Eppendorf tubes containing tissue samples, before extraction solution was added to 185 
achieve a concentration of 20 mg/mL before immediate lysis in a benchtop TissueLyser LT 186 
(Qiagen) operated at 50 Hz for 3 minutes. Next, 15% ammonium bicarbonate solution (filtered, 187 
room temperature) was added to achieve an 8% (v/v) solution and samples were lysed for another 188 
3 minutes at 50 Hz. Samples were transferred to a benchtop shaker and vortexed at 4 °C for 15 189 
minutes. Beads were removed and samples were centrifuged at 16,000 × g at 4 °C for 20 minutes. 190 
Clear supernatant was transferred to glass HPLC vials for immediate HPLC-MS analysis.  191 
 192 
HPLC-MS analysis  193 
An iHILIC column (HILICON) was used with SII UPLC system (Thermo Fisher Scientific) coupled 194 
to a Q-Exactive HF-X orbitrap mass spectrometer (Thermo Fisher Scientific) operated with 195 
electrospray (ESI) ionization in negative ion mode at scan range m/z 75–1000 and a resolution of 196 
60,000 at m/z 200. Buffer conditions used were: 20mM ammonium carbonate with 0.1% ammonium 197 
hydroxide in water (buffer A) and acetonitrile (buffer B). A flow rate of 0.150 mL/min was used with 198 
the following linear gradients: 0 – 20 min gradient from 80% to 20% B; 20 – 20.5 min gradient from 199 
20% to 80% B; 20.5 – 28 min hold at 80% B; 28 – 30 min hold to waste at 80% B. Data were 200 
acquired using Xcalibur software (Thermo Fisher Scientific) and peak areas of metabolites were 201 
determined using TraceFinder 4.1 software (Thermo Fisher Scientific). Metabolites were identified 202 
by matching mass and retention time of features to commercial metabolite standards acquired 203 
previously on our instrument. Metabolite levels were normalized to tissue weight. 204 
 205 
Histology 206 
Serial sections (10 µm) were fixed and stained using hematoxylin and eosin (H&E) immediately 207 
after sectioning and imaged using a bright field microscope (Zeiss Observer Z.1, Oberkochen, 208 
Germany) equipped with a Plan-APOCHROMAT lens and AxioCam MR3 camera, using a 20× or 209 
40× magnification. High-resolution images of whole stained tissue sections were obtained using 210 
the stitching algorithm in Zeiss ZEN imaging software. 211 
 212 
 213 
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Results  214 

Broad coverage of small metabolites with spatial resolution  215 

Several experimental parameters needed to be assessed to faithfully recapitulate tissue 216 
metabolism in situ to visualize regions of metabolism in the liver. As major concerns are residual 217 
enzyme activity and non-enzymatic breakdown of labile metabolites, we evaluated whether enzyme 218 
inactivation through desiccation or heat inactivation treatment would stabilize tissue metabolites for 219 
MALDI MSI sample preparation. We compared procedures of storing cryosectioned tissue on slides 220 
at -80 °C and thawing them in a  vacuum desiccator to minimize rehydration due to condensation 221 
(treatmentF, Fig. 1A) with desiccation immediately after tissue sectioning before storage 222 
(treatmentDF). To assess tissue integrity, serial sections of liver were H&E stained for histological 223 
analysis immediately after sectioning to evaluate the effects of freezing and desiccation. Minimal 224 
differences were observed for gross tissue morphology (Fig. 1B). We used ATP stability as an 225 
indicator of postmortem enzymatic activity and labile metabolite stability, as it is used by many 226 
enzymes and is liable to degradation. Using both methods, the ATP, ADP, and AMP ion images 227 
showed comparable spatial distributions and metabolite intensities (Fig. 1C). These metabolites 228 
displayed a gradient pattern in relation to their proximity to the vasculature. 229 
  230 
Figure 1. Evaluation of MALDI MSI sample preparation for small metabolites analysis. (A) 231 
Schematic overview of treatments where serial tissue sections were either frozen at -80 °C 232 
(treatmentF), desiccated before freezing (treatmentDF), or subjected to H&E staining directly after 233 
sectioning (H&E). (B) Histological images (20x magnification) of two mouse livers subjected to the 234 
treatments indicated in (A). (C) Spatial mapping (30 µm pixel) of ATP, ADP, and AMP from the two 235 
liver tissue sections that underwent the treatments indicated in (A). MSI ion images showing relative 236 
distribution of ATP, ADP, and AMP individually, or in relation to the vasculature indicated by heme 237 
B. (D) Overlaid MALDI MSI mean spectra from serial tissue sections subjected to freezing 238 
(treatmentF) and desiccation (treatmentDF). Inset highlights the small metabolite range between m/z 239 
135-225 for the two treatments. (E) Schematic overview of the connected metabolic pathways of 240 
glycolysis and the pentose phosphate pathway with corresponding ion images of the metabolites 241 
indicated in green. Glucose phosphate and fructose phosphate are indicated as hexose phosphate; 242 
phosphoglycerate and phosphoglycerate are indicated as phosphoglycerate; ribose phosphate, 243 
ribulose phosphate, and xylulose phosphate are indicated as pentose phosphate, as these are 244 
isobaric species. Dihydroxyacetone phosphate and glyceraldehyde phosphate are isobaric species 245 
as well and are visualized together. 246 
 247 
Heat inactivation was also investigated as an alternative strategy to desiccation using kidney and 248 
brain tissues in addition to livers, as these organs have distinct anatomical features and metabolic 249 
compositions (Supplementary Figure 1A). Control mouse tissues were resected and snap-frozen 250 
in liquid nitrogen before sectioning (Freeze, treatmentF) and compared to fresh tissues subjected 251 
to heat inactivation to denature enzymes before freezing and sectioning (Heat-Freeze, 252 
treatmentHF). The third group of tissues was snap-frozen to preserve the metabolic state 253 
immediately upon resection and then heat-treated to denature enzymes before re-freezing and 254 
sectioning (Freeze-Heat-Freeze, treatmentFHF). Histological analysis of kidneys showed that heat 255 
treatment disrupted tissue architecture, whereas this was preserved in control tissues 256 
(Supplementary Fig. 1B-D).  257 
 258 
MSI was performed on serial tissue sections to evaluate the effect of heat treatment on metabolite 259 
levels. The three datasets showed a highly similar spectral coverage but pronounced differences 260 
in individual ion intensities (Supplementary Figure 2A). To visualize whether heat treatment induced 261 
changes in the metabolomes, we used Uniform Manifold Approximation and Projection (UMAP), 262 
which visualizes similarities between mass spectra projecting close together, and dissimilar spectra 263 
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projected further away (21). Supplementary Figure 2B shows a clear separation of data points 264 
based on heat treatment, indicating that the applied heat treatment modified the metabolome.  265 
 266 
The tissue distribution of ATP, ADP, and AMP after heat treatment showed a relatively stable 267 
distribution upon treatmentHF as compared to control tissues, but a loss of overall ATP levels upon 268 
treatmentFHF (Supplementary Fig. 2C). MSI ion images we used to visualize the relative spatial 269 
distribution of metabolite intensities, but these images do not inform the total metabolite pools 270 
unless the MS signal is calibrated for each metabolite. Thus, we excised representative tissue 271 
slices from the same tissues that were analyzed using MSI and determined total metabolite levels 272 
using LC-MS (Supplementary Fig. 2D). As ATP use by enzymes will lead to increased levels of 273 
AMP and ADP, successful heat stabilization of enzymes should lead to stable levels of ATP, ADP, 274 
and AMP. This comparison showed that although heat stabilization of fresh tissue seemed to 275 
maintain the spatial distribution of adenosine phosphate metabolites seen in control tissues, 276 
absolute levels of ATP decreased due to thermal destabilization. 277 
 278 
To visualize how heat treatment affected the abundance of all detected ions in an unbiased manner, 279 
we constructed an ion segmentation map using bisecting k-means clustering on all identified 280 
spectra. This showed that conductive heating applied with a commercial device (Denator, 281 
Gothenburg, Sweden) set to optimze heat delivery based on frozen or fresh states and with 282 
consideration to specimen dimensions led to an overall loss of spatial localization of metabolites 283 
(Supplementary Fig. 2C and 2E). Since the whole tissues were processed, the heating profiles 284 
needed to be optimized to provide uniform heating throughout the tissue; however, this was not 285 
possible due to the tissue's thickness. Although regional clusters of metabolites in heat-treated 286 
brains were largely maintained, they could not be accurately mapped to anatomical brain regions 287 
due to the loss of tissue morphology. Together, these results indicate that the heat treatment 288 
applied to the whole tissues prior to sectioning led to disruption of tissue structure and compromised 289 
the integrity of anatomical regions. Further optimization of the heating profile for the denaturation 290 
of enzymes and the preservation of metabolites is needed for uniform stabilization that would be 291 
compatible with spatial metabolomics workflows.  292 
 293 
Using the treatmentDF followed by MALDI MSI, several additional metabolites were detected. The 294 
central carbon metabolism correlates with key energetic and biosynthetic pathways, including 295 
glycolysis and the pentose phosphate pathway (PPP) (Figure 1D). As expected, hexoses were 296 
highly abundant within the vasculature of the tissue, whereas intracellular metabolites generated 297 
from glucose were enriched in extravascular compartments rather than in the vasculature. 298 
Together, these results suggest that optimized MALDI MSI sample preparation and data acquisition 299 
workflow achieve broad coverage of small metabolites to generate reproducible spatial profiles of 300 
biologically relevant metabolic pathways.   301 

Distinct spatially-resolved metabolic signatures were observed in fed and fasted livers. 302 

Regions of metabolism were investigated in the liver in response to fasting by generating spatially-303 
resolved metabolic profiles. Livers from fasted mice showed marked histological differences in 304 
hepatocyte shape due to the expected depletion of glycogen (Fig. 2A). We evaluated whether 305 
tissue metabolomes remained stable during cryosectioning, as this is a lengthy process for 306 
experiments with multiple biological replicates that need to be mounted onto the same slide for data 307 
acquisition. No significant difference was observed between total ATP, ADP, or AMP levels, 308 
indicating that these labile metabolites remained stable during cryosectioning (Fig. 2B), allowing 309 
for comparison of metabolite levels under different biological conditions. As a result, we observed 310 
that fasting led to a decrease in liver ATP content with a concomitant increase in AMP, indicative 311 
of cellular nutrient stress. Using MSI, visualizing the ion intensities distributions of adenosine 312 
phosphates showed similar results; decreasing ATP abundance and increasing AMP in 313 
hepatocellular regions within the tissue were observed (Fig. 2C). A comparison of mean spectra 314 
revealed marked differences in overall metabolite intensities between control and fasted mice 315 
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(Supplementary Figure 3A). To visualize these differences in an unbiased manner, we constructed 316 
a segmentation map (Fig. 3D). This visualization showed distinct metabolic clusters within different 317 
anatomical regions of the liver and between control and fasted mice, while all biological replicates 318 
within each group clustered together (Supplementary Fig. 3C). Metabolite clusters were observed 319 
for the vasculature, hepatocytes, bile ducts, and the common bile duct. These clusters 320 
corresponded with co-registered ion images of heme B, a cofactor of hemoglobin that is enriched 321 
within the vasculature, and taurocholate, the most abundant bile acid (Fig 3D) (22, 23). 322 

Figure 2. Spatially-resolved metabolic signatures in fed and fasted livers. (A) Histological 323 
images (40x magnification) of a representative liver section from ad lib fed mice and those 324 
subjected to overnight fasting; n=5 per group. (B) LC-MS relative quantification of total ATP, ADP, 325 
and AMP levels in liver tissues from control and fasted mice, before and after sectioning of serial 326 
sections for MALDI MSI analyses. (C) H&E optical and MALDI MSI ion images (30 µm pixel)  of 327 
representative serial tissue sections from control and fasted mice. MSI ion images show the relative 328 
distribution of ATP, ADP, and AMP. (D) Segmentation map of the MALDI MSI data based on 329 
bisecting k-means clustering (k = 8), where each cluster is represented as an individual color, and 330 
MALDI MSI ion images of heme B as a marker of the vasculature corresponding to the red segment 331 
and taurocholate as a marker of the bile tracts corresponding to the purple segment. (E) MALDI 332 
MSI quantification of ATP, ADP, and AMP levels in liver tissues from control and fasted mice. (F) 333 
Schematic representation of metabolic gradients along the liver lobular axis. Oxygen-rich blood 334 
flows from the portal artery (dark red) and vein (light red) towards the central vein, whereas the bile 335 
(green) secreted by hepatocytes (yellow) flows through bile canaliculi in the opposite direction 336 
towards the draining bile duct. Opposing gradients of oxygen and Wnt signaling promote spatially 337 
compartmentalization metabolic functions. 338 
 339 

Furthermore, using spiked internal standards into the MALDI matrix, we observed that independent 340 
mouse cohorts and replicates within each treatment group were highly reproducible in this study 341 
(Supplementary Fig. 3A-C). Together, these results indicate that our workflow yielded consistent 342 
and highly reproducible results to visualize metabolic compartments in the liver.  343 

Visualization of fasted liver metabolism shows disruption of metabolism and fuel switching.  344 

The liver acts as a metabolic rheostat to maintain whole-body energy homeostasis in times of 345 
nutrient stress and excess. As MSI adds a spatial dimension to metabolomic analyses, we 346 
dissected the metabolic compartmentalization in the fasting liver. We identified metabolic 347 
differences using the unbiased UMAP approach, which showed separation of data clusters from 348 
fasted compared to control livers (Supplementary Fig. 4A). Additional clusters were observed within 349 
treatment groups, visualized by coloring UMAP distributions per individual mouse (Supplementary 350 
Fig. 4B). The distribution of heme over the UMAP graphs indicated that these clusters could 351 
represent distinct anatomical regions within tissues (Supplementary Fig. 4C). To explore 352 
differences between liver and systemic metabolism, we extracted metabolite spectra from MSI data 353 
on a pixel-by-pixel basis. As shown in Figure 3A, we used the segmentation map (Fig. 2D, 354 
Supplementary Fig. 5A) to select regions-of-interest enriched for hepatocytes (extravascular tissue) 355 
or heme B (intravascular tissue, circulating metabolites). In accordance with our previous 356 
observations, ATP was significantly decreased and AMP significantly increased in extravascular 357 
tissue upon fasting (Fig. 3B, left).  358 

We also observed an increase in the fatty acid docosahexaenoic acid (DHA). This was 359 
recapitulated in the UMAP distributions, where AMP and DHA were more abundant in fasted mice 360 
(Supplementary Fig. 4D). The metabolite profiles from intravascular regions did not show 361 
differences in adenosine phosphate metabolites, but several fatty acids were significantly enriched 362 
in the circulation upon fasting (Fig. 3B, right) whereas they were not significantly changed within 363 
extravascular regions of the tissue (Fig. C, Supplementary Figure 5C). It is well-understood that 364 
the adipose tissue releases fatty acids for oxidation by the liver to yield ketone bodies that can fuel 365 
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distant organs, which is corroborated by these results and indicates that spatially-resolved 366 
metabolomics can inform on metabolic compartmentalization within tissues. 367 

Figure 3. Liver metabolism and fuel switching. (A) H&E, segmentation, and MALDI MSI ion 368 
images of serial tissue sections from control and fasted mice indicating how extravascular and 369 
intravascular tissue regions were defined for spatial metabolic analyses. Hepatocyte-enriched 370 
regions (denoted as extravascular) were identified using the segmentation map of the MALDI MSI 371 
data based on bisecting k-means clustering (k = 8), with control and fasted tissues represented as 372 
dark and light orange, respectively. Intravascular regions were defined based on intensity of heme 373 
B. ROIs depicted in blue indicate where metabolite spectra were extracted for further spatial 374 
analysis. (B) Volcano scatterplot displaying log 2 metabolite intensity ratios vs. significance value 375 
in fasted compared to control mouse liver extravascular (left) and intravascular tissue (right). Every 376 
circle represents a unique metabolite; dark grey circles indicate metabolites depleted after fasting 377 
and magenta circles indicate metabolites enriched after fasting, that showed a fold change >1.5 378 
between treatments and reached statistical significance (p-value <0.05). Highlighted green circles 379 
are statistically significantly changed metabolites indicating cellular energy status (AMP/ATP) and 380 
fatty acids with their corresponding names. Corresponding metabolites that were not statistically 381 
significantly changed are highlighted in blue. (C) MALDI MSI relative quantification of selected 382 
metabolites in the extravascular versus intravascular tissue regions. (D) Pathway enrichment 383 
scatterplot displaying pathway impact scores vs. significance value in fasted compared to control 384 
mouse vasculature. Increased circle size indicates pathway coverage of the identified metabolites 385 
in the dataset. Pathways identified as enriched are displayed by name. (E) H&E and MALDI MSI 386 
ion images (30 µm pixel)  of  serial tissue sections from representative control and fasted mouse 387 
livers. MSI ion images show relative distribution of DHA and ARA in relation to heme B in red, with 388 
indicated intensity scale. (F) Quantification of metabolite spatial distribution for DHA and ARA from 389 
blood vessel to adjacent blood vessel, where the metabolite intensity is shown as a function of 390 
distance between two vessels. Vasculature position is indicated in red. (G) H&E and MALDI MSI 391 
ion images (30 µm pixel)  of tissue serial sections from a representative control and fasted mouse 392 
liver. MSI ion images show relative distribution of DHA, H6P, and 2(3)-PG, with indicated intensity 393 
scale. 394 

Indeed, pathway analysis of the intravascular regions showed that several lipid metabolic pathways 395 
were enriched (Fig. 3D). Interestingly, comparing the spatial distribution of fatty acids showed that 396 
the abundance of DHA and ARA follow a specific and compartmentalization pattern in fed livers 397 
(Fig. 3E, Supplementary Fig. 5B). DHA is a 22-carbon polyunsaturated omega-3 fatty acid (22:6), 398 
whereas arachidonic acid (ARA) is a 20-carbon polyunsaturated omega-6 fatty acid (20:4). Both 399 
can be synthesized from alpha-linolenic acid, which in turn is produced from the essential fatty acid 400 
linoleic acid. These fatty acids can also be released from complex lipids through lipolysis. Relative 401 
quantification of the metabolite intensity as a function of the distance between blood vessels 402 
confirmed that DHA is enriched in proximity to the vasculature while ARA displayed the opposite 403 
enrichment pattern (Fig. 3F, Supplementary Fig. 5D). Upon fasting, this distinct spatial 404 
compartmentalization within the extravascular regions is lost. In contrast to the increase in DHA 405 
within liver cells, the levels of glycolytic intermediates decreased within liver tissue, indicating a fuel 406 
switch upon fasting that decreases liver glucose use in favor of lipid metabolism. Together, these 407 
results indicate that spatially dissecting metabolite profiles can yield new insights into metabolic 408 
compartmentalization within tissues and between the local tissue environment and the circulation.  409 

Fatty livers show a metabolic signature indicative of oxidative stress in response to 410 
prolonged nutrient excess.   411 

We also investigated how the liver's response to nutrient stress might contrast to its response to 412 
nutrient excess by subjecting mice to a high-fat diet (HFD). Livers of HFD mice showed marked 413 
histological differences, with hypertrophy and accumulation of lipid droplets that displayed in unique 414 
patterns where lipid droplets were deposited away from the vasculature (Fig. 4A). In human, it has 415 
been established that macrovesicular steatosis, where hepatocytes become displaced by lipid 416 
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droplets, is associated with advanced fatty liver disease, inflammation, fibrosis, and poor clinical 417 
outcomes (24, 25). We evaluated the changes in metabolite levels, and subsequent pathway 418 
analysis showed that several metabolic pathways were significantly enriched upon HFD feeding, 419 
including the pentose phosphate pathway and purine metabolism (Fig. 4B). Cells increase PPP 420 
activity in response to oxidative stress to generate NADPH, a reducing factor that is essential to 421 
maintain reduced pools of glutathione, the main antioxidant in cells, and antioxidant enzymes that 422 
help maintain cellular redox balance (Fig. 4C). That HFD livers experience increased redox stress 423 
is corroborated by the observed increase in glutathione (GSH; Fig. 4C, D, E). Interestingly, although 424 
the PPP intermediates pentose 5-phosphate (P5P) and sedoheptulose 7-phosphate (S7P) are 425 
increased in fatty livers, levels of NADPH are decreased (Fig. 4D, E). This finding suggests that 426 
despite the cellular reprogramming towards an antioxidant response that occurs in fatty livers, cells 427 
have lower NADPH levels.   428 

Figure 4. Fatty livers face oxidative stress and increased purine metabolism in response to 429 
prolonged nutrient excess. (A) Histological images of a representative liver section from ad lib 430 
fed mice on a control or high-fat diet for 4.5 months (n=5 per group, 2 independent experiments) 431 
with the corresponding ion image of the fatty acid dihomo-linolenic acid (DGLA). (B) Pathway 432 
enrichment scatterplot displaying pathway impact scores vs. significance value in HFD compared 433 
to control mouse liver tissues. Increased circle size indicates pathway coverage of the identified 434 
metabolites in the dataset. Pathways identified as enriched are displayed by name. (C) Schematic 435 
overview of the connected metabolic pathways of glycolysis and the pentose phosphate pathway 436 
with corresponding relative fold change intensities of HFD compared to control mice, with indicated 437 
intensity scale. (D) H&E and MALDI MSI ion images of serial tissue sections from a representative 438 
control and HFD mouse liver. The rectangles on the H&E image indicate the position of the images 439 
displayed in (A). MSI ion images(30 µm pixel) show relative distribution of the indicated metabolites, 440 
with indicated intensity scale. (E) Absolute quantification of the indicated metabolites for control 441 
(grey) compared to HFD (green) mice. (F) Schematic overview of purine metabolism with 442 
corresponding relative fold change intensities of HFD compared to control mice, with indicated 443 
intensity scale. (G) MALDI MSI ion images of serial tissue sections from a representative control 444 
and HFD mouse liver showing relative distribution of the indicated metabolites, with indicated 445 
intensity scale. 446 

Pathway enrichment analysis showed that in addition to the PPP, purine metabolism was 447 
significantly enriched in fatty livers (Fig. 4B). Purines are essential for supplying the building blocks 448 
for nucleotides, thereby DNA/RNA synthesis, and nucleotide cofactors such as NAD and the major 449 
energy carriers in cells (Fig. 4F, G). Increases in redox stress are known to increase DNA damage 450 
and might trigger purine metabolism to aid DNA repair, whereas the disruption of cellular energy 451 
status may converge upon the purine and pyrimidine pathways due to their important roles as 452 
cellular energy carriers to maintain cellular homeostasis. Together, these results suggest that 453 
spatially dissecting metabolite profiles and multiplexing tissue anatomical information with 454 
metabolic characterization can promote our understanding of metabolic compartmentalization in 455 
physiology and pathology.  456 

 457 
Discussion  458 
 459 
Metabolic heterogeneity within tissues and metabolic crosstalk between cells are essential 460 
contributors to functional specialization in multicellular organisms. This emphasizes the need to 461 
introduce spatiality into metabolomic analyses to better understand the role of metabolic 462 
heterogeneity in physiology and disease. MALDI MSI has been used to study protein, drug and 463 
metabolite distribution in tissues from model organisms and humans to yield new biological insights. 464 
Spatially mapping endogenous metabolites can be applied to delineate metabolic properties of 465 
distinct anatomical structures (26), inform on their biological functions (27), identify abnormal or 466 
pathological regions within tissues (28), and their metabolic properties (29), and aid in surgical 467 
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decision-making (30). Advances in instrumentation and application have produced increased 468 
molecular complexity and spatial resolution analyses leading to new insights into metabolic function 469 
and heterogeneity at the single-cell scale (31, 32). With increasing sensitivity and specificity in ion 470 
detection and annotation, MSI is now emerging as a tool for spatially-resolved, metabolome-scale 471 
analyses that advance our understanding of cellular and organismal biology (32). Maintaining 472 
metabolic fidelity of the tissue during sample processing is essential to yielding meaningful 473 
analyses, especially in comparison with chromatography-based mass spectrometry approaches 474 
where metabolomes are stabilized by quenching steps and samples are maintained at low 475 
temperatures until analysis while several sample preparation steps for MALDI MSI occur at ambient 476 
conditions. Here, we demonstrate an approach to prepare tissue samples for MSI that minimizes 477 
conversion or breakdown of labile metabolites while broadening the range of small metabolites 478 
detected to more broadly cover metabolic pathways and yield new insights into tissue metabolism.   479 

Liver zonation is well-understood on the transcript level (3, 5, 6, 9, 33–35), but has not been 480 
comprehensively visualized on the metabolite level. An important advance of profiling metabolic 481 
heterogeneity on the metabolite rather than transcript level is that an immediate snapshot of 482 
metabolism can be captured instead of indirect measures provided by enzyme transcripts or protein 483 
levels. Direct metabolite profiling is enabled by the fact that MALDI MSI requires minimal sample 484 
handling, and dissociation of distinct cell types is not necessary. We were able to validate and 485 
visualize metabolic compartmentalization in liver tissues in distinct nutrient stress and excess 486 
conditions. We observed distinct metabolic profiles within zones and between tissue 487 
compartments, which may be obscured in extraction-based metabolomic analyses as the 488 
hepatocyte fraction contributes most of the mass and metabolic content of the liver. By analyzing 489 
metabolite spectra from distinct extra- and intravascular regions, we observed specific metabolic 490 
profiles consistent with the known metabolic function of each compartment. We observed a strong 491 
enrichment of fatty acids in blood vessels, consistent with the liver’s function of converting fatty 492 
acids released from the adipose tissue to generate alternative fuels for distant organs. In addition 493 
to compartmentalization between the liver organ environment and the circulation, we also observed 494 
distinct patterns of metabolite abundance within the tissue microenvironment, with hepatocytes 495 
showing enrichment of specific fatty acids based on their proximity to the vasculature. This distinct 496 
pattern was highly organized and reproducible between biological replicates in nutrient-replete 497 
conditions but vanished when facing nutrient stress after fasting. This suggests that prolonged 498 
nutrient stress induces metabolic adaptations that overrule the functional compartmentalization of 499 
hepatocytes seen under nutrient-replete conditions. In prolonged nutrient excess conditions 500 
induced by a high-fat diet, lipid droplets accumulate in the liver, forming distinct lipid depots 501 
throughout the tissue. 502 

In contrast to fasting conditions, where glycolytic metabolism were low, fatty livers displayed higher 503 
levels of glycolytic and PPP metabolites. Together with the marked increase in GSH levels, 504 
indicates levels of oxidative stress, which is constant with high levels of NADPH levels. Additionally, 505 
we observed an increase in purine metabolism, which may produce nucleotides needed to repair 506 
DNA damage, generate essential energy carriers, or provide precursors for metabolic cofactors 507 
such as NAD, which can all become disturbed by cellular redox stress. These results indicate that 508 
although the lipid content of the liver increases upon HFD feeding, the lipid droplets act as an 509 
overflow depot rather than being effectively metabolized by the liver to dissipate excess energy. 510 
Adding a temporal component to our spatial metabolomic analyses and multiplexing with 511 
orthogonal modes of single-cell tissue imaging analyses (36, 37) may help further elucidate which 512 
regulatory nodes govern the observed fuel switching in fasting and fatty liver. Taken together, our 513 
described workflow enables the detection of endogenous metabolites and achieves a broad 514 
coverage of the tissue metabolome that can be applied to characterize and interrogate metabolic 515 
heterogeneity in physiology and pathology.  516 

Conclusions  517 
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Cellular metabolism is spatiotemporally heterogeneous, yet leading metabolomics approaches do 518 
not preserve spatial information. We present a MALDI MSI approach to map metabolic 519 
heterogeneity in the liver in nutrient replete, stress, and excess conditions. Our data validate and 520 
extend what is known about liver metabolic compartmentalization and visualize this at high 521 
resolution with broad coverage of key pathways in central energy metabolism. The label-free 522 
molecular imaging approach demonstrated here can be applied broadly to study metabolism in 523 
tissues and reveal new insights into metabolic heterogeneity in vivo to better understand the role 524 
of metabolism in physiology and pathology. 525 

  526 
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