

1 **The anti-angiogenic compound dimethyl fumarate inhibits the serine synthesis pathway and increases**
2 **glycolysis in endothelial cells**

3 M^a Carmen Ocaña^{1,2}, Chendong Yang⁴, Manuel Bernal^{1,2}, Beatriz Martínez-Poveda^{1,2,3*}, Hieu S. Vu⁴,
4 Casimiro Cárdenas^{1,5}, Ralph J. DeBerardinis^{4,6,7,8}, Ana R. Quesada^{1,2,9} and Miguel Ángel Medina^{1,2,9,*}

5 ¹ Universidad de Málaga, Andalucía Tech, Departamento de Biología Molecular y Bioquímica, Facultad de
6 Ciencias, E-29071 Málaga, Spain

7 ² IBIMA (Biomedical Research Institute of Málaga), E-29071 Málaga, Spain

8 ³ CIBER de Enfermedades Cardiovasculares (CIBERCV), Madrid, Spain

9 ⁴ Children's Medical Center Research Institute, The University of Texas Southwestern Medical Center,
10 Dallas, TX 75390, USA

11 ⁵ Research Support Central Services (SCAI) of the University of Málaga, Spain

12 ⁶ Department of Pediatrics, The University of Texas Southwestern Medical Center, Dallas, TX 75390, USA

13 ⁷ Eugene McDermott Center for Human Growth and Development, The University of Texas Southwestern
14 Medical Center, Dallas, TX 75390, USA

15 ⁸ Howard Hughes Medical Institute, The University of Texas Southwestern Medical Center, Dallas, TX
16 75390, USA

17 ⁹ CIBER de Enfermedades Raras (CIBERER), E-29071 Málaga, Spain

18 * Correspondence: medina@uma.es; Tel.: +34 952137132; ORCID: <https://orcid.org/0000-0001-7275-6462>; bmpoveda@uma.es; Tel.: +34 952131674; ORCID: <https://orcid.org/0000-0003-3927-3877>

20

21 **Abstract**

22 A pathological and persistent angiogenesis is observed in several diseases like retinopathies, diabetes,
23 psoriasis and cancer. Dimethyl fumarate, an ester from the Krebs cycle intermediate fumarate, is
24 approved as a drug for the treatment of psoriasis and multiple sclerosis, and its anti-angiogenic activity
25 has been reported *in vitro* and *in vivo*. However, it is not known whether dimethyl fumarate is able to
26 modulate endothelial cell metabolism, considered an essential feature for the angiogenic switch. By
27 means of different experimental approximations, including proteomics, isotope tracing and metabolomics
28 experimental approaches, in this work we studied the possible role of dimethyl fumarate in endothelial
29 cell energetic metabolism. We demonstrate for the first time that dimethyl fumarate promotes glycolysis
30 and diminishes cell respiration, which could be a consequence of a down-regulation of serine and glycine
31 synthesis through inhibition of PHGDH activity in endothelial cells. This new target can open a new field
32 of study regarding the mechanism of action of dimethyl fumarate.

33 **Keywords:** dimethyl fumarate; endothelial cells; glycolysis; serine; glycine; PHGDH

34

35

36

37

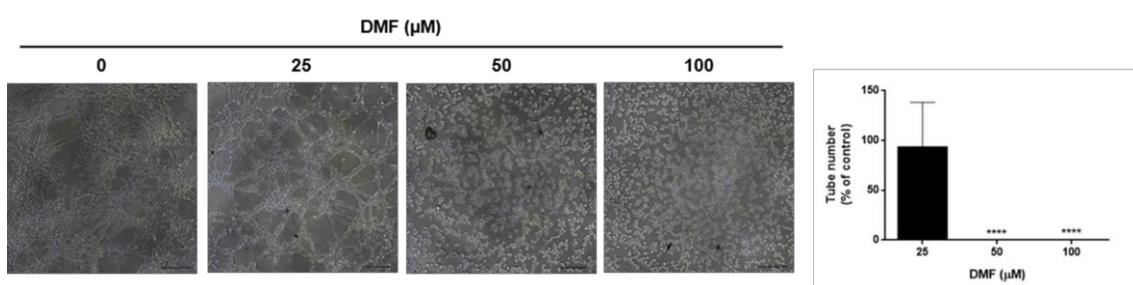
38 **Introduction**

39 The fumaric acid ester (FAE) dimethyl fumarate (DMF) is a methyl ester of fumaric acid (FA) that has
40 been broadly studied in several models of disease, such as inflammatory diseases, dermatological lesions
41 and cancer. In 2013, DMF was approved by the US Food and Drug Administration (FDA) and the European
42 Medicines Agency (EMA) for the treatment of relapsing forms of multiple sclerosis (MS), marketed under
43 the name of Tecfidera (previously called BG-12) (Saidu et al., 2019). DMF has also been used as an anti-
44 psoriatic drug for more than 50 years, under the brand names Fumaderm and Skilarence (Linker &
45 Haghikia, 2016; Mrowietz et al., 2018).

46 Psoriasis is an inflammatory disorder that has been associated with a persistent and maintained
47 angiogenesis (Heidenreich, Rocken, & Ghoreschi, 2009). Angiogenesis is the formation of new blood
48 vessels from pre-existing ones. It is a natural process during wound repair, embryonic development and
49 the reproductive cycle. However, pathological, exacerbated and deregulated angiogenesis is related to
50 several diseases besides psoriasis, such as retinopathies, rheumatoid arthritis and cancer (Carmeliet,
51 2005). Some years ago, we hypothesized that DMF anti-psoriatic effect could be related somehow to
52 modulation of angiogenesis. Interestingly, our group characterized DMF as an anti-angiogenic compound
53 using *in vitro* and *in vivo* models (Garcia-Caballero, Mari-Beffa, Medina, & Quesada, 2011). Simultaneously, DMF was demonstrated to exert its anti-angiogenic activity through inhibition of vascular
54 endothelial growth factor receptor 2 (VEGFR2) expression, the main receptor for VEGF-A (Meissner et al.,
55 2011). As mentioned by Jack Arbiser, based on these data, it seems safe to say that angiogenesis inhibition
56 plays a role in the activity of DMF and further studies on DMF mechanisms of action seem warranted
57 (Arbiser, 2011).

59 Due to their potential usefulness in the treatment of several diseases, many anti-angiogenic
60 compounds have been characterized in the last decades (Folkman, 2007; Quesada, Munoz-Chapuli, &
61 Medina, 2006; Ronca, Benkheil, Mitola, Struyf, & Liekens, 2017). Most of these compounds target VEGF
62 signaling pathways, and they have demonstrated to present clinical efficacy. However, in some cases an
63 evasive resistance to VEGF pathway inhibitors is developed (Bergers & Hanahan, 2008). Therefore,
64 therapeutical approximations in angiogenesis-dependent diseases should rely on combined targeting of
65 different pathways (Quesada, Medina, & Alba, 2007). Not surprisingly, endothelial cell (EC) energetic
66 metabolism was shown to be essential for correct function of ECs, and hence for correct
67 angiogenesis trigger (Eelen, Treps, Li, & Carmeliet, 2020). In consequence, targeting EC metabolism was
68 proposed as a novel strategy for the treatment of angiogenesis-dependent pathologies (Goveia, Stapor,
69 & Carmeliet, 2014; Ocana, Martinez-Poveda, Quesada, & Medina, 2019b).

70 DMF is a cell permeable FAE that can be converted into fumarate inside the cell, thus feeding the
71 tricarboxylic acid (TCA) cycle. Diverse, cell- and dose-dependent effects of DMF on global cell metabolism
72 have been found in different cell types. For instance, DMF exerted a differential effect on the energetics
73 metabolism of mouse embryonic fibroblasts depending on Nrf-2 expression and time incubation (Ahuja
74 et al., 2016). Other authors found lower respiration rates in human retinal epithelial cells treated with
75 DMF (Foresti et al., 2015). Additionally, DMF was shown to inhibit glyceraldehyde 3-phosphate
76 dehydrogenase (GAPDH), a glycolytic enzyme, thus down-regulating aerobic glycolysis in murine activated
77 myeloid and lymphoid cells (Kornberg et al., 2018). Moreover, DMF was found to induce cell metabolism
78 dysfunction in human pancreatic cells through inhibition of mitochondrial respiration, aerobic glycolysis
79 and folate metabolism, possibly by targeting the enzyme methylenetetrahydrofolate dehydrogenase 1
80 (MTHFD1) (Chen et al., 2021). Nevertheless, as far as we are concerned, no studies have been performed
81 regarding the possible role of DMF in EC energetic metabolism.


82 In this work, we wanted to explore the potential capacity of DMF to modulate microvascular EC
83 glucose and/or glutamine metabolism in an *in vitro* model of microvascular ECs. We found that DMF
84 diminishes cell respiration while it upregulates glycolysis in human dermal microvascular ECs (HMECs).
85 Interestingly, our results show that DMF downregulates the serine and glycine synthesis pathway in these
86 cells through inhibition of phosphoglycerate dehydrogenase (PHGDH) activity. To our knowledge, the
87 results presented herein are the first experimental evidence showing that DMF downregulates the serine
88 and glycine synthesis pathway in ECs. The observed alteration of EC metabolism exerted by DMF could

89 open new horizons for further characterization of its mechanism of action in angiogenesis-dependent
90 diseases.

91 **Results**

92 *DMF inhibits capillary tube formation in microvascular endothelial cells*

93 The anti-angiogenic activity of DMF has been previously described in an *in vitro* model of
94 macrovascular ECs, but its effect on microvascular ECs has not been assessed before (Garcia-Caballero et
95 al., 2011). In order to determine the concentrations of DMF that interfere with angiogenesis *in vitro* in
96 HMECs (microvascular ECs), we evaluated the dose of DMF able to totally inhibit tube formation in these
97 cells. For this aim, we performed a capillary tube formation assay on Matrigel using increasing DMF
98 concentrations. Consistent with the previously published effect on macrovascular ECs, we confirmed the
99 total inhibition of tubular-like morphogenesis on Matrigel by 50 and 100 μ M DMF in microvascular ECs
100 (Figure 1). Then we decided to use 50 and 100 μ M for further experiments.

101

102 **Figure 1.** DMF inhibits tube formation in HMECs. Representative pictures and quantification of tube
103 formation on Matrigel in HMECs treated with different concentrations of DMF. Bar scales = 183.25 μ m.
104 Data are expressed as means \pm SD. ****p<0.0001 versus untreated control.

105 *DMF diminishes respiration while favors glycolysis in HMECs*

106 As a first approximation to test the capacity of DMF to modulate global energetic metabolism in
107 HMECs, oxygen consumption rate (OCR) and extracellular acidification rate (ECAR), as estimators of
108 oxidative phosphorylation (OXPHOS) and glycolysis, respectively, were measured using a Seahorse flux
109 analyzer. Obtained data showed that cells incubated for 20 h with 50 μ M DMF had a higher glycolytic rate
110 than control cells (p<0.001) (Figures 2A-B).

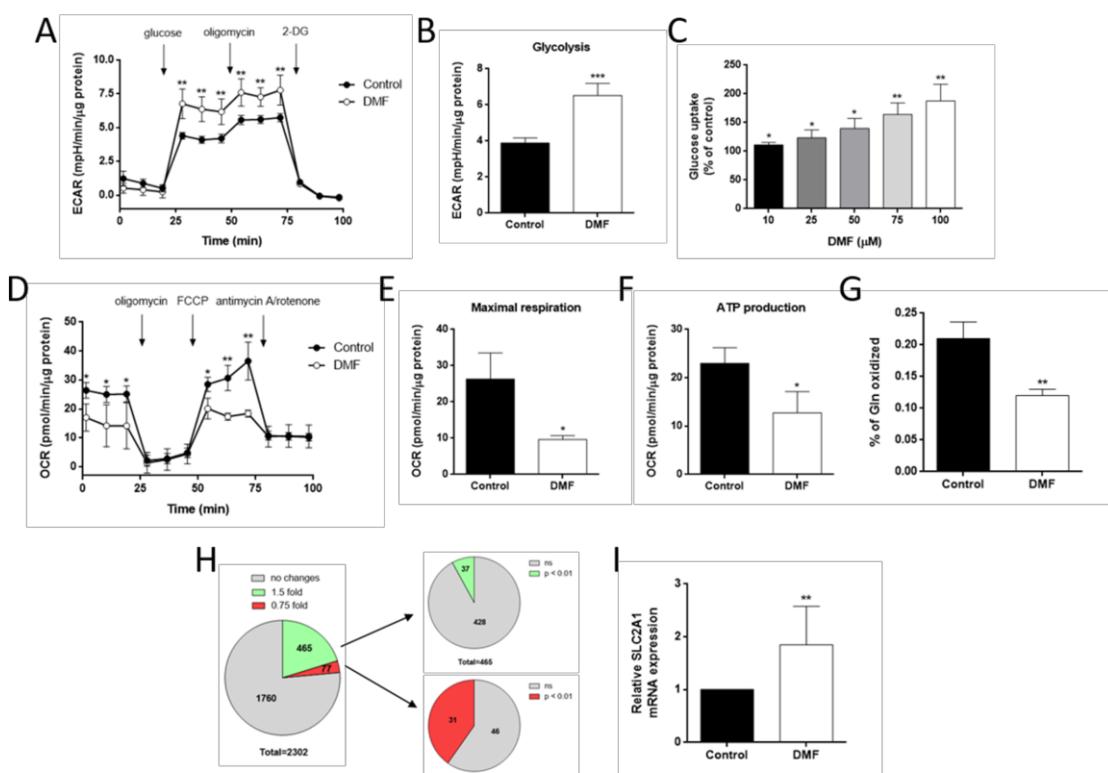
111 Interestingly, this increased glycolytic rate observed in DMF-treated HMECs was correlated with an
112 increased glucose uptake in these cells. HMECs cultured overnight with several concentrations of DMF
113 were exposed to 30 minutes fasting in DPBS in the presence of DMF, followed by additional 30 minutes
114 incubation in the presence of glucose and glutamine. Glucose taken up during those 30 minutes in the
115 presence of DMF was measured, revealing that DMF increased glucose uptake in HMECs in a dose-
116 dependent manner (p<0.05) (Figure 2C). Since 100 μ M exerted a greater effect than 50 μ M without
117 compromising cell viability, we decided to keep using 100 μ M DMF for further experiments.

118 In order to elucidate if the observed effect of DMF on glucose metabolism could be dependent on
119 transcriptional regulation, we compared results of glucose uptake after overnight treatment with DMF
120 with shorter incubation time (DMF added during the last 30 minutes incubation with glucose). Our data
121 showed that 100 μ M DMF incubated in short time (30 min before measurements) increased glucose
122 uptake in HMECs to a lesser extent than after overnight incubation, yet the increase was statistically
123 significant in both conditions (p<0.05) (116,2 \pm 4,2% and 187,6 \pm 29,1% data of fold compared to the
124 control condition in short time and overnight DMF treatments, respectively). These results suggest the
125 implication of transcriptional regulation in the DMF-enhanced glucose metabolism in ECs, although
126 additional shorter-term mechanisms may also contribute to this effect.

127 Additionally, we determined that OCR was lower in DMF-treated cells (Figures 2D-F). Since intracellular
128 glutamine is mainly incorporated into the TCA and oxidized, we tested glutamine oxidation in HMECs in
129 presence of 100 μ M DMF after overnight incubation, using the same experimental conditions described
130 in glucose uptake assays. As shown in Figure 2G, 100 μ M DMF halved glutamine oxidation in HMECs
131 ($p<0.01$), indicating an effect in the metabolic use of this amino acid.

132 Previously described experiments were performed in nutrient-limited conditions, assuring the
133 detection of direct effects of DMF on the metabolic substrates of interest. On the other hand, in order to
134 assess glucose and glutamine uptake, as well as lactate, glutamate and ammonia secretion in a more
135 complex mixture of nutrients, we cultured cells overnight or for 24 h incubation in the presence of 100
136 μ M DMF in complete medium. Either way, glucose uptake and lactate secretion were increased in HMECs
137 treated with DMF ($p<0.01$) (Figure S1A-B). On the contrary, DMF reduced glutamine uptake in HMECs
138 ($p<0.05$), whereas glutamate release to the medium was slightly higher in treated cells ($p<0.001$) (Figure
139 S1C-D). Regarding ammonia production, no differences were found in presence of DMF (Figure S1C-D). All
140 these results point to a DMF-mediated upregulation of glycolysis in HMECs, whereas oxidative metabolism
141 seems compromised in presence of this compound. Obtained results were similar in both timepoints, and
142 hence 24 h incubation was preferred for next experiments.

143 *DMF has differential effects in different cell lines*

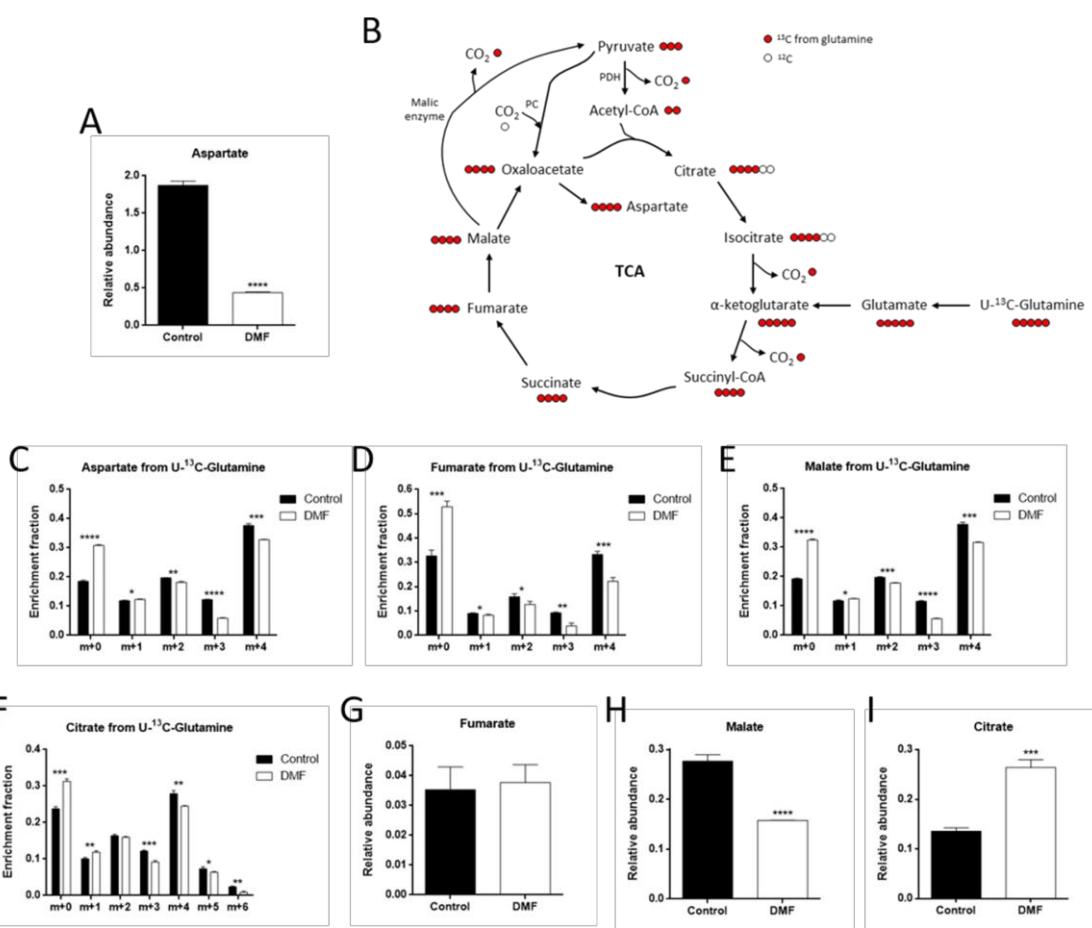

144 In order to see whether the observed effects of DMF were specific to HMECs, we also tested glucose
145 uptake and glutamine oxidation in different cell lines treated with DMF, including macro- and
146 mesovascular ECs (BAECs and HUVECs), two breast adenocarcinoma cell lines (MDA-MB-231 and MCF7),
147 a cervix adenocarcinoma cell line (HeLa) and fibroblasts (HGF), in order to cover non-microvascular ECs,
148 different tumor cell lines and a non-transformed cell line different from endothelium.

149 As shown in Figure S2A, the effect of 100 μ M DMF overnight incubation on glucose uptake was also
150 found in all the tested cell lines ($p<0.05$), suggesting that DMF could be targeting a common mechanism
151 in all of them. Regarding glutamine oxidation, a slight inhibitory effect, yet not statistically significant, was
152 found in HUVECs after DMF treatment, whereas this DMF-induced reduction was significant in tumor
153 MDA-MB-231 cells ($p<0.05$) and no effect was found in HeLa cells (Figure S2B).

154 *DMF upregulates GLUT1 expression without affecting HIF-1 α*

155 Due to the greater effect of DMF on glucose uptake after longer incubation, we hypothesized that this
156 compound might modulate glucose and/or glutamine metabolism through modulation of gene and/or
157 protein expression. To test this premise, a quantitative proteomics analysis was performed in samples
158 from HMECs treated with 100 μ M DMF for 24 h. We considered an upregulation on protein expression
159 when at least a 1.5-fold increase in the abundance ratio (DMF/DMSO) was found and a downregulation
160 of those proteins with a 0.75-fold or lower expression in the abundance ratio (DMF/DMSO). A total of
161 2302 proteins were identified with a high confidence level and at least two peptides detected. Of those,
162 465 presented a \geq 1.5-fold increase and 77 a \leq 0.75-fold expression. However, we only considered
163 statistically significant those changes with a p-value lower than 0.01, thus selecting 37 upregulated
164 proteins and 31 downregulated after DMF treatment (Figure 2H and Tables S1-S3).

165 Among the upregulated proteins, glucose transporters GLUT1 and GLUT14, also known as solute
166 carrier family 2, facilitated glucose transporter member 1 (*SLC2A1*) and member 14 (*SLC2A14*),
167 respectively, expressions were found to be 3.72-fold and 4.06-fold compared to the control condition,
168 respectively ($p<0.01$) (Table S2). Moreover, DMF also increased mRNA *SLC2A1* expression in these cells
169 (Figure 2I). Since GLUT1 is under the transcriptional control of HIF-1 α , and DMF was shown to stabilize
170 HIF-1 α in human embryonic kidney cells, we checked HIF-1 α protein levels in HMECs treated with DMF
171 (Koivunen et al., 2007). However, we did not detect any HIF-1 α in normoxia with DMF (data not shown).
172 Thus, this increase in GLUT1 expression was not likely the consequence of a stabilization of HIF-1 α in
173 normoxia in the presence of DMF, discarding this possibility and pointing to a different mechanism of
174 action responsible of the observed increase in glucose transporters expression induced by DMF.

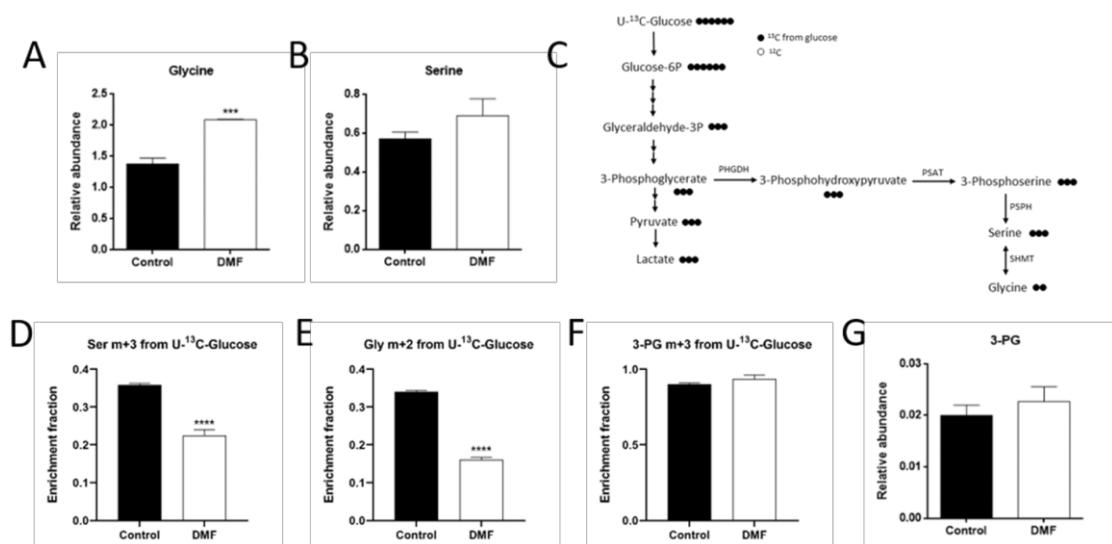


175

176 **Figure 2.** DMF increases glycolysis and diminishes OXPHOS in HMECs. (A) ECAR was measured in cells
177 treated with 50 μ M DMF and (B) glycolytic rate was calculated. (C) Glucose uptake after 30 minutes
178 incubation with 5 mM glucose and 0.5 mM glutamine in cells treated with different doses of DMF for 16
179 h. (D) OCR was measured in cells treated with 50 μ M DMF and (E) maximal respiration and (F) ATP
180 production were calculated. (G) Glutamine oxidation after 30 minutes incubation with 5 mM glucose, 0.5
181 mM glutamine and 0.5 μ Ci/mL L-[U-¹⁴C]-glutamine after treatment with 100 μ M DMF for 16 h. (H)
182 Proteomics analysis of cells treated with 100 μ M DMF for 24 h. (I) SLC2A1 mRNA expression in cells treated
183 with 100 μ M DMF for 24 h. Data are expressed as means \pm SD. *p<0.05; **p<0.01; ***p<0.001 versus
184 untreated control.

185 *DMF affects aspartate and TCA cycle intermediates levels*

186 Next, we performed steady-state metabolomics in complete medium in order to study the possible
187 changes in the intracellular pool of several metabolites as a consequence of the deregulated glycolytic
188 and oxidative metabolism in DMF-treated cells. Among other changes, we observed that aspartate levels
189 were drastically lower in DMF-treated HMECs (p<0.0001) (Figure 3A and Fig. S3). Of note, aspartate is
190 absent in DMEM formulation, which we used for these experiments, and hence cells need to synthetize
191 it. However, we also performed this experiment in cells cultured in RPMI-1640 medium, which contains
192 aspartate and, in these conditions, aspartate levels in DMF-treated cells were also lower, but to a lesser
193 extent than when cells were cultured in aspartate-free medium (data not shown). Interestingly, aspartate
194 synthesis is regulated by the electron transport chain (ETC) activity (Birsoy et al., 2015). Since DMF
195 treatment suppressed respiration and glutamine oxidation in HMECs, we also performed stable isotope-
196 labeling studies using glutamine labeled with carbon-13 in its five carbons ([U-¹³C]-glutamine) to follow
197 the labeling of TCA intermediates (Figure 3B). As expected, labeling of aspartate, fumarate, malate and
198 citrate from glutamine was lower in DMF-treated cells (p<0.05) (Figures 3C-F), corroborating a lower
199 incorporation of glutamine into the TCA cycle. The fumarate pool was not affected (Figure 3G), probably
200 due to external addition of fumarate from DMF. Intracellular malate levels were lower (p<0.0001) (Figure
201 3H). However, citrate levels were increased after DMF treatment (p<0.001) (Figure 3I), which may reflect
202 inhibition of the TCA cycle.

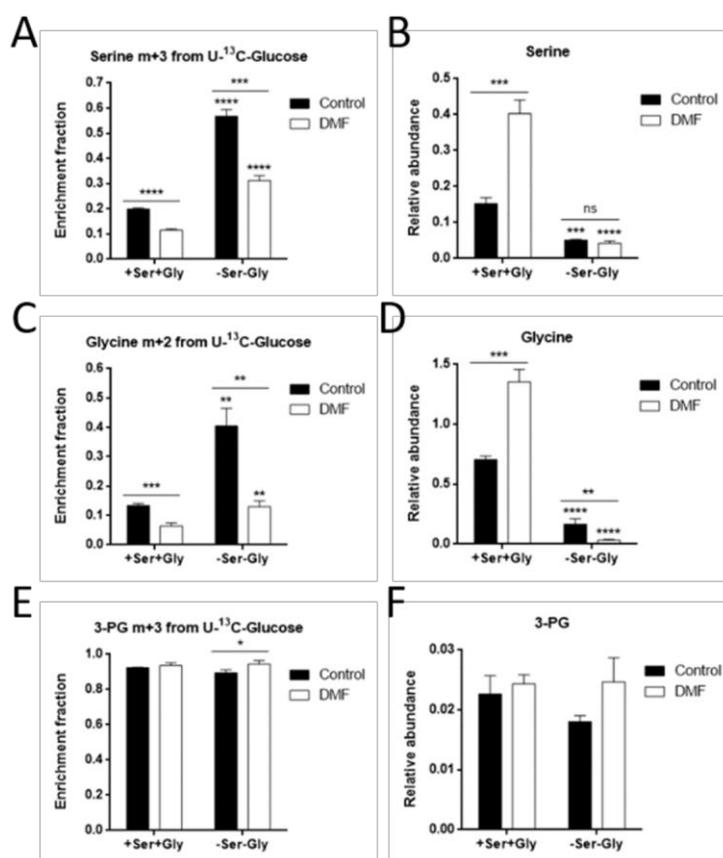

203

204 **Figure 3.** DMF diminishes incorporation of glutamine into the TCA cycle in HMECs. (A) Intracellular
205 aspartate levels in cells treated with 100 μM DMF for 24 h. (B) Scheme of TCA cycle illustrating labeling
206 from $[\text{U-}^{13}\text{C}]$ -glutamine. (C) Fractional labeling of aspartate, (D) fumarate, (E) malate and (F) citrate from
207 $[\text{U-}^{13}\text{C}]$ -glutamine in cells treated with 100 μM DMF for 24 h. (G) Intracellular fumarate, (H) malate and (I)
208 citrate levels in cells treated with 100 μM DMF for 24 h. Data are expressed as means \pm SD. * $p<0.05$;
209 ** $p<0.01$; *** $p<0.001$; **** $p<0.0001$ versus untreated control.

210 DMF decreases serine and glycine synthesis and favors extracellular serine and glycine uptake in HMECs

211 Interestingly, by means of the steady-state metabolite experiment, higher levels of intracellular glycine
212 were found in DMF-treated cells ($p<0.001$) (Figure 4A and Fig. S2). Serine levels were slightly higher, yet
213 not statistically significant (Figure 4B). Again, we performed stable-isotope-labeling studies, this time
214 using glucose labeled at all six carbons with carbon-13 ($[\text{U-}^{13}\text{C}]$ -glucose), in order to check whether serine
215 and glycine synthesis from glucose was boosted in the presence of DMF. The endogenous synthesis of
216 serine and glycine starts from glucose, which through glycolysis, converts after several steps into 3-
217 phosphoglycerate (3-PG). This glycolytic intermediate is the substrate of phosphoglycerate
218 dehydrogenase (PHGDH). The resultant 3-phosphohydroxypyruvate (PHP) is then converted into 3-
219 phosphoserine (P-Ser) through phosphoserine aminotransferase (PSAT), and this P-Ser is finally the
220 substrate of phosphoserine phosphatase (PSPH), resulting in the synthesis of serine. Finally, glycine is the
221 product of the enzyme serine hydroxymethyltransferase (SHMT) from serine (Figure 4C).

222 Surprisingly, we found that not only serine m+3 from glucose was lower after 24 h incubation with 100
223 μM DMF ($p<0.0001$) (Figure 4D), but an even greater decrease in glycine m+2 was detected ($p<0.0001$)
224 (Figure 4E). No changes in 3-PG m+3 labeling or intracellular levels were found (Figures 4F-G), which could
225 have been expected due to the higher glycolytic activity in DMF-treated cells. Similar effects were found
226 in HMECs treated with 100 μM DMF overnight or with 50 μM DMF for 24 h (Figures S4 and S5).

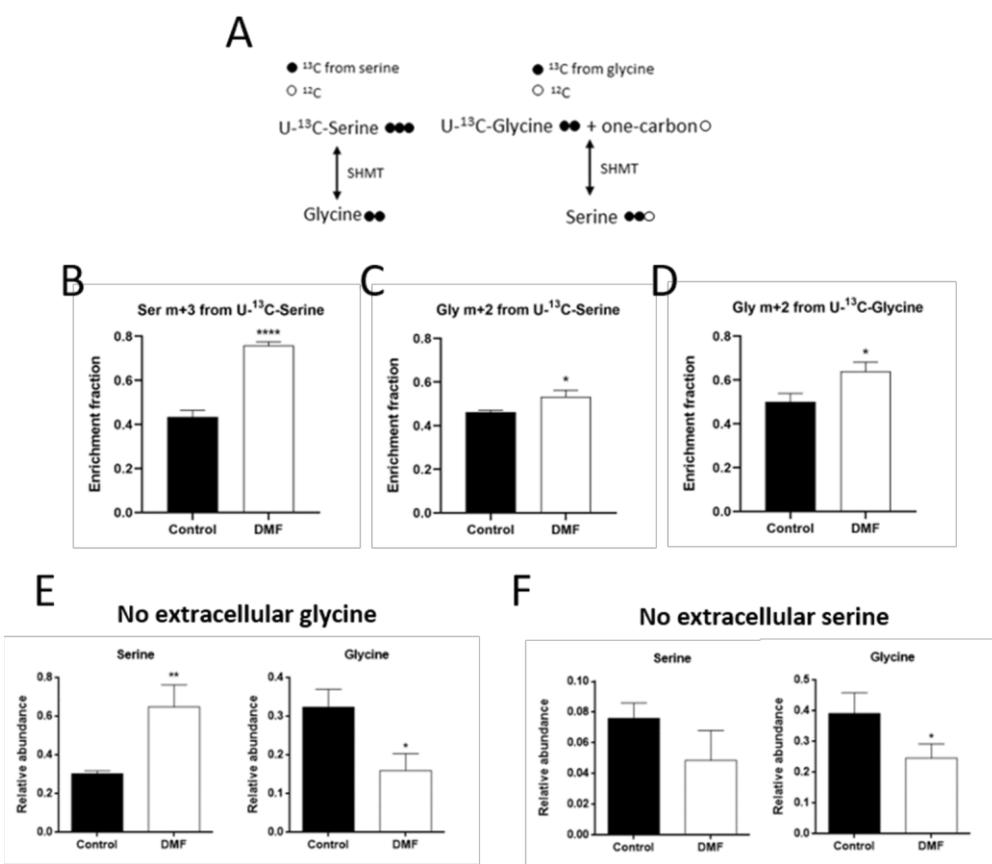


227

228 **Figure 4.** DMF decreases serine and glycine synthesis from glucose in HMECs. (A) Intracellular glycine and
229 (B) serine levels in cells treated with 100 μ M for 24 h. (C) Scheme of glycolysis and the serine and glycine
230 synthesis pathway illustrating labeling from [$U-^{13}C$]-glucose. (D) Fractional labeling of serine, (E) glycine
231 and (F) 3-PG from [$U-^{13}C$]-glucose in cells treated with 100 μ M DMF for 24 h. (G) Intracellular 3-PG levels
232 in cells treated with 100 μ M DMF for 24 h. Data are expressed as means \pm SD. *** p <0.001; **** p <0.0001
233 versus untreated control.

234 Due to the presence of extracellular serine and glycine in the medium we used for metabolomics and
235 isotope tracing analysis, we checked whether depleting serine and glycine from the medium affected
236 metabolism of HMECs. Our data showed that serine and glycine withdrawal did not affect the observed
237 effect of DMF on glucose uptake or lactate production in HMECs (neither level in control conditions)
238 compared to conditions with extracellular serine and glycine (Figure S6).

239 Regarding serine and glycine synthesis from glucose, on the one hand serine m+3 was higher in control
240 and DMF-treated HMECs incubated in the absence of both serine and glycine (p <0.0001) (Figure 5A),
241 indicating the need for serine synthesis when no extracellular serine is available. Serine pools were higher
242 in DMF-treated cells when serine and glycine were present in the medium (p <0.001), whereas serine levels
243 were low in serine and glycine depleted medium in both conditions (p <0.001) (Figure 5B). Glycine m+2
244 was also higher in control HMECs when no extracellular serine and glycine was available (p <0.01) (Figure
245 5C). However, DMF-treated cells failed to increase glycine m+2 labeling from glucose in the absence of
246 these two amino acids to the same extent as they did with serine (p <0.01 compared to cells treated with
247 DMF in the presence of serine and glycine) (Figure 5C). Furthermore, intracellular glycine levels were
248 increased in DMF-treated cells when there was serine and glycine in the medium (p <0.001), but the
249 glycine pool was almost totally depleted during serine and glycine withdrawal (p <0.01) (Figure 5D). No
250 remarkable changes were found in either 3-PG labeling or intracellular pool between control and DMF-
251 treated cells in conditions with or without extracellular serine and glycine (Figures 5E-F). Together, these
252 results suggest that DMF-treated ECs had their *de novo* synthesis pathway compromised, while the
253 intracellular pool of these two amino acids was higher compared to control cells.

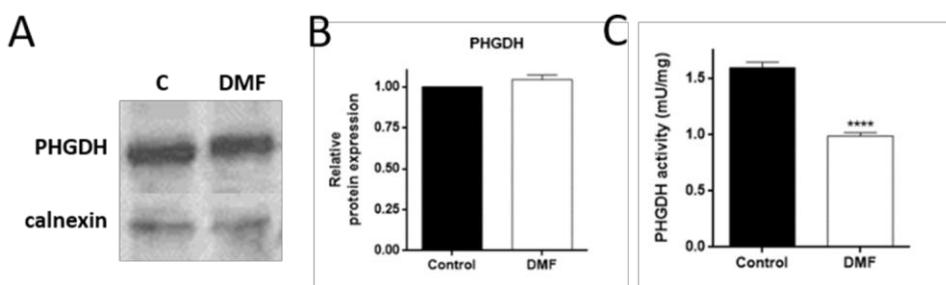


254

255 **Figure 5.** DMF favors serine and glycine synthesis from glucose in the absence of extracellular serine and
256 glycine in HMECs. (A) Fractional labeling of serine from [U-¹³C]-glucose, (B) intracellular serine levels, (C)
257 fractional labeling of glycine from [U-¹³C]-glucose, (D) intracellular glycine levels, (E) fractional labeling of
258 3-PG from [U-¹³C]-glucose and (F) intracellular 3-PG levels in cells treated with 100 μ M DMF for 24 h in
259 the presence or absence of extracellular serine and glycine. Data are expressed as means \pm SD. *p<0.05;
260 **p<0.01; ***p<0.001; ****p<0.0001 versus condition with extracellular serine and glycine. ns: non-
261 significant.

262 Therefore, we next checked if an increase in extracellular serine and glycine uptake was taking place
263 in DMF-treated cells. For that aim, we used serine and glycine labeled with carbon-13 in all their carbons
264 ([U-¹³C]-serine and [U-¹³C]-glycine). In order to avoid interferences, extracellular glycine was absent in
265 medium supplemented with labeled serine, whereas serine was not added to the medium with labeled
266 glycine, since these two amino acids can be converted into each other through SHMT activity (Figure 6A).
267 Not surprisingly, HMECs treated with 100 μ M DMF presented higher serine m+3 labeling from labeled
268 serine ($p<0.0001$) (Figure 6B). Glycine m+2, which comes from this extracellular labeled serine, was also
269 higher after DMF treatment ($p<0.05$) (Figure 6C). Nevertheless, the contribution of labeled glycine to the
270 intracellular glycine pool was not as high in DMF-treated cells respect to the control condition compared
271 to serine uptake ($p<0.05$) (Figure 6D). No significant differences were found in serine labeling from glycine
272 (data not shown). These data indicate that uptake of these two amino acids is increased in DMF-treated
273 HMECs.

274 Regarding intracellular serine and glycine pools, when serine, but not glycine, was present in the
275 medium, intracellular serine levels were higher in DMF-treated cells ($p<0.01$), but glycine levels were
276 lower ($p<0.05$) (Figure 6E), indicating an increase in extracellular serine uptake, which could not be
277 converted to glycine. However, depleting serine from the medium while extracellular glycine is available
278 diminished serine levels after DMF treatment, yet not significantly, whereas the glycine pool was
279 unexpectedly decreased ($p<0.05$) (Figure 6F).



280

281 **Figure 6.** DMF favors extracellular serine and glycine uptake in HMECs. (A) Scheme of serine and glycine
 282 interconversion illustrating labeling from [U- ^{13}C]-serine and [U- ^{13}C]-glycine. (B) Fractional labeling of
 283 serine and (C) glycine from [U- ^{13}C]-serine, and of (D) glycine from [U- ^{13}C]-glycine in cells treated with 100
 284 μM DMF for 24 h. (E) Intracellular serine and glycine levels in medium without glycine or (F) without serine
 285 in cells treated with 100 μM for 24 h. Data are expressed as means \pm SD. * p <0.05; ** p <0.01; *** p <0.0001
 286 versus untreated control.

287 DMF down-regulated PHGDH activity without affecting protein levels

288 So far, our data indicated a major role of serine and, specially, glycine synthesis in HMECs compared
 289 to their extracellular uptake, pointing to DMF as an inhibitor of this biosynthetic pathway. This was
 290 surprising, since our proteomics analysis revealed a 4.5-fold expression of PSPH, the third and last enzyme
 291 in the synthesis pathway (p <0.0001) (Table S2). However, the rate-limiting enzyme under cell culture
 292 conditions is PHGDH, which catalyzes the committed step in the serine synthesis pathway (Scerri et al.,
 293 2017). Based on proteomics results, PHGDH protein expression was not significantly changed in DMF-
 294 treated ECs (Table S1) and we further validated this data by Western-blot, assessing that PHGDH protein
 295 expression was unaffected by DMF treatment in HMECs (Figures 7A-B). Nonetheless, treatment with 100
 296 μM DMF decreased PHGDH activity in HMECs (p <0.0001) (Figure 7C), and this partial inhibition matches
 297 the percentage of serine m+3 labeling from glucose (Figure 4D). Therefore, even if PSPH protein levels are
 298 higher with DMF, a lower PHGDH activity is most likely limiting the serine and glycine synthesis rate in
 299 HMECs. Interestingly, DMF failed to decrease PHGDH activity in cell lysates from the control condition
 300 ($1.30 \pm 0.13 \text{ mU/mg}$ vs. $1.32 \pm 0.13 \text{ mU/mg}$ in cell lysates from control cells treated *on site* with DMSO or
 301 100 μM DMF, respectively). These data suggest that the PHGDH inhibition exerted by DMF in ECs was not
 302 a direct effect on the enzyme, and was probably dependent on some cellular processes.

303

304 **Figure 7.** DMF inhibits PHGDH activity in HMECs. (A) Representative Western blot for PHGDH and (B)
305 quantification in cells treated with 100 μ M DMF for 24 h. (C) PHGDH activity in cells treated with 100 μ M
306 for 24 h. Data are expressed as means \pm SD. **** p <0.0001 versus untreated control.

307 **Discussion**

308 Study of EC metabolism has gained importance in the search of new targets for the treatment of
309 angiogenesis-dependent diseases (Gouveia et al., 2014; Ocana et al., 2019b). As far as we are concerned,
310 this is the first work demonstrating the reduction on PHGDH activity by the anti-angiogenic compound
311 DMF. The serine synthesis pathway has been described to be essential for the progression of several types
312 of tumors, and the development of PHGDH inhibitors has emerged as a promising cancer therapy (Ravez,
313 Spillier, Marteau, Feron, & Frederick, 2017). One of the most studied pathways regulated by DMF is the
314 Nrf2 pathway. Interestingly, Nrf2 has been shown to induce protein expression of genes from the serine
315 and glycine synthesis pathway, including PHGDH, through ATF4 in cancer cells (DeNicola et al., 2015).
316 These results are converse to those obtained with ECs. Other studies have reported a transcriptional
317 regulation of PHGDH by other molecules also affected by DMF (Liu et al., 2017; Ou, Wang, Jiang, Zheng,
318 & Gu, 2015). Nevertheless, our results suggest that the effects of DMF on EC energetic metabolism are
319 not likely controlled by a transcriptional regulation but by direct enzymatic inhibition by an unknown
320 mechanism which is likely to require some cellular process.

321 DMF is known to be an electrophilic molecule able to bind to protein cysteine residues in a process
322 called succination, hence modifying their activity (Frycak, Zdrahal, Ulrichova, Wiegreb, & Lemr, 2005).
323 Indeed, many of the DMF molecular targets suffer cysteine succination (Saidu et al., 2019). This fact makes
324 studying the exact mechanism of action of this compound a big challenge due to this lack of specificity,
325 which could affect many molecules through a cascade of different dysfunctional signaling pathways.
326 Interestingly, a global analysis of cysteine ligandability performed in cancer cells revealed that Cys369 of
327 PHGDH can react with electrophilic small molecules (Bar-Peled et al., 2017). Whether the modulation of
328 PHGDH activity exerted by DMF involves succination of cysteine residues of this protein remains
329 unstudied. However, since DMF failed to inhibit PHGDH activity in control cell lysates *in vitro*, it is likely
330 that some cellular process participates in the regulation of PHGDH activity mediated by DMF and that
331 cysteine succination might not be enough for repressing the PHGDH activity in ECs.

332 Our data point out that suppression of PHGDH activity in ECs seems to have a greater effect on glycine
333 synthesis compared to serine synthesis, since glycine levels were more compromised after DMF treatment
334 than the serine pool even when extracellular glycine was available. It is known that *de novo* mitochondrial
335 glycine synthesis is highly active in ECs and more important than cellular uptake (Hitzel et al., 2018).
336 Conversely, extracellular glycine has been shown to stimulate VEGF signaling and angiogenesis *in vitro*
337 and *in vivo* by promoting mitochondrial function, and VEGF was found to promote the expression of the
338 glycine transporter GlyT1 in ECs, while it did not affect the levels of the enzymes involved in glycine
339 synthesis (Guo et al., 2017). DMF was reported ten years ago to exert an anti-angiogenic activity *in vitro*
340 and *in vivo*, at least partially due to VEGFR2 suppression (Garcia-Caballero et al., 2011; Meissner et al.,
341 2011). The exact mechanism by which DMF represses VEGFR2 expression remains unexplored and would
342 require further research. Since DMF inhibits VEGFR2 and, therefore, the VEGF signaling pathway in ECs, it
343 could be possible that glycine uptake is suppressed in DMF-treated ECs. In any case, both extracellular
344 glycine and *de novo* synthetized glycine seem important to EC metabolism and function, and DMF plays a
345 major role in glycine metabolism through PHGDH inhibition. Nonetheless, the existence of an interplay

346 between the DMF-induced PHGDH inhibition and the anti-angiogenic activity of this molecule are related
347 remains unclear.

348 Among other metabolic pathways, glycolysis has been described to be essential for vessel sprouting
349 (De Bock et al., 2013). Some years ago, DMF was found to inhibit glycolysis in immune cells through
350 targeting of GAPDH activity mediated by succination of several cysteine residues (Kornberg et al., 2018).
351 Conversely, the results found in this work show that DMF increases glycolysis whereas diminishes OXPHOS
352 in ECs. Why this compound affects energetic metabolism differently in different cell types has yet to be
353 answered. Remarkably, using ECs, Vandekeere and colleagues found out that silencing PHGDH impaired
354 angiogenesis, even when the glycolytic rate of PHGDH knock-down cells was higher than those whose
355 levels of PHGDH remained intact (Vandekeere et al., 2018). These results are similar to those obtained in
356 this work for the inhibition of PHGDH after DMF treatment in HMECs. Thus, it is likely that PHGDH
357 inhibition boosts glycolytic activity in order to compensate the reduction in serine synthesis rate.
358 However, we found an increased glucose uptake in several cell lines treated with DMF, including MDA-
359 MB-231, a triple negative breast cancer cell line which lacks PHGDH (Possemato et al., 2011). Therefore,
360 additional mechanisms must regulate the increase in the glycolytic rate exerted by DMF.

361 It is worthy of note the different effects of DMF on glutamine oxidation in different cell lines. DMF
362 diminished glutamine oxidation in different EC lines and in cancer MDA-MB-231 cells. All these cell lines
363 are known to be highly glycolytic (Gaglio et al., 2011; Ocana, Martinez-Poveda, Quesada, & Medina,
364 2019a; Peters et al., 2009). However, DMF failed to alter glutamine oxidation in the highly glutamine-
365 dependent, oxidative cell line HeLa (Reitzer, Wice, & Kennell, 1979). This differential effect points out to
366 a different regulation of energetic metabolism depending on the metabolic preferences of the cells. This
367 makes an interesting point in using DMF as a therapeutic tool in different pathological contexts, since this
368 compound may exert different effects in different cell types such as ECs, cancer cells and immune cells.

369 Altogether, our data suggest a complex regulation of EC metabolism by DMF (Figure 8). Elucidating
370 the exact mechanism of action of DMF requires a vast and comprehensive experimental design, due to its
371 reported high molecular reactivity and wide regulation of transcription factors, such as Nrf2 and NF- κ B.
372 Thus, it remains unclear whether impairment of angiogenesis through inhibition of VEGFR2 and the
373 decrease in serine and glycine synthesis pathway by reduced PHGDH activity exerted by DMF are causally
374 related. Although glycolysis has been shown to be essential for angiogenesis, inhibition of PHGDH
375 impaired the angiogenic process but increased the glycolytic rate in ECs (De Bock et al., 2013; Vandekeere
376 et al., 2018). Therefore, the results published by Vandekeere *et al.* and the data presented in this work
377 reinforces the complexity of metabolic regulation in ECs and its relation with the angiogenic switch.

378

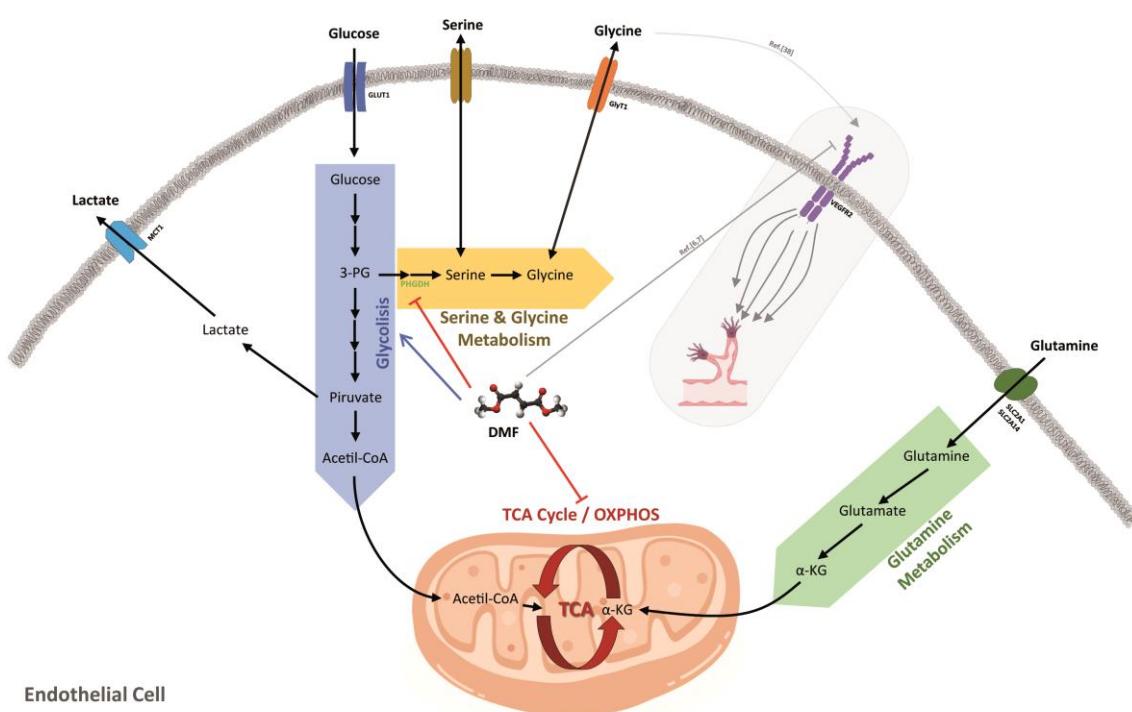
379

380

381

382

383


384

385

386

387

388

389

390 **Figure 8.** Summary of DMF effects on energetic EC metabolism. The results of this work show how DMF
391 induces glucose uptake through upregulation of GLUT1 expression. This increase in glucose uptake leads
392 to a greater glycolytic rate and lactate secretion to the extracellular media. Conversely, glutamine uptake
393 is diminished in cells treated with DMF, and its oxidation through the TCA cycle is reduced. DMF
394 diminished PHGDH activity and synthesis of serine and glycine from glucose. It is described in the
395 bibliography that DMF inhibits VEGFR2 expression, and that extracellular glycine has been seen to
396 promote VEGF signaling and angiogenesis through upregulation of mitochondrial activity. Whether
397 inhibition of glycine metabolism is related with the anti-angiogenic activity of DMF remains unclear.

398 Materials and methods

399 Materials

400 MCDB-131 cell culture medium was obtained from Gibco (Paisley, Scotland, UK). Glucose, glutamine,
401 serine and glycine free media were from Teknova (Hollister, CA, USA) and from US Biological Life Sciences
402 (Salem, MA, USA). Other cell culture media, penicillin and streptomycin and trypsin were purchased from
403 BioWhittaker (Verviers, Belgium). Fetal bovine serum (FBS) was purchased from Biowest (Kansas, USA).
404 Dialyzed FBS (dFBS) was from Gemini Bioproducts (West Sacramento, CA, USA) and from Capricorn
405 (Ebsdorfergrund, Germany). Matrigel was purchased from Becton-Dickinson (Bedford, MA, USA). Material
406 for Seahorse experiments were from Agilent Technologies (Santa Clara, CA, USA). 2-NBDG was supplied
407 by Molecular Probes (Eugene, OR, USA). L-[U-¹⁴C]-Glutamine was acquired from Perkin Elmer (Waltham,
408 MA, USA). L-glutamine/ammonia assay kit was from Megazyme (Bray, County Wicklow, Ireland). Anti-
409 HIF1α antibody was from BD Biosciences (San Jose, CA, USA), anti-α-tubulin antibody was from Cell
410 Signaling Technology (Danvers, MA, USA), anti-PHGDH antibody was from GeneTex (Irvine, CA, USA) and
411 anti-calnexin was from Enzo Life Sciences (Farmingdale, NY, USA). D-[U-¹³C]-Glucose, L-[U-¹³C]-glutamine,
412 L-[U-¹³C]-serine and L-[U-¹³C]-glycine were purchased from Cambridge Isotope Laboratories (Tewksbury,
413 MA, USA). PHGDH activity assay kit was from BioVision (Milpitas, CA, USA). Plastic material for cell culture
414 was from Nunc (Roskilde, Denmark). All other reagents not listed on this section, including DMF and
415 glucose and glutamine free medium, were from Sigma-Aldrich (St. Louis, MO, USA).

416 Cell culture

417 All cell culture media, unless otherwise specified, were supplemented with glutamine (2 mM),
418 penicillin (50 U/mL) and streptomycin (50 U/mL). Human microvascular endothelial cells (HMECs) were

419 kindly supplied by Dr. Arjan W. Griffioen (Maastricht University, Netherlands) and maintained in MCDB-
420 131 medium supplemented with 10% FBS, hydrocortisone (1 μ g/mL) and EGF (10 ng/mL). Human umbilical
421 vein endothelial cells (HUVECs) were isolated by a modified collagenase treatment as previously reported
422 and maintained in 199 medium supplemented with 20% fetal bovine serum, ECGS (30 μ g/mL) and heparin
423 (100 μ g/mL) (Kubota, Kleinman, Martin, & Lawley, 1988). Bovine aortic endothelial cells (BAECs) were
424 isolated from bovine aortic arches as previously described and maintained in Dulbecco's modified Eagle's
425 medium (DMEM) containing glucose (1 g/L) and supplemented with 10% FBS (Cardenas, Quesada, &
426 Medina, 2006). Primary human gingival fibroblasts (HGF) were maintained in DMEM containing glucose
427 (4.5 g/L) and 10% FBS. Tumor cells used in this paper (human breast carcinoma MDA-MB-231 and MCF7,
428 and human cervix adenocarcinoma HeLa) were purchased from the ATCC (Rockville, MD, USA) and
429 maintained in RPMI-1640, DMEM containing glucose (4.5 g/L) and EMEM, respectively, all of them
430 supplemented with 10% FBS. All cell lines were maintained at 37 °C under a humidified 5% CO₂
431 atmosphere.

432 *Tube formation on Matrigel by endothelial cells*

433 Each well of a 96-well plate was coated with Matrigel (50 μ L of about 10.5 mg/mL) at 4 °C and
434 polymerized at 37 °C for a minimum of 30 min. 7 \times 10⁴ cells were seeded in 200 μ L of medium without
435 serum. 25, 50 and 100 μ M DMF were added to the wells and incubated at 37 °C. After 5 hour incubation,
436 cultures were observed and photographed with a microscope camera Nikon DS-Ri2 coupled to a Nikon
437 Eclipse Ti microscope from Nikon (Tokyo, Japan). Closed "tubular" structures were counted using ImageJ
438 software.

439 *Extracellular flux analyzer experiments*

440 HMECs were cultured at a density of 3 \times 10⁴ cells/well in 24-well Seahorse XFe24 plates (Agilent) and
441 incubated at 37 °C under a humidified 5% CO₂ atmosphere overnight in the presence or absence of DMF.
442 Cells were washed twice with XF base medium (Agilent) and incubated with XF medium containing or not
443 DMF and supplemented with 10 mM glucose and 4 mM glutamine or just with 4 mM glutamine at 37 °C
444 without CO₂ for one hour. Three initial measurements were made using XFe24 Seahorse analyzer. Then,
445 1 μ M oligomycin, 0.6 μ M carbonyl cyanide-4-(trifluoromethoxy)phenylhydrazone (FCCP), and 1 μ M
446 antimycin A and 1 μ M rotenone for wells with both glucose and glutamine, or 10 mM glucose, 1 μ M
447 oligomycin and 25 mM 2-deoxyglucose (2-DG) for wells with only glutamine, were injected sequentially
448 to each well with three measurements between each injection. Data were analyzed using Wave software
449 and normalized to protein amount.

450 *Measurement of glucose, glutamine, lactate, glutamate and ammonia*

451 For glucose uptake after short incubation time, cells cultured in 96-well plates were treated with DMF
452 overnight. Then, cells were washed twice with PBS supplemented with calcium and magnesium (DPBS),
453 and then starved for 30 min with this DPBS containing or not DMF. Cells were incubated for additional 30
454 min with DPBS containing or not DMF and supplemented with 5 mM glucose, 0.5 mM glutamine and 100
455 μ M 2-NBDG (2-(N-(7-Nitrobenz-2-oxa-1,3-diazol-4-yl)Amino)-2-Deoxyglucose). Relative glucose uptake
456 was determined using a FACS VERSE™ cytometer from BD Biosciences (San Jose, CA, USA) as previously
457 described (Zou, Wang, & Shen, 2005). Data were analyzed with BD FACSuite software. For longer
458 incubation times, concentrations of extracellular glucose, lactate, glutamine, and glutamate of control
459 and DMF-treated cells were determined from aliquots of media using an automated electrochemical
460 analyzer (BioProfile Basic-4 analyzer; NOVA). Ammonia secretion was measured from a fraction of the
461 same aliquots with a spectrophotometric assay (Megazyme) using a FLUOstar Omega microplate reader
462 from BMG LABTECH (Ortenberg, Germany). Data were normalized to cell number.

463 *Measurement of glutamine oxidation*

464 Cells cultured in 24-well plates and treated or not with 100 μ M DMF overnight were washed twice
465 with PBS supplemented with DPBS, and then starved for 30 min with this DPBS containing or not DMF.
466 Cells were incubated for additional 30 min with DPBS containing or not DMF and supplemented with 25

467 mM HEPES, 0.5 mM glutamine, 5 mM glucose and 0.5 μ Ci/mL L-[U- 14 C]-glutamine. Media and cells were
468 collected in round-bottom glass tubes with screw-caps. Each glass tube contained a Whatman™ paperfold
469 imbibed with benzethonium hydroxide (hyamine). 400 μ L 10% (v/v) HClO₄ were added to the closed glass
470 tubes through the cap. Tubes were incubated for additional 30 minutes at 37 °C with agitation.
471 Whatman™ paperfolds with 14 CO₂ captured in them were mixed with scintillation liquid. A Beckman
472 Coulter LS6500 liquid scintillation counter (Fullerton, CA, USA) was used for the measurements. All assays
473 were performed at the Radioactive Facilities of the University of Málaga, authorized with reference
474 IR/MA-13/80 (IRA-0940) for the use of non-encapsulated radionuclides.

475 *Proteomics analysis*

476 Control and DMF treated cells were extensively washed and frozen for their analysis. Cells were lysed
477 using RIPA buffer on ice for 5 minutes and scratched. Cell extracts were sonicated and centrifuged and
478 supernatants were collected. For protein precipitation, a modified trichloroacetic acid-acetone
479 precipitation method (Clean-Up Kit; GE Healthcare, Munich, Germany) was used. The resultant precipitate
480 was dissolved in bidistilled water, sonicated and centrifuged and supernatants were collected in a clean
481 tube. Then we carried out a gel-assisted proteolysis entrapping the protein solution in a polyacrylamide
482 gel matrix. Peptides were extracted from the gel pieces with ACN/0.1% formic acid and the samples were
483 dried in a SpeedVac™ vacuum concentrator. The dried peptides from each sample were reconstituted in
484 0.1% formic acid and quantified in a NanoDrop™ (Thermo Scientific) to equalize all samples at an identical
485 protein concentration before analysis on the liquid chromatography-tandem mass spectrometry (LC-
486 MS/MS) system. Mass spectrometry (MS) analysis was performed using an Easy nLC 1200 UHPLC system
487 coupled to a hybrid linear trap quadrupole Orbitrap Q-Exactive HF-X mass spectrometer (ThermoFisher
488 Scientific). Software versions used for the data acquisition and operation were Tune 2.9 and Xcalibur
489 4.1.31.9. The acquired raw data were analyzed using Proteome Discoverer™ 2.2 (Thermo Fisher
490 Scientific). Normalization was performed based on specific abundance of human β -actin protein and
491 samples were scaled to controls average. The MS proteomics data have been deposited to the
492 ProteomeXchange Consortium via the PRIDE partner repository with the dataset identifier PXD014489
493 (Vizcaino et al., 2014).

494 *RNA extraction and gene expression analysis*

495 Total RNA from control and DMF-treated HMECs was extracted using Tri Reagent™ (Sigma-Aldrich),
496 and RNA was purified with the Direct-zol™ RNA MiniPrep Kit (Zymo Research) according to the
497 manufacturer's instructions. RNA quality and amount was measured using a NanoDrop ND-1000 (Thermo
498 Scientific). cDNA synthesis was performed using the PrimeScript™ RT reagent Kit (Takara) following
499 purchaser's instructions. mRNA expression analysis was determined using KAPA SYBR Fast Master Mix
500 (2x) Universal (KAPA Biosystems) in an Eco Real-Time PCR System (Illumina). The following thermal cycling
501 profile was used: 95 °C, 3 min; 40 cycles of 95 °C, 10 s and 54 °C, 30s. Primer sequences were as follows:
502 *ACTB* forward: GACGACATGGAGAAAATCTG; *ACTB* reverse: ATGATCTGGGTCATCTTCTC; *SLC2A1* forward:
503 ACCTCAAATTCATTGTGGG; *SLC2A1* reverse: GAAGATGAAGAACAGAACCCAG. qPCR data were normalized
504 to *ACTB* expression.

505 *Western blot*

506 Cells were lysed with RIPA (50 mM Tris-HCl pH 7.4, 150 nM NaCl, 1% Triton X-100, 0.25% sodium
507 deoxycholate and 1 mM EDTA) or with 2x denaturing loading buffer. Samples were heated at 95 °C during
508 5 min and separated on 10% polyacrylamide gels. Proteins were transferred to nitrocellulose membranes
509 and blocked with 10% (w/v) semiskimmed dried milk. Blocked membranes were incubated overnight with
510 primary antibodies (anti-HIF-1 α 1:500, anti-PHGDH 1:1000, anti- α -tubulin 1:10000, anti-calnexin 1:1000),
511 washed and incubated with the peroxidase-linked secondary anti-rabbit or anti-mouse antibody for 1 h
512 at room temperature. Membranes were washed and finally incubated with the Supersignal® West Pico
513 chemiluminescent substrate system (Thermo Scientific). Image captions were taken with the ChemiDoc™
514 XRS+ System (Bio-Rad) using Image Lab software or either films were revealed using a Medical film
515 processor from Konica Minolta (Tokyo, Japan). Densitometry analyses were made with Image J software.

516 *Metabolomics and labeling experiments using stable isotopes*

517 Cells grown in 6-cm dishes to 80-90% confluence were washed and 10 mM glucose or [$U-^{13}C$]-glucose
518 and 4 mM glutamine or [$U-^{13}C$]-glutamine were added for the indicated times in DMEM supplemented
519 with 10% dFBS in the presence or absence of DMF. For experiments of serine and glycine withdrawal or
520 labeling, 10 mM glucose, 4 mM glutamine, 0.4 mM serine or [$U-^{13}C$]-serine and/or 0.4 mM glycine or [$U-^{13}C$]-glycine
521 were added for 24 h in serine and glycine free RPMI-1640 or DMEM supplemented with 10%
522 dFBS containing or not DMF. For analysis of intracellular metabolites by gas chromatography/mass
523 spectrometry (GC/MS), labeled cells were rinsed in ice-cold saline solution and lysed with three freeze-
524 thaw cycles in cold 80% methanol. Debris was discarded by centrifugation and 50 nmol of sodium 2-
525 oxobutyrate were added as internal standard to the supernatants. Samples were evaporated, derivatized
526 with N-(Tert-Butyldimethylsilyl)-N-Methyltrifluoroacetamide (MTBSTFA) and analyzed on an Agilent 7890
527 gas chromatograph coupled to an Agilent 5975 mass selective detector as previously described (Faubert
528 et al., 2017). Data were acquired using MSD ChemStation software (Agilent). For analysis of intracellular
529 metabolites by liquid chromatography/mass spectrometry (LC/MS), samples obtained in the same way
530 but without addition of sodium 2-oxobutyrate were evaporated. Dried samples were reconstituted in
531 0.1% formic acid in water and 5 μ L were injected into a 1290 UHPLC liquid chromatography (LC) system
532 interfaced to a high-resolution mass spectrometry (HRMS) 6550 iFunnel Q-TOF mass spectrometer (MS)
533 (Agilent). The MS was operated in both positive and negative (ESI+ and ESI-) modes. Analytes were
534 separated on an Acquity UPLC® HSS T3 column (1.8 μ m, 2.1 x 150 mm, Waters, MA). The column was kept
535 at room temperature. Mobile phase A composition was 0.1% formic acid in water and mobile phase B
536 composition was 0.1% formic acid in 100% acetonitrile. The LC gradient was 0 min: 1% B; 5 min: 5% B; 15
537 min: 99%; 23 min: 99%; 24 min: 1%; 25 min: 1%. The flow rate was 250 μ L/min. Data were acquired using
538 Profinder B.08.00 SP3 software (Agilent). Intracellular relative abundance of metabolites was normalized
539 to cell number for GC/MS samples or by total ion current (TIC) normalization for LC/MS samples and
540 represented in a heatmap using Heatmapper (Babicki et al., 2016).

541 *Determination of PHGDH activity in HMECs*

542 PHGDH activity was measured in control and DMF treated cells using a spectrophotometric assay as
543 indicated by the supplier (Phosphoglycerate Dehydrogenase (PHGDH) Activity Assay Kit (Colorimetric),
544 BioVision). 100 μ g protein of cell lysates were added to each well along with the reaction mix and PHGDH
545 activity was monitored at 450 nm at 37 °C using a FLUOstar Omega microplate reader from BMG LABTECH
546 (Ortenberg, Germany). Additionally, cell lysates from the control condition were added along with DMSO
547 or 100 μ M DMF to the reaction mix.

548 *Statistical analysis*

549 All results are expressed as means \pm SD. Data shown for extracellular flux analysis are for an
550 experiment with 3-5 replicates, which was repeated three times with similar results. Metabolite
551 quantification using NOVA/ammonia kit was done with three replicates, and repeated several times.
552 Metabolomics and labeling experiments were performed once with 3-4 replicates. Data in the remaining
553 figure panels reflect at least 3 independent experiments. For proteomics analysis, abundance ratio p-
554 values were calculated by ANOVA based on background population of peptides and proteins, and values
555 of $p < 0.01$ were considered to be statistically significant. For the rest of the experiments, statistical
556 significance was determined using the two-sided Student t-test and values of $p < 0.05$ were considered to
557 be statistically significant. In all figures, the p-values were shown as: * $p < 0.05$; ** $p < 0.01$; *** $p < 0.001$;
558 **** $p < 0.0001$.

559 *Funding*

560 M.O. was recipient of a predoctoral FPU grant from the Spanish Ministry of Education, Culture and Sport.
561 M.B. was supported by Juan de la Cierva – Incorporation Program (IJC2018-037657-I), Spanish Ministry of
562 Science and Innovation". This work was supported by grants PID2019-105010RB-I00 (MICINN and FEDER),
563 UMA18-FEDERJA-220 and PY20_00257 (Andalusian Government and FEDER) and funds from group BIO
564 267 (Andalusian Government). The "CIBER de Enfermedades Raras" and "CIBER de Enfermedades
565 Cardiovasculares" are an initiative from the ISCIII (Spain). R.J.D. is funded by Howard Hughes Medical

566 Institute and the National Cancer Institute (Grant R35CA22044901). The funders had no role in the study
567 design, data collection and analysis, decision to publish or preparation of the manuscript.

568 **Competing interests**

569 The authors declare no conflict of interest.

570 **Author Contributions**

571 M.O., C.Y., B.M-P.; R.J.D., A.R.Q. and M.A.M. designed the research; M.O. and C.Y. performed the
572 experiments and analyzed the data; H.S.V. performed LC/MS labeling and metabolomics assays; C.C.
573 performed proteomics assays and analysis; M.O. wrote the original draft; M. B., B.M-P., R.J.D., A.R.Q. and
574 M.A.M. reviewed and edited the final version of the manuscript; all authors reviewed the results and
575 approved the final version of the manuscript.

576 **References**

577 Ahuja, M., Ammal Kaidery, N., Yang, L., Calingasan, N., Smirnova, N., Gaisin, A., . . . Thomas, B. (2016).
578 Distinct Nrf2 Signaling Mechanisms of Fumaric Acid Esters and Their Role in Neuroprotection against 1-
579 Methyl-4-Phenyl-1,2,3,6-Tetrahydropyridine-Induced Experimental Parkinson's-Like Disease. *J Neurosci*,
580 36(23), 6332-6351. doi:10.1523/JNEUROSCI.0426-16.2016

581 Arbiser, J. L. (2011). Fumarate esters as angiogenesis inhibitors: key to action in psoriasis? *J Invest
582 Dermatol*, 131(6), 1189-1191. doi:10.1038/jid.2011.45

583 Babicki, S., Arndt, D., Marcu, A., Liang, Y., Grant, J. R., Maciejewski, A., & Wishart, D. S. (2016).
584 Heatmapper: web-enabled heat mapping for all. *Nucleic Acids Res*, 44(W1), W147-153.
585 doi:10.1093/nar/gkw419

586 Bar-Peled, L., Kemper, E. K., Suciu, R. M., Vinogradova, E. V., Backus, K. M., Horning, B. D., . . . Cravatt, B.
587 F. (2017). Chemical Proteomics Identifies Druggable Vulnerabilities in a Genetically Defined Cancer. *Cell*,
588 171(3), 696-709 e623. doi:10.1016/j.cell.2017.08.051

589 Bergers, G., & Hanahan, D. (2008). Modes of resistance to anti-angiogenic therapy. *Nat Rev Cancer*, 8(8),
590 592-603. doi:10.1038/nrc2442

591 Birsoy, K., Wang, T., Chen, W. W., Freinkman, E., Abu-Remaileh, M., & Sabatini, D. M. (2015). An Essential
592 Role of the Mitochondrial Electron Transport Chain in Cell Proliferation Is to Enable Aspartate Synthesis.
593 *Cell*, 162(3), 540-551. doi:10.1016/j.cell.2015.07.016

594 Cardenas, C., Quesada, A. R., & Medina, M. A. (2006). Evaluation of the anti-angiogenic effect of aloe-
595 emodin. *Cell Mol Life Sci*, 63(24), 3083-3089. doi:10.1007/s00018-006-6399-6

596 Carmeliet, P. (2005). Angiogenesis in life, disease and medicine. *Nature*, 438(7070), 932-936.
597 doi:10.1038/nature04478

598 Chen, K., Wu, S., Ye, S., Huang, H., Zhou, Y., Zhou, H., . . . Chen, B. (2021). Dimethyl Fumarate Induces
599 Metabolic Crisis to Suppress Pancreatic Carcinoma. *Front Pharmacol*, 12, 617714.
600 doi:10.3389/fphar.2021.617714

601 De Bock, K., Georgiadou, M., Schoors, S., Kuchnio, A., Wong, B. W., Cantelmo, A. R., . . . Carmeliet, P.
602 (2013). Role of PFKFB3-driven glycolysis in vessel sprouting. *Cell*, 154(3), 651-663.
603 doi:10.1016/j.cell.2013.06.037

604 DeNicola, G. M., Chen, P. H., Mullarky, E., Sudderth, J. A., Hu, Z., Wu, D., . . . Cantley, L. C. (2015). NRF2
605 regulates serine biosynthesis in non-small cell lung cancer. *Nat Genet*, 47(12), 1475-1481.
606 doi:10.1038/ng.3421

607 Eelen, G., Treps, L., Li, X., & Carmeliet, P. (2020). Basic and Therapeutic Aspects of Angiogenesis Updated.
608 *Circ Res*, 127(2), 310-329. doi:10.1161/CIRCRESAHA.120.316851

609 Faubert, B., Li, K. Y., Cai, L., Hensley, C. T., Kim, J., Zacharias, L. G., . . . DeBerardinis, R. J. (2017). Lactate
610 Metabolism in Human Lung Tumors. *Cell*, 171(2), 358-371 e359. doi:10.1016/j.cell.2017.09.019

611 Folkman, J. (2007). Angiogenesis: an organizing principle for drug discovery? *Nat Rev Drug Discov*, 6(4),
612 273-286. doi:10.1038/nrd2115

613 Foresti, R., Bucolo, C., Platania, C. M., Drago, F., Dubois-Randé, J. L., & Motterlini, R. (2015). Nrf2 activators
614 modulate oxidative stress responses and bioenergetic profiles of human retinal epithelial cells cultured in
615 normal or high glucose conditions. *Pharmacol Res*, 99, 296-307. doi:10.1016/j.phrs.2015.07.006

616 Frycak, P., Zdrahal, Z., Ulrichova, J., Wiegreb, W., & Lemr, K. (2005). Evidence of covalent interaction of
617 fumaric acid esters with sulphhydryl groups in peptides. *J Mass Spectrom*, 40(10), 1309-1318.
618 doi:10.1002/jms.910

619 Gaglio, D., Metallo, C. M., Gameiro, P. A., Hiller, K., Danna, L. S., Balestrieri, C., . . . Chiaradonna, F. (2011).
620 Oncogenic K-Ras decouples glucose and glutamine metabolism to support cancer cell growth. *Mol Syst*
621 *Biol*, 7, 523. doi:10.1038/msb.2011.56

622 Garcia-Caballero, M., Mari-Beffa, M., Medina, M. A., & Quesada, A. R. (2011). Dimethylfumarate inhibits
623 angiogenesis in vitro and in vivo: a possible role for its antipsoriatic effect? *J Invest Dermatol*, 131(6), 1347-
624 1355. doi:10.1038/jid.2010.416

625 Goveia, J., Stapor, P., & Carmeliet, P. (2014). Principles of targeting endothelial cell metabolism to treat
626 angiogenesis and endothelial cell dysfunction in disease. *EMBO Mol Med*, 6(9), 1105-1120.
627 doi:10.15252/emmm.201404156

628 Guo, D., Murdoch, C. E., Xu, H., Shi, H., Duan, D. D., Ahmed, A., & Gu, Y. (2017). Vascular endothelial
629 growth factor signaling requires glycine to promote angiogenesis. *Sci Rep*, 7(1), 14749.
630 doi:10.1038/s41598-017-15246-3

631 Heidenreich, R., Rocken, M., & Ghoreschi, K. (2009). Angiogenesis drives psoriasis pathogenesis. *Int J Exp*
632 *Pathol*, 90(3), 232-248. doi:10.1111/j.1365-2613.2009.00669.x

633 Hitzel, J., Lee, E., Zhang, Y., Bibli, S. I., Li, X., Zukunft, S., . . . Brandes, R. P. (2018). Oxidized phospholipids
634 regulate amino acid metabolism through MTHFD2 to facilitate nucleotide release in endothelial cells. *Nat*
635 *Commun*, 9(1), 2292. doi:10.1038/s41467-018-04602-0

636 Koivunen, P., Hirsila, M., Remes, A. M., Hassinen, I. E., Kivirikko, K. I., & Mallyharju, J. (2007). Inhibition of
637 hypoxia-inducible factor (HIF) hydroxylases by citric acid cycle intermediates: possible links between cell
638 metabolism and stabilization of HIF. *J Biol Chem*, 282(7), 4524-4532. doi:10.1074/jbc.M610415200

639 Kornberg, M. D., Bhargava, P., Kim, P. M., Putluri, V., Snowman, A. M., Putluri, N., . . . Snyder, S. H. (2018).
640 Dimethyl fumarate targets GAPDH and aerobic glycolysis to modulate immunity. *Science*, 360(6387), 449-
641 453. doi:10.1126/science.aan4665

642 Kubota, Y., Kleinman, H. K., Martin, G. R., & Lawley, T. J. (1988). Role of laminin and basement membrane
643 in the morphological differentiation of human endothelial cells into capillary-like structures. *J Cell Biol*,
644 107(4), 1589-1598. doi:10.1083/jcb.107.4.1589

645 Linker, R. A., & Haghikia, A. (2016). Dimethyl fumarate in multiple sclerosis: latest developments, evidence
646 and place in therapy. *Ther Adv Chronic Dis*, 7(4), 198-207. doi:10.1177/2040622316653307

647 Liu, S., Sun, Y., Jiang, M., Li, Y., Tian, Y., Xue, W., . . . Huang, K. (2017). Glyceraldehyde-3-phosphate
648 dehydrogenase promotes liver tumorigenesis by modulating phosphoglycerate dehydrogenase.
649 *Hepatology*, 66(2), 631-645. doi:10.1002/hep.29202

650 Meissner, M., Doll, M., Hrgovic, I., Reichenbach, G., Konig, V., Hailemariam-Jahn, T., . . . Kaufmann, R.
651 (2011). Suppression of VEGFR2 expression in human endothelial cells by dimethylfumarate treatment:
652 evidence for anti-angiogenic action. *J Invest Dermatol*, 131(6), 1356-1364. doi:10.1038/jid.2011.46

653 Mrowietz, U., Barker, J., Boehncke, W. H., Iversen, L., Kirby, B., Naldi, L., . . . Warren, R. B. (2018). Clinical
654 use of dimethyl fumarate in moderate-to-severe plaque-type psoriasis: a European expert consensus. *J*
655 *Eur Acad Dermatol Venereol*, 32 Suppl 3, 3-14. doi:10.1111/jdv.15218

656 Ocana, M. C., Martinez-Poveda, B., Quesada, A. R., & Medina, M. A. (2019a). Highly Glycolytic
657 Immortalized Human Dermal Microvascular Endothelial Cells are Able to Grow in Glucose-Starved
658 Conditions. *Biomolecules*, 9(8). doi:10.3390/biom9080332

659 Ocana, M. C., Martinez-Poveda, B., Quesada, A. R., & Medina, M. A. (2019b). Metabolism within the tumor
660 microenvironment and its implication on cancer progression: An ongoing therapeutic target. *Med Res Rev*,
661 39(1), 70-113. doi:10.1002/med.21511

662 Ou, Y., Wang, S. J., Jiang, L., Zheng, B., & Gu, W. (2015). p53 Protein-mediated regulation of
663 phosphoglycerate dehydrogenase (PHGDH) is crucial for the apoptotic response upon serine starvation. *J*
664 *Biol Chem*, 290(1), 457-466. doi:10.1074/jbc.M114.616359

665 Peters, K., Kamp, G., Berz, A., Unger, R. E., Barth, S., Salamon, A., . . . Kirkpatrick, C. J. (2009). Changes in
666 human endothelial cell energy metabolic capacities during in vitro cultivation. The role of "aerobic
667 glycolysis" and proliferation. *Cell Physiol Biochem*, 24(5-6), 483-492. doi:10.1159/000257490

668 Possemato, R., Marks, K. M., Shaul, Y. D., Pacold, M. E., Kim, D., Birsoy, K., . . . Sabatini, D. M. (2011).
669 Functional genomics reveal that the serine synthesis pathway is essential in breast cancer. *Nature*,
670 476(7360), 346-350. doi:10.1038/nature10350

671 Quesada, A. R., Medina, M. A., & Alba, E. (2007). Playing only one instrument may be not enough:
672 limitations and future of the antiangiogenic treatment of cancer. *Bioessays*, 29(11), 1159-1168.
673 doi:10.1002/bies.20655

674 Quesada, A. R., Munoz-Chapuli, R., & Medina, M. A. (2006). Anti-angiogenic drugs: from bench to clinical
675 trials. *Med Res Rev*, 26(4), 483-530. doi:10.1002/med.20059

676 Ravez, S., Spillier, Q., Marteau, R., Feron, O., & Frederick, R. (2017). Challenges and Opportunities in the
677 Development of Serine Synthetic Pathway Inhibitors for Cancer Therapy. *J Med Chem*, 60(4), 1227-1237.
678 doi:10.1021/acs.jmedchem.6b01167

679 Reitzer, L. J., Wice, B. M., & Kennell, D. (1979). Evidence that glutamine, not sugar, is the major energy
680 source for cultured HeLa cells. *J Biol Chem*, 254(8), 2669-2676.

681 Ronca, R., Benkheil, M., Mitola, S., Struyf, S., & Liekens, S. (2017). Tumor angiogenesis revisited:
682 Regulators and clinical implications. *Med Res Rev*, 37(6), 1231-1274. doi:10.1002/med.21452

683 Saidu, N. E. B., Kavian, N., Leroy, K., Jacob, C., Nicco, C., Batteux, F., & Alexandre, J. (2019). Dimethyl
684 fumarate, a two-edged drug: Current status and future directions. *Med Res Rev*, 39(5), 1923-1952.
685 doi:10.1002/med.21567

686 Scerri, T. S., Quaglieri, A., Cai, C., Zernant, J., Matsunami, N., Baird, L., . . . Bahlo, M. (2017). Genome-wide
687 analyses identify common variants associated with macular telangiectasia type 2. *Nat Genet*, 49(4), 559-
688 567. doi:10.1038/ng.3799

689 Vandekeere, S., Dubois, C., Kalucka, J., Sullivan, M. R., Garcia-Caballero, M., Goveia, J., . . . Carmeliet, P.
690 (2018). Serine Synthesis via PHGDH Is Essential for Heme Production in Endothelial Cells. *Cell Metab*, 28(4),
691 573-587 e513. doi:10.1016/j.cmet.2018.06.009

692 Vizcaino, J. A., Deutsch, E. W., Wang, R., Csordas, A., Reisinger, F., Rios, D., . . . Hermjakob, H. (2014).
693 ProteomeXchange provides globally coordinated proteomics data submission and dissemination. *Nat
694 Biotechnol*, 32(3), 223-226. doi:10.1038/nbt.2839

695 Zou, C., Wang, Y., & Shen, Z. (2005). 2-NBDG as a fluorescent indicator for direct glucose uptake
696 measurement. *J Biochem Biophys Methods*, 64(3), 207-215. doi:10.1016/j.jbbm.2005.08.001

697

698

699

700

701

702

703

704

705

706

707

708

709

710

711

712

713

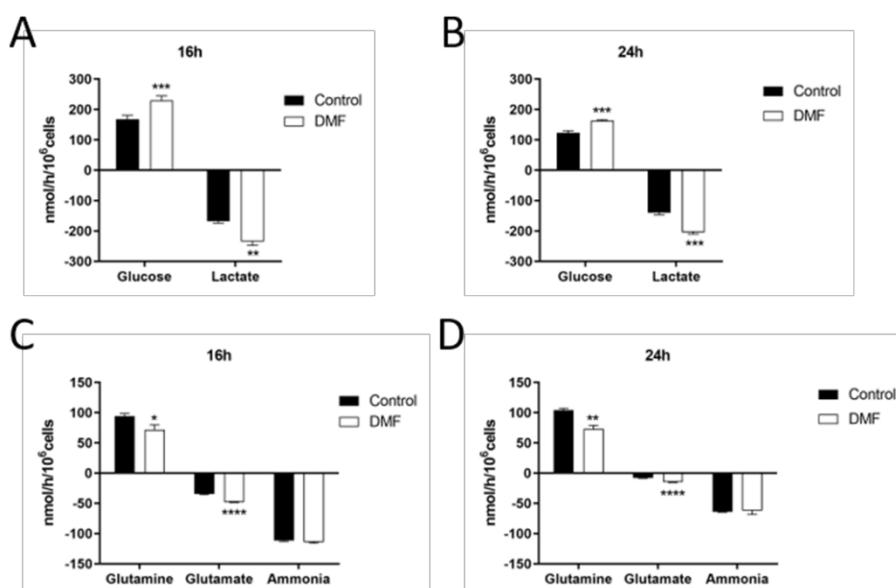
714

715

716

717

718


719

720

721

722

723 **Supplementary Figures**

724

725 **Supplementary Figure S1.** Effect of DMF on glucose uptake, lactate production, glutamine uptake and
726 glutamate and ammonia production. (A) Glucose uptake and lactate secretion in cells treated with 100
727 μ M DMF for 16 h or (B) 24 h in medium with 10 mM glucose and 4 mM glutamine. (C) Glutamine uptake
728 and glutamate and ammonia secretion in cells treated with 100 μ M DMF for 16 h or (D) 24 h in medium
729 with 10 mM glucose and 4 mM glutamine. Data are expressed as means \pm SD. *p<0.05, **p<0.01,
730 ***p<0.001, ****p<0.0001 versus untreated control.

731

732

733

734

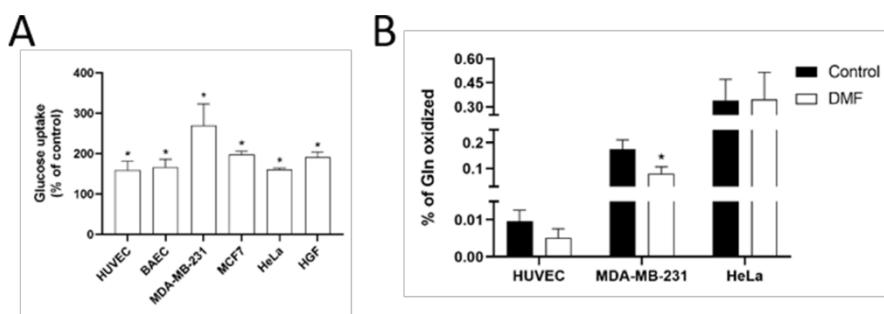
735

736

737

738

739


740

741

742

743

744

745 **Supplementary Figure S2.** Effect of DMF on glucose uptake and glutamine oxidation in other endothelial
746 cells, tumor cells and fibroblasts. (A) Glucose uptake and (B) glutamine oxidation after 30 minutes
747 incubation with 5 mM glucose and 0.5 mM glutamine in different cell lines treated with 100 μ M DMF for
748 16 h. Data are expressed as means \pm SD. *p<0.05 versus untreated control.

749

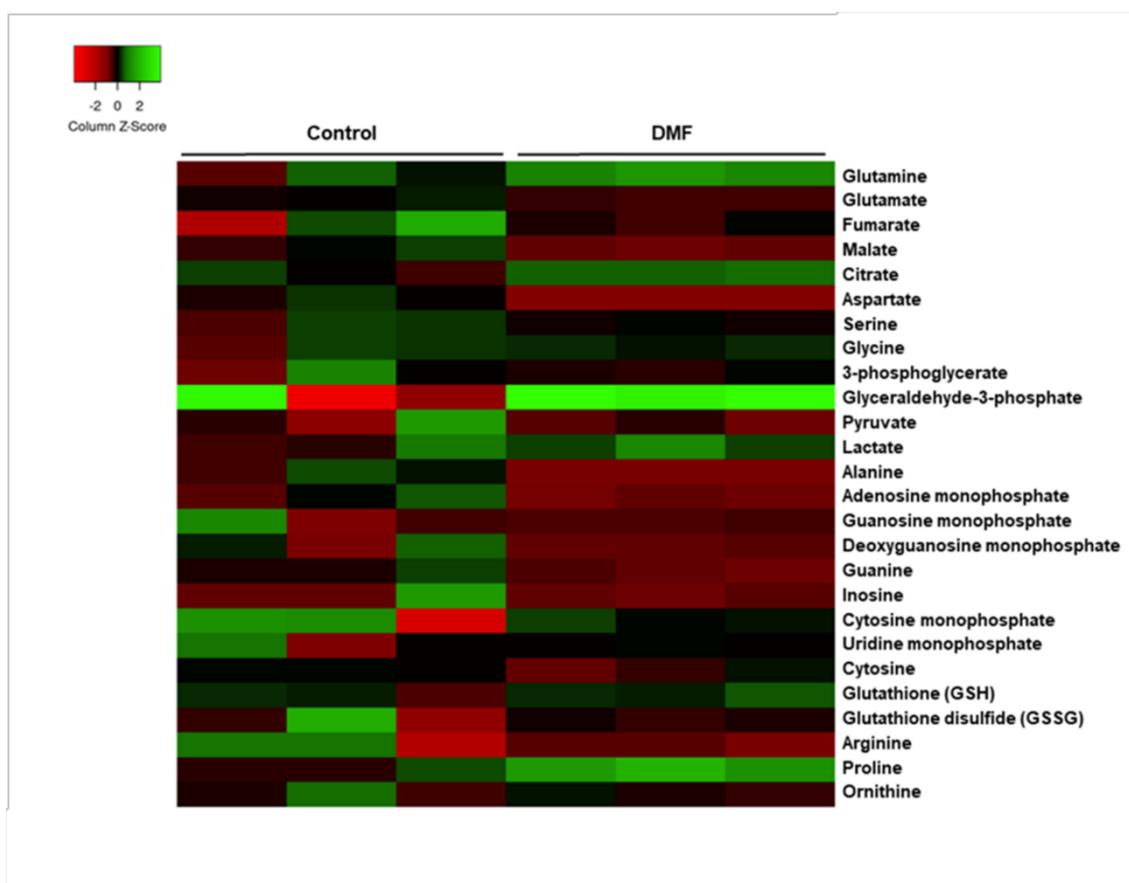
750

751

752

753

754


755

756

757

758

759

760

761 **Supplementary Figure S3.** Heatmap of intracellular metabolite levels in HMECs treated or not with 100
762 μM DMF for 24 h. Data are expressed as fold from the control condition.

763

764

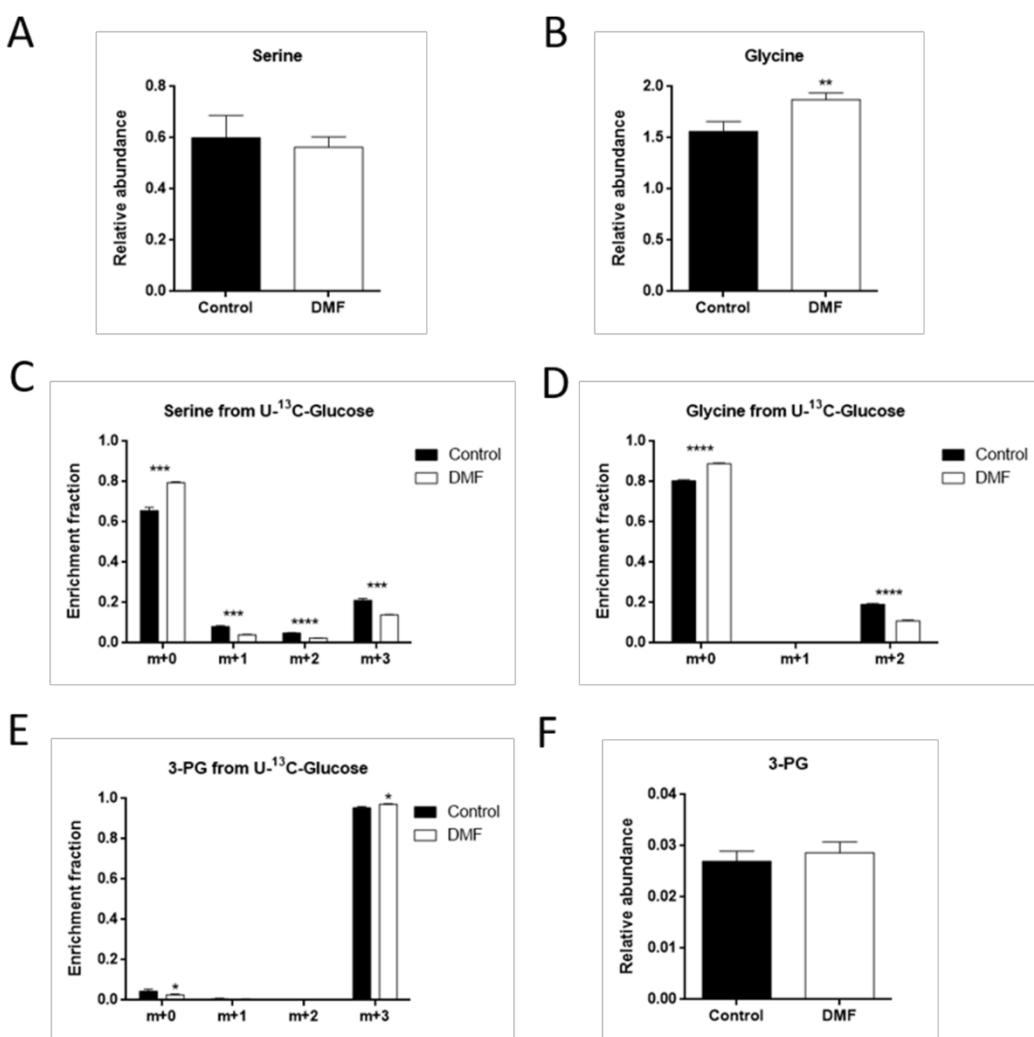
765

766

767

768

769


770

771

772

773

774

775

776 **Supplementary Figure S4.** Effect of 100 μ M DMF overnight incubation on serine and glycine synthesis
777 pathway in HMECs. (A) Intracellular serine and (B) glycine levels in cells treated with 100 μ M DMF for 16
778 h. (C) Fractional labeling of serine, (D) glycine and (E) 3-PG from $[U-^{13}C]$ -glucose and (F) intracellular 3-PG
779 levels in cells treated with 100 μ M DMF for 16 h. Data are expressed as means \pm SD. ** p <0.01, *** p <0.001,
780 **** p <0.0001 versus untreated control.

781

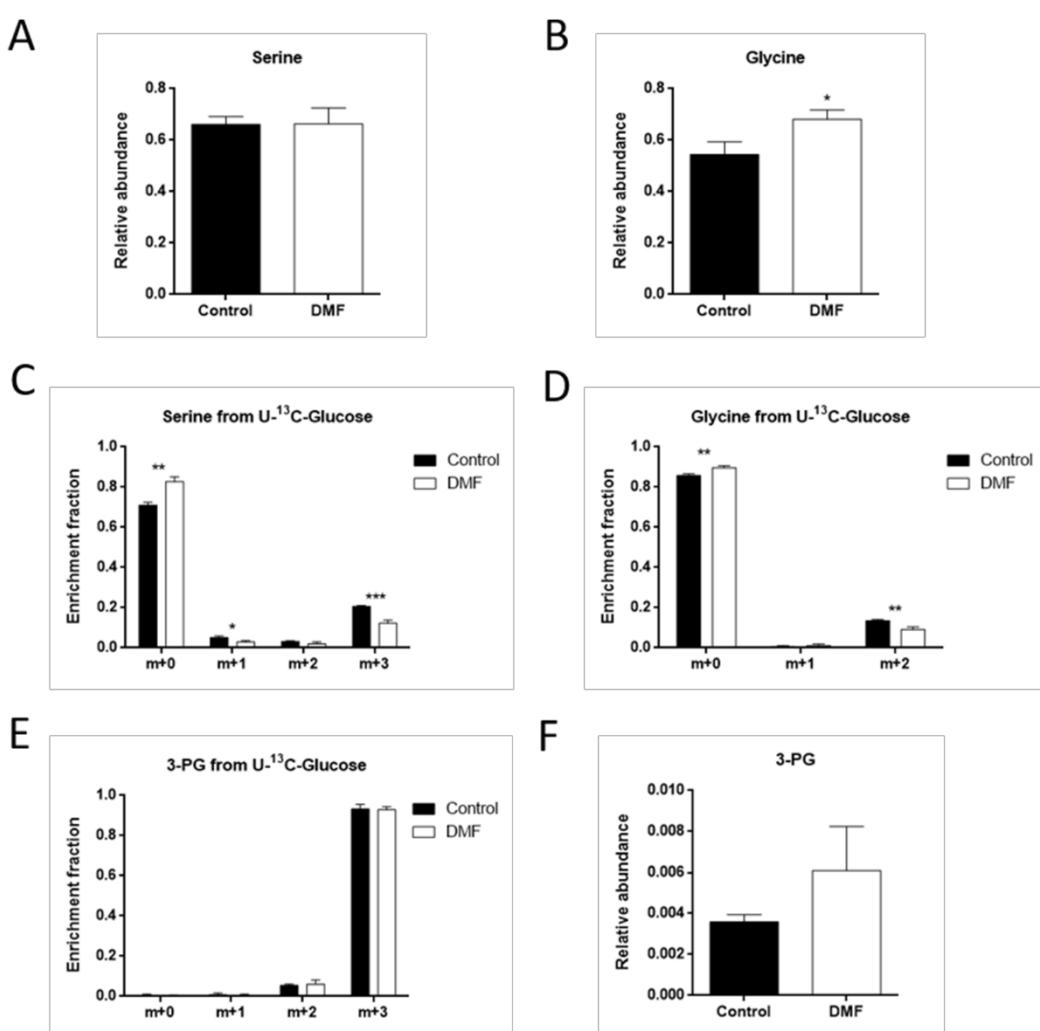
782

783

784

785

786


787

788

789

790

791

792

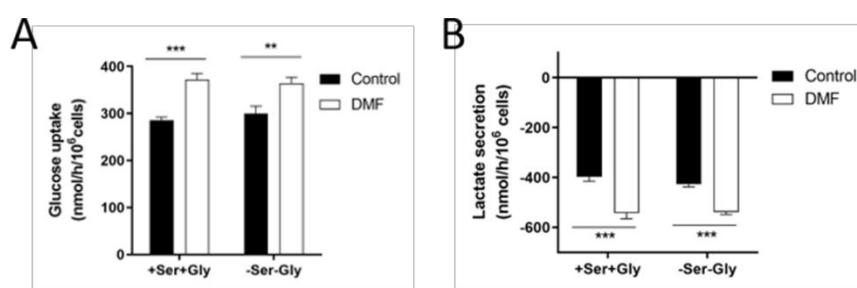
793 **Supplementary Figure S5.** Effect of 50 μ M DMF for 24 h on serine and glycine synthesis pathway in
794 HMECs. (A) Intracellular serine and (B) glycine levels in cells treated with 50 μ M DMF for 24 h. (C)
795 Fractional labeling of serine, (D) glycine and (E) 3-PG from [$U^{13}C$]-glucose and (F) intracellular 3-PG levels
796 in cells treated with 50 μ M DMF for 24 h. Data are expressed as means \pm SD. * p <0.05, ** p <0.01,
797 *** p <0.001 versus untreated control.

798

799

800

801


802

803

804

805

806

807

808 **Supplementary Figure S6.** Effect of DMF on glucose uptake and lactate secretion in the absence of
809 extracellular serine and glycine. (A) Glucose uptake and (B) lactate secretion in HMECs treated with 100
810 μ M DMF for 24 h in medium with 10 mM glucose and 4 mM glutamine in the presence or absence of 0.4
811 mM extracellular serine and glycine. Data are expressed as means \pm SD. ** p <0.01, *** p <0.001 versus
812 untreated control.

813

814

815

816

817

818

819

820

821

822

823

824

825

826

827

828

829

830

831

832

833

834 **Supplementary Tables**

835 **Supplementary Table S1.** Total of proteins detected with the proteomics analysis in HMECs treated with
836 100 μ M for 24 h.

Gene Symbol	Abundance Ratio (DMF/DMSO)	P-value
HMOX1	26.203	1.03E-15
GCLC	7.12	1.03E-15
ABHD4	7.001	1.53E-05
GBE1	4.463	1.72E-11
PSPH	4.461	3.11E-11
ARHGAP24	4.429	3.81E-04
SLC2A14	4.063	7.13E-06
DNM1	3.912	3.82E-03
TXNRD1	3.904	2.96E-11
SLC2A1	3.72	7.95E-03
RIT1	3.701	1.03E-02
PCYT1A	3.526	5.65E-05
HSPA1B; HSPA1A	3.497	2.73E-09
DCD	3.446	6.15E-06
VTN	3.359	9.10E-04
VWA5A	3.236	2.94E-04
ASNS	3.117	2.83E-07
RTN4	3.107	6.39E-06
FTH1	3.074	2.66E-02
SQSTM1	3.04	5.74E-04
ALDH1L2	3.012	2.51E-05
CPD	3.008	5.90E-02
HSPH1	2.991	1.27E-06
STK10	2.991	6.03E-02
TACC2	2.961	1.25E-01
AHCYL2	2.946	1.34E-01
BAG3	2.932	4.46E-03
CHORDC1	2.765	1.16E-03
DNAJA1	2.76	6.39E-05
UBE2R2	2.76	8.45E-02
SHANK3	2.755	5.95E-03
ITGA2	2.752	8.27E-05
ARMCX3	2.605	1.23E-02
CTPS1	2.601	1.86E-02
SARS	2.519	6.21E-04
CACYBP	2.516	1.62E-03
ANTXR2	2.516	1.72E-01
NUFIP2	2.512	3.03E-02
HSPB1	2.51	2.97E-04
RASA1	2.509	1.54E-01
STAU1	2.507	1.28E-02

Gene Symbol	Abundance Ratio (DMF/DMSO)	P-value
CLIP1	2.496	8.65E-03
CMAS	2.485	1.14E-02
PTGES3	2.445	1.62E-03
CBFB	2.442	1.29E-01
SLC30A1	2.423	6.02E-02
KLC2	2.42	3.41E-01
COBLL1	2.406	2.05E-02
CDK2	2.393	2.49E-01
PSAT1	2.366	1.26E-02
SH3PXD2B	2.365	3.00E-01
UAP1L1	2.363	3.83E-02
KPNA1	2.361	2.34E-01
NCDN	2.353	2.92E-01
CCDC71L	2.349	8.91E-02
TXN	2.34	1.87E-03
VPS28	2.34	2.97E-01
COTL1	2.332	8.80E-03
HBD	2.324	4.52E-03
AMFR	2.309	3.33E-01
FKBP5	2.288	6.38E-03
AMPD2	2.288	1.91E-02
MMP14	2.284	2.27E-01
MAN2A1	2.283	2.71E-01
SNTB2	2.282	7.00E-03
AIM1; CRYBG1	2.266	1.64E-02
RAB11FIP5	2.264	1.13E-01
CRYAB	2.25	4.59E-02
IRAK4	2.232	3.57E-01
SH2D3C	2.222	3.17E-01
SNX3	2.189	9.15E-03
AP1S2	2.188	2.60E-01
HECTD1	2.183	8.80E-03
TAOK1	2.182	4.59E-01
DNAJC7	2.177	1.56E-01
DNAJA2	2.172	8.33E-02
STRBP	2.168	1.39E-01
TINAGL1	2.161	4.66E-02
EZR	2.158	1.47E-02
TRIP10	2.158	3.68E-01
EIF5	2.156	2.04E-02
FYCO1	2.148	2.36E-01
DYNC1LI2	2.141	3.69E-01
UAP1	2.139	5.31E-01
TIA1	2.136	8.45E-02
GNPDA2	2.133	3.17E-01

Gene Symbol	Abundance Ratio (DMF/DMSO)	P-value
TPT1	2.115	1.65E-02
FAM160B1	2.113	3.16E-01
RRAGD	2.112	2.09E-01
NDRG1	2.096	1.44E-01
NEK9	2.092	1.88E-01
ANP32D	2.09	2.73E-01
TARS	2.08	2.27E-02
ANXA13	2.071	5.16E-01
ADD3	2.069	3.12E-01
LGALS1	2.068	1.56E-01
MAPRE3	2.064	4.99E-01
GNG2	2.056	4.59E-01
ME1	2.051	7.76E-02
ARL8A	2.047	5.06E-01
TOP1	2.041	3.29E-02
DAB2	2.041	8.37E-02
MAPRE2	2.022	1.00E-01
EEF1E1	2.018	4.57E-01
DNAJC3	2.014	3.95E-01
VAT1	2.012	4.10E-02
LARP4B	2.012	5.17E-01
RTCA	2.01	3.97E-01
PPIL4	2.009	5.73E-01
AARS	2.008	4.27E-02
LSM12	2.008	3.07E-01
HMGCS1	2.006	6.10E-02
CDK16	2.001	4.91E-01
VPS26A	2	7.54E-02
DDAH2	1.984	5.75E-01
WLS	1.97	2.69E-01
FKBP4	1.969	1.13E-01
HSP90AA1	1.956	6.71E-02
USP47	1.951	5.86E-01
MON2	1.944	1.39E-01
NPTN	1.94	3.78E-01
TOP2A	1.939	4.39E-01
SPCS1	1.939	5.82E-01
DHFR; DHFRP1	1.935	3.15E-01
DOCK7	1.934	4.99E-01
TCEB1; ELOC	1.932	2.22E-01
LPCAT2	1.931	4.18E-01
ITPR1	1.931	5.86E-01
GSR	1.925	1.12E-01
YTHDF3	1.925	3.32E-01
ARHGAP31	1.925	6.29E-01

Gene Symbol	Abundance Ratio (DMF/DMSO)	P-value
HADH	1.925	3.27E-01
SRSF9	1.917	3.99E-01
UGDH	1.914	1.23E-01
ARIH1	1.912	4.11E-01
PTPN12	1.91	3.00E-01
RENBP	1.908	3.47E-01
PSME4	1.903	1.04E-01
MAPK14	1.902	1.62E-01
PRRC2C	1.902	2.37E-01
EIF6	1.89	3.16E-01
GARS	1.889	1.15E-01
MAP2K1	1.885	1.34E-01
OS9	1.879	6.53E-01
SEL1L	1.873	4.59E-01
ARPC5L	1.865	6.38E-01
M6PR	1.861	4.67E-01
CALU	1.854	2.14E-01
TRIP12	1.853	2.39E-01
PALM2-AKAP2; PALM2; AKAP2	1.853	3.93E-01
ATXN2L	1.848	2.34E-01
TWF1	1.847	3.42E-01
SAR1B	1.846	5.86E-01
HSP90AB1	1.843	1.54E-01
TACC1	1.841	6.60E-01
CDC42	1.84	1.87E-01
IKBIP	1.84	3.00E-01
SWAP70	1.836	2.15E-01
UBE2K	1.831	3.77E-01
BANF1	1.824	3.33E-01
ATP2C1	1.823	5.72E-01
DCTN3	1.823	4.58E-01
WDFY1	1.823	5.26E-01
CLPTM1	1.82	4.18E-01
NOVA2	1.813	2.41E-01
TGM2	1.81	2.02E-01
PTBP3	1.809	6.76E-01
OSBPL9	1.808	3.77E-01
SLC25A24	1.806	3.77E-01
KPNA4	1.804	5.53E-01
HOMER3	1.801	4.23E-01
TFRC	1.801	3.61E-01
RAB3D	1.8	7.14E-01
PRKD2	1.8	7.31E-01
HBA2; HBA1	1.799	2.06E-01
PAC SIN2	1.794	2.13E-01

Gene Symbol	Abundance Ratio (DMF/DMSO)	P-value
NRBP1	1.794	3.61E-01
KIF13B	1.792	7.31E-01
MCMBP	1.785	7.35E-01
RALA	1.782	7.42E-01
GNAQ	1.776	4.80E-01
FXR2	1.772	5.97E-01
ATP6V0A1	1.765	3.51E-01
LRRC8C	1.765	4.91E-01
GSTP1	1.764	2.49E-01
PGD	1.763	2.50E-01
CAB39	1.762	6.97E-01
NRD1; NRDC	1.759	5.00E-01
SEC13	1.756	3.61E-01
AK2	1.753	5.86E-01
ADH5	1.753	6.31E-01
NME1	1.752	5.86E-01
GSK3A	1.752	7.43E-01
ABCC1	1.751	6.12E-01
RBM39	1.75	2.72E-01
VPS35	1.749	2.73E-01
WDR26	1.749	6.64E-01
PLCG1	1.749	5.84E-01
RALY	1.749	3.16E-01
PRPSAP1	1.748	6.38E-01
PACS1	1.747	7.85E-01
HEATR3	1.747	7.45E-01
MTHFD1L	1.746	3.51E-01
DUT	1.746	7.18E-01
TROVE2	1.742	5.86E-01
PNN	1.741	4.78E-01
STAT1	1.74	2.91E-01
BICD2	1.738	7.67E-01
SHC1	1.737	5.06E-01
LAMC1	1.736	2.99E-01
MRPL48	1.735	7.92E-01
CISD2	1.733	5.88E-01
HSPA8	1.732	3.06E-01
WDR6	1.732	7.92E-01
DDX6	1.731	3.09E-01
NUCD2	1.73	7.91E-01
EPB41	1.727	6.11E-01
ASAHI	1.727	7.89E-01
DIAPH1	1.722	3.86E-01
LYPLA2	1.722	6.10E-01
S100A11	1.719	3.61E-01

Gene Symbol	Abundance Ratio (DMF/DMSO)	P-value
UGP2	1.718	3.81E-01
RAB13	1.716	5.75E-01
PXN	1.711	3.31E-01
CLMN	1.708	7.48E-01
ASPH	1.706	6.23E-01
WBP2	1.706	5.82E-01
PLOD2	1.705	4.80E-01
G3BP2	1.703	4.19E-01
NUP153	1.699	6.06E-01
SLC9A3R2	1.699	7.67E-01
SRSF4	1.698	8.05E-01
ARID1B	1.698	8.54E-01
PRDX6	1.697	3.42E-01
SUB1	1.697	6.10E-01
NEDD4	1.696	6.98E-01
ECE1	1.695	5.98E-01
PELO	1.692	7.09E-01
DCUN1D1	1.691	8.05E-01
TMEM33	1.69	4.77E-01
CASP6	1.69	8.28E-01
CBS; LOC102724560; CBSL	1.688	6.11E-01
MAOA	1.687	5.38E-01
LRRKIP2	1.686	8.28E-01
PFN1	1.683	3.68E-01
PPP2R4; PTPA	1.682	5.88E-01
GDI1	1.681	5.31E-01
TBCC	1.677	8.21E-01
TUBA1A	1.676	5.66E-01
SH3GLB2	1.676	7.51E-01
PRKAR1A	1.674	4.50E-01
LIMA1	1.673	4.26E-01
ATL2	1.669	8.40E-01
GPI	1.668	4.55E-01
ACAT2	1.663	5.99E-01
TJP1	1.661	4.17E-01
GNAI3	1.66	8.20E-01
UBXN7	1.66	8.09E-01
STXBP1	1.659	8.79E-01
TALDO1	1.658	4.19E-01
TMED1	1.658	8.23E-01
MOB1B	1.657	6.98E-01
CAPZB	1.653	7.85E-01
RABGAP1	1.653	7.51E-01
SPTBN2	1.651	8.55E-01
GNE	1.651	6.38E-01

Gene Symbol	Abundance Ratio (DMF/DMSO)	P-value
RAB35	1.647	6.53E-01
KRAS	1.647	7.63E-01
EIF4G2	1.645	4.49E-01
MYO5A	1.644	5.86E-01
ZFR	1.644	6.96E-01
ANP32B	1.642	7.25E-01
RALB	1.642	5.95E-01
CPNE3	1.639	5.51E-01
RAI14	1.639	5.79E-01
LIMS1	1.639	7.35E-01
LAMP2	1.638	5.86E-01
TAOK2	1.638	8.78E-01
EHD4	1.637	4.67E-01
FAM114A2	1.636	8.32E-01
ANKFY1	1.633	5.86E-01
PYCR1	1.632	5.22E-01
SETD7	1.63	7.54E-01
GLUL	1.628	7.44E-01
AHSA1	1.627	5.87E-01
ENAH	1.627	8.18E-01
METAP2	1.626	7.45E-01
LSM14A	1.625	6.19E-01
TCEB2; ELOB	1.624	7.02E-01
UCHL1	1.623	7.19E-01
ADARB1	1.623	8.32E-01
NES	1.622	5.04E-01
TMEM65	1.622	8.24E-01
ILF2	1.62	5.08E-01
HNRNPLL; HNRPLL	1.62	7.94E-01
CARS	1.62	6.31E-01
RBM4	1.619	6.37E-01
PITPNA	1.617	7.62E-01
ZC3H15	1.616	7.57E-01
SMARCC1	1.615	8.75E-01
RAB8B	1.614	8.48E-01
GALNT2	1.612	5.86E-01
EIF2S2	1.611	5.29E-01
PPAP2A; PLPP1	1.609	7.77E-01
CBX1	1.608	8.32E-01
KANK2	1.608	8.88E-01
STUB1	1.607	7.90E-01
ALDOA	1.604	5.51E-01
KPNA3	1.603	7.37E-01
CLASP1	1.603	8.72E-01
SKP1	1.6	6.88E-01

Gene Symbol	Abundance Ratio (DMF/DMSO)	P-value
PSMA6	1.598	5.68E-01
MAP1B	1.597	5.86E-01
EIF3J	1.597	7.04E-01
ANXA7	1.596	6.12E-01
CXorf26; PBDC1	1.595	8.75E-01
WASF2	1.593	7.23E-01
AAK1	1.592	6.38E-01
RHOG	1.592	5.92E-01
HEATR1	1.592	8.02E-01
RBM8A; LOC101060541	1.592	8.29E-01
ETF1	1.591	5.80E-01
SPTLC2	1.59	6.11E-01
HSPA2	1.589	7.58E-01
SLK	1.588	6.68E-01
MARS	1.587	5.97E-01
RTN3	1.587	7.09E-01
KDSR	1.587	8.75E-01
PRAF2	1.587	7.98E-01
KTN1	1.586	5.86E-01
ALDOC	1.586	5.86E-01
PHGDH	1.586	5.86E-01
ROCK1	1.586	7.85E-01
MOSPD2	1.586	8.93E-01
NMI	1.586	8.82E-01
MDH1	1.585	5.88E-01
REL	1.584	8.90E-01
YWHAG	1.583	5.86E-01
VASP	1.582	7.16E-01
ACACA	1.582	7.99E-01
CYB5A	1.582	7.85E-01
NAMPT	1.582	8.28E-01
DPP9	1.582	9.13E-01
YWHAQ	1.581	5.86E-01
UBE2N	1.581	6.01E-01
AKR1A1	1.581	5.94E-01
CBLB	1.581	8.75E-01
YME1L1	1.58	8.90E-01
RAB8A	1.579	7.85E-01
ZC3H18	1.579	8.93E-01
P4HA1	1.577	6.25E-01
S100A10	1.577	6.67E-01
EMC7	1.577	8.72E-01
VCP	1.576	5.92E-01
TRAM1	1.576	8.88E-01
NRAS	1.574	8.72E-01

Gene Symbol	Abundance Ratio (DMF/DMSO)	P-value
REXO2	1.574	7.93E-01
TNPO1	1.573	5.98E-01
MGEA5	1.573	8.29E-01
MACF1	1.572	5.99E-01
TRIM47	1.572	7.77E-01
GRB2	1.572	8.15E-01
HNRNPDL; HNRPDL	1.571	7.01E-01
PAFAH1B1	1.57	6.10E-01
NSF	1.569	6.24E-01
IST1	1.569	7.31E-01
ATP6V0D1	1.569	8.01E-01
PGK1	1.565	6.18E-01
UBA3	1.565	8.67E-01
MYH10	1.563	9.27E-01
TIAL1	1.563	7.81E-01
ERC1	1.562	6.61E-01
LUZP1	1.562	8.69E-01
RAB18	1.56	8.05E-01
ATG3	1.56	8.55E-01
ACOX1	1.56	8.72E-01
VPS29	1.558	6.98E-01
KRT14	1.558	9.27E-01
GOLGA5	1.557	8.29E-01
SPAG9	1.556	6.38E-01
COLGALT1; GLT25D1	1.556	6.83E-01
STAM	1.556	8.82E-01
DDX17	1.555	6.38E-01
DDX39A	1.555	6.97E-01
OLA1	1.554	6.98E-01
CPT1A	1.552	8.35E-01
WDR77	1.552	8.50E-01
INPPL1	1.552	8.89E-01
USP15	1.55	7.78E-01
NAGA	1.55	7.35E-01
PIK3C2A	1.549	9.23E-01
MYO1E	1.547	8.62E-01
GSK3B	1.547	8.80E-01
RHOC	1.544	8.81E-01
EPS15	1.544	9.12E-01
GNPDA1	1.543	9.03E-01
UBE2L3	1.543	8.72E-01
MIA3	1.543	8.61E-01
PYGL	1.542	7.19E-01
OXSR1	1.542	8.27E-01
OGDH	1.541	6.76E-01

Gene Symbol	Abundance Ratio (DMF/DMSO)	P-value
BZW2	1.54	8.44E-01
ANXA4	1.538	6.82E-01
HYOU1	1.537	6.85E-01
SMAD4	1.537	9.21E-01
AK3	1.537	8.75E-01
DNAJB4	1.535	7.60E-01
DPM3	1.535	9.03E-01
SEC16A	1.535	9.08E-01
PPP1CC	1.534	9.27E-01
RAB5A	1.534	7.23E-01
C14orf166; RTRAF	1.534	7.35E-01
NIPSNAP1	1.533	9.20E-01
PPP2CB	1.531	7.27E-01
EIF4E2	1.529	9.01E-01
FLII	1.528	7.05E-01
CKAP5	1.528	7.55E-01
HSPA4	1.526	7.09E-01
API5	1.526	7.81E-01
SMCHD1	1.526	8.14E-01
EIF3G	1.525	7.31E-01
SETD3	1.525	8.82E-01
USP14	1.522	7.31E-01
BZW1	1.522	8.02E-01
LDHA	1.522	7.19E-01
HDGF	1.522	7.58E-01
NUMB	1.522	8.93E-01
HERC4	1.522	9.26E-01
TMX2	1.521	8.82E-01
TMEM160	1.521	8.85E-01
TLK1	1.519	9.27E-01
PAK2	1.518	7.31E-01
DYNLL2	1.518	9.26E-01
CD2AP	1.518	8.72E-01
TFG	1.517	7.85E-01
NAE1	1.517	8.72E-01
C16orf80; CFAP20	1.517	9.28E-01
HK1	1.516	7.27E-01
KLC1	1.516	7.95E-01
TWF2	1.516	8.72E-01
PABPC1	1.515	7.30E-01
EIF3H	1.513	7.92E-01
NUP54	1.513	9.31E-01
CSDE1	1.512	7.32E-01
ALDH7A1	1.512	7.35E-01
PPP4R1	1.511	8.65E-01

Gene Symbol	Abundance Ratio (DMF/DMSO)	P-value
UBXN1	1.511	9.28E-01
CANX	1.509	7.35E-01
DIP2B	1.509	8.21E-01
RAB3GAP2	1.508	9.31E-01
ANP32A	1.506	8.82E-01
ATP6V1E1	1.506	8.29E-01
UBE2D3	1.506	8.79E-01
ITCH	1.506	9.28E-01
FAM49B	1.505	8.75E-01
NACC1	1.505	9.28E-01
SLMAP	1.504	9.27E-01
UBA1	1.503	7.50E-01
PARK7	1.503	7.47E-01
HMGA1	1.502	8.44E-01
CYB5R3	1.501	7.55E-01
EIF4E	1.5	8.20E-01
CRK	1.5	8.51E-01
SNX27	1.5	8.72E-01
NCBP2	1.5	9.28E-01
AGFG1	1.498	9.27E-01
PPP3CA	1.497	7.62E-01
RRAGB	1.497	8.78E-01
TRA2A	1.497	8.85E-01
LBR	1.497	9.00E-01
PRMT1	1.496	7.67E-01
PSMA5	1.496	7.68E-01
PIN1	1.496	9.27E-01
ERP44	1.495	8.03E-01
WWC2	1.495	9.34E-01
ATAD3A	1.492	8.75E-01
PIGT	1.492	9.34E-01
NPLOC4	1.49	8.40E-01
PSAP	1.49	8.75E-01
SPTAN1	1.489	8.23E-01
ANXA5	1.488	7.89E-01
KIAA1468	1.488	9.31E-01
PABPC4	1.487	8.01E-01
CBX3; C15orf57; CCDC32	1.487	8.97E-01
GMPPB	1.487	8.72E-01
ARF5	1.486	7.92E-01
AHSG	1.485	8.72E-01
TRIM25	1.485	9.28E-01
SYMPK	1.484	9.27E-01
EXOC5	1.484	9.28E-01
IKBIP	1.484	9.32E-01

Gene Symbol	Abundance Ratio (DMF/DMSO)	P-value
SEC23IP	1.483	8.39E-01
LARP1	1.483	8.51E-01
EEA1	1.482	7.99E-01
ALDH2	1.482	7.98E-01
EIF4G3	1.482	8.72E-01
AHCY	1.481	7.98E-01
COX6C	1.479	8.75E-01
SRPRB	1.478	8.54E-01
FKBP9	1.478	8.79E-01
MBNL1	1.478	9.27E-01
AP3S1	1.478	9.27E-01
ASS1	1.477	8.02E-01
RAB33B	1.477	9.34E-01
ILF3	1.476	8.02E-01
PPME1	1.476	8.72E-01
EIF2S1	1.475	8.04E-01
TOP2B	1.475	8.32E-01
THOC5	1.475	9.34E-01
HNRNPC	1.474	8.05E-01
SEC24D	1.474	8.81E-01
CSDA; YBX3	1.473	8.06E-01
IDH1	1.473	8.05E-01
COX7A2L	1.473	9.31E-01
RGPD2	1.472	9.34E-01
TOMM70A; TOMM70	1.471	8.09E-01
EDF1	1.471	9.21E-01
COL4A3BP	1.471	9.31E-01
DAP3	1.47	9.31E-01
FGF2	1.47	9.28E-01
CAP1	1.469	8.13E-01
MARCH5	1.469	9.34E-01
AP1G1	1.468	8.44E-01
MINK1	1.468	9.34E-01
ATP1A1	1.467	8.16E-01
IARS	1.467	8.17E-01
UBAP2	1.467	9.34E-01
METAP1	1.466	9.34E-01
ARL8B	1.465	9.20E-01
PGRMC1	1.465	9.34E-01
ANXA2	1.464	8.23E-01
MLEC	1.463	9.34E-01
COX5A	1.463	9.28E-01
SCAMP3	1.462	9.27E-01
KIAA1715; LNPK	1.462	9.34E-01
FGD5	1.462	9.34E-01

Gene Symbol	Abundance Ratio (DMF/DMSO)	P-value
STAT3	1.461	8.27E-01
YTHDF2	1.461	9.34E-01
ATP6V1D	1.461	9.34E-01
FAM175B; ABRAXAS2	1.461	9.45E-01
ATP6V1H	1.459	8.72E-01
PSME2	1.459	8.93E-01
RAP2B	1.459	9.28E-01
NCL	1.458	8.34E-01
DCTN4	1.458	9.28E-01
ARHGAP17	1.458	9.31E-01
PTPLAD1; HACD3	1.458	9.19E-01
PTPLB; HACD2	1.458	9.37E-01
HOOK3	1.457	8.72E-01
ACOT7	1.456	8.72E-01
PPP2R1B	1.456	9.28E-01
PLS3	1.455	8.40E-01
CAPNS1	1.454	8.47E-01
CDIPT	1.454	9.34E-01
PSMA4	1.452	8.54E-01
GALK1	1.452	9.27E-01
SUPT5H	1.451	9.28E-01
EEF1B2	1.45	8.50E-01
DRG1	1.449	8.93E-01
DRG2	1.449	9.22E-01
PC	1.448	8.54E-01
SMARCA5	1.448	8.54E-01
PPA1	1.448	8.82E-01
CRAT	1.448	9.28E-01
CAPZA2	1.446	8.82E-01
CAMK2G	1.446	9.34E-01
LEMD2	1.446	9.36E-01
YARS	1.445	8.63E-01
SMG1	1.445	9.53E-01
RAB5B	1.444	8.82E-01
ITGB4	1.444	9.50E-01
GFPT1	1.443	8.69E-01
PRPS1	1.443	9.13E-01
PPP4C	1.443	9.34E-01
NUP88	1.443	9.53E-01
FKBP3	1.442	9.09E-01
GLUD1	1.441	8.72E-01
RAB11B	1.441	9.52E-01
MYEF2	1.441	9.28E-01
RAB21	1.441	9.26E-01
KIF1B	1.441	9.53E-01

Gene Symbol	Abundance Ratio (DMF/DMSO)	P-value
EIF4A2	1.44	8.93E-01
LAMTOR1	1.44	9.28E-01
QKI	1.439	9.27E-01
EPHA2	1.439	9.31E-01
NCBP1	1.439	9.31E-01
CHCHD3	1.439	9.28E-01
PSMD2	1.437	8.72E-01
TMED7-TICAM2; TICAM2	1.437	8.93E-01
GLIPR2	1.437	9.49E-01
SLC25A4	1.436	9.24E-01
GSPT1	1.436	9.18E-01
CUL4A	1.436	9.37E-01
AP3D1	1.436	9.34E-01
STIP1	1.435	8.75E-01
NT5C2	1.435	8.95E-01
POR	1.435	9.34E-01
MAP1LC3A	1.435	9.34E-01
SH3GLB1	1.433	9.34E-01
CAPZB	1.432	9.53E-01
SEC62	1.432	9.53E-01
CSTF3	1.432	9.53E-01
NOP10	1.432	9.53E-01
EMC1	1.431	8.81E-01
PDCD6IP	1.43	8.82E-01
DBN1	1.43	8.82E-01
DNM2	1.429	9.22E-01
ARF4	1.429	8.82E-01
SSFA2	1.429	9.34E-01
DAPK3	1.429	9.53E-01
EIF5B	1.428	9.00E-01
PSMD14	1.428	8.84E-01
ATP6V1B2	1.427	8.83E-01
KIF2A	1.427	9.34E-01
PRKAG1	1.427	9.34E-01
PAIP1	1.427	9.53E-01
CALR	1.426	8.85E-01
ANXA1	1.426	8.90E-01
ATP5E	1.425	9.28E-01
TKT	1.424	8.88E-01
NACA	1.424	9.28E-01
CCT7	1.423	8.90E-01
PRKAR2A	1.423	9.13E-01
DCTN2	1.423	9.10E-01
TIMM44	1.423	9.33E-01
PDLIM1	1.421	8.91E-01

Gene Symbol	Abundance Ratio (DMF/DMSO)	P-value
SPCS3	1.421	9.34E-01
SMPD4	1.421	9.53E-01
HSPD1	1.419	8.93E-01
OSTF1	1.419	9.28E-01
FAM3C; WNT16	1.419	9.53E-01
DAZAP1	1.418	9.28E-01
DDI2	1.418	9.50E-01
CCT8	1.417	8.99E-01
RBMS3	1.417	9.53E-01
PCK2	1.415	9.10E-01
NOMO2	1.415	9.28E-01
AP3M1	1.415	9.34E-01
SEC22B	1.415	9.22E-01
SACM1L	1.415	9.34E-01
ARHGAP1	1.415	9.53E-01
CAMK2D	1.414	9.27E-01
MCU	1.413	9.53E-01
HSDL2	1.413	9.53E-01
SON	1.412	9.34E-01
AASDHPP	1.412	9.43E-01
PIP4K2A	1.412	9.53E-01
PSMD11	1.411	9.12E-01
CPNE1	1.411	9.27E-01
PKM	1.409	9.13E-01
SYNCRIP	1.409	9.13E-01
YWHAH	1.409	9.13E-01
ARHGEF7	1.409	9.48E-01
ERO1L; ERO1A	1.408	9.15E-01
RHOT1	1.408	9.34E-01
PSMC5	1.407	9.18E-01
ACSL4	1.407	9.32E-01
HNRNPF	1.407	9.18E-01
PREP	1.407	9.28E-01
RCN1	1.407	9.28E-01
RAB1B	1.406	9.28E-01
RBM26	1.406	9.53E-01
APEH	1.406	9.53E-01
CCT4	1.405	9.22E-01
PLIN3	1.405	9.53E-01
STRAP	1.404	9.28E-01
UBE2V2	1.404	9.56E-01
CSNK1D	1.404	9.53E-01
MYO6	1.403	9.27E-01
EIF2S3	1.403	9.26E-01
SART3	1.403	9.34E-01

Gene Symbol	Abundance Ratio (DMF/DMSO)	P-value
SURF4	1.403	9.28E-01
NUP214	1.402	9.53E-01
MRPL37	1.402	9.53E-01
TRIOBP	1.402	9.53E-01
YBX1	1.401	9.27E-01
AP2A2	1.401	9.34E-01
PSMD13	1.401	9.27E-01
OSBPL6	1.401	9.53E-01
PWP2; LOC102724159	1.401	9.64E-01
SSB	1.4	9.31E-01
PSMA3	1.4	9.28E-01
CORO1B	1.4	9.34E-01
SUMO2	1.4	9.50E-01
ACO2	1.399	9.27E-01
KPNA6	1.399	9.60E-01
CAT	1.399	9.56E-01
CCT3	1.398	9.27E-01
FUBP3	1.398	9.53E-01
GAPDH	1.397	9.28E-01
RAN	1.397	9.27E-01
PGM2	1.397	9.28E-01
RAB12	1.397	9.53E-01
SLC25A13	1.396	9.59E-01
A2M	1.395	9.53E-01
KIF5B	1.394	9.28E-01
CAV1	1.394	9.28E-01
RPL22	1.394	9.28E-01
CLTA	1.394	9.31E-01
PSMB6	1.394	9.34E-01
FARSA	1.393	9.50E-01
YTHDC1	1.393	9.53E-01
PSMA7	1.392	9.28E-01
SNX2	1.392	9.34E-01
YLPM1	1.391	9.51E-01
BCKDHB	1.391	9.64E-01
PAPSS1	1.39	9.28E-01
FSCN1	1.389	9.28E-01
CPSF6	1.389	9.50E-01
SEC63	1.389	9.50E-01
PALLD	1.389	9.53E-01
TCIRG1	1.389	9.58E-01
CS	1.388	9.28E-01
WDR82	1.388	9.53E-01
PSMD8	1.388	9.46E-01
PPP6R3	1.388	9.53E-01

Gene Symbol	Abundance Ratio (DMF/DMSO)	P-value
NPEPPS	1.387	9.29E-01
STRN3	1.387	9.53E-01
XPO5	1.387	9.64E-01
CLIC1	1.386	9.30E-01
EEF1G	1.386	9.30E-01
ARPC4	1.386	9.30E-01
RAC1	1.386	9.30E-01
GNA13	1.385	9.53E-01
PCNP	1.385	9.56E-01
NARS	1.384	9.31E-01
STIM1	1.384	9.51E-01
VPS16	1.384	9.59E-01
SEPT9	1.383	9.58E-01
YWHAZ	1.382	9.31E-01
EIF3I	1.382	9.31E-01
ATP6V1C1	1.382	9.58E-01
SNRPF	1.382	9.53E-01
PSMC2	1.381	9.32E-01
TCP1	1.381	9.33E-01
RAB10	1.38	9.34E-01
EPS15L1	1.38	9.53E-01
UBE2O	1.38	9.75E-01
USP7	1.379	9.34E-01
CUL1	1.379	9.53E-01
VTA1	1.379	9.53E-01
ESD	1.379	9.56E-01
SEC23A	1.378	9.34E-01
DDX21	1.378	9.34E-01
SEC61A1	1.378	9.34E-01
KARS	1.378	9.34E-01
SFXN1	1.378	9.53E-01
LARP7	1.378	9.53E-01
RSU1	1.377	9.53E-01
PSMB4	1.377	9.53E-01
SMARCD2	1.376	9.56E-01
VPS26B	1.376	9.62E-01
EDC4	1.375	9.50E-01
TMCO1	1.375	9.56E-01
SRSF6	1.374	9.53E-01
TMX1	1.374	9.62E-01
PSMD6	1.373	9.34E-01
CFL2	1.373	9.53E-01
AIFM1	1.373	9.53E-01
SF3B14; SF3B6	1.373	9.75E-01
ITGA5	1.372	9.34E-01

Gene Symbol	Abundance Ratio (DMF/DMSO)	P-value
NUDC	1.372	9.53E-01
ACAT1	1.371	9.53E-01
PURA	1.371	9.54E-01
PLAA	1.37	9.60E-01
NANS	1.37	9.53E-01
HSPA12A	1.369	9.65E-01
EIF3B	1.368	9.34E-01
RAB14	1.368	9.34E-01
DYNLL1	1.368	9.67E-01
CSNK1A1	1.368	9.53E-01
TNPO2	1.367	9.73E-01
IGF2BP2	1.366	9.53E-01
SNX5	1.366	9.71E-01
ATP5D	1.366	9.62E-01
TMOD3	1.365	9.53E-01
PPID	1.365	9.62E-01
XPOT	1.365	9.56E-01
PTGES3L-AARSD1; PTGES3L; AARSD1	1.365	9.75E-01
MAP2K4	1.365	9.76E-01
CUL4B	1.364	9.75E-01
PXDN	1.364	9.53E-01
CEP170	1.364	9.79E-01
CELF1	1.363	9.53E-01
ANP32E	1.363	9.60E-01
RNF2	1.363	9.75E-01
PSMC6	1.362	9.48E-01
PSMC1	1.361	9.50E-01
DDX5	1.36	9.50E-01
ROCK2	1.36	9.53E-01
CAPRIN1	1.36	9.51E-01
UBR5	1.36	9.81E-01
PSMB3	1.359	9.53E-01
SRP54	1.359	9.61E-01
UBA6	1.359	9.71E-01
SCP2	1.356	9.83E-01
TMTC3	1.356	9.77E-01
CCT2	1.354	9.53E-01
SPCS2	1.354	9.58E-01
OSBPL3	1.353	9.53E-01
APPL1	1.352	9.56E-01
PDIA6	1.352	9.53E-01
NSFL1C	1.352	9.64E-01
CSNK2B	1.352	9.64E-01
TP53BP1	1.352	9.53E-01
FNDC3A	1.351	9.75E-01

Gene Symbol	Abundance Ratio (DMF/DMSO)	P-value
PSMB7	1.351	9.75E-01
RPS5	1.35	9.53E-01
ABCB7	1.349	9.84E-01
IDH3B	1.348	9.53E-01
CAPN1	1.348	9.53E-01
SUCLG1	1.348	9.63E-01
PGAM4	1.347	9.60E-01
SAE1	1.347	9.73E-01
IER3IP1	1.347	9.75E-01
ACTN1	1.346	9.53E-01
UBR4	1.346	9.53E-01
FAM65A; RIPOR1	1.346	9.77E-01
ACAA2	1.345	9.59E-01
PPM1G	1.345	9.75E-01
PCMT1	1.345	9.66E-01
SCAMP2	1.345	9.84E-01
H2AFY	1.344	9.53E-01
PUM1	1.344	9.64E-01
ANO6	1.344	9.71E-01
ANKRD17	1.344	9.83E-01
TJP2	1.343	9.53E-01
PSMB2	1.343	9.57E-01
NUDT21	1.343	9.67E-01
TMEM214	1.343	9.64E-01
SEC11C	1.343	9.83E-01
PARL	1.343	9.75E-01
USO1	1.342	9.53E-01
SRSF1	1.342	9.53E-01
STOML2	1.342	9.58E-01
TSG101	1.342	9.75E-01
COPG2	1.342	9.83E-01
OPA1	1.341	9.53E-01
SUGT1	1.341	9.88E-01
PPIH	1.341	9.83E-01
WDR1	1.34	9.53E-01
ITGB3	1.34	9.75E-01
VAMP3	1.34	9.83E-01
ATP5C1	1.34	9.60E-01
EHD2	1.339	9.53E-01
KHDRBS1	1.339	9.53E-01
EIF3F	1.339	9.61E-01
COPS6	1.339	9.70E-01
UBE2M	1.339	9.75E-01
DDX3X	1.338	9.53E-01
ARF6	1.338	9.75E-01

Gene Symbol	Abundance Ratio (DMF/DMSO)	P-value
HGS	1.338	9.73E-01
MAT2B	1.338	9.72E-01
SEC61B	1.338	9.72E-01
ACTR2	1.337	9.53E-01
MDH2	1.337	9.53E-01
SEPT8	1.337	9.83E-01
UBXN4	1.337	9.86E-01
ALDH18A1	1.336	9.53E-01
DNM1L	1.336	9.56E-01
WDR12	1.336	9.84E-01
SET	1.335	9.56E-01
PSMA1	1.335	9.55E-01
MAP4K4	1.335	9.83E-01
LRRC59	1.335	9.56E-01
MEMO1	1.335	9.83E-01
HM13	1.335	9.77E-01
TES	1.335	9.85E-01
STXBP2	1.334	9.62E-01
TMEM43	1.334	9.75E-01
UPP1	1.334	9.84E-01
AGPAT3	1.334	9.83E-01
VPS33A	1.334	9.83E-01
KIAA0196; WASHC5	1.333	9.83E-01
HSP90B1	1.332	9.57E-01
AP3B1	1.332	9.57E-01
TM9SF2	1.332	9.75E-01
PLCD1	1.332	9.85E-01
EIF3A	1.331	9.58E-01
SNRPE	1.331	9.65E-01
TPP2	1.33	9.67E-01
RBM14; RBM14-RBM4	1.329	9.60E-01
G6PD	1.329	9.75E-01
CSNK2A2	1.329	9.79E-01
UNC45A	1.329	9.83E-01
RER1	1.329	9.86E-01
KANK4	1.329	9.85E-01
PLEC	1.328	9.83E-01
ARCN1	1.328	9.60E-01
CALM3; CALM2; CALM1	1.328	9.64E-01
HADHA	1.328	9.77E-01
PPP6C	1.328	9.87E-01
SND1	1.327	9.61E-01
XPO1	1.327	9.61E-01
NAA15	1.327	9.62E-01
PPP1R7	1.327	9.81E-01

Gene Symbol	Abundance Ratio (DMF/DMSO)	P-value
MESDC2; MESD	1.327	9.86E-01
HSPA5	1.326	9.62E-01
DDOST	1.326	9.62E-01
PRPF4B	1.326	9.83E-01
CPSF7	1.326	9.84E-01
TMX4	1.326	9.86E-01
PSMD7	1.325	9.62E-01
ACTR1A	1.325	9.62E-01
SUPT6H	1.325	9.90E-01
TRIM3	1.325	9.84E-01
EEF1A1	1.323	9.62E-01
COPG1	1.323	9.63E-01
EIF4G1	1.323	9.62E-01
EIF3CL	1.323	9.63E-01
PSMC4	1.323	9.62E-01
DDX1	1.323	9.62E-01
FARSB	1.323	9.81E-01
VAPA	1.323	9.84E-01
PTPN11	1.322	9.83E-01
PRRC2A	1.322	9.90E-01
PTPN23	1.322	9.83E-01
TTC37	1.322	9.84E-01
UBQLN1	1.321	9.83E-01
RPLP1	1.321	9.76E-01
CDC42BPB	1.321	9.83E-01
MBD2	1.321	9.85E-01
GPD1L	1.321	9.88E-01
AKR1B10	1.32	9.84E-01
HNRNPA2B1	1.319	9.67E-01
YWHAB	1.319	9.69E-01
PGLS	1.319	9.84E-01
STK24	1.319	9.86E-01
PPP2R1A	1.318	9.70E-01
GDI2	1.318	9.69E-01
GNB1	1.318	9.84E-01
RAB1A	1.318	9.84E-01
LMNA	1.317	9.72E-01
SRRT	1.317	9.79E-01
RAE1	1.317	9.95E-01
DCTN1	1.316	9.72E-01
PDIA4	1.316	9.72E-01
MAP4	1.316	9.72E-01
EEF1D	1.316	9.83E-01
CORO6	1.316	9.87E-01
GORASP2	1.316	9.87E-01

Gene Symbol	Abundance Ratio (DMF/DMSO)	P-value
CAND1	1.315	9.73E-01
MYO1C	1.315	9.73E-01
DYNC1LI1	1.315	9.83E-01
KIAA0368	1.314	9.75E-01
SLC25A5	1.314	9.75E-01
NCKAP1	1.314	9.75E-01
SEPT11	1.314	9.84E-01
CLTC	1.313	9.75E-01
WARS	1.313	9.75E-01
PSMA2	1.313	9.83E-01
EIF4B	1.313	9.75E-01
TMED9	1.313	9.87E-01
NUCB2	1.313	9.95E-01
SLC25A22	1.313	9.88E-01
IQGAP1	1.312	9.75E-01
ANXA6	1.312	9.75E-01
AP2M1	1.312	9.75E-01
NOP58	1.312	9.77E-01
FAM98A	1.312	9.88E-01
TMED2	1.312	9.83E-01
AGPS	1.312	9.88E-01
CAP2	1.312	9.87E-01
SEPT2	1.31	9.75E-01
PITPNB	1.31	9.83E-01
YES1	1.31	9.88E-01
ITGB5	1.31	9.90E-01
LYPLA1	1.31	9.90E-01
CDC37	1.309	9.83E-01
PDCD6	1.309	9.87E-01
PPA2	1.309	9.90E-01
SEC24B	1.308	9.90E-01
PLXDC2	1.308	9.88E-01
WASL; ASB15	1.308	9.98E-01
EIF3K	1.308	9.90E-01
SRGAP2	1.308	9.84E-01
PAFAH1B3	1.308	9.88E-01
ACIN1	1.307	9.88E-01
VRK1	1.307	9.90E-01
SMAP1	1.307	9.88E-01
PPFIA1	1.307	9.87E-01
HNRNPA3	1.306	9.81E-01
MLLT4; AFDN	1.306	9.83E-01
BCL2L2; PABPN1	1.306	9.87E-01
SSR4	1.306	9.83E-01
ABI1	1.305	9.88E-01

Gene Symbol	Abundance Ratio (DMF/DMSO)	P-value
ATXN2	1.305	9.90E-01
GPHN	1.305	9.90E-01
DLD	1.304	9.83E-01
MAPK1	1.304	9.87E-01
TARDBP	1.304	9.84E-01
RAD50	1.304	9.90E-01
GRHPR	1.304	9.98E-01
UTRN	1.303	9.88E-01
SMAD2	1.303	9.87E-01
UQCRCFS1P1	1.303	9.90E-01
ENO1	1.302	9.83E-01
AP2S1	1.302	9.88E-01
RAP1B	1.301	9.83E-01
ETFB	1.301	9.90E-01
IMPDH1	1.301	9.88E-01
CPNE2	1.301	9.85E-01
TMEM167A	1.301	9.90E-01
NMT1	1.3	9.90E-01
RNPS1	1.3	9.90E-01
GART	1.3	9.90E-01
TPI1	1.299	9.83E-01
PSMB5	1.299	9.90E-01
SEC31A	1.298	9.83E-01
DYNC1I2	1.298	9.83E-01
HNRNPAB	1.298	9.83E-01
PSMD3	1.297	9.83E-01
VDAC2	1.297	9.83E-01
RRAS2	1.297	9.88E-01
NOP2	1.297	9.90E-01
MANF	1.297	9.90E-01
AIMP1	1.296	9.90E-01
SCAF4	1.296	1.00E+00
EPRS	1.295	9.84E-01
LGALS3	1.295	9.84E-01
PSPC1	1.295	9.90E-01
DIAPH2	1.294	9.94E-01
ACADVL	1.293	9.87E-01
HSPA9	1.292	9.84E-01
RPA1	1.292	9.95E-01
IFIT5	1.292	9.98E-01
LAMA5	1.292	9.95E-01
ACADM	1.292	9.90E-01
NXF1	1.292	9.98E-01
AP2A1	1.291	9.84E-01
RPN1	1.291	9.84E-01

Gene Symbol	Abundance Ratio (DMF/DMSO)	P-value
NUP107	1.291	9.98E-01
HSD17B4	1.291	9.95E-01
OSBP	1.29	9.94E-01
SRSF2	1.29	9.85E-01
FAM21A; WASHC2A	1.29	9.95E-01
DHX9	1.289	9.86E-01
FXR1	1.289	9.90E-01
RPL36	1.289	9.86E-01
SHMT2	1.288	9.87E-01
ACAA1	1.288	9.98E-01
ILKAP	1.288	9.90E-01
ASNA1	1.287	9.90E-01
TOMM40	1.287	9.90E-01
COPB2	1.286	9.87E-01
SLC25A12	1.286	9.87E-01
RPL28	1.286	9.87E-01
NOLC1	1.286	9.98E-01
ST13	1.285	9.87E-01
TNPO3	1.285	9.98E-01
THUMPD1	1.285	1.00E+00
PLBD2	1.285	9.98E-01
IPO7	1.284	9.88E-01
CCT6A	1.284	9.88E-01
ADSL	1.284	9.98E-01
EIF4H	1.284	9.98E-01
LONP1	1.283	9.88E-01
DST	1.283	9.90E-01
LANCL1	1.283	1.00E+00
RAB2A	1.282	9.88E-01
GLB1	1.282	9.90E-01
ARHGAP18	1.282	9.90E-01
COPZ1	1.281	9.98E-01
IMPDH2	1.28	9.92E-01
LUC7L3	1.28	9.95E-01
MYCT1	1.28	9.98E-01
MCCC2	1.28	9.98E-01
EIF3L	1.279	9.90E-01
CCT5	1.279	9.90E-01
AP1M1	1.279	9.95E-01
CTBP1	1.279	9.98E-01
XPO7	1.279	9.98E-01
LARS	1.278	9.92E-01
DICER1	1.278	9.90E-01
COPA	1.277	9.90E-01
NUMA1	1.276	9.98E-01

Gene Symbol	Abundance Ratio (DMF/DMSO)	P-value
SUCLG2	1.276	9.90E-01
YKT6	1.276	9.98E-01
BMS1	1.276	9.98E-01
DYNC1H1	1.275	9.90E-01
FERMT2	1.275	9.90E-01
IDE	1.275	9.96E-01
ADRM1	1.275	9.98E-01
SEPHS1	1.275	9.99E-01
NIN	1.275	9.98E-01
PPP1R8	1.274	9.90E-01
PANK4	1.274	9.95E-01
NAP1L1	1.273	9.90E-01
VDAC3	1.273	9.98E-01
PRRC1	1.273	9.98E-01
HINT1	1.273	9.98E-01
UBE2Z	1.273	9.98E-01
RABGGTA	1.273	9.98E-01
ALCAM	1.272	9.90E-01
UBAP2L	1.272	9.90E-01
SNX6	1.272	1.00E+00
GNL1	1.272	1.00E+00
RPS25	1.272	9.90E-01
LSM6	1.272	1.00E+00
MKL2	1.272	1.00E+00
UBA2	1.271	9.90E-01
DKC1	1.271	9.98E-01
DNAJC13	1.271	9.98E-01
PTK2	1.271	1.00E+00
C12orf23; TMEM263	1.271	9.98E-01
CSNK2A1	1.27	9.94E-01
PSMB1	1.27	1.00E+00
SEC11A	1.27	9.98E-01
CPSF1	1.27	9.95E-01
CYC1	1.269	1.00E+00
SNRNP200	1.268	9.95E-01
PSMD1	1.268	9.95E-01
VPS4B	1.268	9.98E-01
SCARB2	1.268	1.00E+00
APMAP	1.268	9.95E-01
ATP2A2	1.267	9.95E-01
CLTB	1.267	9.98E-01
ATL3	1.266	9.98E-01
LETM1	1.266	9.98E-01
FAM114A1	1.266	9.98E-01
WDR75	1.266	9.98E-01

Gene Symbol	Abundance Ratio (DMF/DMSO)	P-value
TXLNA	1.266	9.98E-01
PEA15	1.265	1.00E+00
NCOA5	1.264	9.98E-01
COPS5	1.264	1.00E+00
GOT1	1.264	9.98E-01
PLEC	1.263	9.98E-01
UPF1	1.263	9.98E-01
DHX15	1.263	9.98E-01
FIP1L1	1.263	9.98E-01
ARPC2	1.262	9.98E-01
AFG3L2	1.262	1.00E+00
APP	1.262	1.00E+00
MAP2K3	1.262	9.98E-01
LRRC40	1.262	9.98E-01
USP39	1.262	9.98E-01
SPTAN1	1.261	9.98E-01
TUBB4A	1.261	9.98E-01
ATP5B	1.261	9.98E-01
PDHA1	1.261	9.98E-01
SUPT16H	1.261	9.98E-01
SH3GL1	1.261	1.00E+00
UCHL5	1.261	9.98E-01
DPYSL2	1.26	9.98E-01
KHSRP	1.26	9.98E-01
SNRPD2	1.26	9.98E-01
BAX	1.26	9.98E-01
DERA	1.26	9.98E-01
ARPC5	1.26	9.98E-01
RQCD1; CNOT9	1.26	9.98E-01
LAMA4	1.259	1.00E+00
IDH3A	1.259	9.98E-01
ATP5F1	1.259	1.00E+00
GNS	1.258	9.98E-01
MACROD1	1.258	9.98E-01
PSMD12	1.257	9.98E-01
RPS12	1.257	9.98E-01
DDX39B	1.256	1.00E+00
NME1-NME2; NME1; NME2	1.256	9.98E-01
ADSS	1.256	1.00E+00
MTAP	1.256	9.97E-01
NNT	1.255	9.99E-01
PRDX4	1.255	9.99E-01
ARHGDIA	1.254	1.00E+00
SSR1	1.254	9.98E-01
XAB2	1.253	9.90E-01

Gene Symbol	Abundance Ratio (DMF/DMSO)	P-value
IDH2	1.252	1.00E+00
NUP155	1.252	9.91E-01
OXCT1	1.252	9.98E-01
RPRD1B	1.252	9.95E-01
FBXO30	1.252	9.90E-01
PDHX	1.252	9.98E-01
RPL11	1.252	1.00E+00
HDGFRP2; HDGFL2	1.252	9.99E-01
HS1BP3	1.252	9.96E-01
VDAC1	1.251	1.00E+00
PTRF; CAVIN1	1.251	1.00E+00
ABCF2	1.251	9.94E-01
UBLCP1	1.251	1.00E+00
NHP2L1; SNU13	1.25	9.98E-01
CD44	1.25	9.95E-01
PRPF8	1.249	1.00E+00
GMPS	1.248	9.99E-01
RAB5C	1.248	9.98E-01
PRPF3	1.248	9.98E-01
SMARCA4	1.248	9.98E-01
AASS	1.248	9.90E-01
CMPK1	1.248	9.90E-01
SEPT7	1.247	9.99E-01
CKAP4	1.247	9.99E-01
HNRNPUL1	1.247	9.90E-01
SNX9	1.247	9.90E-01
HSPBP1	1.247	1.00E+00
EIF4A1	1.246	9.98E-01
IPO5	1.246	9.98E-01
EIF4A3	1.246	9.98E-01
LRPPRC	1.246	9.98E-01
COPS7A	1.246	9.88E-01
KDELCP1	1.246	9.98E-01
DPP3	1.245	9.90E-01
TM9SF4	1.245	9.90E-01
ACSL3	1.244	9.90E-01
SLC12A4	1.244	9.90E-01
KPNB1	1.243	9.98E-01
STT3B	1.243	9.92E-01
EXOSC10	1.243	1.00E+00
RPS6KA3	1.242	9.90E-01
RRBP1	1.242	9.98E-01
SRSF10; LOC100996657	1.242	9.90E-01
EXOC2	1.242	9.90E-01
SUN1	1.242	9.90E-01

Gene Symbol	Abundance Ratio (DMF/DMSO)	P-value
HNRNPR	1.241	9.98E-01
PAICS	1.241	9.98E-01
RBM12	1.241	9.90E-01
CTH	1.241	9.87E-01
HSD17B10	1.24	9.90E-01
HSP90B2P	1.239	9.88E-01
RBM25	1.239	9.95E-01
GIT2	1.239	9.86E-01
CNOT1	1.238	9.98E-01
TMED10	1.238	9.90E-01
PRPF19	1.238	9.90E-01
FKBP8	1.238	9.88E-01
PA2G4	1.237	9.98E-01
VARS; VARS2	1.237	9.98E-01
FBXO3	1.237	9.90E-01
CNOT7	1.237	9.90E-01
ATP5A1	1.236	9.98E-01
TCEA1	1.236	9.90E-01
CUL2	1.236	9.90E-01
COPS4	1.235	9.90E-01
CSTF2T	1.235	9.90E-01
RTF1	1.235	1.00E+00
PSMC3	1.234	9.95E-01
PPP1CA	1.234	9.90E-01
COPS2	1.234	9.95E-01
LMAN2	1.234	9.86E-01
CNP	1.234	9.98E-01
PRSS23	1.233	9.87E-01
GOLGA4	1.233	9.98E-01
SRP72	1.232	9.87E-01
MAPRE1	1.232	9.88E-01
CCS	1.232	9.85E-01
TUBB2A	1.231	9.85E-01
COPB1	1.231	9.90E-01
PSMD4	1.231	9.90E-01
TRAP1	1.231	9.88E-01
TCERG1	1.23	9.88E-01
SLC25A3	1.23	9.90E-01
MRE11A; MRE11	1.23	9.85E-01
FYN	1.23	9.98E-01
ACP1	1.23	9.87E-01
GOLGB1	1.229	9.84E-01
CDK11B	1.229	9.84E-01
ARF3	1.228	9.90E-01
PLXNB2	1.228	9.88E-01

Gene Symbol	Abundance Ratio (DMF/DMSO)	P-value
FLOT2	1.227	9.88E-01
POLR2H	1.227	9.88E-01
ETFA	1.227	9.88E-01
ARGLU1	1.227	9.88E-01
SRP68	1.226	9.88E-01
RPS19	1.226	9.90E-01
LSAMP	1.226	9.87E-01
CDK9	1.226	9.83E-01
GOSR1	1.226	9.98E-01
AHNAK	1.225	9.90E-01
LDHB	1.225	9.90E-01
PPP2R2A	1.224	9.89E-01
SFXN3	1.224	9.88E-01
DDX18	1.224	9.84E-01
MICU1	1.224	9.98E-01
YWHAE	1.223	9.90E-01
DLST	1.223	9.90E-01
PRPF4	1.223	9.84E-01
EXOC3	1.223	9.83E-01
SNRPA1	1.222	9.84E-01
LASP1	1.222	9.90E-01
HSPE1	1.222	9.90E-01
MAGT1	1.222	9.87E-01
NIPSNAP3B	1.222	9.87E-01
UBR1	1.222	9.98E-01
ACTR3	1.221	9.89E-01
SEPT10	1.221	9.86E-01
RAB7A	1.22	9.88E-01
CTBP2	1.22	9.84E-01
SBDS	1.22	9.83E-01
CHERP	1.22	9.84E-01
PPP1CB	1.219	9.87E-01
H2AFZ	1.219	9.88E-01
NCLN	1.219	9.85E-01
NAA50	1.219	9.84E-01
MAP7D1	1.219	9.84E-01
PMPCA	1.218	9.84E-01
MYADM	1.218	9.90E-01
TPR	1.217	9.87E-01
EIF3D	1.217	9.87E-01
CAPZA1	1.217	9.87E-01
PGM1	1.217	9.88E-01
NUP160	1.217	9.83E-01
HIBADH	1.217	9.83E-01
HADHB	1.216	9.87E-01

Gene Symbol	Abundance Ratio (DMF/DMSO)	P-value
PHB2	1.215	9.87E-01
RARS	1.215	9.87E-01
HPRT1	1.215	9.83E-01
SDHB	1.215	9.84E-01
ACLY	1.214	9.86E-01
NUP205	1.214	9.83E-01
LSM2	1.214	9.83E-01
COASY	1.214	9.83E-01
BIN1	1.214	9.90E-01
HNRNPA1	1.212	9.85E-01
PTBP1	1.212	9.85E-01
TRIM28	1.212	9.85E-01
ISOC1	1.212	9.83E-01
SAMM50	1.212	9.77E-01
SNX12	1.212	9.83E-01
AGO2; EIF2C2	1.212	9.81E-01
GUSB	1.212	9.83E-01
KIAA1279; KIF1BP	1.212	9.83E-01
SNX18	1.211	9.84E-01
PDXDC1; LOC102724985	1.211	9.84E-01
EIF3E	1.21	9.84E-01
ARL1	1.21	9.83E-01
HCFC1	1.209	9.79E-01
SF3A3	1.209	9.83E-01
MRPS22	1.209	9.85E-01
TBC1D15	1.209	9.86E-01
PDCD11	1.209	9.98E-01
TRA2B	1.208	9.84E-01
EML4	1.208	9.75E-01
PGAM5	1.208	9.75E-01
ME2	1.208	9.83E-01
VPS45	1.208	9.83E-01
HUWE1	1.207	9.83E-01
RPLPO	1.207	9.83E-01
NAPA	1.207	9.75E-01
ZNF326	1.207	9.75E-01
PEBP1	1.207	9.83E-01
LRRC47	1.207	9.75E-01
MYH8	1.207	9.98E-01
USP9X	1.206	9.75E-01
PSIP1	1.206	9.71E-01
CSTF1	1.206	9.88E-01
EPB41L2	1.205	9.77E-01
EMILIN1	1.204	9.79E-01
DPM1	1.204	9.79E-01

Gene Symbol	Abundance Ratio (DMF/DMSO)	P-value
RPS8	1.203	9.83E-01
SSRP1	1.203	9.75E-01
NAP1L4	1.203	9.83E-01
EMC2	1.203	9.75E-01
UMPS	1.203	9.72E-01
GAR1	1.203	9.83E-01
ACTN4	1.202	9.83E-01
PLOD1	1.202	9.83E-01
RPS18	1.202	9.83E-01
UBA5	1.201	9.79E-01
ZADH2	1.201	9.73E-01
ATP2B1	1.2	9.75E-01
CRKL	1.2	9.77E-01
NUP35	1.2	9.90E-01
BLVRA	1.2	9.82E-01
EFTUD2	1.199	9.82E-01
SF3A2	1.199	9.75E-01
MYH10	1.198	9.69E-01
RPSA	1.198	9.81E-01
NOP56	1.198	9.81E-01
EPPK1	1.198	9.75E-01
DLAT	1.197	9.79E-01
ACOT9	1.197	9.75E-01
CHTOP	1.197	9.64E-01
TUFM	1.196	9.77E-01
G3BP1	1.196	9.77E-01
EWSR1	1.196	9.72E-01
CTTN	1.196	9.77E-01
VIM	1.195	9.76E-01
CSE1L	1.195	9.76E-01
PCNA	1.195	9.76E-01
ARPC1B	1.195	9.75E-01
DKK2	1.195	9.75E-01
STK3	1.195	9.86E-01
HSDL1	1.195	9.86E-01
ADNP	1.195	9.90E-01
CUL3	1.194	9.60E-01
GLYR1	1.194	9.84E-01
RAB27A	1.194	9.85E-01
SERPINH1	1.193	9.75E-01
MVP	1.193	9.75E-01
PDS5B	1.193	9.75E-01
RELA	1.193	9.62E-01
ESAM	1.193	9.71E-01
EPB41L3	1.193	9.90E-01

Gene Symbol	Abundance Ratio (DMF/DMSO)	P-value
BPNT1	1.193	9.62E-01
PLRG1	1.193	9.75E-01
PSMD5	1.192	9.59E-01
PTPRE	1.192	9.62E-01
CDH2	1.192	9.60E-01
SDHA	1.192	9.75E-01
DHX29	1.192	9.60E-01
APEX1	1.191	9.62E-01
U2AF1; LOC102724594; U2AF1L5	1.191	9.62E-01
P4HB	1.19	9.74E-01
GNB2	1.19	9.57E-01
RPS27	1.19	9.75E-01
KLC4	1.19	9.84E-01
HTRA1	1.189	9.72E-01
SNX1	1.189	9.68E-01
SRPK2	1.189	9.64E-01
CLIC4	1.187	9.69E-01
ARSB	1.187	9.64E-01
EFTUD1; EFL1	1.187	9.85E-01
DDX46	1.186	9.60E-01
SF1	1.186	9.62E-01
MRPS23	1.186	9.84E-01
FAR2	1.186	9.64E-01
PRKCD	1.186	9.92E-01
AP2B1	1.185	9.65E-01
CYFIP1	1.185	9.65E-01
EHD1	1.185	9.61E-01
ALDH9A1	1.185	9.63E-01
PDIA3	1.184	9.64E-01
SEC23B	1.184	9.66E-01
ALDH6A1	1.184	9.64E-01
GNA11	1.184	9.62E-01
RANBP1	1.184	9.53E-01
COPS8	1.183	9.59E-01
TRNT1	1.183	9.63E-01
LAMB1	1.182	9.63E-01
PFKP	1.182	9.56E-01
PARVA	1.182	9.60E-01
ARPC3	1.182	9.64E-01
RANBP3	1.182	9.60E-01
FHL1	1.182	9.62E-01
GLOD4	1.181	9.53E-01
ATP6V1A	1.18	9.62E-01
RUVBL2	1.18	9.62E-01
AACS	1.18	9.56E-01

Gene Symbol	Abundance Ratio (DMF/DMSO)	P-value
OTUB1	1.179	9.60E-01
SRRM1	1.179	9.59E-01
NT5DC2	1.179	9.62E-01
CFL1	1.178	9.60E-01
GNAS	1.178	9.53E-01
PPP2R5D	1.178	9.57E-01
SLC25A1	1.178	9.53E-01
CDV3	1.178	9.53E-01
NMT2	1.177	9.83E-01
DHRS4	1.177	9.56E-01
RDX	1.176	9.58E-01
CDC5L	1.176	9.53E-01
SAFB2	1.176	9.88E-01
PRKCA	1.176	9.90E-01
WDR44	1.175	9.53E-01
SAR1A	1.175	9.57E-01
DNAJC10	1.175	9.58E-01
MMP2	1.175	9.83E-01
DCAF7	1.175	9.56E-01
CAPN2	1.174	9.56E-01
GPS1	1.174	9.54E-01
RCC1	1.174	9.53E-01
PCYT2	1.174	9.56E-01
ARFGAP3	1.174	9.56E-01
QARS	1.173	9.53E-01
SNRPD3	1.173	9.53E-01
SEC24A	1.173	9.84E-01
TAGLN2	1.172	9.55E-01
LUC7L2	1.172	9.53E-01
NAA10	1.172	9.53E-01
LMAN1	1.172	9.53E-01
UBE4A	1.172	9.56E-01
POLDIP2	1.172	9.83E-01
RANBP2	1.171	9.52E-01
SRSF7	1.171	9.53E-01
RPN2	1.17	9.53E-01
AQR	1.17	9.53E-01
EIF2B4	1.17	9.75E-01
PTPN2	1.17	9.86E-01
FLNB	1.169	9.53E-01
HNRNPD	1.169	9.53E-01
HNRNPH3	1.169	9.53E-01
ELAVL1	1.168	9.53E-01
NUP93	1.168	9.53E-01
RAB6A	1.168	9.53E-01

Gene Symbol	Abundance Ratio (DMF/DMSO)	P-value
ACBD3	1.168	9.53E-01
LAP3	1.168	9.53E-01
TUBA4A	1.167	9.53E-01
RPL18A	1.167	9.53E-01
FAU	1.167	9.52E-01
DYSF	1.166	9.53E-01
RPS10	1.166	9.53E-01
U2AF2	1.165	9.53E-01
PFKL	1.165	9.53E-01
PKN2	1.165	9.53E-01
WDR3	1.165	9.53E-01
SMARCC2	1.164	9.53E-01
DDX23	1.164	9.50E-01
TIPRL	1.163	9.53E-01
CDC42EP1	1.163	9.84E-01
RPL15	1.162	9.53E-01
PFAS	1.162	9.53E-01
TMEM11	1.162	9.53E-01
SUCLA2	1.161	9.53E-01
TXNL1	1.161	9.51E-01
SEC24C	1.161	9.52E-01
RASAL2	1.161	9.53E-01
CTTNBP2NL	1.161	9.53E-01
RANGAP1	1.161	9.53E-01
ERGIC3	1.161	9.58E-01
FMNL3	1.161	9.83E-01
MYO1D	1.16	9.53E-01
FH	1.16	9.53E-01
IMMT	1.16	9.53E-01
EIF3M	1.16	9.53E-01
SNRNP40	1.16	9.53E-01
CLPX	1.16	9.53E-01
PYCR1; PYCR3	1.16	9.39E-01
RAB3GAP1	1.16	9.75E-01
C22orf28; RTCB	1.159	9.53E-01
ATP2B4	1.159	9.53E-01
PSME3	1.159	9.53E-01
BAG6	1.158	9.48E-01
CNDP2	1.158	9.53E-01
THOC2	1.157	9.53E-01
GPAA1	1.157	9.86E-01
SEPT5	1.157	9.75E-01
PRPF40A	1.156	9.53E-01
PDCD5	1.156	9.53E-01
ANXA3	1.156	9.53E-01

Gene Symbol	Abundance Ratio (DMF/DMSO)	P-value
FABP3	1.156	9.46E-01
IDI1	1.156	9.53E-01
LPP	1.154	9.34E-01
VAPB	1.154	9.53E-01
PPIC	1.154	9.53E-01
EXOC4	1.154	9.75E-01
ZNF207	1.154	9.53E-01
ATIC	1.153	9.51E-01
RPS20	1.153	9.52E-01
IARS2	1.153	9.34E-01
IK	1.153	9.53E-01
CRIP2	1.153	9.34E-01
HDLBP	1.152	9.51E-01
TM9SF3	1.152	9.39E-01
XRN2	1.152	9.34E-01
TANC1	1.152	9.53E-01
TMED4	1.152	9.53E-01
PPP1R18	1.152	9.74E-01
SEH1L	1.151	9.53E-01
MTCH1	1.15	9.50E-01
PRMT5	1.15	9.34E-01
SRI	1.15	9.48E-01
LMNB2	1.149	9.49E-01
FLOT1	1.148	9.34E-01
SRSF11	1.148	9.53E-01
KRT5	1.147	9.53E-01
BASP1	1.147	9.34E-01
TIMM17B	1.147	9.83E-01
RPS3	1.146	9.41E-01
ARPC1A	1.146	9.34E-01
CNOT3	1.146	9.50E-01
TMEM189-UBE2V1; UBE2V1	1.145	9.72E-01
RHOA	1.144	9.34E-01
PYGB	1.144	9.34E-01
RPS15A	1.144	9.34E-01
NASP	1.144	9.31E-01
SLC25A10	1.144	9.48E-01
MATR3	1.143	9.34E-01
ACSS2	1.143	9.48E-01
PNP	1.143	9.34E-01
HNRNPUL2	1.142	9.34E-01
RPS9	1.142	9.34E-01
RPS15	1.142	9.49E-01
CHMP4B	1.142	9.48E-01
RHOT2	1.142	9.83E-01

Gene Symbol	Abundance Ratio (DMF/DMSO)	P-value
UGGT1	1.141	9.34E-01
ABCF1	1.141	9.34E-01
RPS26; LOC101929876; RPS26P25	1.141	9.34E-01
EIF1AX; LOC101060318; LOC107984923	1.141	9.50E-01
STK38L	1.141	9.50E-01
CCDC22	1.141	9.81E-01
SPTBN1	1.14	9.34E-01
RPL12	1.14	9.34E-01
EIF5A	1.14	9.34E-01
CARM1	1.14	9.30E-01
POLR2A	1.14	9.34E-01
ESYT2	1.14	9.30E-01
MRPL39	1.14	9.53E-01
AP1B1	1.139	9.34E-01
ITGAV	1.139	9.34E-01
PHB	1.139	9.34E-01
HNRNPH2	1.139	9.34E-01
PFKM	1.139	9.43E-01
PMPCB	1.138	9.28E-01
COPS3	1.137	9.28E-01
DARS	1.136	9.34E-01
PEF1	1.136	9.37E-01
RPS2	1.135	9.34E-01
SAFB	1.135	9.28E-01
GLRX3	1.135	9.28E-01
KAT7	1.135	9.34E-01
CSK	1.135	9.34E-01
COG4	1.135	9.70E-01
MRPL11	1.135	9.75E-01
CAD	1.134	9.34E-01
GAPVD1	1.134	9.28E-01
FAM120A	1.134	9.28E-01
SRSF3	1.134	9.28E-01
FMR1	1.134	9.83E-01
PGAM1; LOC643576	1.133	9.34E-01
RPS4X	1.133	9.33E-01
SF3A1	1.133	9.32E-01
ITGB1	1.133	9.32E-01
FUCA1	1.133	9.34E-01
ARAP3	1.133	9.34E-01
SGTA	1.133	9.62E-01
HLA-C	1.133	9.74E-01
RPL10L	1.132	9.59E-01
PUF60	1.131	9.31E-01
SCFD1	1.131	9.28E-01

Gene Symbol	Abundance Ratio (DMF/DMSO)	P-value
SLTM	1.131	9.34E-01
SF3B1	1.13	9.31E-01
RBMX	1.13	9.31E-01
TUBB2B	1.129	9.34E-01
TNS1	1.129	9.28E-01
USP9Y	1.129	9.34E-01
DNAJC11	1.128	9.34E-01
THOC3	1.128	9.56E-01
NONO	1.127	9.28E-01
RPS17; RPS17L	1.127	9.28E-01
ILK	1.127	9.28E-01
GIGYF2	1.127	9.31E-01
CRTAP	1.127	9.27E-01
CTNNBL1	1.127	9.58E-01
SFPQ	1.126	9.28E-01
TMPO	1.126	9.27E-01
IVD	1.126	9.34E-01
KIAA1033; WASHC4	1.126	9.62E-01
RBBP5	1.126	9.58E-01
RPS29	1.126	9.27E-01
RPL38	1.125	9.27E-01
MYOF	1.124	9.28E-01
CORO1C	1.124	9.28E-01
RPL23A	1.124	9.28E-01
POLR2B	1.124	9.27E-01
ARHGEF2	1.124	9.13E-01
FAM49A	1.124	9.34E-01
RPS23	1.124	9.28E-01
SF3B3	1.123	9.28E-01
DDX19B	1.123	9.27E-01
IDH3G	1.123	9.26E-01
CLUH; KIAA0664	1.123	9.34E-01
CYP20A1	1.123	9.68E-01
PGP	1.123	9.64E-01
PRPF6	1.122	9.23E-01
PPM1A	1.122	9.34E-01
VCL	1.121	9.28E-01
GPX7	1.12	9.61E-01
RAB11FIP1	1.12	9.30E-01
GSTO1	1.12	9.53E-01
GNB2L1; RACK1	1.119	9.27E-01
RPS11	1.119	9.27E-01
FAM129B	1.119	9.27E-01
UBFD1	1.119	9.54E-01
RRP12	1.119	9.30E-01

Gene Symbol	Abundance Ratio (DMF/DMSO)	P-value
NDUFS3	1.118	9.26E-01
SH3BGRL3	1.118	9.13E-01
IGF2R	1.118	9.29E-01
MRPL38	1.118	9.50E-01
SERBP1	1.117	9.27E-01
STT3A	1.117	9.27E-01
PDS5A	1.117	9.28E-01
AKT3	1.117	9.28E-01
GOT2	1.117	9.27E-01
WBP11	1.117	9.64E-01
PCCB	1.116	9.28E-01
PRKCDBP; CAVIN3	1.116	9.23E-01
USP5	1.115	9.27E-01
RAP1GDS1	1.115	9.28E-01
MRTO4	1.115	9.54E-01
NUP188	1.115	9.83E-01
SRRM2	1.114	9.09E-01
PRKACB	1.114	9.50E-01
TOMM22	1.114	9.22E-01
RPL27A	1.114	9.22E-01
STOM	1.114	9.22E-01
STAM2	1.114	9.62E-01
PRKAA1	1.113	9.06E-01
SH3KBP1	1.112	9.28E-01
RBM15	1.112	9.62E-01
GLG1	1.111	9.13E-01
XPNPEP1	1.111	8.88E-01
RPL8	1.11	9.13E-01
NOS3	1.11	9.13E-01
RUVBL1	1.11	9.13E-01
RPL3	1.11	9.13E-01
RPL35A	1.11	9.13E-01
SPRYD4	1.11	9.72E-01
HNRNPK	1.109	9.13E-01
RPL9	1.109	9.13E-01
USP4	1.109	9.27E-01
MPP6	1.109	9.58E-01
MSN	1.108	9.10E-01
FLNC	1.108	9.31E-01
HNRNPA0	1.108	9.08E-01
UFL1	1.108	9.28E-01
PARP1	1.107	9.10E-01
TAF15	1.107	9.27E-01
ATAD1	1.106	9.53E-01
GCN1L1; GCN1	1.105	9.03E-01

Gene Symbol	Abundance Ratio (DMF/DMSO)	P-value
U2SURP	1.105	8.97E-01
SNW1	1.105	9.23E-01
RPS13	1.104	8.99E-01
CSAD	1.104	9.26E-01
SQRDL; SQOR	1.104	9.27E-01
RHEB	1.104	9.27E-01
PLOD3	1.103	8.89E-01
CPT2	1.103	9.53E-01
ATP13A1	1.103	9.31E-01
RPL23	1.102	8.93E-01
USP10	1.102	8.72E-01
NPM1	1.101	8.92E-01
ENO3	1.101	8.91E-01
DDX42	1.101	9.13E-01
RAD21	1.101	9.23E-01
PES1	1.101	9.22E-01
RPL30	1.1	8.90E-01
GOLGA3	1.1	9.21E-01
FABP4	1.1	8.90E-01
MRPS27	1.1	9.27E-01
RPS3A	1.099	8.89E-01
HSPA4L	1.099	8.80E-01
VPS18	1.097	9.56E-01
RPLP2	1.096	8.75E-01
QDPR	1.096	9.13E-01
MAPKAPK2	1.096	9.34E-01
EIF2A	1.095	9.10E-01
FDPS	1.095	8.90E-01
SMARCB1	1.095	9.10E-01
TUBB4B	1.094	8.81E-01
PPP1R12A	1.094	8.81E-01
RPS14	1.094	8.81E-01
TXNIP; LOC101060503	1.094	9.53E-01
LMNB1	1.092	8.79E-01
RPL10	1.092	8.80E-01
LRRC16A; CARMIL1	1.092	9.34E-01
UQCRC1	1.091	8.72E-01
RPL34	1.091	8.75E-01
UFC1	1.091	9.53E-01
MRPL45	1.091	9.34E-01
FLNA	1.09	8.75E-01
ALDH1A1	1.09	8.75E-01
CDK6	1.09	8.90E-01
TUBA1C	1.089	9.03E-01
TMX3	1.089	8.72E-01

Gene Symbol	Abundance Ratio (DMF/DMSO)	P-value
LEPREL4; P3H4	1.088	9.34E-01
GNAI2	1.086	8.72E-01
PDHB	1.086	8.35E-01
NAT2	1.086	9.50E-01
ARL2	1.086	9.53E-01
PI4KA	1.085	9.48E-01
RPL14	1.084	8.69E-01
RPS21	1.083	8.75E-01
TIE1	1.083	9.53E-01
C16orf62	1.083	9.51E-01
FBL	1.082	8.59E-01
RCC2	1.082	8.47E-01
RCN3	1.081	8.54E-01
FAF1	1.081	8.86E-01
CRYZ	1.081	8.88E-01
PAFAH1B2	1.081	8.56E-01
RBM17	1.081	9.13E-01
DHCR24	1.081	9.04E-01
AKR1B1	1.08	8.51E-01
NDUFS3	1.08	9.53E-01
TMF1	1.08	9.53E-01
SNRNP70	1.079	8.55E-01
POFUT1	1.079	8.82E-01
MTCH2	1.077	8.32E-01
ADD1	1.077	8.81E-01
LSS	1.077	8.82E-01
NDUFA13	1.077	8.82E-01
ARHGAP12	1.077	9.53E-01
GLS	1.076	8.51E-01
FUS	1.076	8.44E-01
MTHFD1	1.076	8.44E-01
CCDC47	1.076	8.75E-01
TBC1D4	1.075	8.09E-01
NDUFS2	1.074	8.29E-01
MUT	1.074	8.82E-01
MRPL22	1.074	9.34E-01
FTSJ3	1.073	9.34E-01
DAG1	1.072	9.53E-01
RPL6	1.071	8.28E-01
NID2	1.071	8.20E-01
RPS16	1.07	8.24E-01
ABR	1.07	8.74E-01
DHX30	1.07	8.72E-01
CAPG	1.069	8.58E-01
MCM2	1.068	8.21E-01

Gene Symbol	Abundance Ratio (DMF/DMSO)	P-value
MYL6	1.067	8.21E-01
ERP29	1.067	8.70E-01
KIAA2013	1.066	9.34E-01
ALYREF	1.065	8.14E-01
TTLL12	1.065	8.05E-01
SRSF5	1.064	8.72E-01
MRPL43	1.063	9.52E-01
CLINT1	1.062	8.09E-01
RPL31	1.062	8.05E-01
UFD1L; UFD1	1.062	8.05E-01
WDR37	1.062	8.79E-01
NDUFA5	1.062	9.56E-01
HNRNPM	1.061	8.04E-01
SLC12A2	1.061	7.92E-01
RPS6	1.06	8.02E-01
RPL10A	1.06	8.02E-01
PRKCSH	1.059	7.89E-01
ASL	1.059	8.40E-01
LEMD3	1.059	9.31E-01
NDUFS8	1.059	8.63E-01
PCBP2	1.058	7.99E-01
ARHGEF1	1.058	8.62E-01
SULF2	1.058	8.54E-01
ACTC1	1.056	7.98E-01
BUB3	1.055	7.60E-01
PITRM1	1.055	8.41E-01
MOV10	1.053	7.77E-01
ACTL6A	1.053	8.24E-01
LNPEP	1.053	8.24E-01
PPIB	1.052	7.90E-01
PDAP1	1.052	7.97E-01
LRRFIP1	1.052	9.34E-01
NFS1	1.051	8.51E-01
ETFDH	1.051	9.28E-01
ERH	1.051	8.12E-01
FBLN2	1.05	7.92E-01
TUBGCP3	1.05	8.48E-01
PPIG	1.05	9.27E-01
CSRP1	1.05	7.75E-01
LEPRE1; P3H1	1.049	7.72E-01
NEXN	1.049	8.21E-01
IQGAP2	1.049	8.90E-01
RPS28	1.049	7.63E-01
H1FO	1.049	7.45E-01
CAPN5	1.048	7.49E-01

Gene Symbol	Abundance Ratio (DMF/DMSO)	P-value
PTK7	1.048	9.28E-01
MCM3	1.047	7.75E-01
MCM6	1.047	7.75E-01
RBBP7	1.047	7.85E-01
RPL35	1.047	7.72E-01
GALNT7	1.047	8.45E-01
OSGEP	1.047	9.03E-01
THOP1	1.046	8.16E-01
GBAS; NIPSNAP2	1.046	7.35E-01
PGRMC2	1.046	7.35E-01
LARS2	1.046	8.88E-01
MFAP1	1.046	9.30E-01
CTNNA1	1.045	7.65E-01
HIST1H2AB; HIST1H2AE	1.045	7.31E-01
RBBP4	1.045	8.02E-01
APPL2	1.045	8.06E-01
SNRPB2	1.045	8.72E-01
KANK3	1.045	9.28E-01
HEXA	1.044	9.52E-01
UBTF	1.043	8.23E-01
PPM1F	1.043	8.10E-01
VAMP8	1.043	9.34E-01
MCM5	1.042	7.54E-01
MTDH	1.042	7.55E-01
CCAR1	1.042	8.09E-01
CDC40	1.042	9.34E-01
MOGS	1.042	8.99E-01
DOCK6	1.041	8.02E-01
PLCB3	1.041	7.99E-01
EPN2	1.041	9.34E-01
ASPSCR1	1.041	9.34E-01
ARFGAP2	1.04	7.51E-01
MAT2A	1.039	7.37E-01
MRPS34	1.039	8.28E-01
GALNT1	1.038	8.05E-01
MAP2K2	1.038	8.09E-01
ACADSB	1.038	8.14E-01
RPL4	1.037	7.35E-01
RPL7	1.037	7.37E-01
GBF1	1.037	7.90E-01
NUP98	1.037	8.05E-01
TUBB6	1.036	7.35E-01
RPL18	1.036	7.35E-01
ALDH1A2	1.034	7.31E-01
MAPK3	1.034	7.32E-01

Gene Symbol	Abundance Ratio (DMF/DMSO)	P-value
SDPR; CAVIN2	1.034	7.22E-01
LTA4H	1.034	7.99E-01
SLC25A11	1.034	7.24E-01
PUS7	1.034	9.28E-01
HNRNPL	1.033	7.31E-01
RPL5	1.033	7.29E-01
STAG2	1.033	8.09E-01
CDH13	1.032	7.26E-01
DEK	1.032	7.17E-01
CALU	1.031	8.03E-01
MCM4	1.03	7.23E-01
IPO9	1.03	8.16E-01
PPT1	1.03	8.09E-01
MYH11	1.029	7.31E-01
ARL3	1.029	7.99E-01
SARNP	1.029	8.02E-01
APOOL	1.029	8.40E-01
FASN	1.028	7.19E-01
SNRPD1	1.028	7.22E-01
HIP1	1.028	7.55E-01
ZMPSTE24	1.028	9.34E-01
TLN1	1.027	7.17E-01
TUBG1	1.027	7.17E-01
SMU1	1.027	6.97E-01
PTGS1	1.027	8.02E-01
DDX27	1.027	8.72E-01
CDK5	1.027	9.31E-01
RPL7A	1.026	7.12E-01
TPM1	1.026	9.34E-01
ACADS	1.026	7.32E-01
PCBP1	1.024	7.07E-01
RPL13A	1.023	7.02E-01
PGM3	1.023	7.04E-01
RABEP2	1.023	7.58E-01
SCRIB	1.023	9.34E-01
RPS7	1.022	7.01E-01
UCHL3	1.022	7.85E-01
ABLIM1	1.022	9.01E-01
RAD23B	1.021	6.64E-01
PRDX3	1.021	7.73E-01
CYR61	1.02	6.98E-01
AIMP2	1.02	7.98E-01
ZW10	1.019	8.95E-01
MYL12B; MYL12A	1.018	6.83E-01
MYBBP1A	1.017	6.82E-01

Gene Symbol	Abundance Ratio (DMF/DMSO)	P-value
TIMM50	1.016	7.31E-01
SMC4	1.016	7.63E-01
RASIP1	1.015	6.76E-01
SMC1A	1.015	6.51E-01
NAT10	1.015	7.45E-01
GMPPA	1.015	7.92E-01
RPL27	1.014	6.67E-01
MCM7	1.013	6.64E-01
FUBP1	1.013	6.65E-01
PRPF31	1.013	7.39E-01
GTPBP1	1.013	9.28E-01
STX12	1.013	9.28E-01
PAPOLA	1.013	8.93E-01
PCCA	1.012	7.71E-01
CTNNB1	1.01	6.53E-01
TECR	1.01	6.76E-01
EPN1	1.01	7.39E-01
MPC2	1.01	7.35E-01
RPS24	1.009	6.53E-01
SNRPA	1.009	7.55E-01
RPF2	1.008	7.35E-01
SRM	1.008	6.43E-01
ACTG1	1.005	6.37E-01
RBM12B	1.005	8.33E-01
FNTA	1.004	8.23E-01
GPX4	1.004	6.11E-01
DCP1A	1.003	8.82E-01
PDIA5	1.001	7.58E-01
EEF2	1	6.19E-01
CHD4	1	5.86E-01
RRAS	1	7.09E-01
NEMF	1	9.26E-01
SRC	0.999	9.31E-01
BYSL	0.999	9.34E-01
CEP290	0.999	7.35E-01
JUP	0.998	5.88E-01
ARRB1	0.998	7.09E-01
CNBP	0.998	7.35E-01
MTA1	0.998	9.34E-01
FBLIM1	0.998	7.26E-01
DDX31	0.997	5.86E-01
CUL5	0.997	9.19E-01
SMC3	0.996	6.16E-01
CCAR2; KIAA1967	0.996	5.98E-01
SKIV2L	0.996	7.21E-01

Gene Symbol	Abundance Ratio (DMF/DMSO)	P-value
SRPR; SRPRA	0.995	5.98E-01
RPL19	0.995	5.99E-01
STAB1	0.995	8.72E-01
CNOT2	0.995	8.24E-01
HNRNPU	0.994	5.98E-01
PGM5	0.994	5.98E-01
RPL13	0.994	5.97E-01
QRICH1	0.994	8.70E-01
EHD3	0.993	7.17E-01
MRPL19	0.992	9.27E-01
CTSA	0.991	7.19E-01
PELP1	0.991	8.29E-01
GPX8	0.991	8.82E-01
PUS1	0.99	9.22E-01
SF3B2	0.989	5.86E-01
EEF1A2	0.989	7.02E-01
PICALM	0.988	5.86E-01
NEK7	0.988	8.14E-01
RPL32	0.987	5.86E-01
CHMP1A	0.987	8.91E-01
RPL26	0.986	5.86E-01
SMARCA2	0.986	9.27E-01
RPL39; RPL39P3	0.986	5.60E-01
PPIA	0.985	5.82E-01
GANAB	0.984	5.82E-01
ACAD9	0.983	8.89E-01
CPOX	0.982	6.57E-01
NUP133	0.982	7.16E-01
MRPL2	0.981	6.97E-01
BCLAF1	0.98	5.80E-01
RPL37A	0.979	5.44E-01
MPZL1	0.978	8.93E-01
GNB4	0.977	6.30E-01
PSME1	0.977	5.60E-01
LUC7L	0.977	8.47E-01
PTGIS	0.977	5.61E-01
PTMA	0.977	6.64E-01
RBM10	0.976	7.89E-01
ZFPL1	0.975	8.15E-01
HP1BP3	0.974	5.50E-01
TBCD	0.974	6.86E-01
AKT1	0.974	8.82E-01
CHD3	0.973	9.28E-01
ARHGAP29	0.973	9.15E-01
DNPEP	0.971	5.86E-01

Gene Symbol	Abundance Ratio (DMF/DMSO)	P-value
RPL24	0.971	5.31E-01
HIST1H1B	0.97	5.23E-01
WDR5	0.97	8.46E-01
SPTLC1	0.968	5.16E-01
TPM3	0.967	5.13E-01
PNPT1	0.967	6.82E-01
MYH14	0.966	9.28E-01
HDGFRP3; HDGFL3	0.966	9.10E-01
SART1	0.965	6.12E-01
S100A4	0.965	5.06E-01
SMAP2	0.965	6.12E-01
TOM1	0.965	7.23E-01
ACTN1	0.964	8.81E-01
HMGB2	0.964	4.67E-01
ABCE1	0.964	5.15E-01
SORBS2	0.962	4.91E-01
SNRPB	0.962	4.39E-01
TIMP3	0.962	5.70E-01
HEXB	0.962	8.80E-01
CASP3	0.961	6.53E-01
BAZ1B	0.961	8.75E-01
THRAP3	0.96	4.91E-01
NBAS	0.96	6.38E-01
GGCX	0.96	6.19E-01
CDK1	0.959	4.91E-01
DOCK1	0.959	7.10E-01
P4HA2	0.958	4.78E-01
RPL17-C18ORF32; RPL17	0.957	4.72E-01
KRT10	0.956	4.67E-01
RBM27	0.956	9.28E-01
HNRNPH1	0.955	4.84E-01
MYH9	0.954	4.60E-01
PDLIM5	0.954	4.62E-01
GTPBP4	0.954	5.92E-01
CUX1	0.954	8.82E-01
FKBP10	0.953	5.82E-01
STAT5A	0.953	5.97E-01
SMC2	0.952	5.82E-01
DPYSL3	0.951	4.51E-01
NUCB1	0.95	4.59E-01
TNS3	0.949	8.50E-01
HMGB1	0.948	4.34E-01
EBNA1BP2	0.947	5.86E-01
PNO1	0.947	8.72E-01
ERLIN2	0.944	4.14E-01

Gene Symbol	Abundance Ratio (DMF/DMSO)	P-value
KRT9	0.943	4.18E-01
DHCR7	0.943	6.74E-01
COL4A1	0.942	5.86E-01
TENC1; TNS2	0.942	4.26E-01
GFM1	0.941	4.26E-01
PFDN6	0.94	8.93E-01
B3GAT3	0.939	8.50E-01
CORO7-PAM16; CORO7	0.939	5.91E-01
SELENBP1	0.938	3.72E-01
HIST2H2BF	0.935	3.86E-01
FHL3	0.935	5.72E-01
FAM98B	0.934	8.40E-01
WDR61	0.934	5.72E-01
POLR1A	0.934	8.77E-01
BRD4	0.934	8.48E-01
KDM1A	0.93	5.50E-01
POLR1C	0.928	6.10E-01
CTSK	0.928	5.71E-01
STAT6	0.928	8.28E-01
ANXA11	0.927	5.29E-01
PURB	0.927	7.62E-01
PDP1	0.927	6.87E-01
POTEI	0.926	4.91E-01
ESYT1	0.925	3.51E-01
UROD	0.924	5.16E-01
POTEE	0.923	3.47E-01
OAT	0.923	3.61E-01
SUN2	0.923	3.68E-01
ADAR	0.923	3.61E-01
CBX5	0.923	5.47E-01
TAGLN	0.919	3.33E-01
ACTBL2	0.913	3.12E-01
CTNND1	0.912	3.16E-01
HIST1H2BO	0.911	3.28E-01
MAN1A1	0.911	8.21E-01
CCNYL1	0.91	6.51E-01
SACS	0.909	3.47E-01
AP1S1	0.907	5.82E-01
SKIV2L2	0.906	3.42E-01
ADPRHL2	0.906	7.19E-01
SPATA20	0.904	3.00E-01
HAT1	0.904	5.10E-01
PDK3	0.902	8.02E-01
NDUFS1	0.901	2.96E-01
LMCD1	0.901	2.75E-01

Gene Symbol	Abundance Ratio (DMF/DMSO)	P-value
SMEK1; PPP4R3A	0.9	7.35E-01
PML	0.9	7.23E-01
LSM4	0.898	4.90E-01
DENND4C	0.897	4.26E-01
ABHD2	0.897	3.80E-01
ASCC3	0.896	8.02E-01
HIST1H1D	0.894	2.73E-01
KRT2	0.893	2.46E-01
RAD23A	0.892	7.02E-01
PRKACA	0.891	3.86E-01
PDLIM7	0.891	2.91E-01
NSUN2	0.888	4.53E-01
NDUFV1	0.887	2.37E-01
CNN3	0.884	2.39E-01
PPP1R13L	0.884	5.10E-01
IKBKAP; ELP1	0.884	5.51E-01
NEFM	0.883	7.57E-01
PDPR	0.883	4.18E-01
NDUFA4	0.883	2.73E-01
DHFRL1; DHFR2	0.883	5.86E-01
RRM1	0.882	2.47E-01
PRDX2	0.882	2.41E-01
RPL21	0.881	2.34E-01
PPP2R5C	0.881	7.99E-01
LRP1	0.881	7.99E-01
SYNPO	0.88	2.65E-01
TXND5	0.879	2.34E-01
CIRBP	0.879	6.06E-01
CAMK1D	0.878	7.04E-01
FDFT1	0.877	3.89E-01
KRT1	0.871	2.09E-01
PFDN2	0.871	2.34E-01
AHCYL1	0.867	3.86E-01
RAB11A	0.867	7.39E-01
NPEPL1	0.867	6.63E-01
DSTN	0.866	1.95E-01
ABCA7	0.866	7.41E-01
VAC14	0.863	7.99E-01
HDAC2	0.861	7.45E-01
LEPREL2; P3H3	0.86	3.49E-01
TUBB	0.858	1.74E-01
FNBP1	0.858	2.79E-01
NFKB1	0.857	3.50E-01
HLA-C	0.857	1.74E-01
FABP5	0.856	1.56E-01

Gene Symbol	Abundance Ratio (DMF/DMSO)	P-value
FAR1	0.856	3.14E-01
HLA-C	0.855	3.16E-01
PHLDB1	0.853	6.23E-01
FRY	0.849	7.26E-01
SGCD	0.848	4.99E-01
FN1	0.847	1.50E-01
PBXIP1	0.847	3.16E-01
PPIL1	0.847	3.16E-01
MRI1	0.845	5.15E-01
NTN4	0.845	3.16E-01
FNDC3B	0.842	2.34E-01
DDAH1	0.84	1.33E-01
GRWD1	0.839	6.65E-01
NCAPG	0.836	5.88E-01
CHMP2A	0.834	5.20E-01
ARFGEF1	0.833	7.62E-01
NXN	0.832	5.88E-01
MTOR	0.831	5.86E-01
NTAN1	0.831	6.38E-01
SYNE1	0.83	1.23E-01
WIBG; PYM1	0.83	6.60E-01
ENO2	0.827	7.14E-01
MRPL15	0.825	2.58E-01
XDH	0.824	1.47E-01
TMSB4X	0.823	1.23E-01
MTA2	0.82	1.11E-01
IGFBP7	0.818	2.78E-01
ELMO1	0.816	6.19E-01
DBNL	0.815	2.16E-01
OGT	0.815	3.16E-01
PDE4A	0.815	6.19E-01
RHOB	0.814	2.09E-01
ABHD16A	0.814	5.63E-01
HSPG2	0.812	8.61E-02
SMAD3	0.812	5.10E-01
FOXK1	0.812	5.86E-01
DDB1	0.811	8.41E-02
BRIX1	0.811	5.25E-01
STMN1	0.806	1.54E-01
NCAPD2	0.804	6.47E-01
FEN1	0.802	2.31E-01
RAVER1	0.8	1.89E-01
TGFB1I1	0.8	4.55E-01
ANKLE2	0.799	4.67E-01
EEFSEC	0.798	5.88E-01

Gene Symbol	Abundance Ratio (DMF/DMSO)	P-value
CALD1	0.797	6.37E-02
CELF2	0.796	5.98E-01
UBE2D2	0.795	6.79E-01
TPM4	0.794	5.96E-02
ISYNA1	0.792	5.80E-01
RBM45	0.791	1.54E-01
ITGA3	0.788	1.87E-01
H1FX	0.787	4.82E-02
C3orf58	0.786	4.95E-02
LSG1	0.785	1.96E-01
FAF2	0.784	5.86E-01
MSH6	0.782	1.07E-01
GTF2I	0.781	4.03E-02
ZRANB2	0.779	1.47E-01
LLGL1	0.778	5.99E-01
PKN1	0.775	5.82E-01
WNT5A	0.774	3.16E-01
TUBB3	0.769	3.55E-02
RFC5	0.761	4.72E-01
CDR2L	0.757	5.86E-01
COL18A1	0.751	2.22E-02
KDELR1	0.749	4.67E-01
DNMT1	0.749	1.14E-01
EPM2AIP1	0.748	1.09E-01
PECAM1	0.748	1.21E-01
GNA14	0.746	4.99E-01
VKORC1L1	0.742	3.58E-01
THBS2	0.741	5.86E-01
ERG	0.74	2.58E-02
SPECC1L	0.736	4.07E-01
PALMD	0.735	2.46E-02
BCKDHA	0.729	6.38E-02
ZYX	0.727	2.19E-02
MMS19	0.726	8.91E-02
GLS	0.722	8.41E-02
FILIP1L	0.718	9.90E-03
PRUNE2	0.717	1.30E-01
HDAC1	0.711	3.69E-02
GATAD2B	0.711	6.12E-02
NUP85	0.711	3.42E-01
INF2	0.699	3.55E-01
MSH2	0.697	2.66E-02
SPECC1	0.691	1.26E-01
NDUFS7	0.691	9.03E-02
PCDH7	0.69	2.68E-01

Gene Symbol	Abundance Ratio (DMF/DMSO)	P-value
DMD	0.688	3.27E-01
DDX54	0.679	4.59E-01
ELTD1; ADGRL4	0.674	1.78E-01
TPM4	0.673	3.16E-01
PTPRM	0.663	1.30E-02
SH3BP4	0.662	1.61E-01
ABCF3	0.66	1.54E-01
NFKB2	0.657	3.30E-02
UFM1	0.654	2.73E-01
AOX1	0.652	1.92E-03
ERAP1	0.652	1.86E-02
SMAD1	0.651	2.41E-01
CSRP2	0.646	9.15E-03
EML3	0.64	2.47E-01
HID1	0.635	3.30E-03
FBLN5	0.627	1.36E-02
ZSWIM8	0.623	3.27E-01
BTF3	0.605	2.68E-02
VCAN	0.599	1.58E-01
CGNL1	0.586	2.32E-04
PDCD4	0.585	1.09E-04
COL15A1	0.583	4.53E-03
CNN2	0.581	8.27E-05
SPARC	0.577	4.13E-04
TLE1	0.569	7.83E-03
COL5A2	0.553	1.75E-03
CSNK1E; LOC400927-CSNK1E	0.548	1.24E-01
GDF6	0.546	3.88E-03
PLXND1	0.544	6.88E-02
KCTD12	0.521	1.17E-06
COL14A1	0.51	1.85E-06
CRIM1	0.507	6.12E-02
COL3A1	0.496	2.95E-05
KPNA2	0.486	2.77E-07
YAP1	0.482	3.75E-02
SARDH	0.479	1.12E-02
BRD3	0.467	3.69E-02
FSTL1	0.456	8.44E-06
COL5A1	0.45	2.51E-06
CTGF	0.444	2.02E-09
BGN	0.436	6.43E-05
VCAN	0.432	3.41E-02
EEF2K; LOC101930123	0.394	7.90E-07
GPRC5B	0.387	2.76E-08
ACO1	0.353	8.59E-14

Gene Symbol	Abundance Ratio (DMF/DMSO)	P-value
FBLN1	0.349	2.26E-14
CXCR4	0.336	1.61E-05
WWTR1	0.248	7.16E-06
COL12A1	0.225	1.03E-15
SERPINE1	0.206	1.03E-15
TPM1	0.135	1.03E-15
THBS1	0.133	1.03E-15
TPM1	0.106	1.03E-15

837

838

839

840

841

842

843

844

845

846

847

848

849

850

851

852

853

854

855

856

857

858

859

860

861 **Supplementary Table S2.** Proteins detected with the proteomics analysis in HMECs with an abundance
862 ratio (DMF/DMSO) > 1.5 and p-value < 0.01.

Gene Symbol	Abundance Ratio (DMF/DMSO)	P-value
HMOX1	26.203	1.03E-15
GCLC	7.12	1.03E-15
ABHD4	7.001	1.53E-05
GBE1	4.463	1.72E-11
PSPH	4.461	3.11E-11
ARHGAP24	4.429	3.81E-04
SLC2A14	4.063	7.13E-06
DNM1	3.912	3.82E-03
TXNRD1	3.904	2.96E-11
SLC2A1	3.72	7.95E-03
PCYT1A	3.526	5.65E-05
HSPA1B; HSPA1A	3.497	2.73E-09
DCD	3.446	6.15E-06
VTN	3.359	9.10E-04
VWA5A	3.236	2.94E-04
ASNS	3.117	2.83E-07
RTN4	3.107	6.39E-06
SQSTM1	3.04	5.74E-04
ALDH1L2	3.012	2.51E-05
HSPH1	2.991	1.27E-06
BAG3	2.932	4.46E-03
CHORDC1	2.765	1.16E-03
DNAJA1	2.76	6.39E-05
SHANK3	2.755	5.95E-03
ITGA2	2.752	8.27E-05
SARS	2.519	6.21E-04
CACYBP	2.516	1.62E-03
HSPB1	2.51	2.97E-04
CLIP1	2.496	8.65E-03
PTGES3	2.445	1.62E-03
TXN	2.34	1.87E-03
COTL1	2.332	8.80E-03
HBD	2.324	4.52E-03
FKBP5	2.288	6.38E-03
SNTB2	2.282	7.00E-03
SNX3	2.189	9.15E-03
HECTD1	2.183	8.80E-03

863

864

865

866

867 **Supplementary Table S3.** Proteins detected with the proteomics analysis in HMECs with an abundance
868 ratio (DMF/DMSO) < 0.75 and p-value < 0.01.

Gene Symbol	Abundance Ratio (DMF/DMSO)	P-value
TPM1	0.106	1.03E-15
THBS1	0.133	1.03E-15
TPM1	0.135	1.03E-15
SERPINE1	0.206	1.03E-15
COL12A1	0.225	1.03E-15
WWTR1	0.248	7.16E-06
CXCR4	0.336	1.61E-05
FBLN1	0.349	2.26E-14
ACO1	0.353	8.59E-14
GPRC5B	0.387	2.76E-08
EEF2K; LOC101930123	0.394	7.90E-07
BGN	0.436	6.43E-05
CTGF	0.444	2.02E-09
COL5A1	0.45	2.51E-06
FSTL1	0.456	8.44E-06
KPNA2	0.486	2.77E-07
COL3A1	0.496	2.95E-05
COL14A1	0.51	1.85E-06
KCTD12	0.521	1.17E-06
GDF6	0.546	3.88E-03
COL5A2	0.553	1.75E-03
TLE1	0.569	7.83E-03
SPARC	0.577	4.13E-04
CNN2	0.581	8.27E-05
COL15A1	0.583	4.53E-03
PDCD4	0.585	1.09E-04
CGNL1	0.586	2.32E-04
HID1	0.635	3.30E-03
CSRP2	0.646	9.15E-03
AOX1	0.652	1.92E-03
FILIP1L	0.718	9.90E-03

869