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85  Studying tissue composition and function in non-human primates (NHP) is crucial to
86  understand the nature of our own species. Here, we present a large-scale single-cell and
87  single-nucleus transcriptomic atlas encompassing over one million cells from 43 tissues
88  from the adult NHP Macaca fascicularis. This dataset provides a vast, carefully
89  annotated, resource to study a species phylogenetically close to humans. As proof of
90 principle, we have reconstructed the cell-cell interaction networks driving Wnt
91  signalling across the body, mapped the distribution of receptors and co-receptors for
92  viruses causing human infectious diseases and intersected our data with human genetic
93  disease orthologous coordinates to identify both expected and unexpected associations.
94 Our Macaca fascicularis cell atlas constitutes an essential reference for future single-
95  cell studies in human and NHP.
96
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113  MAIN TEXT

114

115  Global initiatives such as the Human Cell Atlas are aiming to chart the cell types and
116  cell states of all tissues in the human body using high-throughput single-cell/nucleus
117  RNA-sequencing (sc/snRNA-seq) and other technologies!=. The ultimate goal of these
118  efforts is to create complete reference maps across different ethnic groups, ages,
119  environmental conditions and pathologies. A major obstacle in this endeavour is that
120 accessing a wide range of ‘high quality’ human samples and obtaining enough sample
121  sizeis complicated by relevant practical and ethical considerations. Model animals (e.g.,
122 mouse and rat) are a useful resource to fill knowledge gaps®?®, in particular the effects
123 of experimental perturbation, but due to profound phylogenetic differences many
124 developmental, physiological and pathological aspects are not mimicked in humans.
125  Given the evolutionary proximity, NHP present an excellent alternative (the nearest-to-
126 human) when no other suitable models exist. Generating a NHP cell atlas will produce
127  an extensive catalogue of human disease and age-related features that can be modelled
128 in NHP. It will also provide unique insights into the evolutionary and adaptative
129  mechanisms underlying changes in body function between the two species. In this
130  regard, it could for example discover tissue regenerative capacities selectively
131  maintained in NHP and potential ways to boost them in human.

132 NHP encompass a large and very diverse group of species with major ecological,
133 dietary, locomotor and behavioural differences’!!. Because of their close evolutionary
134 proximity to humans among NHP, overall characteristics and wider availability,
135  macaques are primarily employed for research purposes worldwide including human
136  disease modelling and preclinical safety assessment studies!>!'®. Here, we have used
137  adult Macaca fascicularis (cynomolgus monkey) to generate the largest single-cell
138  transcriptomic NHP dataset to date, encompassing over 1 million individual cells/nuclei
139  from 43 tissues covering all major systems (nervous, immune, endocrine,

140  cardiovascular, respiratory, digestive, skeletal, reproductive and urinary), all performed
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141  with the same droplet-based approach'®. To facilitate the exploration of this dataset, we
142 have created the first version of the Non-Human Primate Cell Atlas or NHPCA, an open
143 and interactive database (https://db.cngb.org/nhpca/) that will be regularly updated with
144  subsequent sc/snRNA-seq Macaca fascicularis datasets focused on development, aging,
145  disease and drug responses, as well as other omics datasets and data from other NHP
146  species.

147

148  Generation of an adult monkey single-cell transcriptomic atlas

149  We isolated cells/nuclei from 43 different tissue samples from three male and three
150  female six-year-old Macaca fascicularis monkeys (Fig. 1a and Supplementary Table
151  1a). Bladder (two), cerebellum (two), diaphragm (two), gallbladder (two), kidney (two),
152 liver (three), lung (two), salivary gland (two), subcutaneous (two) and visceral adipose
153  tissue (two) were analyzed as biological replicates to assess individual and gender
154  variability, observing good overlap in all cases (Extended Data Fig. 1). Most of the
155  tissues were profiled by snRNA-seq'>!’, which allows both to circumvent
156  complications associated with stressful dissociation protocols that can alter the cell
157  transcriptome and to profile cells from frozen tissues for removing the need of sample
158  processing immediately after tissue acquisition. However, due to technical limitations
159  in obtaining high quality nuclei, scRNA-seq was performed for colon, duodenum,
160  spleen, stomach, lymph node and bone marrow. Peripheral blood mononuclear cells
161  (PBMC) were also profiled using scRNA-seq. All experiments used the DNBelab C4
162  droplet-based platform for library generation'*. To ensure quality, all cells with a gene
163 count lower than 500 and/or mitochondrial content higher than 10% were excluded. We
164  also applied DoubletFinder to detect and remove doublets, which accounted for roughly
165 5% of the estimated total cell/nuclei. Overall, we retained transcriptomic data for a total
166  of 1,084,164 cells/nuclei (Fig. 1a), with numbers ranging from 99,123 in the cerebellum
167  to 2,039 in the duodenum (Supplementary Table 1a). Global visualization of cell

168  clustering using Uniform Manifold Approximation and Projection (UMAP) showed
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169  that each tissue clusters separately, with tissues from the same system generally
170  clustering closer (Fig. 1a, b and Extended Data Fig. 2-6). We then performed
171  individual UMAP representations for each tissue and applied unbiased graph-based
172 Seurat clustering, which identified 463 cell clusters among all tissues (Extended Data
173 Fig. 7-10). Based on the expression levels of cell type-specific markers (Extended
174  Data Fig. 11), we identified 106 cell types in the global UMAP view of all tissues (Fig.
175  1c and Supplementary Table 1b, c¢). These were roughly categorized into epithelial
176  cells (40 clusters), immune cells (13 clusters), endocrine cells (11 clusters), muscle cells
177 (9 clusters), stromal cells (7 clusters), endothelial cells (7 clusters), neurons (7 clusters),
178  glia (7 clusters), mesothelial cells (3 clusters), adipocytes (1 cluster) and unknown cells
179 (1 cluster from carotid). On average, we detected 1,368 genes and 3,024 unique
180  molecular identifiers (UMI) per cell. The median gene count per tissue varied between
181 3,016 in the neocortex and 736 in the case of PBMC, while UMI ranged between 8,015
182  for the neocortex and 1,313 for the prostate (Extended Data Fig. 12). The number of
183  cells for each of these 106 cell types ranged from 87,890 granule cells in the cerebellum
184  to 37 bone marrow stromal cells (Extended Data Fig. 13). Reassuringly, many of the
185 106 clusters were largely composed of a cell type belonging to a specific tissue, such
186  as cerebellar granule cells in cluster 45, hepatocytes in clusters 87 and 88, epididymis
187  stereociliated cells in cluster 29 and salivary acinar cells in cluster 83 (Fig. 1¢ and
188  Extended Data Fig. 14a). However, cell types such as endothelial, stromal and various
189  immune cells were shared between different tissues, as expected (Extended Data Fig.
190  14b). A detailed annotation of all cell populations detected in every tissue is provided
191 in Extended Data Figure 7-10 and Supplementary Table 1d, e. Our Macaca
192 fascicularis atlas is the largest NHP single-cell transcriptome dataset to date and can be
193  explored interactively by tissue, cell type and gene through our NHPCA database.

194

195 Common cell types across monkey tissues
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196  We inspected whether common cell types distributed throughout different tissues in the
197 monkey body display tissue-specific transcriptional programs>!#2°,  First, we
198  selectively clustered stromal cells, macrophages (including microglia), endothelial cells
199  and smooth muscle cells from all sequenced tissues. While observing a considerable
200  diversity, many cell clusters grouped together on the basis of tissue origin, such as
201  stromal cells from the female reproductive system, microglia from the central nervous
202  system, endothelial cells from the respiratory system and smooth muscle cells from the
203  male reproductive system (Extended Data Fig. 15a-d). We also performed
204  differentially expressed gene (DEG) analysis to obtain tissue-specific signatures,
205  revealing a substantial heterogeneity among these common cell types across all tissues
206  (Extended Data Fig. 15e-h and Supplementary Table 2a-d).

207 Our transcriptomic profiling of single nuclei offers the possibility of studying cell
208  populations that cannot be characterized by conventional sScRNA-seq analysis, such as
209  myonuclei from multinucleated skeletal muscle fibers. We grouped and re-clustered
210  cells from tissues in our atlas known to contain skeletal muscle cells (diaphragm, tongue,
211  esophagus and abdominal wall). This showed two distant populations in abdominal wall
212 and diaphragm, whereas nuclei from esophagus and tongue where more concentrated
213 (Fig. 2a). The separation of nuclei in abdominal wall and diaphragm corresponded to
214  MYH7* type I (slow-twitch) and MYH2" type II (fast-twitch) myofibers?' (Fig. 2b, ¢
215  and Supplementary Table 2e-g). In contrast, type [ and type II tongue myonuclei were
216  inclose vicinity, which may be related to the tongue being a highly innervated muscle??.
217  Differential threshold of MYH2 and GPD?2 further subdivided type II myonuclei into
218  type Ila (MYH2"e") and type IIb (MYH2'Y GPD2"). In addition, we discriminated,
219  albeit at low proportions, NAV3" neuromuscular junction (NMJ) nuclei in the
220  diaphragm and ETV5" myotendinous junction (MTJ) nuclei in both tongue and
221  diaphragm (Fig. 2b-d). Moreover, we detected PAX7" nuclei from satellite cells (the
222 stem cells from the skeletal muscle lineage), and a small cluster of LVRN'

223 fibroadipogenic progenitors (FAP) could be annotated in the diaphragm. Skeletal
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224  muscle nuclei displayed subtype-specific and tissue-specific gene expression signatures
225 and gene ontology (GO) terms (Fig. 2e, f and Extended Data Fig 16a-c). We also
226  noticed substantial myonuclei heterogeneity within the same subtype and tissue (Fig.
227  2f).

228 Next, to explore the heterogeneity between different types of adipocytes, we
229  grouped and re-clustered cells from subcutaneous and visceral adipose tissues, resulting
230 in 10 major clusters (Extended Data Fig. 17a). We observed a marked distinction
231  between mature adipocytes and adipocyte progenitors, as reflected by the differential
232 expression of ADIPOQ and CD34 (Extended Data Fig. 17b). Visceral mature
233 adipocytes and adipocyte progenitors displayed enriched expression of ITLNI, in

234  agreement with visceral adipocytes having mesothelial origin?

, and also high
235  mitochondrial activity exemplified by high expression of ND4, ATP6 and COX3 *23
236  (Extended Data Fig. 17¢, d). In contrast, subcutaneous mature adipocytes and
237  adipocyte progenitors were enriched in FOS. Likewise, SLC11A1 and SPOCK3 marked
238  mature subcutaneous and visceral adipocytes, respectively. Adipocyte progenitors
239  contained two populations for visceral tissue (WTI' and CFD"e"), three for
240  subcutaneous tissue (ESRI*, CXCLI14*APOD"* and DPP4") and one shared between
241  both tissues (NOX4") (Extended Data Fig. 17a, ¢ and d). Within the subcutaneous
242 CXCLI14"APOD" progenitor cluster, we observed a population of CFD"¢" cells that also
243 co-expressed DPP4, a marker of highly proliferative adipocyte progenitors in both
244 mouse and human?®, However, we did not detect significant proliferation in any of the
245  monkey adipocyte progenitor populations based on the expression of the pan-cycling
246  marker MKI167%" (Extended Data Fig. 17¢). NOX4" is an NAPDH oxidase that acts as
247  aswitch from insulin-induced proliferation to adipocyte differentiation, suggesting that
248  the shared cluster is a converging route for both adipose tissues towards adipocytic
249  maturation?®,

250 Finally, we grouped and re-clustered all tissues that contain mesothelial cells, a type

251  of specialized epithelial cells. Mesothelial cells from bladder, ovary and fallopian tube
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252 were in close proximity while those from other tissues clustered more separately (Fig.
253  2g). We also observed intra-tissue heterogeneity, in particular for visceral adipose tissue
254  and ovary. In the former, we observed a cluster of immune-like mesothelial cells that,
255 aside from the expression of the typical mesothelial markers (MSLN, ITLNI and
256  PKHDILI), express high levels of immune cell markers (e.g., PTPRC, IL7R and TRAC)
257  (Fig. 2h). This is in agreement with the emerging concept that structural cells display

258  immune cell properties>!®

and the known immunomodulatory role of visceral adipose
259  tissue in responses to bacteria in the gut®®. Interestingly, in the ovary, we identified a
260  classical mesothelial population and two close PAX8" epithelial-like populations (one
261  mature and one progenitor-like) of mesothelial origin®® (Fig. 2i-k). Progenitor-like
262  ovarian epithelial cells expressed well-known stem cell markers such as LGRS,
263  MECOM and CD44°".

264 These findings add up to the growing understanding of common cell type
265  heterogeneity and tissue-specific molecular signatures®'8-2°, Our data provide a new
266  resource for further dissecting these differences, clarifying the underlying mechanisms
267  and studying interspecies differences®2.

268

269  Analysis of Wnt signaling components identifies potential stem cell populations
270 A single-cell body atlas of large dimensions like ours is ideal for the systematic
271  investigation of multifaceted cell-cell interactions including those occurring in cytokine
272  or growth factor-mediated signaling pathways such as the Wnt (wingless-related
273 integration site) pathway?3-*, Besides playing essential roles in embryonic development,
274  Wnt factors control growth and maintenance of numerous tissues throughout life.
275  Consistently, Wnt signaling effects are associated with the regulation of adult stem
276  cell function® . To exert this role, Wnt factors bind to specific receptors (FZD, frizzled)
277  and co-receptors (LRP, low-density lipoprotein receptor related protein). In addition,
278  LGR (leucine rich repeat containing G protein-coupled receptor) proteins (LGR4, 5 and

279  6) act as amplifiers of Wnt signals by inhibiting negative regulators®¢. Accordingly,

10
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280 LGRS and 6 often mark and regulate adult homeostatic and facultative stem cells,
281  mostly of epithelial origin, in multiple mammalian tissues, whereas LGR4 has a
282  widespread distribution and less clear function. We thus performed a survey of LGR
283  proteins throughout the monkey body to thoroughly dissect cells targeted by the Wnt
284  pathway and identify previously unappreciated stem cell populations. In this regard, it
285  is worth noting that the majority of reports of LGRS5-expressing cells to date have been
286  performed with genetically engineered mouse models due to the lack of specific tools
287  and reagents to study other mammals3®.

288 LGRS was detected across several monkey tissues, unexpectedly with the highest
289  expression in type I skeletal muscle myonuclei, epithelial cells of the uterus and
290 fallopian tube, oligodendrocyte progenitor cells (OPC) and renal distal convoluted
291  tubule cells (DCTC) (Fig. 3a). With the exception of epithelial cells in the uterus and
292 fallopian tube?, these tissues have not previously been reported to contain LGR5" cells
293  in mammalian adulthood. The expression of LGR6 appeared to be more restricted
294  (Extended Data Fig. 18a), with higher abundance in cardiomyocytes, thyroid follicular
295  cells, folliculostellate cells of the pituitary gland and the previously reported smooth
296  muscle cells’” (Extended Data Fig. 19-22). We also detected LGR5™ or LGR6" cells in
297  selected cell populations of numerous other tissues including both previously reported
298  (e.g., ovary epithelial cells®!, hepatocytes®® and colon enterocytes®’) and unreported
299  (e.g., LGRS5" cells in bipolar cells of the retina®’) (Fig. 3a, Extended Data Fig. 18a and
300  19-22). In general, LGRS and LGR6 did not overlap, apart from fallopian tube epithelial
301 cells and vagina smooth muscle cells (Extended Data Fig. 18b). Moreover, we
302  observed little overlap between LGR5" or LGR6" cells with those expressing MKI67,
303  apart from epithelial cells of the fallopian tube and uterus and basal cells of the salivary
304 gland (Extended Data Fig. 19-22 and Supplementary Table 3a-c). In contrast to
305 LGRS and 6, LGR4 was ubiquitously expressed across most tissues, with the highest
306  expression in pancreatic acinar, beta and ductal cells, Miiller cells of the retina and

307  adipocytes (Extended Data Fig. 18c).

11
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308 In the kidney, LGR5" cells were mostly enriched in the DCTC and to a lesser extent
309 in the descending and ascending loop of Henle (Fig. 3a and Extended Data Fig. 20).
310 To support this observation, we performed single-cell Assay for Transposase
311  Accessible Chromatin sequencing (scATAC-seq) of monkey kidney and integrated the
312 results with our kidney snRNA-seq data dataset (N = 6,879) (Fig. 3b, ¢ and Extended
313 Data Fig. 23a, b). The analysis showed peaks of open chromatin at the LGRS promoter
314  and a putative enhancer open in the same cell types expressing LGRS (Fig. 3d). As
315  validation, we performed single-molecule fluorescence in-situ hybridization (smFISH)
316  for LGRS, which showed strong expression in selected kidney tubules (Fig. 3e).
317  Moreover, GO analysis of DEG comparing the LGRS5" fractions of DCTC, ascending
318 and descending loop of Henle revealed the enrichment of pathways involved in kidney
319  development in DCTC (Fig. 3f), suggesting the possibility that these are progenitor
320  cells. This was strengthened by the observation that DCTC LGRS5" cells co-express
321  renal progenitor cell markers such as PAX2, LHXI and TNFRSF19**. We also
322  integrated our data with available human* and mouse** kidney snRNA-seq datasets.
323 Despite observing good integration, we noticed very little, or no, LGRS expression in
324  those adult human or mouse kidney datasets* (Extended Data Fig. 24a-c).

325 In the neocortex, integration of available human*® and our own mouse snRNA-seq
326  data with our monkey data pointed as well at differential LGRS expression patterns
327  between species. LGRS expression was highest in OPC in monkey and in
328  oligodendrocytes in human, whereas in mouse it was higher in inhibitory neurons than
329  OPC and oligodendrocytes (Extended Data Fig. 25a-c). Pseudotime ordered by
330 Monocle 2 of the OPC maturation trajectory towards oligodendrocyte showed
331  concentration of LGRS in monkey OPC (Extended Data Fig. 25d, e). Likewise, double
332 immunofluorescence for the OPC marker PDGFRA and LGRS confirmed their co-
333 expression in OPC from monkey neocortex (Extended Data Fig. 25f). The observation
334  that type I skeletal myonuclei and cardiomyocytes ranked first in expression of LGRS

335 and LGR6 in monkey tissues, respectively, was intriguing (Fig. 3a and Extended Data

12


https://doi.org/10.1101/2021.12.13.472311
http://creativecommons.org/licenses/by-nc-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2021.12.13.472311,; this version posted December 13, 2021. The copyright holder for this
preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in
perpetuity. It is made available under aCC-BY-NC-ND 4.0 International license.

336  Fig. 18a). To inspect this further, we grouped and re-clustered all types of muscle cells
337  (skeletal, smooth and cardiac) in our atlas (Fig. 3g). LGRS was more enriched in MYH7"
338  slow-twitch myonuclei of the abdominal wall and diaphragm (Fig. 3h), whereas LGR6
339  was higher in cardiomyocytes and smooth muscle cells (aorta, ovary, carotid and vagina)
340 (Extended Data Fig. 26a). LGRS and LGR6 expression in slow-twitch skeletal
341  myonuclei and in cardiomyocytes, respectively, were validated by smFISH (Fig. 3i and
342  Extended Data Fig. 26b). In mouse, LGRS is known to be expressed in NMJ
343  myonuclei*’ and a subset of satellite cells activated upon injury*®, but we did not detect
344 LGRS enrichment in either cell type in our monkey dataset (Extended Data Fig. 19).
345  The lack of LGRS enrichment in monkey satellite cells is unsurprising given that we
346  did not apply any injury to the skeletal muscle tissues profiled. Yet, we could detect
347  LGR6 in cardiomyocytes using previously reported mouse and human snRNA-seq
348  datasets*>* (Extended Data Fig. 26¢, d). Similarly, LGR6 was enriched in several
349  monkey pituitary cell populations, being most highly expressed in folliculostellate cells,
350  which have been reported to be pituitary gland stem cells®! (Extended Data Fig. 26e).
351  Consistently, those cells also expressed other progenitor markers such as SOX2, PAXG6,
352 CD44 and CXCR4 (Extended Data Fig. 26f). Moreover, GO analysis of DEG specific
353  tothis LGRS5" population compared to other pituitary cells showed enrichment of terms
354  related to development (Extended Data Fig. 26g).

355 Next, we profiled the genes encoding Wnt factors and the R-spondin family
356  (RSPOI1-4) of ligands for LGR proteins*>*¢ in a panel of monkey tissues containing
357  cells with high LGRS (kidney, epididymis, fallopian tube, liver, ovary, neocortex and
358  diaphragm) and LGR6 (heart and pituitary gland) expression (Extended Data Fig. 27a,
359 b and 28-31). This allowed us to dissect the potential cell-cell interaction networks
360  driving Wnt signalling throughout the monkey body. Notably, RSPO cytokines were
361  widely distributed but displayed higher expression in mesenchymal-like cells (e.g.,
362  smooth muscle cells of epididymis, hepatic stellate cells and folliculostellate cells of

363  the pituitary gland) and mesothelial cells (e.g., of diaphragm, fallopian tube and ovary)
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364  of different tissues. Interestingly, RSPO2 was also high in inhibitory neurons of the
365 neocortex (Extended Data Fig. 30). The expression of Wnt factors was more limited
366  and in general lower than RSPO cytokines but we noticed high levels of WNT9B in
367  principal cells of the collecting duct in kidney (Extended Data Fig. 27a, ¢), WNT2B in
368  mesothelial cells of the fallopian tube (Extended Data Fig. 29a) and ovary (Extended
369 Data Fig. 30c¢), and as expected WNT2 in endothelial cells of the liver’? (Extended
370  Data Fig. 29¢). Wnt9b is an essential regulator of kidney embryonic development in
371  multiple species and of kidney regeneration in lower vertebrates®. Supporting the
372  snRNA-seq data, scATAC-seq analysis of the WNT9B locus revealed increased
373  enhancer accessibility in monkey principal cells compared to other kidney cell types
374  (Extended Data Fig. 27d). In contrast, we detected low WNT9B expression in available
375  mouse* and human*® snRNA-seq datasets (Extended Data Fig. 27¢). WNT9B may be
376  responsible for inducing LGR5 (a Wnt pathway target) in a fraction of DCTC,
377  potentially creating a feedback loop that amplifies WNT9B signals to keep those cells
378 in a progenitor state. In fact, Wnt factors are known to act predominantly on
379  neighbouring cells**-5, and cells of the collecting duct and DCTC are in closer
380  proximity than other nephron structures (Extended Data Fig. 27f). We further included
381  Wnt receptors and other co-receptors®* in the analysis, and also the TCF family of
382  transcription factors bound by B-catenin’, as a resource for additional exploration in
383  these tissues (Extended Data Fig. 27a,b and 28-31).

384 Therefore, we have reconstructed the Wnt signaling network in monkey tissues and
385 identified cell types with potential progenitor or homeostatic characteristics. Additional
386  signaling pathways and/or ligand-receptor interactions can be explored through our
387  NHPCA database.

388

389  Prediction of viral infection vulnerability in monkey tissues

390 To demonstrate the utility of our atlas for advancing the knowledge of disease

391  pathogenesis, we first mapped the expression of the main viral receptors/co-receptors
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392  for a panel of 126 viruses including respiratory ones across all monkey tissues. As
393  expected, NCAMI (cytomegalovirus receptor) was enriched in astrocytes,
394  oligodendrocytes and neurons, consistent with the knowledge of this virus attacking the
395  central nervous system>®. In contrast, CD46°’ (receptor for Measles and Herpes viruses)
396  was enriched in epithelial cells from bladder, female and male reproductive system, and
397  liver endothelial cells (Fig. 4a, Extended Data Fig. 32 and Supplementary Table 4a).
398  Given the emergency state of the current COVID-19 pandemic caused by SARS-CoV-
399 2% we focused on its receptor ACE2 and co-receptor TMPRSS2 to assess how
400  widespread and homogeneous their expression is in monkey tissues. This offers the
401  major advantage of studying COVID-19 pathogenesis in a species phylogenetically
402  close to humans®, and also provides the possibility of profiling cell types and/or tissues
403  that have not been studied in human. In this regard, although the lung is the
404  predominantly affected tissue in COVID-19, it is important to clarify what other tissues
405  are targeted to better understand the disease course and its transmissibility®!. TMPRSS?2
406  displayed a broad expression across multiple monkey tissues, whereas ACE2 had a
407  more restricted pattern. The highest ACE?2 expression was found in epithelial cells from
408  gallbladder (glandular cells), kidney (mostly proximal tubule cells), lung (ciliated, club
409  and alveolar type 2 [AT2] cells) and liver (hepatocytes and cholangiocytes) (Fig. 4b,
410  Extended Data Fig. 33, 34 and Supplementary Table 4b). ACE? in these tissues was
411  remarkably heterogeneous, suggesting that regulatory mechanisms fine-tune its
412  expression levels. Notably, double positive (4CE2* TMPRSS2") cells have a higher risk
413  of infection by SARS-CoV-2% but it remains unclear what tissues and cell types
414  throughout the human body co-express these genes. We noticed the largest overlap
415  between ACE2 and TMPRSS2 in monkey gallbladder cells in agreement with reports of
416  COVID-19 patients developing acute cholecystitis®?. Significant co-expression was
417  also observed in ciliated and club cells of the lung, as expected®®-*4, and, interestingly,
418  proximal and connecting tubule cells of the kidney. A smaller overlap was observed in

419  hepatocytes, bladder epithelial cells and pancreatic beta and ductal cells (Fig. 4¢). Next,
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420  we performed a comparative analysis of ACE2 and TMPRSS? distribution in human?%43
421  and monkey. A similar distribution was seen in both the gallbladder and liver in the two
422 species, while distinct patterns were observed for proximal tubule cells of the kidney
423 and for ciliated and AT2 cells of the lung (Extended Data Fig. 35a). This is important
424  because it implys a mechanism by which the infection with SARS-CoV-2 in the two
425  species could have different consequences.

426 As a representative tissue with high but heterogeneous ACE2 expression and a
427  significant proportion of ACE2" TMPRSS2" cells, we studied the kidney in more detail
428 by looking at the integration of snRNA-seq and scATAC-seq data. Analysis of open
429  chromatin regions revealed discrete peaks in the ACE2 locus with the highest signal
430  detected in a population of proximal tubule cells that also contains the highest
431  proportion of ACE2-expressing cells (Fig. 4d). Motif analysis demonstrated that ACE2
432  promoter and enhancer regions are enriched in STATI and 3, FOXA1, JUNB and several
433 [RF (interferon response factor) binding sites (Fig. 4e). These transcription factors have
434  important immune functions and are targets of tissue protective and innate immune
435  responses such as those mediated by interleukin-6 (IL6), interleukin-1 (IL1) and
436  interferons®. In this regard, dysregulation of both IL6 and IL1p has been implicated in
437  the pathogenesis of severe COVID-19%. Thus, we investigated the co-expression of
438  their receptors (IL6R, ILIRI and ILIRAP) with ACE2 in monkey kidney, only
439  observing good correlation with ACE?2 in proximal tubule cells for /L6R (Extended
440 Data Fig. 35b). These observations imply a potential link between IL6, STAT
441  transcription factors and enhanced ACE2 expression in specific tissues such as the
442  kidney that can either facilitate the existence of viral reservoirs or exacerbate COVID-
443 19 disease progression due to increased viral dissemination (Extended Data Fig. 35c¢).
444  In addition to ACE2 and TMPRSS2, numerous other molecules have been implicated
445 in facilitating SARS-CoV-2 binding to the cell surface or in COVID-19

67,68

446  pathogenesis®’:°®. Their expression or co-expression in monkey tissues, as well as other
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447  potential associations and other virus-host interactions can be explored using our
448  NHPCA database.

449

450  Investigation of common human traits and genetic diseases in monkey

451  We next assessed the effect of genetic variation linked to complex human traits and
452  diseases by applying Genome Wide Association Studies (GWAS) to our monkey
453  dataset. We linked human single-nucleotide polymorphisms from 163 GWAS taken
454  from the UK Biobank to orthologous coordinates in the monkey single-cell
455  transcriptome to calculate the enrichment of traits across the genes expressed in each
456  cell cluster annotated in our dataset. As a general trend, we observed enriched
457  heritability for neurological traits such as ‘schizophrenia’, ‘depression’ or ‘autism’ in
458  clusters corresponding to neuronal and glial cells (Fig. 5a, Extended Data Fig. 36 and
459  Supplementary Table 5a). Similarly, we observed enrichment of Alzheimer’s disease
460 traits in immune cells, in line with the knowledge that immune dysfunction contributes
461  to the pathogenesis of this disease®. Consistent with expectations, we also noticed
462  enrichment of immunological-related traits (‘lymphocyte count’, ‘monocyte count’ and
463 traits related to immune disorders) in myeloid cells and B and T lymphocytes. Likewise,
464  blood related traits such as ‘mean sphered cell volume’ and ‘red blood cell distribution
465  width’ were enriched in erythrocytes and bone marrow progenitor cells. Interestingly,
466  however, we observed some unexpected trends for traits like ‘body mass index’ or
467  ‘waste ratio’. Despite showing the expected highest enrichment in adipocytes, these
468  trends additionally revealed an enrichment in smooth muscle cells, melanocytes and
469  stromal cells. Similarly, type 2 diabetes and cholesterol-related traits revealed not only
470 the expected association with hepatocytes but also with several kidney cell
471  populations”. Our analysis also pointed at the enrichment of attention deficit and
472  hyperactive disorder (ADHD) in skeletal muscle type I and type II myonuclei but not
473 in neuronal cell types, suggesting an intriguing link between this pathology and motor

474  abnormalities (Fig. Sa). In this regard for example, ocular muscle hyperactivity is an
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475  accompanying sign of ADHD and might be a major trigger for the disease rather than
476  a consequence’!.

477 Besides the association of complex human traits to cell types stated above, we
478  also generated a correlation map of mutant genes causing human genetic diseases with
479  all cell types annotated in our monkey dataset (Extended Data Fig. 37 and
480  Supplementary Table Sb). As expected, genes related to retinitis pigmentosa were
481  specifically expressed in monkey photoreceptors, while genes related to porphyria were
482  found associated to erythroblasts. This shows that our dataset can predict cell types that
483  are directly affected in human genetic diseases. In addition, we compared the
484  interspecies distribution of a panel of genes related to human neurological diseases
485  using snRNA-seq data for mouse, monkey and human neocortex*®. Notably, for most
486  genes, we observed a generally higher correlation of the expression in specific cell types
487  between human and monkey than between human and mouse (Fig. 5Sb). However, some
488  diseases also appeared to be related to different cell types in monkey compared to
489  human. For instance, distal neuropathy caused by mutations in HSPBS8’?> was enriched
490  in CNRI" inhibitory neurons in human while being enriched in astrocytes in monkey
491  and mouse. Similarly, ataxia telangiectasia caused by mutations in 4A7M was mostly
492  enriched in oligodendrocytes” in human while in monkey and mouse it was enriched
493 in PVALB" and LAMPS5" inhibitory neurons, respectively.

494 Our analysis thus highlights the potential for modelling human diseases in
495  species phylogenetically closer to humans and underlines that differences will still exist.
496  Further scrutiny of GWAS datasets and gene mutations and wider comparisons between
497  species will provide additional relevant observations.

498

499  DISCUSSION

500  Despite the enormous potential, few NHP tissues have been profiled to date at the
501  single-cell level and the use of different species, experimental conditions and platforms

502 makes comparisons challenging?®’#7>, To address this, we have generated the first
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503  version of a large single-cell transcriptomic atlas for a NHP widely used in research
504  studies, Macaca fascicularis, and an expandable and interactive database
505  (https://db.cngb.org/nhpca/) to facilitate its exploration. The current version of our atlas
506  provides a comprehensive and integrated overview of gene expression in 106 cell types
507  extracted from 43 tissue types. Specialized tissues such as skin, thymus, testis and some
508 parts of the gastrointestinal tract, as well as increased cell numbers for some of the
509 already profiled ones, will be added in future releases. Cell type identification relied on
510  previously reported markers and gene expression profiles. Therefore, although we
511  identified most (if not all) known cell types in these tissues, our current annotations are
512 likely to benefit from deeper sub-clustering and further revision.

513 We provide a detailed description of individual tissue single-cell composition and
514  acomparison of common cell types across all sequenced tissues. This information will
515  be particularly valuable for understanding tissues that have either not been profiled at
516  all at the single-cell level in human (e.g., diaphragm, tongue and salivary gland) or lack
517  enough cell numbers (e.g., liver, gallbladder and substantia nigra), and for prediction
518 of human disease susceptibilities. Regarding the latter, we have identified an
519  unexpected link between ADHD and muscle function. ADHD is a polygenic and
520  multifactorial disorder associated with hyperactivity and motor coordination
521  abnormalities that are thought to have a neurological origin’®. Our data support the
522  possibility that skeletal muscle rather than the nervous system may be a direct driver of
523  ADHD pathogenesis’’. Similarly, as part of the analysis for virus receptors and co-
524  receptors, we provide a comprehensive map of ACE2"/TMPRSS2" double positive cells
525  throughout the monkey body that may be useful to understand COVID-19 pathogenesis
526  in human®-%!, In particular, the link between IL6, STAT transcription factors and ACE2
527  expression could explain the reported positive effects of tocilizumab, a humanized
528  monoclonal antibody against IL6R for the treatment of patients with severe COVID-
529 1978, On the other hand, our study shows significant interspecies differences in cell

530  type-specific gene expression with potentially important functional consequences. For
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531 example, the distribution of ACE2 and TMPRSS?2 across different cell types is not
532  identical between monkey and human and this could influence the disease course.
533 Moreover, in the context of the survey of Wnt pathway components we have identified
534 LGRS renal cells with progenitor characteristics that are seemingly absent in human
535 and mouse based on analysis of reported datasets. This is relevant because the kidney
536  has limited regenerative capacity in mammals’. During embryonic development
537  LGRS5" cells located at the junction between the ureteric bud (source of the collecting
538 tubule and connecting tubule) and the metanephric blastema are responsible for
539  nephrogenesis, but they quickly disappear after birth*>. Their persistence in adult
540 monkey kidney suggests a higher regenerative capacity compared to other species,
541  which if true raises the hope of activating a similar mechanism in human®. Similarly,
542 LGR5' cells in the neocortex correspond mainly to OPC in monkey and to
543  oligodendrocytes and to a lesser extent OPC in human, whereas in mouse inhibitory
544  neurons are more highly enriched. This finding is consistent with the knowledge that
545  Whnt activity regulates OPC and oligodendrocyte function and differentiation®! but
546  suggest interspecies differences in the mode of action. Likewise, the expression of
547 LGRS in skeletal slow-twitch myofibers, and LGR6 in the pituitary gland and heart, is
548 intriguing. During development, Wnt activity regulates skeletal myogenesis and
549  myofiber typing®?, cardiomyocyte proliferation®* and pituitary gland growth®*, but little
550  is known about the adult. The functional implications of these and other related findings
551 and the extent to which the patterns differ between monkey and other mammalian
552 species will require further study. Finally, interspecies comparison of single-cell gene
553  expression in neocortex highlights the problems associated with modelling neurological
554  diseases in rodents and suggests that a cautious approach should also be taken when
555  studying NHP. Additional comparisons with other human and mouse single-cell/nuclei
556  datasets will provide a more comprehensive, body-wide picture of differences in

557  disease vulnerability among the three species.
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558 In the future, with efforts from us and scientists worldwide, the NHPCA database
559  will be extended with additional single-cell datasets generated from disease modelling
560  studies, spontaneously developed diseases (e.g., diabetes or cardiomyopathy) and aging.
561  Adding other layers of single-cell -omics studies, in particular scATAC-seq and
562  spatially resolved transcriptomics® for all tissues presented here, will help characterize
563  cell states and the interactions between different cell types more accurately. Proof of
564  principle is the kidney scATAC-seq dataset included here. In addition, it will be
565  important to compare our Macaca fascicularis atlas with datasets from other non-
566  endangered NHP species such as Macaca mulatta (thesus monkey), Callithrix jacchus
567 (marmoset monkey)®® and Microcebus murinus (mouse lemur)'®!3. Altogether, this
568 information will be instrumental for understanding primate evolution and human
569  disease.

570

571

572 FIGURE LEGENDS

573

574  Figure 1. Generation of a single-cell atlas across 43 tissues of Macaca fascicularis

575  monkey.

576 (a) Schematic representation of monkey tissues analyzed in this study (top left
577 panel). A total of 43 tissues were collected from three male and three female 6-
578 year-old monkeys. UMAP visualization of the global clustering indicating all
579 single cells from the dataset colored by tissue (top middle panel) and bar plot
580 showing the number of cells/nuclei profiled for every tissue after passing the
581 quality control (top right panel). N = 1,084,164 individual nuclei/cells analyzed.
582 (b) UMAP visualization of tissues grouped by specific systems such as immune
583 system (bone marrow, peripheral blood, spleen, tonsil and lymph node),
584 digestive system (colon, duodenum, esophagus, gallbladder, liver, stomach and
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585 tongue) and female reproductive system (fallopian tube, ovary, uterus and
586 vagina).

587 (¢) UMAP visualization of all clusters colored by major cell types. A total of 106
588 cell clusters were identified in the dataset. Cell type annotation for all major
589 clusters is provided in the right-hand side legend. SERPINEI was used to
590 discriminate two distinct cluster of hepatocytes.

591

592  Figure 2. Characterization of skeletal myofibers and mesothelial cells.

593 (a) UMAP visualization of the global clustering of skeletal muscle cells annotated
594 in our dataset. Clusters are colored by tissue (abdominal wall, diaphragm,
595 esophagus and tongue). Due to their low number, fallopian tube, vagina and
596 tonsil skeletal cells were excluded from this analysis. Endothelial and immune
597 cells were not included in this analysis.

598 (b) UMAP representation of all re-clustered skeletal muscle cells colored by
599 subtype.

600 (¢) UMAP visualization of specific markers used to identify type I (MYH7), type
601 ITa (MYH?2) and type IIb myonuclei (GPD2), FAP (LVRN), MTJ (NAV3 and
602 COL2241), NMIJ (ETV5 and MUSK) and satellite cells (PAX7), as shown in b.
603 Due to their small proportions, the latter three populations are highlighted by a
604 red arrow.

605 (d) Stacked bar plot representing the proportion of skeletal muscle nuclei
606 (myonulcei subtypes type I, type Ila, type IIb, MTJ and NMJ, and also satellite
607 cells and FAP) in the indicated tissues.

608 (e) Heatmap showing DEG among the skeletal muscle populations highlighted in
609 d.

610 (f) Bubble plot showing DEG for each of the myonuclei subtypes comparing
611 different tissues.
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612 (g) UMAP visualization of mesothelial cells from the selected tissues (bladder,
613 diaphragm, fallopian tube, lung, ovary and visceral adipose tissue). Two
614 different clusters of mesothelial cells in visceral adipose tissue are indicated by
615 the red dotted line.

616 (h) Violin plot showing the differential expression of mesothelial and immune
617 markers in the two visceral adipose tissue clusters highlighted by the red dotted
618 line in panel g.

619 (i) UMAP visualization of three different clusters of mesothelial cells from the
620 ovary (left panel). Mesothelial cells (Meso), surface epithelial (Surface epi) and
621 progenitor-like epithelial (Prog-like epi) cells are highlighted in red, blue and
622 yellow, respectively.

623 (j) UMAP visualization of LGRS expression in ovarian cells.

624 (k) Violin plot showing the DEG among the three populations of ovarian cells
625 highlighted in the UMAP.

626

627  Figure 3. Analysis of LGR5" cells across all monkey tissues.

628 (a) UMAP visualization of LGRS expression across all tissues profiled in this study.
629 The bubble plot on the right shows the LGRS expression ratio in the indicated
630 cell types.

631 (b) Co-embedding of kidney snRNA-seq (highlighted in blue) and scATAC-seq
632 (highlighted in red) datasets.

633 (¢) UMAP visualization of integrated kidney snRNA- and scATAC-seq data. Cell
634 clusters are colored according to cell identity. Abbreviations: DCTC, distal
635 convoluted tubule cells; Endo, endothelial cells; LOH, loop of Henle; mDC,
636 myeloid-derived dendritic cells; Myofibro, myofibroblasts.

637 (d) UMAP visualization of LGRS across kidney cell types and ArchR track
638 visualization of aggregate scATAC-seq signals on the LGRS locus in each cell
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639 type annotated in ¢. The bar plot on the right side indicates the ratio (%) of
640 LGRS5" cells in each cell type of kidney.

641 (e) Representative image of smFISH detection for LGRS expression in DCTCs
642 (scale bar 20 pm). The bottom panel represents a magnification of the area
643 indicated by the white box in the top panel.

644 (f) GO analysis showing the pathways associated to the DEGs obtained by
645 comparing LGRS5" cells from DCTC, ascending and descending LOH. The
646 UMAP and the barplot on the right highlight the presence and the percentage of
647 LGRS cells co-expressing the progenitor markers PAX2, TNFRSF19 and LHX2.
648 (g) UMAP visualization of all muscle cell types annotated in our dataset clustered
649 by tissue (abdominal wall, aorta bladder, carotid, diaphragm, esophagus,
650 fallopian tube, heart, ovary, prostate, spermaduct, tongue, uterus and vagina).
651 The dotted lines group clusters of cells belonging to a specific muscle type
652 (cardiac, skeletal and smooth muscle).

653 (h) UMAP visualization of LGRS, MYH?2 and MYH?7 across all skeletal muscle cell
654 types. The blue dotted line in the left panel indicates all clusters belonging to
655 the diaphragm while the one in the right panel indicates LGR5" cells.

656 (i) Representative image of smFISH detection for LGRS, MYH7 and their co-
657 expression in skeletal myonuclei of the diaphragm (scale bar 20 pm). The panel
658 of the right is a magnification of the area indicated by the white box.

659

660  Figure 4. Global analysis of ACE2 and TMPRSS?2 across monkey tissues.

661 (a) Heatmap showing the expression of entry receptors for a selection of the most
662 common viruses (indicated on the left) in all cell clusters annotated in our
663 dataset (indicated at the bottom).

664 (b) UMAP visualization of ACE2 (top) and TMPRSS?2 (bottom) expression in all
665 single cells from our dataset. The bubble plot next to each UMAP shows the
666 expression levels of ACE2 and TMPRSS?2 in the indicated cell types. The color
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667 of each bubble represents the levels of expression and the size indicates the
668 proportion of expressing cells.

669 (¢) UMAP projection of ACE2"/TMPRSS2" cells (highlighted in yellow). The bar
670 plot on the right represents the ratio of cells that co-express both genes.

671 (d) UMAP visualization of ACE?2 in the integrated scATAC-seq and snRNA-seq
672 from monkey kidney.

673 (e) ArchR track visualization of aggregate scATAC-seq signals on the ACE?2 locus
674 in each on the annotated cell types of the kidney. Predicted binding of human
675 transcription factor predicted based on DNA sequence is shown in the
676 corresponding open chromatin regions of ACE2. The bar plot on the right
677 indicates the ratio (%) of ACE2" cells in each annotated cell type of the monkey
678 kidney.

679

680  Figure 5. Association of monkey transcriptomic profiles with human common

681  traits and genetic diseases.

682 (a) Heatmap showing the association of selected common human traits and diseases
683 (indicated on the right) with the cell types (indicated at the bottom) annotated
684 in our dataset. The colored boxes indicate enriched specific patterns related to
685 human traits/diseases subtypes.

686 (b) Heatmap showing the enrichment of genetic diseases related to the central
687 nervous system in human, monkey and mouse neocortex snRNA-seq datasets.
688 The black boxes indicated specific patterns associated with cell types annotated
689 in the neocortex dataset.

690

691  Extended Data Figure 1. Quality control analysis of gender and individual effect.

692 UMAP visualization of single-cell profiles for selected tissues to calculate the
693 batch effect between tissues from different individuals and genders. Two
694 individuals were analyzed for bladder (F1 and F3), cerebellum (F3 and M1),
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695 diaphragm (F1 and M2), gallbladder (F1 and F3), kidney (F1 and F2), lung (F1
696 and F3), salivary gland (F1 and F3), subcutaneous (F1 and M2) and visceral
697 adipose (F1 and M2) tissues, and three for liver (F1, F2 and F3).

098

699  Extended Data Figure 2. Global clustering of different systems.

700 UMAP visualization of cell clusters in selected tissues grouped by system:
701 cardiovascular (aorta, carotid and heart), endocrine (adrenal, pancreas, pineal,
702 pituitary and thyroid glands), skeletal (abdominal wall and diaphragm), central
703 nervous (cerebellum, neocortex, pigmentary epithelium choroid plexus, retina
704 and spinal cord), respiratory (bronchus, lung and trachea) and urinary (bladder
705 and kidney). Adipose tissues (subcutaneous and visceral) are also shown
706 grouped. Clusters shown in every plot are colored by tissue. Abbreviation:
707 pigmentary epi, pigmentary epithelium and choroid plexus.

708

709  Extended Data Figure 3. Global profiling of individual monkey tissues — 1.

710 UMAP projection of the global clustering indicating the distribution of all single
711 cells (highlighted in yellow) from individual tissues for abdominal wall, adrenal
712 gland, aorta, bladder, bone marrow, bronchus, carotid, cerebellum, colon,
713 diaphragm, duodenum and epididymis.

714

715  Extended Data Figure 4. Global profiling of individual monkey tissues — 2.

716 UMAP projection of the global clustering indicating the distribution of all single
717 cells (highlighted in yellow) from individual tissues for esophagus, fallopian
718 tube, gallbladder, heart, kidney, liver, lung, lymph node, neocortex, ovary,
719 pancreas and PBMC.

720

721  Extended Data Figure S. Global profiling of individual monkey tissues — 3.
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722 UMAP projection of the global clustering indicating the distribution of all single
723 cells (highlighted in yellow) from individual tissues for pigmentary epithelium
724 choroid plexus, pineal gland, pituitary gland, prostate, retina, salivary gland,
725 spermaduct, spinal cord, spleen, stomach, subcutaneous adipose tissue and
726 substantia nigra.

727

728  Extended Data Figure 6. Global profiling of individual monkey tissues — 4.

729 UMAP projection of the global clustering indicating the distribution of all single
730 cells (highlighted in yellow) from individual tissues for thyroid, tongue, tonsil,
731 trachea, uterus, vagina and visceral adipose tissue.

732

733  Extended Data Figure 7. Cluster annotations — 1.

734 UMAP visualization of cell clusters in the abdominal wall, adrenal gland, aorta,
735 bladder, bone marrow, bronchus, carotid, cerebellum, colon, diaphragm,
736 duodenum and epididymis. The name of the population in each cluster and the
737 total number of cells profiled for every tissue are indicated in every plot.
738 Abbreviations: Adipo, adipocytes; Astro, astrocytes; AT1, alveolar type 1 cells;
739 AT2, alveolar type 2 cells; BC, B cells; CLP, common lymphoid progenitors;
740 CMP, common myeloid progenitors; Endo, endothelial cells; Epi, epithelial
741 cells; Ery, erythroblasts; FAP, fibroadipogenic progenitors; GMP, granulocyte
742 monocyte progenitors; Macro, macrophages; mDC, myeloid derived dendritic
743 cells; MEP, megakaryocyte erythrocyte progenitors; Meso, mesothelial cells;
744 Mol interneu, molecular interneurons; Mono, monocytes; MTJ, myotendinous
745 junction; Myofibro, myofibroblasts; NK, natural killers; NKT, natural killer T
746 cells; NMJ, neuromuscular junction; Oligo, oligodendrocytes; OPC,
747 oligodendrocyte progenitor cells; SMC, smooth muscle cells; TC, T cells.

748

749  Extended Data Figure 8. Cluster annotations — 2.
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750 UMAP visualization of cell clusters in the esophagus, fallopian tube, gallbladder,
751 heart, kidney, liver, lung, lymph node, neocortex, ovary, pancreas and PBMC.
752 The name of the population in each cluster and the total number of cells profiled
753 for every tissue are indicated in every plot. Abbreviations: Adipo, adipocytes;
754 Astro, astrocytes; AT1, alveolar type 1 cells; AT2, alveolar type 2 cells; BC, B
755 cells; Endo, endothelial cells; Epi, epithelial cells; EX, excitatory neurons; Hep,
756 hepatocytes; IN, inhibitory neurons; IDC, lymphoid derived dendritic cells;
757 LOH, loop of Henle cells; Lymph prog, lymphoid progenitors; Macro,
758 macrophages; mDC, myeloid derived dendritic cells; Meg, megakaryocytes;
759 Meso, mesothelial cells; Mono, monocytes; Myofibro, myofibroblasts; NK,
760 natural killers; NKT, natural killer T cells; NMJ, neuromuscular junction; Oligo,
761 oligodendrocytes; OPC, oligodendrocyte progenitor cells; Prog-like epi,
762 progenitor-like epithelial cells; SMC, smooth muscle cells; TC, T cells.

763

764  Extended Data Figure 9. Cluster annotations — 3.

765 UMAP visualization of cell clusters in the pigmentary epithelium choroid
766 plexus, pineal gland, pituitary gland, prostate, retina, salivary gland, spermaduct,
767 spinal cord, spleen, stomach, subcutaneous adipose tissue and substantia nigra.
768 The name of the population in each cluster and the total number of cells profiled
769 for every tissue are indicated in every plot. Abbreviations: Adipo, adipocytes;
770 Astro, astrocytes; BC, B cells; DAN, dopaminergic neurons; DC, conventional
771 dendritic cells; Endo, endothelial cells; Epi, epithelial cells; EX, excitatory
772 neurons; IN, inhibitory neurons; Macro, macrophages; Mono, monocyetes;
773 Myofibro, myofibroblasts; Neutro, neutrophils; NK, natural killers; NKT,
774 natural killer T cells; Oligo, oligodendrocytes; OPC, oligodendrocyte
775 progenitor cells; SMC, smooth muscle cells; TC, T cells.

776

777  Extended Data Figure 10. Cluster annotations — 4.
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778 UMAP visualization of cell clusters in the thyroid, tongue, tonsil, trachea, uterus,
779 vagina and visceral adipose tissue. The name of the population in each cluster
780 and the total number of cells profiled for every tissue are indicated in every plot.
781 Abbreviations: Adipo, adipocytes; BC, B cells; Endo, endothelial cells; IDC,
782 lymphoid derived dendritic cells; LOH, loop of Henle; Macro, macrophages;
783 mDC, myeloid derived dendritic cells; Meso, mesothelial cells; Mono,
784 monocytes; NK, natural killers; NMJ, neuromuscular junction; SMC, smooth
785 muscle cells; TC, T cells.

786

787  Extended Data Figure 11. Selected markers for cell cluster annotations.

788 Heatmap showing the expression of the marker genes used to manually annotate
789 all cell clusters identified in every tissue of this dataset.
790

791  Extended Data Figure 12. UMI and gene numbers of the sequenced tissues and

792  annotated cell types.

793 (a) Boxplot indicating the number of UMI (top) and genes (bottom) in each tissue
794 of the dataset.

795 (b) Boxplot indicating the number of UMI (top) and genes (bottom) detected in
796 each of the major annotated cell types shown in Figure 1c.

797

798  Extended Data Figure 13. Cell numbers and proportions among the sequenced

799  tissues.

800 Bar plot representation of the number of cells analyzed for each cell type
801 described in main Figure 1c. The stacked bar plot at the bottom indicates the
802 ratio of each cell type detected in every tissue.

803

804  Extended Data Figure 14. Unique and shared cell populations.
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805 (a) UMAP projection of the global clustering showing the expression of specific
806 markers for cerebellum granule cells (GABRA6), hepatocytes (ALB), salivary
807 gland acinar cells (PRR27), epididymis stereociliated cells (ROST), pancreatic
808 alpha cells (GCG) and fasciculata cells of the adrenal gland (CYP11A41).

809 (b) UMAP projection of the global clustering showing the expression of pan-
810 markers of endothelial (FLTT), stromal (DCN), immune (PTPRC), skeletal
811 myonuclei (77N), adipocytes (ADIPOQ) and mesothelial cells (/TLN1) that are
812 shared across tissues.

813

814  Extended Data Figure 15. Global analysis of common cell types.

815 UMAP visualization of (a) stromal cells (n = 35,415), (b) macrophages (n =
816 10,929), (¢) endothelial cells (n = 37,640) and (d) smooth muscle cells (n =
817 24,175) from all analyzed monkey tissues. Tissues with low numbers of the
818 selected cell types were excluded. Cell clusters are colored by tissue. The
819 heatmap on the right shows tissue-specific DEG for (e) stromal cells, (f)
820 macrophages, (g) endothelial cells and (h) smooth muscle cells.

821

822  Extended Data Figure 16. Analysis of skeletal myonuclei molecular signatures.

823 (a) Bubble plot indicating tissue-specific enriched GO terms in type I myonuclei
824 from abdominal wall, diaphragm and tongue.

825 (b) Bubble plot indicating tissue-specific enriched GO terms in type Ila myonuclei
826 from diaphragm, esophagus and tongue.

827 (c) Bubble plot indicating tissue-specific enriched GO terms in type IIb myonuclei
828 from abdominal wall and diaphragm.

829

830 Extended Data Figure 17. Global analysis of adipocyte populations.
831 (a) UMAP visualization of mature adipocyte and adipocyte progenitors from

832 visceral (VAT) and subcutaneous (SAT) adipose tissues. Data were grouped
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833 together and re-clustered either by tissue type (on the left) or by cell type (on
834 the right).

835 (b) UMAP visualization of specific markers for mature adipocytes (ADIPOQ) or
836 adipocyte progenitors (CD34).

837 (¢) UMAP visualization of markers for tissue-specific (I7TLNI and FOS), cell-type
838 specific (SLC1141, SPOCK3, WTI1, ESRI, CXCL14, APOD, CFD, DPP4 and
839 NOX4) or cycling markers (MKI67).

840 (d) Heatmap indicating the DEG in all clusters identified in a.

841

842  Extended Data Figure 18. Global analysis of LGR4, LGR6 and LGR5/LGR6 co-

843  expression across monkey tissues.

844 (a) UMAP visualization of LGR6 across all tissues profiled in this study. The
845 bubble plot on the right shows the LGR6 expression ratio in the indicated cell
846 types.

847 (b) UMAP visualization of LGRS and LGR6 co-expression across all tissues
848 profiled in this study. The barplot on the right shows the co-expression ratio in
849 the indicated cell types.

850 (c) UMAP visualization of LGR4 across all tissues profiled in this study. The
851 bubble plot on the right shows the LGR4 expression ratio in the indicated cell
852 types.

853

854  Extended Data Figure 19. Global analysis of LGR5 and LGR6 across monkey

855  tissues — 1.

856 Bubble plot (left) showing the ratio of LGR5*, LGR6" and MKI67" cells in the
857 annotated cell types for each tissue and UMAP visualization (right) of LGRS,
858 LGR6 and MKI67 in abdominal wall, adrenal gland, aorta, bladder, bone
859 marrow, bronchus, carotid, cerebellum, colon, diaphragm and duodenum.

860
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861 Extended Data Figure 20. Global analysis of LGR5 and LGR6 across monkey

862  tissues — 2.

863 Bubble plot (left) showing the ratio of LGR5*, LGR6" and MKI67" cells in the
864 annotated cell types for each tissue and UMAP visualization (right) of LGRS,
865 LGR6 and MKI67 in epididymis, esophagus, fallopian tube, gallbladder, heart,
866 kidney, liver, lung, lymph node and ovary.

867

868  Extended Data Figure 21. Global analysis of LGR5 and LGR6 across monkey

869  tissues — 3.

870 Bubble plot (left) showing the ratio of LGR5*, LGR6" and MKI67" cells in the
871 annotated cell types for each tissue and UMAP visualization (right) of LGRS,
872 LGR6 and MKI67 in pancreas, PBMCs, pigmentary epithelium choroid plexus
873 (indicated as pigmentary epi), pineal gland, pituitary gland, prostate, retina,
874 salivary gland, spermaduct, spinal cord and spleen.

875

876  Extended Data Figure 22. Global analysis of LGR5 and LGR6 across monkey

877  tissues —4.

878 Bubble plot (left) showing the ratio of LGR5*, LGR6" and MKI67" cells in the
879 annotated cell types for each tissue and UMAP visualization (right) of LGRS,
880 LGR6 and MKI67 in stomach, subcutaneous adipose tissue, substantia nigra,
881 thyroid, tongue, tonsil, trachea, uterus, vagina and visceral adipose tissue.

882

883  Extended Data Figure 23. Kidney snRNA-seq and scATAC-seq dataset integration.

884 (a) Violin plot showing the expression of selected markers used to annotate the
885 kidney cell clusters from snRNA-seq data.

886 (b) ArchR track visualization of aggregate scATAC-seq signals on the locus of the
887 selected marker genes indicated in a. Abbreviations: DCTC, distal convoluted
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888 tubule cells; Endo, endothelial cells; LOH, loop of Henle; Myofibro,
889 myofibroblasts.
890

891  Extended Data Figure 24. LGRS analysis in integrated human, monkey and mouse
892  Kkidney data.

893 (a) UMAP visualization of cell clusters in human (left), monkey (middle) and
894 mouse (right) kidney snRNA-seq datasets. The annotation of each cluster in
895 provided in the legend at the bottom. Abbreviations: Endo, endothelial cells;
896 LOH, loop of Henle; mDC, myeloid dendritic cells; Myofibro, myofibroblasts.
897 (b) UMAP visualization of LGRS in human (left), monkey (middle) and mouse
898 (right) kidney.

899 (c) Bubble plot showing the ratio and expression levels of LGRS and DCTC marker
900 SLCI243 in human, monkey and mouse kidney datasets. The color of each
901 bubble represents the level of expression and the size indicates the proportion
902 of expressing cells.

903

904  Extended Data Figure 25. LGRS analysis in integrated human, monkey and mouse

905 neocortex data.

906 (a) UMAP visualization of cell clusters in human (left), monkey (middle) and
907 mouse (right) neocortex snRNA-seq datasets. The annotation of each cluster is
908 provided in the legend at the bottom. Abbreviations: Astro, astrocytes; Endo,
909 endothelial cells; IN, inhibitory neurons; OPC, oligodendrocyte progenitor cells;
910 EX, excitatory neurons; Oligo, oligodendrocytes.

911 (b) UMAP visualization of LGRS in human (left), monkey (middle) and mouse
912 (right) neocortex. OPC and oligodendrocytes are indicated by a red and yellow
913 dotted circle, respectively.
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914 (c) Bubble plot showing the ratio and expression levels of LGRS and PDGFRA in
915 human, monkey and mouse neocortex. The color of each bubble represents the
916 level of expression and the size indicates the proportion of expressing cells.
917 (d) Monocle 2 pseudotime-ordered trajectory of OPC (labelled in orange)
918 maturation towards mature oligodendrocytes (labelled in blue).

919 (e) Monocle 2 pseudotime analysis showing the expression of OPC markers (LGRS,
920 OLIG2 and PDGFRA) and the oligodendrocytes marker PLP1.

921 (f) Representative image of immunofluorescence staining for PDGFRA (red) and
922 LGRS (green), respectively, and their co-expression in OPC of monkey
923 neocortex (scale bar 20 um). The smaller panel at the bottom is a magnification
924 of the area indicated by the green box.

925

926 Extended Data Figure 26. Analysis of LGR6 expression in monkey heart and

927  pituitary gland.

928 (a) UMAP visualization of LGR6 across all muscle cell types annotated in our
929 dataset, as displayed in Figure 3g. The dotted red line indicates a cluster of
930 muscle cells belonging to the heart. The red arrows indicate LGR6" cells in aorta,
931 carotid, ovary and vagina.

932 (b) Representative image of smFISH detection for LGR6 in heart myonuclei (scale
933 bar 40 pm). The bottom right panel is a magnification of the area indicated by
934 the white box.

935 (c) UMAP visualization of cell clusters in human (left), monkey (middle) and
936 mouse (right) heart snRNA-seq datasets. The annotation of each cluster is
937 provided in the legend at the bottom. Abbreviations: Endo, endothelial cells;
938 Macro, macrophages; SMC, smooth muscle cells.

939 (d) UMAP visualization of LGR6 in human (left), monkey (middle) and mouse
940 (right) heart.
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941 (e) UMAP visualization of LGR6 expression in pituitary gland highlighting the
942 highest expression in folliculostellate cells.

943 (f) UMAP visualization of SOX2, PAX6, CD44 and CXCR4 in folliculostellate cells
944 as indicated by the black box.

945 (g) Barplot showing GO terms associated to the DEGs in folliculostellate cells of
946 pituitary gland.

947

948  Extended Data Figure 27. Analysis of WNT9B and Wnt pathway gene module in

949  monkey kidney.

950 (a) Heatmap showing the expression of all receptors and ligands of the Wnt
951 pathway in the annotated cell populations of the kidney.

952 (b) Network plots showing cell-cell communications based on ligand-receptor
953 interactions calculated by CellphoneDB.

954 (¢) UMAP visualization of WNT9B expression in monkey kidney.

955 (d) ArchR track visualization of aggregate scATAC-seq signals on the WNT9B
956 locus in each on the annotated cell types. The bar plot at the bottom indicates
957 the ratio (%) of WNT9B" cells in each cell type of kidney.

958 (e) Bubble plot showing the ratio and expression levels of WNT9B and principal
959 tubule cell marker FXYD4 in human, monkey and mouse kidney datasets. The
960 color of each bubble represents the level of expression and the size indicates the
961 proportion of expressing cells.

962 (f) Schematic representation of a kidney nephron illustrating Wnt pathway ligand-
963 receptor interactions.

964

965 Extended Data Figure 28. Global analysis of the Wnt pathway gene module in
966 monkey diaphragm and epididymis.
967 (a) Heatmap showing the expression of all receptors and ligands of the Wnt

968 pathway in the annotated cell populations of the diaphragm.
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969 (b) Network plots showing cell-cell communication based on ligand-receptor
970 interactions calculated by CellphoneDB in the diaphragm dataset.
971 Abbreviations: Adipo, adipocytes; Endo, endothelial cells; Macro,
972 macrophages; Meso, mesothelial cells; NMJ, neuromuscular junctions.

973 (c) Heatmap showing the expression of all receptors and ligands of the Wnt
974 pathway in the annotated cell populations of the epididymis.

975 (d) Network plots showing cell-cell communication based on ligand-receptor
976 interactions calculated by CellphoneDB in the epididymis dataset.
977 Abbreviations: Adipo, adipocytes; Endo, endothelial cells; SMC, smooth
978 muscle cells; TC, T cells.

979

980 Extended Data Figure 29. Global analysis of the Wnt pathway gene module in

981  monkey fallopian tube and liver.

982 (a) Heatmap showing the expression of all receptors and ligands of the Wnt
983 pathway in the annotated cell populations of the fallopian tube.

984 (b) Network plots showing cell-cell communication based on ligand-receptor
985 interactions calculated by CellphoneDB in the fallopian tube dataset.
986 Abbreviations: Endo, endothelial cells; epi, epithelial cells; Meso, mesothelial
987 cells; Mono, monocytes; SMC, smooth muscle cells; TC, T cells.

988 (c) Heatmap showing the expression of all receptors and ligands of the Wnt
989 pathway in the annotated cell populations of the liver.

990 (d) Network plots showing cell-cell communication based on ligand-receptor
991 interactions calculated by CellphoneDB in the liver dataset. Abbreviations: BC,
992 B cells; Endo, endothelial cells; hep, hepatocytes; mDC, myeloid derived
993 dendritic cells; Mono, monocytes; TC, T cells.

994

995  Extended Data Figure 30. Global analysis of the Wnt pathway gene module in

996 monkey neocortex and ovary.
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997 (a) Heatmap showing the expression of all receptors and ligands of the Wnt

998 pathway in the annotated cell populations of the neocortex.

999 (b) Network plots showing cell-cell communication based on ligand-receptor
1000 interactions calculated by CellphoneDB in the neocortex dataset. Abbreviations:
1001 Astro, astrocytes; Endo, endothelial cells; EX, excitatory neurons; IN,
1002 inhibitory neurons; Oligo, oligodendrocytes; OPC, oligodendrocyte progenitor
1003 cells.

1004 (c) Heatmap showing the expression of all receptors and ligands of the Wnt
1005 pathway in the annotated cell populations of the ovary.

1006 (d) Network plots showing cell-cell communication based on ligand-receptor
1007 interactions calculated by CellphoneDB in the ovary dataset. Abbreviations:
1008 Endo, endothelial cells; epi, epithelial cells; Meso, mesothelial cells; Mono,
1009 monocytes; Myofibro, myofibroblasts; Prog-like epi; progenitor-like epithelial
1010 cells; SMC, smooth muscle cells.

1011

1012 Extended Data Figure 31. Global analysis of the Wnt pathway gene module in

1013  other monkey heart and pituitary gland.

1014 (a) Heatmap showing the expression of all receptors and ligands of the Wnt
1015 pathway in the annotated cell populations of the heart.

1016 (b) Network plots showing cell-cell communication based on ligand-receptor
1017 interactions calculated by CellphoneDB in the pituitary gland dataset.
1018 Abbreviations: Endo, endothelial cells; Myofibro, myofibroblasts.

1019 (c) Heatmap showing the expression of all receptors and ligands of the Wnt
1020 pathway in the annotated cell populations of the pituitary gland.

1021 (d) Network plots showing cell-cell communication based on ligand-receptor
1022 interactions calculated by CellphoneDB in the pituitary gland dataset.
1023 Abbreviations: Endo, endothelial cells.

1024
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1025  Extended Data Figure 32. Global analysis of virus entry receptors across monkey

1026  tissues.

1027 Heatmap showing the expression of entry receptor for most common viruses
1028 (shown on the right) in the indicated cell types (shown at the bottom).
1029

1030  Extended Data Figure 33. Analysis of ACE2 and TMPRSS2 expression across

1031  monkey tissues — 1.

1032 UMAP visualization of ACE? (left), TMPRSS?2 (middle) and ACE2*/TMPRSS2*
1033 (right) in abdominal wall, adrenal gland, aorta, bladder, bone marrow, bronchus,
1034 carotid, cerebellum, colon, diaphragm, duodenum, epididymis, esophagus,
1035 fallopian tube, gallbladder, heart, kidney, liver, lung, lymph node and ovary.
1036

1037  Extended Data Figure 34. Analysis of ACE2 and TMPRSS2 expression across

1038  monkey tissues — 2.

1039 UMAP visualization of ACE? (left), TMPRSS2 (middle) and ACE2*/TMPRSS2*
1040 (right) in pancreas, PBMC, pigmentary epithelium choroid plexus (indicated as
1041 pigmentary epi), pineal gland, pituitary gland, prostate, retina, salivary gland,
1042 spermaduct, spinal cord, spleen, stomach, subcutaneous adipose tissue,
1043 substantia nigra, thyroid, tongue, tonsil, trachea, uterus, vagina and visceral
1044 adipose tissue.

1045

1046  Extended Data Figure 35. Comparative analysis of ACE2 and TMPRSS?2

1047  expression in monkey and human.

1048 (a) Bubble plot showing the ratio and expression levels of ACE2 and TMPRSS?2 in
1049 gallbladder, kidney, liver and lung in monkey and human. The color of each
1050 bubble represents the level of expression and the size indicates the proportion
1051 of expressing cells.
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1052 (b) UMAP visualization of /L6R, ILIR] and IL1RAP expressing in monkey kidney
1053 (top). The UMAP in the bottom represent the co-expression of ACE2 and IL6R,
1054 ILIRI and ILIRAP in monkey kidney. Double positive cells are indicated in
1055 yellow.

1056 (¢) Schematic diagram of the potential mechanism for SARS-CoV-2 spreading
1057 through gallbladder, kidney, liver and lung. Kidney proximal tubule cells within
1058 the nephron are among the highest ACE2 expressing cells. After virus contact,
1059 IL6R stimulates an immune response that, through the activation of STAT
1060 transcription factors, potentiates a paracrine positive feedback loop that
1061 enhances ACE2 expression and facilitates virus spreading. IL6 expression,
1062 which is higher in elderly patients and those with inflammatory conditions, is
1063 effectively targeted by anti-IL6R monoclonal antibodies leading to a more
1064 favourable disease course.

1065

1066  Extended Data Figure 36. Expression of genes associated with human common

1067  traits in monkey cell types.

1068 Heatmap showing the association of common human traits and diseases from
1069 the UK  Biobank (indicated on the right) with the cell types (indicated at the
1070 bottom) annotated in our dataset.

1071

1072 Extended Data Figure 37. Association of monkey cell type-specific transcriptomic

1073  profiles with human genetic diseases.

1074 Heatmap showing the association of human genetic diseases (indicated on the
1075 right) with the cell types (indicated at the bottom) annotated in our dataset.
1076

1077  Supplementary Table 1. Description of all tissues profiled, cell types and markers
1078  wused for cluster annotation

1079
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1080  Supplementary Table 2. Global analysis of common cell types and tissue-specific
1081  signatures

1082

1083  Supplementary Table 3. Global distribution of LGRS, LGR6 and MKI67
1084  expression

1085

1086  Supplementary Table 4. Analysis of the expression of common virus and SARS-
1087  Cov-2 receptors

1088

1089  Supplementary Table 5. Correlation of GWAS traits and human genetic diseases
1090  with monkey cell types

1091

1092

1093 METHODS

1094

1095  Ethics statement

1096  This study was approved by the Institutional Review Board on Ethics Committee of
1097  BGI (permit no. BGI-IRB19125).

1098

1099  Collection of monkey tissues

1100 A total of three females and three males, approximately 6-year-old, cynomolgus
1101  monkeys were obtained from Huazhen Laboratory Animal Breeding Centre and Hubei
1102 Topgene Biotechnology (Guangzhou, China). Animals were anesthetized with
1103 ketamine hydrochloride (10 mg/kg) and sodium pantabarbital (40 mg/kg) injection
1104  before being euthanized by exsanguination. Tissues were isolated and placed on the
1105  ice-cold board for dissection. A total of 43 whole tissues were isolated: abdominal wall,
1106  adrenal gland, aorta and carotid arteries, bladder, bone marrow, bronchia, cerebellum,

1107  colon, diaphragm, duodenum, epididymis, esophagus, fallopian tube, gallbladder, heart,
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1108  kidney, liver, lung, lymph node, neocortex, ovary, pancreas, PBMC, pigmentary
1109  epithelium choroid plexus, pineal gland, pituitary gland, prostate, retina, salivary gland,
1110  spermaduct, spinal cord, spleen, stomach, subcutaneous adipose tissue, substantia nigra,
1111 thyroid gland, tongue, tonsil, trachea, uterus, vagina and visceral adipose tissue. Each
1112 tissue (except for bone marrow, peripheral blood and tissues on which enzymatic
1113 digestion was performed) was cut into 5-10 pieces of roughly 50-200 mg each. Samples
1114  were transferred to cryogenic vials (Corning, #430488), then quickly frozen in liquid
1115  nitrogen and finally stored until nuclear extraction was performed. PBMC and bone
1116  marrow cells were isolated from heparinized venous blood using a Lymphoprep™
1117  medium (STEMCELL Technologies, #07851) according to standard density gradient
1118  centrifugation methods. Cells from those two tissues were resuspended in 90% FBS,
1119  10% DMSO (Sigma Aldrich, #D2650) freezing media and frozen using a Nalgene®
1120  Mr. Frosty® Cryo 1°C Freezing Container (Thermo Fisher Scientific, #5100-0001) in
1121  a -80°C freezer for 24 hours before being transferred to liquid nitrogen for long-term
1122 storage.

1123

1124  Single-nucleus/cell suspension preparation

1125  Single nucleus isolation was performed as described previously®’. Briefly, tissues were
1126  thawed, minced and transferred to a 1 ml Dounce homogenizer (TIANDZ) with 1 ml
1127  of homogenization buffer A containing 250 mM sucrose (Ambion), 10 mg/ml BSA
1128  (Ambion), SmM MgCl, (Ambion), 0.12 U/ul RNasin Plus (Promega, #N2115), 0.12
1129  U/ul RNasein (Promega, #N2115) and 1x Protease Inhibitor (Roche, #11697498001).
1130  Tissues were kept in an ice box and homogenized by 25-50 strokes of the loose pestle
1131  (Pestle A) after which the mixture was filtered using a 100 um cell strainer in to a 1.5
1132 ml tube (Eppendorf). The mixture was then transferred to a clean 1 ml dounce
1133 homogenizer to which 750 ul of buffer A containing 1% Igepal (Sigma, #CA630) was
1134  added and the tissue was further homogenized by 25 strokes of the tight pestle (Pestle

1135  B). After this, the mixture was filtered through a 40 pum strainer in a 1.5 ml tube and
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1136  centrifuged at 500 g for five minutes at 4°C to pellet nuclei. At this stage, the pellet was
1137  resuspended in 1 ml of buffer B containing 320 mM Sucrose, 10 mg/ml BSA, 3 mM
1138  CaCly, 2 mM MgAc,, 0.1 mM EDTA, 10 mM Tris-HCI, 1 mM DTT, 1x Protease
1139  Inhibitor and 0.12 U/ul RNasein. This was followed by a centrifugation at 500 g for
1140  five minutes at 4°C to pellet nuclei. Nuclei were then resuspended with cell
1141  resuspension buffer at a concentration of 1,000 nuclei/ul for single-nucleus library
1142 preparation. Cells from lymph node, spleen, duodenum, stomach and colon were
1143 obtained from fresh tissues by enzymatic digestion. Briefly, tissues were rinsed in PBS,
1144 minced into small pieces by mechanical dissociation and incubated for 1 hour in 10 ml
1145  of DS-LT buffer (0.2 mg/ml CaCl,, 5 uM MgCl,, 0.2% BSA and 0.2 mg/ml Liberase
1146 in HBSS) at 37°C. After this, the tissue digestion was stopped by addition of 3 ml of
1147  FBS, followed by filtration through a 100 pm cell strainer and centrifugation for 5
1148  minutes at 500 g at 4°C. Samples were then filtered through a 40 um cell strainer and
1149  centrifuged for five minutes at 500 g at 4°C. Pellets were then resuspended in cell
1150  resuspension buffer at 1,000 cells/ul for single-cell library preparation.

1151

1152  Single-cell/single-nucleus RNA-seq (sc/snRNA-seq)

1153  DNBelab C Series Single-Cell Library Prep Set was utilized as previously described!4.
1154  In brief, single-nucleus/cell suspensions were used for droplet generation, emulsion
1155  breakage, beads collection, reverse transcription and cDNA amplification to generate
1156  barcoded libraries. Indexed sc/snRNA-seq libraries were constructed according to the
1157  manufacturer’s protocol. The concentration of sc/snRNA-seq sequencing libraries was
1158  quantified by Qubit™ ssDNA Assay Kit (Thermo Fisher Scientific, #Q10212). The
1159  resulting libraries were sequenced using a DIPSEQ T1 or DIPSEQ T7 sequencers at
1160  the China National GeneBank (Shenzhen, China).

1161

1162  Single-cell ATAC-seq (scATAC-seq)
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1163  ScATAC-seq libraries were prepared using DNBelab C Series Single-Cell ATAC
1164  Library Prep Set'*. DNA nanoballs were loaded into the patterned Nano arrays and
1165  sequenced on a BGISEQ-500 sequencer using the following read length: 50 bp for read
1166 1, 76 bp for read 2, inclusive of 50 bp insert DNA, 10 bp cell barcode 1, 6 bp constant
1167  sequence and 10 bp cell barcode 2.

1168

1169 Immunofluorescence

1170  Staining of monkey neocortex sample was conducted following standard protocol®s. In
1171  brief, paraffin embedded sections were deparaffinized, incubated with primary
1172 antibodies for PDGFRa (Cell Signaling #3174S) and LGRS (Abcam #ab273092)
1173 overnight at 4°C, followed by an incubation with a secondary antibody (Alexa Fluor
1174 488 and Cy3, Jackson ImmunoResearch) for 30 minutes at room temperature. Slides
1175  were mounted with Slowfade Mountant+DAPI (Life Technologies, #S36964) and
1176  sealed.

1177

1178  Single-molecule fluorescence in situ hybridization (smFISH)

1179  SmFISH in monkey kidney, diaphragm and heart tissues was performed using
1180  RNAScope Fluorescent Multiplex and RNAScope Multiplex Fluorescent v2
1181  (Advanced Cell Diagnostics) according to manufacturer’s instructions. The following
1182  alterations were added: the thickness of paraffin section was adjusted to 5 um and target
1183  retrieval boiling time was adjusted to 15 minutes while the incubation time of Protease
1184  plus at 40°C was adjusted to 30 minutes. RNA smFISH probes used: LGRS (C1), LGR6
1185  (C2), MYH7 (C2).

1186

1187  Sc/snRNA-seq data processing

1188 Raw sequencing reads from DIPSEQ-T1 or DIPSEQ-T7 were filtered and

1189  demultiplexed using PISA (version 0.2) (https://github.com/shiquan/PISA). Reads

1190  were aligned to Macaca fascicularis 5.0 genome using STAR (version 2.7.4a)* and

43


https://doi.org/10.1101/2021.12.13.472311
http://creativecommons.org/licenses/by-nc-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2021.12.13.472311,; this version posted December 13, 2021. The copyright holder for this
preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in
perpetuity. It is made available under aCC-BY-NC-ND 4.0 International license.

1191  sorted by sambamba (version 0.7.0)°°. For tissues sequenced with scRNA-seq, reads
1192 were aligned to the exon of mRNA as normal. For tissues sequenced with snRNA-seq,
1193  acustom ‘pre-mRNA’ reference was created for alignment of count reads to introns as
1194  well as to exons because of large amount of unspliced pre-mRNA and mature mRNA
1195  in the cell nucleus. Thus, each gene’s transcripts in snRNA-seq was counted out by
1196  including exon and intron reads together’!. In the end, cell/nucleus versus gene UMI
1197  count matrix was generated with PISA.

1198

1199  Doublet removal

1200  For each library, we performed doublet removal using DoubletFinder®?. DoubletFinder
1201  first averages the transcriptional profile of randomly chosen cell pairs to create pseudo
1202 doublets and then predicts doublets according to each real cell’s similarity in gene
1203  expression to the pseudo doublets. The doublet removal was performed according to
1204  the default parameter of DoubletFinder and the top 5% of cells most similar to the
1205  “pseudo doublets” were excluded.

1206

1207  Cell clustering and identification of cell types

1208  Clustering analysis of the complete cynomolgus monkey tissue dataset was performed
1209  using Scanpy (version 1.6.0)> in a Python environment (version 3.6). Parameters used
1210  in each function were manually curated to portray the optimal clustering of cells. In the
1211  preprocessing, cells or nuclei were filtered based on the criteria of expressing a
1212 minimum of 500 genes and genes expressed by at least three cells or nuclei were kept
1213 for the following analysis. In addition, cells or nuclei with more than 10%
1214  mitochondrial gene counts were removed. Filtered data were In (counts per million
1215  (CPM)/100 + 1) transformed. 3,000 highly variable genes were selected according to
1216  their average expression and dispersion. The number of UMI and the percentage of
1217  mitochondrial genes were regressed out and each gene was scaled by default options.

1218  Dimension reduction starts with principal component analysis and the number of
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1219  principal components used for UMAP depended on the importance of embeddings.
1220  Louvain method is then used to detect subgroups of cells. Distinguishing differential
1221  genes among clusters were ranked (Benjamini-Hochberg, Wilcoxon rank-sum test).
1222 Cell types were manually and iteratively assigned based on overlap of literature, curated
1223  and statistically ranked genes. Each tissue dataset was portrayed using the Seurat
1224 package (version 3.2.2)** in R environment (version 3.6). Data from different replicates
1225  were integrated following the standard integrated pipeline by default parameters for
1226  filtering, data normalization, dimensionality reduction, clustering and gene differential
1227  expression analysis. Finally, we annotated each cell type by extensive literature reading
1228  and searching for the specific gene expression patterns.

1229

1230  Differentially expressed gene (DEG) and gene ontology (GO) term enrichment
1231  analysis

1232 Inthe global clustering, we performed DEG analysis using the sc.pl.rank genes_groups
1233 function in Scanpy (V1.6.0). In other studies, we used the FindMarker or
1234  FindAllMarker function in the Seurat R package (V3.2.2). Analysis of DEG comparing
1235  specific populations was performed by calculating the fold-change of the mean
1236  expression level of genes between the selected populations. DEG were defined as those
1237  with a fold-change > 2 and adjusted P < 0.01. GO enrichment analysis was performed
1238  using the CompareCluster function fun = "enrichGO", pvalueCutoff = 0.1,
1239  pAdjustMethod = "BH", OrgDb = org.Hs.eg.db,ontBP") of ChIPseeker R package
1240 (v.1.22.1)*°. Only GO terms with adjusted P < 0.05 were retained.

1241

1242 Analysis of inter-species differences

1243 For tissue inter-species analysis, in order to get more accurate comparisons, we
1244  specifically chose three tissues with snRNA-seq data, namely kidney, neocortex and
1245  heart, and processed the raw sequencing data using our pipeline described below in the

1246 ‘Sc/snRNA-seq data processing’ section. Kidney***, neocortex*® and heart*->* data
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1247  were downloaded from NCBI Gene expression omnibus (human kidney: GSE121862,
1248  mouse kidney: GSE119531, human neocortex: GSE97942, human heart: ERP123138,
1249  mouse heart: E-MTAB-7869). For each tissue we preprocessed the UMI matrix of the
1250  three species following three steps: 1. only orthologs genes among three species were
1251  kept. 2. only genes expressed in at least one cell in one species were kept. 3. the gene
1252 names of the human and mouse UMI matrix were converted into orthologs in Macaca
1253 fascicularis. After preprocessing, the UMI matrices of the three species were integrated
1254  together and the clustering was performed following the standard integrated pipeline
1255  using Seurat (V3.2.2) with the addition of one additional criterion for which only cells
1256  expressing more than 500 genes were kept. Also, we downsampled the cells of human
1257  and macaque neocortex to 10,000 to get a better clustering result. The Seurat clusters
1258  were then annotated into different cell types using cell type-specific markers as
1259  described above. In addition, for the comparison presented in Extended Data Figure 35
1260  we retrieved the publicly available single-cell data for gallbladder, liver and lung from
1261  GEO GSE134355%, GEO GSE108098° and GSE124395%, respectively. Data from the
1262  three species were integrated, clustered and annotated in the same way as described.
1263

1264  Common cell analysis

1265  We performed common cell analysis for 7 cell types across all the 43 tissues, those
1266  being stromal cells, macrophages/microglia, endothelial cells, smooth muscle cells,
1267  skeletal muscle cells, mesothelial cells and adipocytes. For each cell type, we extracted
1268  those cells from all tissues in our dataset according to the cell type annotation presented
1269  in Extended Data Figure 7-10. For the downstream analysis, we excluded cell types
1270  with numbers lower than 200. Data from different replicates were integrated following
1271  the standard integrated pipeline using Seurat (V3.2.2).

1272

1273 Single-cell trajectory analysis
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1274 Cell lineage trajectory was inferred using Monocle2®” following the tutorial. We used
1275  the “differentialGeneTest” function to derive DEG from each cluster and genes
1276  with ¢ <0.01 were used to order the cells in a pseudotime analysis. After the cell
1277  trajectories was constructed, DDRtree was used to visualize it in a two-dimensional
1278  space.

1279

1280  Cell-cell interaction network

1281  To assess the cellular crosstalk between different cell types in each tissue, we used
1282  CellPhoneDB, a public repository of ligand-receptor interactions®®. Cell type-specific
1283  receptor-ligand interactions between cell types were identified based on specific
1284  expression of a receptor by one cell type and a ligand by another cell type. The
1285  interaction score refers to the mean total of all individual ligand-receptor partner
1286  average expression values in the corresponding interacting pairs of cell types. For this
1287  analysis, we applied a statistical method to ensure that only receptors or ligands
1288  expressed in more than 10% of the cells in the given cluster were considered. The total
1289 mean of the individual partner average expression values in the corresponding
1290  interacting pairs of cell types was calculated. For the cell-cell interaction analysis in
1291  Extended Data Figure 27-31, we plot the figure based on the indicated genes related to
1292 LGRS and LGR6.

1293

1294  Association of GWAS summary data of human diseases and traits with monkey
1295  cell types

1296  To test for the enrichment of human diseases and traits in DEG for each cluster of cells
1297  based on global clustering, we applied LD (linkage disequilibrium) score regression
1298  analysis. For this, we only considered genes with an adjusted P < 0.05 and fold-change >
1299 2 in the tested cell types. For accuracy, cell types identified in a number lower than 100
1300  were excluded from this analysis. We converted the gene coordinates of Macaca

1301  fascicularis into hgl9 genome coordinates by downloading from Ensembl the
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1302  homologous gene list. Single nucleotide polymorphisms located in gene regions of the
1303  most specific genes in each cell type were added to the baseline model independently
1304  for each cell type (one file for each cell type). We then selected the coefficient z-score
1305 P value as a measure of the association of the cell type with the traits. All plots show
1306  the —logio P value of partitioned LDscore regression.

1307

1308  ScATAC-seq data processing, clustering and cell type identification

1309  Raw sequencing reads from BGISEQ-500 were filtered and demultiplexed using PISA

1310 (version 0.2) (https://github.com/shiquan/PISA). The fragment file of each scATAC-

1311  seq library was used for downstream analysis. TSS (transcription start site) enrichment
1312 score and fragment number of each nuclei was calculated by using ArchR software®.
1313 Nuclei with TSS enrichment score lower than five and fragment number lower than
1314 1,000 were removed. Then, we calculated the doublet score with addDoubletScores
1315  function in ArchR package and filtered doublets by filterDoublets function with
1316  parameter filterRatio =2. SCATAC—seq clustering analysis was performed using ArchR
1317  software by first identifying a robust set of peak regions followed by iterative LSI
1318  (latent semantic indexing) clustering. Briefly, we created 500 bp windows tiled across
1319  the genome and determined whether each cell was accessible within each window. Next,
1320  we performed an LSI dimensionality reduction on these windows with addlterativeLSI
1321  function in ArchR packages. We then performed Seurat clustering (FindClusters) on
1322 the LSI dimensions at resolutions of 0.8. Anchors between scATAC-seq and
1323 sc/snRNA-seq datasets were identified and used to transfer cell type labels identified
1324 from the sc/snRNA-seq data. We embedded the data by the TransferData function of
1325  Seurat (version 3.2.2).

1326

1327  Transcription factor motif enrichment analysis

1328  To predict the motif footprint in peaks within the ACE2 promoter and enhancer

1329  sequences, we extracted genome sequences in the peak region with Seqgkit (version
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1330  0.7.0)!%. The sequences were imported into R and were matched with all Homo sapiens
1331  motifs form JASPAR2018 using matchMotifs function in motifmatchr packages
1332 version 1.8.0 with default parameter.

1333

1334  Data availability

1335  All raw data have been deposited to CNGB Nucleotide Sequence Archive (accession
1336 code: CNP0001469; https://db.cngb.org/cnsa/project/CNP0001469/reviewlink/).

1337
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