

1 **Cell transcriptomic atlas of the non-human primate *Macaca***
2 ***fascicularis***

3

4 Lei Han^{1,2,3,35}, Xiaoyu Wei^{1,4,35}, Chuanyu Liu^{1,3,35}, Giacomo Volpe^{5,35}, Zhenkun
5 Zhuang^{1,6,35}, Xuanxuan Zou^{1,4,35}, Zhifeng Wang^{1,2,35}, Taotao Pan¹, Yue Yuan^{1,4}, Xiao
6 Zhang⁷, Peng Fan⁷, Pengcheng Guo⁷, Yiwei Lai⁸, Ying Lei^{1,2,3}, Xingyuan Liu⁷, Feng
7 Yu⁸, Shuncheng Shangguan⁹, Guangyao Lai⁹, Qiuting Deng^{1,4}, Ya Liu^{1,2}, Liang Wu^{1,2,4},
8 Quan Shi^{1,10}, Hao Yu¹, Yunting Huang^{1,11}, Mengnan Cheng^{1,4}, Jiangshan Xu^{1,4}, Yang
9 Liu^{1,4}, Mingyue Wang¹, Chunqing Wang^{1,4}, Yuanhang Zhang^{1,4}, Duo Xie^{1,4}, Yunzhi
10 Yang¹², Yeya Yu¹², Huiwen Zheng¹², Yanrong Wei¹², Fubaoqian Huang^{1,6}, Junjie Lei^{1,4},
11 Waidong Huang^{1,4}, Zhiyong Zhu^{1,4}, Haorong Lu^{1,11}, Bo Wang^{1,11}, Xiaofeng Wei^{1,11},
12 Fengzhen Chen^{1,11}, Tao Yang^{1,11}, Wensi Du^{1,11}, Jing Chen^{1,11}, Shibo Xu¹³, Juan An^{8,14},
13 Carl Ward⁸, Zongren Wang¹⁵, Zhong Pei¹⁶, Chi-Wai Wong¹⁷, Xiaolei Liu⁷, Huafeng
14 Zhang¹⁸, Mingyuan Liu⁷, Baoming Qin¹⁹, Axel Schambach^{20,21}, Joan Isern²², Liqiang
15 Feng²³, Yan Liu¹³, Xiangyu Guo²⁴, Zhen Liu²⁵, Qiang Sun²⁵, Patrick H. Maxwell²⁶,
16 Nick Barker²⁷, Pura Muñoz-Cánoves²⁸, Ying Gu¹, Jan Mulder^{29,30}, Mathias Uhlen^{29,30},
17 Tao Tan³¹, Shiping Liu^{1,2,3}, Huanming Yang^{1,32}, Jian Wang^{1,32}, Yong Hou^{1,2,3,12,✉}, Xun
18 Xu^{1,33,12,✉}, Miguel A. Esteban^{7,8,34✉}, Longqi Liu^{1,3,12✉}

19

20 ¹BGI-ShenZhen, Shenzhen 518103, China.

21 ²Shenzhen Key Laboratory of Single-Cell Omics, BGI-Shenzhen, Shenzhen 518120,
22 China.

23 ³Shenzhen Bay Laboratory, Shenzhen 518000, China.

24 ⁴College of Life Sciences, University of Chinese Academy of Sciences, Beijing 100049,
25 China.

26 ⁵Hematology and Cell Therapy Unit, IRCCS-Istituto Tumori ‘Giovanni Paolo II’, Bari
27 70124, Italy.

28 ⁶School of Biology and Biological Engineering, South China University of Technology,

29 Guangzhou 510006, China.

30 ⁷State Key Laboratory for Zoonotic Diseases, Key Laboratory for Zoonosis Research
31 of Ministry of Education, Institute of Zoonosis, College of Veterinary Medicine, Jilin
32 University, Changchun 130062, China.

33 ⁸Laboratory of Integrative Biology, Guangzhou Institutes of Biomedicine and Health,
34 Chinese Academy of Sciences, Guangzhou 510530, China.

35 ⁹Joint School of Life Sciences, Guangzhou Institutes of Biomedicine and Health and
36 Guangzhou Medical University, Guangzhou 510530, China.

37 ¹⁰Department of Biology, University of Copenhagen, Copenhagen DK-2200, Denmark.

38 ¹¹China National GeneBank, BGI-Shenzhen, Shenzhen 518120, China.

39 ¹²BGI College and Henan Institute of Medical and Pharmaceutical Sciences,
40 Zhengzhou University, Zhengzhou 450000, China.

41 ¹³Institute for Stem Cells and Neural Regeneration, School of Pharmacy, State Key
42 Laboratory of Reproductive Medicine, Nanjing Medical University, Nanjing 211166,
43 China.

44 ¹⁴University of Science and Technology of China, Hefei 230026, China.

45 ¹⁵Department of Urology, First Affiliated Hospital, Sun Yat-sen University, Guangzhou
46 510000, China.

47 ¹⁶Department of Neurology, First Affiliated Hospital, Sun Yat-sen University,
48 Guangzhou 510000, China.

49 ¹⁷Huazhen Biosciences, Guangzhou 510900, China.

50 ¹⁸Department of Orthopedics, Tianjin Medical University General Hospital, Tianjin
51 300052, China.

52 ¹⁹Laboratory of Metabolism and Cell Fate, Guangzhou Institutes of Biomedicine and
53 Health, Chinese Academy of Sciences, Guangzhou 510530, China.

54 ²⁰Institute of Experimental Hematology, Hannover Medical School, Hannover 30625,
55 Germany.

56 ²¹Division of Hematology/Oncology, Harvard Medical School, Boston MA 02115,
57 USA.

58 ²²Spanish National Center on Cardiovascular Research (CNIC), Madrid E-28029, Spain.

59 ²³State Key Laboratory of Respiratory Diseases, Guangzhou Institutes of Biomedicine
60 and Health, Chinese Academy of Sciences, Guangzhou 510530, China.

61 ²⁴Jinan University, Guangzhou 510632, China.

62 ²⁵Institute of Neuroscience, State Key Laboratory of Neuroscience, CAS Key
63 Laboratory of Primate Neurobiology, CAS Center for Excellence in Brain Science and
64 Intelligence Technology, Chinese Academy of Sciences, Shanghai 200031, China.

65 ²⁶Cambridge Institute for Medical Research, Department of Medicine, University of
66 Cambridge, Cambridge CB2 0XY, United Kingdom.

67 ²⁷A*STAR Institute of Molecular and Cell Biology, Singapore 138648, Singapore.

68 ²⁸Department of Experimental and Health Sciences, Pompeu Fabra University (UPF),
69 ICREA and CIBERNED, Barcelona E-08003, Spain.

70 ²⁹Department of Protein Science, Science for Life Laboratory, KTH-Royal Institute of
71 Technology, Stockholm 17121, Sweden.

72 ³⁰Department of Neuroscience, Karolinska Institute, Stockholm 17177, Sweden.

73 ³¹State Key Laboratory of Primate Biomedical Research, Institute of Primate
74 Translational Medicine, Kunming University of Science and Technology, Kunming
75 650500, China.

76 ³²James D. Watson Institute of Genome Sciences, Hangzhou 310058, China.

77 ³³Guangdong Provincial Key Laboratory of Genome Read and Write, Shenzhen 518120,
78 China.

79 ³⁴Institute of Stem Cells and Regeneration, Chinese Academy of Sciences, Beijing
80 100101, China.

81 ³⁵These authors contributed equally to this work.

82

83 Corresponding authors. Email: houyong@genomics.cn (Y.H.), xuxun@genomics.cn
84 (X.X.), miguel@gibh.ac.cn (M.A.E.), liulongqi@genomics.cn (L.L.).

85 Studying tissue composition and function in non-human primates (NHP) is crucial to
86 understand the nature of our own species. Here, we present a large-scale single-cell and
87 single-nucleus transcriptomic atlas encompassing over one million cells from 43 tissues
88 from the adult NHP *Macaca fascicularis*. This dataset provides a vast, carefully
89 annotated, resource to study a species phylogenetically close to humans. As proof of
90 principle, we have reconstructed the cell-cell interaction networks driving Wnt
91 signalling across the body, mapped the distribution of receptors and co-receptors for
92 viruses causing human infectious diseases and intersected our data with human genetic
93 disease orthologous coordinates to identify both expected and unexpected associations.
94 Our *Macaca fascicularis* cell atlas constitutes an essential reference for future single-
95 cell studies in human and NHP.

96

97

98

99

100

101

102

103

104

105

106

107

108

109

110

111

112

113 **MAIN TEXT**

114

115 Global initiatives such as the Human Cell Atlas are aiming to chart the cell types and
116 cell states of all tissues in the human body using high-throughput single-cell/nucleus
117 RNA-sequencing (sc/snRNA-seq) and other technologies¹⁻⁵. The ultimate goal of these
118 efforts is to create complete reference maps across different ethnic groups, ages,
119 environmental conditions and pathologies. A major obstacle in this endeavour is that
120 accessing a wide range of ‘high quality’ human samples and obtaining enough sample
121 size is complicated by relevant practical and ethical considerations. Model animals (e.g.,
122 mouse and rat) are a useful resource to fill knowledge gaps⁶⁻⁸, in particular the effects
123 of experimental perturbation, but due to profound phylogenetic differences many
124 developmental, physiological and pathological aspects are not mimicked in humans.
125 Given the evolutionary proximity, NHP present an excellent alternative (the nearest-to-
126 human) when no other suitable models exist. Generating a NHP cell atlas will produce
127 an extensive catalogue of human disease and age-related features that can be modelled
128 in NHP. It will also provide unique insights into the evolutionary and adaptative
129 mechanisms underlying changes in body function between the two species. In this
130 regard, it could for example discover tissue regenerative capacities selectively
131 maintained in NHP and potential ways to boost them in human.

132 NHP encompass a large and very diverse group of species with major ecological,
133 dietary, locomotor and behavioural differences⁹⁻¹¹. Because of their close evolutionary
134 proximity to humans among NHP, overall characteristics and wider availability,
135 macaques are primarily employed for research purposes worldwide including human
136 disease modelling and preclinical safety assessment studies^{12,13}. Here, we have used
137 adult *Macaca fascicularis* (cynomolgus monkey) to generate the largest single-cell
138 transcriptomic NHP dataset to date, encompassing over 1 million individual cells/nuclei
139 from 43 tissues covering all major systems (nervous, immune, endocrine,
140 cardiovascular, respiratory, digestive, skeletal, reproductive and urinary), all performed

141 with the same droplet-based approach¹⁴. To facilitate the exploration of this dataset, we
142 have created the first version of the Non-Human Primate Cell Atlas or NHPCA, an open
143 and interactive database (<https://db.cngb.org/nhPCA/>) that will be regularly updated with
144 subsequent sc/snRNA-seq *Macaca fascicularis* datasets focused on development, aging,
145 disease and drug responses, as well as other omics datasets and data from other NHP
146 species.

147

148 **Generation of an adult monkey single-cell transcriptomic atlas**

149 We isolated cells/nuclei from 43 different tissue samples from three male and three
150 female six-year-old *Macaca fascicularis* monkeys (**Fig. 1a** and **Supplementary Table**
151 **1a**). Bladder (two), cerebellum (two), diaphragm (two), gallbladder (two), kidney (two),
152 liver (three), lung (two), salivary gland (two), subcutaneous (two) and visceral adipose
153 tissue (two) were analyzed as biological replicates to assess individual and gender
154 variability, observing good overlap in all cases (**Extended Data Fig. 1**). Most of the
155 tissues were profiled by snRNA-seq¹⁵⁻¹⁷, which allows both to circumvent
156 complications associated with stressful dissociation protocols that can alter the cell
157 transcriptome and to profile cells from frozen tissues for removing the need of sample
158 processing immediately after tissue acquisition. However, due to technical limitations
159 in obtaining high quality nuclei, scRNA-seq was performed for colon, duodenum,
160 spleen, stomach, lymph node and bone marrow. Peripheral blood mononuclear cells
161 (PBMC) were also profiled using scRNA-seq. All experiments used the DNBelab C4
162 droplet-based platform for library generation¹⁴. To ensure quality, all cells with a gene
163 count lower than 500 and/or mitochondrial content higher than 10% were excluded. We
164 also applied DoubletFinder to detect and remove doublets, which accounted for roughly
165 5% of the estimated total cell/nuclei. Overall, we retained transcriptomic data for a total
166 of 1,084,164 cells/nuclei (**Fig. 1a**), with numbers ranging from 99,123 in the cerebellum
167 to 2,039 in the duodenum (**Supplementary Table 1a**). Global visualization of cell
168 clustering using Uniform Manifold Approximation and Projection (UMAP) showed

169 that each tissue clusters separately, with tissues from the same system generally
170 clustering closer (**Fig. 1a, b and Extended Data Fig. 2-6**). We then performed
171 individual UMAP representations for each tissue and applied unbiased graph-based
172 Seurat clustering, which identified 463 cell clusters among all tissues (**Extended Data**
173 **Fig. 7-10**). Based on the expression levels of cell type-specific markers (**Extended**
174 **Data Fig. 11**), we identified 106 cell types in the global UMAP view of all tissues (**Fig.**
175 **1c and Supplementary Table 1b, c**). These were roughly categorized into epithelial
176 cells (40 clusters), immune cells (13 clusters), endocrine cells (11 clusters), muscle cells
177 (9 clusters), stromal cells (7 clusters), endothelial cells (7 clusters), neurons (7 clusters),
178 glia (7 clusters), mesothelial cells (3 clusters), adipocytes (1 cluster) and unknown cells
179 (1 cluster from carotid). On average, we detected 1,368 genes and 3,024 unique
180 molecular identifiers (UMI) per cell. The median gene count per tissue varied between
181 3,016 in the neocortex and 736 in the case of PBMC, while UMI ranged between 8,015
182 for the neocortex and 1,313 for the prostate (**Extended Data Fig. 12**). The number of
183 cells for each of these 106 cell types ranged from 87,890 granule cells in the cerebellum
184 to 37 bone marrow stromal cells (**Extended Data Fig. 13**). Reassuringly, many of the
185 106 clusters were largely composed of a cell type belonging to a specific tissue, such
186 as cerebellar granule cells in cluster 45, hepatocytes in clusters 87 and 88, epididymis
187 stereociliated cells in cluster 29 and salivary acinar cells in cluster 83 (**Fig. 1c and**
188 **Extended Data Fig. 14a**). However, cell types such as endothelial, stromal and various
189 immune cells were shared between different tissues, as expected (**Extended Data Fig.**
190 **14b**). A detailed annotation of all cell populations detected in every tissue is provided
191 in **Extended Data Figure 7-10 and Supplementary Table 1d, e**. Our *Macaca*
192 *fascicularis* atlas is the largest NHP single-cell transcriptome dataset to date and can be
193 explored interactively by tissue, cell type and gene through our NHPCA database.

194

195 **Common cell types across monkey tissues**

196 We inspected whether common cell types distributed throughout different tissues in the
197 monkey body display tissue-specific transcriptional programs^{3,18-20}. First, we
198 selectively clustered stromal cells, macrophages (including microglia), endothelial cells
199 and smooth muscle cells from all sequenced tissues. While observing a considerable
200 diversity, many cell clusters grouped together on the basis of tissue origin, such as
201 stromal cells from the female reproductive system, microglia from the central nervous
202 system, endothelial cells from the respiratory system and smooth muscle cells from the
203 male reproductive system (**Extended Data Fig. 15a-d**). We also performed
204 differentially expressed gene (DEG) analysis to obtain tissue-specific signatures,
205 revealing a substantial heterogeneity among these common cell types across all tissues
206 (**Extended Data Fig. 15e-h and Supplementary Table 2a-d**).

207 Our transcriptomic profiling of single nuclei offers the possibility of studying cell
208 populations that cannot be characterized by conventional scRNA-seq analysis, such as
209 myonuclei from multinucleated skeletal muscle fibers. We grouped and re-clustered
210 cells from tissues in our atlas known to contain skeletal muscle cells (diaphragm, tongue,
211 esophagus and abdominal wall). This showed two distant populations in abdominal wall
212 and diaphragm, whereas nuclei from esophagus and tongue were more concentrated
213 (**Fig. 2a**). The separation of nuclei in abdominal wall and diaphragm corresponded to
214 *MYH7*⁺ type I (slow-twitch) and *MYH2*⁺ type II (fast-twitch) myofibers²¹ (**Fig. 2b, c**
215 and **Supplementary Table 2e-g**). In contrast, type I and type II tongue myonuclei were
216 in close vicinity, which may be related to the tongue being a highly innervated muscle²².
217 Differential threshold of *MYH2* and *GPD2* further subdivided type II myonuclei into
218 type IIa (*MYH2*^{high}) and type IIb (*MYH2*^{low} *GPD2*⁺). In addition, we discriminated,
219 albeit at low proportions, *NAV3*⁺ neuromuscular junction (NMJ) nuclei in the
220 diaphragm and *ETV5*⁺ myotendinous junction (MTJ) nuclei in both tongue and
221 diaphragm (**Fig. 2b-d**). Moreover, we detected *PAX7*⁺ nuclei from satellite cells (the
222 stem cells from the skeletal muscle lineage), and a small cluster of *LVRN*⁺
223 fibroadipogenic progenitors (FAP) could be annotated in the diaphragm. Skeletal

224 muscle nuclei displayed subtype-specific and tissue-specific gene expression signatures
225 and gene ontology (GO) terms (**Fig. 2e, f and Extended Data Fig 16a-c**). We also
226 noticed substantial myonuclei heterogeneity within the same subtype and tissue (**Fig.**
227 **2f**).

228 Next, to explore the heterogeneity between different types of adipocytes, we
229 grouped and re-clustered cells from subcutaneous and visceral adipose tissues, resulting
230 in 10 major clusters (**Extended Data Fig. 17a**). We observed a marked distinction
231 between mature adipocytes and adipocyte progenitors, as reflected by the differential
232 expression of *ADIPOQ* and *CD34* (**Extended Data Fig. 17b**). Visceral mature
233 adipocytes and adipocyte progenitors displayed enriched expression of *ITLN1*, in
234 agreement with visceral adipocytes having mesothelial origin²³, and also high
235 mitochondrial activity exemplified by high expression of *ND4*, *ATP6* and *COX3*^{24,25}
236 (**Extended Data Fig. 17c, d**). In contrast, subcutaneous mature adipocytes and
237 adipocyte progenitors were enriched in *FOS*. Likewise, *SLC11A1* and *SPOCK3* marked
238 mature subcutaneous and visceral adipocytes, respectively. Adipocyte progenitors
239 contained two populations for visceral tissue (*WT1*⁺ and *CFD*^{high}), three for
240 subcutaneous tissue (*ESRI*⁺, *CXCL14*⁺*APOD*⁺ and *DPP4*⁺) and one shared between
241 both tissues (*NOX4*⁺) (**Extended Data Fig. 17a, c and d**). Within the subcutaneous
242 *CXCL14*⁺*APOD*⁺ progenitor cluster, we observed a population of *CFD*^{high} cells that also
243 co-expressed *DPP4*, a marker of highly proliferative adipocyte progenitors in both
244 mouse and human²⁶. However, we did not detect significant proliferation in any of the
245 monkey adipocyte progenitor populations based on the expression of the pan-cycling
246 marker *MKI67*²⁷ (**Extended Data Fig. 17c**). *NOX4*⁺ is an NAPDH oxidase that acts as
247 a switch from insulin-induced proliferation to adipocyte differentiation, suggesting that
248 the shared cluster is a converging route for both adipose tissues towards adipocytic
249 maturation²⁸.

250 Finally, we grouped and re-clustered all tissues that contain mesothelial cells, a type
251 of specialized epithelial cells. Mesothelial cells from bladder, ovary and fallopian tube

252 were in close proximity while those from other tissues clustered more separately (**Fig.**
253 **2g**). We also observed intra-tissue heterogeneity, in particular for visceral adipose tissue
254 and ovary. In the former, we observed a cluster of immune-like mesothelial cells that,
255 aside from the expression of the typical mesothelial markers (*MSLN*, *ITLN1* and
256 *PKHD1L1*), express high levels of immune cell markers (e.g., *PTPRC*, *IL7R* and *TRAC*)
257 (**Fig. 2h**). This is in agreement with the emerging concept that structural cells display
258 immune cell properties^{3,18} and the known immunomodulatory role of visceral adipose
259 tissue in responses to bacteria in the gut²⁹. Interestingly, in the ovary, we identified a
260 classical mesothelial population and two close *PAX8*⁺ epithelial-like populations (one
261 mature and one progenitor-like) of mesothelial origin³⁰ (**Fig. 2i-k**). Progenitor-like
262 ovarian epithelial cells expressed well-known stem cell markers such as *LGR5*,
263 *MECOM* and *CD44*³¹.

264 These findings add up to the growing understanding of common cell type
265 heterogeneity and tissue-specific molecular signatures^{3,18-20}. Our data provide a new
266 resource for further dissecting these differences, clarifying the underlying mechanisms
267 and studying interspecies differences³².

268

269 **Analysis of Wnt signaling components identifies potential stem cell populations**

270 A single-cell body atlas of large dimensions like ours is ideal for the systematic
271 investigation of multifaceted cell-cell interactions including those occurring in cytokine
272 or growth factor-mediated signaling pathways such as the Wnt (wingless-related
273 integration site) pathway^{33,34}. Besides playing essential roles in embryonic development,
274 Wnt factors control growth and maintenance of numerous tissues throughout life.
275 Consistently, Wnt signaling effects are associated with the regulation of adult stem
276 cell function³⁵. To exert this role, Wnt factors bind to specific receptors (FZD, frizzled)
277 and co-receptors (LRP, low-density lipoprotein receptor related protein). In addition,
278 LGR (leucine rich repeat containing G protein-coupled receptor) proteins (LGR4, 5 and
279 6) act as amplifiers of Wnt signals by inhibiting negative regulators³⁶. Accordingly,

280 LGR5 and 6 often mark and regulate adult homeostatic and facultative stem cells,
281 mostly of epithelial origin, in multiple mammalian tissues, whereas LGR4 has a
282 widespread distribution and less clear function. We thus performed a survey of LGR
283 proteins throughout the monkey body to thoroughly dissect cells targeted by the Wnt
284 pathway and identify previously unappreciated stem cell populations. In this regard, it
285 is worth noting that the majority of reports of LGR5-expressing cells to date have been
286 performed with genetically engineered mouse models due to the lack of specific tools
287 and reagents to study other mammals³⁶.

288 *LGR5* was detected across several monkey tissues, unexpectedly with the highest
289 expression in type I skeletal muscle myonuclei, epithelial cells of the uterus and
290 fallopian tube, oligodendrocyte progenitor cells (OPC) and renal distal convoluted
291 tubule cells (DCTC) (**Fig. 3a**). With the exception of epithelial cells in the uterus and
292 fallopian tube³⁶, these tissues have not previously been reported to contain LGR5⁺ cells
293 in mammalian adulthood. The expression of *LGR6* appeared to be more restricted
294 (**Extended Data Fig. 18a**), with higher abundance in cardiomyocytes, thyroid follicular
295 cells, folliculostellate cells of the pituitary gland and the previously reported smooth
296 muscle cells³⁷ (**Extended Data Fig. 19-22**). We also detected *LGR5*⁺ or *LGR6*⁺ cells in
297 selected cell populations of numerous other tissues including both previously reported
298 (e.g., ovary epithelial cells³¹, hepatocytes³⁸ and colon enterocytes³⁹) and unreported
299 (e.g., *LGR5*⁺ cells in bipolar cells of the retina⁴⁰) (**Fig. 3a, Extended Data Fig. 18a and**
300 **19-22**). In general, *LGR5* and *LGR6* did not overlap, apart from fallopian tube epithelial
301 cells and vagina smooth muscle cells (**Extended Data Fig. 18b**). Moreover, we
302 observed little overlap between *LGR5*⁺ or *LGR6*⁺ cells with those expressing *MKI67*,
303 apart from epithelial cells of the fallopian tube and uterus and basal cells of the salivary
304 gland (**Extended Data Fig. 19-22 and Supplementary Table 3a-c**). In contrast to
305 *LGR5* and 6, *LGR4* was ubiquitously expressed across most tissues, with the highest
306 expression in pancreatic acinar, beta and ductal cells, Müller cells of the retina and
307 adipocytes (**Extended Data Fig. 18c**).

308 In the kidney, *LGR5*⁺ cells were mostly enriched in the DCTC and to a lesser extent
309 in the descending and ascending loop of Henle (**Fig. 3a and Extended Data Fig. 20**).
310 To support this observation, we performed single-cell Assay for Transposase
311 Accessible Chromatin sequencing (scATAC-seq) of monkey kidney and integrated the
312 results with our kidney snRNA-seq data dataset (N = 6,879) (**Fig. 3b, c and Extended**
313 **Data Fig. 23a, b**). The analysis showed peaks of open chromatin at the *LGR5* promoter
314 and a putative enhancer open in the same cell types expressing *LGR5* (**Fig. 3d**). As
315 validation, we performed single-molecule fluorescence *in-situ* hybridization (smFISH)
316 for *LGR5*, which showed strong expression in selected kidney tubules (**Fig. 3e**).
317 Moreover, GO analysis of DEG comparing the *LGR5*⁺ fractions of DCTC, ascending
318 and descending loop of Henle revealed the enrichment of pathways involved in kidney
319 development in DCTC (**Fig. 3f**), suggesting the possibility that these are progenitor
320 cells. This was strengthened by the observation that DCTC *LGR5*⁺ cells co-express
321 renal progenitor cell markers such as *PAX2*, *LHX1* and *TNFRSF19*^{41,42}. We also
322 integrated our data with available human⁴³ and mouse⁴⁴ kidney snRNA-seq datasets.
323 Despite observing good integration, we noticed very little, or no, *LGR5* expression in
324 those adult human or mouse kidney datasets⁴⁵ (**Extended Data Fig. 24a-c**).

325 In the neocortex, integration of available human⁴⁶ and our own mouse snRNA-seq
326 data with our monkey data pointed as well at differential *LGR5* expression patterns
327 between species. *LGR5* expression was highest in OPC in monkey and in
328 oligodendrocytes in human, whereas in mouse it was higher in inhibitory neurons than
329 OPC and oligodendrocytes (**Extended Data Fig. 25a-c**). Pseudotime ordered by
330 Monocle 2 of the OPC maturation trajectory towards oligodendrocyte showed
331 concentration of *LGR5* in monkey OPC (**Extended Data Fig. 25d, e**). Likewise, double
332 immunofluorescence for the OPC marker PDGFRA and LGR5 confirmed their co-
333 expression in OPC from monkey neocortex (**Extended Data Fig. 25f**). The observation
334 that type I skeletal myonuclei and cardiomyocytes ranked first in expression of *LGR5*
335 and *LGR6* in monkey tissues, respectively, was intriguing (**Fig. 3a and Extended Data**

336 **Fig. 18a).** To inspect this further, we grouped and re-clustered all types of muscle cells
337 (skeletal, smooth and cardiac) in our atlas (**Fig. 3g**). *LGR5* was more enriched in *MYH7⁺*
338 slow-twitch myonuclei of the abdominal wall and diaphragm (**Fig. 3h**), whereas *LGR6*
339 was higher in cardiomyocytes and smooth muscle cells (aorta, ovary, carotid and vagina)
340 (**Extended Data Fig. 26a**). *LGR5* and *LGR6* expression in slow-twitch skeletal
341 myonuclei and in cardiomyocytes, respectively, were validated by smFISH (**Fig. 3i and**
342 **Extended Data Fig. 26b**). In mouse, *LGR5* is known to be expressed in NMJ
343 myonuclei⁴⁷ and a subset of satellite cells activated upon injury⁴⁸, but we did not detect
344 *LGR5* enrichment in either cell type in our monkey dataset (**Extended Data Fig. 19**).
345 The lack of *LGR5* enrichment in monkey satellite cells is unsurprising given that we
346 did not apply any injury to the skeletal muscle tissues profiled. Yet, we could detect
347 *LGR6* in cardiomyocytes using previously reported mouse and human snRNA-seq
348 datasets^{49,50} (**Extended Data Fig. 26c, d**). Similarly, *LGR6* was enriched in several
349 monkey pituitary cell populations, being most highly expressed in folliculostellate cells,
350 which have been reported to be pituitary gland stem cells⁵¹ (**Extended Data Fig. 26e**).
351 Consistently, those cells also expressed other progenitor markers such as *SOX2*, *PAX6*,
352 *CD44* and *CXCR4* (**Extended Data Fig. 26f**). Moreover, GO analysis of DEG specific
353 to this *LGR5⁺* population compared to other pituitary cells showed enrichment of terms
354 related to development (**Extended Data Fig. 26g**).

355 Next, we profiled the genes encoding Wnt factors and the R-spondin family
356 (RSPO1-4) of ligands for LGR proteins^{35,36} in a panel of monkey tissues containing
357 cells with high *LGR5* (kidney, epididymis, fallopian tube, liver, ovary, neocortex and
358 diaphragm) and *LGR6* (heart and pituitary gland) expression (**Extended Data Fig. 27a,**
359 **b and 28-31**). This allowed us to dissect the potential cell-cell interaction networks
360 driving Wnt signalling throughout the monkey body. Notably, RSPO cytokines were
361 widely distributed but displayed higher expression in mesenchymal-like cells (e.g.,
362 smooth muscle cells of epididymis, hepatic stellate cells and folliculostellate cells of
363 the pituitary gland) and mesothelial cells (e.g., of diaphragm, fallopian tube and ovary)

364 of different tissues. Interestingly, *RSPO2* was also high in inhibitory neurons of the
365 neocortex (**Extended Data Fig. 30**). The expression of Wnt factors was more limited
366 and in general lower than RSPO cytokines but we noticed high levels of *WNT9B* in
367 principal cells of the collecting duct in kidney (**Extended Data Fig. 27a, c**), *WNT2B* in
368 mesothelial cells of the fallopian tube (**Extended Data Fig. 29a**) and ovary (**Extended**
369 **Data Fig. 30c**), and as expected *WNT2* in endothelial cells of the liver⁵² (**Extended**
370 **Data Fig. 29c**). *Wnt9b* is an essential regulator of kidney embryonic development in
371 multiple species and of kidney regeneration in lower vertebrates⁵³. Supporting the
372 snRNA-seq data, scATAC-seq analysis of the *WNT9B* locus revealed increased
373 enhancer accessibility in monkey principal cells compared to other kidney cell types
374 (**Extended Data Fig. 27d**). In contrast, we detected low *WNT9B* expression in available
375 mouse⁴⁴ and human⁴⁶ snRNA-seq datasets (**Extended Data Fig. 27e**). *WNT9B* may be
376 responsible for inducing *LGR5* (a Wnt pathway target) in a fraction of DCTC,
377 potentially creating a feedback loop that amplifies *WNT9B* signals to keep those cells
378 in a progenitor state. In fact, Wnt factors are known to act predominantly on
379 neighbouring cells^{33,35}, and cells of the collecting duct and DCTC are in closer
380 proximity than other nephron structures (**Extended Data Fig. 27f**). We further included
381 Wnt receptors and other co-receptors⁵⁴ in the analysis, and also the TCF family of
382 transcription factors bound by β -catenin⁵⁵, as a resource for additional exploration in
383 these tissues (**Extended Data Fig. 27a,b and 28-31**).

384 Therefore, we have reconstructed the Wnt signaling network in monkey tissues and
385 identified cell types with potential progenitor or homeostatic characteristics. Additional
386 signaling pathways and/or ligand-receptor interactions can be explored through our
387 NHPCA database.

388

389 **Prediction of viral infection vulnerability in monkey tissues**

390 To demonstrate the utility of our atlas for advancing the knowledge of disease
391 pathogenesis, we first mapped the expression of the main viral receptors/co-receptors

392 for a panel of 126 viruses including respiratory ones across all monkey tissues. As
393 expected, *NCAMI* (cytomegalovirus receptor) was enriched in astrocytes,
394 oligodendrocytes and neurons, consistent with the knowledge of this virus attacking the
395 central nervous system⁵⁶. In contrast, *CD46*⁵⁷ (receptor for Measles and Herpes viruses)
396 was enriched in epithelial cells from bladder, female and male reproductive system, and
397 liver endothelial cells (**Fig. 4a, Extended Data Fig. 32 and Supplementary Table 4a**).
398 Given the emergency state of the current COVID-19 pandemic caused by SARS-CoV-
399 2⁵⁸, we focused on its receptor *ACE2* and co-receptor *TMPRSS2*⁵⁹ to assess how
400 widespread and homogeneous their expression is in monkey tissues. This offers the
401 major advantage of studying COVID-19 pathogenesis in a species phylogenetically
402 close to humans⁶⁰, and also provides the possibility of profiling cell types and/or tissues
403 that have not been studied in human. In this regard, although the lung is the
404 predominantly affected tissue in COVID-19, it is important to clarify what other tissues
405 are targeted to better understand the disease course and its transmissibility⁶¹. *TMPRSS2*
406 displayed a broad expression across multiple monkey tissues, whereas *ACE2* had a
407 more restricted pattern. The highest *ACE2* expression was found in epithelial cells from
408 gallbladder (glandular cells), kidney (mostly proximal tubule cells), lung (ciliated, club
409 and alveolar type 2 [AT2] cells) and liver (hepatocytes and cholangiocytes) (**Fig. 4b**,
410 **Extended Data Fig. 33, 34 and Supplementary Table 4b**). *ACE2* in these tissues was
411 remarkably heterogeneous, suggesting that regulatory mechanisms fine-tune its
412 expression levels. Notably, double positive (*ACE2*⁺ *TMPRSS2*⁺) cells have a higher risk
413 of infection by SARS-CoV-2⁵⁹ but it remains unclear what tissues and cell types
414 throughout the human body co-express these genes. We noticed the largest overlap
415 between *ACE2* and *TMPRSS2* in monkey gallbladder cells in agreement with reports of
416 COVID-19 patients developing acute cholecystitis⁶². Significant co-expression was
417 also observed in ciliated and club cells of the lung, as expected^{63,64}, and, interestingly,
418 proximal and connecting tubule cells of the kidney. A smaller overlap was observed in
419 hepatocytes, bladder epithelial cells and pancreatic beta and ductal cells (**Fig. 4c**). Next,

420 we performed a comparative analysis of *ACE2* and *TMPRSS2* distribution in human^{3,6,43}
421 and monkey. A similar distribution was seen in both the gallbladder and liver in the two
422 species, while distinct patterns were observed for proximal tubule cells of the kidney
423 and for ciliated and AT2 cells of the lung (**Extended Data Fig. 35a**). This is important
424 because it implies a mechanism by which the infection with SARS-CoV-2 in the two
425 species could have different consequences.

426 As a representative tissue with high but heterogeneous *ACE2* expression and a
427 significant proportion of *ACE2*⁺ *TMPRSS2*⁺ cells, we studied the kidney in more detail
428 by looking at the integration of snRNA-seq and scATAC-seq data. Analysis of open
429 chromatin regions revealed discrete peaks in the *ACE2* locus with the highest signal
430 detected in a population of proximal tubule cells that also contains the highest
431 proportion of *ACE2*-expressing cells (**Fig. 4d**). Motif analysis demonstrated that *ACE2*
432 promoter and enhancer regions are enriched in *STAT1* and 3, *FOXA1*, *JUNB* and several
433 *IRF* (interferon response factor) binding sites (**Fig. 4e**). These transcription factors have
434 important immune functions and are targets of tissue protective and innate immune
435 responses such as those mediated by interleukin-6 (IL6), interleukin-1 (IL1) and
436 interferons⁶⁵. In this regard, dysregulation of both IL6 and IL1 β has been implicated in
437 the pathogenesis of severe COVID-19⁶⁶. Thus, we investigated the co-expression of
438 their receptors (*IL6R*, *IL1R1* and *IL1RAP*) with *ACE2* in monkey kidney, only
439 observing good correlation with *ACE2* in proximal tubule cells for *IL6R* (**Extended**
440 **Data Fig. 35b**). These observations imply a potential link between IL6, STAT
441 transcription factors and enhanced *ACE2* expression in specific tissues such as the
442 kidney that can either facilitate the existence of viral reservoirs or exacerbate COVID-
443 19 disease progression due to increased viral dissemination (**Extended Data Fig. 35c**).
444 In addition to *ACE2* and *TMPRSS2*, numerous other molecules have been implicated
445 in facilitating SARS-CoV-2 binding to the cell surface or in COVID-19
446 pathogenesis^{67,68}. Their expression or co-expression in monkey tissues, as well as other

447 potential associations and other virus-host interactions can be explored using our
448 NHPCA database.

449

450 **Investigation of common human traits and genetic diseases in monkey**

451 We next assessed the effect of genetic variation linked to complex human traits and
452 diseases by applying Genome Wide Association Studies (GWAS) to our monkey
453 dataset. We linked human single-nucleotide polymorphisms from 163 GWAS taken
454 from the UK Biobank to orthologous coordinates in the monkey single-cell
455 transcriptome to calculate the enrichment of traits across the genes expressed in each
456 cell cluster annotated in our dataset. As a general trend, we observed enriched
457 heritability for neurological traits such as ‘schizophrenia’, ‘depression’ or ‘autism’ in
458 clusters corresponding to neuronal and glial cells (**Fig. 5a, Extended Data Fig. 36 and**
459 **Supplementary Table 5a**). Similarly, we observed enrichment of Alzheimer’s disease
460 traits in immune cells, in line with the knowledge that immune dysfunction contributes
461 to the pathogenesis of this disease⁶⁹. Consistent with expectations, we also noticed
462 enrichment of immunological-related traits (‘lymphocyte count’, ‘monocyte count’ and
463 traits related to immune disorders) in myeloid cells and B and T lymphocytes. Likewise,
464 blood related traits such as ‘mean spheroid cell volume’ and ‘red blood cell distribution
465 width’ were enriched in erythrocytes and bone marrow progenitor cells. Interestingly,
466 however, we observed some unexpected trends for traits like ‘body mass index’ or
467 ‘waste ratio’. Despite showing the expected highest enrichment in adipocytes, these
468 trends additionally revealed an enrichment in smooth muscle cells, melanocytes and
469 stromal cells. Similarly, type 2 diabetes and cholesterol-related traits revealed not only
470 the expected association with hepatocytes but also with several kidney cell
471 populations⁷⁰. Our analysis also pointed at the enrichment of attention deficit and
472 hyperactive disorder (ADHD) in skeletal muscle type I and type II myonuclei but not
473 in neuronal cell types, suggesting an intriguing link between this pathology and motor
474 abnormalities (**Fig. 5a**). In this regard for example, ocular muscle hyperactivity is an

475 accompanying sign of ADHD and might be a major trigger for the disease rather than
476 a consequence⁷¹.

477 Besides the association of complex human traits to cell types stated above, we
478 also generated a correlation map of mutant genes causing human genetic diseases with
479 all cell types annotated in our monkey dataset (**Extended Data Fig. 37 and**
480 **Supplementary Table 5b**). As expected, genes related to retinitis pigmentosa were
481 specifically expressed in monkey photoreceptors, while genes related to porphyria were
482 found associated to erythroblasts. This shows that our dataset can predict cell types that
483 are directly affected in human genetic diseases. In addition, we compared the
484 interspecies distribution of a panel of genes related to human neurological diseases
485 using snRNA-seq data for mouse, monkey and human neocortex⁴⁶. Notably, for most
486 genes, we observed a generally higher correlation of the expression in specific cell types
487 between human and monkey than between human and mouse (**Fig. 5b**). However, some
488 diseases also appeared to be related to different cell types in monkey compared to
489 human. For instance, distal neuropathy caused by mutations in *HSPB8*⁷² was enriched
490 in *CNR1*⁺ inhibitory neurons in human while being enriched in astrocytes in monkey
491 and mouse. Similarly, ataxia telangiectasia caused by mutations in *ATM* was mostly
492 enriched in oligodendrocytes⁷³ in human while in monkey and mouse it was enriched
493 in *PVALB*⁺ and *LAMP5*⁺ inhibitory neurons, respectively.

494 Our analysis thus highlights the potential for modelling human diseases in
495 species phylogenetically closer to humans and underlines that differences will still exist.
496 Further scrutiny of GWAS datasets and gene mutations and wider comparisons between
497 species will provide additional relevant observations.

498

499 **DISCUSSION**

500 Despite the enormous potential, few NHP tissues have been profiled to date at the
501 single-cell level and the use of different species, experimental conditions and platforms
502 makes comparisons challenging^{20,74,75}. To address this, we have generated the first

503 version of a large single-cell transcriptomic atlas for a NHP widely used in research
504 studies, *Macaca fascicularis*, and an expandable and interactive database
505 (<https://db.cngb.org/nhpc/>) to facilitate its exploration. The current version of our atlas
506 provides a comprehensive and integrated overview of gene expression in 106 cell types
507 extracted from 43 tissue types. Specialized tissues such as skin, thymus, testis and some
508 parts of the gastrointestinal tract, as well as increased cell numbers for some of the
509 already profiled ones, will be added in future releases. Cell type identification relied on
510 previously reported markers and gene expression profiles. Therefore, although we
511 identified most (if not all) known cell types in these tissues, our current annotations are
512 likely to benefit from deeper sub-clustering and further revision.

513 We provide a detailed description of individual tissue single-cell composition and
514 a comparison of common cell types across all sequenced tissues. This information will
515 be particularly valuable for understanding tissues that have either not been profiled at
516 all at the single-cell level in human (e.g., diaphragm, tongue and salivary gland) or lack
517 enough cell numbers (e.g., liver, gallbladder and substantia nigra), and for prediction
518 of human disease susceptibilities. Regarding the latter, we have identified an
519 unexpected link between ADHD and muscle function. ADHD is a polygenic and
520 multifactorial disorder associated with hyperactivity and motor coordination
521 abnormalities that are thought to have a neurological origin⁷⁶. Our data support the
522 possibility that skeletal muscle rather than the nervous system may be a direct driver of
523 ADHD pathogenesis⁷⁷. Similarly, as part of the analysis for virus receptors and co-
524 receptors, we provide a comprehensive map of *ACE2*⁺/*TMPRSS2*⁺ double positive cells
525 throughout the monkey body that may be useful to understand COVID-19 pathogenesis
526 in human^{59,61}. In particular, the link between IL6, STAT transcription factors and ACE2
527 expression could explain the reported positive effects of tocilizumab, a humanized
528 monoclonal antibody against IL6R for the treatment of patients with severe COVID-
529 19⁷⁸. On the other hand, our study shows significant interspecies differences in cell
530 type-specific gene expression with potentially important functional consequences. For

531 example, the distribution of *ACE2* and *TMPRSS2* across different cell types is not
532 identical between monkey and human and this could influence the disease course.
533 Moreover, in the context of the survey of Wnt pathway components we have identified
534 *LGR5*⁺ renal cells with progenitor characteristics that are seemingly absent in human
535 and mouse based on analysis of reported datasets. This is relevant because the kidney
536 has limited regenerative capacity in mammals⁷⁹. During embryonic development
537 *LGR5*⁺ cells located at the junction between the ureteric bud (source of the collecting
538 tubule and connecting tubule) and the metanephric blastema are responsible for
539 nephrogenesis, but they quickly disappear after birth⁴⁵. Their persistence in adult
540 monkey kidney suggests a higher regenerative capacity compared to other species,
541 which if true raises the hope of activating a similar mechanism in human⁸⁰. Similarly,
542 *LGR5*⁺ cells in the neocortex correspond mainly to OPC in monkey and to
543 oligodendrocytes and to a lesser extent OPC in human, whereas in mouse inhibitory
544 neurons are more highly enriched. This finding is consistent with the knowledge that
545 Wnt activity regulates OPC and oligodendrocyte function and differentiation⁸¹ but
546 suggest interspecies differences in the mode of action. Likewise, the expression of
547 *LGR5* in skeletal slow-twitch myofibers, and *LGR6* in the pituitary gland and heart, is
548 intriguing. During development, Wnt activity regulates skeletal myogenesis and
549 myofiber typing⁸², cardiomyocyte proliferation⁸³ and pituitary gland growth⁸⁴, but little
550 is known about the adult. The functional implications of these and other related findings
551 and the extent to which the patterns differ between monkey and other mammalian
552 species will require further study. Finally, interspecies comparison of single-cell gene
553 expression in neocortex highlights the problems associated with modelling neurological
554 diseases in rodents and suggests that a cautious approach should also be taken when
555 studying NHP. Additional comparisons with other human and mouse single-cell/nuclei
556 datasets will provide a more comprehensive, body-wide picture of differences in
557 disease vulnerability among the three species.

558 In the future, with efforts from us and scientists worldwide, the NHPCA database
559 will be extended with additional single-cell datasets generated from disease modelling
560 studies, spontaneously developed diseases (e.g., diabetes or cardiomyopathy) and aging.
561 Adding other layers of single-cell -omics studies, in particular scATAC-seq and
562 spatially resolved transcriptomics⁸⁵ for all tissues presented here, will help characterize
563 cell states and the interactions between different cell types more accurately. Proof of
564 principle is the kidney scATAC-seq dataset included here. In addition, it will be
565 important to compare our *Macaca fascicularis* atlas with datasets from other non-
566 endangered NHP species such as *Macaca mulatta* (rhesus monkey), *Callithrix jacchus*
567 (marmoset monkey)⁸⁶ and *Microcebus murinus* (mouse lemur)^{10,13}. Altogether, this
568 information will be instrumental for understanding primate evolution and human
569 disease.

570

571

572 FIGURE LEGENDS

573

574 **Figure 1. Generation of a single-cell atlas across 43 tissues of *Macaca fascicularis***
575 **monkey.**

576 **(a)** Schematic representation of monkey tissues analyzed in this study (top left
577 panel). A total of 43 tissues were collected from three male and three female 6-
578 year-old monkeys. UMAP visualization of the global clustering indicating all
579 single cells from the dataset colored by tissue (top middle panel) and bar plot
580 showing the number of cells/nuclei profiled for every tissue after passing the
581 quality control (top right panel). N = 1,084,164 individual nuclei/cells analyzed.

582 **(b)** UMAP visualization of tissues grouped by specific systems such as immune
583 system (bone marrow, peripheral blood, spleen, tonsil and lymph node),
584 digestive system (colon, duodenum, esophagus, gallbladder, liver, stomach and

585 tongue) and female reproductive system (fallopian tube, ovary, uterus and
586 vagina).

587 (c) UMAP visualization of all clusters colored by major cell types. A total of 106
588 cell clusters were identified in the dataset. Cell type annotation for all major
589 clusters is provided in the right-hand side legend. *SERPINE1* was used to
590 discriminate two distinct cluster of hepatocytes.

591

592 **Figure 2. Characterization of skeletal myofibers and mesothelial cells.**

593 (a) UMAP visualization of the global clustering of skeletal muscle cells annotated
594 in our dataset. Clusters are colored by tissue (abdominal wall, diaphragm,
595 esophagus and tongue). Due to their low number, fallopian tube, vagina and
596 tonsil skeletal cells were excluded from this analysis. Endothelial and immune
597 cells were not included in this analysis.

598 (b) UMAP representation of all re-clustered skeletal muscle cells colored by
599 subtype.

600 (c) UMAP visualization of specific markers used to identify type I (*MYH7*), type
601 IIa (*MYH2*) and type IIb myonuclei (*GPD2*), FAP (*LVRN*), MTJ (*NAV3* and
602 *COL22A1*), NMJ (*ETV5* and *MUSK*) and satellite cells (*PAX7*), as shown in b.
603 Due to their small proportions, the latter three populations are highlighted by a
604 red arrow.

605 (d) Stacked bar plot representing the proportion of skeletal muscle nuclei
606 (myonulcei subtypes type I, type IIa, type IIb, MTJ and NMJ, and also satellite
607 cells and FAP) in the indicated tissues.

608 (e) Heatmap showing DEG among the skeletal muscle populations highlighted in
609 d.

610 (f) Bubble plot showing DEG for each of the myonuclei subtypes comparing
611 different tissues.

612 (g) UMAP visualization of mesothelial cells from the selected tissues (bladder,
613 diaphragm, fallopian tube, lung, ovary and visceral adipose tissue). Two
614 different clusters of mesothelial cells in visceral adipose tissue are indicated by
615 the red dotted line.

616 (h) Violin plot showing the differential expression of mesothelial and immune
617 markers in the two visceral adipose tissue clusters highlighted by the red dotted
618 line in panel g.

619 (i) UMAP visualization of three different clusters of mesothelial cells from the
620 ovary (left panel). Mesothelial cells (Meso), surface epithelial (Surface epi) and
621 progenitor-like epithelial (Prog-like epi) cells are highlighted in red, blue and
622 yellow, respectively.

623 (j) UMAP visualization of *LGR5* expression in ovarian cells.

624 (k) Violin plot showing the DEG among the three populations of ovarian cells
625 highlighted in the UMAP.

626

627 **Figure 3. Analysis of *LGR5*⁺ cells across all monkey tissues.**

628 (a) UMAP visualization of *LGR5* expression across all tissues profiled in this study.
629 The bubble plot on the right shows the *LGR5* expression ratio in the indicated
630 cell types.

631 (b) Co-embedding of kidney snRNA-seq (highlighted in blue) and scATAC-seq
632 (highlighted in red) datasets.

633 (c) UMAP visualization of integrated kidney snRNA- and scATAC-seq data. Cell
634 clusters are colored according to cell identity. Abbreviations: DCTC, distal
635 convoluted tubule cells; Endo, endothelial cells; LOH, loop of Henle; mDC,
636 myeloid-derived dendritic cells; Myofibro, myofibroblasts.

637 (d) UMAP visualization of *LGR5* across kidney cell types and ArchR track
638 visualization of aggregate scATAC-seq signals on the *LGR5* locus in each cell

639 type annotated in **c**. The bar plot on the right side indicates the ratio (%) of
640 *LGR5*⁺ cells in each cell type of kidney.

641 **(e)** Representative image of smFISH detection for *LGR5* expression in DCTCs
642 (scale bar 20 μ m). The bottom panel represents a magnification of the area
643 indicated by the white box in the top panel.

644 **(f)** GO analysis showing the pathways associated to the DEGs obtained by
645 comparing *LGR5*⁺ cells from DCTC, ascending and descending LOH. The
646 UMAP and the barplot on the right highlight the presence and the percentage of
647 *LGR5*⁺ cells co-expressing the progenitor markers *PAX2*, *TNFRSF19* and *LHX2*.

648 **(g)** UMAP visualization of all muscle cell types annotated in our dataset clustered
649 by tissue (abdominal wall, aorta bladder, carotid, diaphragm, esophagus,
650 fallopian tube, heart, ovary, prostate, spermaduct, tongue, uterus and vagina).
651 The dotted lines group clusters of cells belonging to a specific muscle type
652 (cardiac, skeletal and smooth muscle).

653 **(h)** UMAP visualization of *LGR5*, *MYH2* and *MYH7* across all skeletal muscle cell
654 types. The blue dotted line in the left panel indicates all clusters belonging to
655 the diaphragm while the one in the right panel indicates *LGR5*⁺ cells.

656 **(i)** Representative image of smFISH detection for *LGR5*, *MYH7* and their co-
657 expression in skeletal myonuclei of the diaphragm (scale bar 20 μ m). The panel
658 of the right is a magnification of the area indicated by the white box.

659

660 **Figure 4. Global analysis of *ACE2* and *TMPRSS2* across monkey tissues.**

661 **(a)** Heatmap showing the expression of entry receptors for a selection of the most
662 common viruses (indicated on the left) in all cell clusters annotated in our
663 dataset (indicated at the bottom).

664 **(b)** UMAP visualization of *ACE2* (top) and *TMPRSS2* (bottom) expression in all
665 single cells from our dataset. The bubble plot next to each UMAP shows the
666 expression levels of *ACE2* and *TMPRSS2* in the indicated cell types. The color

667 of each bubble represents the levels of expression and the size indicates the
668 proportion of expressing cells.

669 (c) UMAP projection of *ACE2*⁺/*TMPRSS2*⁺ cells (highlighted in yellow). The bar
670 plot on the right represents the ratio of cells that co-express both genes.

671 (d) UMAP visualization of *ACE2* in the integrated scATAC-seq and snRNA-seq
672 from monkey kidney.

673 (e) ArchR track visualization of aggregate scATAC-seq signals on the *ACE2* locus
674 in each of the annotated cell types of the kidney. Predicted binding of human
675 transcription factor predicted based on DNA sequence is shown in the
676 corresponding open chromatin regions of *ACE2*. The bar plot on the right
677 indicates the ratio (%) of *ACE2*⁺ cells in each annotated cell type of the monkey
678 kidney.

679

680 **Figure 5. Association of monkey transcriptomic profiles with human common**
681 **traits and genetic diseases.**

682 (a) Heatmap showing the association of selected common human traits and diseases
683 (indicated on the right) with the cell types (indicated at the bottom) annotated
684 in our dataset. The colored boxes indicate enriched specific patterns related to
685 human traits/diseases subtypes.

686 (b) Heatmap showing the enrichment of genetic diseases related to the central
687 nervous system in human, monkey and mouse neocortex snRNA-seq datasets.
688 The black boxes indicated specific patterns associated with cell types annotated
689 in the neocortex dataset.

690

691 **Extended Data Figure 1. Quality control analysis of gender and individual effect.**

692 UMAP visualization of single-cell profiles for selected tissues to calculate the
693 batch effect between tissues from different individuals and genders. Two
694 individuals were analyzed for bladder (F1 and F3), cerebellum (F3 and M1),

695 diaphragm (F1 and M2), gallbladder (F1 and F3), kidney (F1 and F2), lung (F1
696 and F3), salivary gland (F1 and F3), subcutaneous (F1 and M2) and visceral
697 adipose (F1 and M2) tissues, and three for liver (F1, F2 and F3).

698

699 **Extended Data Figure 2. Global clustering of different systems.**

700 UMAP visualization of cell clusters in selected tissues grouped by system:
701 cardiovascular (aorta, carotid and heart), endocrine (adrenal, pancreas, pineal,
702 pituitary and thyroid glands), skeletal (abdominal wall and diaphragm), central
703 nervous (cerebellum, neocortex, pigmentary epithelium choroid plexus, retina
704 and spinal cord), respiratory (bronchus, lung and trachea) and urinary (bladder
705 and kidney). Adipose tissues (subcutaneous and visceral) are also shown
706 grouped. Clusters shown in every plot are colored by tissue. Abbreviation:
707 pigmentary epi, pigmentary epithelium and choroid plexus.

708

709 **Extended Data Figure 3. Global profiling of individual monkey tissues – 1.**

710 UMAP projection of the global clustering indicating the distribution of all single
711 cells (highlighted in yellow) from individual tissues for abdominal wall, adrenal
712 gland, aorta, bladder, bone marrow, bronchus, carotid, cerebellum, colon,
713 diaphragm, duodenum and epididymis.

714

715 **Extended Data Figure 4. Global profiling of individual monkey tissues – 2.**

716 UMAP projection of the global clustering indicating the distribution of all single
717 cells (highlighted in yellow) from individual tissues for esophagus, fallopian
718 tube, gallbladder, heart, kidney, liver, lung, lymph node, neocortex, ovary,
719 pancreas and PBMC.

720

721 **Extended Data Figure 5. Global profiling of individual monkey tissues – 3.**

722 UMAP projection of the global clustering indicating the distribution of all single
723 cells (highlighted in yellow) from individual tissues for pigmentary epithelium
724 choroid plexus, pineal gland, pituitary gland, prostate, retina, salivary gland,
725 spermatid, spinal cord, spleen, stomach, subcutaneous adipose tissue and
726 substantia nigra.

727

728 **Extended Data Figure 6. Global profiling of individual monkey tissues – 4.**

729 UMAP projection of the global clustering indicating the distribution of all single
730 cells (highlighted in yellow) from individual tissues for thyroid, tongue, tonsil,
731 trachea, uterus, vagina and visceral adipose tissue.

732

733 **Extended Data Figure 7. Cluster annotations – 1.**

734 UMAP visualization of cell clusters in the abdominal wall, adrenal gland, aorta,
735 bladder, bone marrow, bronchus, carotid, cerebellum, colon, diaphragm,
736 duodenum and epididymis. The name of the population in each cluster and the
737 total number of cells profiled for every tissue are indicated in every plot.
738 Abbreviations: Adipo, adipocytes; Astro, astrocytes; AT1, alveolar type 1 cells;
739 AT2, alveolar type 2 cells; BC, B cells; CLP, common lymphoid progenitors;
740 CMP, common myeloid progenitors; Endo, endothelial cells; Epi, epithelial
741 cells; Ery, erythroblasts; FAP, fibroadipogenic progenitors; GMP, granulocyte
742 monocyte progenitors; Macro, macrophages; mDC, myeloid derived dendritic
743 cells; MEP, megakaryocyte erythrocyte progenitors; Meso, mesothelial cells;
744 Mol interneu, molecular interneurons; Mono, monocytes; MTJ, myotendinous
745 junction; Myofibro, myofibroblasts; NK, natural killers; NKT, natural killer T
746 cells; NMJ, neuromuscular junction; Oligo, oligodendrocytes; OPC,
747 oligodendrocyte progenitor cells; SMC, smooth muscle cells; TC, T cells.

748

749 **Extended Data Figure 8. Cluster annotations – 2.**

750 UMAP visualization of cell clusters in the esophagus, fallopian tube, gallbladder,
751 heart, kidney, liver, lung, lymph node, neocortex, ovary, pancreas and PBMC.
752 The name of the population in each cluster and the total number of cells profiled
753 for every tissue are indicated in every plot. Abbreviations: Adipo, adipocytes;
754 Astro, astrocytes; AT1, alveolar type 1 cells; AT2, alveolar type 2 cells; BC, B
755 cells; Endo, endothelial cells; Epi, epithelial cells; EX, excitatory neurons; Hep,
756 hepatocytes; IN, inhibitory neurons; IDC, lymphoid derived dendritic cells;
757 LOH, loop of Henle cells; Lymph prog, lymphoid progenitors; Macro,
758 macrophages; mDC, myeloid derived dendritic cells; Meg, megakaryocytes;
759 Meso, mesothelial cells; Mono, monocytes; Myofibro, myofibroblasts; NK,
760 natural killers; NKT, natural killer T cells; NMJ, neuromuscular junction; Oligo,
761 oligodendrocytes; OPC, oligodendrocyte progenitor cells; Prog-like epi,
762 progenitor-like epithelial cells; SMC, smooth muscle cells; TC, T cells.
763

764 **Extended Data Figure 9. Cluster annotations – 3.**

765 UMAP visualization of cell clusters in the pigmentary epithelium choroid
766 plexus, pineal gland, pituitary gland, prostate, retina, salivary gland, spermatiduct,
767 spinal cord, spleen, stomach, subcutaneous adipose tissue and substantia nigra.
768 The name of the population in each cluster and the total number of cells profiled
769 for every tissue are indicated in every plot. Abbreviations: Adipo, adipocytes;
770 Astro, astrocytes; BC, B cells; DAN, dopaminergic neurons; DC, conventional
771 dendritic cells; Endo, endothelial cells; Epi, epithelial cells; EX, excitatory
772 neurons; IN, inhibitory neurons; Macro, macrophages; Mono, monocytes;
773 Myofibro, myofibroblasts; Neutro, neutrophils; NK, natural killers; NKT,
774 natural killer T cells; Oligo, oligodendrocytes; OPC, oligodendrocyte
775 progenitor cells; SMC, smooth muscle cells; TC, T cells.
776

777 **Extended Data Figure 10. Cluster annotations – 4.**

778 UMAP visualization of cell clusters in the thyroid, tongue, tonsil, trachea, uterus,
779 vagina and visceral adipose tissue. The name of the population in each cluster
780 and the total number of cells profiled for every tissue are indicated in every plot.
781 Abbreviations: Adipo, adipocytes; BC, B cells; Endo, endothelial cells; IDC,
782 lymphoid derived dendritic cells; LOH, loop of Henle; Macro, macrophages;
783 mDC, myeloid derived dendritic cells; Meso, mesothelial cells; Mono,
784 monocytes; NK, natural killers; NMJ, neuromuscular junction; SMC, smooth
785 muscle cells; TC, T cells.

786

787 **Extended Data Figure 11. Selected markers for cell cluster annotations.**

788 Heatmap showing the expression of the marker genes used to manually annotate
789 all cell clusters identified in every tissue of this dataset.

790

791 **Extended Data Figure 12. UMI and gene numbers of the sequenced tissues and**
792 **annotated cell types.**

793 (a) Boxplot indicating the number of UMI (top) and genes (bottom) in each tissue
794 of the dataset.

795 (b) Boxplot indicating the number of UMI (top) and genes (bottom) detected in
796 each of the major annotated cell types shown in **Figure 1c**.

797

798 **Extended Data Figure 13. Cell numbers and proportions among the sequenced**
799 **tissues.**

800 Bar plot representation of the number of cells analyzed for each cell type
801 described in main **Figure 1c**. The stacked bar plot at the bottom indicates the
802 ratio of each cell type detected in every tissue.

803

804 **Extended Data Figure 14. Unique and shared cell populations.**

805 **(a)** UMAP projection of the global clustering showing the expression of specific
806 markers for cerebellum granule cells (*GABRA6*), hepatocytes (*ALB*), salivary
807 gland acinar cells (*PRR27*), epididymis stereociliated cells (*ROSI*), pancreatic
808 alpha cells (*GCG*) and fasciculata cells of the adrenal gland (*CYP11A1*).

809 **(b)** UMAP projection of the global clustering showing the expression of pan-
810 markers of endothelial (*FLT1*), stromal (*DCN*), immune (*PTPRC*), skeletal
811 myonuclei (*TTN*), adipocytes (*ADIPOQ*) and mesothelial cells (*ITLN1*) that are
812 shared across tissues.

813

814 **Extended Data Figure 15. Global analysis of common cell types.**

815 UMAP visualization of **(a)** stromal cells (n = 35,415), **(b)** macrophages (n =
816 10,929), **(c)** endothelial cells (n = 37,640) and **(d)** smooth muscle cells (n =
817 24,175) from all analyzed monkey tissues. Tissues with low numbers of the
818 selected cell types were excluded. Cell clusters are colored by tissue. The
819 heatmap on the right shows tissue-specific DEG for **(e)** stromal cells, **(f)**
820 macrophages, **(g)** endothelial cells and **(h)** smooth muscle cells.

821

822 **Extended Data Figure 16. Analysis of skeletal myonuclei molecular signatures.**

823 **(a)** Bubble plot indicating tissue-specific enriched GO terms in type I myonuclei
824 from abdominal wall, diaphragm and tongue.

825 **(b)** Bubble plot indicating tissue-specific enriched GO terms in type IIa myonuclei
826 from diaphragm, esophagus and tongue.

827 **(c)** Bubble plot indicating tissue-specific enriched GO terms in type IIb myonuclei
828 from abdominal wall and diaphragm.

829

830 **Extended Data Figure 17. Global analysis of adipocyte populations.**

831 **(a)** UMAP visualization of mature adipocyte and adipocyte progenitors from
832 visceral (VAT) and subcutaneous (SAT) adipose tissues. Data were grouped

833 together and re-clustered either by tissue type (on the left) or by cell type (on
834 the right).

835 (b) UMAP visualization of specific markers for mature adipocytes (*ADIPOQ*) or
836 adipocyte progenitors (*CD34*).

837 (c) UMAP visualization of markers for tissue-specific (*ITLN1* and *FOS*), cell-type
838 specific (*SLC11A1*, *SPOCK3*, *WT1*, *ESR1*, *CXCL14*, *APOD*, *CFD*, *DPP4* and
839 *NOX4*) or cycling markers (*MKI67*).

840 (d) Heatmap indicating the DEG in all clusters identified in a.

841

842 **Extended Data Figure 18. Global analysis of *LGR4*, *LGR6* and *LGR5/LGR6* co-
843 expression across monkey tissues.**

844 (a) UMAP visualization of *LGR6* across all tissues profiled in this study. The
845 bubble plot on the right shows the *LGR6* expression ratio in the indicated cell
846 types.

847 (b) UMAP visualization of *LGR5* and *LGR6* co-expression across all tissues
848 profiled in this study. The barplot on the right shows the co-expression ratio in
849 the indicated cell types.

850 (c) UMAP visualization of *LGR4* across all tissues profiled in this study. The
851 bubble plot on the right shows the *LGR4* expression ratio in the indicated cell
852 types.

853

854 **Extended Data Figure 19. Global analysis of *LGR5* and *LGR6* across monkey
855 tissues – 1.**

856 Bubble plot (left) showing the ratio of *LGR5*⁺, *LGR6*⁺ and *MKI67*⁺ cells in the
857 annotated cell types for each tissue and UMAP visualization (right) of *LGR5*,
858 *LGR6* and *MKI67* in abdominal wall, adrenal gland, aorta, bladder, bone
859 marrow, bronchus, carotid, cerebellum, colon, diaphragm and duodenum.

860

861 **Extended Data Figure 20. Global analysis of *LGR5* and *LGR6* across monkey**
862 **tissues – 2.**

863 Bubble plot (left) showing the ratio of *LGR5*⁺, *LGR6*⁺ and *MKI67*⁺ cells in the
864 annotated cell types for each tissue and UMAP visualization (right) of *LGR5*,
865 *LGR6* and *MKI67* in epididymis, esophagus, fallopian tube, gallbladder, heart,
866 kidney, liver, lung, lymph node and ovary.

867

868 **Extended Data Figure 21. Global analysis of *LGR5* and *LGR6* across monkey**
869 **tissues – 3.**

870 Bubble plot (left) showing the ratio of *LGR5*⁺, *LGR6*⁺ and *MKI67*⁺ cells in the
871 annotated cell types for each tissue and UMAP visualization (right) of *LGR5*,
872 *LGR6* and *MKI67* in pancreas, PBMCs, pigmentary epithelium choroid plexus
873 (indicated as pigmentary epi), pineal gland, pituitary gland, prostate, retina,
874 salivary gland, spermatid, spinal cord and spleen.

875

876 **Extended Data Figure 22. Global analysis of *LGR5* and *LGR6* across monkey**
877 **tissues – 4.**

878 Bubble plot (left) showing the ratio of *LGR5*⁺, *LGR6*⁺ and *MKI67*⁺ cells in the
879 annotated cell types for each tissue and UMAP visualization (right) of *LGR5*,
880 *LGR6* and *MKI67* in stomach, subcutaneous adipose tissue, substantia nigra,
881 thyroid, tongue, tonsil, trachea, uterus, vagina and visceral adipose tissue.

882

883 **Extended Data Figure 23. Kidney snRNA-seq and scATAC-seq dataset integration.**

884 **(a)** Violin plot showing the expression of selected markers used to annotate the
885 kidney cell clusters from snRNA-seq data.

886 **(b)** ArchR track visualization of aggregate scATAC-seq signals on the locus of the
887 selected marker genes indicated in **a**. Abbreviations: DCTC, distal convoluted

888 tubule cells; Endo, endothelial cells; LOH, loop of Henle; Myofibro,
889 myofibroblasts.

890

891 **Extended Data Figure 24. *LGR5* analysis in integrated human, monkey and mouse**
892 **kidney data.**

893 (a) UMAP visualization of cell clusters in human (left), monkey (middle) and
894 mouse (right) kidney snRNA-seq datasets. The annotation of each cluster is
895 provided in the legend at the bottom. Abbreviations: Endo, endothelial cells;
896 LOH, loop of Henle; mDC, myeloid dendritic cells; Myofibro, myofibroblasts.

897 (b) UMAP visualization of *LGR5* in human (left), monkey (middle) and mouse
898 (right) kidney.

899 (c) Bubble plot showing the ratio and expression levels of *LGR5* and DCTC marker
900 *SLC12A3* in human, monkey and mouse kidney datasets. The color of each
901 bubble represents the level of expression and the size indicates the proportion
902 of expressing cells.

903

904 **Extended Data Figure 25. *LGR5* analysis in integrated human, monkey and mouse**
905 **neocortex data.**

906 (a) UMAP visualization of cell clusters in human (left), monkey (middle) and
907 mouse (right) neocortex snRNA-seq datasets. The annotation of each cluster is
908 provided in the legend at the bottom. Abbreviations: Astro, astrocytes; Endo,
909 endothelial cells; IN, inhibitory neurons; OPC, oligodendrocyte progenitor cells;
910 EX, excitatory neurons; Oligo, oligodendrocytes.

911 (b) UMAP visualization of *LGR5* in human (left), monkey (middle) and mouse
912 (right) neocortex. OPC and oligodendrocytes are indicated by a red and yellow
913 dotted circle, respectively.

914 (c) Bubble plot showing the ratio and expression levels of *LGR5* and *PDGFRA* in
915 human, monkey and mouse neocortex. The color of each bubble represents the
916 level of expression and the size indicates the proportion of expressing cells.
917 (d) Monocle 2 pseudotime-ordered trajectory of OPC (labelled in orange)
918 maturation towards mature oligodendrocytes (labelled in blue).
919 (e) Monocle 2 pseudotime analysis showing the expression of OPC markers (*LGR5*,
920 *OLIG2* and *PDGFRA*) and the oligodendrocytes marker *PLP1*.
921 (f) Representative image of immunofluorescence staining for *PDGFRA* (red) and
922 *LGR5* (green), respectively, and their co-expression in OPC of monkey
923 neocortex (scale bar 20 μ m). The smaller panel at the bottom is a magnification
924 of the area indicated by the green box.
925

926 **Extended Data Figure 26. Analysis of *LGR6* expression in monkey heart and**
927 **pituitary gland.**

928 (a) UMAP visualization of *LGR6* across all muscle cell types annotated in our
929 dataset, as displayed in **Figure 3g**. The dotted red line indicates a cluster of
930 muscle cells belonging to the heart. The red arrows indicate *LGR6*⁺ cells in aorta,
931 carotid, ovary and vagina.
932 (b) Representative image of smFISH detection for *LGR6* in heart myonuclei (scale
933 bar 40 μ m). The bottom right panel is a magnification of the area indicated by
934 the white box.
935 (c) UMAP visualization of cell clusters in human (left), monkey (middle) and
936 mouse (right) heart snRNA-seq datasets. The annotation of each cluster is
937 provided in the legend at the bottom. Abbreviations: Endo, endothelial cells;
938 Macro, macrophages; SMC, smooth muscle cells.
939 (d) UMAP visualization of *LGR6* in human (left), monkey (middle) and mouse
940 (right) heart.

941 (e) UMAP visualization of *LGR6* expression in pituitary gland highlighting the
942 highest expression in folliculostellate cells.
943 (f) UMAP visualization of *SOX2*, *PAX6*, *CD44* and *CXCR4* in folliculostellate cells
944 as indicated by the black box.
945 (g) Barplot showing GO terms associated to the DEGs in folliculostellate cells of
946 pituitary gland.

947

948 **Extended Data Figure 27. Analysis of *WNT9B* and Wnt pathway gene module in**
949 **monkey kidney.**

950 (a) Heatmap showing the expression of all receptors and ligands of the Wnt
951 pathway in the annotated cell populations of the kidney.
952 (b) Network plots showing cell-cell communications based on ligand-receptor
953 interactions calculated by CellphoneDB.
954 (c) UMAP visualization of *WNT9B* expression in monkey kidney.
955 (d) ArchR track visualization of aggregate scATAC-seq signals on the *WNT9B*
956 locus in each on the annotated cell types. The bar plot at the bottom indicates
957 the ratio (%) of *WNT9B*⁺ cells in each cell type of kidney.
958 (e) Bubble plot showing the ratio and expression levels of *WNT9B* and principal
959 tubule cell marker *FXYD4* in human, monkey and mouse kidney datasets. The
960 color of each bubble represents the level of expression and the size indicates the
961 proportion of expressing cells.
962 (f) Schematic representation of a kidney nephron illustrating Wnt pathway ligand-
963 receptor interactions.

964

965 **Extended Data Figure 28. Global analysis of the Wnt pathway gene module in**
966 **monkey diaphragm and epididymis.**

967 (a) Heatmap showing the expression of all receptors and ligands of the Wnt
968 pathway in the annotated cell populations of the diaphragm.

969 **(b)** Network plots showing cell-cell communication based on ligand-receptor
970 interactions calculated by CellphoneDB in the diaphragm dataset.
971 Abbreviations: Adipo, adipocytes; Endo, endothelial cells; Macro,
972 macrophages; Meso, mesothelial cells; NMJ, neuromuscular junctions.
973 **(c)** Heatmap showing the expression of all receptors and ligands of the Wnt
974 pathway in the annotated cell populations of the epididymis.
975 **(d)** Network plots showing cell-cell communication based on ligand-receptor
976 interactions calculated by CellphoneDB in the epididymis dataset.
977 Abbreviations: Adipo, adipocytes; Endo, endothelial cells; SMC, smooth
978 muscle cells; TC, T cells.

979
980 **Extended Data Figure 29. Global analysis of the Wnt pathway gene module in**
981 **monkey fallopian tube and liver.**

982 **(a)** Heatmap showing the expression of all receptors and ligands of the Wnt
983 pathway in the annotated cell populations of the fallopian tube.
984 **(b)** Network plots showing cell-cell communication based on ligand-receptor
985 interactions calculated by CellphoneDB in the fallopian tube dataset.
986 Abbreviations: Endo, endothelial cells; epi, epithelial cells; Meso, mesothelial
987 cells; Mono, monocytes; SMC, smooth muscle cells; TC, T cells.
988 **(c)** Heatmap showing the expression of all receptors and ligands of the Wnt
989 pathway in the annotated cell populations of the liver.
990 **(d)** Network plots showing cell-cell communication based on ligand-receptor
991 interactions calculated by CellphoneDB in the liver dataset. Abbreviations: BC,
992 B cells; Endo, endothelial cells; hep, hepatocytes; mDC, myeloid derived
993 dendritic cells; Mono, monocytes; TC, T cells.

994
995 **Extended Data Figure 30. Global analysis of the Wnt pathway gene module in**
996 **monkey neocortex and ovary.**

997 **(a)** Heatmap showing the expression of all receptors and ligands of the Wnt
998 pathway in the annotated cell populations of the neocortex.

999 **(b)** Network plots showing cell-cell communication based on ligand-receptor
1000 interactions calculated by CellphoneDB in the neocortex dataset. Abbreviations:
1001 Astro, astrocytes; Endo, endothelial cells; EX, excitatory neurons; IN,
1002 inhibitory neurons; Oligo, oligodendrocytes; OPC, oligodendrocyte progenitor
1003 cells.

1004 **(c)** Heatmap showing the expression of all receptors and ligands of the Wnt
1005 pathway in the annotated cell populations of the ovary.

1006 **(d)** Network plots showing cell-cell communication based on ligand-receptor
1007 interactions calculated by CellphoneDB in the ovary dataset. Abbreviations:
1008 Endo, endothelial cells; epi, epithelial cells; Meso, mesothelial cells; Mono,
1009 monocytes; Myofibro, myofibroblasts; Prog-like epi; progenitor-like epithelial
1010 cells; SMC, smooth muscle cells.

1011

1012 **Extended Data Figure 31. Global analysis of the Wnt pathway gene module in**
1013 **other monkey heart and pituitary gland.**

1014 **(a)** Heatmap showing the expression of all receptors and ligands of the Wnt
1015 pathway in the annotated cell populations of the heart.

1016 **(b)** Network plots showing cell-cell communication based on ligand-receptor
1017 interactions calculated by CellphoneDB in the pituitary gland dataset.
1018 Abbreviations: Endo, endothelial cells; Myofibro, myofibroblasts.

1019 **(c)** Heatmap showing the expression of all receptors and ligands of the Wnt
1020 pathway in the annotated cell populations of the pituitary gland.

1021 **(d)** Network plots showing cell-cell communication based on ligand-receptor
1022 interactions calculated by CellphoneDB in the pituitary gland dataset.
1023 Abbreviations: Endo, endothelial cells.

1024

1025 **Extended Data Figure 32. Global analysis of virus entry receptors across monkey**
1026 **tissues.**

1027 Heatmap showing the expression of entry receptor for most common viruses
1028 (shown on the right) in the indicated cell types (shown at the bottom).

1029

1030 **Extended Data Figure 33. Analysis of *ACE2* and *TMPRSS2* expression across**
1031 **monkey tissues – 1.**

1032 UMAP visualization of *ACE2* (left), *TMPRSS2* (middle) and *ACE2*⁺/*TMPRSS2*⁺
1033 (right) in abdominal wall, adrenal gland, aorta, bladder, bone marrow, bronchus,
1034 carotid, cerebellum, colon, diaphragm, duodenum, epididymis, esophagus,
1035 fallopian tube, gallbladder, heart, kidney, liver, lung, lymph node and ovary.

1036

1037 **Extended Data Figure 34. Analysis of *ACE2* and *TMPRSS2* expression across**
1038 **monkey tissues – 2.**

1039 UMAP visualization of *ACE2* (left), *TMPRSS2* (middle) and *ACE2*⁺/*TMPRSS2*⁺
1040 (right) in pancreas, PBMC, pigmentary epithelium choroid plexus (indicated as
1041 pigmentary epi), pineal gland, pituitary gland, prostate, retina, salivary gland,
1042 spermatid, spinal cord, spleen, stomach, subcutaneous adipose tissue,
1043 substantia nigra, thyroid, tongue, tonsil, trachea, uterus, vagina and visceral
1044 adipose tissue.

1045

1046 **Extended Data Figure 35. Comparative analysis of *ACE2* and *TMPRSS2***
1047 **expression in monkey and human.**

1048 **(a)** Bubble plot showing the ratio and expression levels of *ACE2* and *TMPRSS2* in
1049 gallbladder, kidney, liver and lung in monkey and human. The color of each
1050 bubble represents the level of expression and the size indicates the proportion
1051 of expressing cells.

1052 (b) UMAP visualization of *IL6R*, *IL1R1* and *IL1RAP* expressing in monkey kidney
1053 (top). The UMAP in the bottom represent the co-expression of *ACE2* and *IL6R*,
1054 *IL1R1* and *IL1RAP* in monkey kidney. Double positive cells are indicated in
1055 yellow.

1056 (c) Schematic diagram of the potential mechanism for SARS-CoV-2 spreading
1057 through gallbladder, kidney, liver and lung. Kidney proximal tubule cells within
1058 the nephron are among the highest ACE2 expressing cells. After virus contact,
1059 IL6R stimulates an immune response that, through the activation of STAT
1060 transcription factors, potentiates a paracrine positive feedback loop that
1061 enhances ACE2 expression and facilitates virus spreading. IL6 expression,
1062 which is higher in elderly patients and those with inflammatory conditions, is
1063 effectively targeted by anti-IL6R monoclonal antibodies leading to a more
1064 favourable disease course.

1065

1066 **Extended Data Figure 36. Expression of genes associated with human common**
1067 **traits in monkey cell types.**

1068 Heatmap showing the association of common human traits and diseases from
1069 the UK Biobank (indicated on the right) with the cell types (indicated at the
1070 bottom) annotated in our dataset.

1071

1072 **Extended Data Figure 37. Association of monkey cell type-specific transcriptomic**
1073 **profiles with human genetic diseases.**

1074 Heatmap showing the association of human genetic diseases (indicated on the
1075 right) with the cell types (indicated at the bottom) annotated in our dataset.

1076

1077 **Supplementary Table 1. Description of all tissues profiled, cell types and markers**
1078 **used for cluster annotation**

1079

1080 **Supplementary Table 2. Global analysis of common cell types and tissue-specific**
1081 **signatures**

1082

1083 **Supplementary Table 3. Global distribution of LGR5, LGR6 and MKI67**
1084 **expression**

1085

1086 **Supplementary Table 4. Analysis of the expression of common virus and SARS-**
1087 **Cov-2 receptors**

1088

1089 **Supplementary Table 5. Correlation of GWAS traits and human genetic diseases**
1090 **with monkey cell types**

1091

1092

1093 **METHODS**

1094

1095 **Ethics statement**

1096 This study was approved by the Institutional Review Board on Ethics Committee of
1097 BGI (permit no. BGI-IRB19125).

1098

1099 **Collection of monkey tissues**

1100 A total of three females and three males, approximately 6-year-old, cynomolgus
1101 monkeys were obtained from Huazhen Laboratory Animal Breeding Centre and Hubei
1102 Topgene Biotechnology (Guangzhou, China). Animals were anesthetized with
1103 ketamine hydrochloride (10 mg/kg) and sodium pentobarbital (40 mg/kg) injection
1104 before being euthanized by exsanguination. Tissues were isolated and placed on the
1105 ice-cold board for dissection. A total of 43 whole tissues were isolated: abdominal wall,
1106 adrenal gland, aorta and carotid arteries, bladder, bone marrow, bronchia, cerebellum,
1107 colon, diaphragm, duodenum, epididymis, esophagus, fallopian tube, gallbladder, heart,

1108 kidney, liver, lung, lymph node, neocortex, ovary, pancreas, PBMC, pigmentary
1109 epithelium choroid plexus, pineal gland, pituitary gland, prostate, retina, salivary gland,
1110 spermatid, spinal cord, spleen, stomach, subcutaneous adipose tissue, substantia nigra,
1111 thyroid gland, tongue, tonsil, trachea, uterus, vagina and visceral adipose tissue. Each
1112 tissue (except for bone marrow, peripheral blood and tissues on which enzymatic
1113 digestion was performed) was cut into 5-10 pieces of roughly 50-200 mg each. Samples
1114 were transferred to cryogenic vials (Corning, #430488), then quickly frozen in liquid
1115 nitrogen and finally stored until nuclear extraction was performed. PBMC and bone
1116 marrow cells were isolated from heparinized venous blood using a Lymphoprep™
1117 medium (STEMCELL Technologies, #07851) according to standard density gradient
1118 centrifugation methods. Cells from those two tissues were resuspended in 90% FBS,
1119 10% DMSO (Sigma Aldrich, #D2650) freezing media and frozen using a Nalgene®
1120 Mr. Frosty® Cryo 1°C Freezing Container (Thermo Fisher Scientific, #5100-0001) in
1121 a -80°C freezer for 24 hours before being transferred to liquid nitrogen for long-term
1122 storage.

1123

1124 **Single-nucleus/cell suspension preparation**

1125 Single nucleus isolation was performed as described previously⁸⁷. Briefly, tissues were
1126 thawed, minced and transferred to a 1 ml Dounce homogenizer (TIANDZ) with 1 ml
1127 of homogenization buffer A containing 250 mM sucrose (Ambion), 10 mg/ml BSA
1128 (Ambion), 5mM MgCl₂ (Ambion), 0.12 U/μl RNasin Plus (Promega, #N2115), 0.12
1129 U/μl RNasein (Promega, #N2115) and 1x Protease Inhibitor (Roche, #11697498001).
1130 Tissues were kept in an ice box and homogenized by 25-50 strokes of the loose pestle
1131 (Pestle A) after which the mixture was filtered using a 100 μm cell strainer in to a 1.5
1132 ml tube (Eppendorf). The mixture was then transferred to a clean 1 ml dounce
1133 homogenizer to which 750 ul of buffer A containing 1% Igepal (Sigma, #CA630) was
1134 added and the tissue was further homogenized by 25 strokes of the tight pestle (Pestle
1135 B). After this, the mixture was filtered through a 40 μm strainer in a 1.5 ml tube and

1136 centrifuged at 500 g for five minutes at 4°C to pellet nuclei. At this stage, the pellet was
1137 resuspended in 1 ml of buffer B containing 320 mM Sucrose, 10 mg/ml BSA, 3 mM
1138 CaCl₂, 2 mM MgAc₂, 0.1 mM EDTA, 10 mM Tris-HCl, 1 mM DTT, 1x Protease
1139 Inhibitor and 0.12 U/μl RNasein. This was followed by a centrifugation at 500 g for
1140 five minutes at 4°C to pellet nuclei. Nuclei were then resuspended with cell
1141 resuspension buffer at a concentration of 1,000 nuclei/μl for single-nucleus library
1142 preparation. Cells from lymph node, spleen, duodenum, stomach and colon were
1143 obtained from fresh tissues by enzymatic digestion. Briefly, tissues were rinsed in PBS,
1144 minced into small pieces by mechanical dissociation and incubated for 1 hour in 10 ml
1145 of DS-LT buffer (0.2 mg/ml CaCl₂, 5 μM MgCl₂, 0.2% BSA and 0.2 mg/ml Liberase
1146 in HBSS) at 37°C. After this, the tissue digestion was stopped by addition of 3 ml of
1147 FBS, followed by filtration through a 100 μm cell strainer and centrifugation for 5
1148 minutes at 500 g at 4°C. Samples were then filtered through a 40 μm cell strainer and
1149 centrifuged for five minutes at 500 g at 4°C. Pellets were then resuspended in cell
1150 resuspension buffer at 1,000 cells/μl for single-cell library preparation.

1151

1152 **Single-cell/single-nucleus RNA-seq (sc/snRNA-seq)**

1153 DNBelab C Series Single-Cell Library Prep Set was utilized as previously described¹⁴.
1154 In brief, single-nucleus/cell suspensions were used for droplet generation, emulsion
1155 breakage, beads collection, reverse transcription and cDNA amplification to generate
1156 barcoded libraries. Indexed sc/snRNA-seq libraries were constructed according to the
1157 manufacturer's protocol. The concentration of sc/snRNA-seq sequencing libraries was
1158 quantified by Qubit™ ssDNA Assay Kit (Thermo Fisher Scientific, #Q10212). The
1159 resulting libraries were sequenced using a DIPSEQ T1 or DIPSEQ T7 sequencers at
1160 the China National GeneBank (Shenzhen, China).

1161

1162 **Single-cell ATAC-seq (scATAC-seq)**

1163 ScATAC-seq libraries were prepared using DNBelab C Series Single-Cell ATAC
1164 Library Prep Set¹⁴. DNA nanoballs were loaded into the patterned Nano arrays and
1165 sequenced on a BGISEQ-500 sequencer using the following read length: 50 bp for read
1166 1, 76 bp for read 2, inclusive of 50 bp insert DNA, 10 bp cell barcode 1, 6 bp constant
1167 sequence and 10 bp cell barcode 2.

1168

1169 **Immunofluorescence**

1170 Staining of monkey neocortex sample was conducted following standard protocol⁸⁸. In
1171 brief, paraffin embedded sections were deparaffinized, incubated with primary
1172 antibodies for PDGFR α (Cell Signaling #3174S) and LGR5 (Abcam #ab273092)
1173 overnight at 4°C, followed by an incubation with a secondary antibody (Alexa Fluor
1174 488 and Cy3, Jackson ImmunoResearch) for 30 minutes at room temperature. Slides
1175 were mounted with Slowfade Mountant+DAPI (Life Technologies, #S36964) and
1176 sealed.

1177

1178 **Single-molecule fluorescence *in situ* hybridization (smFISH)**

1179 SmFISH in monkey kidney, diaphragm and heart tissues was performed using
1180 RNAScope Fluorescent Multiplex and RNAScope Multiplex Fluorescent v2
1181 (Advanced Cell Diagnostics) according to manufacturer's instructions. The following
1182 alterations were added: the thickness of paraffin section was adjusted to 5 μ m and target
1183 retrieval boiling time was adjusted to 15 minutes while the incubation time of Protease
1184 plus at 40°C was adjusted to 30 minutes. RNA smFISH probes used: *LGR5* (C1), *LGR6*
1185 (C2), *MYH7* (C2).

1186

1187 **Sc/snRNA-seq data processing**

1188 Raw sequencing reads from DIPSEQ-T1 or DIPSEQ-T7 were filtered and
1189 demultiplexed using PISA (version 0.2) (<https://github.com/shiquan/PISA>). Reads
1190 were aligned to *Macaca_fascicularis_5.0* genome using STAR (version 2.7.4a)⁸⁹ and

1191 sorted by sambamba (version 0.7.0)⁹⁰. For tissues sequenced with scRNA-seq, reads
1192 were aligned to the exon of mRNA as normal. For tissues sequenced with snRNA-seq,
1193 a custom ‘pre-mRNA’ reference was created for alignment of count reads to introns as
1194 well as to exons because of large amount of unspliced pre-mRNA and mature mRNA
1195 in the cell nucleus. Thus, each gene’s transcripts in snRNA-seq was counted out by
1196 including exon and intron reads together⁹¹. In the end, cell/nucleus versus gene UMI
1197 count matrix was generated with PISA.

1198

1199 **Doublet removal**

1200 For each library, we performed doublet removal using DoubletFinder⁹². DoubletFinder
1201 first averages the transcriptional profile of randomly chosen cell pairs to create pseudo
1202 doublets and then predicts doublets according to each real cell’s similarity in gene
1203 expression to the pseudo doublets. The doublet removal was performed according to
1204 the default parameter of DoubletFinder and the top 5% of cells most similar to the
1205 “pseudo doublets” were excluded.

1206

1207 **Cell clustering and identification of cell types**

1208 Clustering analysis of the complete cynomolgus monkey tissue dataset was performed
1209 using Scanpy (version 1.6.0)⁹³ in a Python environment (version 3.6). Parameters used
1210 in each function were manually curated to portray the optimal clustering of cells. In the
1211 preprocessing, cells or nuclei were filtered based on the criteria of expressing a
1212 minimum of 500 genes and genes expressed by at least three cells or nuclei were kept
1213 for the following analysis. In addition, cells or nuclei with more than 10%
1214 mitochondrial gene counts were removed. Filtered data were ln (counts per million
1215 (CPM)/100 + 1) transformed. 3,000 highly variable genes were selected according to
1216 their average expression and dispersion. The number of UMI and the percentage of
1217 mitochondrial genes were regressed out and each gene was scaled by default options.
1218 Dimension reduction starts with principal component analysis and the number of

1219 principal components used for UMAP depended on the importance of embeddings.
1220 Louvain method is then used to detect subgroups of cells. Distinguishing differential
1221 genes among clusters were ranked (Benjamini-Hochberg, Wilcoxon rank-sum test).
1222 Cell types were manually and iteratively assigned based on overlap of literature, curated
1223 and statistically ranked genes. Each tissue dataset was portrayed using the Seurat
1224 package (version 3.2.2)⁹⁴ in R environment (version 3.6). Data from different replicates
1225 were integrated following the standard integrated pipeline by default parameters for
1226 filtering, data normalization, dimensionality reduction, clustering and gene differential
1227 expression analysis. Finally, we annotated each cell type by extensive literature reading
1228 and searching for the specific gene expression patterns.

1229

1230 **Differentially expressed gene (DEG) and gene ontology (GO) term enrichment
1231 analysis**

1232 In the global clustering, we performed DEG analysis using the sc.pl.rank_genes_groups
1233 function in Scanpy (V1.6.0). In other studies, we used the FindMarker or
1234 FindAllMarker function in the Seurat R package (V3.2.2). Analysis of DEG comparing
1235 specific populations was performed by calculating the fold-change of the mean
1236 expression level of genes between the selected populations. DEG were defined as those
1237 with a fold-change > 2 and adjusted $P < 0.01$. GO enrichment analysis was performed
1238 using the CompareCluster function fun = "enrichGO", pvalueCutoff = 0.1,
1239 pAdjustMethod = "BH", OrgDb = org.Hs.eg.db,ontBP") of ChIPseeker R package
1240 (v.1.22.1)⁹⁵. Only GO terms with adjusted $P < 0.05$ were retained.

1241

1242 **Analysis of inter-species differences**

1243 For tissue inter-species analysis, in order to get more accurate comparisons, we
1244 specifically chose three tissues with snRNA-seq data, namely kidney, neocortex and
1245 heart, and processed the raw sequencing data using our pipeline described below in the
1246 'Sc/snRNA-seq data processing' section. Kidney^{43,44}, neocortex⁴⁶ and heart^{49,50} data

1247 were downloaded from NCBI Gene expression omnibus (human kidney: GSE121862,
1248 mouse kidney: GSE119531, human neocortex: GSE97942, human heart: ERP123138,
1249 mouse heart: E-MTAB-7869). For each tissue we preprocessed the UMI matrix of the
1250 three species following three steps: 1. only orthologs genes among three species were
1251 kept. 2. only genes expressed in at least one cell in one species were kept. 3. the gene
1252 names of the human and mouse UMI matrix were converted into orthologs in *Macaca*
1253 *fascicularis*. After preprocessing, the UMI matrices of the three species were integrated
1254 together and the clustering was performed following the standard integrated pipeline
1255 using Seurat (V3.2.2) with the addition of one additional criterion for which only cells
1256 expressing more than 500 genes were kept. Also, we downsampled the cells of human
1257 and macaque neocortex to 10,000 to get a better clustering result. The Seurat clusters
1258 were then annotated into different cell types using cell type-specific markers as
1259 described above. In addition, for the comparison presented in Extended Data Figure 35
1260 we retrieved the publicly available single-cell data for gallbladder, liver and lung from
1261 GEO GSE134355³, GEO GSE108098⁶ and GSE124395⁹⁶, respectively. Data from the
1262 three species were integrated, clustered and annotated in the same way as described.
1263

1264 **Common cell analysis**

1265 We performed common cell analysis for 7 cell types across all the 43 tissues, those
1266 being stromal cells, macrophages/microglia, endothelial cells, smooth muscle cells,
1267 skeletal muscle cells, mesothelial cells and adipocytes. For each cell type, we extracted
1268 those cells from all tissues in our dataset according to the cell type annotation presented
1269 in Extended Data Figure 7-10. For the downstream analysis, we excluded cell types
1270 with numbers lower than 200. Data from different replicates were integrated following
1271 the standard integrated pipeline using Seurat (V3.2.2).

1272

1273 **Single-cell trajectory analysis**

1274 Cell lineage trajectory was inferred using Monocle2⁹⁷ following the tutorial. We used
1275 the “differentialGeneTest” function to derive DEG from each cluster and genes
1276 with $q < 0.01$ were used to order the cells in a pseudotime analysis. After the cell
1277 trajectories was constructed, DDRtree was used to visualize it in a two-dimensional
1278 space.

1279

1280 **Cell-cell interaction network**

1281 To assess the cellular crosstalk between different cell types in each tissue, we used
1282 CellPhoneDB, a public repository of ligand-receptor interactions⁹⁸. Cell type-specific
1283 receptor-ligand interactions between cell types were identified based on specific
1284 expression of a receptor by one cell type and a ligand by another cell type. The
1285 interaction score refers to the mean total of all individual ligand-receptor partner
1286 average expression values in the corresponding interacting pairs of cell types. For this
1287 analysis, we applied a statistical method to ensure that only receptors or ligands
1288 expressed in more than 10% of the cells in the given cluster were considered. The total
1289 mean of the individual partner average expression values in the corresponding
1290 interacting pairs of cell types was calculated. For the cell-cell interaction analysis in
1291 Extended Data Figure 27-31, we plot the figure based on the indicated genes related to
1292 *LGR5* and *LGR6*.

1293

1294 **Association of GWAS summary data of human diseases and traits with monkey** 1295 **cell types**

1296 To test for the enrichment of human diseases and traits in DEG for each cluster of cells
1297 based on global clustering, we applied LD (linkage disequilibrium) score regression
1298 analysis. For this, we only considered genes with an adjusted $P < 0.05$ and fold-change $>$
1299 2 in the tested cell types. For accuracy, cell types identified in a number lower than 100
1300 were excluded from this analysis. We converted the gene coordinates of *Macaca*
1301 *fascicularis* into hg19 genome coordinates by downloading from Ensembl the

1302 homologous gene list. Single nucleotide polymorphisms located in gene regions of the
1303 most specific genes in each cell type were added to the baseline model independently
1304 for each cell type (one file for each cell type). We then selected the coefficient z -score
1305 P value as a measure of the association of the cell type with the traits. All plots show
1306 the $-\log_{10} P$ value of partitioned LDscore regression.

1307

1308 **ScATAC-seq data processing, clustering and cell type identification**

1309 Raw sequencing reads from BGISEQ-500 were filtered and demultiplexed using PISA
1310 (version 0.2) (<https://github.com/shiquan/PISA>). The fragment file of each scATAC-
1311 seq library was used for downstream analysis. TSS (transcription start site) enrichment
1312 score and fragment number of each nuclei was calculated by using ArchR software⁹⁹.
1313 Nuclei with TSS enrichment score lower than five and fragment number lower than
1314 1,000 were removed. Then, we calculated the doublet score with *addDoubletScores*
1315 function in ArchR package and filtered doublets by *filterDoublets* function with
1316 parameter *filterRatio* = 2. ScATAC-seq clustering analysis was performed using ArchR
1317 software by first identifying a robust set of peak regions followed by iterative LSI
1318 (latent semantic indexing) clustering. Briefly, we created 500 bp windows tiled across
1319 the genome and determined whether each cell was accessible within each window. Next,
1320 we performed an LSI dimensionality reduction on these windows with *addIterativeLSI*
1321 function in ArchR packages. We then performed Seurat clustering (*FindClusters*) on
1322 the LSI dimensions at resolutions of 0.8. Anchors between scATAC-seq and
1323 sc/snRNA-seq datasets were identified and used to transfer cell type labels identified
1324 from the sc/snRNA-seq data. We embedded the data by the *TransferData* function of
1325 Seurat (version 3.2.2).

1326

1327 **Transcription factor motif enrichment analysis**

1328 To predict the motif footprint in peaks within the *ACE2* promoter and enhancer
1329 sequences, we extracted genome sequences in the peak region with Seqkit (version

1330 0.7.0)¹⁰⁰. The sequences were imported into R and were matched with all *Homo sapiens*
1331 motifs form JASPAR2018 using matchMotifs function in motifmatchr packages
1332 version 1.8.0 with default parameter.

1333

1334 **Data availability**

1335 All raw data have been deposited to CNGB Nucleotide Sequence Archive (accession
1336 code: CNP0001469; <https://db.cngb.org/cnsa/project/CNP0001469/reviewlink/>).

1337

1338

1339 **ACKNOWLEDGMENTS**

1340 We would like to thank Wei Liu and Liangzhi Xu from Huazhen Laboratory Animal
1341 Breeding Centre for helping in the collection of monkey tissues, Dahai Zhu and Hu Li
1342 from Bioland Laboratory (Guangzhou Regenerative Medicine and Health Guangdong
1343 Laboratory) for technical help, Guoji Guo and Huiyu Sun from Zhejiang University for
1344 providing analytical advice, Guoyi Dong and Chao Liu from BGI research, Xiao Zhang,
1345 Peng Li, and Chen Qi from the Guangzhou Institutes of Biomedicine and Health for
1346 experimental advice. This work was supported by the Shenzhen Key Laboratory of
1347 Single-Cell Omics (ZDSYS20190902093613831), Shenzhen Bay Laboratory
1348 (SZBL2019062801012) and the Guangdong Provincial Key Laboratory of Genome
1349 Read and Write (2017B030301011). Additionally, Longqi Liu was supported by the
1350 National Natural Science Foundation of China (31900466) and Shenzhen Basic
1351 Research Project for Excellent Young Scholars (2020251518), Miguel A. Esteban's was
1352 supported by a Changbai Mountain Scholar award (419020201252), the Strategic
1353 Priority Research Program of the Chinese Academy of Sciences (XDA16030502), and
1354 a Chinese Academy of Sciences-Japan Society for the Promotion of Science joint
1355 research project (GJHZ2093), Giacomo Volpe was supported by a Chinese Academy
1356 of Sciences President's International Fellowship for Foreign Experts (2020FSB0002),

1357 and Mingyuan Liu was supported by the National Key Research and Development
1358 Program of China (2021YFC2600200).

1359

1360

1361 **AUTHOR CONTRIBUTIONS**

1362 L.H., Y.H, X.X., M.A.E. and L.L. conceived the idea; Y.H, X.X., M.A.E. and L.L.
1363 supervised the work; L.H., X.W., Y.Y., M.A.E. and L.L designed the experiments; L.H.,
1364 X.W., G.V., Y.Y., X.Zhang., P.F., P.G., X.L., F.Y., S.S., G.L., J.A., Y.Lei., Y. Lai,
1365 M.C., C.W., X.G., S.L. and J.M. collected tissue samples; C.L., G.V., Z.W., Y.Y.,
1366 X.Zhang., P.F., Q.D., Ya. Liu, Y.Huang, H.L., B.W., M.C., J.X., M.W., C. Wang, Y.Z.,
1367 Y. Yu, H.Z., Y.W. and S.X. performed the experiments. L.H., X.W., G.V., Z.Z., X. Zou,
1368 T.P., Y. Lai, L.W., Q.S., H.Y., Yang Liu, D.X., F.H., Z.Zhu and C.Ward performed
1369 data analysis. L.H., X.W., C.L., G.V., Z.Z., X.Zou, Z.Wang, T.P., Y.Yang, J.L. and L.L.
1370 prepared the figures. H.Y., X.F.W., F.C., T.Y., W.D. and J.C. prepared the website.
1371 Zong.W., Z.P., C.W.W., B.Q, A.S., J.I., L.F., Yan Liu, Z.L., X. Liu, H. Zhang, M.L.,
1372 Q.S., P.M., N.B., P.M.C., Y.G., J.M., M.U., T.T., S.L., H.Y. and J.W. provided relevant
1373 advice and reviewed the manuscript. L.H., G.V., M.A.E. and L.L. wrote the manuscript
1374 with input from all authors. All other authors contributed to the work. All authors read
1375 and approved the manuscript for submission.

1376

1377

1378 **COMPETING INTERESTS**

1379 Employees of BGI have stock holdings in BGI. All other authors declare no competing
1380 interests.

1381

1382

1383 **REFERENCES**

1384 1 Regev, A. *et al.* The Human Cell Atlas. *Elife* **6**, doi:10.7554/eLife.27041 (2017).

1385 2 Rozenblatt-Rosen, O., Stubbington, M. J. T., Regev, A. & Teichmann, S. A.
1386 The Human Cell Atlas: from vision to reality. *Nature* **550**, 451-453,
1387 doi:10.1038/550451a (2017).
1388 3 Han, X. *et al.* Construction of a human cell landscape at single-cell level. *Nature*
1389 **581**, 303-309, doi:10.1038/s41586-020-2157-4 (2020).
1390 4 Sun, Y. *et al.* Single-cell landscape of the ecosystem in early-relapse
1391 hepatocellular carcinoma. *Cell* **184**, 404-421 e416,
1392 doi:10.1016/j.cell.2020.11.041 (2021).
1393 5 Segerstolpe, A. *et al.* Single-Cell Transcriptome Profiling of Human Pancreatic
1394 Islets in Health and Type 2 Diabetes. *Cell Metab* **24**, 593-607,
1395 doi:10.1016/j.cmet.2016.08.020 (2016).
1396 6 Han, X. *et al.* Mapping the Mouse Cell Atlas by Microwell-Seq. *Cell* **172**, 1091-
1397 1107 e1017, doi:10.1016/j.cell.2018.02.001 (2018).
1398 7 Tabula Muris, C. *et al.* Single-cell transcriptomics of 20 mouse organs creates
1399 a Tabula Muris. *Nature* **562**, 367-372, doi:10.1038/s41586-018-0590-4 (2018).
1400 8 Cusanovich, D. A. *et al.* A Single-Cell Atlas of In Vivo Mammalian Chromatin
1401 Accessibility. *Cell* **174**, 1309-1324 e1318, doi:10.1016/j.cell.2018.06.052
1402 (2018).
1403 9 Carbone, L. *et al.* Gibbon genome and the fast karyotype evolution of small
1404 apes. *Nature* **513**, 195-201, doi:10.1038/nature13679 (2014).
1405 10 Ezran, C. *et al.* The Mouse Lemur, a Genetic Model Organism for Primate
1406 Biology, Behavior, and Health. *Genetics* **206**, 651-664,
1407 doi:10.1534/genetics.116.199448 (2017).
1408 11 Mantini, D. *et al.* Interspecies activity correlations reveal functional
1409 correspondence between monkey and human brain areas. *Nat Methods* **9**, 277-
1410 282, doi:10.1038/nmeth.1868 (2012).
1411 12 Taylor, K. Clinical veterinarian's perspective of non-human primate (NHP) use
1412 in drug safety studies. *J Immunotoxicol* **7**, 114-119,
1413 doi:10.1080/15476910903213539 (2010).
1414 13 Estes, J. D., Wong, S. W. & Brenchley, J. M. Nonhuman primate models of
1415 human viral infections. *Nat Rev Immunol* **18**, 390-404, doi:10.1038/s41577-
1416 018-0005-7 (2018).
1417 14 Zhu, L. *et al.* Single-Cell Sequencing of Peripheral Mononuclear Cells Reveals
1418 Distinct Immune Response Landscapes of COVID-19 and Influenza Patients.
1419 *Immunity* **53**, 685-696 e683, doi:10.1016/j.jimmuni.2020.07.009 (2020).
1420 15 Slyper, M. *et al.* A single-cell and single-nucleus RNA-Seq toolbox for fresh
1421 and frozen human tumors. *Nat Med* **26**, 792-802, doi:10.1038/s41591-020-
1422 0844-1 (2020).
1423 16 Habib, N. *et al.* Massively parallel single-nucleus RNA-seq with DroNc-seq.
1424 *Nat Methods* **14**, 955-958, doi:10.1038/nmeth.4407 (2017).

1425 17 Ding, J. *et al.* Systematic comparison of single-cell and single-nucleus RNA-
1426 sequencing methods. *Nat Biotechnol* **38**, 737-746, doi:10.1038/s41587-020-
1427 0465-8 (2020).

1428 18 Krausgruber, T. *et al.* Structural cells are key regulators of organ-specific
1429 immune responses. *Nature* **583**, 296-302, doi:10.1038/s41586-020-2424-4
1430 (2020).

1431 19 Kalucka, J. *et al.* Single-Cell Transcriptome Atlas of Murine Endothelial Cells.
1432 *Cell* **180**, 764-779 e720, doi:10.1016/j.cell.2020.01.015 (2020).

1433 20 Geirsdottir, L. *et al.* Cross-Species Single-Cell Analysis Reveals Divergence of
1434 the Primate Microglia Program. *Cell* **179**, 1609-1622 e1616,
1435 doi:10.1016/j.cell.2019.11.010 (2019).

1436 21 Petrany, M. J. *et al.* Single-nucleus RNA-seq identifies transcriptional
1437 heterogeneity in multinucleated skeletal myofibers. *Nat Commun* **11**, 6374,
1438 doi:10.1038/s41467-020-20063-w (2020).

1439 22 Mu, L. & Sanders, I. Human tongue neuroanatomy: Nerve supply and motor
1440 endplates. *Clin Anat* **23**, 777-791, doi:10.1002/ca.21011 (2010).

1441 23 Chau, Y. Y. *et al.* Visceral and subcutaneous fat have different origins and
1442 evidence supports a mesothelial source. *Nat Cell Biol* **16**, 367-375,
1443 doi:10.1038/ncb2922 (2014).

1444 24 Vijay, J. *et al.* Single-cell analysis of human adipose tissue identifies depot and
1445 disease specific cell types. *Nat Metab* **2**, 97-109, doi:10.1038/s42255-019-0152-
1446 6 (2020).

1447 25 Sun, W. *et al.* snRNA-seq reveals a subpopulation of adipocytes that regulates
1448 thermogenesis. *Nature* **587**, 98-102, doi:10.1038/s41586-020-2856-x (2020).

1449 26 Ghorpade, D. S. *et al.* Hepatocyte-secreted DPP4 in obesity promotes adipose
1450 inflammation and insulin resistance. *Nature* **555**, 673-677,
1451 doi:10.1038/nature26138 (2018).

1452 27 Kretzschmar, K. *et al.* Profiling proliferative cells and their progeny in damaged
1453 murine hearts. *Proc Natl Acad Sci U S A* **115**, E12245-E12254,
1454 doi:10.1073/pnas.1805829115 (2018).

1455 28 Chen, X. *et al.* Adipose-derived mesenchymal stem cells promote the survival
1456 of fat grafts via crosstalk between the Nrf2 and TLR4 pathways. *Cell Death Dis*
1457 **7**, e2369, doi:10.1038/cddis.2016.261 (2016).

1458 29 Ha, C. W. Y. *et al.* Translocation of Viable Gut Microbiota to Mesenteric
1459 Adipose Drives Formation of Creeping Fat in Humans. *Cell* **183**, 666-683 e617,
1460 doi:10.1016/j.cell.2020.09.009 (2020).

1461 30 Adler, E., Mhawech-Fauceglia, P., Gayther, S. A. & Lawrenson, K. PAX8
1462 expression in ovarian surface epithelial cells. *Hum Pathol* **46**, 948-956,
1463 doi:10.1016/j.humpath.2015.03.017 (2015).

1464 31 Ng, A. *et al.* Lgr5 marks stem/progenitor cells in ovary and tubal epithelia. *Nat*
1465 *Cell Biol* **16**, 745-757, doi:10.1038/ncb3000 (2014).

1466 32 Hagai, T. *et al.* Gene expression variability across cells and species shapes
1467 innate immunity. *Nature* **563**, 197-202, doi:10.1038/s41586-018-0657-2 (2018).

1468 33 Nusse, R. & Clevers, H. Wnt/β-Catenin Signaling, Disease, and Emerging
1469 Therapeutic Modalities. *Cell* **169**, 985-999, doi:10.1016/j.cell.2017.05.016
1470 (2017).

1471 34 Clevers, H. & Nusse, R. Wnt/β-catenin signaling and disease. *Cell* **149**, 1192-
1472 1205, doi:10.1016/j.cell.2012.05.012 (2012).

1473 35 Nusse, R. Wnt signaling and stem cell control. *Cell Res* **18**, 523-527,
1474 doi:10.1038/cr.2008.47 (2008).

1475 36 Leung, C., Tan, S. H. & Barker, N. Recent Advances in Lgr5(+) Stem Cell
1476 Research. *Trends Cell Biol* **28**, 380-391, doi:10.1016/j.tcb.2018.01.010 (2018).

1477 37 Kong, Y. *et al.* LGR6 Promotes Tumor Proliferation and Metastasis through
1478 Wnt/β-Catenin Signaling in Triple-Negative Breast Cancer. *Mol Ther
1479 Oncolytics* **18**, 351-359, doi:10.1016/j.omto.2020.06.020 (2020).

1480 38 Huch, M. *et al.* In vitro expansion of single Lgr5+ liver stem cells induced by
1481 Wnt-driven regeneration. *Nature* **494**, 247-250, doi:10.1038/nature11826
1482 (2013).

1483 39 Barker, N. *et al.* Identification of stem cells in small intestine and colon by
1484 marker gene Lgr5. *Nature* **449**, 1003-1007, doi:10.1038/nature06196 (2007).

1485 40 Chen, M. *et al.* Lgr5(+) amacrine cells possess regenerative potential in the
1486 retina of adult mice. *Aging Cell* **14**, 635-643, doi:10.1111/ace.12346 (2015).

1487 41 Aguilar, A. Development: Pax2 keeps nephron progenitors on track. *Nat Rev
1488 Nephrol* **13**, 444, doi:10.1038/nrneph.2017.87 (2017).

1489 42 Schutgens, F. *et al.* Troy/TNFRSF19 marks epithelial progenitor cells during
1490 mouse kidney development that continue to contribute to turnover in adult
1491 kidney. *Proc Natl Acad Sci U S A* **114**, E11190-E11198,
1492 doi:10.1073/pnas.1714145115 (2017).

1493 43 Lake, B. B. *et al.* A single-nucleus RNA-sequencing pipeline to decipher the
1494 molecular anatomy and pathophysiology of human kidneys. *Nat Commun* **10**,
1495 2832, doi:10.1038/s41467-019-10861-2 (2019).

1496 44 Wu, H., Kirita, Y., Donnelly, E. L. & Humphreys, B. D. Advantages of Single-
1497 Nucleus over Single-Cell RNA Sequencing of Adult Kidney: Rare Cell Types
1498 and Novel Cell States Revealed in Fibrosis. *J Am Soc Nephrol* **30**, 23-32,
1499 doi:10.1681/ASN.2018090912 (2019).

1500 45 Barker, N. *et al.* Lgr5(+ve) stem/progenitor cells contribute to nephron
1501 formation during kidney development. *Cell Rep* **2**, 540-552,
1502 doi:10.1016/j.celrep.2012.08.018 (2012).

1503 46 Lake, B. B. *et al.* Integrative single-cell analysis of transcriptional and
1504 epigenetic states in the human adult brain. *Nat Biotechnol* **36**, 70-80,
1505 doi:10.1038/nbt.4038 (2018).

1506 47 Nakashima, H. *et al.* R-spondin 2 promotes acetylcholine receptor clustering at
1507 the neuromuscular junction via Lgr5. *Sci Rep* **6**, 28512, doi:10.1038/srep28512
1508 (2016).

1509 48 Leung, C. *et al.* Lgr5 Marks Adult Progenitor Cells Contributing to Skeletal
1510 Muscle Regeneration and Sarcoma Formation. *Cell Rep* **33**, 108535,
1511 doi:10.1016/j.celrep.2020.108535 (2020).

1512 49 Litvinukova, M. *et al.* Cells of the adult human heart. *Nature* **588**, 466-472,
1513 doi:10.1038/s41586-020-2797-4 (2020).

1514 50 Vidal, R. *et al.* Transcriptional heterogeneity of fibroblasts is a hallmark of the
1515 aging heart. *JCI Insight* **4**, doi:10.1172/jci.insight.131092 (2019).

1516 51 Vankelecom, H. Non-hormonal cell types in the pituitary candidating for stem
1517 cell. *Semin Cell Dev Biol* **18**, 559-570, doi:10.1016/j.semcd.2007.04.006
1518 (2007).

1519 52 Klein, D. *et al.* Wnt2 acts as a cell type-specific, autocrine growth factor in rat
1520 hepatic sinusoidal endothelial cells cross-stimulating the VEGF pathway.
Hepatology **47**, 1018-1031, doi:10.1002/hep.22084 (2008).

1522 53 Karner, C. M. *et al.* Canonical Wnt9b signaling balances progenitor cell
1523 expansion and differentiation during kidney development. *Development* **138**,
1524 1247-1257, doi:10.1242/dev.057646 (2011).

1525 54 Niehrs, C. The complex world of WNT receptor signalling. *Nat Rev Mol Cell
1526 Biol* **13**, 767-779, doi:10.1038/nrm3470 (2012).

1527 55 Zhang, M. *et al.* β -Catenin safeguards the ground state of mouse pluripotency
1528 by strengthening the robustness of the transcriptional apparatus. *Sci Adv* **6**,
1529 eaba1593, doi:10.1126/sciadv.aba1593 (2020).

1530 56 Devakumar, D. *et al.* Infectious causes of microcephaly: epidemiology,
1531 pathogenesis, diagnosis, and management. *Lancet Infect Dis* **18**, e1-e13,
1532 doi:10.1016/S1473-3099(17)30398-5 (2018).

1533 57 Dhiman, N., Jacobson, R. M. & Poland, G. A. Measles virus receptors: SLAM
1534 and CD46. *Rev Med Virol* **14**, 217-229, doi:10.1002/rmv.430 (2004).

1535 58 Zhu, N. *et al.* A Novel Coronavirus from Patients with Pneumonia in China,
1536 2019. *N Engl J Med* **382**, 727-733, doi:10.1056/NEJMoa2001017 (2020).

1537 59 Hoffmann, M. *et al.* SARS-CoV-2 Cell Entry Depends on ACE2 and TMPRSS2
1538 and Is Blocked by a Clinically Proven Protease Inhibitor. *Cell* **181**, 271-280
1539 e278, doi:10.1016/j.cell.2020.02.052 (2020).

1540 60 Rockx, B. *et al.* Comparative pathogenesis of COVID-19, MERS, and SARS in
1541 a nonhuman primate model. *Science* **368**, 1012-1015,
1542 doi:10.1126/science.abb7314 (2020).

1543 61 Teichmann, S. & Regev, A. The network effect: studying COVID-19 pathology
1544 with the Human Cell Atlas. *Nat Rev Mol Cell Biol* **21**, 415-416,
1545 doi:10.1038/s41580-020-0267-3 (2020).

1546 62 Ying, M. *et al.* COVID-19 with acute cholecystitis: a case report. *BMC Infect
1547 Dis* **20**, 437, doi:10.1186/s12879-020-05164-7 (2020).

1548 63 Ziegler, C. G. K. *et al.* SARS-CoV-2 Receptor ACE2 Is an Interferon-
1549 Stimulated Gene in Human Airway Epithelial Cells and Is Detected in Specific
1550 Cell Subsets across Tissues. *Cell* **181**, 1016-1035 e1019,
1551 doi:10.1016/j.cell.2020.04.035 (2020).

1552 64 Chua, R. L. *et al.* COVID-19 severity correlates with airway epithelium-
1553 immune cell interactions identified by single-cell analysis. *Nat Biotechnol* **38**,
1554 970-979, doi:10.1038/s41587-020-0602-4 (2020).

1555 65 Tosi, M. F. Innate immune responses to infection. *J Allergy Clin Immunol* **116**,
1556 241-249; quiz 250, doi:10.1016/j.jaci.2005.05.036 (2005).

1557 66 Bell, L. C. K. *et al.* Transcriptional response modules characterize IL-1 β and
1558 IL-6 activity in COVID-19. *iScience* **24**, 101896,
1559 doi:10.1016/j.isci.2020.101896 (2021).

1560 67 Shen, B. *et al.* Proteomic and Metabolomic Characterization of COVID-19
1561 Patient Sera. *Cell* **182**, 59-72 e15, doi:10.1016/j.cell.2020.05.032 (2020).

1562 68 Nie, X. *et al.* Multi-organ proteomic landscape of COVID-19 autopsies. *Cell*
1563 **184**, 775-791 e714, doi:10.1016/j.cell.2021.01.004 (2021).

1564 69 Gate, D. *et al.* Clonally expanded CD8 T cells patrol the cerebrospinal fluid in
1565 Alzheimer's disease. *Nature* **577**, 399-404, doi:10.1038/s41586-019-1895-7
1566 (2020).

1567 70 Zhong, J., Yang, H. & Kon, V. Kidney as modulator and target of "good/bad"
1568 HDL. *Pediatr Nephrol* **34**, 1683-1695, doi:10.1007/s00467-018-4104-2 (2019).

1569 71 Chamorro, Y., Ramirez-Duenas, M. L. & Matute, E. Anticipatory oculomotor
1570 responses in parents of children with attention deficit hyperactivity disorder.
1571 *Psychiatr Genet* **30**, 65-72, doi:10.1097/YPG.0000000000000252 (2020).

1572 72 Ghaoui, R. *et al.* Mutations in HSPB8 causing a new phenotype of distal
1573 myopathy and motor neuropathy. *Neurology* **86**, 391-398,
1574 doi:10.1212/WNL.0000000000002324 (2016).

1575 73 Tse, K. H. & Herrup, K. DNA damage in the oligodendrocyte lineage and its
1576 role in brain aging. *Mech Ageing Dev* **161**, 37-50,
1577 doi:10.1016/j.mad.2016.05.006 (2017).

1578 74 Wang, S. *et al.* Single-Cell Transcriptomic Atlas of Primate Ovarian Aging.
1579 *Cell* **180**, 585-600 e519, doi:10.1016/j.cell.2020.01.009 (2020).

1580 75 Khrameeva, E. *et al.* Single-cell-resolution transcriptome map of human,
1581 chimpanzee, bonobo, and macaque brains. *Genome Res* **30**, 776-789,
1582 doi:10.1101/gr.256958.119 (2020).

1583 76 Stray, L. L. *et al.* Motor regulation problems and pain in adults diagnosed with
1584 ADHD. *Behav Brain Funct* **9**, 18, doi:10.1186/1744-9081-9-18 (2013).

1585 77 Fliers, E. A. *et al.* Genome-wide association study of motor coordination
1586 problems in ADHD identifies genes for brain and muscle function. *World J Biol
1587 Psychiatry* **13**, 211-222, doi:10.3109/15622975.2011.560279 (2012).

1588 78 Villiger, P. M. *et al.* Tocilizumab for induction and maintenance of remission
1589 in giant cell arteritis: a phase 2, randomised, double-blind, placebo-controlled
1590 trial. *Lancet* **387**, 1921-1927, doi:10.1016/S0140-6736(16)00560-2 (2016).

1591 79 Marcheque, J., Bussolati, B., Csete, M. & Perin, L. Concise Reviews: Stem
1592 Cells and Kidney Regeneration: An Update. *Stem Cells Transl Med* **8**, 82-92,
1593 doi:10.1002/sctm.18-0115 (2019).

1594 80 Little, M. H. & Lawlor, K. T. Recreating, expanding and using nephron
1595 progenitor populations. *Nat Rev Nephrol* **16**, 75-76, doi:10.1038/s41581-019-
1596 0238-0 (2020).

1597 81 Chavali, M. *et al.* Wnt-Dependent Oligodendroglial-Endothelial Interactions
1598 Regulate White Matter Vascularization and Attenuate Injury. *Neuron* **108**,
1599 1130-1145 e1135, doi:10.1016/j.neuron.2020.09.033 (2020).

1600 82 Girardi, F. & Le Grand, F. Wnt Signaling in Skeletal Muscle Development and
1601 Regeneration. *Prog Mol Biol Transl Sci* **153**, 157-179,
1602 doi:10.1016/bs.pmbts.2017.11.026 (2018).

1603 83 Heallen, T. *et al.* Hippo pathway inhibits Wnt signaling to restrain
1604 cardiomyocyte proliferation and heart size. *Science* **332**, 458-461,
1605 doi:10.1126/science.1199010 (2011).

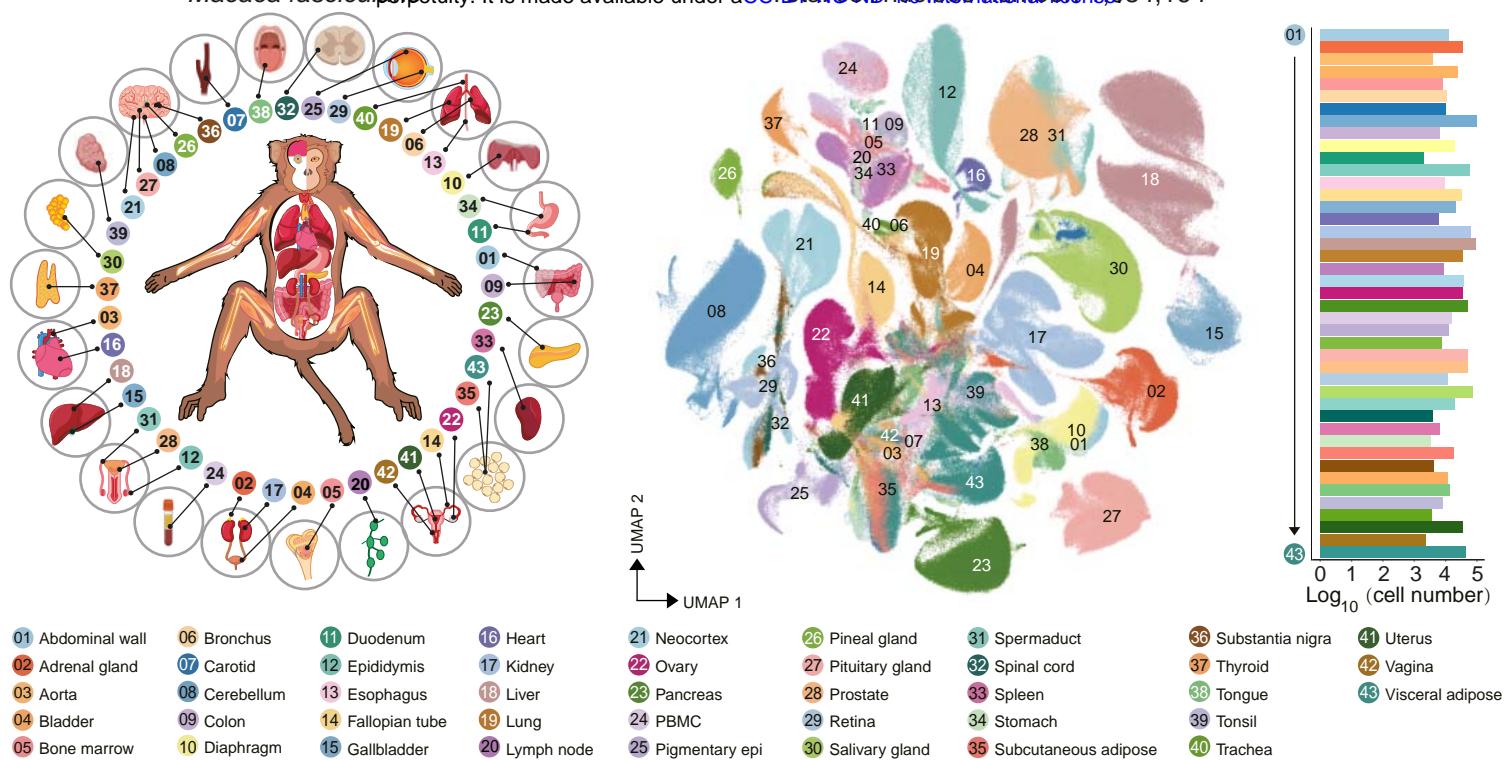
1606 84 Osmundsen, A. M., Keisler, J. L., Taketo, M. M. & Davis, S. W. Canonical
1607 WNT Signaling Regulates the Pituitary Organizer and Pituitary Gland
1608 Formation. *Endocrinology* **158**, 3339-3353, doi:10.1210/en.2017-00581 (2017).

1609 85 Chen, A. *et al.* Large field of view-spatially resolved transcriptomics at
1610 nanoscale resolution. *bioRxiv*, 2021.2001.2017.427004,
1611 doi:10.1101/2021.01.17.427004 (2021).

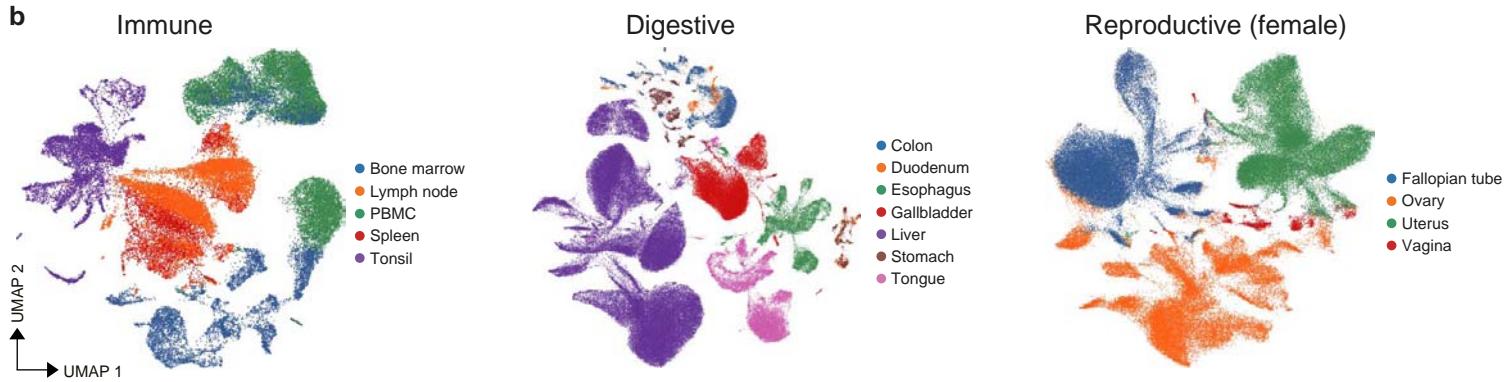
1612 86 Mitchell, J. F. & Leopold, D. A. The marmoset monkey as a model for visual
1613 neuroscience. *Neurosci Res* **93**, 20-46, doi:10.1016/j.neures.2015.01.008
1614 (2015).

1615 87 Bakken, T. E. *et al.* Single-nucleus and single-cell transcriptomes compared in
1616 matched cortical cell types. *PLoS One* **13**, e0209648,
1617 doi:10.1371/journal.pone.0209648 (2018).

1618 88 Laukoter, S. *et al.* Cell-Type Specificity of Genomic Imprinting in Cerebral
1619 Cortex. *Neuron* **107**, 1160-1179 e1169, doi:10.1016/j.neuron.2020.06.031
1620 (2020).


1621 89 Dobin, A. *et al.* STAR: ultrafast universal RNA-seq aligner. *Bioinformatics* **29**,
1622 15-21, doi:10.1093/bioinformatics/bts635 (2013).

1623 90 Tarasov, A., Vilella, A. J., Cuppen, E., Nijman, I. J. & Prins, P. Sambamba: fast
1624 processing of NGS alignment formats. *Bioinformatics* **31**, 2032-2034,
1625 doi:10.1093/bioinformatics/btv098 (2015).


1626 91 Del-Aguila, J. L. *et al.* A single-nuclei RNA sequencing study of Mendelian
1627 and sporadic AD in the human brain. *Alzheimers Res Ther* **11**, 71,
1628 doi:10.1186/s13195-019-0524-x (2019).

1629 92 McGinnis, C. S., Murrow, L. M. & Gartner, Z. J. DoubletFinder: Doublet
1630 Detection in Single-Cell RNA Sequencing Data Using Artificial Nearest
1631 Neighbors. *Cell Syst* **8**, 329-337 e324, doi:10.1016/j.cels.2019.03.003 (2019).
1632 93 Wolf, F. A., Angerer, P. & Theis, F. J. SCANPY: large-scale single-cell gene
1633 expression data analysis. *Genome Biol* **19**, 15, doi:10.1186/s13059-017-1382-0
1634 (2018).
1635 94 Stuart, T. *et al.* Comprehensive Integration of Single-Cell Data. *Cell* **177**, 1888-
1636 1902.e1821, doi:10.1016/j.cell.2019.05.031 (2019).
1637 95 Yu, G., Wang, L. G. & He, Q. Y. ChIPseeker: an R/Bioconductor package for
1638 ChIP peak annotation, comparison and visualization. *Bioinformatics* **31**, 2382-
1639 2383, doi:10.1093/bioinformatics/btv145 (2015).
1640 96 Aizarani, N. *et al.* A human liver cell atlas reveals heterogeneity and epithelial
1641 progenitors. *Nature* **572**, 199-204, doi:10.1038/s41586-019-1373-2 (2019).
1642 97 Trapnell, C. *et al.* The dynamics and regulators of cell fate decisions are
1643 revealed by pseudotemporal ordering of single cells. *Nat Biotechnol* **32**, 381-
1644 386, doi:10.1038/nbt.2859 (2014).
1645 98 Efremova, M., Vento-Tormo, M., Teichmann, S. A. & Vento-Tormo, R.
1646 CellPhoneDB: inferring cell-cell communication from combined expression of
1647 multi-subunit ligand-receptor complexes. *Nat Protoc* **15**, 1484-1506,
1648 doi:10.1038/s41596-020-0292-x (2020).
1649 99 Granja, J. M. *et al.* ArchR is a scalable software package for integrative single-
1650 cell chromatin accessibility analysis. *Nat Genet*, doi:10.1038/s41588-021-
1651 00790-6 (2021).
1652 100 Shen, W., Le, S., Li, Y. & Hu, F. SeqKit: A Cross-Platform and Ultrafast
1653 Toolkit for FASTA/Q File Manipulation. *PLoS One* **11**, e0163962,
1654 doi:10.1371/journal.pone.0163962 (2016).
1655

a

b

c

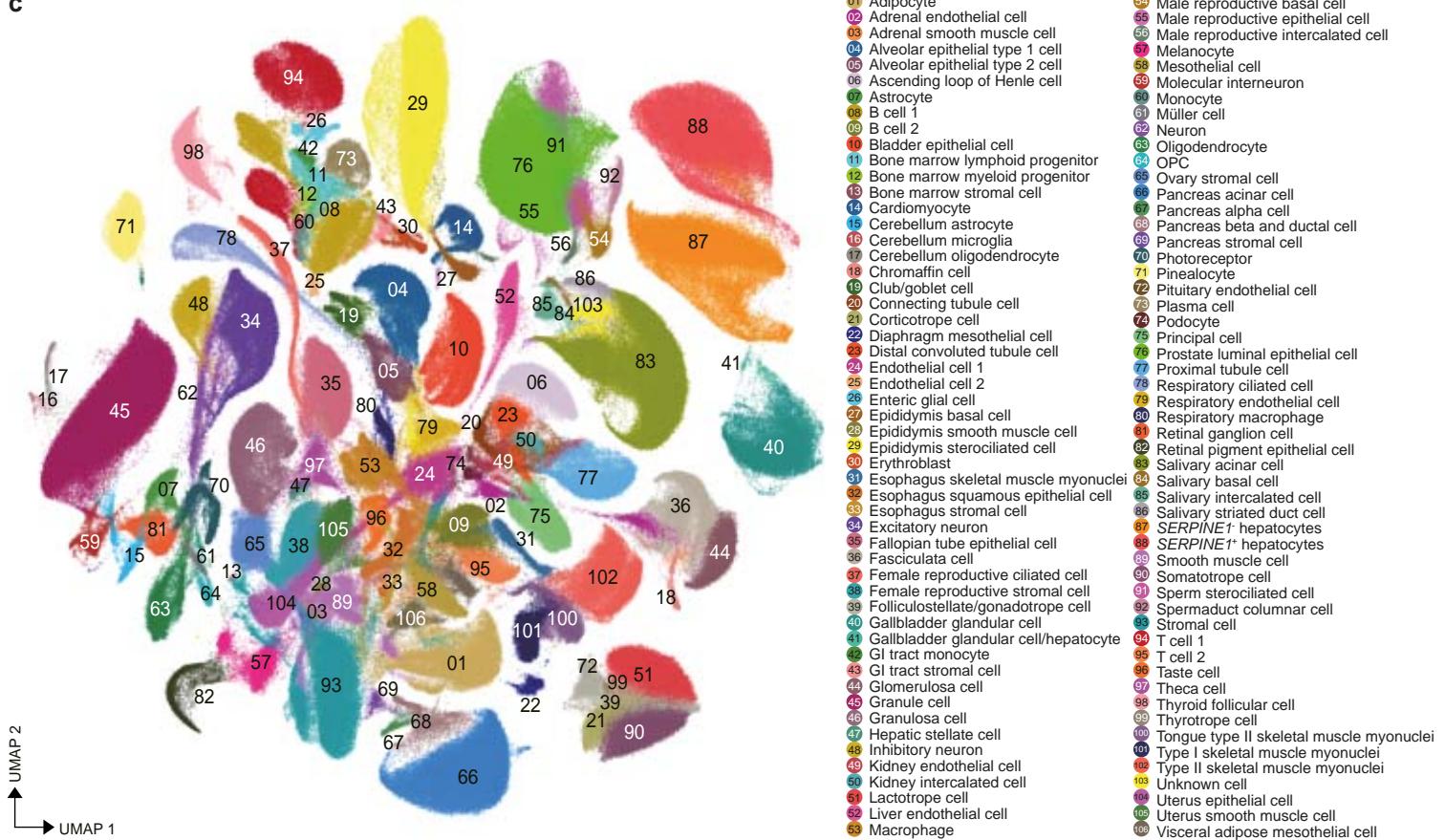
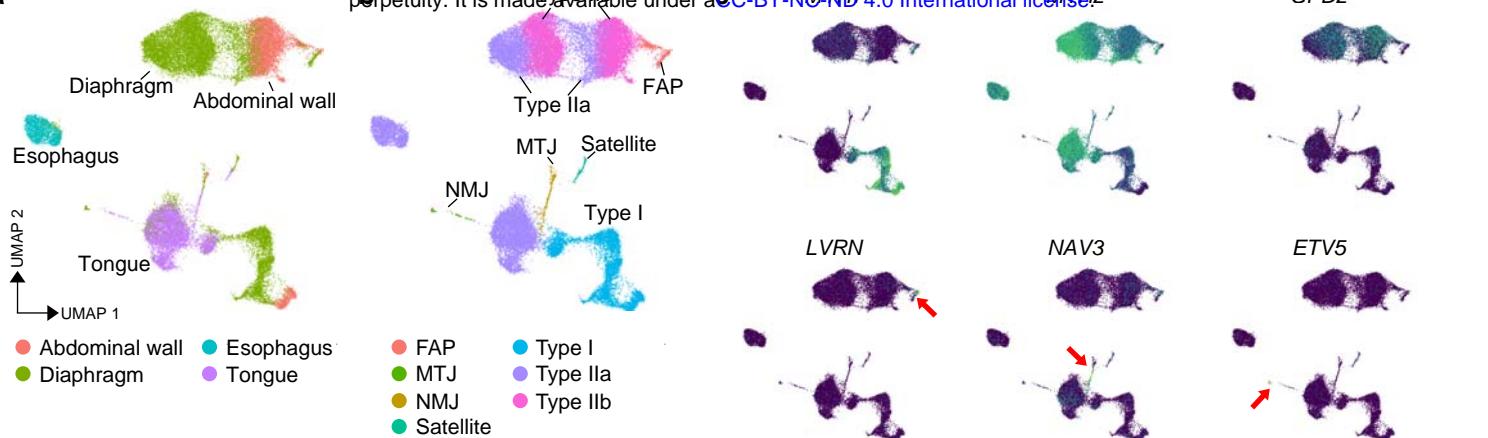
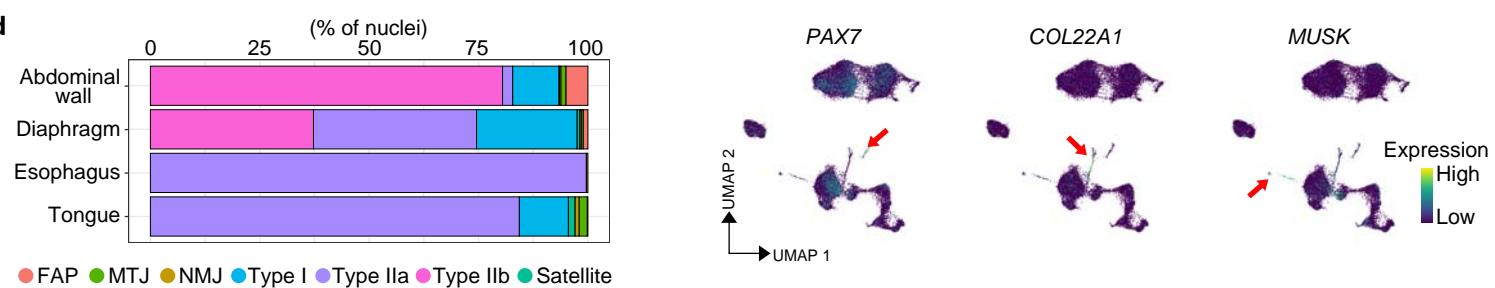
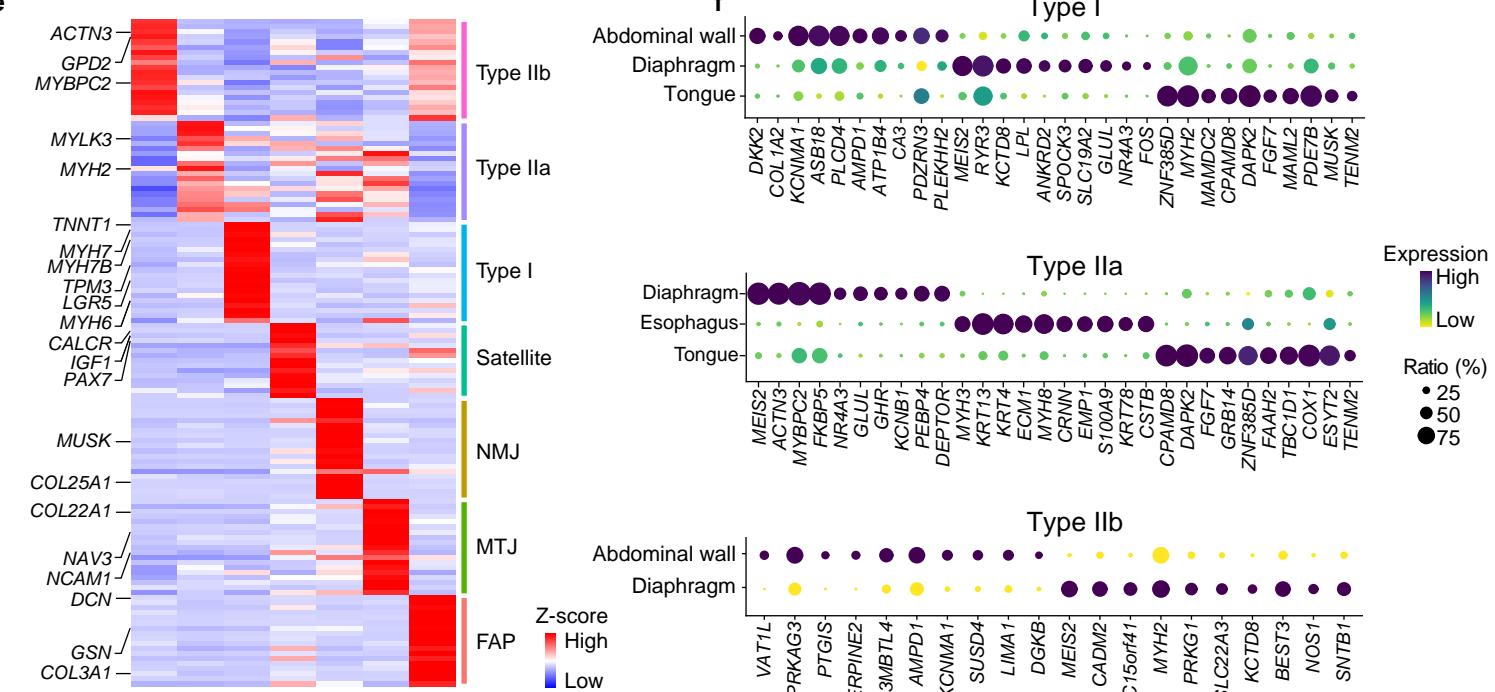
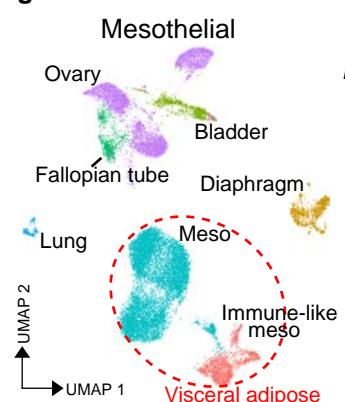
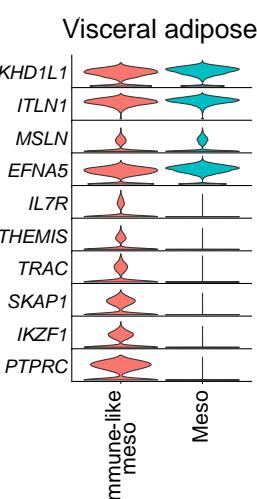
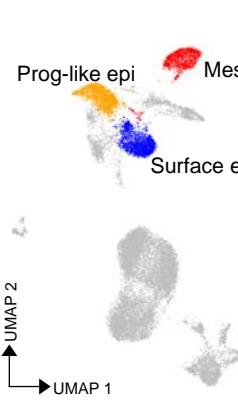




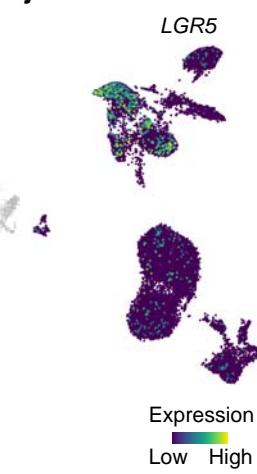
Figure 1


a


d


e


g


h

i

j

k

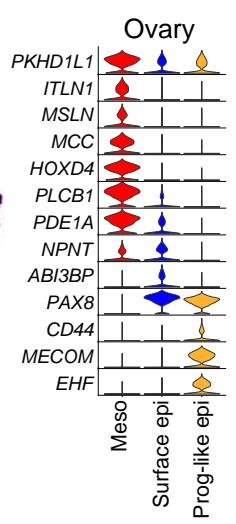
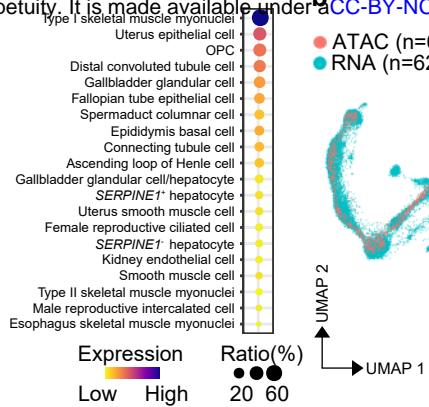
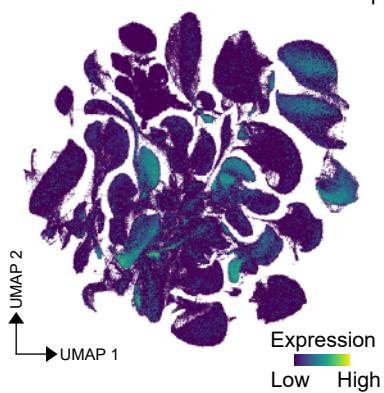
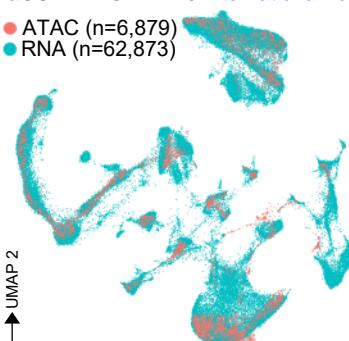
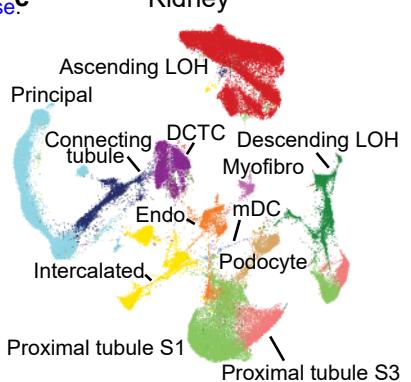
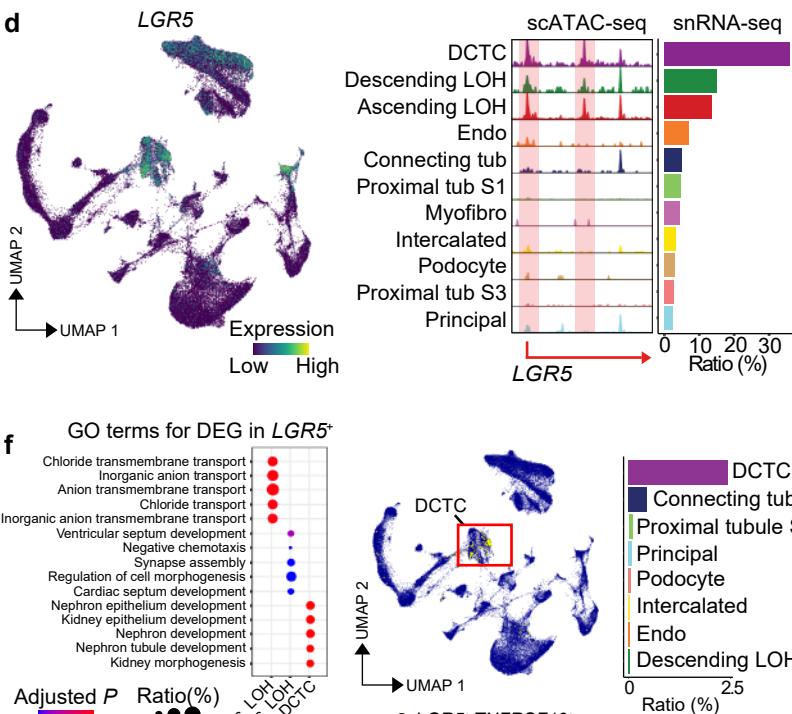
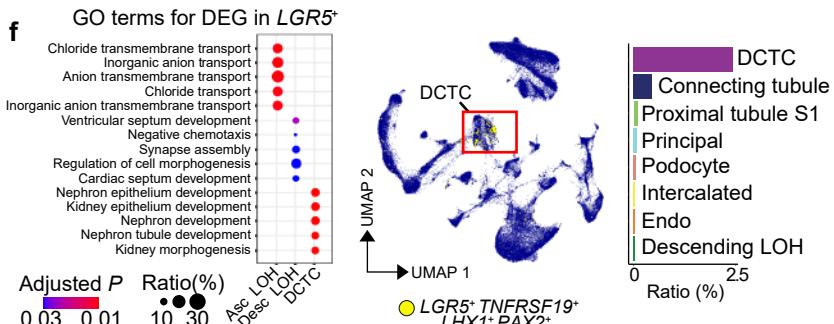





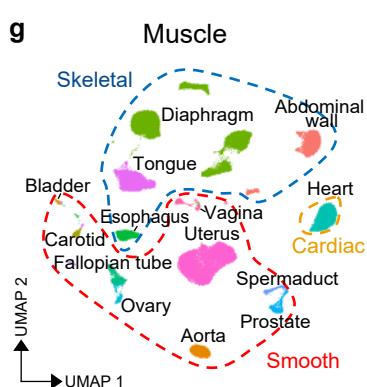
Figure 2

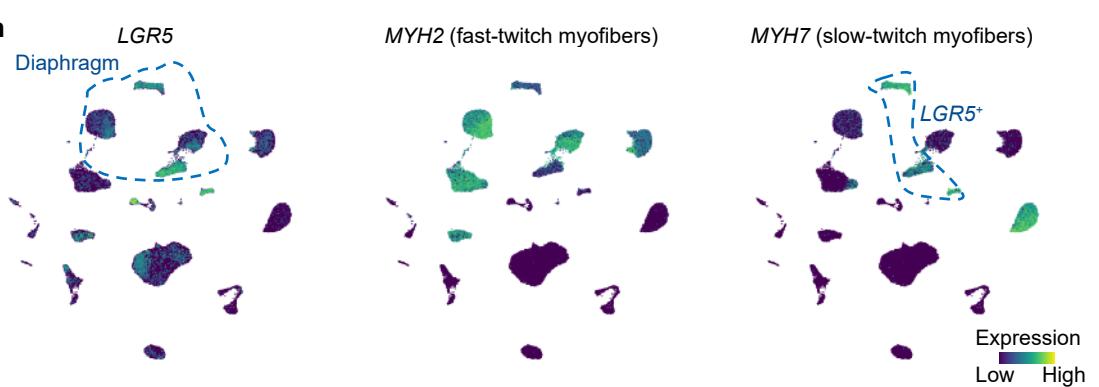

a


b

c


d


e


f

g

h

i

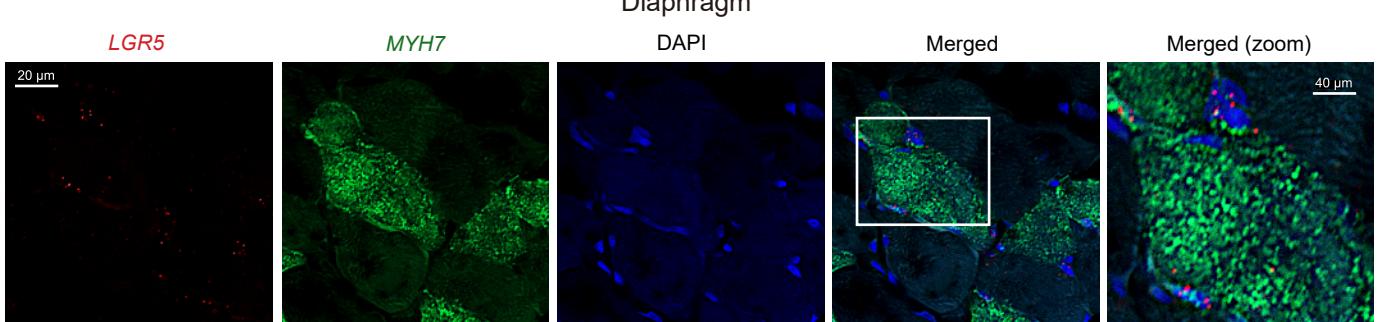
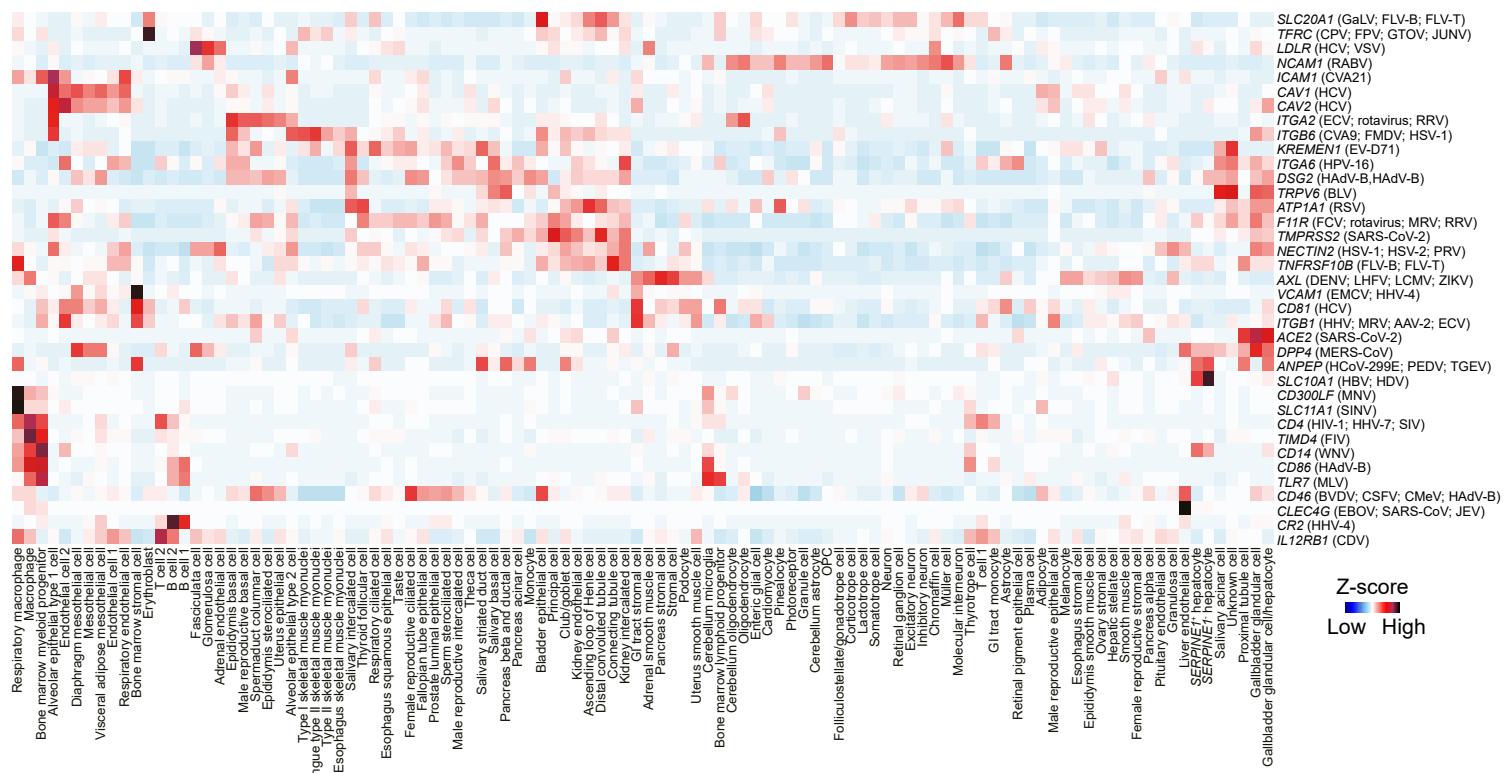
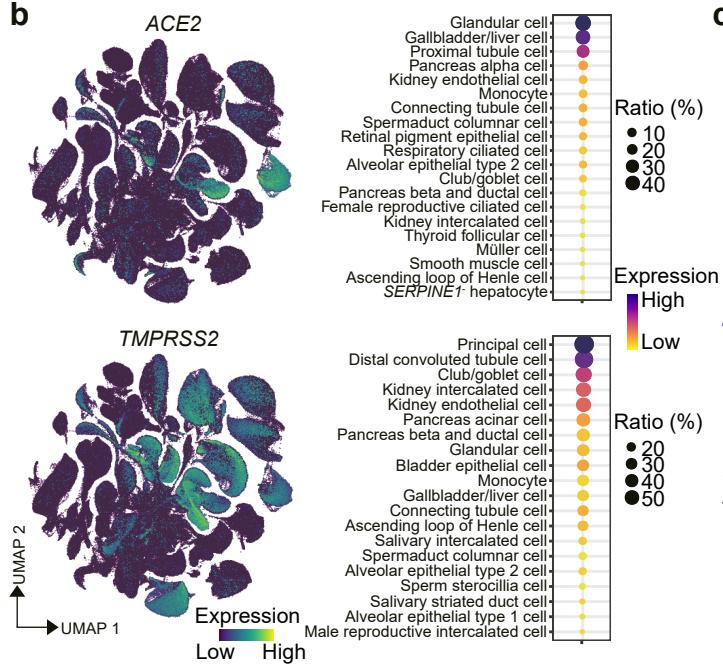
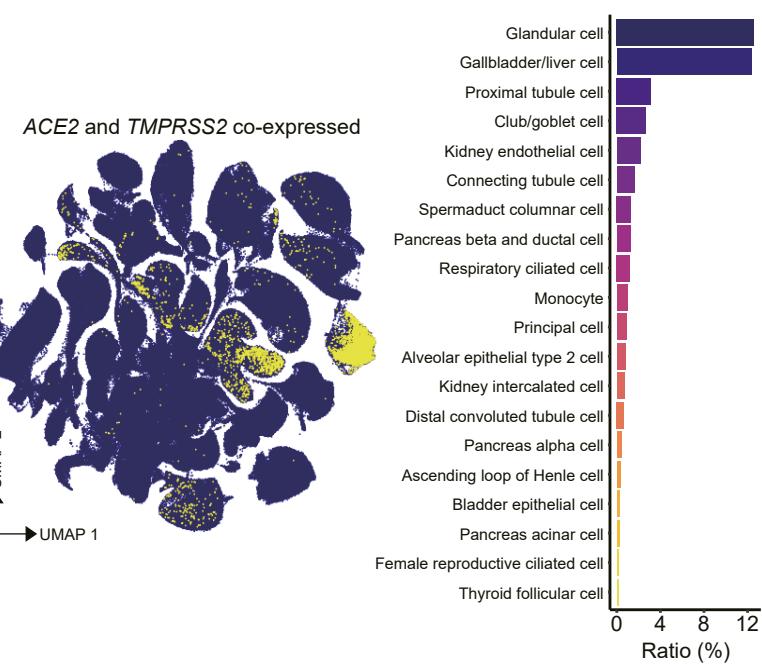
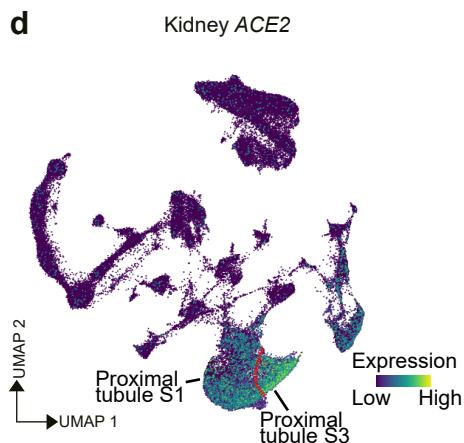




Figure 3


a


b

c

d

e

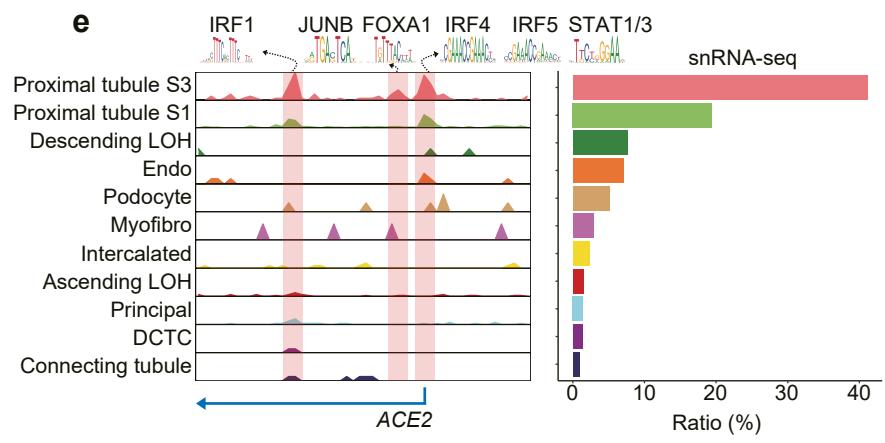
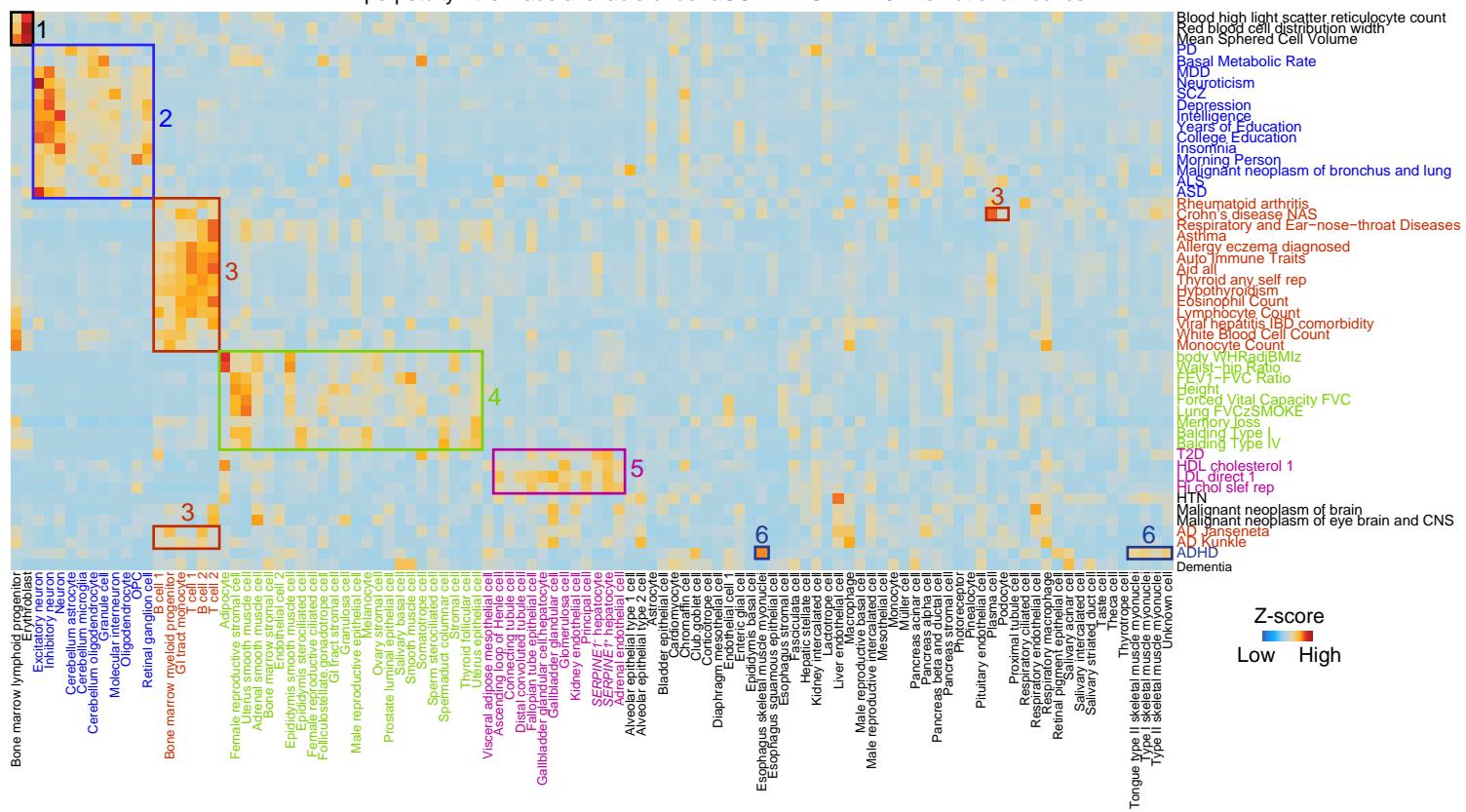



Figure 4

a

b

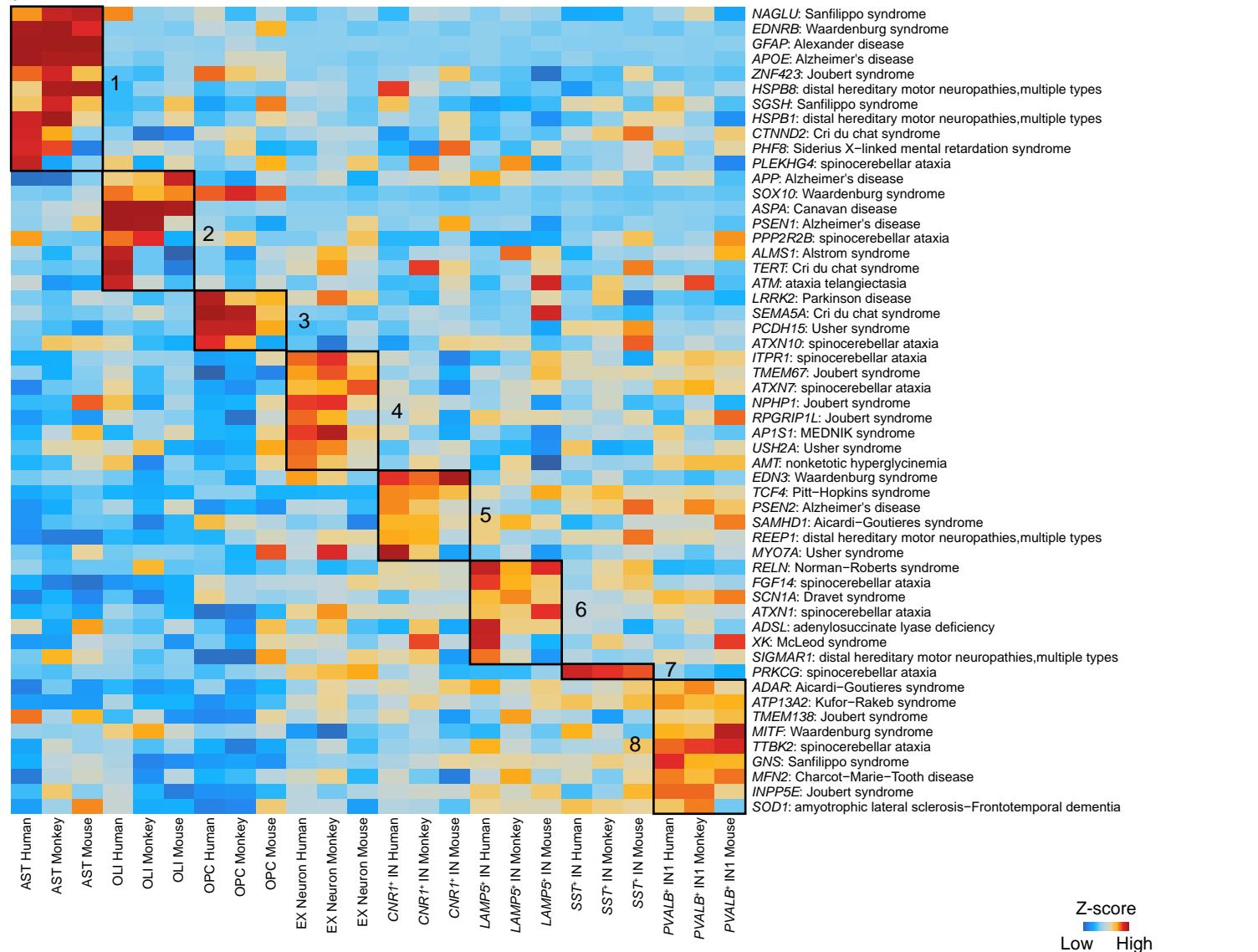
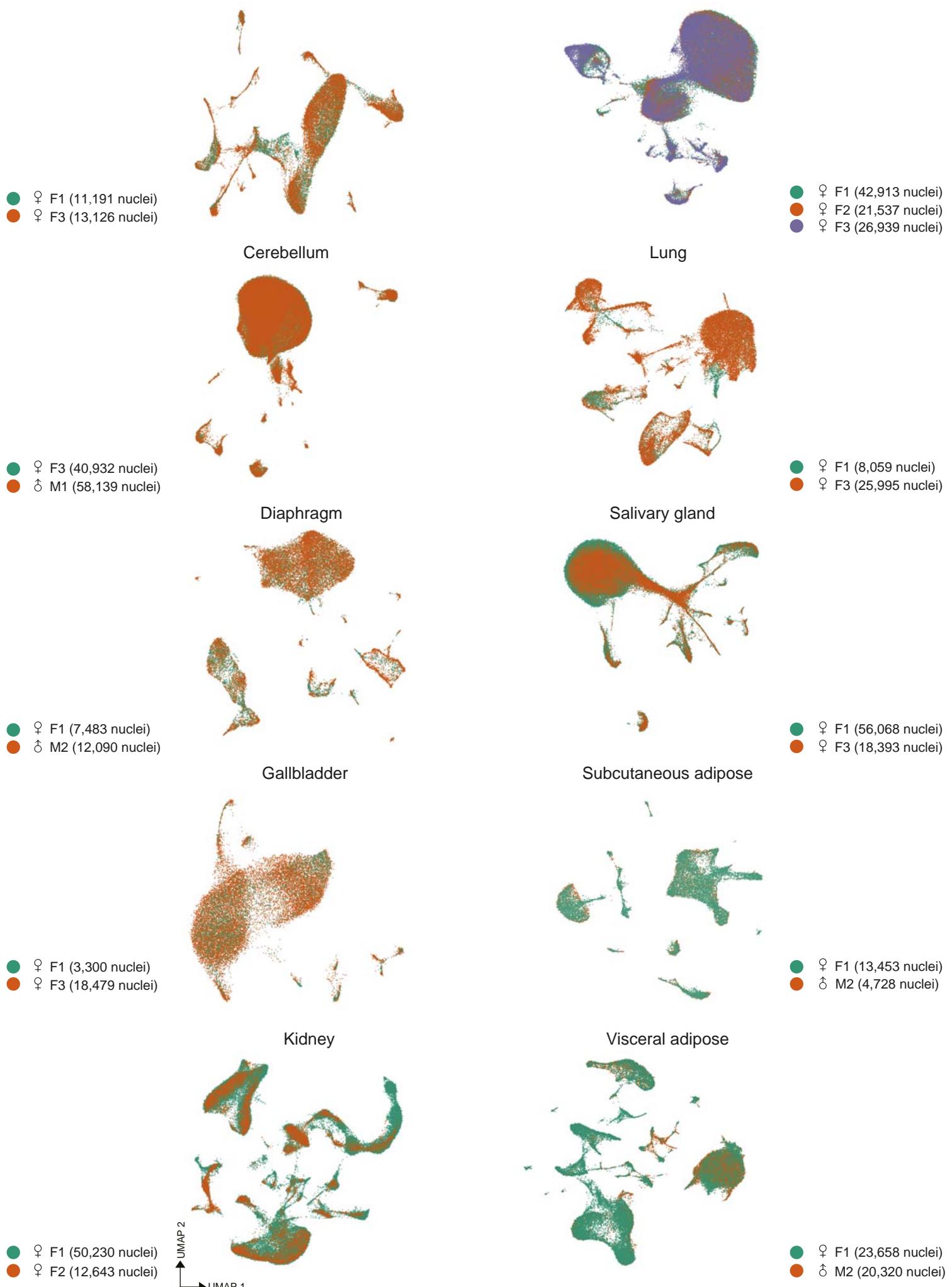
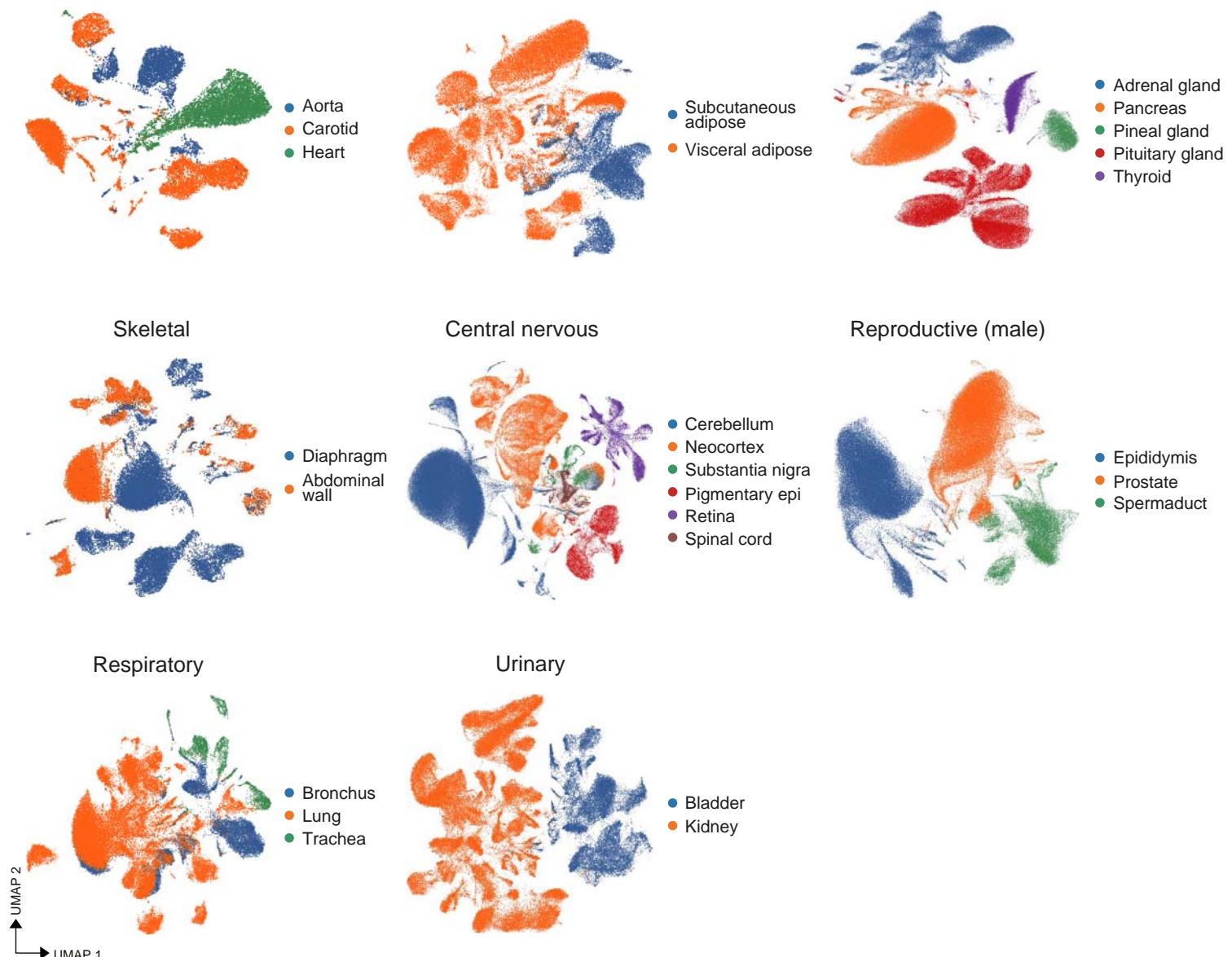
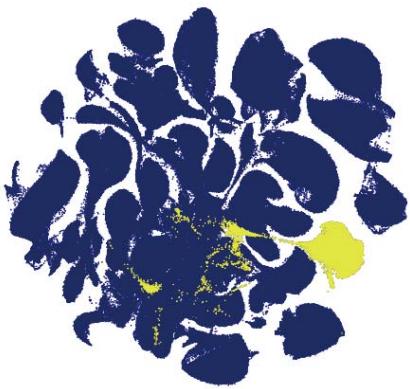
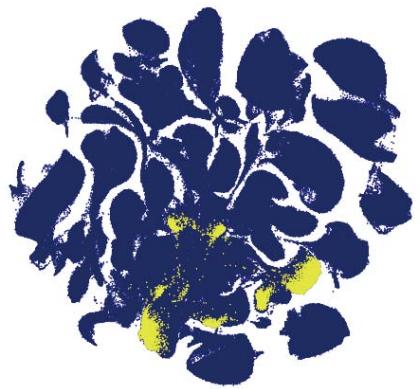
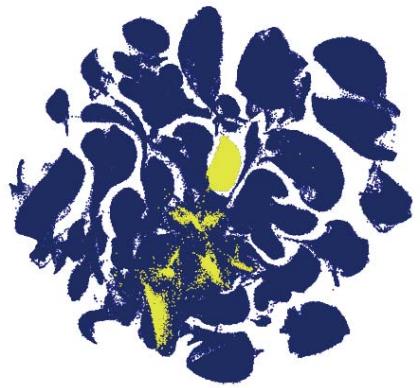




Figure 5

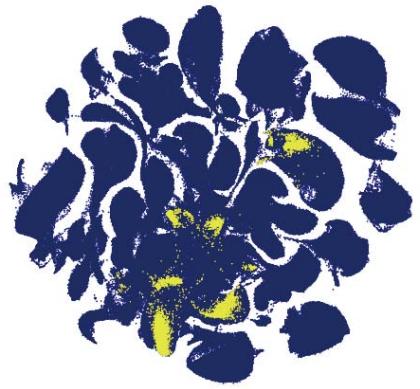


Extended Data Figure 1

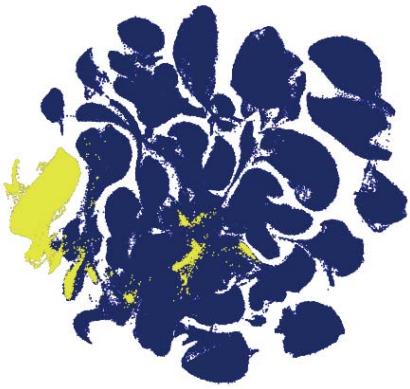

Abdominal wall (12,117 nuclei)

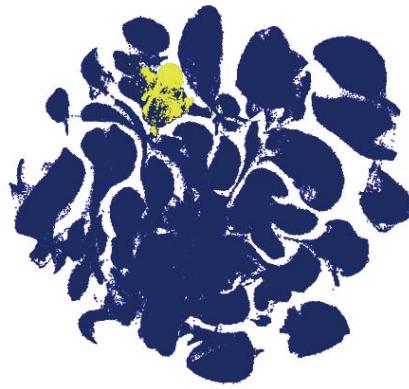
Adrenal gland (35,296 nuclei)

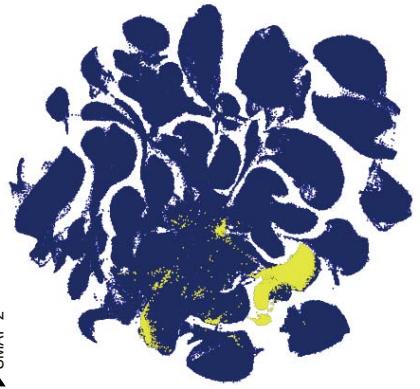
Aorta (3,960 nuclei)

Bladder (24,317 nuclei)


Bone marrow (7,880 cells)


Bronchus (11,225 nuclei)


Carotid (10,071 nuclei)

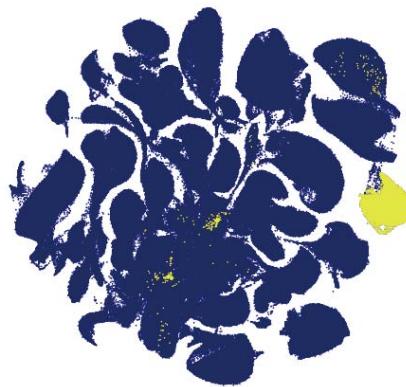
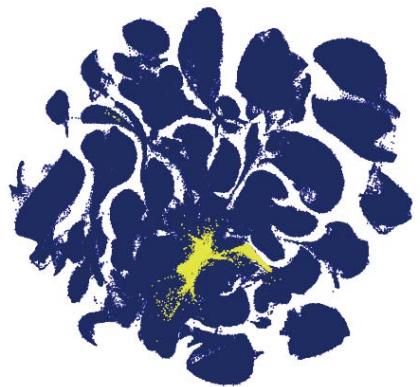

Cerebellum (99,071 nuclei)


Colon (6,554 cells)

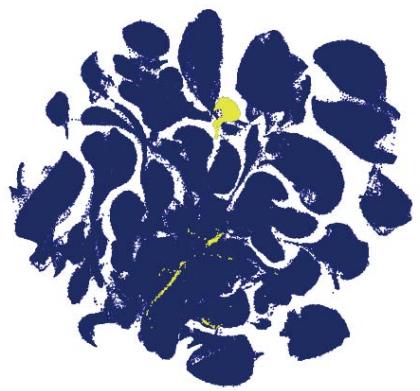
Diaphragm (19,573 nuclei)

Duodenum (2,039 cells)

Epididymis (59,647 nuclei)

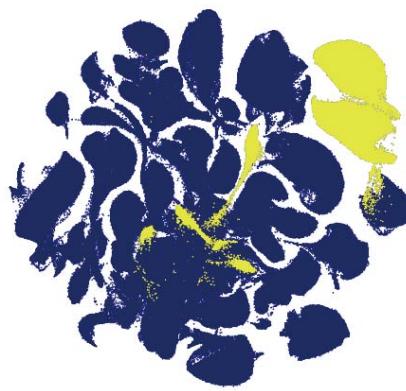



UMAP 2
→ UMAP 1

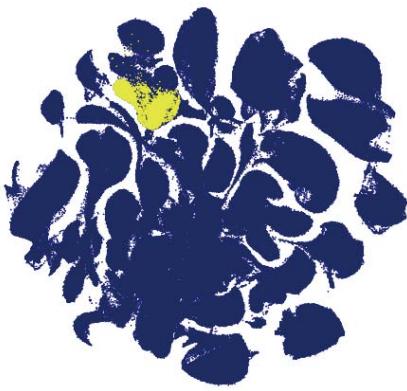

Esophagus (9,456 nuclei)

Fallopian tube (32,778 nuclei)

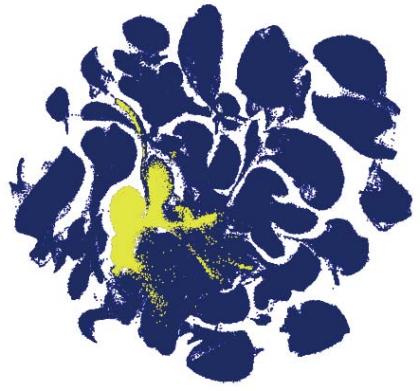

Gallbladder (21,779 nuclei)

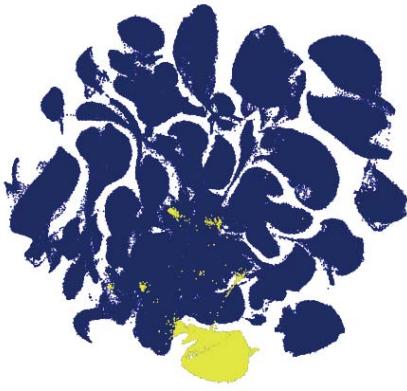

Heart (5,881 nuclei)


Kidney (62,873 nuclei)


Liver (91,389 nuclei)

Lung (34,054 nuclei)

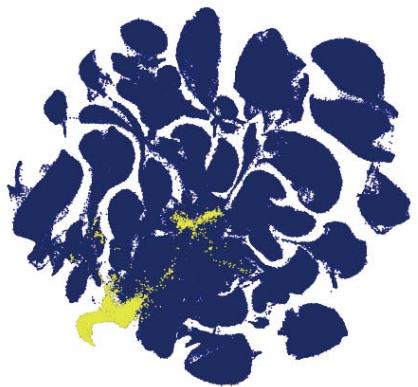

Lymph node (8,413 cells)


Neocortex (38,367 nuclei)

Ovary (35,764 nuclei)

Pancreas (51,480 nuclei)

PBMC (15,728 cells)

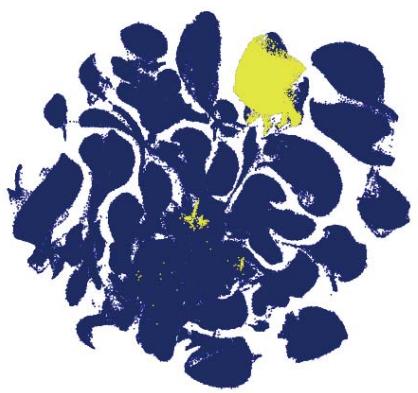


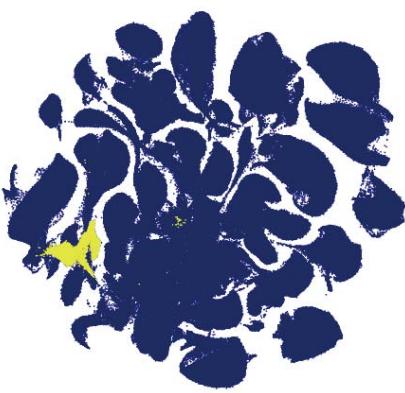
UMAP 2
↑
→ UMAP 1

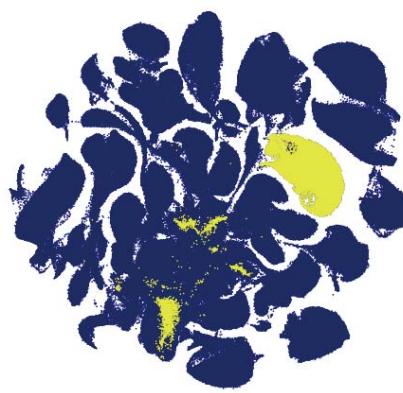
Pigmentary epithelium (12,138 nuclei)

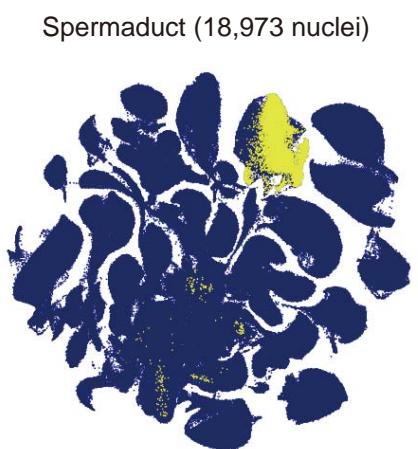
Pineal gland (7,264 nuclei)

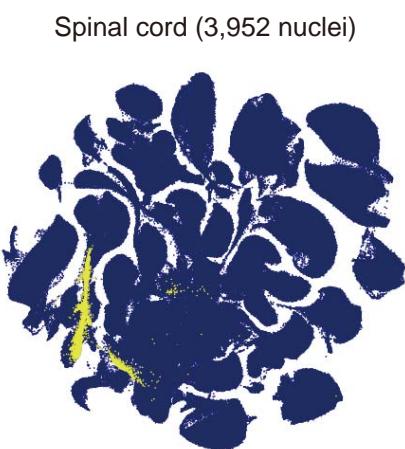

Pituitary gland (51,756 nuclei)

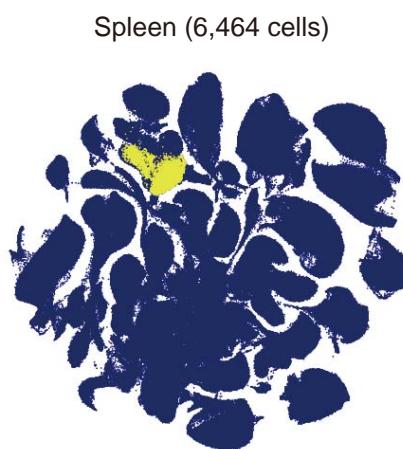

Pigmentary epithelium (12,138 nuclei)

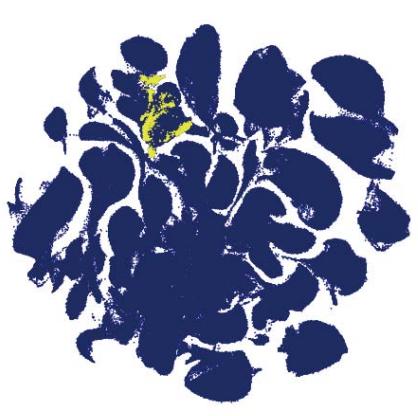

Pineal gland (7,264 nuclei)


Pituitary gland (51,756 nuclei)


Prostate (51,928 nuclei)


Retina (12,003 nuclei)


Salivary gland (74,461 nuclei)

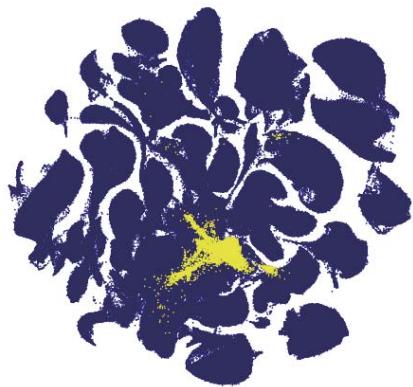
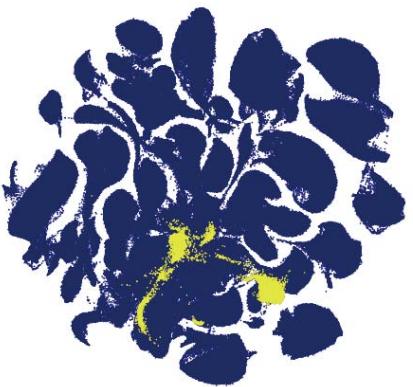
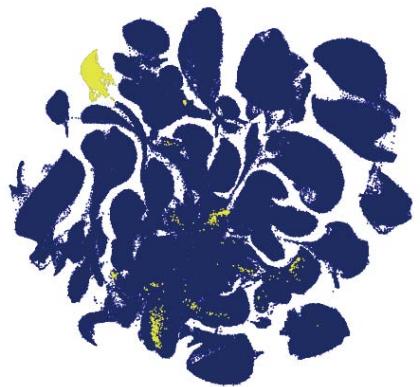

Spermaduct (18,973 nuclei)

Spinal cord (3,952 nuclei)

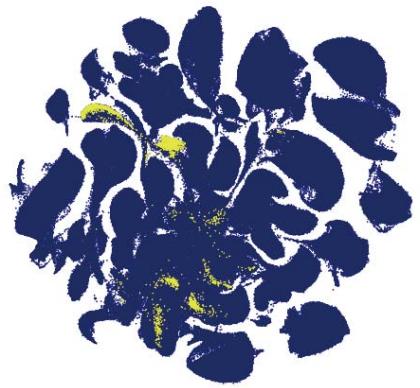

Spleen (6,464 cells)

Stomach (3,419 cells)

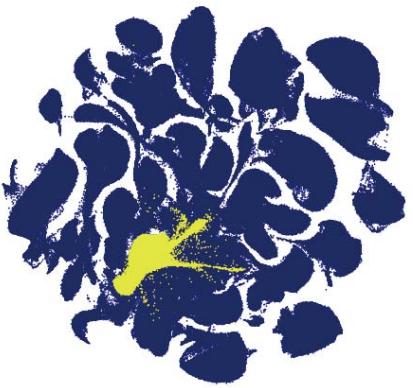
Subcutaneous adipose (18,181 nuclei)

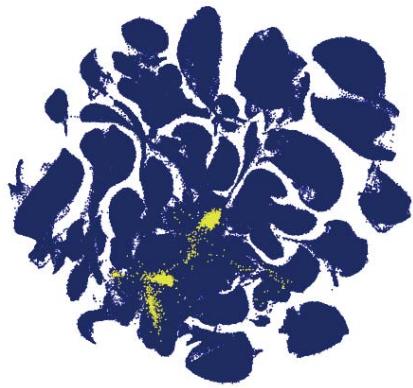



Substantia nigra (4,271 nuclei)

UMAP 2
↑
UMAP 1

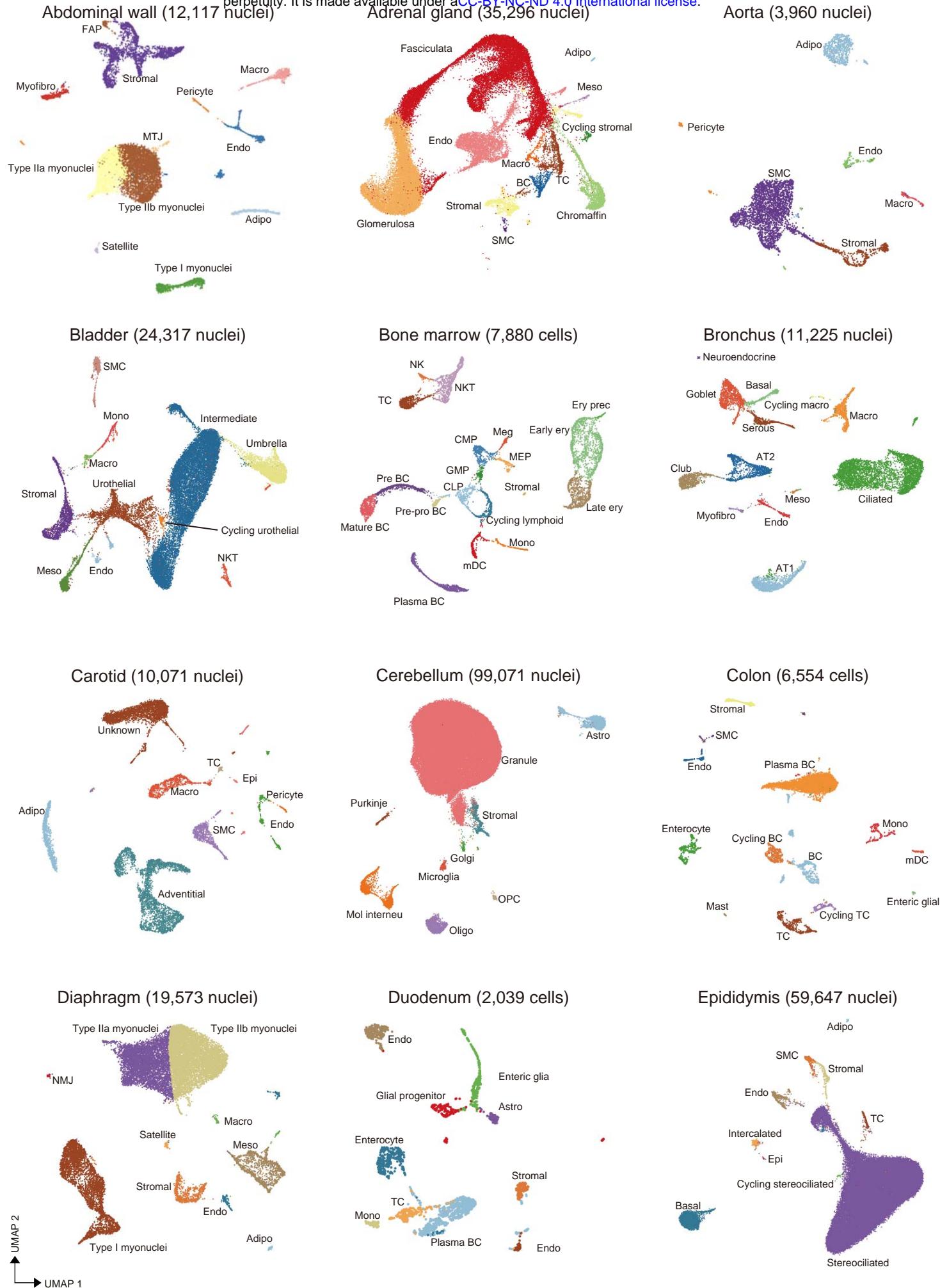

Thyroid (11,643 nuclei)

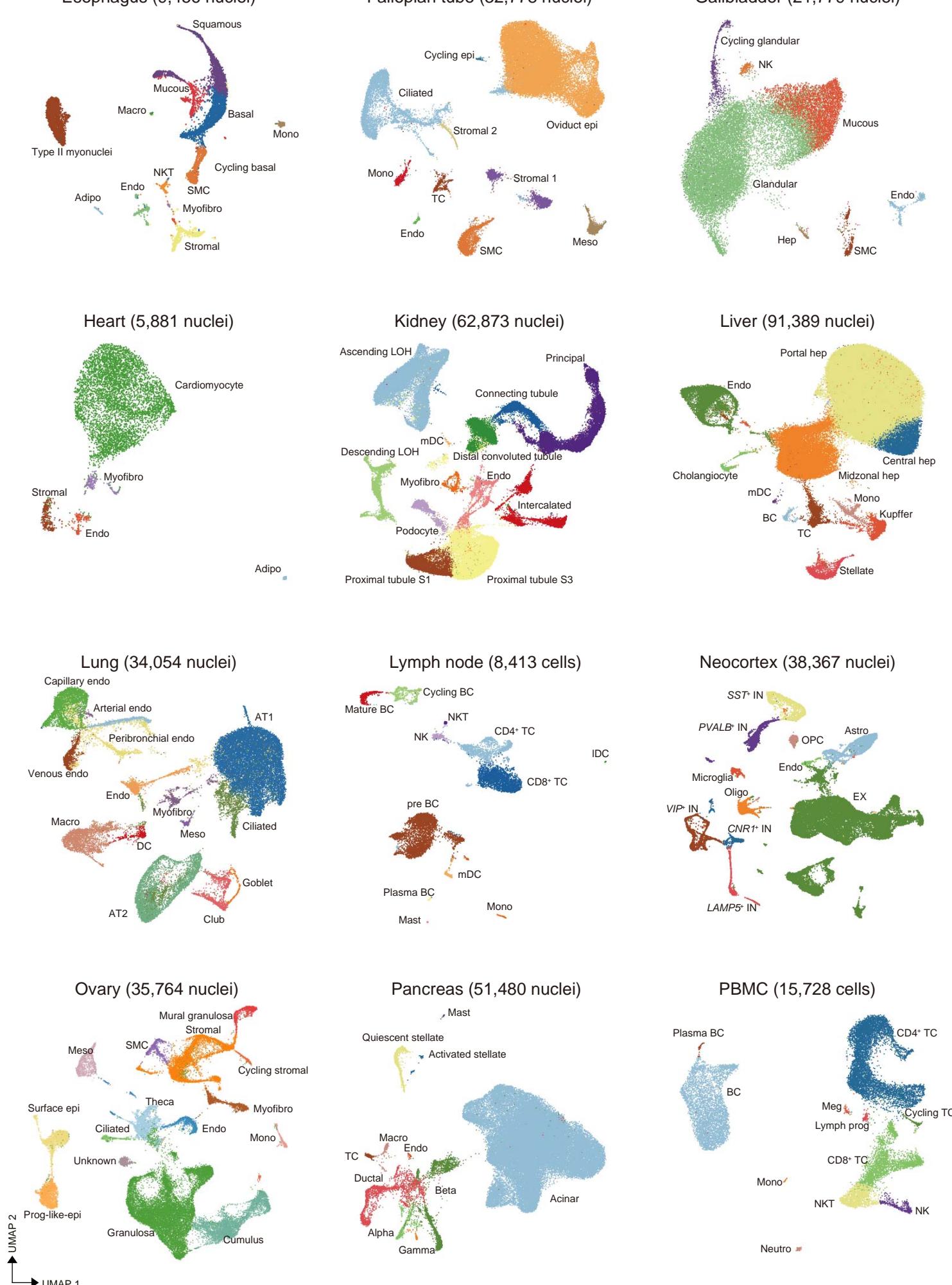
Tongue (13,937 nuclei)

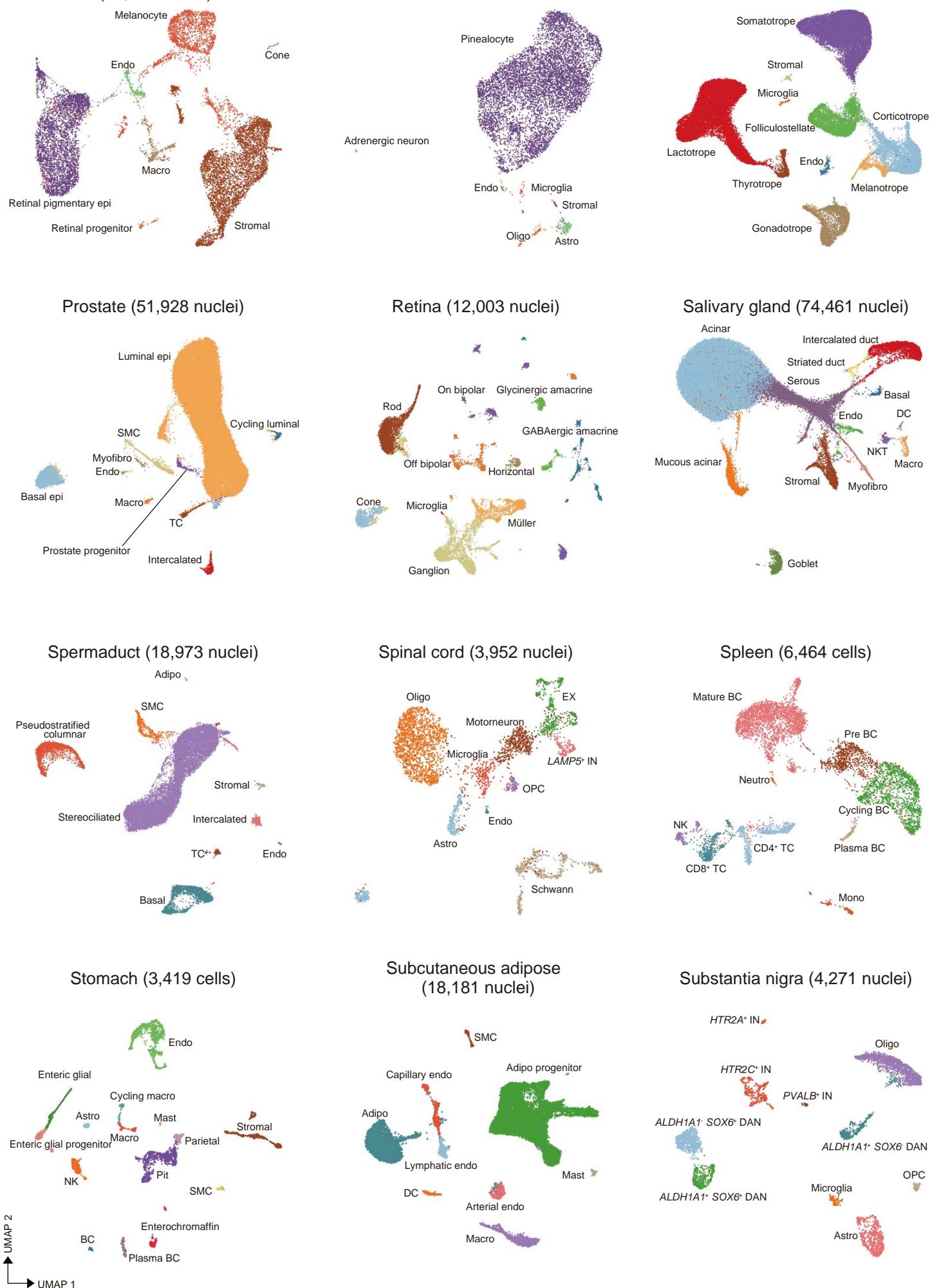

Tonsil (8,150 nuclei)

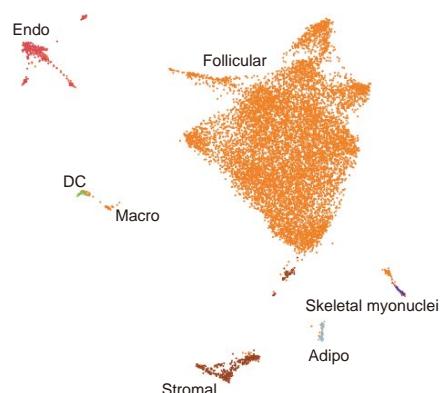

Trachea (3,705 nuclei)

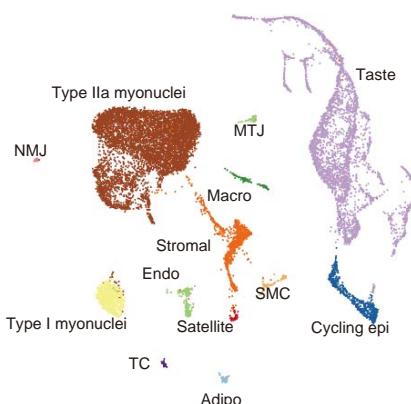
Uterus (35,964 nuclei)

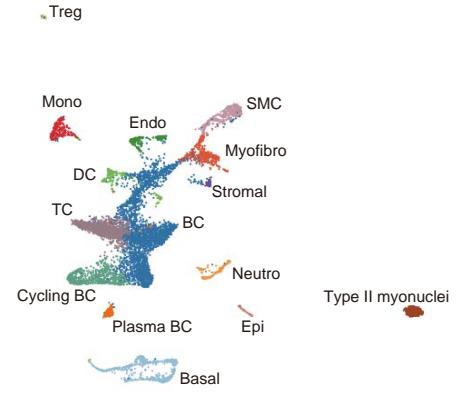

Vagina (2,265 nuclei)

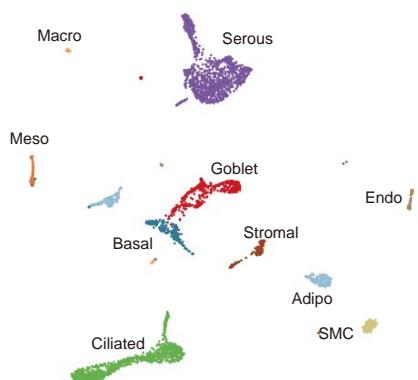


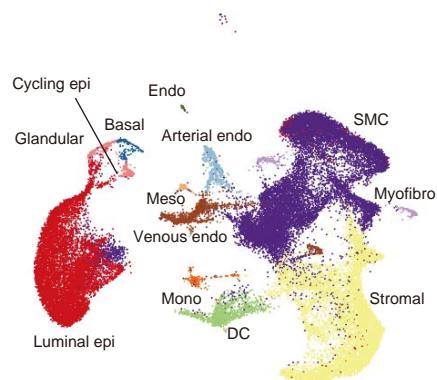

Visceral adipose (43,978 nuclei)

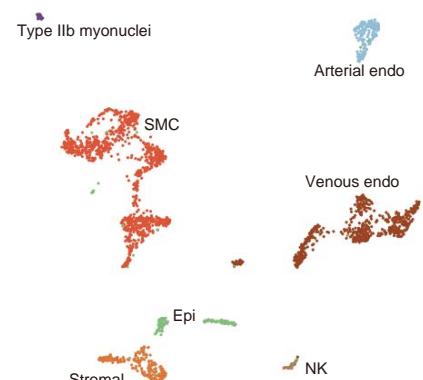

UMAP 2
↑
→ UMAP 1

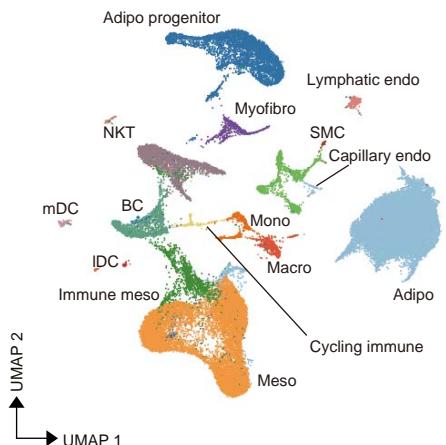


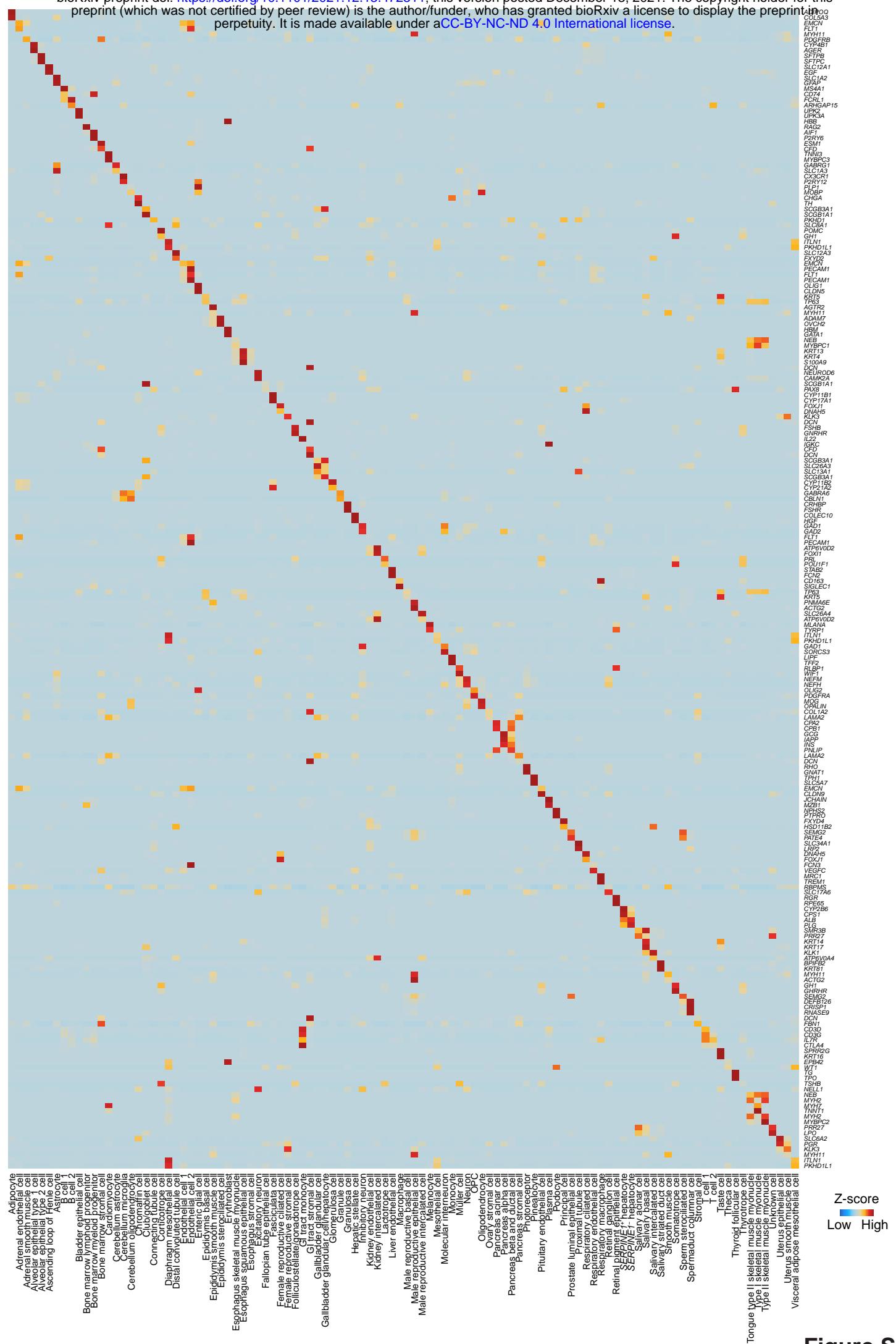

Thyroid (11,643 nuclei)


Tongue (13,937 nuclei)

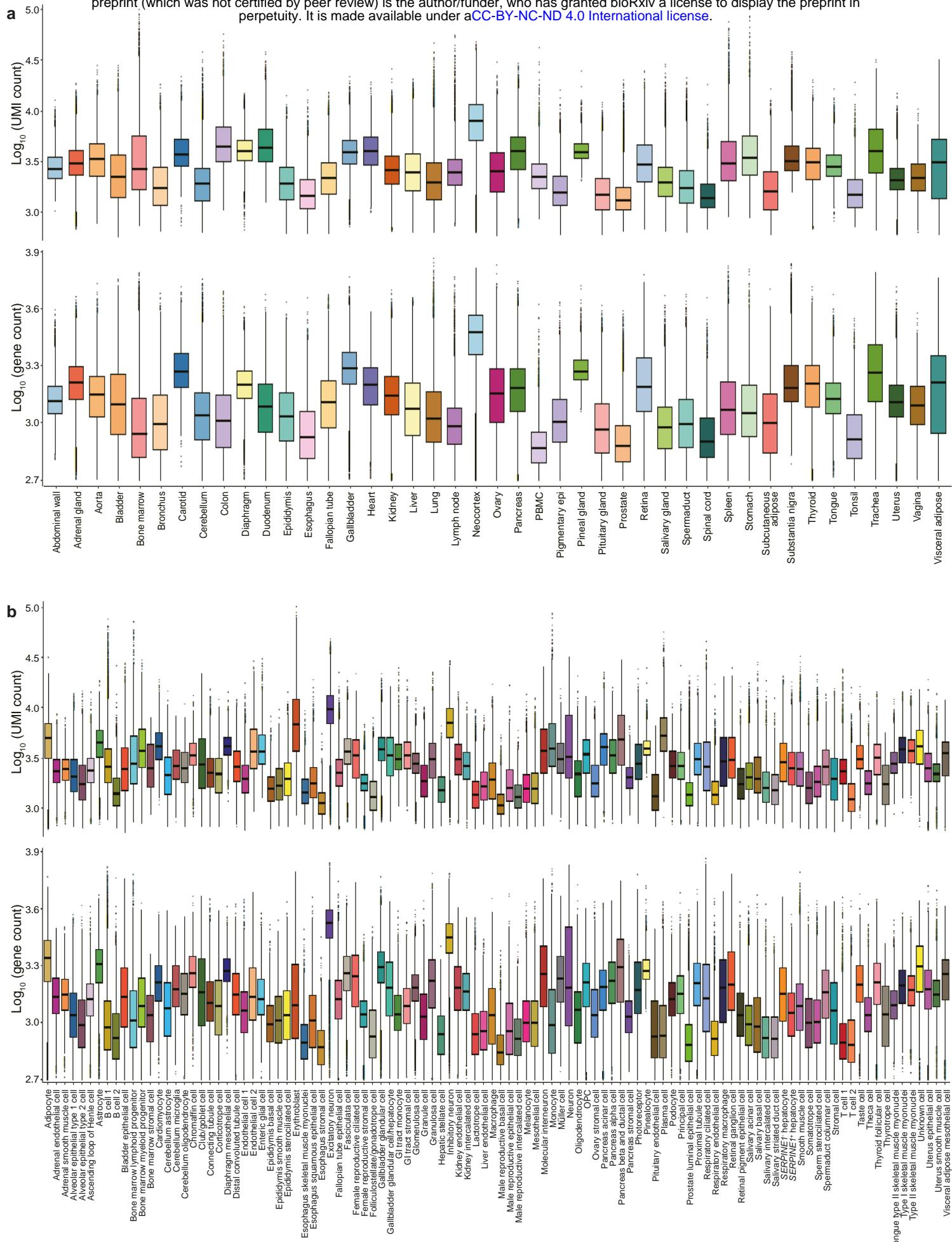

Tonsil (8,150 nuclei)

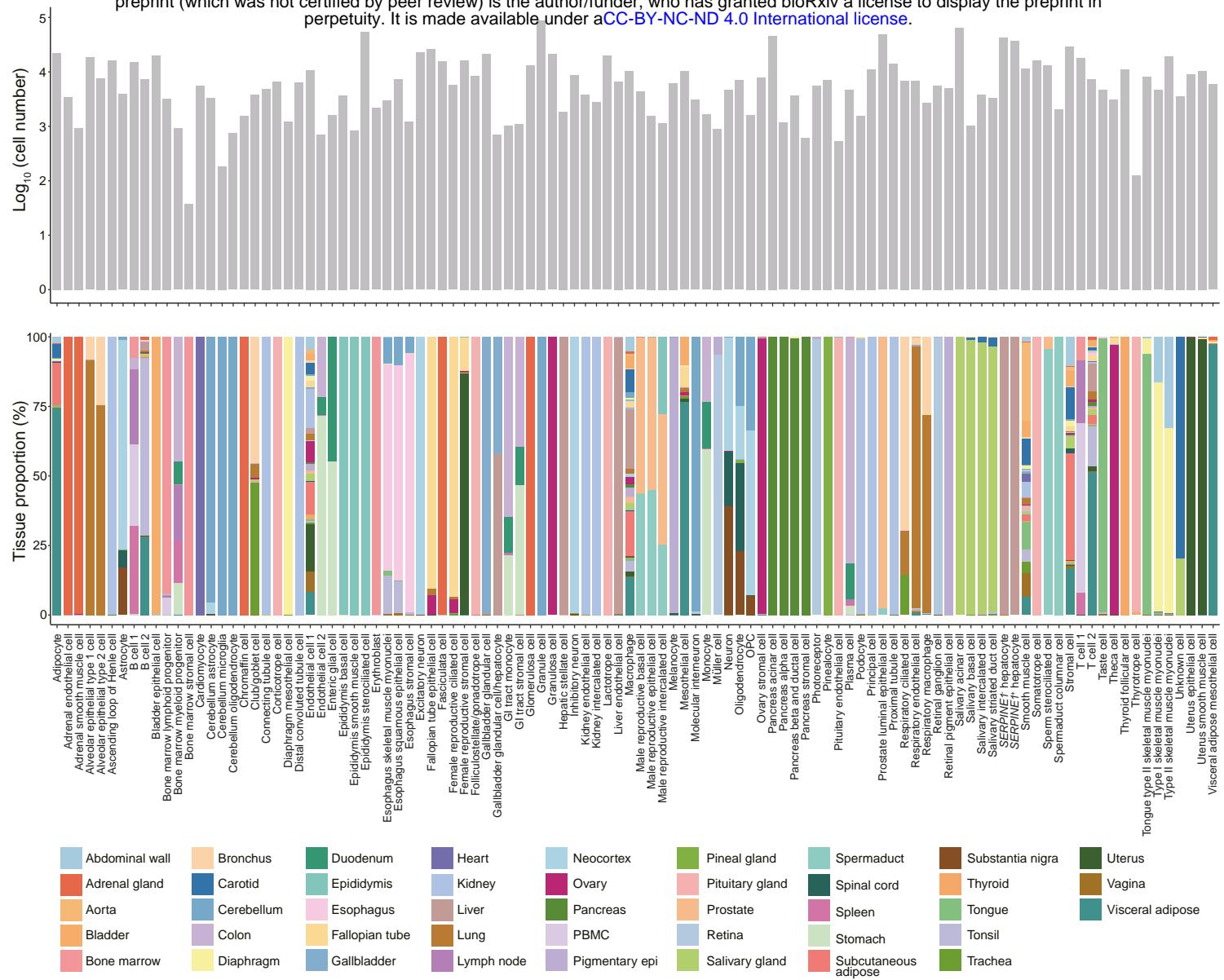

Trachea (3,705 nuclei)


Uterus (35,964 nuclei)



Vagina (2,265 nuclei)




Visceral adipose (43,978 nuclei)

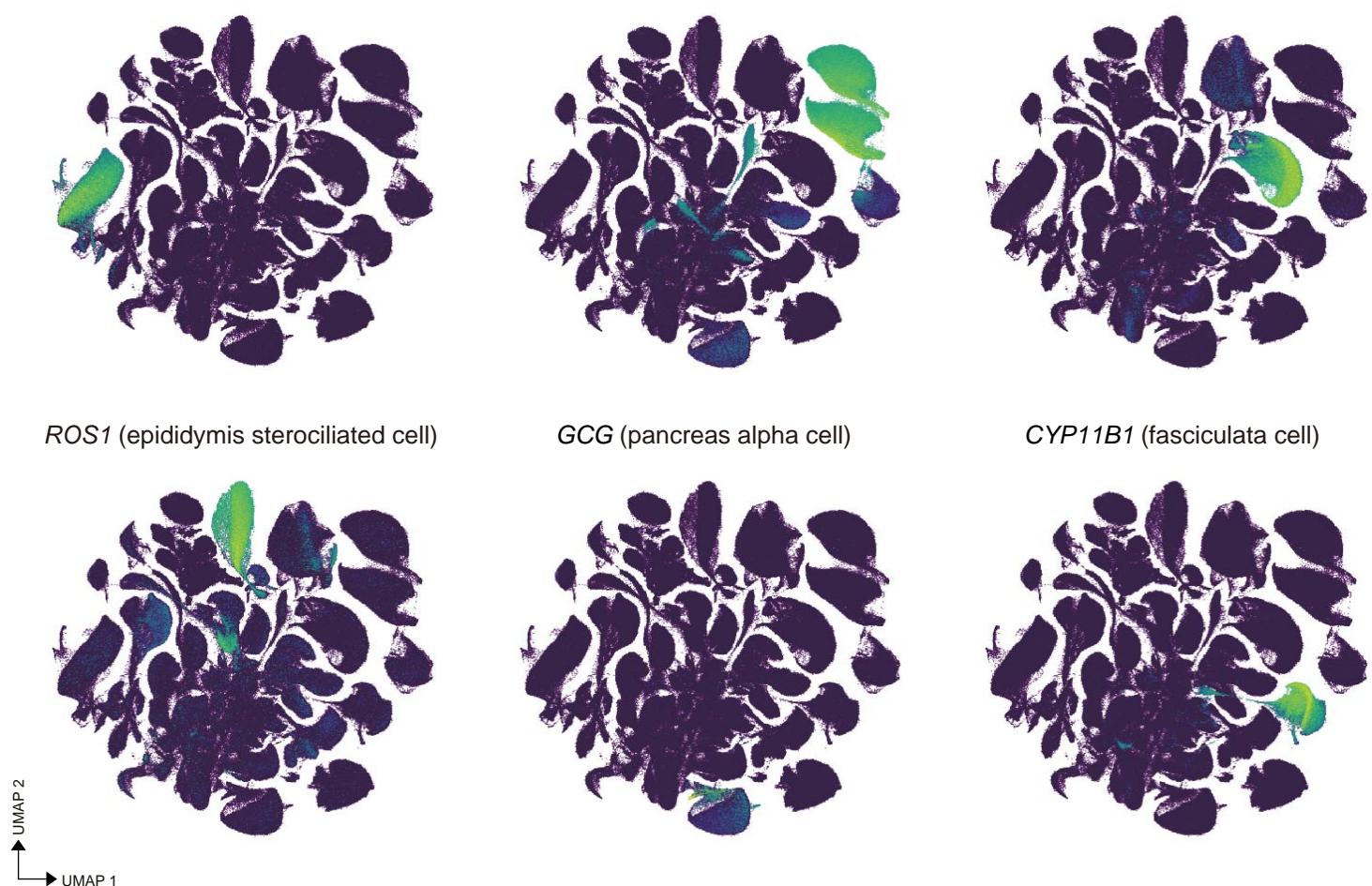
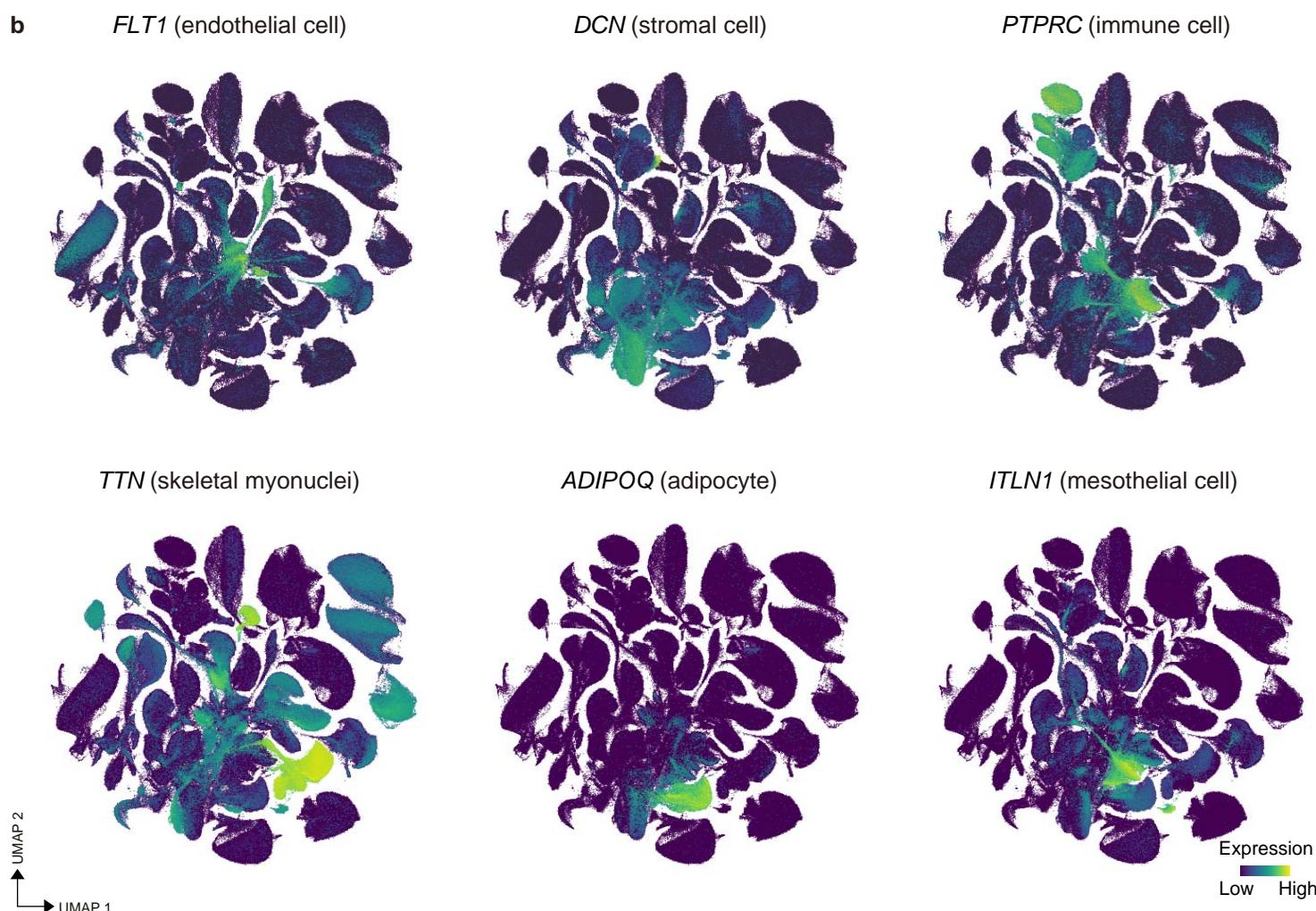
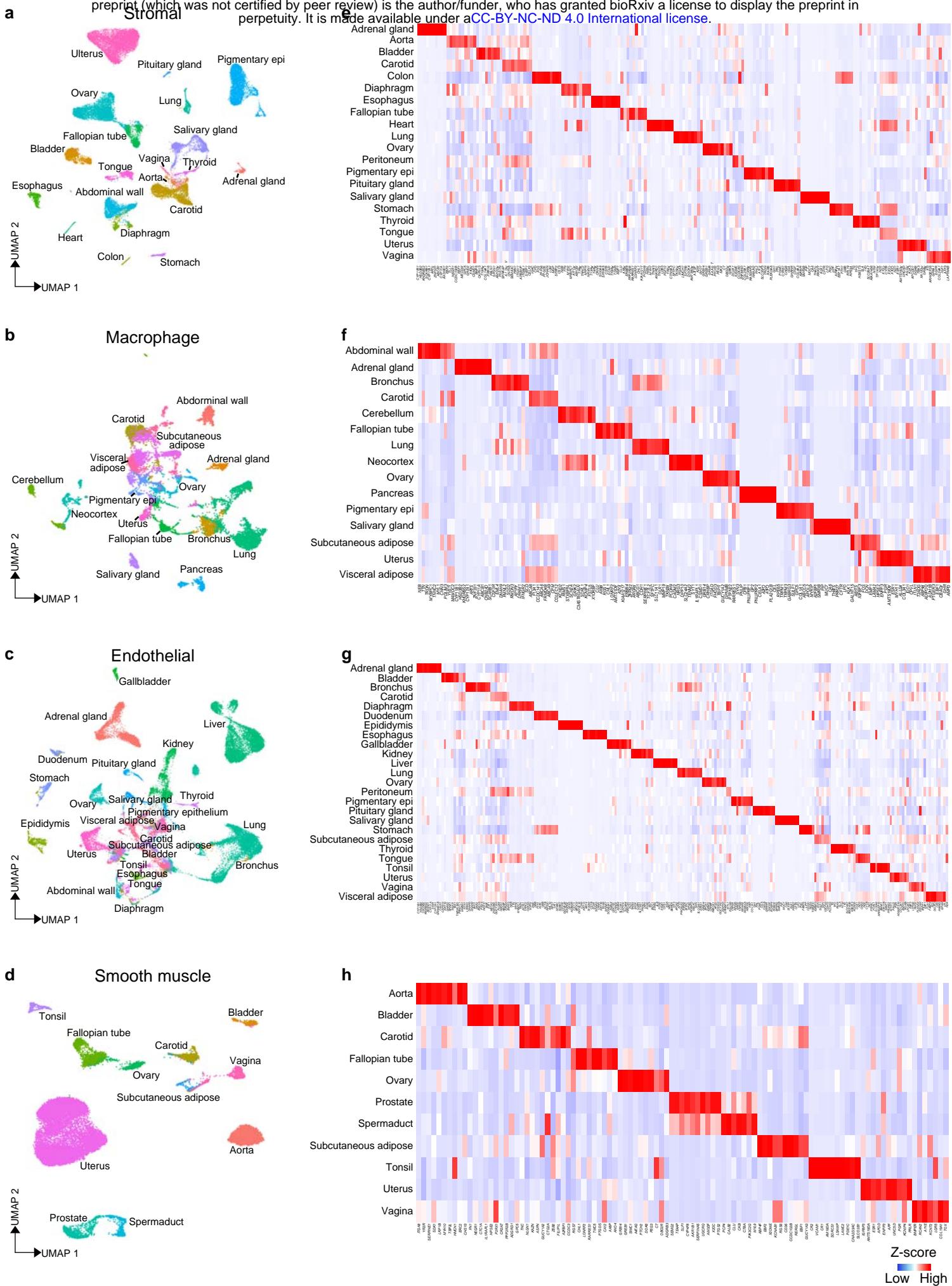
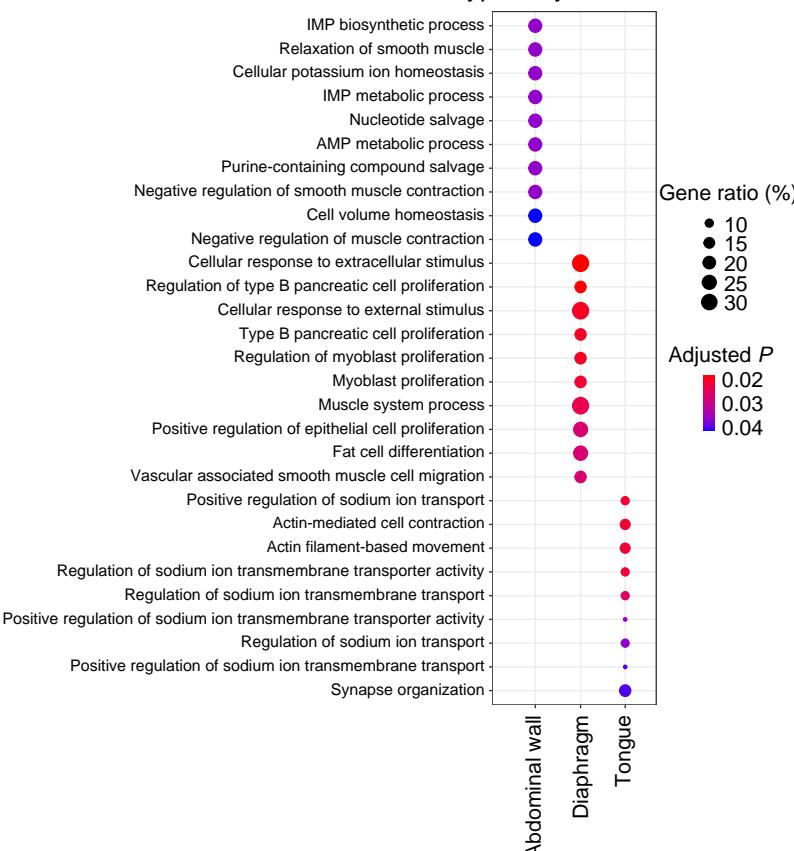


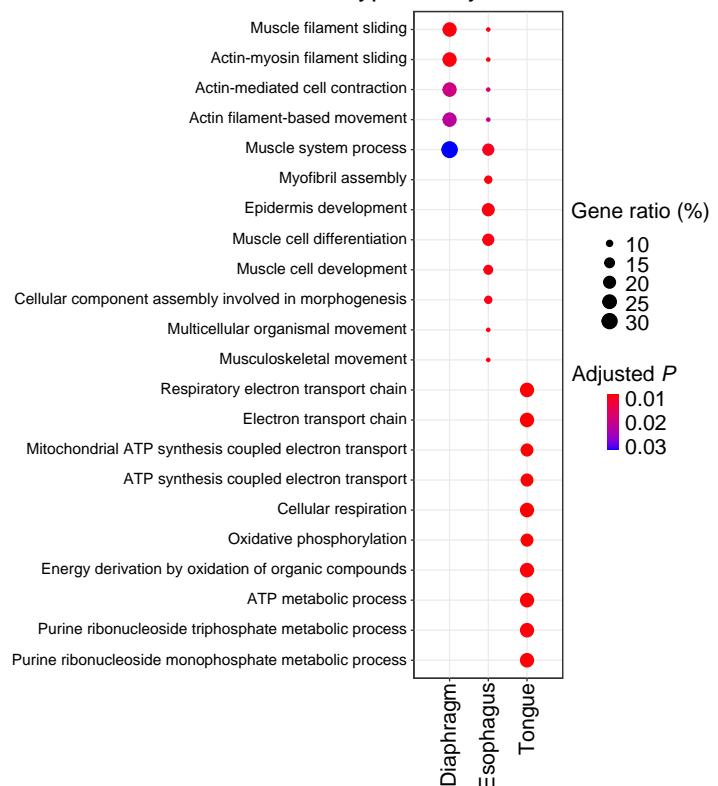
Figure S11





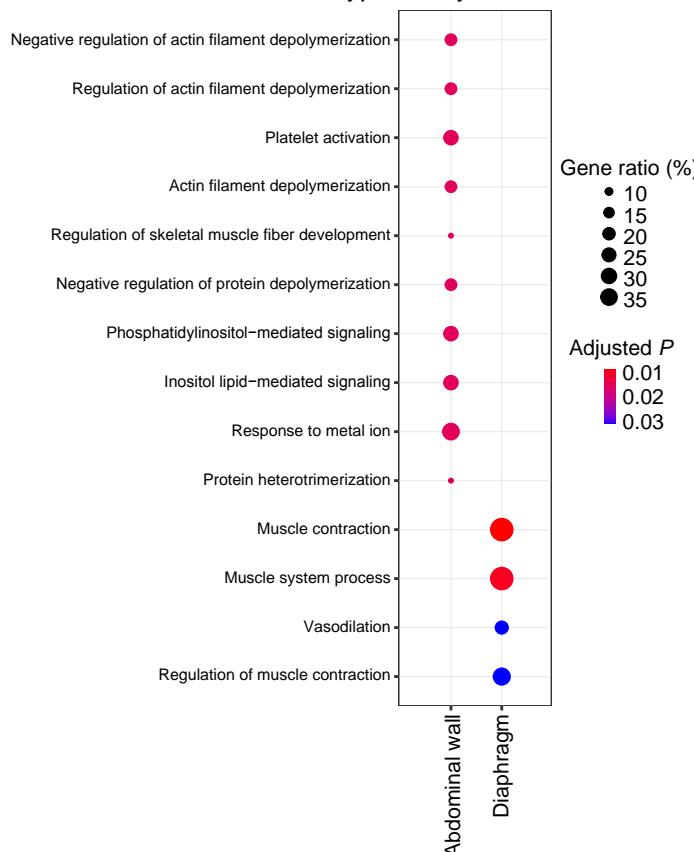
a


b

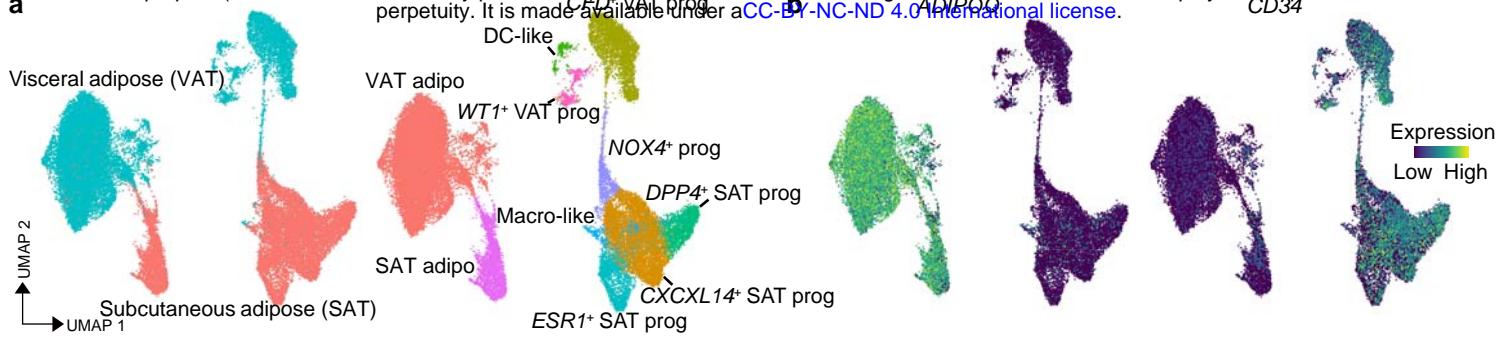


a

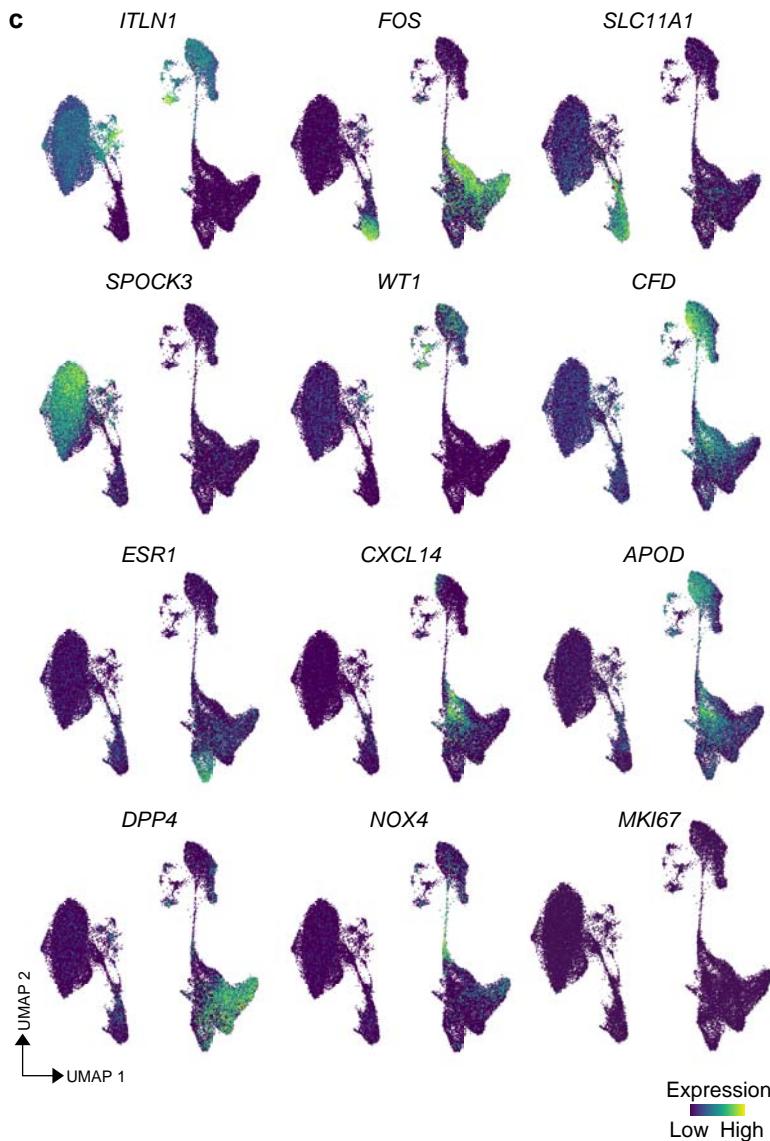
GO terms for DEG in type I myonuclei

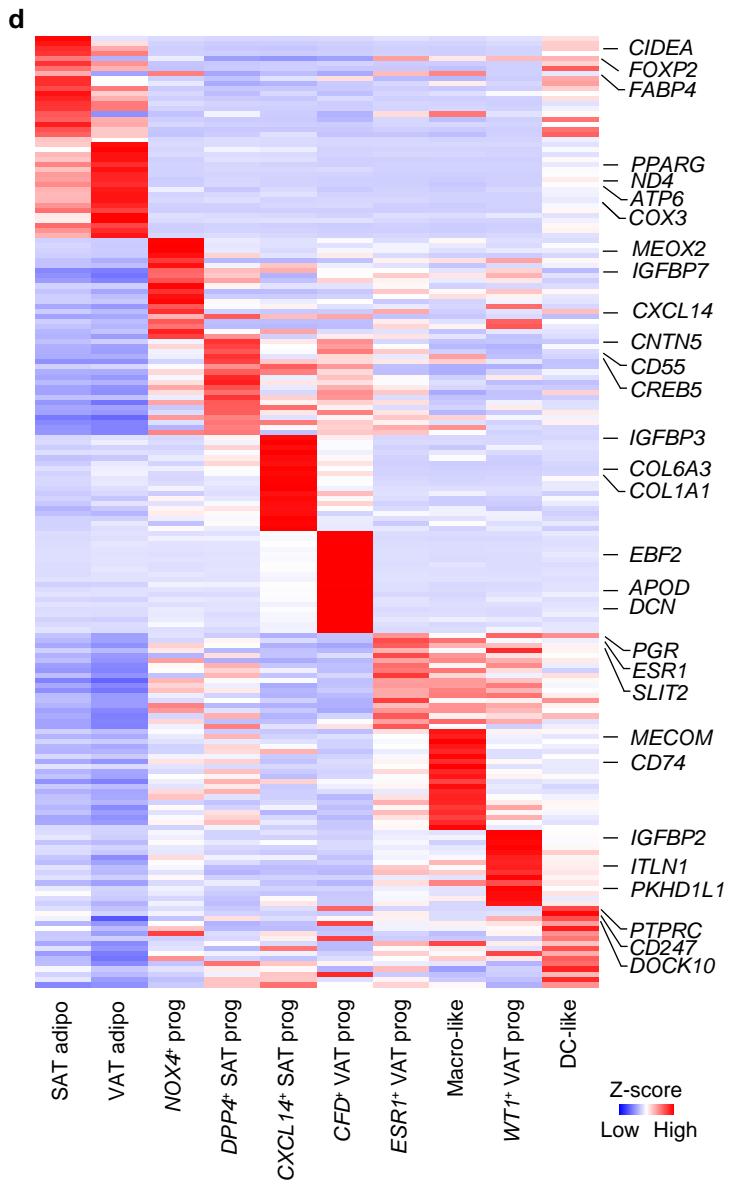


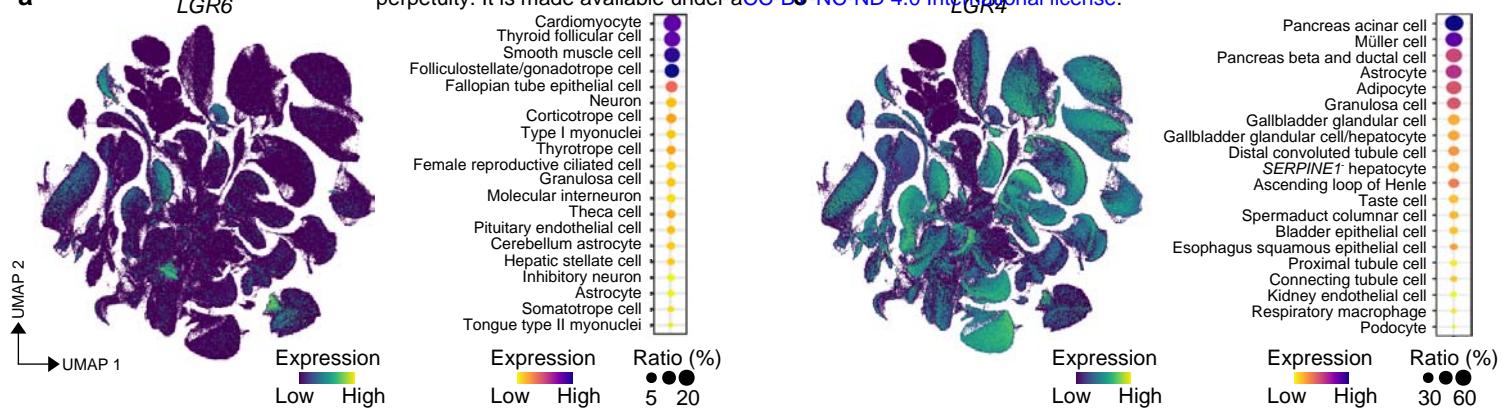
GO terms for DEG in type IIa myonuclei

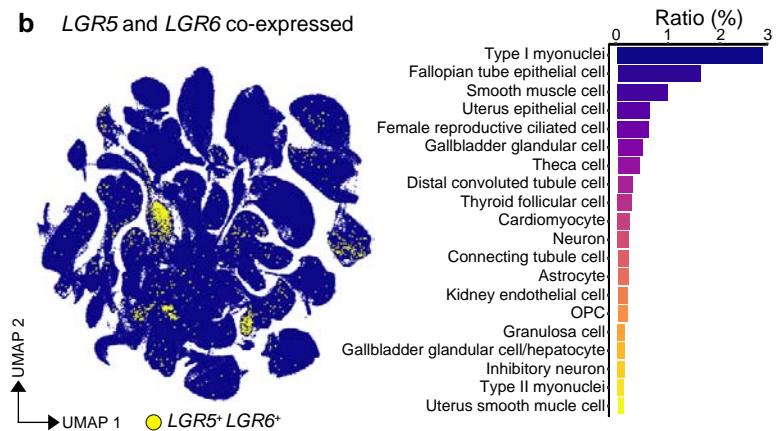


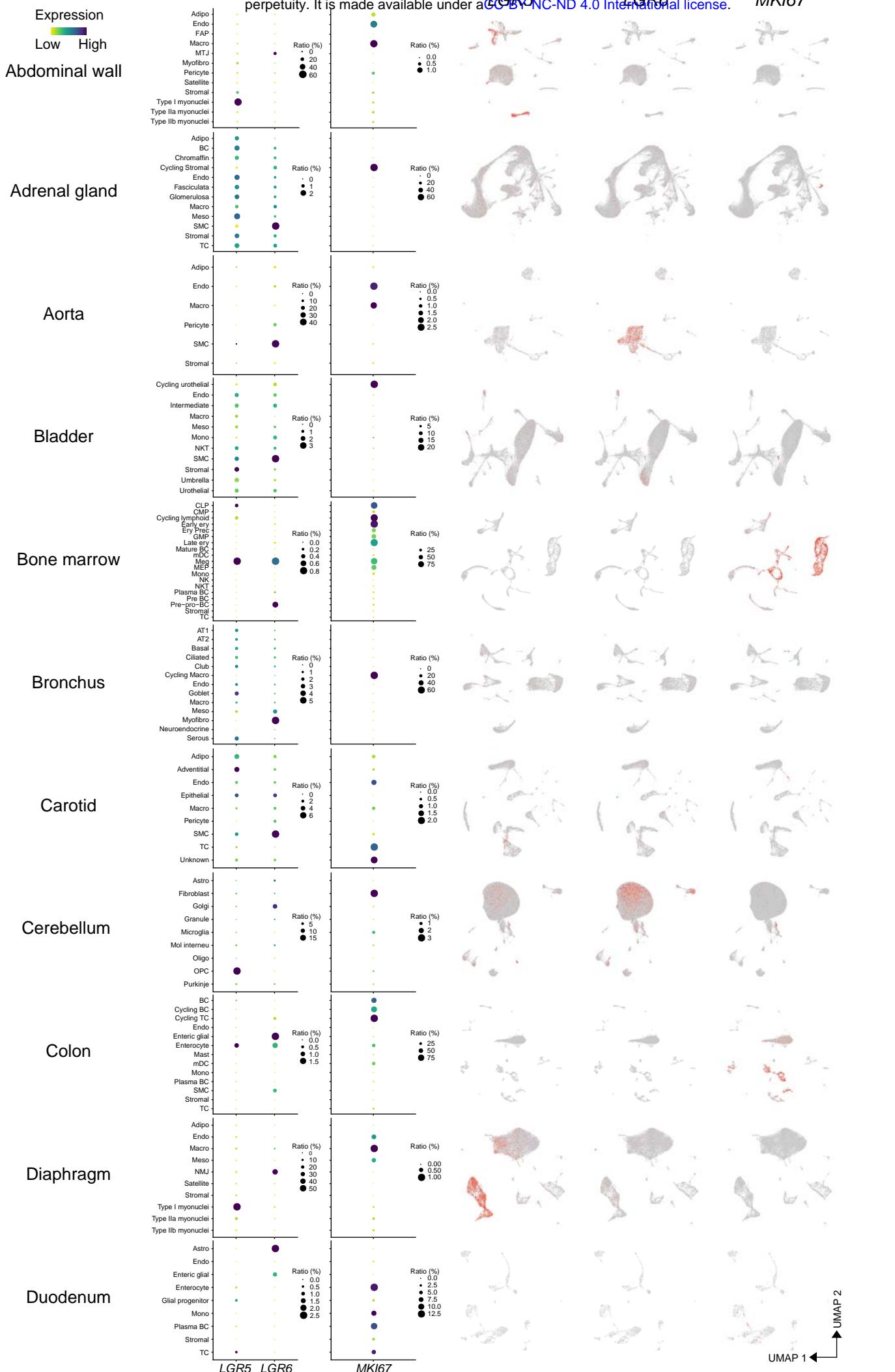
c


GO terms for DEG in type IIb myonuclei


a


c


d



a

b *LGR5* and *LGR6* co-expressed

Extended Data Figure 19

Expression

Low High

Epididymis

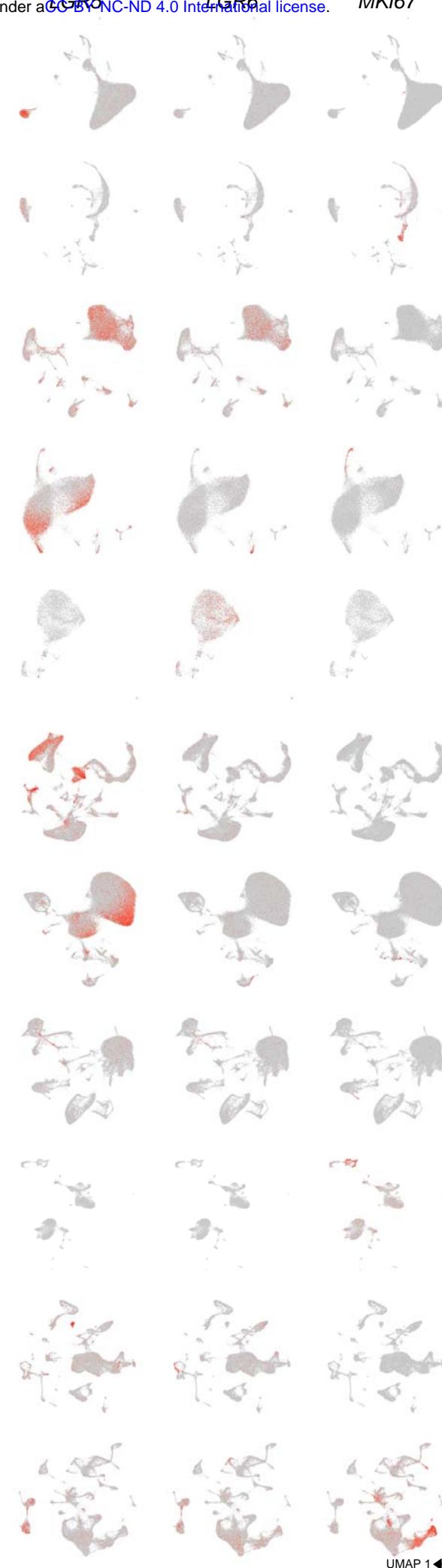
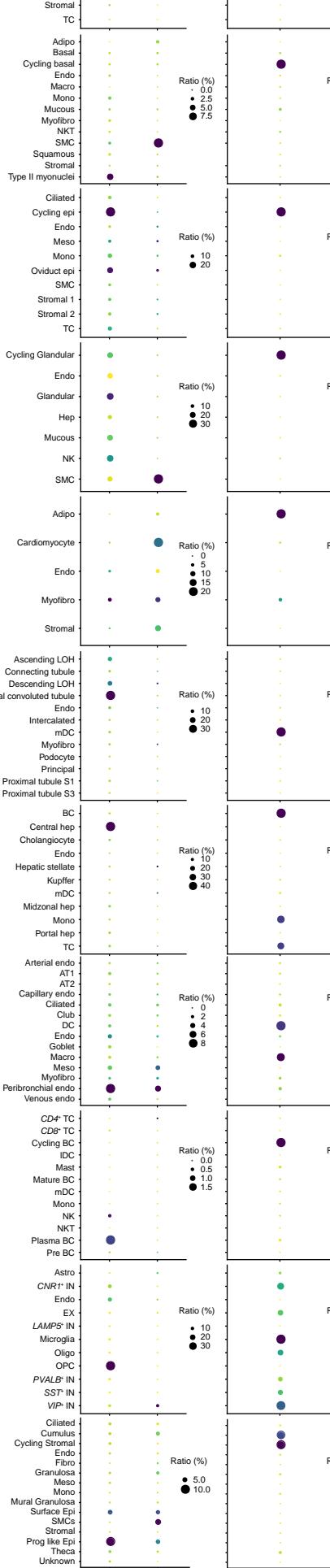
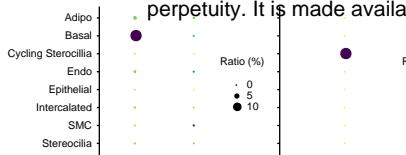
Esophagus

Fallopian tube

Gallbladder

Heart

Kidney

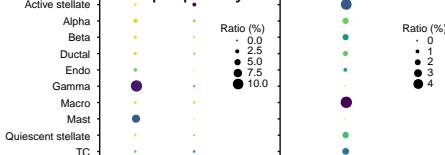



Liver

Lung

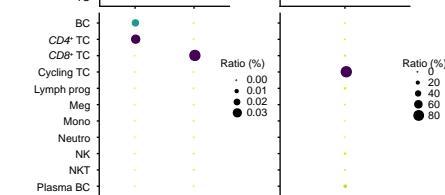
Lymph node

Neocortex

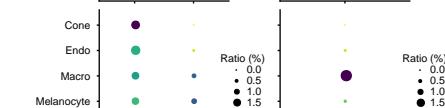
Ovary

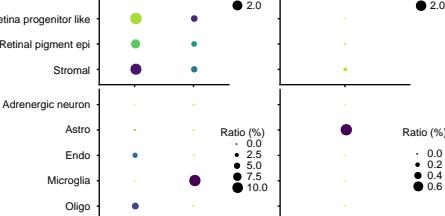

Expression
Low High

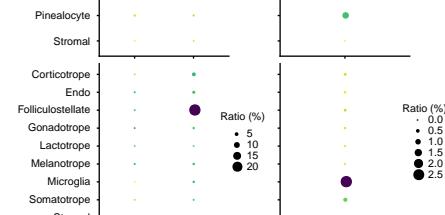
Extended Data Figure 20

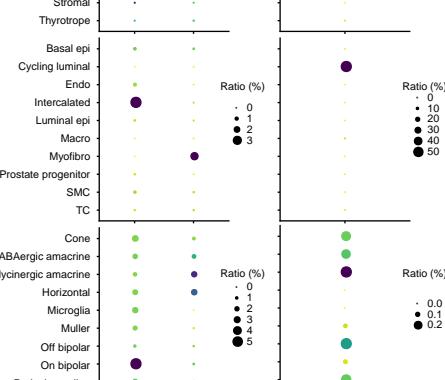

Expression

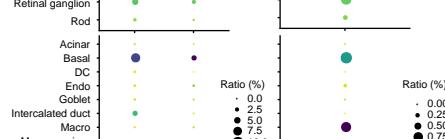
Low High

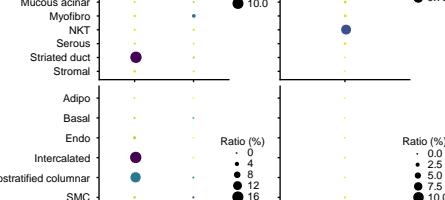

Pancreas


PBMC

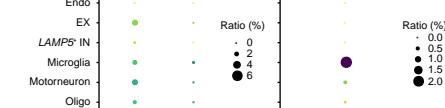

Pigmentary epithelium

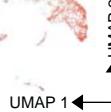
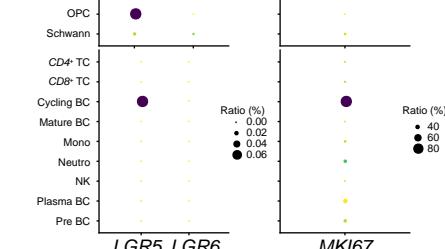

Pineal gland


Pituitary gland

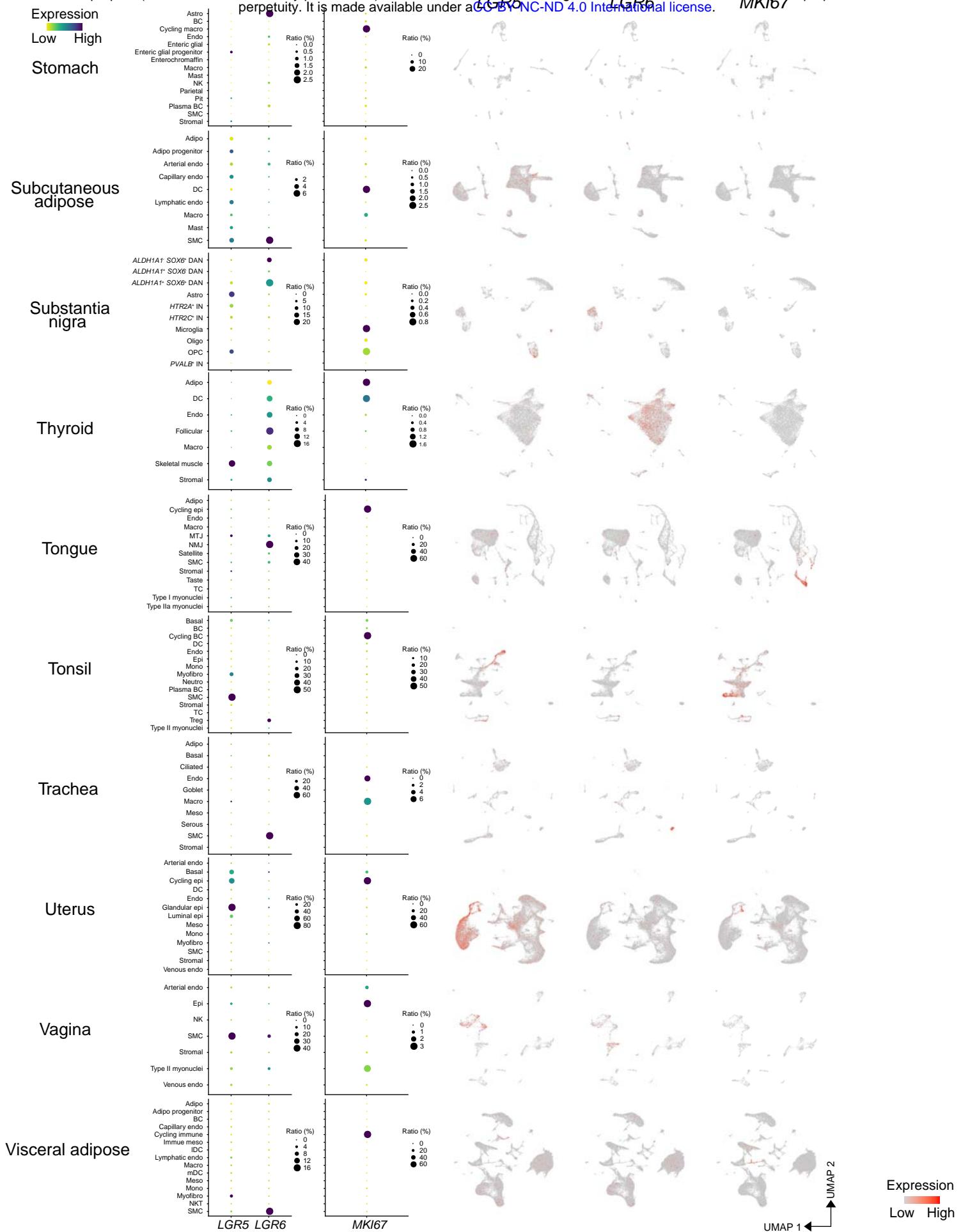

Prostate

Retina

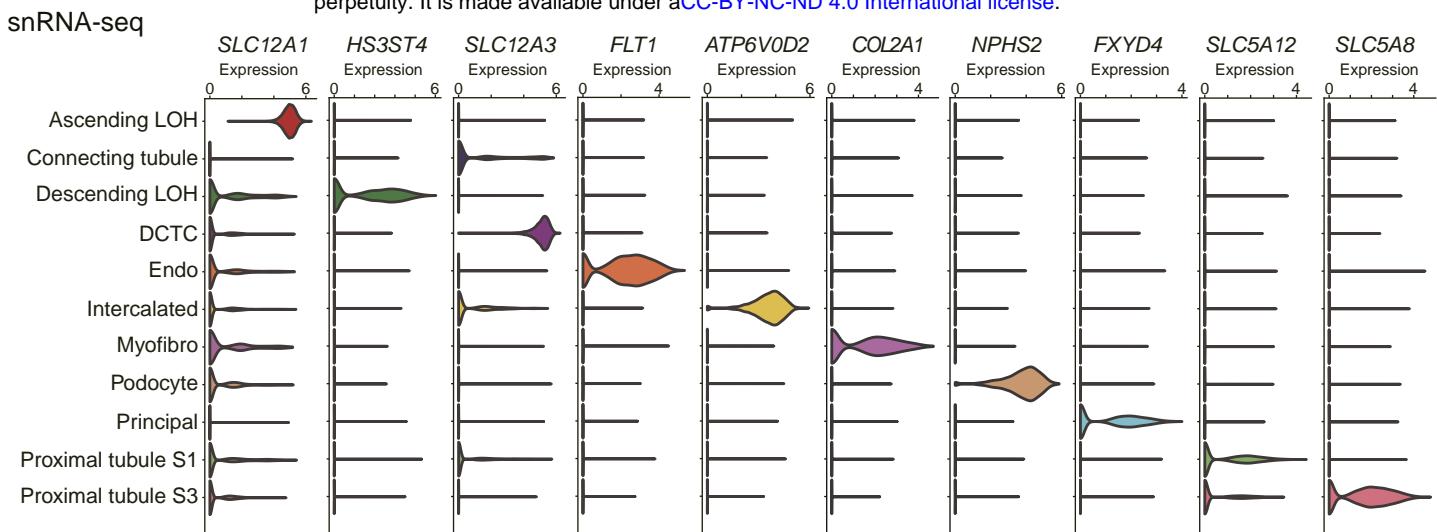

Salivary gland



Spermaduct

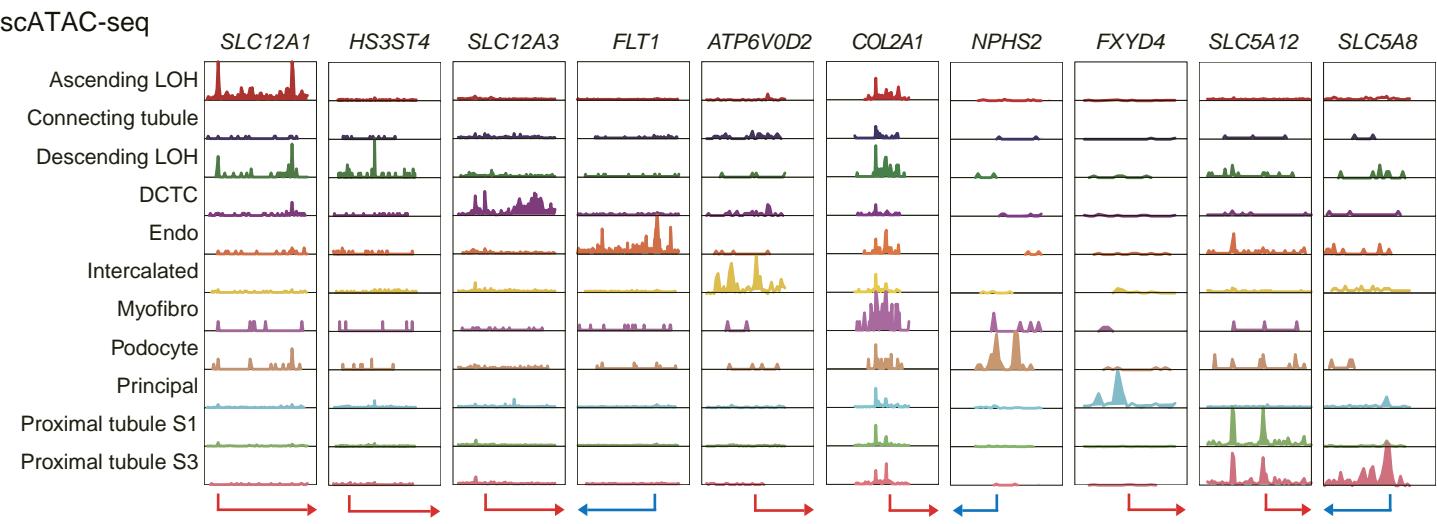
Spinal cord

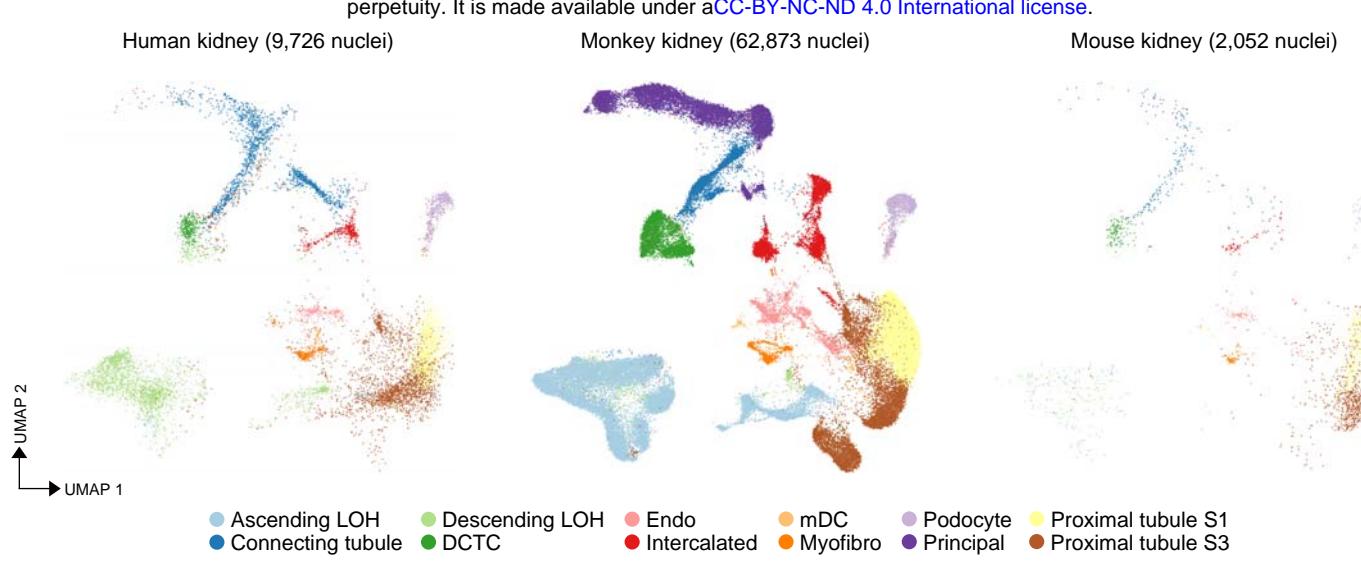


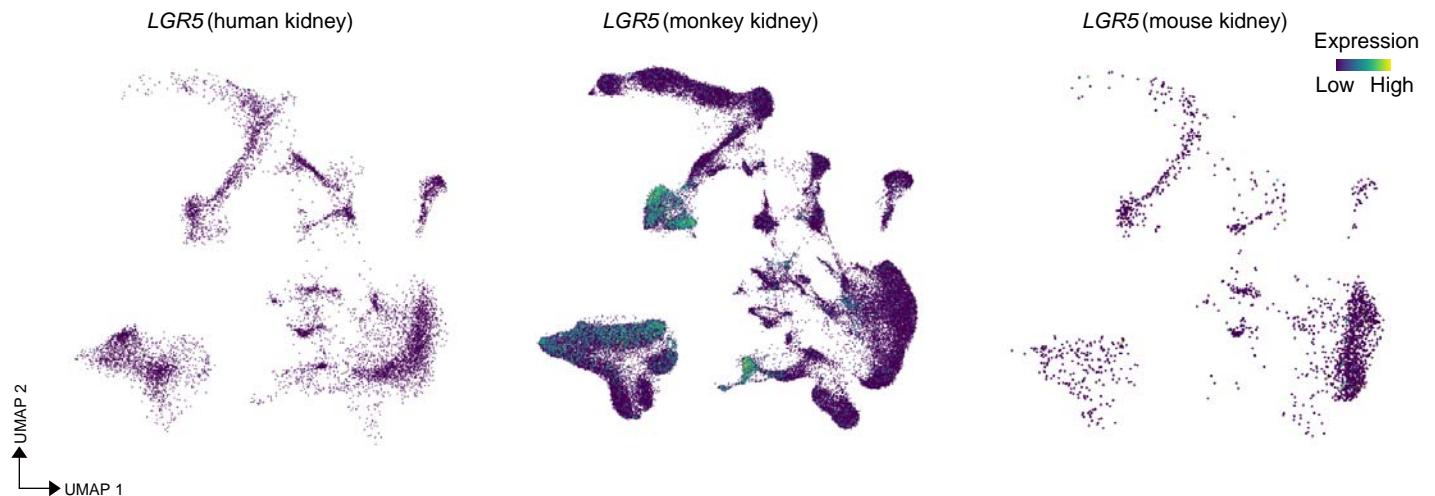
Spleen

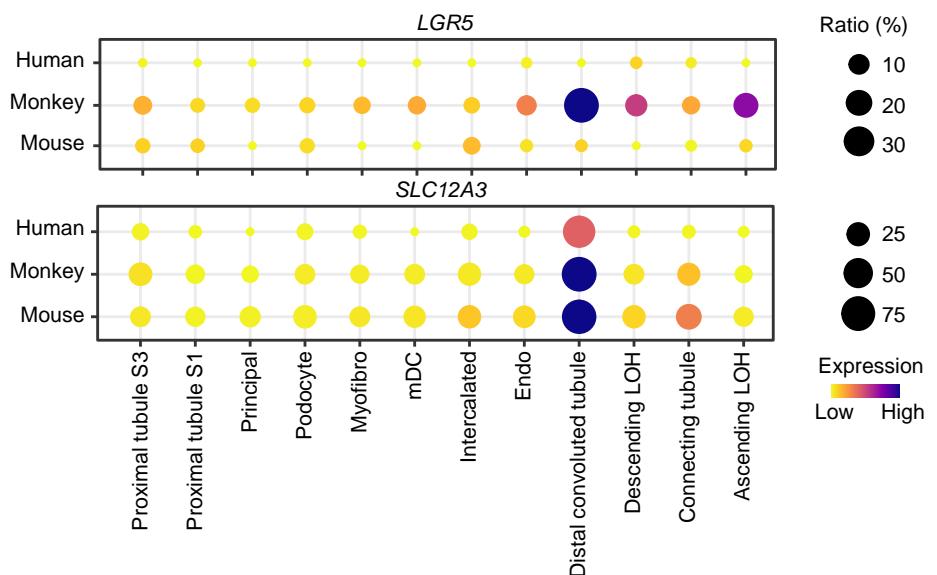


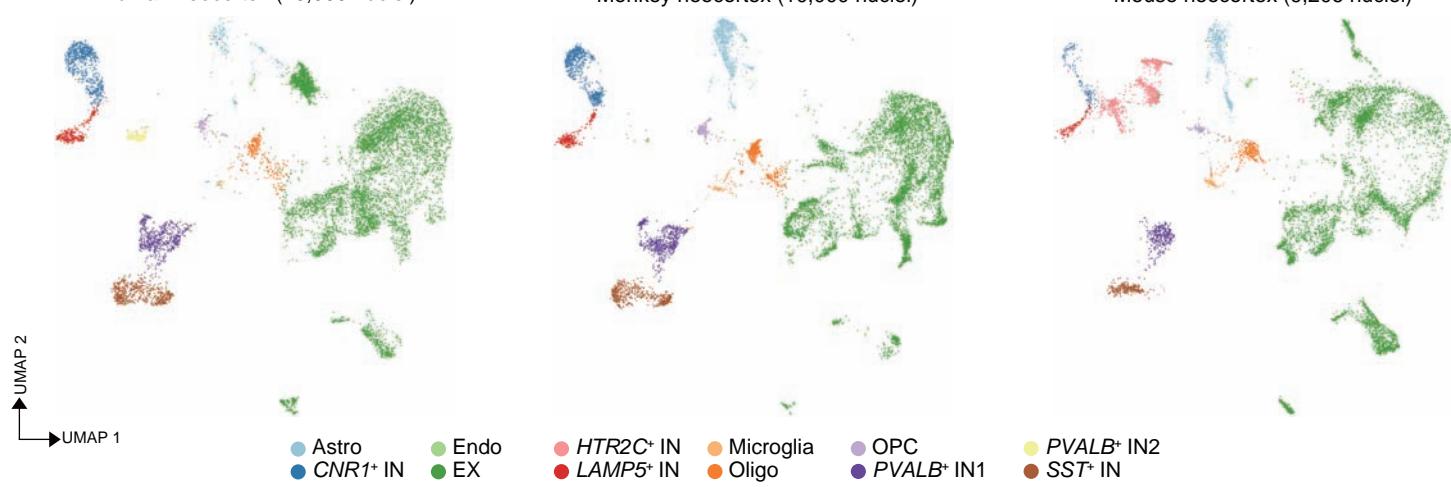
Expression
Low High

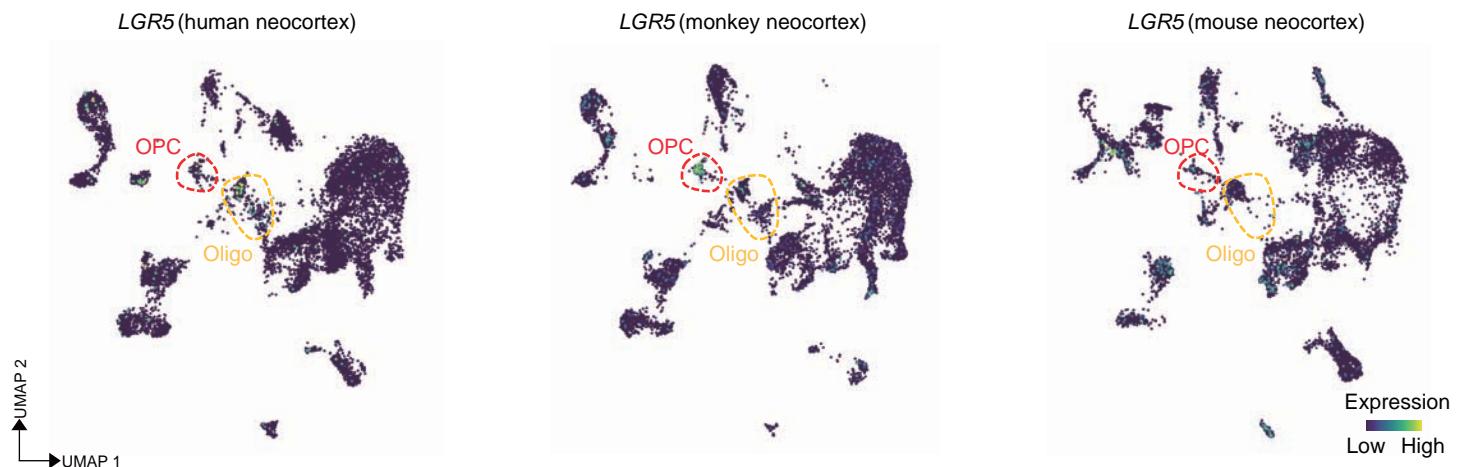

Extended Data Figure 21

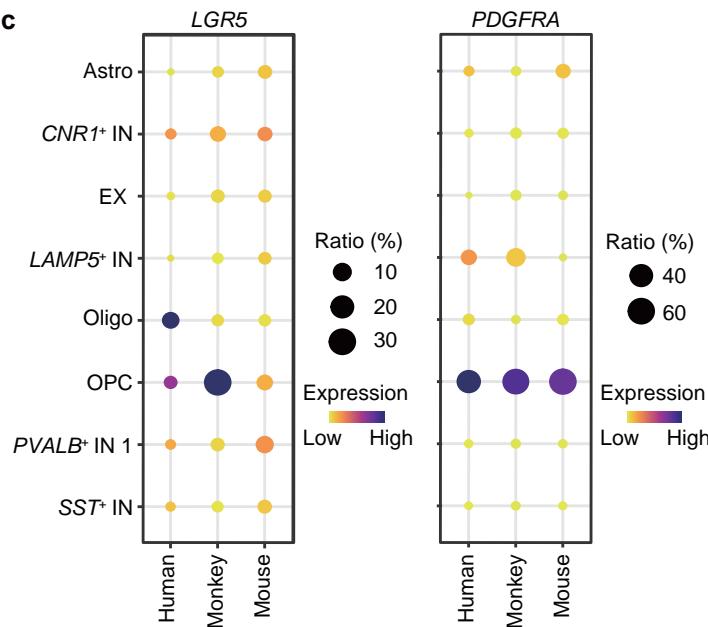

a

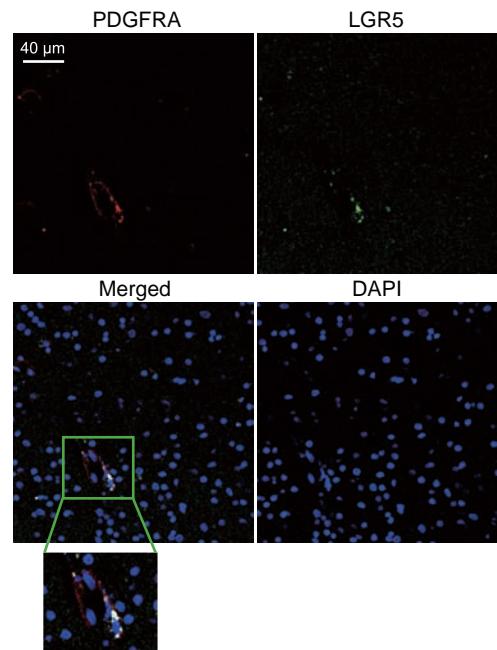

b

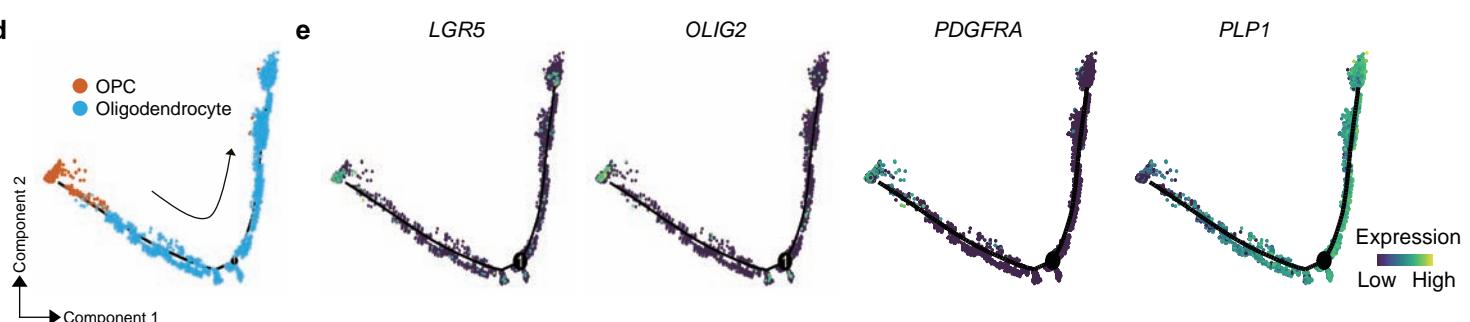

a

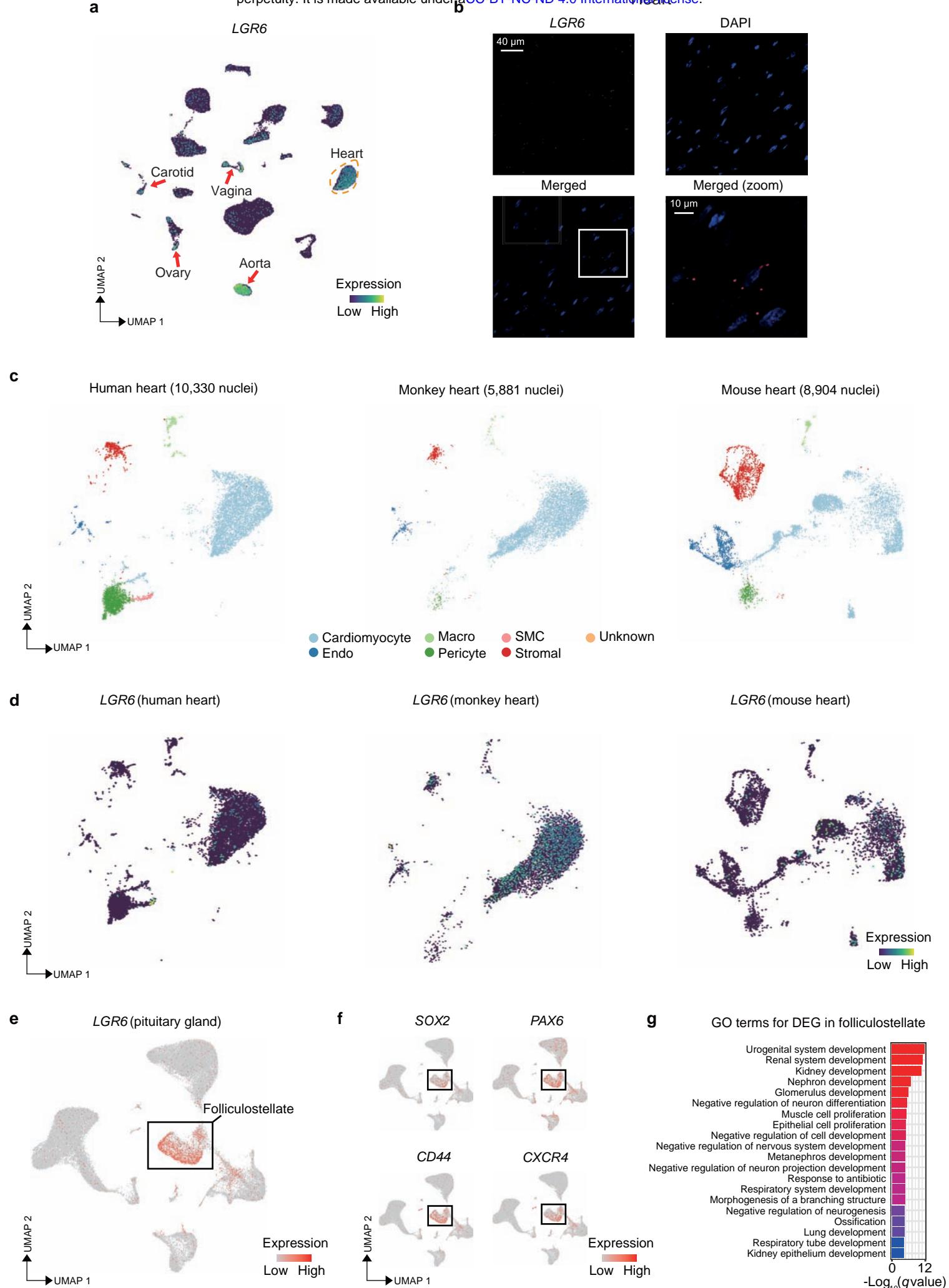

b


c

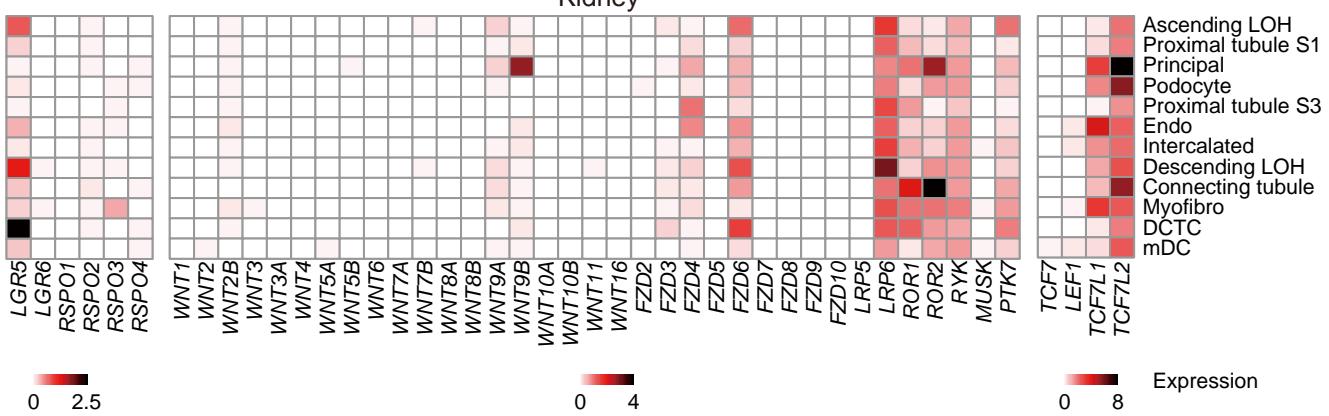

a


b

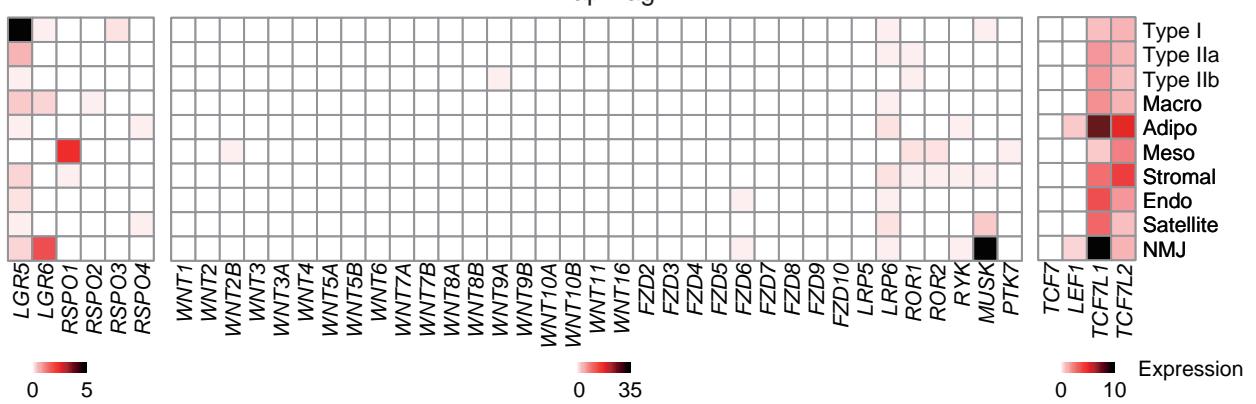

c



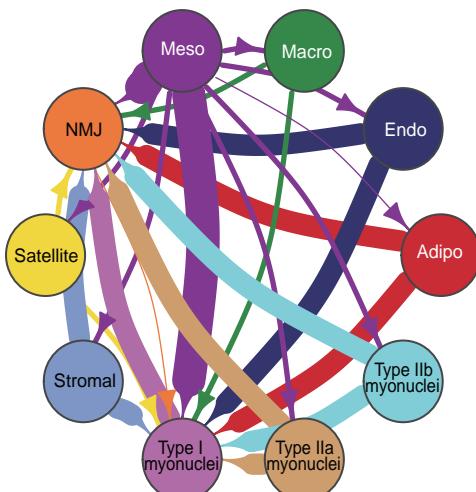
f



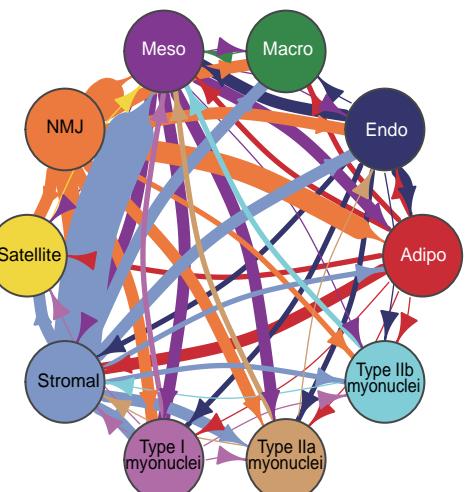
d



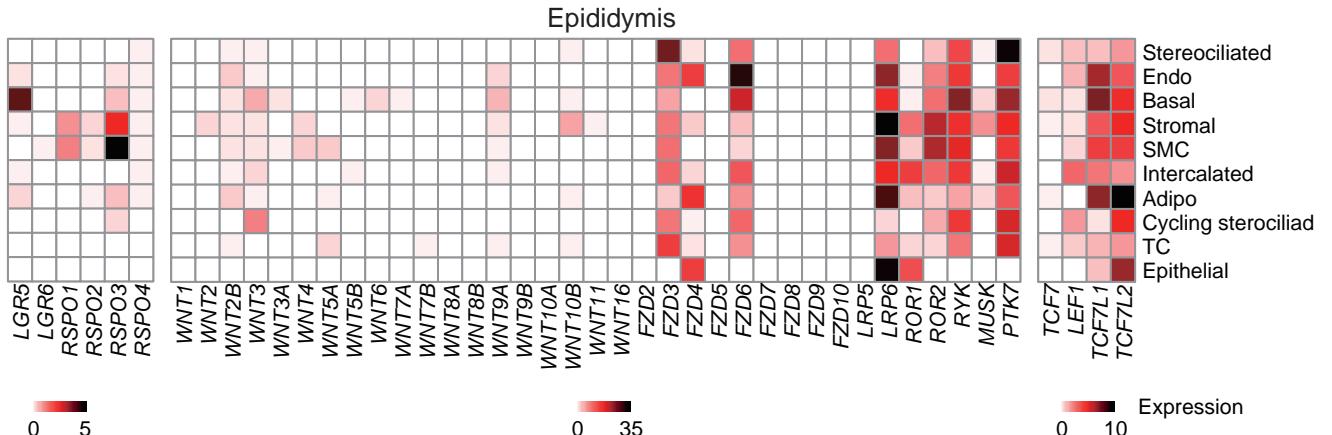
a



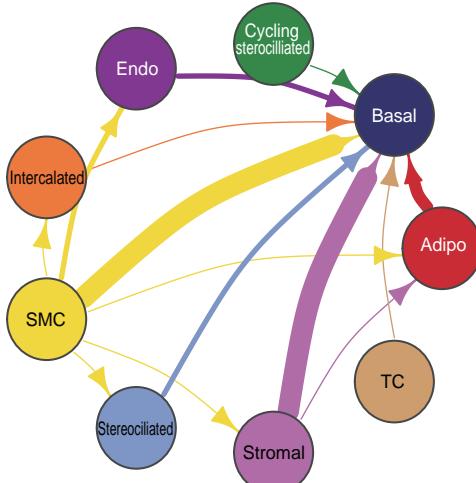
a



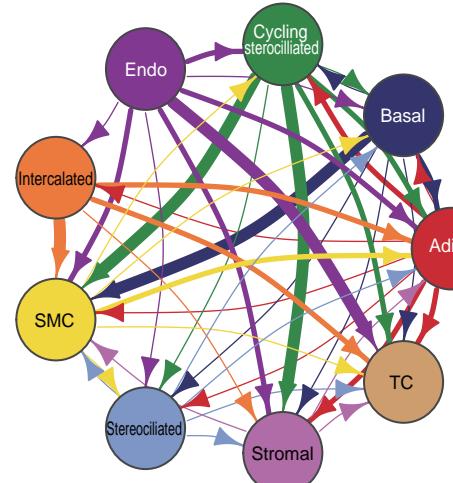
b


Ligand RSPO1-4 : Receptor LGR5,6

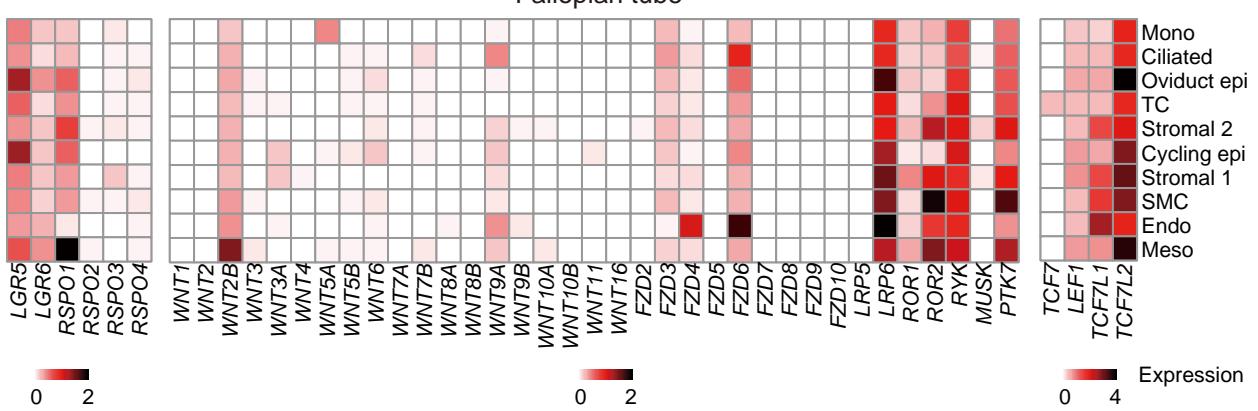
Ligand WNT factors : Receptor FZD etc



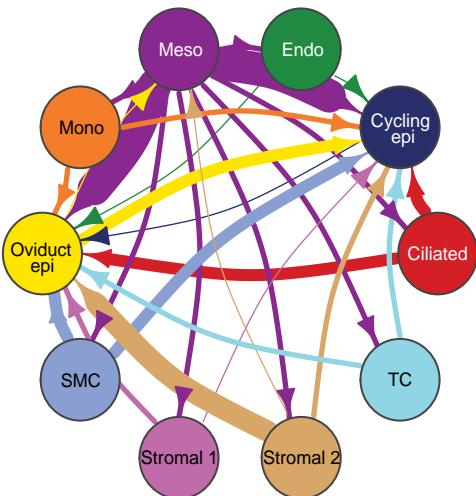
c



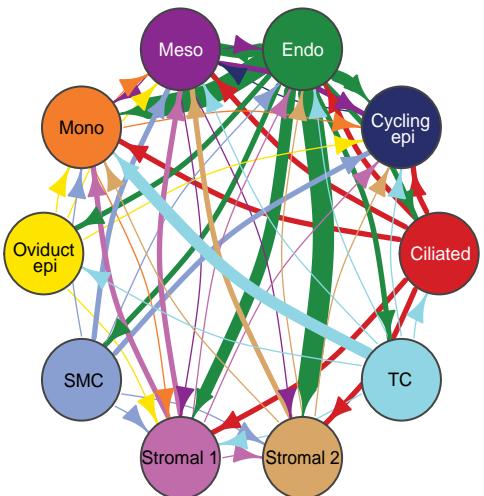
d


Ligand RSPO1-4 : Receptor LGR5,6

Ligand WNT factors : Receptor FZD etc

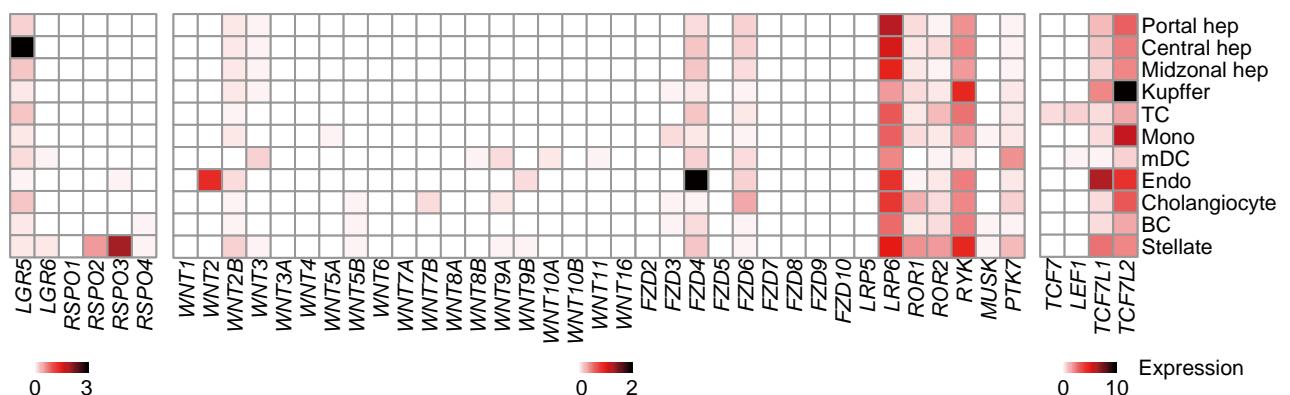


a

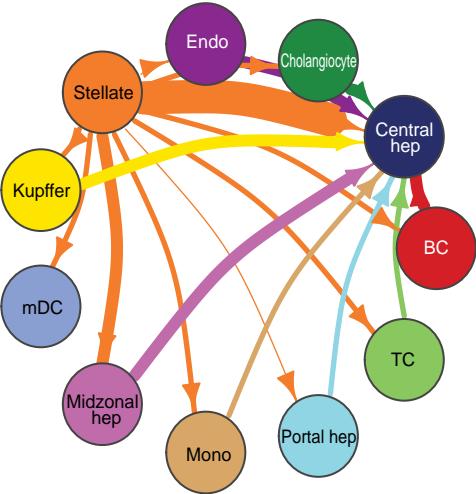


b

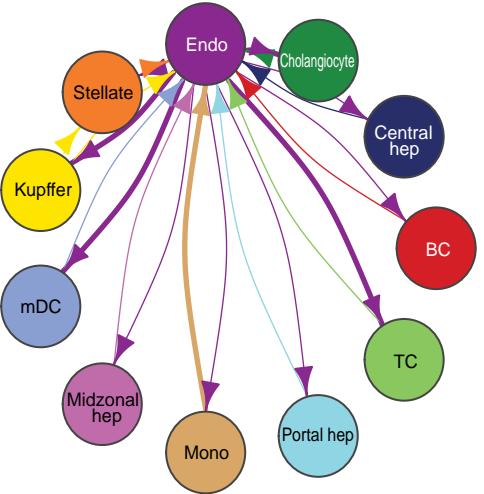
Ligand RSPO1-4 : Receptor LGR5,6



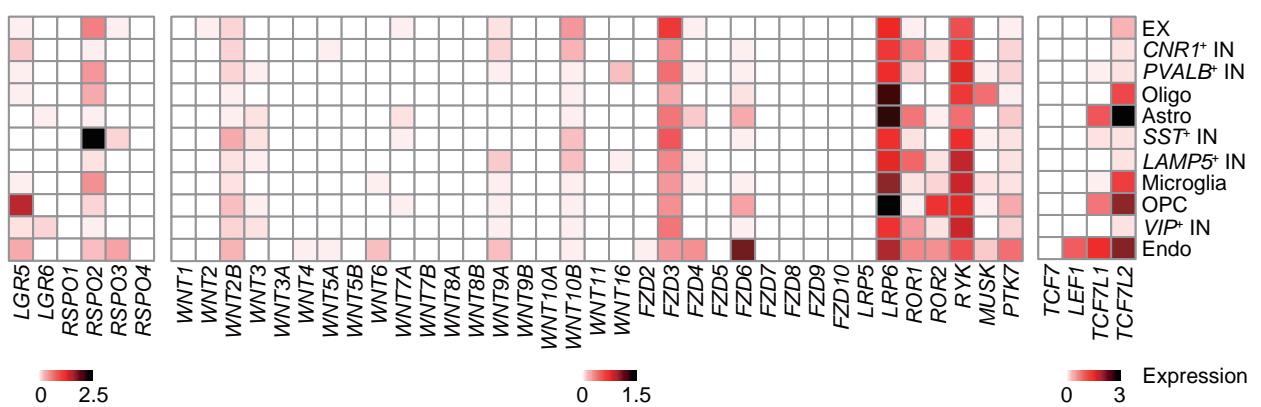
Ligand WNT factors : Receptor FZD etc


c

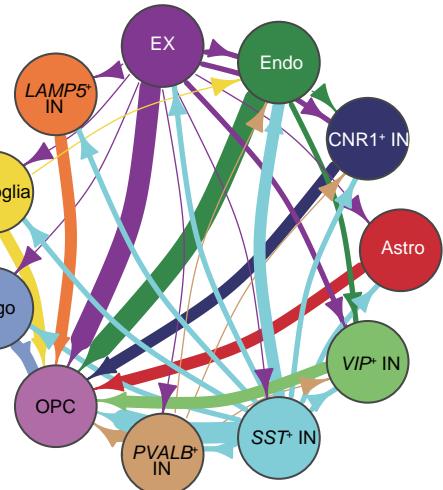
Liver



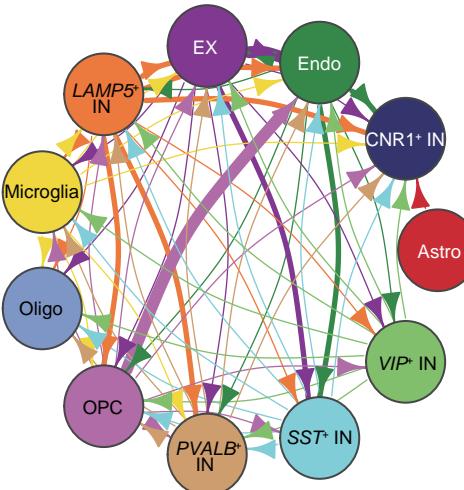
d


Ligand RSPO1-4 : Receptor LGR5,6

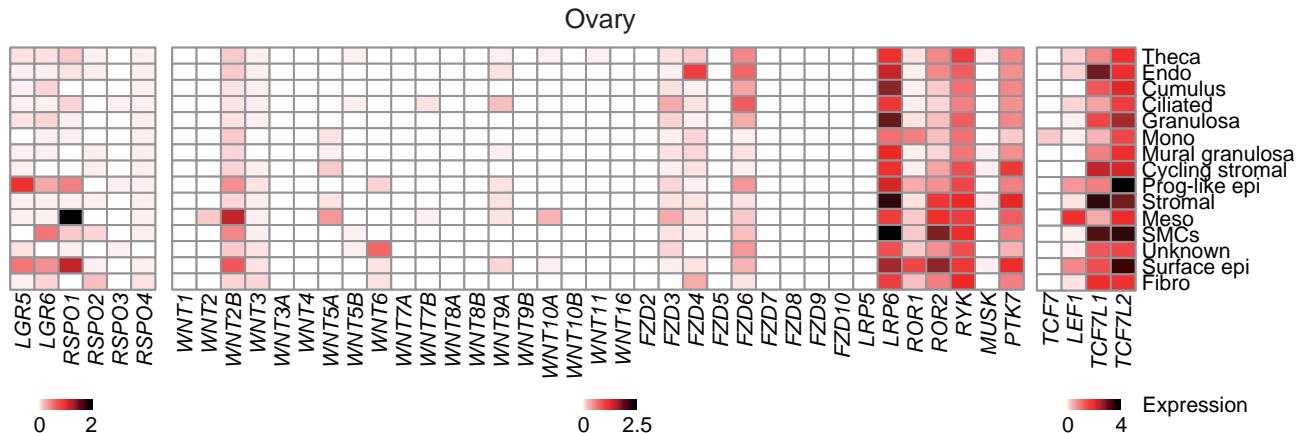
Ligand WNT factors : Receptor FZD etc



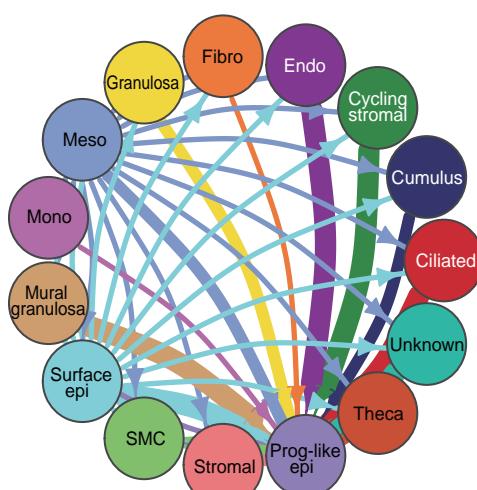
a



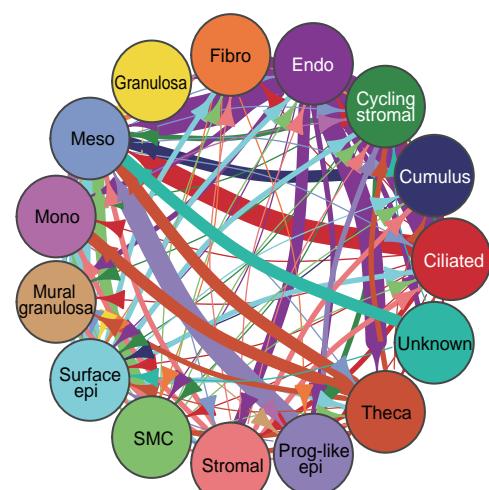
b


Ligand RSPO1-4 : Receptor LGR5,6

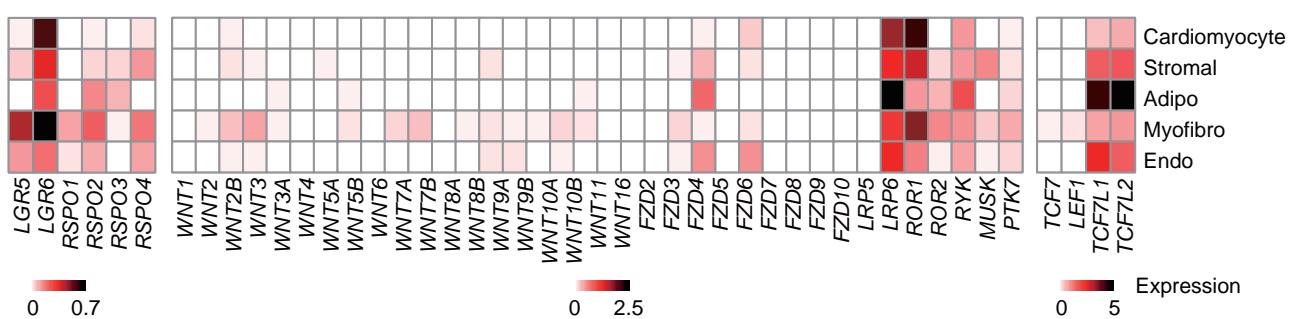
Ligand WNT factors : Receptor FZD etc



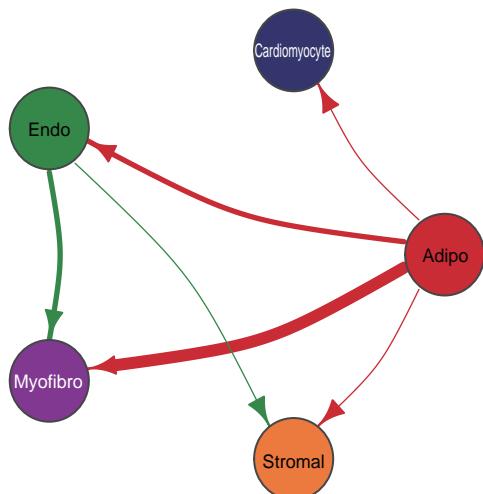
c



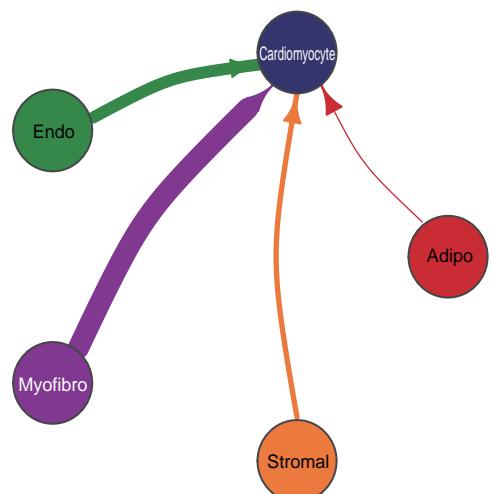
d


Ligand RSPO1-4 : Receptor LGR5,6

Ligand WNT factors : Receptor FZD etc

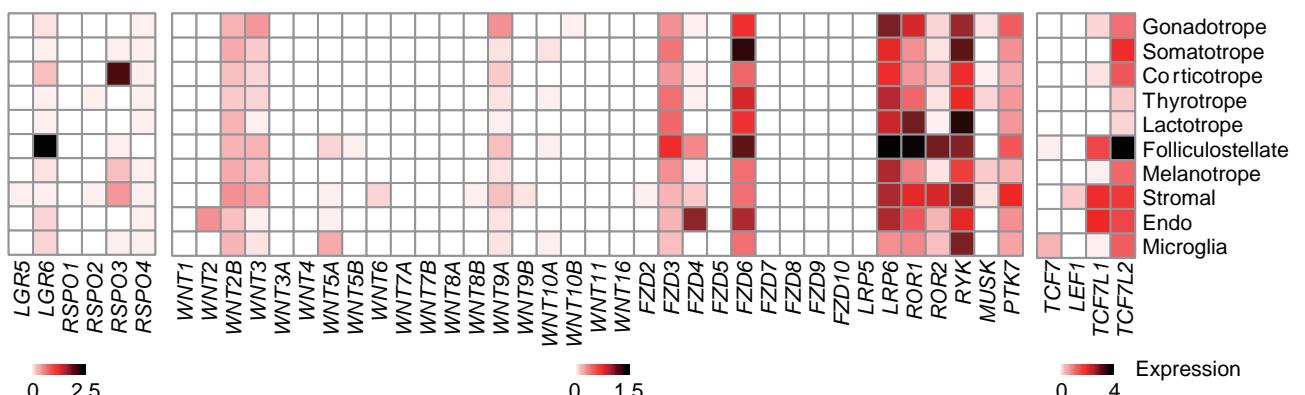


a

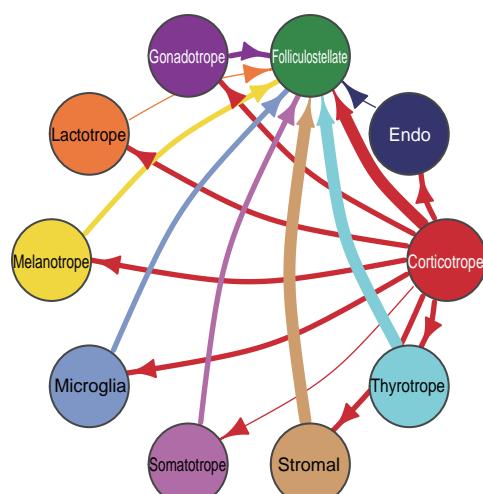


b

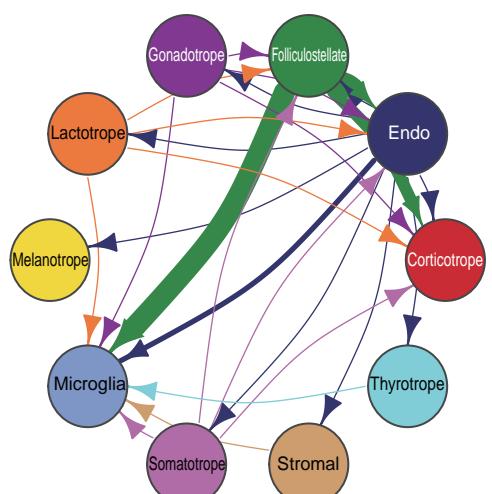
Ligand RSPO1-4 : Receptor LGR5,6



Ligand WNT factors : Receptor FZD etc


c

Pituitary gland



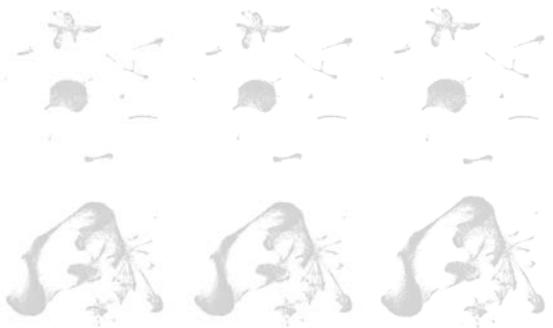
d

Ligand RSPO1-4 : Receptor LGR5,6

Ligand WNT factors : Receptor FZD etc

Extended Data Figure 32

ACE2


444 SP6 Co-expressed

1141

TMPRSS2

Co-expressed

Abdominal
wall

Epididymis

Adrenal gland

Esophagus

Aorta

Fallopian tube

Bladder

Gallbladder

Bone marrow

Heart

Bronchus

Kidney

Carotid

Liver

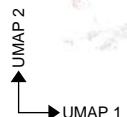
Cerebellum

Lung

Colon

Lymph node

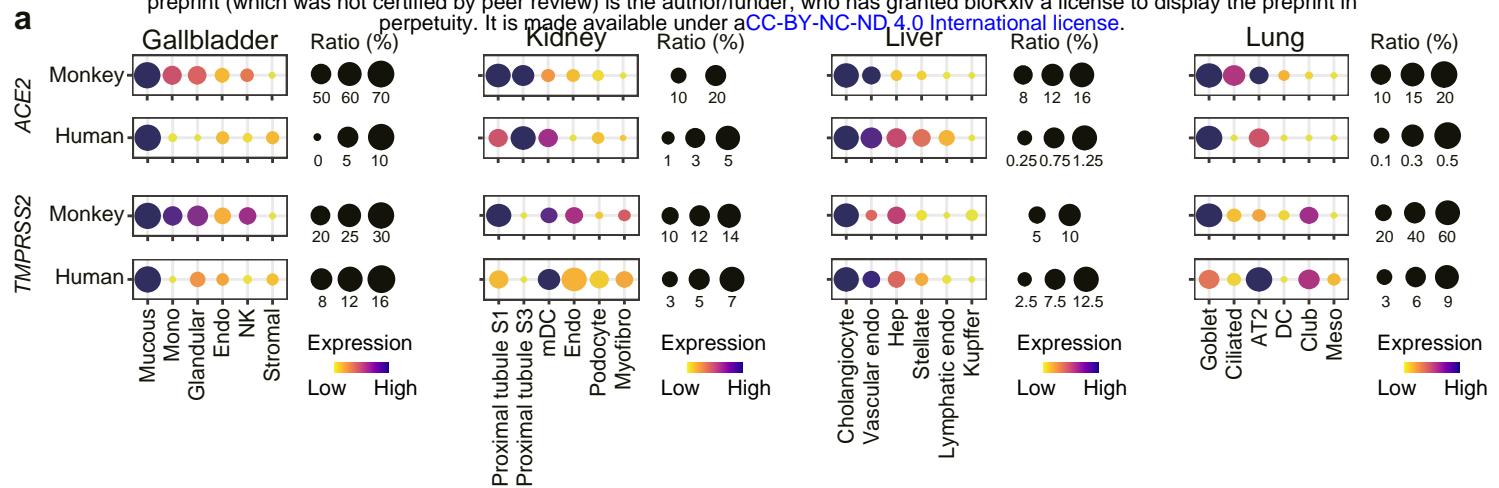
Diaphragm


Neocortex

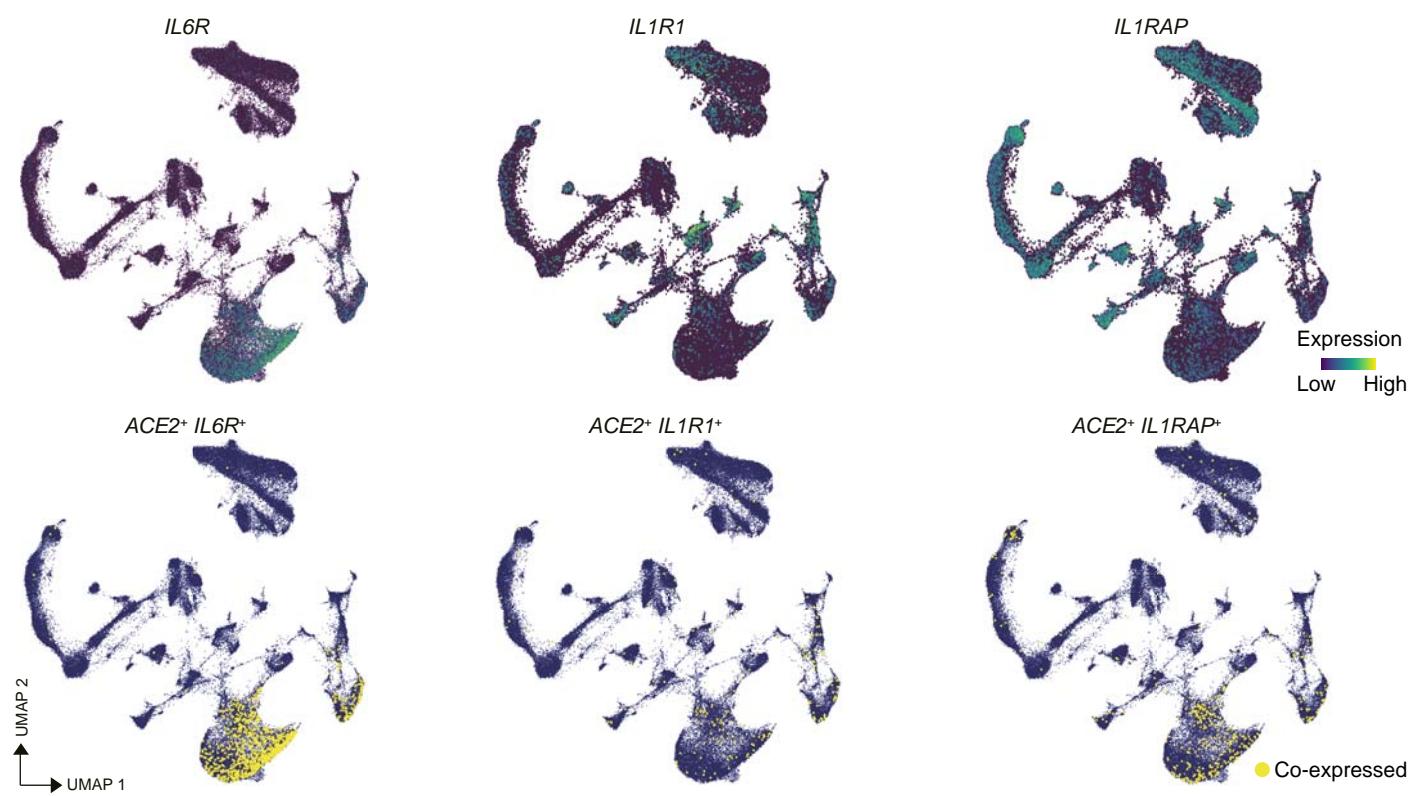
Duodenum

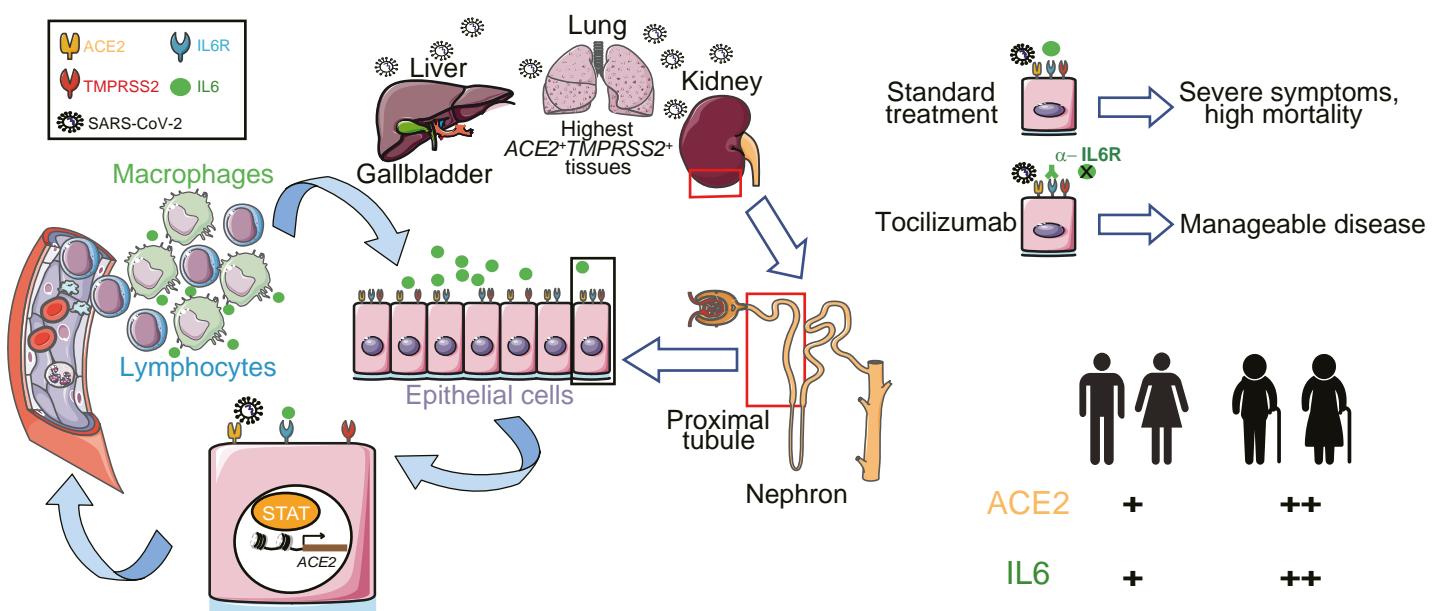


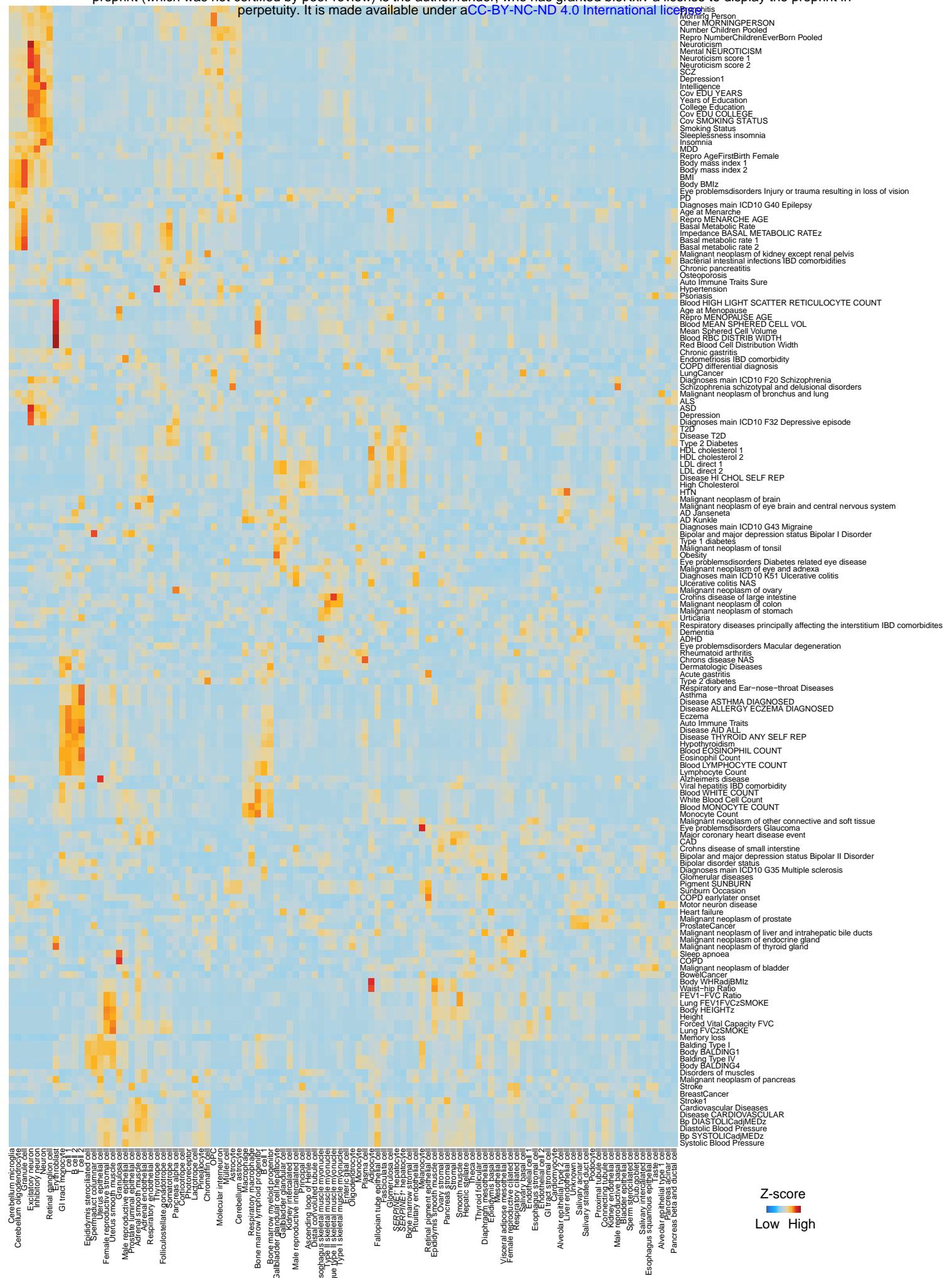
Ovary



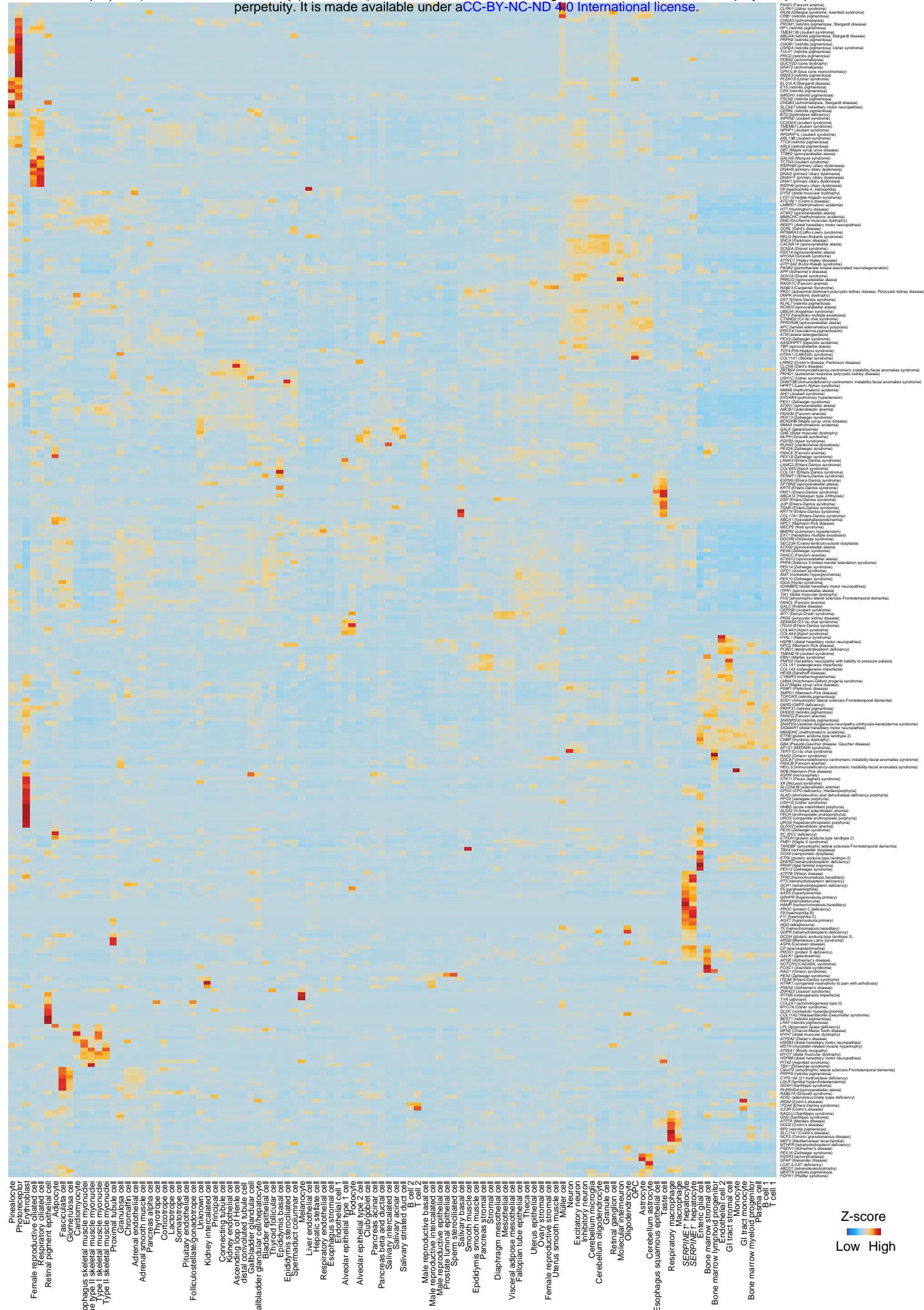
Expression
Low High


Extended Data Figure 33


a



b



c

Extended Data Figure 36

Extended Data Figure 37