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Abstract 

The availability of increasing quantities of crop pangenome data permits the detailed association of 

gene content with agronomic traits. Here, we investigate disease resistance gene content of diverse 

soybean cultivars and report a significant negative correlation between the number of NLR 

resistance (R) genes and yield. We find no association between R-genes with seed weight, oil or 

protein content, and we find no correlation between yield and the number of RLK, RLP genes, or the 
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total number of genes. These results suggest that recent yield improvement in soybean may be 

partially associated with the selective loss of NLR genes. Three quarters of soybean NLR genes do not 

show presence/absence variation, limiting the ability to select for their absence, and so the deletion 

or disabling of select NLR genes may support future yield improvement. 

Author contributions 

P.E.B., H.H., and M.C.D carried out the analysis. B. V. , H. N., and R.J.K. supplied data. P.E.B., M.C.D., 

B. V., H.N, J.B. and D.E. wrote the manuscript.  

Main 

Soybean is the leading legume crop globally, covering an estimated 6% of arable land 1. With 

advances in breeding and agronomy, soybean yield has increased from 15 kg ha-1 yr-1 prior to the 

1980s, to 30 kg ha-1 yr-1 in the late 90s 2. However, since 2000, increases in soybean yield have been 

limited 3, and new strategies are needed to increase yield to meet the global demand for this crop. 

The application of genomics has the potential to accelerate the production of high yielding varieties 

adapted to a changing climate 4. Recent advances in pangenomics supports the study of gene 

presence/absence variation during selection 5,6. Pangenomes have been constructed in several crop 

species, including Brassica oleracea 
7,8

, soybean 
9-11

, sesame 
12

, wheat 
13

, and banana 
14

. Several 

genes demonstrating presence/absence variation influence crop traits, for example flavour in 

tomato 
15,16

, or submergence tolerance in rice 
17-19

. Dispensable genes are enriched for functions 

related to disease resistance 
8,10,20

 allowing breeders to select for their presence or absence. 

We have previously identified an association between gene content and breeding in soybean 10. 

There is evidence for a continuing trade-off between disease resistance and yield 21. For example, 

evidence in Arabidopsis suggests a negative impact of additional disease resistance genes on yield 22, 

while  in wheat there is a significant positive association between yield and disease resistance 23. We 

therefore examined the association between the abundance of candidate disease resistance gene 
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classes and agronomic traits in soybean, including yield, seed weight, oil and protein content. We 

identified 486 nucleotide-binding domain leucine-rich repeat (NLR), 1,173 receptor-like kinase (RLK), 

and 180 receptor-like protein (RLP) gene candidates in the soybean pangenome (Supplementary 

Table 1), and of these three classes, 122 (25%), 89 (8%), and 45 (25%) NLRs, RLKs, and RLPs 

respectively were lost in at least one individual.  

We investigated whether loss of disease resistance genes is associated with agronomic traits, 

especially yield, in soybean (Supplementary Table 2). We hypothesised that some of the previously 

observed overall gene loss may have been driven by breeders selecting against costly NLR genes. As 

expected, NLRs showed a slight reduction in number during domestication from wild G. soja to 

landraces (average 8 genes lost, Mann-Whitney U test, p < 0.001) and during breeding from old to 

modern cultivars (average 3 genes lost, Mann-Whitney U test, p < 0.001, Figure 1). Similar results 

have been observed in rice, where the genome of the wild ancestor Oryza rufipogon contained 

between 2% and 14% more NLR genes than three of four domesticated rice genome assemblies 24. 

We found a significant difference in RLKs and RLPs during domestication between G. soja and 

landraces. We found no such association during modern breeding with one gene lost on average 

from wild G. soja to landraces, and no genes lost on average from old to modern cultivars (Mann-

Whitney U test p > 0.05 in both cases) (Supplementary Figures 1, 2). 

To further investigate whether the loss of NLR genes in modern cultivars is driven by yield and not by 

other breeding targets, we examined associations between yield and NLR numbers using linear 

regression while accounting for accession groups and country of origin. We assumed that different 

accession groups (landrace, old cultivar, modern cultivar) and the accession’s country of origin had 

an impact on the trajectory of gene loss due to different aims of different breeders, so we included 

accession groups and country of origin as covariates in the model linking NLR count with yield. Linear 

modelling revealed a significant negative correlation between the number of NLR genes and yield (-

0.02, p < 0.005, t = - 3.5, Figure 2, Table 3, Supplementary Figures 3-5).  
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Visualising the model’s predicted yield by NLR count shows from 465 to 430 NLR genes, predicted 

yield rises by an average of 0.58 Mg ha
-1

 (Figure 3). In modern cultivars, assuming a yield range of 3.1 

to 2.5 Mg ha
-1

, each additional NLR gene has an average yield penalty of 1.6%. 

We searched for NLR genes directly linked with yield to learn whether the difference in yield could 

be attributed to single NLR genes with strong impacts. To this end we carried out a genome-wide 

association study linking presence/absence in NLR genes with yield (PAV-GWAS). We found four 

candidate gene associations with FDR-adjusted p-value < 0.05. One NL gene was located on the 

reference genome assembly (GlymaLee.01G030900), and three NBS genes were assembled during 

pangenome construction (UWASoyPan00316, UWASoyPan00772, UWASoyPan04354, 

Supplementary Table 3). These genes show different impacts on yield with landraces carrying the 

genes GlymaLee.01G030900 and UWASoyPan00772 showing higher yield, while landraces carrying 

the genes UWASoyPan00316 showed lower yield, with no statistically significant differences in 

individuals carrying UWASoyPan04354 (Supplementary Figure 6). Landraces carrying 

GlymaLee.01G030900 demonstrated an average increased yield of 0.22 Mg ha-1, contrary to the 

trend of negative association of NLR genes. In contrast, landraces carrying UWASoyPan00316 

showed an average lower yield of 0.20 Mg ha
-1

 (Supplementary Table 4). The presence of the four 

candidate genes in the population shows a generally negative trend during domestication and 

breeding from an average of 67.9% in G. soja to an average of 33.7% presence in modern cultivars. 

The only PAV-GWAS gene that appears more often in modern cultivars than old cultivars, contrary to 

the overall pattern of fewer NLR-genes, is GlymaLee.01G030900, which is present in 71% of modern 

cultivars and just 35% of old cultivars. However, the yield changes associated with the four candidate 

genes do not explain all the difference in yield observed.  

To examine whether the link between NLR genes and yield was not due to the previously observed 

overall gene loss in soybean during domestication and breeding 10, we examined whether there was 

an association between overall gene content and yield. We found no significant association between 
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the number of genes per line and yield when accounting for accession group and country of origin (- 

0.00004, p = 0.8, t = -0.2, Supplementary Figure 8, Supplementary Table 5). This confirms that the 

negative association between NLR genes and yield is not due to the overall gene loss during soybean 

breeding. We found no significant association between NLR gene count and protein content, oil 

content, or seed weight (Supplementary Table 6). For these models, the association between 

country and the respective phenotype was always significant reflecting selection for these traits 

during breeding. We also found no significant association for RLPs and RLKs with yield. RLPs and RLKs 

typically have many other functions, for example, fourteen Arabidopsis genes are involved in cold-

response regulation 25, so loss of these genes can have negative results unrelated to a loss of a 

specific disease resistance. 

The association between NLR gene content and yield may be due to several factors. Activation of 

immunity pathways redirects hormone signalling away from plant growth 21 Another explanation is 

the potential cost of resistance gene expression, priming the plant for defence and reducing vigour 

and subsequent yield. In Arabidopsis, disease resistance gene mutation can lead to autoimmunity 

and cell death 
26-29

. Plants with a point mutation in snc1, a TNL NLR gene, over-accumulate the SNC1 

protein leading to negative autoimmune responses 
30,31

. At least one pair of NLR-variants interacts in 

Arabidopsis triggering autoimmunity through the same pathway of plant NLRs recognising foreign 

elicitors 
26

. The introduction of NLR genes can also lead to a reduction in yield. For example, in 

Arabidopsis, transgenic introduction of the NLR RPM1 led to a 9% decrease in total seed number in 

the absence of the pathogen 
22

.  

Our results may explain why disease resistance genes are the most common class of genes among 

variable genes in many of the crop pangenomes assembled to date 8,10,20,32. In the B. oleracea 

pangenomes, 42% of predicted resistance genes were lost in at least one line compared to 19% of all 

B. oleracea genes 7,8, while in the amphidiploid B. napus, 69% of predicted resistance genes were lost 

in at least one line compared to 38% of all B. napus genes 20,33. If the presence of NLR-genes impacts 
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yield across different crops, the identification and removal of NLR genes may provide a new avenue 

to improve crop yield using genomic tools such as CRISPR-Cas9 
34

. 

Methods 

The pangenome annotation of 10 available at https://doi.org/10.26182/5f34ac3377313 was searched 

for R-gene-specific protein domains and assigned to resistance gene candidate classes using 

RGAugury 35 v2016-11-10. Per-line R-gene counts were calculated using R 36 v3.6.3 and tidyverse 37 

v1.3.0. 

Phenotype data for all soybean lines was downloaded from GRIN-Global, U.S. National Plant 

Germplasm System. Yield was measured for 656 soybean landraces, 33 old and 52 modern cultivars. 

Oil and protein content were measured for 677 landraces, 41 old and 71 modern cultivars. Seed 

weight was measured for 548 landraces, 31 old and 54 modern cultivars. 

The linear model was fit using lm() of R v3.6.3 using the formula Yield ~ NLR-count + Group + Country. 

The resulting model was investigated using sjPlot 38 v2.8.6, lmerTest 39 v3.1-2, and ggeffects 40 

v0.16.0. Models for other phenotypes were implemented using the same formula of ~ NLR-count + 

Group + Country.  

The GWAS was carried out using GAPIT3 v3.1.0 41 using Mixed Linear Model (MLM), Multiple Loci 

Mixed Model (MLMM), General Linear Model (GLM), and FarmCPU 42. We calculated principal 

components (PCs) based on the publicly available SNP data from 10 using SNPRelate v 1.20.1 43 with 

LD-pruning set to 0.2, and used PC1 and PC2 as covariates in GAPIT instead of GAPIT’s in-built 

function. Genes lost in fewer than 5% of individuals were removed from the analysis. 

The analysis is fully reproducible using R 36 v3.6.3, tidyverse 37 v1.3.0, and workflow 44 v1.6.2.9000 

using the code and data available at https://philippbayer.github.io/R_gene_analysis/ and 

https://github.com/philippbayer/R_gene_analysis.  
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Figure legends 

Figure 1: Reduction of NLR gene content across the history of soybean breeding (***: p < 0.001, **: 

p < 0.01, Mann-Whitney U test) showing a reduction of NLR content in two steps: once during 

domestication, and once during the breeding of modern cultivars. 

Figure 1: Linear model of yield based on the number of NLR genes, accession group, and country of 

origin ) showing a statistically significant association between yield and the number of NLR genes). 

The plot is coloured by country with the five most-common countries labelled. 

Figure 2: Predicted values of non-normalised yield using the NLR count based on the linear model. 
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Table 1: Calculated slope for the number of NLR genes and the intercept for the mixed-effect model using landrace as the 

baseline (**: p<0.005 using t-tests with Satterthwaite's method) 

Predictors Estimates 95% CI p-value 

Intercept (Country) 9.307 4.295 – 14.318 <0.001 ** 

NLR count -0.016 -0.027 - -0.005 0.005 ** 

Group Old cultivar -0.218 -0.491 – 0.056 0.118 

Group Modern cultivar 0.801 0.380 – 1.222 <0.001 ** 
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Figure 3: Reduction of NLR gene content across the history of soybean breeding (***: p < 0.001, **: p < 0.01, Mann-Whitney 

U test) showing a reduction of NLR content in two steps: once during domestication, and once during the breeding of 

modern cultivars. 
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Figure 4: Linear model of yield based on the number of NLR genes, accession group, and country of origin showing a 

statistically significant association between yield and the number of NLR genes). The plot is coloured by country with the 

five most-common countries labelled. Predictions of the model for all countries averaged are shown in black. 
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Figure 5: Predicted interaction effect on yield by the number of NLR genes by group 
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