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Abstract 

Models of MECP2 dysfunction in Rett syndrome (RTT) assume that transcription rate changes directly 

correlate with altered steady-state mRNA levels. However, limited evidence suggests that transcription 

rate changes are buffered by poorly understood compensatory post-transcriptional mechanisms. Here we 

measure transcription rate and mRNA half-life changes in RTT patient neurons using RATE-seq, and re-

interpret nuclear and whole-cell RNAseq from Mecp2 mice. Genes are dysregulated by changing 

transcription rate only or half-life only and are buffered when both are changed. We utilized classifier 

models to understand the direction of transcription rate changes based on gene-body DNA sequence, and 

combined frequencies of three dinucleotides were better predictors than contributions by CA and CG. 

MicroRNA and RNA-Binding Protein (RBP) motifs were enriched in 3ʹUTRs of genes with half-life 

changes. Motifs for nuclear localized RBPs were enriched on buffered genes with increased transcription 

rate. Our findings identify post-transcriptional mechanisms in humans and mice that alter half-life only or 

buffer transcription rate changes when a transcriptional modulator gene is mutated in a 

neurodevelopmental disorder. 
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Introduction 

Rett syndrome (RTT) is a neurodevelopmental disorder in girls caused by damaging mutations in 

the methyl CpG-binding protein 2 (MECP2)1. Most evidence indicates that MECP2 regulates transcription 

globally after binding to methylated (m)CG dinucleotides in immature neurons and mCA dinucleotides in 

adult neurons2–8. Specifically, recent models support a role for MECP2 binding to mCA/mCGs in the 

gene-body that can: 1) slow RNA polymerase II elongation5 2) inhibit transcription initiation by looping 

interactions between the promoter and high-density MECP2-bound gene-bodies9 or 3) inhibit transcription 

initiation by microsatellite interruptions of nucleosome binding that impact intragenic enhancer 

activation10.  

The number or fraction of mCA/mCG and gene-length have been primarily used to interpret 

transcription rate dysregulation in RTT mouse models5,9. However, the informative power of these DNA 

features is limited, and it is still challenging to anticipate a priori which genes are transcriptionally up- or 

down-regulated in RTT, raising questions whether other sequence features might also participate in 

transcription dysregulation mediated by the loss of MECP211. Recent developments in machine learning 

techniques have revealed unsuspected DNA and RNA-sequence features associated with gene regulatory 

programs12,13. Employing these techniques in the RTT context could help explain the molecular 

mechanisms of MECP2 function and uncover other DNA sequence features important for MECP2 

function.  

Genome-wide analyses of steady-state mRNA levels and transcription rate changes in RTT models 

have demonstrated a global dysregulation of gene expression5,9,14–18. It is uniformly acknowledged that 

the magnitude of mRNA steady-state level changes is surprisingly small3,4,14,18,19. In 2017, Johnson et al17 

used GRO-Seq for nascent RNA and RNA-Seq of chromatin, nuclear, and cytoplasmic subcellular 

fractions to reveal the small steady-state alterations in the Mecp2-null mouse brain is the result of a 

previously unsuspected post-transcriptional regulatory mechanism. They proposed that large transcription 

rate changes are compensated by reciprocally adjusting mRNA half-life, and they provided initial support 

for the role of two RNA-binding proteins (RBPs). In particular, they examined the enrichment of 12 RBP 

binding sites in subsets of mRNAs and identified HuR-(ELAVL1) cis-acting elements in the 3ʹUTR with 

extended mRNA stability, or AGO2 cis-acting elements with reduced stability to implicate the action of 

unknown miRNAs17. Their model of post-transcriptional regulation is similar to transcription buffering 

where RBPs present in the nucleus tag nascent mRNAs and shuttle with them to the cytoplasm. The RBPs 

then modify half-life to buffer transcription rate changes that preserve steady-state levels (reviewed by 
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Hartenian E et al. 201920). These results have not been independently tested in mouse and it is unknown 

whether the mechanism is conserved in human RTT neurons. Therefore, it is important to experimentally 

measure the direction and magnitude of half-life changes in human MECP2-null neurons. Moreover, the 

post-transcriptional mechanism has not been studied by systematic enrichment analysis of all known 

miRNA and RBP cis-acting elements of the post-transcriptionally regulated mRNAs. 

Here, we simultaneously investigate the potential role of sequence features mediating 

transcriptional dysregulation in RTT and expand on the post-transcriptional findings of Johnson et al in 

human isogenic induced Pluripotent Stem Cell (iPSC)-derived RTT neurons. We used RNA-approach to 

equilibrium-sequencing (RATE-Seq) to measure transcription rate and half-life changes and employed 

machine learning to uncover sequence features underlying these changes in human and mouse RTT 

models. In parallel, we compared our human neuron findings to the high confidence RNA-seq from 

subcellular fractionations of Mecp2 mutant mouse brains9. We found that transcription rate changes in 

both human and mouse datasets are best predicted by combinations of three dinucleotide frequencies in 

gene-bodies that include the expected CA/CG motifs, but are most accurate if they also include other 

dinucleotides. We discover extensive half-life changes that identify: 1) a gene set with exclusive mRNA 

stability dysregulation (half-life only) and no associated transcription rate changes; and 2) a larger buffered 

gene set in which half-life regulation compensates for transcription rate changes that fully offset or 

minimize mRNA steady-state changes. We demonstrate a global absolute downregulation of miRNA 

levels, that corresponds with a global absolute half-life increase in RTT neurons. We found individual 

enriched miRNA binding-sites in the half-life only gene set but very few in the buffered gene set. RBP-

binding sites were enriched in the 3ʹUTRs of half-life only genes, and distinct sites were also enriched in 

buffered genes with increased transcription rate. Overall, we propose that transcription rate increases in 

MECP2 neurons are subject to surveillance by RBPs that post-transcriptionally regulate RNA half-life. 

We find that the buffering of transcription rate changes by half-life changes is a conserved feature of RTT 

models which minimize the steady-state changes in mRNA levels. 
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Results 

Transcription rate changes in RTT neurons do not always alter mRNA steady states 

To simultaneously measure direct changes in transcription rate, half-life, and mRNA abundance 

levels at steady-state in RTT neurons, we performed RATE-seq on human cortical neurons derived from 

WT (NEUWT) and MECP2-Null (NEURTT) isogenic patient-derived iPSCs21 (Fig 1A, Fig S1A-L). 3ʹend 

RNA-seq (QuantSeq) was utilized to quantitatively map 3ʹUTR isoform diversity to better understand the 

role of miRNAs and RBP-binding sites in half-life regulation and buffering of transcription dysregulation. 

Multiple RNA spike-ins controlled for 4sU pulldown efficiency, background contamination, and 

equivalent cell numbers. Steady-state levels were measured from an input sample taken at the 24-hour 

time-point. The transcription rate was measured from 0.5- and 1-hour time-points, by calculating the 

number of newly synthesized mRNAs in 1 hour. Finally, the half-life was derived from an equilibrium 

relationship between steady-state and transcription rate as a ratio of the two quantities. To measure 

absolute half-life in hours we estimated 4sU saturation curves as a time required to reach half of the steady-

state mRNA abundance (Fig 1A, Fig S1A-L, see methods). 

As expected, we found widespread dysregulation of transcription rate and steady-state in the 

NEURTT neurons (Fig 1B-D, S1M, Supplementary table 1). An independent 5-Ethynyl Uridine (EU) 

metabolic incorporation assay experimentally validated transcription rate changes of specific genes by 

qRT-PCR (Fig 1E). Reassuringly, comparison of our transcription rate datasets with a MECP2 ChIP-seq 

in mouse brain revealed that the genes with the highest changes in TR were more enriched for MECP2-

binding (Fig S1N), and most transcriptionally upregulated genes displayed lower basal transcription rate 

in the WT controls (Fig S1O)9. Importantly, we found that approximately half of the transcription rate 

dysregulated genes in NEURTT were not altered at the steady-state mRNA level (Fig 1F). 

Given the relevance of these findings to disease mechanisms, we validated the discrepancy 

between transcription rate and steady-state changes in an orthogonal in vivo RTT system. We re-analyzed 

the high-confidence datasets from Boxer et al9 that sequenced nuclear and chromatin-associated mRNA 

abundance as a proxy for transcriptional dysregulation and the whole-cell fractions from cortical forebrain 

samples of WT, Mecp2 y/-, and point-mutant Mecp2 R306C adult mice (Fig 1G). Our analysis shows a 

similar pattern where approximately half of the genes transcriptionally dysregulated are not altered at the 

steady-state level (Fig 1G-H). This confirms that transcription rate dysregulation in the absence of MECP2 

does not automatically result in altered steady-state mRNA levels, and that unaltered steady-state mRNA 

level does not automatically mean there is no change in transcription rate. 
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The direction of transcription rate changes in RTT neurons is predicted by gene-body dinucleotide 

frequencies 

The high fraction or number of mCA/mCG in longer genes have been associated with the small 

magnitude upregulation of these genes in Mecp2 mouse models3,7,9. However, consistent with Johnson et 

al17, our analyses did not show a gene-body length effect in genes dysregulated at the transcription rate or 

steady-state (Figure S2A). The contribution of other sequence features that predict which genes will be 

transcriptionally dysregulated in RTT models has not been systematically evaluated in vivo11. To learn 

sequence features of the differentially expressed genes that are relevant for the direction of transcriptional 

shifts in our immature RTT neurons, we trained a classifier model using our measurements of genome-

wide transcription rate changes in NEURTT (Figure 2A and S2B). As anticipated by the lack of correlation 

between gene-body length and transcription rate changes (Figure S2A), this model also resulted in random 

predictions based on gene-body length (including introns) (Figures 2B and S2C-D). In contrast, 

frequencies of dinucleotides in the gene-body produced high prediction accuracies similarly found when 

using either the coding sequence (CDS) or 3ʹUTR (Figures S2C-D). The prediction accuracies of CA/CG 

in gene-bodies were lower than predictions based on any combination of dinucleotides even when 

combined with gene-body length. In fact, removal of CA/CG from the model had no negative effect on 

prediction accuracy. This supports a prominent role for additional gene-body dinucleotide combinations 

in modulating transcription rates (Figures 2B and S2C-D). 

To test the combined dinucleotide-based predictive model in an orthogonal in vivo system, we 

trained a classifier model on the data from Boxer et al which also includes cytosine methylation 

quantification (Fig 1G)9. In the adult mouse brain, our model captured gene-body length and mCA fraction 

as predicting whether a gene is transcriptionally up-regulated in the absence of Mecp2 (Figures S2E-F). 

However, these models do not discern whether a gene is transcriptionally down-regulated, nor 

discriminate up- versus down-regulated genes (Figures S2E-F). In contrast, the gene-body dinucleotide 

frequencies captured the direction of most transcriptional dysregulation in the Mecp2 y/- mouse, with 

lower accuracy predicted by the CDS and UTR separately, an effect that was independent of gene-body 

length (Figures 2C and S2G-I). Surprisingly, combining CA/CG frequencies had less predictive accuracy 

than combinations of remaining dinucleotides independent of their methylation status (Figures 2C, S2G-

I). To investigate which dinucleotide or combinations thereof were responsible for the high predictive 

accuracy of transcription rate changes in RTT neurons, we repeated the classifier model considering single 

or multiple dinucleotide combinations. The classifier found that specific combinations of three 
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dinucleotides reached the predictive accuracy of the full model for both human and mouse (Figure 2D). 

The top four combinations of three dinucleotides were highly similar between human and mouse, and 

included AT as enriched along with CA and CG (Figures 2D-E) and other dinucleotides. Taken together, 

the classifier models of fetal stage human neurons and adult mouse brain indicate that combined 

frequencies of three dinucleotides that include non-CA/non-CG dinucleotides contribute to the direction 

of transcription rate modulation mediated by MECP2. 

 

mRNA half-life changes in RTT neurons directly alter the steady-state or buffer transcription rate  

The RATE-Seq half-life measurements revealed widespread changes in mRNA stabilities that 

caused a global absolute increase in the mean half-life in NEURTT (Figures 3A-B, S1A-L, and 

Supplementary table 2). These measurements were independently validated on specific genes using 

transcription inhibition and qRT-PCR (Figure 3C). We found approximately 860 genes (~45% of all genes 

with altered half-life) with significantly increased or decreased mRNA half-life but with unchanged 

transcription rate, termed half-life only (HL-only), leading directly to changes in the steady-state levels 

(Figures 3D and S3A. See also Figure 1E). These analyses show that a significant fraction of genes 

dysregulated at the steady-state level were exclusively driven by changes in mRNA stability.  

We then explored the impact on steady-state mRNA levels when both half-life and transcription 

rate are changed. We found that in these cases, half-life moved in the opposite direction to transcription 

rate and decreased the net change in steady-state levels (Figures 3D-E). We found that 789 genes exhibited 

full buffering where the RNA half-life entirely offset the transcription rate change resulting in no steady-

state change. A further 298 genes showed half-life changes that partially counteracted the transcription 

rate changes modulating steady-state changes. The contribution of half-life to the steady-state level 

changes (Figure S3B) and buffering (Figure S3C) was independent of the fold-change or FDR thresholds 

chosen. None of the measured changes correlate with gene-body or processed transcript lengths (Figures 

S2A and S3D). We found ~28% of all genes (n= 444) with altered steady-state expression to be exclusively 

dysregulated at the transcription rate level (TR-only), underscoring the role of post-transcriptional 

regulation of mRNA stability in directly altering or buffering the RTT transcriptome. 

 

Half-life shifts and transcription buffering are conserved in Mecp2 mouse models  

Given the importance of finding novel global changes in half-life in the NEURTT neurons and its 

implications for interpreting steady-state level dysregulation typically found in RTT models, we 
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investigated whether these results were reproducible in vivo. To determine half-life changes in the mouse 

brain in RTT models we re-analyzed the data from Boxer et al for whole-cell, nuclear, and chromatin-

associated RNAs9 to determine changes in half-life. We accomplished this by comparing the abundance 

of transcribed genes in the nucleus and chromatin fractions, to the whole-cell fraction that includes mRNA 

undergoing decay in the cytoplasm17 (see methods). From the 5,032 genes reported by Boxer et al to be 

differentially regulated at steady-state in the Mecp2 y/- mice, we found a similar pattern of widespread 

changes in half-life (Figure 3F, Supplementary table 3). We also found similar proportions of HL-only 

genes and the extent of full or partial buffering in the mouse models (Figures 3G-I and S3E. See also 

Figure 1H). In line with our RTT human neuron findings, the contribution of half-life to the steady-state 

level changes (Figure S3F) and buffering (Figure S3G) was also independent of the fold-change or FDR 

thresholds chosen. 

Despite the conserved relationship that half-life and transcription rate have on steady-state gene 

expression in human and mouse RTT models, we found minimal overlap in the identities of genes 

dysregulated in each species (Figures S3H-I). Furthermore, minimal overlap was also observed between 

the Mecp2 y/- and Mecp2 R306C mouse models as already observed by Boxer et al (Figures S3J-L). 

Overall, our results consistently identify steady-state level changes driven by half-life only without any 

measurable transcription rate shift in both human and mouse RTT models. Importantly, more than half of 

all half-life shifts fully or partially buffer Mecp2-mediated transcription rate dysregulation, and only a 

small number of genes have increased steady-state changes due to combined half-life and transcription 

rate changes in the same direction. Finally, similar to the human findings, we only find 473 genes (13% 

of total genes altered at steady-state, which excludes the full buffered group) with transcription rate only 

dysregulation as measured in the nuclear fraction. Altogether, our findings demonstrate a pattern of half-

life shifts and transcription buffering that is conserved in RTT mouse and human models. 

 

Cis-acting elements in the 3ʹUTRs are highly associated with half-life changes. 

 Our findings indicate that RNA half-life is a critical regulatory layer defining steady-state RNA 

levels in RTT models. We therefore considered several potential mechanisms underlying how RNA half-

life is controlled in RTT neurons: 1) alternative polyadenylation; 2) alternative-splicing; 3) codon usage 

integrating translation elongation to RNA stability; 4) sequence composition of 3ʹUTR and gene-bodies; 

and 5) enrichment of miRNA binding-sites and RBP cis-acting elements in the 3ʹUTR between buffered 

and non-buffered genes. Initially we investigated the contribution of mRNA isoforms by mapping and 
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quantification of 3ʹUTR alternative poly-Adenylation events that showed no difference in the frequency 

of poly-Adenylation site usage in NEURTT (Figures S4A-C). Moreover, measurement of 3ʹUTR (NEUWT 

vs. NEURTT) and alternatively-spliced mRNA isoforms (mouse Boxer et al) indicated that all mRNA 

isoforms display the half-life buffering effect to the same degree (Figures S4D-F). These analyses argue 

against changes in mRNA isoform usage participating in the half-life shifts in RTT models. 

Next, we created a new classifier predictive model to estimate the effect of codons and sequence 

composition on the direction of changes to mRNA half-life (Figure 4A). Overall 3ʹUTR length and 

nucleotide frequency had no predictive value for classifying increased or decreased half-life changes 

(Figure 4B). Transcription rate changes were anti-correlated with half-life leading to high predictive 

accuracy. These results underscore the unidirectional and reciprocal link between transcription rate 

dysregulation and compensatory mRNA stability control in NEURTT. Dinucleotide frequencies in the 

3ʹUTR offered significant prediction accuracy on whether the half-life was increased or decreased. 

Increasing the size of the tested k-mers from dinucleotides to 4-mers and 6-mers to encompass potential 

cis-acting elements improved the prediction accuracy of half-life (Figures 4B and S4G), equivalent to 

transcription rate alone. A combination of transcription rate and 6-mers showed no further improvement 

in accuracy. Curiously, we found that classifier features in the CDS mirror that of the 3ʹUTR models also 

offering significant prediction accuracies for the half-life changes (Figures S4H-I), highlighting a 

significant sequence composition correlation between CDSs and 3ʹUTRs (Fig S4J). In contrast, 

comparison of the prediction models for in-frame codons (3-nt sequences) indicates that codon optimality 

has no effect on half-life changes in NEURTT (Fig S4I). Importantly, while the predictive accuracy of k-

mers is lower in mouse, the classifier model predictions are upheld in the Mecp2 mouse model. These 

findings show a reproducible effect of transcription rate on half-life, thereby implicating a conserved 

buffering mechanism through cis-acting elements impacting half-life (Fig 4C, S4 L-N). 

 

miRNA and RBP cis-acting elements correlate with half-life changes in RNA stability exclusive genes  

To examine a possible role of miRNAs in mRNA half-life regulation, we first performed small 

RNA-seq with a spike-in strategy to inform on relative and absolute changes in miRNA abundance 

between the isogenic human NEUWT and NEURTT. These results showed that the steady-state levels of 

miRNAs changed by as much as 4-fold up or down (Figure 5A, Supplementary table 4). Interestingly, 

most changes in miRNA steady-state abundance were captured in the RATE-Seq data by shifts in the 

transcription rate of miRNA genes (Fig 5B, Supplementary table 4). These findings indicate that 
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transcription dysregulation of miRNA genes drives the changes in miRNA abundance, in addition to 

miRNA maturation processing as indicated previously22,23. Moreover, after normalization against the 

spike-in RNAs, the scaled absolute fold-change of most miRNAs was decreased in NEURTT (Fig 5C-D). 

This global decrease in miRNA abundance in NEURTT is in line with the global absolute upshift of median 

half-life (Figure 3B). 

To investigate the role of these miRNA changes in the regulation of half-life in NEURTT, we 

performed motif enrichment analysis of miRNA-binding sites present in the TargetScan database24. This 

analysis identified multiple potential miRNAs-binding sites as enriched in up to 800 genes in the HL-only 

group of mRNAs whose steady-state level changes are exclusively directed by half-life changes (Figure 

5E, Supplementary table 5). In contrast, we found significantly fewer miRNA-binding sites sequences 

enriched in the group of buffered mRNAs and many of these show no change in the miRNA abundance 

(Figure 5F, Supplementary table 5). Overall, these data indicate the reduced miRNA abundance 

contributes to the regulation of HL-only genes in NEURTT. However, very few individual miRNAs 

correlate with buffering, although combinatorial effects of multiple miRNAs cannot be excluded. 

We then performed an unbiased search for enrichment of 174 RBP cis-acting elements, as 

described in the RNACompete database25, in the 3ʹUTR of mRNAs with altered half-life in NEURTT. We 

found hundreds of enriched RBP targets in the group of HL-only genes (Figure 5G, Supplementary table 

5). This result includes the RBP HuR (ELAVL1) whose different motifs are enriched in 300-900 mRNAs 

with increased half-life in NEURTT. Our results suggest that 3ʹUTR-directed miRNA and RBP regulation 

best explain the HL-only gene set changes. 

 

Only RBP cis-acting elements are enriched in buffered genes with increased transcription rate and 

decreased half-life 

Having excluded miRNAs as playing a substantial role in mRNA buffering, we explored a role for 

the 174 RBP cis-acting elements in the buffered group of mRNAs. We observed that no RBP cis-acting 

elements were enriched for genes with decreased transcription rate and increased half-life (Figure 6A, 

right panel), and only a handful were depleted. This result suggests that RBPs are not involved in 

regulating transcripts with decreased transcription rate for half-life stabilization. In contrast, we found 

numerous RBP elements that were enriched in 100-200 buffered genes with increased transcription rate 

and decreased half-life (Figure 6A, left panel and Supplementary table 5). To identify RBPs that plausibly 

regulate nascent mRNAs, we aggregated all the buffering enriched RBPs with reported cellular 
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localizations, and found that 51 were nuclear and/or able to shuttle to the cytoplasm whereas only 18 were 

reported to be cytoplasmic only (Figure 6B). To examine roles of specific RBPs, we first noted that 

ELAVL1 elements are depleted in >150 genes in this set, demonstrating that it is only enriched in the HL-

only gene set. In contrast, NOVA2 and ZFP36 were enriched in more than 200 buffered genes and these 

RBPs bind premature mRNA co-transcriptionally26,27. Additionally, PTBP1 and multiple arginine-serine 

rich (SRSF) splicing factors that have been shown to participate in transcriptional buffering28 were 

enriched in >150 genes. Further support for a directional role by NOVA2 and SRSFs is that they were 

depleted in the buffered genes with decreased transcription rate and increased half-life (Figure 6A).  Our 

results reveal specific sets of RBP motifs associated with half-life regulation of buffered genes with 

increased transcription rate in RTT neurons. 
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Discussion 

Our analysis of a new dataset of transcription rate and half-life changes in human neurons and 

independent re-analyses of mouse RTT models demonstrate that most transcription rate changes in the 

absence of MECP2 are buffered by post-transcriptional regulation of mRNA stability. We used RATE-

Seq to simultaneously measure transcription rate and half-life changes in human neuron samples. We 

complemented this approach by applying the subcellular fractionation strategy employed by Johnson et al 

to the mouse resource dataset of Boxer et al. The consistent findings from both methods and model 

systems unambiguously show that post-transcriptional regulation is a modifier of transcription rate 

dysregulation in RTT, and that it is a conserved mechanism shared by human and mouse neurons. We 

provide evidence for changes in steady-state levels driven solely by half-life only shifts, and large 

transcription rate shifts that are entirely offset at the steady-state level by half-life mechanisms that we 

refer to as buffering. These observations have major implications for interpreting RNA-Seq results in RTT 

and potentially other neurodevelopmental disorders, or in diseases of other tissues caused by mutations in 

genes that modulate transcription like MECP2. The existence of transcriptional buffering mechanisms in 

mammals raises a cautionary note for interpreting RNA-Seq steady-state results in the general context of 

transcriptional regulation. It also argues in favour of more widely prioritizing methods that directly 

measure nascent transcription or account for mRNA stability. Moreover, we extend the limited search by 

Johnson et al who found two RBP cis-acting elements enriched in mRNAs with altered half-life by 

discovering hundreds of new RBP cis-acting elements in the half-life only gene set. We also demonstrate 

the enrichment of miRNA-binding sites in the HL-only gene set. The buffered gene set with increased 

transcription rate likely describes the genes transcriptionally repressed by MECP229. In this group, we 

identified a restricted subset of mostly nuclear or shuttling-capable RBPs whose cis-acting elements are 

highly enriched. Our findings thus reveal numerous candidate RBPs potentially involved in buffering the 

increased transcription rate of their mRNA targets. This mechanism may act as a network to coordinate 

mRNA degradation in healthy neurons and to compensate for transcription rate dysregulation in RTT 

neurons. 

Our computational methods were focused on defining cis-acting elements that are relevant for 

transcription rate or half-life regulation. At the DNA level, our classifier model discovered that the 

direction of transcription rate shifts in human and mouse RTT models are best predicted by combinations 

of three dinucleotides that include the canonical MECP2-binding sites CA and CG, together with other 

dinucleotides including AT. The MECP2 AT-hook domain contributes to low-affinity transient 
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interactions with AT-rich DNA that influence the dynamics of MECP2 binding to local high affinity 

methylated DNA sites30. Tellingly, the classifier predictions are low when modelling only CA/CG 

dinucleotide frequencies without accounting for low-affinity sites, and the accurate predictions are 

unaffected when low-affinity sites are included but the CA/CG dinucleotide frequencies are omitted. 

These unbiased findings from machine learning algorithms indicate that the gene-body frequencies of 

other dinucleotides like AT are important and are a conserved mechanism defining the direction of 

transcription rate changes in RTT neuronal models. We speculate they may act by transient recruitment 

of MECP2 influencing its local binding dynamics to nearby methylated DNA. We confirmed a role of 

gene-body length in transcription rate regulation but only in the adult mouse neuron resource of Boxer et 

al.  However, neither our classifier model on the human neuron RATE-Seq dataset nor the adult mouse 

dataset from Johnson et al support this observation. It is possible that gene-body length contributes less to 

transcription rate regulation in fetal stage neurons derived from iPSC in which only mCG modifications 

are expected to be present7,31, or that it requires the power of ten replicate samples used in the Boxer et al 

resource to be detected. 

With regards to half-life only regulation, to define which miRNA-binding sites to investigate we 

first used our human neuron miRNA dataset to identify the miRNAs that are altered in NEURTT. These 

results confirm the reported miRNA changes in RTT mouse models, although the RATE-Seq dataset 

shows that intergenic pri-miRNA transcription rate is altered in RTT adding another dimension to the 

known miRNA processing alterations in mouse22 and human neurons23. Through the use of spike-in 

scaling in the miRNA dataset, we deduced a global absolute downregulation of miRNAs in NEURTT that 

account for the global absolute increase in mRNA half-life of ~0.5 hrs. Superimposed on the increased 

global half-life effect were individual HL-only genes which our classifier models revealed strong 

enrichment of miRNA-binding sites consistent with their known role in mRNA instability. Many RBP 

cis-acting elements including ELAVL1 (HuR) were enriched in the HL-only gene set. While Johnson et 

al reported HuR and AGO2 cis-acting element enrichments in buffered gene sets in the mouse using the 

subcellular fractionation approach, our RATE-Seq results and unbiased search of RBP cis-acting elements 

point to a role for miRNAs and ELAVL1 in mRNA stability in human neurons rather than in the buffering 

mechanism itself. 

While we eliminated several possible buffering mechanisms, one limitation is that we were unable 

to test a potential role of mRNA methylation modifications or poly(A)-tail length regulation on the 

targeted mRNAs with altered transcription rate32. We speculate that these mechanisms could also 
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participate in the buffering mechanisms, particularly in the gene set with decreased transcription rate and 

increased half-life that we found was not associated with enrichment of either miRNA-binding sites or 

RBP cis-acting elements. The simplest mechanism for buffered genes with increased transcription rate is 

that the RBPs bind nascent mRNA in the nucleus and are transported to the cytoplasm where they tag the 

transcript for stabilization. We speculate that the nuclear RBPs are limiting in neurons, and if transcription 

rate increases then the proportion of tagged mRNA falls, leading to relatively more degradation in the 

cytoplasm and decreased half-life. A more complex variation on this model is that the concentration of 

some RBPs themselves may also change in RTT, and this may increase or decrease their ability to stabilize 

their target mRNAs. To distinguish these models, it will be necessary to determine which RBPs are 

changed at the protein level in RTT using proteomics of neuronal nuclei and then individually testing their 

impact through gain- or loss-of-function assays on the mRNA targets. 

Equivalent loss-of-function experiments have already been described in humans with 

neurodevelopmental disorders caused by mutations in RBP genes such as NOVA227. The impact of these 

RBPs on buffering could be established using existing or new iPSC or mouse models. In fact, global 

transcription rate and RBP concentrations will inevitably be altered during the course of 

neurodevelopment, suggesting that it would be valuable to define the buffered gene sets in iPSC and their 

progeny Neural Progenitor Cells relative to the final neurons described here. We and others18,33 have 

previously reported translational regulation changes in RTT neurons in both ribosomal loading and protein 

stability implemented through alterations of E3-ubiquitin ligase protein levels. These findings emphasize 

that buffering in RTT and potentially other disorders likely operates at both the mRNA and protein levels. 
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Figure 1. Changes in transcription rate in RTT neurons do not automatically result in altered 

mRNA steady states. 

A, schematics of experimental outline for simultaneous quantification of transcription rate, mRNA half-

life, and steady-state mRNA level. An isogenic pair of human WT and MECP2-null iPSC-derived cortical 

neurons were pulse-labeled with 4sU, and at designated time-points total RNA was harvested. 4sU-labeled 

Drosophila melanogaster (fly) and unlabeled Saccharomyces cerevisiae (yeast), and ERCC spike-in 

RNAs were added as indicated and used as pull-down efficiency, non-specific binding, library preparation, 

and sequencing controls. Steady-state mRNA levels were quantified from an aliquot of the 24h time-point 

(non-biotinylated and unprocessed). B-C, scatter-plots depicting genome-wide changes in steady-state and 

transcription rate. D, volcano plot showing genes with increased or decreased transcription rate in MECP2-

null neurons (NEURTT). E, transcription rate fold-changes determined by RATE-seq (X-axis) were 

validated using an alternative approach. Neurons were incubated with 5-ethylnyl uridine (EU) and 

quantified following Click-it reaction and qRT-PCR (Y-axis) of genes selected to cover a large spectrum 

of fold-changes including genes with no changes. F, overlap of genes altered at transcription rate and/or 

steady-state in human NEURTT. G, summary of samples from Boxer et al re-analyzed in our study. H, 

overlap of genes altered at transcription rate and steady-state in the brains of Mecp2 y/- mouse model. 

Transcription rate changes in the mouse model were estimated by changes in nuclear (left Venn diagram) 

or chromatin-associated (right Venn diagram) mRNAs. 
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Figure 2. The direction of transcription rate changes in RTT neurons is predicted by three combined 

gene-body dinucleotide frequencies. 

A, random forest classifier for prediction of gene-body sequence features relevant for transcription rate 

fold-changes in human NEURTT and in cortical brain samples of the mouse Mecp2 y/-. B, percent accuracy 

(Y-axis) of transcription rate fold-change predictions in human NEURTT (B) or mouse Mecp2 y/- (C) 

considering different gene-body sequence features. L= gene-body length; 2-mers and 6-mers= 2 and 6-

nucleotide sequence elements, respectively; CA/CG= number of CA or CG di-nucleotides; minus 

CA/CG= removal of CA and CG di-nucleotides from predictive models; mCA/mCG= methylated CA and 

CGs; + sign denotes combinations of two or more sequence features.  D, top combinations of dinucleotides 

contributing to the full prediction accuracy described in panels B and C. Accuracy increases to the 

maximum when a specific combination of three dinucleotides is used. Similar behavior is observed 

between human (left) and mouse (right) datasets. E, top combinations of three dinucleotides contributing 

to the full prediction model. Predictive di-nucleotides conserved between human and mouse are denoted 

in bold fonts in the human column. 
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Figure 3. Widespread changes in mRNA half-life directly alter steady-state abundance or buffer 

transcription rate changes in human and mouse RTT models. 

A, scatter-plot showing global relative changes of half-life in NEURTT. B, global increase in the absolute 

mean half-life in NEURTT. C, half-life fold-change determined by RATE-seq (X-axis) were validated using 

an alternative approach. Neurons were incubated with Actinomycin D (transcriptional inhibitor) and RNA 

harvested at different time-points. Selected genes covering a wide range of fold-changes were quantified 

by qRT-PCR (Y-axis). D, number of genes with changes in transcription rate only, partially or fully 

buffered by half-life changes, and genes whose change in steady-state are caused by altered half-life only. 

Genes were defined with transcription rate only changes when the difference between steady-state and 

transcription rate log2 fold-change was less than 25% of transcription rate log2 fold-change. E, most genes 

with increased (magenta box) or decreased (green box) transcription rate show decreased or increased 

half-life, respectively, and genes with unchanged transcription rate do not display significant changes in 

half-life as a group. F, global changes in half-life detected in brains of the Mecp2 y/- mouse model 

estimated from both nuclear (left) or chromatin-associated RNAs (right) (horizontal line denotes FDR = 

0.1). G-H, number of genes with transcription rate changes that are partially or fully buffered by mRNA 

stability mechanisms, and genes whose change in steady-state are caused by altered half-life only in the 

mouse model. I, the Mecp2 y/- mouse models also display the reciprocal behaviour in half-life regulation 

relative to transcription rate. TR= transcription rate, HL= half-life, SS= steady-state 
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Figure 4. Cis-acting elements in the 3ʹUTR are highly associated with half-life changes. 

A, random forest classifier for prediction of mRNA sequence features relevant for half-life fold-change in 

human NEURTT and in cortical brain samples of the mouse Mecp2 y/-. B, percent accuracy (Y-axis) of 

half-life fold-change predictions in human NEURTT (B) or mouse Mecp2 y/- (C) considering different 

mRNA sequence features. >80% prediction accuracies can be achieved with the features tested, and 

indicate that 3ʹUTRs contain sequence elements relevant for half-life changes in both humans and mice. 

L= gene-body length; nt= nucleotide sequence; 2-mers, 4-mers, and 6-mers= 2, 4, and 6-nucleotide 

sequence elements, respectively; TR= transcription rate; All= all features considered at the same time; + 

sign denotes combinations of two or more sequence features. 

  

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted December 13, 2021. ; https://doi.org/10.1101/2021.12.11.472181doi: bioRxiv preprint 

https://doi.org/10.1101/2021.12.11.472181
http://creativecommons.org/licenses/by-nc-nd/4.0/


Fig 5.

G

-0.50 -0.25 0.00 0.25 0.50

ELAVL1

ELAVL3

ELAVL1

ELAVL2

ELAVL2

ELAVL2
ELAVL2

ELAVL2

ELAVL2

300

600

900

Enrichment (log2)

HL-only
Enriched on mRNAs

with HL up
Enriched on mRNAs

with HL down

Nu
m

be
r o

f b
uf

fe
re

d 
ge

ne
s

w
ith

 R
BP

 s
ite

 e
nr

ic
hm

en
ts

E HL-only

miRNA enrichment (log2)

miR-203-3p
miR-532-5p

miR-129-5p
miR-3064-5p

200

400

600

800

-0.50 -0.25 0.00 0.25 0.50

N
um

be
r o

f H
L-

on
ly

 m
R

N
As

w
ith

 e
nr

ic
he

d 
m

iR
N

A-
bi

nd
in

g 
si

te
s

miR-24-3p

miR-217

Enriched on mRNAs
with HL up

Enriched on mRNAs
with HL down

-1.0

-0.5

0.0

0.5

1.0

miRNA steady-state
fold-change
(RTT / WT, log2)

miR-203a-3p

miR-24-3p

miR-329-3p/363-3p

miR-338-3p

miR-655-3p

miR-377-3p

miR-485-5p

miR-486-5p

100

125

200

-0.50 -0.25 0.00 0.25 0.50
miRNA enrichment (log2)

F
(Increased TR and decreased HL)

N
um

be
r o

f b
uf

fe
re

d 
m

R
N

As
w

ith
 e

nr
ic

he
d 

m
iR

N
A-

bi
nd

in
g 

si
te

s

Buffered

150

175

-1.0

-0.5

0.0

0.5

1.0

miRNA steady-state
fold-change
(RTT / WT, log2)

Neuron specific
miRNAs

Spike-in small
RNAs

miRNA abundance (basemean log2)

-4

-2

0

2

4

0 2 4 6

R
el

at
iv

e 
fo

ld
-c

ha
ng

e
(c

ou
nt

s 
R

TT
 / 

W
T 

lo
g 2)

A

-1

0

1

R
el

at
iv

e 
fo

ld
-c

ha
ng

e
(c

ou
nt

s 
R

TT
 / 

W
T 

lo
g 2)

C
Endogenous
miRNAs
Spike-in small
RNAs

-1

0

1

Sc
al

ed
 re

la
tiv

e 
fo

ld
-c

ha
ng

e
(c

ou
nt

s 
R

TT
 / 

W
T 

lo
g 2)

D

-5.0 -2.5 0.0 2.5 5.0
pri-miRNA transcription rate fold-change (log2)

B

-5.0

-2.5

0.0

2.5

5.0

M
at

ur
e 

m
iR

N
A 

st
ea

dy
-s

ta
te

fo
ld

-c
ha

ng
e 

(lo
g 2)

r= 0.47

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted December 13, 2021. ; https://doi.org/10.1101/2021.12.11.472181doi: bioRxiv preprint 

https://doi.org/10.1101/2021.12.11.472181
http://creativecommons.org/licenses/by-nc-nd/4.0/


Rodrigues D, Mufteev M, et al 

 20 

Figure 5. miRNA and RBP cis-acting elements correlate with half-life changes in RNA stability 

exclusive genes. 

A, small RNA-seq to quantify changes in human miRNA abundances in the NEURTT. X-axis represents 

the basal abundance of each mature miRNA detected in the NEUWT and Y-axis represents their fold-

change in the NEURTT. Blue dots, neuronal-specific miRNAs showing that they accumulate at abundances 

higher than the mean in both NEUWT and NEURTT. Red dots, the abundance of the small RNA spike-ins 

added on a per-cell basis and used for library preparation control and quantification of miRNA abundance 

at the absolute levels. B, comparison of the fold-changes between steady-state mature miRNA levels and 

primary miRNA (pri-miRNA) transcription rate in NEUWT and NEURTT showing a significant correlation 

between both (r= 0.47, p val 4.3-7), indicating many changes in mature miRNA steady-state levels are 

caused by changes in their transcription rate. C, DESeq2 miRNA steady-state level fold-change before 

spike-in normalization, and D after normalization based on the spike-in fold-change. The absolute 

abundance of miRNAs in NEURTT is reduced for most miRNAs. E-F, miRNA-binding sites enriched in 

half-life only (panel E) or in combination with transcription rate up and half-life down (buffered, F). Y-

axis represents the number of genes containing each of the miRNA-binding sites found, and X-axis the 

enrichment levels. Color represents the miRNA steady-state fold-change of the respective miRNA in the 

NEURTT as measured in A. G, 7-mers known to be targeted by RBPs enriched in the HL-only group based 

on the RNAcompete database25. TR= transcription rate, HL= half-life. 
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Figure 6. RBP cis-acting elements are enriched in buffered genes with increased TR and decreased 

half-life. 

A, 7-mers known to be targeted by RBPs enriched in the group of buffered mRNAs. A different set of 

RBP cis-acting elements was found enriched compared to the HL-only group (Figure 5G). B, cellular 

distribution of the RBPs enriched in mRNAs with increased transcription rate and decreased half-life 

showing that these are predominantly nuclear. 
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Fig S1. Quality control of the RATE-seq experiment. 

A-B, 4sU does not cause changes in neuronal viability or cell numbers at the dose and times used in the 

experiment. C, representative agarose gel showing 4sU-labeled pulled-down RNA for each time-point. 

The presence of human (Hs) and fly ribosomal RNAs are denoted by arrows. D, 4sU incorporation kinetic 

curves of human mRNA normalized to fly spike-in RNA. E, Pearson’s correlation between replicates of 

the human RNA for each time-point. F, principal component analysis of sequencing data from NEUWT 

and NEURTT showing significant separation between genotypes and time-points. Steady-state samples are 

denoted with the red outline, and cluster the closet with the 24-hour time point samples from where they 

are derived. G, read counts of spike-in RNAs: unlabeled yeast relative to fly RNA for all time points in 

NEUWT and NEURTT. Unlabeled yeast RNA spike-in RNA was used as pull-down negative control 

(background control). The absence of yeast RNA indicates that the streptavidin-biotin pull-down of 4sU 

labeled RNAs had minimal contamination of unlabeled human RNAs, but were readily detectable in the 

steady-state samples. H-I, Pearson’s correlation of ERCC spike-in RNAs between (H) replicates, and (I) 

spike-in concentration and sequencing measured abundance used for all time points in NEUWT and 

NEURTT. ERCC spike-in RNA was used as control for library prep quality. High Pearson’s correlations 

indicate high-quality of the library samples. J-K, half-life measured with 4sU saturation curve method. (J) 

percentage of genes with measured half-life depending on transcription rate. K, accuracy of half-life 

shown against half-life magnitude. CI50 stands for 50% confidence interval. Black points denote genes 

with poorly fit saturation curves and are removed from analysis in panel L. L, comparison of half-life 

estimated with two methods for well measured genes selected in panel K. M, example of genes displaying 

transcription-mediated changes in steady-state (TR-only). DLX6 is known to confer high risk for autism 

when mutated. N, human genes with the highest transcription rate fold-change are also enriched for 

MECP2 binding as previously described in mice9 by MECP2 ChIP-seq. O, genes with the highest increase 

in transcription rate fold-change in NEURTT had lowest basal transcription rate in NEUWT neurons as seen 

previously17. TR= transcription rate, HL= half-life, SS= steady-state. 
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Figure S2. Classifier model to predict DNA sequence features affecting transcription rate in the 

absence of MECP2. 

A, human genes with steady-state, transcription rate, or half-life fold-changes in NEURTT do not show 

significant enrichments for gene length as seen for adult mice9. B, schematic representation of a decision 

tree for the classifier utilized. A collection of decision trees forms the random forest model. C, 3ʹUTR or 

CDS mRNA sequence features-based random forest classifier for prediction of transcription rate fold-

change in NEURTT. D, receiver operating characteristic curve (ROC) and precision-recall curve (PRC) 

showing overall performance of the classifier for prediction of human transcription rate fold-changes. E, 

predictive model for transcription rate fold-changes in the mice using either nuclear or chromatin-

associated RNA samples. While the fraction of mCA and gene-body length offer some accuracy to 

distinguish transcription rate up versus unchanged or up versus down in some cases, the classifier found 

that other sequence features offer higher prediction accuracies (see also figure 2C). F, ROC and PRC 

showing overall performance of the classifier for prediction of mouse transcription rate fold-change 

relative to panel E. G, gene-body or number and frequencies of mCA/mCG mRNA sequence features-

based random forest classifier for prediction of transcription rate fold-changes in the mouse Mecp2 y/-. H, 

3ʹUTR or CDS mRNA sequence features-based random forest classifier for prediction of transcription rate 

fold-changes in the mouse RTT model. I, ROC and PRC showing overall performance of the classifier for 

prediction of mouse transcription rate fold-change based on the nuclear dataset. TR= transcription rate, 

HL= half-life, SS= steady-state. 
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Figure S3. Human and mouse RTT models show half-life changes in steady-state mRNA levels. 

A, example of genes with mRNA half-life only changes leading to changes in the steady-state independent 

of transcription rate. GRIA1 is known to confer a high risk for autism when mutated. B, percentage of 

genes with no significant transcription rate shift or HL-only changes in steady-state (y-axis) as a function 

of the FDR (x-axis) and fold-change (color) thresholds. C, percentage of genes with no significant steady-

state shift or fully buffered by mRNA stability mechanisms (y-axis) as a function of the FDR (x-axis) and 

fold-change (color) thresholds. D, human genes with steady-state, transcription rate, or half-life fold-

changes in NEURTT do not show significant enrichment for transcript length as seen for adult mice9. E, the 

overlap of genes altered at transcription rate based on nuclear (left panel) or chromatin-associated RNA 

(right panel) and steady-state in the Mecp2 R306C mouse neurons. F, percentage of genes with no 

significant steady-state shift or fully buffered by half-life (y-axis) as a function of the FDR (x-axis) and 

fold-change (color) thresholds in the Mecp2 y/- and Mecp2 R306C mice. G, percentage of genes with no 

significant transcription rate shift or with half-life change (y-axis) as a function of the FDR (x-axis) and 

fold-change (color) thresholds in the Mecp2 y/- and Mecp2 R306C mice. H-I comparison of the fold-

changes between genes in human (Hs) and mouse (Mm) RTT models showing limited agreement in the 

identity of genes with altered transcription rate (H) and half-life (I) between species. J-L, the identity of 

genes differentially regulated at half-life and transcription rate is also limited when comparing the Mecp2 

y/- and Mecp2 R306C mouse models. R values for each comparison are depicted inside boxes in red fonts. 

TR= transcription rate, HL= half-life, SS= steady-state. 
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Figure S4. Quantification of 3ʹUTR and alternatively-spliced isoforms in humans and mice, and 

predictive models of half-life changes in mice. 

A, Overall schematics for quantification of alternative poly-Adenylation (APA) changes between NEUWT 

and NEURTT. Proximal poly-Adenylation site usage index (pPAU) quantifies the percentage of mRNA 

isoforms cleaved and poly-Adenylated at the proximal pA site, where 0 or 100 means that all mRNA 

isoforms of a specific gene use the proximal site (short 3ʹUTR isoform) or the distal (long 3ʹUTR isoform), 

respectively. Scatter-plot (right panel) shows a high correlation between pPAU values between human 

NEUWT and NEURTT. B, cumulative probability plot showing that the vast majority of genes show small 

changes <10% in pPAU index between human NEUWT and NEURTT. C, representative sequencing read 

peaks showing absence of MECP2 3ʹUTR reads in the NEURTT sample (upper) and peaks corresponding 

to DICER1 polyadenylation sites (arrowheads) in the 3ʹUTR as an example of genes with similar pPAU 

index values in NEUWT and NEURTT samples. Y-axis represents number of sequencing reads. D, 

quantification of mRNA at the 3ʹUTR isoform level indicating that most expressed 3ʹUTR isoforms also 

undergo half-life buffering. E, analysis of the alternatively-spliced mRNA isoforms in the Mecp2 y/- 

mouse model shows that all canonical CDS and non-protein-coding isoforms also undergo half-life 

buffering, indicating that changes in mRNA splicing are not the underlying mechanism regulating the 

changes in mRNA half-life in response to transcription rate changes. F, quantification of the basal half-

life of mRNA isoforms in the WT mice, as measured using either nuclear (left) or chromatin-associated 

RNA (right), confirms that non-sense mediated decay (NMD), processed transcripts, and retained intron 

mRNA isoforms are in general less stable (lower half-life) than the canonical CDS (cCDS) and 

alternatively-spliced (AS) protein-coding isoforms. This underscores the quality of the mRNA half-life 

calculations based on the ratios of whole-cell versus nuclear or chromatin-associated mRNAs. G and H, 

ROC and PRC graphs showing overall performance of the classifier for prediction of half-life fold-changes 

based on 3ʹUTR (G) or CDS (H) regions of the mRNAs. I, CDS specific mRNA-sequence features based 

random forest classifier for prediction of half-life fold-change for the human and Mecp2 y/- mouse model. 

J, Pearson’s correlation between CDS and 3ʹUTR sequence of buffered genes indicating significant 

similarities between the sequence composition in these two regions. L, mRNA-sequence features based 

random forest classifier for prediction of half-life fold-change based on the chromatin-associated RNA in 

the Mecp2 y/- mouse model. Similar to the half-life fold-change based on the nuclear-associated RNA, 

both 3ʹUTR and CDS contain sequence elements that can predict half-life changes with high accuracy. M 

and N, ROC and PRC graphs showing overall performance of the classifier for prediction of half-life fold-
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change in the Mecp2 y/- mouse model based on nuclear (M) or chromatin-associated RNA (N). TR= 

transcription rate, HL= half-life, SS= steady-state 
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Methods 

iPSC cultures and neuronal differentiation 

iPSC lines #37 (WT) and #20 (isogenic MECP2-null) from a female patient were previously 

described21. Both cell lines were generated and cultured under the approval of the SickKids Research 

Ethics Board and the Canadian Institutes of Health Research Stem Cell Oversight Committee. iPSC lines 

were cultured in 5% CO2 on BD hESC-qualified matrigel (BD) in mTeSR medium (STEMCELL 

Technologies). Cultures were passaged using ReLeSR (STEMCELL Technologies) following the 

manufacture’s instruction every 6-7 days. For neuronal induction, iPSCs were aggregated as Embryoid 

Bodies (EBs) in low-attachment dishes in N2 media containing laminin (1 ml/ml) with 10 mM SB431542, 

2 mM DSM, and 1x penicillin-streptomycin changed daily. After 7 days, EBs were plated on poly-L-

ornithine + laminin-coated dishes and grown in N2 media + laminin (1 ml/ml). After 7 days, neural rosettes 

were manually picked and transferred to poly-L-ornithine + laminin-coated wells. After 7 days, neural 

rosettes were picked a second time, digested with Accutase and plated on poly-L-ornithine + laminin-

coated wells. Resulting neural precursor cells (NPC) were grown as a monolayer and split every 5-7 days 

in NPC media containing DMEM/F12, N2, B27, 1x non-essential amino acid (NEAA), 2 mg/ml Heparin, 

1 mg/ml laminin. To generate neurons, NPCs were plated on poly-L-ornithine + laminin-coated plates at 

a density of 106 cells per 10 cm dish and cultured for 3 weeks in neural differentiation medium 

(Neurobasal, N2, B27, 1 mg/ml laminin, 1x penicillin-streptomycin, 10ng/ml BDNF, 10ng/ml GDNF, 200 

mM ascorbic acid, and 10 mM cAMP). 

 

Neuronal enrichment using MACS 

Neuronal cultures were enriched for all experiments to exclude contaminating glia and neuro 

progenitor cells present after differentiation. Enrichment of 3-week old neuronal cultures was made as 

described earlier33,34. 3-week old heterogeneous neuronal cultures were enriched by a negative selection 

strategy using antibodies against surface markers CD44 and CD184 (recognizing NPCs, glial progenitors 

and astrocytes)35 using magnetic-activated cell sorting (MACS® - Miltenyi Biotec). After enrichment, 

neurons were re-seeded onto Matrigel-coated 6-well plates, cultured in neural differentiation medium, and 

allowed to recover for one extra week, for a total of 4 weeks neuronal differentiation. 
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4sU metabolic labeling of Neurons and RNA extractions 

When enriched neuronal cultures reached 4-week of differentiation, media was replaced with 

neuronal differentiation media supplemented with 100 µM 4sU (Sigma-Aldrich) reconstituted in DMSO. 

Neurons were harvested at 0.5, 1, 4, 8, and 24 h after the addition of 4sU (except for the MECP2-null line 

where the time-point 1h was omitted from both replicates due to low differentiation yields). Metabolic 

labeling was designed such that all time points were collected together. After incorporation, cells were 

quickly washed twice with ice-cold 1× PBS Total RNA and scraped into ice-cold 1.5 ml Eppendorf tubes.  

Cells were collected by spinning at 1000g for 5 min at 4°C and cell pellets were resuspended in 1 mL of 

Trizol (Thermo Fisher Scientific). Total RNA was extracted according to manufacturer instructions. The 

SS sample was prepared from a 5µg aliquot of the 24 h time-point added with 0.5 µg of both 4sU labeled 

and unlabeled spike-in RNAs. Neuronal viability in the presence of 100 µM 4sU was monitored up to 24 

h of treatment on parallel cultures by using Trypan blue staining and live/dead cell counting. 

 

Biotinylation and pull down of 4sU-labeled RNAs 

50 µg of total neuronal RNA was mixed with 5 µg unlabeled yeast RNA and 5 µg 4sU-labeled 

S2 fly RNA in a total volume of 120 µL. 1 mg/mL HPDP-biotin (ThermoFisher Scientific) was 

reconstituted in dimethylformamide by shaking at 37°C for 30 min at 300 RPM. 120 µL of 2.5× citrate 

buffer (25 mM citrate, pH 4.5, 2.5 mL EDTA) and 60 µL of 1 mg/mL HPDP-biotin were added to the 

premixed RNA sample for each time point. The solution was incubated at 37°C for 2 h at 300 RPM on an 

Eppendorf ThermoMixer F1.5 in the dark. Samples were extracted twice with acid phenol, pH 4.5, and 

once with chloroform. RNA was precipitated with 18 µL 5M NaCl, 750 µL 100% ethanol, and 2 µL 

GlycoBlue (Invitrogen) overnight at −20°C. Precipitated RNA was pelleted for 30 min at 21,000g at 4°C. 

The RNA pellet was resuspended in 200 µL of 1× wash buffer (10 mM Tris-HCl, pH 7.4, 50 mM NaCl, 

1 mM EDTA). Biotinylated RNA was purified using the µMACS Streptavidin microbeads system 

(Miltenyi Biotec). 50 µL Miltenyi beads per sample were pre-blocked with 48 µL 1× wash buffer and 2 

µL yeast tRNA (Invitrogen), rotating for 20 min at room temperature. µMACS microcolumns were 

washed 1× with 100 µL nucleic acid equilibration buffer (Miltenyi Biotec), followed by 5× washes with 

100 µL 1× wash buffer. Beads were applied to microcolumns in 100 µL aliquots and again washed 5× 

with 100 µL 1× wash buffer. Beads were demagnetized and eluted off the column with 2× 100 µL 1× 

wash buffer, and columns were placed back on the magnetic stand. A total of 200 µL beads was mixed 

with each sample of biotinylated RNA and rotated at room temperature for 20 min. Samples were applied 
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to the microcolumns in 100 µL aliquots, washed 3× with 400 µL wash A buffer (10 mM Tris-HCl, pH 

7.4, 6 M urea, 10 mM EDTA) prewarmed to 65°C, and washed 3× with 400 µL wash B buffer (10 mM 

Tris-HCl, pH 7.4, 1 M NaCl, 10 mM EDTA). RNA was eluted with 5× 100 µL of 1× wash buffer 

supplemented with 0.1 M DTT, and flow-through was collected in a tube. Purified RNA was precipitated 

with 30 µL 5 M NaCl, 2 µL GlycoBlue, and 1 mL 100% ethanol, incubated at −20°C overnight. Samples 

were spun at 21,000g at 4°C for 30 min and resuspended in 20 µL water. RNA quality was assessed by 

running 3 µL of samples on a 1.5% agarose gel. 

 

Transcription rate measurement using EU 

Transcription rate measurements were validated by an alternative method using the metabolic 

incorporation of 5-ethynyl uridine (5-EU) followed by quantifying mRNA levels by qRT-PCR. NEUWT 

and NEURTT were incubated with 0.5mM 5-EU (ThermoFisher) for 30 min. Total RNA was extracted and 

processed using Click-iT Nascent RNA Capture Kit (ThermoFisher) according to the manufacturer’s 

instructions. The captured RNAs were used as a template for cDNA synthesis followed by qRT-PCR to 

quantify mRNA level (see primer list below). Genes were chosen to cover a wide range of transcription 

rate changes determined by RATE-seq. 

 

Half-life measurements using transcription blocking 

Half-life measurements were validated by an alternative method using transcription blocking 

followed by quantifying mRNA levels by qRT-PCR. 10µg/mL actinomycin D (Sigma-Aldrich) was added 

to NEUWT and NEURTT. RNAs were isolated at 1h, 3h, and 6h time points using the RNeasy Plus kit 

(QIAGEN). The RNAs were used as a template for cDNA synthesis followed by qRT-PCR to quantify 

mRNA level. Genes were chosen to cover a wide range of half-life changes as determined by RATE-seq. 

 

cDNA synthesis and qRT-PCR 

cDNAs were synthesized using SuperScript III reverse transcriptase (ThermoFisher) with random 

hexamer primers according to the manufacturer’s instructions. For qRT-PCR, we used SYBR Select PCR 

Master Mix (ThermoFisher). Fold-changes were calculated by the ΔΔCt methods using Glyceraldehyde 

3-phosphate dehydrogenase (GAPDH) and 18S as housekeeping genes, averaged between technical and 

subsequently biological replicates to achieve an average fold difference. 
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miRNA extraction and spike-in strategy 

To calculate relative and absolute differences in the miRNA population in NEUWT and NEURTT, 

small RNAs were extracted from two replicates of both lines using the same number of cells followed by 

the addition of a set of spike-in RNAs. Small RNAs were extracted from 500,000 neurons of each line 

using the SPLIT RNA extraction Kit (Lexogen) according to the manufacturer’s instructions. A set of 52 

RNA spike-ins (QIAseq miRNA Library QC Spike-Ins – Qiagen) that spanned a wide range of 

concentrations were added to the recovered RNAs according to the manufacturer’s instructions. 

Sequencing libraries were made using the Small RNA library preparation kit NEBNext (NEB) according 

to the manufacturer’s instructions. Sequencing was performed on the Illumina HiSeq 2500 using the Rapid 

Run mode. Datasets are available upon request 

 

Library preparation and RNA-sequencing 

RNA-seq libraries were prepared for each time-points and seady-state sample using the QuantSeq 

3’ mRNA-Seq Library Prep Kit FWD for Illumina (Lexogen) automated on the NGS WorkStation 

(Agilent) at The Centre for Applied Genomics (TCAG) according to the manufacturer’s instructions. PCR 

cycle numbers were determined using the PCR Add-on Kit for Illumina (Lexogen). All steady-state 

samples were processed with 250 ng of total RNA input. To minimize variability between time-points 

within a batch, RNA samples were processed with the same total RNA input with a minimum of 100 ng 

of total RNA used. Each sample was spiked-in with ERCC RNA Spike-In Control Mix 1 (Ambion) 

according to the manufacturer’s instructions prior to the start of library preparation. Library quality and 

quantity were measured at TCAG prior to sequencing with Bioanalyzer (Agilent) and KAPA qPCR 

(Roche). Sequencing was also performed at TCAG on the Illumina HiSeq 2500 with single-end 100bp 

read length yielding 40 to 50 million reads. Datasets are available upon request. 

 

Processing of raw sequencing reads 

Processing starts with trimming of reads in 4 steps using cutadapt version 1.1036. First, we removed 

adapters exactly at the 3`-end of the reads (-a AGATCGGAAGAGCACACGTCTGAACTCCAGTCAX 

-O 4 -e 0.1 --minimum-length 25). Second, we removed internal or long stretches of adapter (-a 

AGATCGGAAGAGCACACGTCTGAACTCCAGTCA -O 30 -e 0.18 --minimum-length 25). Third, we 

trimmed low-quality bases at the 3`-end of the reads (-q 20 -O 4). Finally, we removed poly-A tail at the 
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3`-end of the reads (-a AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAX -O 4 -e 0 –minimum-

length 25). 

 

Generation of custom hybrid genome index and reads alignment with STAR 

We generated a custom genome index to accommodate quantification of yeast, fly, and ERCC 

spike-in RNA. Annotations (gencode version 29, flybase version all-r6.22, saccharomyces_cerevisiae.gff 

from yeastgenome.org, custom for ERCC) and genomes (hg38, dm6, sacCer3, ERCC from ThermoFisher) 

for all species and ERCC were combined and then processed with STAR version 2.6.0c (--sjdbOverhang 

100). Finally, reads are aligned to hybrid genome with STAR version 2.6.0c (default settings)37. 

 

Quantification of RNA abundance 

Poly-A sites were obtained from PolyA_DB version 3 and converted to hg38 coordinates with 

liftOver (UCSC)38,39. Reads with MAPQ < 2 are filtered out. Finally, usage of poly-A sites was defined as 

a sum of reads whose 3`-ends are falling within 20bp upstream and 10bp downstream of the poly-A sites. 

The sum was counted with a custom Python script using pybedtools, pysam, pypiper40–42. Annotation of 

pri-miRNA transcripts structures was downloaded from Mendel lab43. Each transcript was matched to 

miRNA gene based on overlaps with GENCODE annotated pre-miRNA coordinates44. Then, pri-miRNA 

poly-A sites overlapping mRNA or lncRNA poly-A sites from PolyA_DB were removed. Finally, usage 

of pri-miRNA poly-A sites was quantified with featureCounts (strandSpecific=1, read2pos=3 from 

Rsubread package)45. The abundance of mature miRNAs was quantified with mirdeep2 pipeline46. Reads 

were preprocessed and collapsed with mapper.pl script (-e -h -j -k AGATCGGAAGAGCACA  -l 18 -m -

v) and quantified with quantifier.pl script, using hairpin and mature sequences obtained from miRbase47. 

 

Normalization of read counts 

Human raw counts for each sample are divided by the total abundance of fly spike-in RNA, 

estimated as a sum of primary alignments to the fly genome. This normalization reconstructs the fraction 

of labeled human RNA at each timepoint. 

 

Transcription rate and half-life measurements 

The transcription rate was estimated from early time points. First, normalized counts at 1 hour 

were divided by 2 to create a new approximate replicate at 30 mins timepoint. This assumes that RNA 
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degradation is negligible for most genes at early time points. Then, before comparing cell types with a 

DESeq2, counts are further quantile normalized between replicates of the same cell type with 

normalize.quantiles (preprocessCore package)48,49. Half-life was estimated in 2 separate ways: fit of a 

4sU saturation curve and the ratio of steady-state to transcription rate. For the 4sU saturation curve 

method, the half-life is estimated in a 2-step procedure. First, normalized counts are fit with nls (nonlinear 

least squares from stats package) to approximate the true number of counts Y at each timepoint. Then, in 

a second pass, normalized counts are fit again with nls, but now correcting for the increase in variance 

using weights set as 1/Y. Confidence intervals are estimated with confint function (stats package). For the 

ratio method, the half-life is estimated with DESeq2 using raw human counts from 30 mins, 1 hour and 

steady-state timepoints (design =~ assay). In the assay factor, 30 mins and 1-hour samples correspond to 

the transcription rate. 

 

Processing of mouse datasets 

Mouse data for whole-cell, nuclear and chromatin RNA-seq was downloaded from GSE128178. 

Mouse Mecp2 ChIP-seq was downloaded from GSE139509. Differential expression analysis for nuclear 

and chromatin RNA-seq was downloaded from the supplementary materials of the Boxer et al study9. The 

abundance of 3ʹUTR isoforms for all samples is estimated using the QAPA standard pipeline50. Half-life 

was estimated as a ratio between whole-cell counts and nuclear or chromatin counts using the interaction 

term approach in DESeq2 (design =~ celltype + batch + assay + celltype:assay). Coefficient of the 

celltype:assay term is used to measure the log2 fold-change in half-life between cell types. Before the 

DESeq2 run, we filter out genes with a sum of counts in replicates less than 20 in a pair of compared cell 

types.  

 

Random forest prediction of up and down-regulated genes in transcription rates and mRNA half-life 

Fold-changes in human half-life in log scale log$FC'( between cell types A and B were estimated 

as follows: 

log$FC'( = log$HL, −	log$HL/ 

Z12 = |log$FC'(|/5lfcSE,$ + lfcSE/$ 
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There, log$HL/  and lfcSE/  were average and standard error of the half-life in cell type A, 

estimated by DESeq2 as a ratio from steady-state and transcription rate replicates. Z-score of a fold-change 

Z12 was used as a measure of accuracy. 

Features of the classifier are frequencies of k-mers in 3ʹUTR, coding sequence or gene-body, 

calculated using oligonucleotideFrequency (Biostrings package)51. In addition, the methylation status of 

CA and CG in the gene-body was added for mouse analysis from GSE139509. Predicted variable denotes 

genes that are either up or down-regulated in transcription rate or half-life. Thresholds for the human data 

were: 

1. TRup: log$FC;< > 1	&	padj < 0.1 

2. TRdown:	log$FC;< < −1	&	padj < 0.1 

3. HLup:	log$FC'( > 1	&	Z12 > median(Z12) 

4. HLdown:	log$FC'( < −1	&	Z12 > median(Z12) 

The half-life for the mouse was either from nuclear or chromatin. Thresholds for the mouse data were: 

1. TRup: log$FC;< > 0.1	&	FDR < 0.1 

2. TRdown:	log$FC;< < −0.1	&	FDR < 0.1 

3. TRnot:	|log$FC;<| < 0.1	or	FDR > 0.1 

4. HLup:	log$FC'( > 1	&	pvalue < quantile(pvalue, 0.2) 

5. HLdown:	log$FC'( < −1	&	pvalue < quantile(pvalue, 0.2) 

Data was split into 75% and 25% for training and test sets. The classifier is trained using randomForest 

(randomForest package)52. Precision-recall and receiver operator characteristic curves were obtained with 

evalmod (precrec package)53. 

 

Transite analysis of miRNAs and RBPs 

Genes were split into up- or down-regulated according to their transcription rate and half-life fold-

change. Then, we performed multiple comparisons of 3ʹUTR sequences between groups of genes using 

run_kmer_tsma (transite package)54. Groups of compared genes: 

1. Foreground: TRdown and HLup   Background: TRdown 

2. Foreground: TRup and HLdown    Background: TRup 

3. Foreground: TRnot and HLdown  Background: TRnot 

These comparisons were performed for all transite RNA binding protein motifs and for TargetScan 

seed sequences24. TargetScan analysis includes 439 human miRNA-seed sequences with family 
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conservation scores of 0,1,2 that were selected from miR_Family_Info.txt (TargetScan website). 

Definitions of up- and down-regulated genes: 

6. TRup: log$FC;< > 0.5	&	padj < 0.1 

7. TRdown:	log$FC;< < −0.5	&	padj < 0.1 

8. TRnot:	|log$FC;<| < 0.5	or	padj > 0.1 

9. HLup:	log$FC'( > 1	&	Z12 > median(Z12) 

10. HLdown:	log$FC'( < −1	&	Z12 > median(Z12) 

The results of transite analysis were further processed with a custom script for multiple hypothesis 

correction. Motifs with a low number of sites detected in both background and foreground were removed 

from the analysis. A separate threshold for the number of sites was chosen for each transite analysis. A 

threshold was determined from a requirement for p-values distribution to be unimodal and enriching at 

p=0. The distribution of p-values with unfiltered sites is bimodal with peaks at both p=0 and p=1. 

 

Primer list for qRT-PCRs 

CAV2 Forward ATTCTCTTTGCCACCCTCAG 
  Reverse GTCCTACGCTCGTACACAATG 
      
PI15 Forward TCGCAGAATGACATGATCGC 
  Reverse TGGTCCCAAATGCAAGTAGC 
      
FOXB1 Forward CGCGCAACTTGAAGCAAC 
  Reverse TCAGCGAGATGTACGAGTAGG 
      
DTX3L Forward AAAGGAAATCAGCCAGAGGG 
  Reverse GGGTATCTCTTTCCTGGGTTTG 
      
PHLDA1 Forward ACCAAATACCGCACCCAC 
  Reverse AGAAATGTGCTCGTCCCAC 
      
FOXG1 Forward CCTGCCCTGTGAGTCTTTAAG 
  Reverse GTTCACTTACAGTCTGGTCCC 
      
LHX2 Forward GGTCTTCCCTACTACAATGGC 
  Reverse GTCGTTTTCGTTGCAGCTTAG 
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FEZF1 Forward CTGTGGCAAAGGGTTTCATC 
  Reverse TCTTGTCGTTGTGGGTGTG 
      
SIX3 Forward CAACCCCAGCAAGAAACG 
  Reverse CTCGGTCCAATGGCCTG 
      
DLK1 Forward CGAGGATGACAATGTTTGCAG 
  Reverse CAGAGTCCGTGAAGGCAG 
      
DCX Forward TATGCGCCGAAGCAAGTCTCCA 
  Reverse CATCCAAGGACAGAGGCAGGTA 
      
ACTB Forward TGAAGTGTGACGTGGACATC 
  Reverse GGAGGAGCAATGATCTTGAT 
      
GAPDH Forward CATGAGAAGTATGACAACAGCCT 
  Reverse AGTCCTTCCACGATACCAAAGT 
      
AGO3 Forward TCCTGTTGGGAGGCAAATAACA 
  Reverse AAGAGTAGTGGTTCTGTCACAGA 
      
FZD3 Forward GCTTTGCACTCTGCTCTTGTAG 
  Reverse TTGTACACTCACAGTTAAAGTGCT 
      
NT5DC2 Forward CAACCCCACCTACTTCTCAAGG 
  Reverse GTAGAAGGTGAAGTCCACGCG 
      
KIF3A Forward TGAGTAATCAAGGGAAGGGTCG 
  Reverse AAAACAACTCCCTTTCTCCAGA 
      
RBL2 Forward AAACTTATGACCTCTTCCTTTAGG 
  Reverse TTTTAAACTGCCAGGAACACCC 
      
SKP2 Forward GTTGCACAGGAAATGATGATGCT 
  Reverse AACCCCAGCTCTTGTCACTAAT 
      
18S Forward GATGGGCGGCGGAAAATAG 
  Reverse GCGTGGATTCTGCATAATGGT 
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