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Abstract

Models of MECP2 dysfunction in Rett syndrome (RTT) assume that transcription rate changes directly
correlate with altered steady-state mRNA levels. However, limited evidence suggests that transcription
rate changes are buffered by poorly understood compensatory post-transcriptional mechanisms. Here we
measure transcription rate and mRNA half-life changes in RTT patient neurons using RATE-seq, and re-
interpret nuclear and whole-cell RNAseq from Mecp2 mice. Genes are dysregulated by changing
transcription rate only or half-life only and are buffered when both are changed. We utilized classifier
models to understand the direction of transcription rate changes based on gene-body DNA sequence, and
combined frequencies of three dinucleotides were better predictors than contributions by CA and CG.
MicroRNA and RNA-Binding Protein (RBP) motifs were enriched in 3'UTRs of genes with half-life
changes. Motifs for nuclear localized RBPs were enriched on buffered genes with increased transcription
rate. Our findings identify post-transcriptional mechanisms in humans and mice that alter half-life only or
buffer transcription rate changes when a transcriptional modulator gene is mutated in a

neurodevelopmental disorder.
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Introduction

Rett syndrome (RTT) is a neurodevelopmental disorder in girls caused by damaging mutations in
the methyl CpG-binding protein 2 (MECP2)'. Most evidence indicates that MECP2 regulates transcription
globally after binding to methylated (m)CG dinucleotides in immature neurons and mCA dinucleotides in
adult neurons®=®. Specifically, recent models support a role for MECP2 binding to mCA/mCGs in the
gene-body that can: 1) slow RNA polymerase II elongation® 2) inhibit transcription initiation by looping
interactions between the promoter and high-density MECP2-bound gene-bodies® or 3) inhibit transcription
initiation by microsatellite interruptions of nucleosome binding that impact intragenic enhancer
activation'®,

The number or fraction of mCA/mCG and gene-length have been primarily used to interpret
transcription rate dysregulation in RTT mouse models®°. However, the informative power of these DNA
features is limited, and it is still challenging to anticipate a priori which genes are transcriptionally up- or
down-regulated in RTT, raising questions whether other sequence features might also participate in
transcription dysregulation mediated by the loss of MECP2!!. Recent developments in machine learning
techniques have revealed unsuspected DNA and RNA-sequence features associated with gene regulatory
programs'>!3. Employing these techniques in the RTT context could help explain the molecular
mechanisms of MECP2 function and uncover other DNA sequence features important for MECP2
function.

Genome-wide analyses of steady-state mRNA levels and transcription rate changes in RTT models
have demonstrated a global dysregulation of gene expression®%!#-18 1t is uniformly acknowledged that
the magnitude of mRNA steady-state level changes is surprisingly small*>*!4181% In 2017, Johnson et al'’
used GRO-Seq for nascent RNA and RNA-Seq of chromatin, nuclear, and cytoplasmic subcellular
fractions to reveal the small steady-state alterations in the Mecp2-null mouse brain is the result of a
previously unsuspected post-transcriptional regulatory mechanism. They proposed that large transcription
rate changes are compensated by reciprocally adjusting mRNA half-life, and they provided initial support
for the role of two RNA-binding proteins (RBPs). In particular, they examined the enrichment of 12 RBP
binding sites in subsets of mRNAs and identified HuR-(ELAVL1) cis-acting elements in the 3'UTR with
extended mRNA stability, or AGO2 cis-acting elements with reduced stability to implicate the action of
unknown miRNAs!”. Their model of post-transcriptional regulation is similar to transcription buffering
where RBPs present in the nucleus tag nascent mRNAs and shuttle with them to the cytoplasm. The RBPs

then modify half-life to buffer transcription rate changes that preserve steady-state levels (reviewed by
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Hartenian E et al. 2019%°). These results have not been independently tested in mouse and it is unknown
whether the mechanism is conserved in human RTT neurons. Therefore, it is important to experimentally
measure the direction and magnitude of half-life changes in human MECP2-null neurons. Moreover, the
post-transcriptional mechanism has not been studied by systematic enrichment analysis of all known
miRNA and RBP cis-acting elements of the post-transcriptionally regulated mRNAs.

Here, we simultaneously investigate the potential role of sequence features mediating
transcriptional dysregulation in RTT and expand on the post-transcriptional findings of Johnson et al in
human isogenic induced Pluripotent Stem Cell (iPSC)-derived RTT neurons. We used RNA-approach to
equilibrium-sequencing (RATE-Seq) to measure transcription rate and half-life changes and employed
machine learning to uncover sequence features underlying these changes in human and mouse RTT
models. In parallel, we compared our human neuron findings to the high confidence RNA-seq from
subcellular fractionations of Mecp2 mutant mouse brains’. We found that transcription rate changes in
both human and mouse datasets are best predicted by combinations of three dinucleotide frequencies in
gene-bodies that include the expected CA/CG motifs, but are most accurate if they also include other
dinucleotides. We discover extensive half-life changes that identify: 1) a gene set with exclusive mRNA
stability dysregulation (half-life only) and no associated transcription rate changes; and 2) a larger buffered
gene set in which half-life regulation compensates for transcription rate changes that fully offset or
minimize mRNA steady-state changes. We demonstrate a global absolute downregulation of miRNA
levels, that corresponds with a global absolute half-life increase in RTT neurons. We found individual
enriched miRNA binding-sites in the half-life only gene set but very few in the buffered gene set. RBP-
binding sites were enriched in the 3'UTRs of half-life only genes, and distinct sites were also enriched in
buffered genes with increased transcription rate. Overall, we propose that transcription rate increases in
MECP2 neurons are subject to surveillance by RBPs that post-transcriptionally regulate RNA half-life.
We find that the buffering of transcription rate changes by half-life changes is a conserved feature of RTT

models which minimize the steady-state changes in mRNA levels.
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Results
Transcription rate changes in RTT neurons do not always alter mRNA steady states

To simultaneously measure direct changes in transcription rate, half-life, and mRNA abundance
levels at steady-state in RTT neurons, we performed RATE-seq on human cortical neurons derived from
WT (NEUwr) and MECP2-Null (NEUgrr) isogenic patient-derived iPSCs?! (Fig 1A, Fig SIA-L). 3'end
RNA-seq (QuantSeq) was utilized to quantitatively map 3'UTR isoform diversity to better understand the
role of miRNAs and RBP-binding sites in half-life regulation and buffering of transcription dysregulation.
Multiple RNA spike-ins controlled for 4sU pulldown efficiency, background contamination, and
equivalent cell numbers. Steady-state levels were measured from an input sample taken at the 24-hour
time-point. The transcription rate was measured from 0.5- and 1-hour time-points, by calculating the
number of newly synthesized mRNAs in 1 hour. Finally, the half-life was derived from an equilibrium
relationship between steady-state and transcription rate as a ratio of the two quantities. To measure
absolute half-life in hours we estimated 4sU saturation curves as a time required to reach half of the steady-
state mRNA abundance (Fig 1A, Fig S1A-L, see methods).

As expected, we found widespread dysregulation of transcription rate and steady-state in the
NEUrtr neurons (Fig 1B-D, SIM, Supplementary table 1). An independent 5-Ethynyl Uridine (EU)
metabolic incorporation assay experimentally validated transcription rate changes of specific genes by
gRT-PCR (Fig 1E). Reassuringly, comparison of our transcription rate datasets with a MECP2 ChIP-seq
in mouse brain revealed that the genes with the highest changes in TR were more enriched for MECP2-
binding (Fig S1N), and most transcriptionally upregulated genes displayed lower basal transcription rate
in the WT controls (Fig S10)°. Importantly, we found that approximately half of the transcription rate
dysregulated genes in NEUrTT were not altered at the steady-state mRNA level (Fig 1F).

Given the relevance of these findings to disease mechanisms, we validated the discrepancy
between transcription rate and steady-state changes in an orthogonal in vivo RTT system. We re-analyzed
the high-confidence datasets from Boxer et al’ that sequenced nuclear and chromatin-associated mRNA
abundance as a proxy for transcriptional dysregulation and the whole-cell fractions from cortical forebrain
samples of WT, Mecp?2 y/-, and point-mutant Mecp2 R306C adult mice (Fig 1G). Our analysis shows a
similar pattern where approximately half of the genes transcriptionally dysregulated are not altered at the
steady-state level (Fig 1G-H). This confirms that transcription rate dysregulation in the absence of MECP2
does not automatically result in altered steady-state mRNA levels, and that unaltered steady-state mRNA

level does not automatically mean there is no change in transcription rate.
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The direction of transcription rate changes in RTT neurons is predicted by gene-body dinucleotide
frequencies

The high fraction or number of mCA/mCG in longer genes have been associated with the small
magnitude upregulation of these genes in Mecp2 mouse models®”°. However, consistent with Johnson et
al'’, our analyses did not show a gene-body length effect in genes dysregulated at the transcription rate or
steady-state (Figure S2A). The contribution of other sequence features that predict which genes will be
transcriptionally dysregulated in RTT models has not been systematically evaluated in vivo'!. To learn
sequence features of the differentially expressed genes that are relevant for the direction of transcriptional
shifts in our immature RTT neurons, we trained a classifier model using our measurements of genome-
wide transcription rate changes in NEUrtT (Figure 2A and S2B). As anticipated by the lack of correlation
between gene-body length and transcription rate changes (Figure S2A), this model also resulted in random
predictions based on gene-body length (including introns) (Figures 2B and S2C-D). In contrast,
frequencies of dinucleotides in the gene-body produced high prediction accuracies similarly found when
using either the coding sequence (CDS) or 3'UTR (Figures S2C-D). The prediction accuracies of CA/CG
in gene-bodies were lower than predictions based on any combination of dinucleotides even when
combined with gene-body length. In fact, removal of CA/CG from the model had no negative effect on
prediction accuracy. This supports a prominent role for additional gene-body dinucleotide combinations
in modulating transcription rates (Figures 2B and S2C-D).

To test the combined dinucleotide-based predictive model in an orthogonal in vivo system, we
trained a classifier model on the data from Boxer ef al which also includes cytosine methylation
quantification (Fig 1G)°. In the adult mouse brain, our model captured gene-body length and mCA fraction
as predicting whether a gene is transcriptionally up-regulated in the absence of Mecp2 (Figures S2E-F).
However, these models do not discern whether a gene is transcriptionally down-regulated, nor
discriminate up- versus down-regulated genes (Figures S2E-F). In contrast, the gene-body dinucleotide
frequencies captured the direction of most transcriptional dysregulation in the Mecp2 y/- mouse, with
lower accuracy predicted by the CDS and UTR separately, an effect that was independent of gene-body
length (Figures 2C and S2G-I). Surprisingly, combining CA/CG frequencies had less predictive accuracy
than combinations of remaining dinucleotides independent of their methylation status (Figures 2C, S2G-
I). To investigate which dinucleotide or combinations thereof were responsible for the high predictive
accuracy of transcription rate changes in RTT neurons, we repeated the classifier model considering single

or multiple dinucleotide combinations. The classifier found that specific combinations of three
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dinucleotides reached the predictive accuracy of the full model for both human and mouse (Figure 2D).
The top four combinations of three dinucleotides were highly similar between human and mouse, and
included AT as enriched along with CA and CG (Figures 2D-E) and other dinucleotides. Taken together,
the classifier models of fetal stage human neurons and adult mouse brain indicate that combined
frequencies of three dinucleotides that include non-CA/non-CG dinucleotides contribute to the direction

of transcription rate modulation mediated by MECP2.

mRNA half-life changes in RTT neurons directly alter the steady-state or buffer transcription rate

The RATE-Seq half-life measurements revealed widespread changes in mRNA stabilities that
caused a global absolute increase in the mean half-life in NEUrtr (Figures 3A-B, S1A-L, and
Supplementary table 2). These measurements were independently validated on specific genes using
transcription inhibition and qRT-PCR (Figure 3C). We found approximately 860 genes (~45% of all genes
with altered half-life) with significantly increased or decreased mRNA half-life but with unchanged
transcription rate, termed half-life only (HL-only), leading directly to changes in the steady-state levels
(Figures 3D and S3A. See also Figure 1E). These analyses show that a significant fraction of genes
dysregulated at the steady-state level were exclusively driven by changes in mRNA stability.

We then explored the impact on steady-state mRNA levels when both half-life and transcription
rate are changed. We found that in these cases, half-life moved in the opposite direction to transcription
rate and decreased the net change in steady-state levels (Figures 3D-E). We found that 789 genes exhibited
full buffering where the RNA half-life entirely offset the transcription rate change resulting in no steady-
state change. A further 298 genes showed half-life changes that partially counteracted the transcription
rate changes modulating steady-state changes. The contribution of half-life to the steady-state level
changes (Figure S3B) and buffering (Figure S3C) was independent of the fold-change or FDR thresholds
chosen. None of the measured changes correlate with gene-body or processed transcript lengths (Figures
S2A and S3D). We found ~28% of all genes (n=444) with altered steady-state expression to be exclusively
dysregulated at the transcription rate level (TR-only), underscoring the role of post-transcriptional

regulation of mRNA stability in directly altering or buffering the RTT transcriptome.

Half-life shifts and transcription buffering are conserved in Mecp2 mouse models
Given the importance of finding novel global changes in half-life in the NEUrTt neurons and its

implications for interpreting steady-state level dysregulation typically found in RTT models, we
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investigated whether these results were reproducible in vivo. To determine half-life changes in the mouse
brain in RTT models we re-analyzed the data from Boxer et al for whole-cell, nuclear, and chromatin-
associated RNAs’ to determine changes in half-life. We accomplished this by comparing the abundance
of transcribed genes in the nucleus and chromatin fractions, to the whole-cell fraction that includes mRNA
undergoing decay in the cytoplasm'” (see methods). From the 5,032 genes reported by Boxer et al to be
differentially regulated at steady-state in the Mecp2 y/- mice, we found a similar pattern of widespread
changes in half-life (Figure 3F, Supplementary table 3). We also found similar proportions of HL-only
genes and the extent of full or partial buffering in the mouse models (Figures 3G-I and S3E. See also
Figure 1H). In line with our RTT human neuron findings, the contribution of half-life to the steady-state
level changes (Figure S3F) and buftfering (Figure S3G) was also independent of the fold-change or FDR
thresholds chosen.

Despite the conserved relationship that half-life and transcription rate have on steady-state gene
expression in human and mouse RTT models, we found minimal overlap in the identities of genes
dysregulated in each species (Figures S3H-I). Furthermore, minimal overlap was also observed between
the Mecp?2 y/- and Mecp2 R306C mouse models as already observed by Boxer et al (Figures S3J-L).
Overall, our results consistently identify steady-state level changes driven by half-life only without any
measurable transcription rate shift in both human and mouse RTT models. Importantly, more than half of
all half-life shifts fully or partially buffer Mecp2-mediated transcription rate dysregulation, and only a
small number of genes have increased steady-state changes due to combined half-life and transcription
rate changes in the same direction. Finally, similar to the human findings, we only find 473 genes (13%
of total genes altered at steady-state, which excludes the full buffered group) with transcription rate only
dysregulation as measured in the nuclear fraction. Altogether, our findings demonstrate a pattern of half-

life shifts and transcription buffering that is conserved in RTT mouse and human models.

Cis-acting elements in the 3'UTRs are highly associated with half-life changes.

Our findings indicate that RNA half-life is a critical regulatory layer defining steady-state RNA
levels in RTT models. We therefore considered several potential mechanisms underlying how RNA half-
life is controlled in RTT neurons: 1) alternative polyadenylation; 2) alternative-splicing; 3) codon usage
integrating translation elongation to RNA stability; 4) sequence composition of 3'UTR and gene-bodies;
and 5) enrichment of miRNA binding-sites and RBP cis-acting elements in the 3'UTR between buffered

and non-buffered genes. Initially we investigated the contribution of mRNA isoforms by mapping and
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quantification of 3'UTR alternative poly-Adenylation events that showed no difference in the frequency
of poly-Adenylation site usage in NEUrtr (Figures S4A-C). Moreover, measurement of 3'UTR (NEUwr
vs. NEUrTr) and alternatively-spliced mRNA isoforms (mouse Boxer et al) indicated that all mRNA
isoforms display the half-life buffering effect to the same degree (Figures S4D-F). These analyses argue
against changes in mRNA isoform usage participating in the half-life shifts in RTT models.

Next, we created a new classifier predictive model to estimate the effect of codons and sequence
composition on the direction of changes to mRNA half-life (Figure 4A). Overall 3'UTR length and
nucleotide frequency had no predictive value for classifying increased or decreased half-life changes
(Figure 4B). Transcription rate changes were anti-correlated with half-life leading to high predictive
accuracy. These results underscore the unidirectional and reciprocal link between transcription rate
dysregulation and compensatory mRNA stability control in NEUrTr. Dinucleotide frequencies in the
3'UTR offered significant prediction accuracy on whether the half-life was increased or decreased.
Increasing the size of the tested k-mers from dinucleotides to 4-mers and 6-mers to encompass potential
cis-acting elements improved the prediction accuracy of half-life (Figures 4B and S4G), equivalent to
transcription rate alone. A combination of transcription rate and 6-mers showed no further improvement
in accuracy. Curiously, we found that classifier features in the CDS mirror that of the 3'UTR models also
offering significant prediction accuracies for the half-life changes (Figures S4H-I), highlighting a
significant sequence composition correlation between CDSs and 3'UTRs (Fig S4J). In contrast,
comparison of the prediction models for in-frame codons (3-nt sequences) indicates that codon optimality
has no effect on half-life changes in NEUrtt (Fig S4I). Importantly, while the predictive accuracy of k-
mers is lower in mouse, the classifier model predictions are upheld in the Mecp2 mouse model. These
findings show a reproducible effect of transcription rate on half-life, thereby implicating a conserved

buffering mechanism through cis-acting elements impacting half-life (Fig 4C, S4 L-N).

miRNA and RBP cis-acting elements correlate with half-life changes in RNA stability exclusive genes

To examine a possible role of miRNAs in mRNA half-life regulation, we first performed small
RNA-seq with a spike-in strategy to inform on relative and absolute changes in miRNA abundance
between the isogenic human NEUwr and NEUrrt. These results showed that the steady-state levels of
miRNAs changed by as much as 4-fold up or down (Figure 5A, Supplementary table 4). Interestingly,
most changes in miRNA steady-state abundance were captured in the RATE-Seq data by shifts in the
transcription rate of miRNA genes (Fig 5B, Supplementary table 4). These findings indicate that
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transcription dysregulation of miRNA genes drives the changes in miRNA abundance, in addition to
miRNA maturation processing as indicated previously?>?3. Moreover, after normalization against the
spike-in RNAs, the scaled absolute fold-change of most miRNAs was decreased in NEUrtT (Fig 5C-D).
This global decrease in miRNA abundance in NEURrtr s in line with the global absolute upshift of median
half-life (Figure 3B).

To investigate the role of these miRNA changes in the regulation of half-life in NEUrTT, We
performed motif enrichment analysis of miRNA-binding sites present in the TargetScan database?*. This
analysis identified multiple potential miRNAs-binding sites as enriched in up to 800 genes in the HL-only
group of mRNAs whose steady-state level changes are exclusively directed by half-life changes (Figure
SE, Supplementary table 5). In contrast, we found significantly fewer miRNA-binding sites sequences
enriched in the group of buffered mRNAs and many of these show no change in the miRNA abundance
(Figure 5F, Supplementary table 5). Overall, these data indicate the reduced miRNA abundance
contributes to the regulation of HL-only genes in NEUrtr. However, very few individual miRNAs
correlate with buffering, although combinatorial effects of multiple miRNAs cannot be excluded.

We then performed an unbiased search for enrichment of 174 RBP cis-acting elements, as
described in the RNACompete database?, in the 3'UTR of mRNAs with altered half-life in NEUrrr. We
found hundreds of enriched RBP targets in the group of HL-only genes (Figure 5G, Supplementary table
5). This result includes the RBP HuR (ELAVLI) whose different motifs are enriched in 300-900 mRNAs
with increased half-life in NEUrtt. Our results suggest that 3'UTR-directed miRNA and RBP regulation
best explain the HL-only gene set changes.

Only RBP cis-acting elements are enriched in buffered genes with increased transcription rate and
decreased half-life

Having excluded miRNAs as playing a substantial role in mRNA buffering, we explored a role for
the 174 RBP cis-acting elements in the buffered group of mRNAs. We observed that no RBP cis-acting
elements were enriched for genes with decreased transcription rate and increased half-life (Figure 6A,
right panel), and only a handful were depleted. This result suggests that RBPs are not involved in
regulating transcripts with decreased transcription rate for half-life stabilization. In contrast, we found
numerous RBP elements that were enriched in 100-200 buffered genes with increased transcription rate
and decreased half-life (Figure 6A, left panel and Supplementary table 5). To identify RBPs that plausibly
regulate nascent mRNAs, we aggregated all the buffering enriched RBPs with reported cellular
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localizations, and found that 51 were nuclear and/or able to shuttle to the cytoplasm whereas only 18 were
reported to be cytoplasmic only (Figure 6B). To examine roles of specific RBPs, we first noted that
ELAVLI elements are depleted in >150 genes in this set, demonstrating that it is only enriched in the HL-
only gene set. In contrast, NOVA2 and ZFP36 were enriched in more than 200 buffered genes and these
RBPs bind premature mRNA co-transcriptionally?62’. Additionally, PTBPI and multiple arginine-serine
rich (SRSF) splicing factors that have been shown to participate in transcriptional buffering?® were
enriched in >150 genes. Further support for a directional role by NOVA2 and SRSFs is that they were
depleted in the buffered genes with decreased transcription rate and increased half-life (Figure 6A). Our
results reveal specific sets of RBP motifs associated with half-life regulation of buffered genes with

increased transcription rate in RTT neurons.

11
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Discussion

Our analysis of a new dataset of transcription rate and half-life changes in human neurons and
independent re-analyses of mouse RTT models demonstrate that most transcription rate changes in the
absence of MECP?2 are buffered by post-transcriptional regulation of mRNA stability. We used RATE-
Seq to simultaneously measure transcription rate and half-life changes in human neuron samples. We
complemented this approach by applying the subcellular fractionation strategy employed by Johnson et a/
to the mouse resource dataset of Boxer et al. The consistent findings from both methods and model
systems unambiguously show that post-transcriptional regulation is a modifier of transcription rate
dysregulation in RTT, and that it is a conserved mechanism shared by human and mouse neurons. We
provide evidence for changes in steady-state levels driven solely by half-life only shifts, and large
transcription rate shifts that are entirely offset at the steady-state level by half-life mechanisms that we
refer to as buffering. These observations have major implications for interpreting RNA-Seq results in RTT
and potentially other neurodevelopmental disorders, or in diseases of other tissues caused by mutations in
genes that modulate transcription like MECP2. The existence of transcriptional buffering mechanisms in
mammals raises a cautionary note for interpreting RNA-Seq steady-state results in the general context of
transcriptional regulation. It also argues in favour of more widely prioritizing methods that directly
measure nascent transcription or account for mRNA stability. Moreover, we extend the limited search by
Johnson et al who found two RBP cis-acting elements enriched in mRNAs with altered half-life by
discovering hundreds of new RBP cis-acting elements in the half-life only gene set. We also demonstrate
the enrichment of miRNA-binding sites in the HL-only gene set. The buffered gene set with increased
transcription rate likely describes the genes transcriptionally repressed by MECP2%. In this group, we
identified a restricted subset of mostly nuclear or shuttling-capable RBPs whose cis-acting elements are
highly enriched. Our findings thus reveal numerous candidate RBPs potentially involved in buffering the
increased transcription rate of their mRNA targets. This mechanism may act as a network to coordinate
mRNA degradation in healthy neurons and to compensate for transcription rate dysregulation in RTT
neurons.

Our computational methods were focused on defining cis-acting elements that are relevant for
transcription rate or half-life regulation. At the DNA level, our classifier model discovered that the
direction of transcription rate shifts in human and mouse RTT models are best predicted by combinations
of three dinucleotides that include the canonical MECP2-binding sites CA and CG, together with other
dinucleotides including AT. The MECP2 AT-hook domain contributes to low-affinity transient
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interactions with AT-rich DNA that influence the dynamics of MECP2 binding to local high affinity
methylated DNA sites’®. Tellingly, the classifier predictions are low when modelling only CA/CG
dinucleotide frequencies without accounting for low-affinity sites, and the accurate predictions are
unaffected when low-affinity sites are included but the CA/CG dinucleotide frequencies are omitted.
These unbiased findings from machine learning algorithms indicate that the gene-body frequencies of
other dinucleotides like AT are important and are a conserved mechanism defining the direction of
transcription rate changes in RTT neuronal models. We speculate they may act by transient recruitment
of MECP2 influencing its local binding dynamics to nearby methylated DNA. We confirmed a role of
gene-body length in transcription rate regulation but only in the adult mouse neuron resource of Boxer et
al. However, neither our classifier model on the human neuron RATE-Seq dataset nor the adult mouse
dataset from Johnson et al support this observation. It is possible that gene-body length contributes less to
transcription rate regulation in fetal stage neurons derived from iPSC in which only mCG modifications
are expected to be present’-*!, or that it requires the power of ten replicate samples used in the Boxer et al
resource to be detected.

With regards to half-life only regulation, to define which miRNA-binding sites to investigate we
first used our human neuron miRNA dataset to identify the miRNAs that are altered in NEUrtt. These
results confirm the reported miRNA changes in RTT mouse models, although the RATE-Seq dataset
shows that intergenic pri-miRNA transcription rate is altered in RTT adding another dimension to the
known miRNA processing alterations in mouse?? and human neurons?. Through the use of spike-in
scaling in the miRNA dataset, we deduced a global absolute downregulation of miRNAs in NEUrtr that
account for the global absolute increase in mRNA half-life of ~0.5 hrs. Superimposed on the increased
global half-life effect were individual HL-only genes which our classifier models revealed strong
enrichment of miRNA-binding sites consistent with their known role in mRNA instability. Many RBP
cis-acting elements including ELAVL1 (HuR) were enriched in the HL-only gene set. While Johnson et
al reported HuR and AGO2 cis-acting element enrichments in buffered gene sets in the mouse using the
subcellular fractionation approach, our RATE-Seq results and unbiased search of RBP cis-acting elements
point to a role for miRNAs and ELAVLI1 in mRNA stability in human neurons rather than in the buffering
mechanism itself.

While we eliminated several possible buffering mechanisms, one limitation is that we were unable
to test a potential role of mRNA methylation modifications or poly(A)-tail length regulation on the

targeted mRNAs with altered transcription rate®’. We speculate that these mechanisms could also
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participate in the buffering mechanisms, particularly in the gene set with decreased transcription rate and
increased half-life that we found was not associated with enrichment of either miRNA-binding sites or
RBP cis-acting elements. The simplest mechanism for buffered genes with increased transcription rate is
that the RBPs bind nascent mRNA in the nucleus and are transported to the cytoplasm where they tag the
transcript for stabilization. We speculate that the nuclear RBPs are limiting in neurons, and if transcription
rate increases then the proportion of tagged mRNA falls, leading to relatively more degradation in the
cytoplasm and decreased half-life. A more complex variation on this model is that the concentration of
some RBPs themselves may also change in RTT, and this may increase or decrease their ability to stabilize
their target mRNAs. To distinguish these models, it will be necessary to determine which RBPs are
changed at the protein level in RTT using proteomics of neuronal nuclei and then individually testing their
impact through gain- or loss-of-function assays on the mRNA targets.

Equivalent loss-of-function experiments have already been described in humans with
neurodevelopmental disorders caused by mutations in RBP genes such as NOVA2??. The impact of these
RBPs on buffering could be established using existing or new iPSC or mouse models. In fact, global
transcription rate and RBP concentrations will inevitably be altered during the course of
neurodevelopment, suggesting that it would be valuable to define the buffered gene sets in iPSC and their
progeny Neural Progenitor Cells relative to the final neurons described here. We and others'®3* have
previously reported translational regulation changes in RTT neurons in both ribosomal loading and protein
stability implemented through alterations of E3-ubiquitin ligase protein levels. These findings emphasize

that buffering in RTT and potentially other disorders likely operates at both the mRNA and protein levels.
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Figure 1. Changes in transcription rate in RTT neurons do not automatically result in altered
mRNA steady states.

A, schematics of experimental outline for simultaneous quantification of transcription rate, mRNA half-
life, and steady-state mRNA level. An isogenic pair of human WT and MECP2-null iPSC-derived cortical
neurons were pulse-labeled with 4sU, and at designated time-points total RNA was harvested. 4sU-labeled
Drosophila melanogaster (fly) and unlabeled Saccharomyces cerevisiae (yeast), and ERCC spike-in
RNAs were added as indicated and used as pull-down efficiency, non-specific binding, library preparation,
and sequencing controls. Steady-state mRNA levels were quantified from an aliquot of the 24h time-point
(non-biotinylated and unprocessed). B-C, scatter-plots depicting genome-wide changes in steady-state and
transcription rate. D, volcano plot showing genes with increased or decreased transcription rate in MECP2-
null neurons (NEUrtr). E, transcription rate fold-changes determined by RATE-seq (X-axis) were
validated using an alternative approach. Neurons were incubated with 5-ethylnyl uridine (EU) and
quantified following Click-it reaction and qRT-PCR (Y-axis) of genes selected to cover a large spectrum
of fold-changes including genes with no changes. F, overlap of genes altered at transcription rate and/or
steady-state in human NEUrtr. G, summary of samples from Boxer et al re-analyzed in our study. H,
overlap of genes altered at transcription rate and steady-state in the brains of Mecp?2 y/- mouse model.
Transcription rate changes in the mouse model were estimated by changes in nuclear (left Venn diagram)

or chromatin-associated (right Venn diagram) mRNAs.
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Figure 2. The direction of transcription rate changes in RTT neurons is predicted by three combined
gene-body dinucleotide frequencies.

A, random forest classifier for prediction of gene-body sequence features relevant for transcription rate
fold-changes in human NEUrtt and in cortical brain samples of the mouse Mecp? y/-. B, percent accuracy
(Y-axis) of transcription rate fold-change predictions in human NEUrtr (B) or mouse Mecp2 y/- (C)
considering different gene-body sequence features. L= gene-body length; 2-mers and 6-mers= 2 and 6-
nucleotide sequence elements, respectively; CA/CG= number of CA or CG di-nucleotides; minus
CA/CG=removal of CA and CG di-nucleotides from predictive models; mCA/mCG= methylated CA and
CGs; + sign denotes combinations of two or more sequence features. D, top combinations of dinucleotides
contributing to the full prediction accuracy described in panels B and C. Accuracy increases to the
maximum when a specific combination of three dinucleotides is used. Similar behavior is observed
between human (left) and mouse (right) datasets. E, top combinations of three dinucleotides contributing
to the full prediction model. Predictive di-nucleotides conserved between human and mouse are denoted

in bold fonts in the human column.
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Figure 3. Widespread changes in mRNA half-life directly alter steady-state abundance or buffer
transcription rate changes in human and mouse RTT models.

A, scatter-plot showing global relative changes of half-life in NEUrrT. B, global increase in the absolute
mean half-life in NEUrTr. C, half-life fold-change determined by RATE-seq (X-axis) were validated using
an alternative approach. Neurons were incubated with Actinomycin D (transcriptional inhibitor) and RNA
harvested at different time-points. Selected genes covering a wide range of fold-changes were quantified
by qRT-PCR (Y-axis). D, number of genes with changes in transcription rate only, partially or fully
buffered by half-life changes, and genes whose change in steady-state are caused by altered half-life only.
Genes were defined with transcription rate only changes when the difference between steady-state and
transcription rate log, fold-change was less than 25% of transcription rate log, fold-change. E, most genes
with increased (magenta box) or decreased (green box) transcription rate show decreased or increased
half-life, respectively, and genes with unchanged transcription rate do not display significant changes in
half-life as a group. F, global changes in half-life detected in brains of the Mecp2 y/- mouse model
estimated from both nuclear (left) or chromatin-associated RNAs (right) (horizontal line denotes FDR =
0.1). G-H, number of genes with transcription rate changes that are partially or fully buffered by mRNA
stability mechanisms, and genes whose change in steady-state are caused by altered half-life only in the
mouse model. I, the Mecp2 y/- mouse models also display the reciprocal behaviour in half-life regulation

relative to transcription rate. TR= transcription rate, HL= half-life, SS= steady-state
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Figure 4. Cis-acting elements in the 3'UTR are highly associated with half-life changes.

A, random forest classifier for prediction of mRNA sequence features relevant for half-life fold-change in
human NEUrtr and in cortical brain samples of the mouse Mecp?2 y/-. B, percent accuracy (Y-axis) of
half-life fold-change predictions in human NEUrtr (B) or mouse Mecp2 y/- (C) considering different
mRNA sequence features. >80% prediction accuracies can be achieved with the features tested, and
indicate that 3'UTRs contain sequence elements relevant for half-life changes in both humans and mice.
L= gene-body length; nt= nucleotide sequence; 2-mers, 4-mers, and 6-mers= 2, 4, and 6-nucleotide
sequence elements, respectively; TR= transcription rate; All= all features considered at the same time; +

sign denotes combinations of two or more sequence features.
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Figure 5. miRNA and RBP cis-acting elements correlate with half-life changes in RNA stability
exclusive genes.

A, small RNA-seq to quantify changes in human miRNA abundances in the NEUrtT. X-axis represents
the basal abundance of each mature miRNA detected in the NEUwr and Y-axis represents their fold-
change in the NEURrTT. Blue dots, neuronal-specific miRNAs showing that they accumulate at abundances
higher than the mean in both NEUwt and NEUrtt. Red dots, the abundance of the small RNA spike-ins
added on a per-cell basis and used for library preparation control and quantification of miRNA abundance
at the absolute levels. B, comparison of the fold-changes between steady-state mature miRNA levels and
primary miRNA (pri-miRNA) transcription rate in NEUwt and NEUrTT showing a significant correlation
between both (r= 0.47, p val 4.377), indicating many changes in mature miRNA steady-state levels are
caused by changes in their transcription rate. C, DESeq2 miRNA steady-state level fold-change before
spike-in normalization, and D after normalization based on the spike-in fold-change. The absolute
abundance of miRNAs in NEUrTr is reduced for most miRNAs. E-F, miRNA-binding sites enriched in
half-life only (panel E) or in combination with transcription rate up and half-life down (buffered, F). Y-
axis represents the number of genes containing each of the miRNA-binding sites found, and X-axis the
enrichment levels. Color represents the miRNA steady-state fold-change of the respective miRNA in the
NEUrtT as measured in A. G, 7-mers known to be targeted by RBPs enriched in the HL-only group based
on the RNAcompete database?’. TR= transcription rate, HL= half-life.
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Figure 6. RBP cis-acting elements are enriched in buffered genes with increased TR and decreased
half-life.

A, 7-mers known to be targeted by RBPs enriched in the group of buffered mRNAs. A different set of
RBP cis-acting elements was found enriched compared to the HL-only group (Figure 5G). B, cellular
distribution of the RBPs enriched in mRNAs with increased transcription rate and decreased half-life

showing that these are predominantly nuclear.
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Fig S1. Quality control of the RATE-seq experiment.

A-B, 4sU does not cause changes in neuronal viability or cell numbers at the dose and times used in the
experiment. C, representative agarose gel showing 4sU-labeled pulled-down RNA for each time-point.
The presence of human (Hs) and fly ribosomal RNAs are denoted by arrows. D, 4sU incorporation kinetic
curves of human mRNA normalized to fly spike-in RNA. E, Pearson’s correlation between replicates of
the human RNA for each time-point. F, principal component analysis of sequencing data from NEUwrt
and NEURrTT showing significant separation between genotypes and time-points. Steady-state samples are
denoted with the red outline, and cluster the closet with the 24-hour time point samples from where they
are derived. G, read counts of spike-in RNAs: unlabeled yeast relative to fly RNA for all time points in
NEUwr and NEUgrtt. Unlabeled yeast RNA spike-in RNA was used as pull-down negative control
(background control). The absence of yeast RNA indicates that the streptavidin-biotin pull-down of 4sU
labeled RNAs had minimal contamination of unlabeled human RNAs, but were readily detectable in the
steady-state samples. H-1, Pearson’s correlation of ERCC spike-in RNAs between (H) replicates, and (I)
spike-in concentration and sequencing measured abundance used for all time points in NEUwr and
NEUrtt. ERCC spike-in RNA was used as control for library prep quality. High Pearson’s correlations
indicate high-quality of the library samples. J-K, half-life measured with 4sU saturation curve method. (J)
percentage of genes with measured half-life depending on transcription rate. K, accuracy of half-life
shown against half-life magnitude. Clso stands for 50% confidence interval. Black points denote genes
with poorly fit saturation curves and are removed from analysis in panel L. L, comparison of half-life
estimated with two methods for well measured genes selected in panel K. M, example of genes displaying
transcription-mediated changes in steady-state (TR-only). DLXG6 is known to confer high risk for autism
when mutated. N, human genes with the highest transcription rate fold-change are also enriched for
MECP2 binding as previously described in mice’ by MECP2 ChIP-seq. O, genes with the highest increase
in transcription rate fold-change in NEUrtt had lowest basal transcription rate in NEUwr neurons as seen

previously!”. TR= transcription rate, HL= half-life, SS= steady-state.
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Figure S2. Classifier model to predict DNA sequence features affecting transcription rate in the
absence of MECP2.

A, human genes with steady-state, transcription rate, or half-life fold-changes in NEUrtt do not show
significant enrichments for gene length as seen for adult mice’. B, schematic representation of a decision
tree for the classifier utilized. A collection of decision trees forms the random forest model. C, 3'UTR or
CDS mRNA sequence features-based random forest classifier for prediction of transcription rate fold-
change in NEURrTT. D, receiver operating characteristic curve (ROC) and precision-recall curve (PRC)
showing overall performance of the classifier for prediction of human transcription rate fold-changes. E,
predictive model for transcription rate fold-changes in the mice using either nuclear or chromatin-
associated RNA samples. While the fraction of mCA and gene-body length offer some accuracy to
distinguish transcription rate up versus unchanged or up versus down in some cases, the classifier found
that other sequence features offer higher prediction accuracies (see also figure 2C). F, ROC and PRC
showing overall performance of the classifier for prediction of mouse transcription rate fold-change
relative to panel E. G, gene-body or number and frequencies of mCA/mCG mRNA sequence features-
based random forest classifier for prediction of transcription rate fold-changes in the mouse Mecp?2 y/-. H,
3'UTR or CDS mRNA sequence features-based random forest classifier for prediction of transcription rate
fold-changes in the mouse RTT model. I, ROC and PRC showing overall performance of the classifier for
prediction of mouse transcription rate fold-change based on the nuclear dataset. TR= transcription rate,

HL= half-life, SS= steady-state.
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Figure S3. Human and mouse RTT models show half-life changes in steady-state mRNA levels.

A, example of genes with mRNA half-life only changes leading to changes in the steady-state independent
of transcription rate. GRIA1 is known to confer a high risk for autism when mutated. B, percentage of
genes with no significant transcription rate shift or HL-only changes in steady-state (y-axis) as a function
of the FDR (x-axis) and fold-change (color) thresholds. C, percentage of genes with no significant steady-
state shift or fully buffered by mRNA stability mechanisms (y-axis) as a function of the FDR (x-axis) and
fold-change (color) thresholds. D, human genes with steady-state, transcription rate, or half-life fold-
changes in NEUrT do not show significant enrichment for transcript length as seen for adult mice’. E, the
overlap of genes altered at transcription rate based on nuclear (left panel) or chromatin-associated RNA
(right panel) and steady-state in the Mecp2 R306C mouse neurons. F, percentage of genes with no
significant steady-state shift or fully buffered by half-life (y-axis) as a function of the FDR (x-axis) and
fold-change (color) thresholds in the Mecp?2 y/- and Mecp2 R306C mice. G, percentage of genes with no
significant transcription rate shift or with half-life change (y-axis) as a function of the FDR (x-axis) and
fold-change (color) thresholds in the Mecp?2 y/- and Mecp2 R306C mice. H-I comparison of the fold-
changes between genes in human (Hs) and mouse (Mm) RTT models showing limited agreement in the
identity of genes with altered transcription rate (H) and half-life (I) between species. J-L, the identity of
genes differentially regulated at half-life and transcription rate is also limited when comparing the Mecp?2
y/- and Mecp2 R306C mouse models. R values for each comparison are depicted inside boxes in red fonts.

TR= transcription rate, HL= half-life, SS= steady-state.
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Figure S4. Quantification of 3’'UTR and alternatively-spliced isoforms in humans and mice, and
predictive models of half-life changes in mice.

A, Overall schematics for quantification of alternative poly-Adenylation (APA) changes between NEUwt
and NEUrtT. Proximal poly-Adenylation site usage index (pPAU) quantifies the percentage of mRNA
isoforms cleaved and poly-Adenylated at the proximal pA site, where 0 or 100 means that all mRNA
1soforms of a specific gene use the proximal site (short 3'UTR isoform) or the distal (long 3'UTR isoform),
respectively. Scatter-plot (right panel) shows a high correlation between pPAU values between human
NEUwr and NEURrTT. B, cumulative probability plot showing that the vast majority of genes show small
changes <10% in pPAU index between human NEUwr and NEURrtT. C, representative sequencing read
peaks showing absence of MECP2 3'UTR reads in the NEUrtT sample (upper) and peaks corresponding
to DICERI polyadenylation sites (arrowheads) in the 3'UTR as an example of genes with similar pPAU
index values in NEUwr and NEUrrr samples. Y-axis represents number of sequencing reads. D,
quantification of mRNA at the 3'UTR isoform level indicating that most expressed 3'UTR isoforms also
undergo half-life buffering. E, analysis of the alternatively-spliced mRNA isoforms in the Mecp?2 y/-
mouse model shows that all canonical CDS and non-protein-coding isoforms also undergo half-life
buffering, indicating that changes in mRNA splicing are not the underlying mechanism regulating the
changes in mRNA half-life in response to transcription rate changes. F, quantification of the basal half-
life of mRNA isoforms in the WT mice, as measured using either nuclear (left) or chromatin-associated
RNA (right), confirms that non-sense mediated decay (NMD), processed transcripts, and retained intron
mRNA isoforms are in general less stable (lower half-life) than the canonical CDS (cCDS) and
alternatively-spliced (AS) protein-coding isoforms. This underscores the quality of the mRNA half-life
calculations based on the ratios of whole-cell versus nuclear or chromatin-associated mRNAs. G and H,
ROC and PRC graphs showing overall performance of the classifier for prediction of half-life fold-changes
based on 3'UTR (G) or CDS (H) regions of the mRNAs. I, CDS specific mRNA-sequence features based
random forest classifier for prediction of half-life fold-change for the human and Mecp?2 y/- mouse model.
J, Pearson’s correlation between CDS and 3'UTR sequence of buffered genes indicating significant
similarities between the sequence composition in these two regions. L, mRNA-sequence features based
random forest classifier for prediction of half-life fold-change based on the chromatin-associated RNA in
the Mecp?2 y/- mouse model. Similar to the half-life fold-change based on the nuclear-associated RNA,
both 3'UTR and CDS contain sequence elements that can predict half-life changes with high accuracy. M
and N, ROC and PRC graphs showing overall performance of the classifier for prediction of half-life fold-
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change in the Mecp?2 y/- mouse model based on nuclear (M) or chromatin-associated RNA (N). TR=

transcription rate, HL= half-life, SS= steady-state
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Methods
iPSC cultures and neuronal differentiation

1PSC lines #37 (WT) and #20 (isogenic MECP2-null) from a female patient were previously
described?!. Both cell lines were generated and cultured under the approval of the SickKids Research
Ethics Board and the Canadian Institutes of Health Research Stem Cell Oversight Committee. iPSC lines
were cultured in 5% CO; on BD hESC-qualified matrigel (BD) in mTeSR medium (STEMCELL
Technologies). Cultures were passaged using ReLeSR (STEMCELL Technologies) following the
manufacture’s instruction every 6-7 days. For neuronal induction, iPSCs were aggregated as Embryoid
Bodies (EBs) in low-attachment dishes in N2 media containing laminin (1 ml/ml) with 10 mM SB431542,
2 mM DSM, and 1x penicillin-streptomycin changed daily. After 7 days, EBs were plated on poly-L-
ornithine + laminin-coated dishes and grown in N2 media + laminin (1 ml/ml). After 7 days, neural rosettes
were manually picked and transferred to poly-L-ornithine + laminin-coated wells. After 7 days, neural
rosettes were picked a second time, digested with Accutase and plated on poly-L-ornithine + laminin-
coated wells. Resulting neural precursor cells (NPC) were grown as a monolayer and split every 5-7 days
in NPC media containing DMEM/F12, N2, B27, 1x non-essential amino acid (NEAA), 2 mg/ml Heparin,
1 mg/ml laminin. To generate neurons, NPCs were plated on poly-L-ornithine + laminin-coated plates at
a density of 10° cells per 10 ¢cm dish and cultured for 3 weeks in neural differentiation medium
(Neurobasal, N2, B27, 1 mg/ml laminin, 1x penicillin-streptomycin, 10ng/ml BDNF, 10ng/ml GDNF, 200
mM ascorbic acid, and 10 mM cAMP).

Neuronal enrichment using MACS

Neuronal cultures were enriched for all experiments to exclude contaminating glia and neuro
progenitor cells present after differentiation. Enrichment of 3-week old neuronal cultures was made as
described earlier*334. 3-week old heterogeneous neuronal cultures were enriched by a negative selection
strategy using antibodies against surface markers CD44 and CD184 (recognizing NPCs, glial progenitors
and astrocytes)®® using magnetic-activated cell sorting (MACS® - Miltenyi Biotec). After enrichment,
neurons were re-seeded onto Matrigel-coated 6-well plates, cultured in neural differentiation medium, and

allowed to recover for one extra week, for a total of 4 weeks neuronal differentiation.
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4sU metabolic labeling of Neurons and RNA extractions

When enriched neuronal cultures reached 4-week of differentiation, media was replaced with
neuronal differentiation media supplemented with 100 uM 4sU (Sigma-Aldrich) reconstituted in DMSO.
Neurons were harvested at 0.5, 1, 4, 8, and 24 h after the addition of 4sU (except for the MECP2-null line
where the time-point 1h was omitted from both replicates due to low differentiation yields). Metabolic
labeling was designed such that all time points were collected together. After incorporation, cells were
quickly washed twice with ice-cold 1x PBS Total RNA and scraped into ice-cold 1.5 ml Eppendorf tubes.
Cells were collected by spinning at 1000g for 5 min at 4°C and cell pellets were resuspended in 1 mL of
Trizol (Thermo Fisher Scientific). Total RNA was extracted according to manufacturer instructions. The
SS sample was prepared from a Sug aliquot of the 24 h time-point added with 0.5 ug of both 4sU labeled
and unlabeled spike-in RNAs. Neuronal viability in the presence of 100 uM 4sU was monitored up to 24

h of treatment on parallel cultures by using Trypan blue staining and live/dead cell counting.

Biotinylation and pull down of 4sU-labeled RNAs

50 ug of total neuronal RNA was mixed with 5 pg unlabeled yeast RNA and 5 pg 4sU-labeled
S2 fly RNA in a total volume of 120 pL. 1 mg/mL HPDP-biotin (ThermoFisher Scientific) was
reconstituted in dimethylformamide by shaking at 37°C for 30 min at 300 RPM. 120 uL of 2.5x% citrate
buffer (25 mM citrate, pH 4.5, 2.5 mL EDTA) and 60 pL of 1 mg/mL HPDP-biotin were added to the
premixed RNA sample for each time point. The solution was incubated at 37°C for 2 h at 300 RPM on an
Eppendorf ThermoMixer F1.5 in the dark. Samples were extracted twice with acid phenol, pH 4.5, and
once with chloroform. RNA was precipitated with 18 pL 5M NaCl, 750 pL 100% ethanol, and 2 pL
GlycoBlue (Invitrogen) overnight at —20°C. Precipitated RNA was pelleted for 30 min at 21,000g at 4°C.
The RNA pellet was resuspended in 200 pL of 1x wash buffer (10 mM Tris-HCI, pH 7.4, 50 mM NaCl,
I mM EDTA). Biotinylated RNA was purified using the uMACS Streptavidin microbeads system
(Miltenyi Biotec). 50 uL Miltenyi beads per sample were pre-blocked with 48 puLL 1x wash buffer and 2
uL yeast tRNA (Invitrogen), rotating for 20 min at room temperature. ptMACS microcolumns were
washed 1x with 100 uL nucleic acid equilibration buffer (Miltenyi Biotec), followed by 5x washes with
100 uL 1x wash buffer. Beads were applied to microcolumns in 100 pL aliquots and again washed 5%
with 100 pL 1x wash buffer. Beads were demagnetized and eluted off the column with 2x 100 pL 1x
wash buffer, and columns were placed back on the magnetic stand. A total of 200 uL beads was mixed

with each sample of biotinylated RNA and rotated at room temperature for 20 min. Samples were applied
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to the microcolumns in 100 pL aliquots, washed 3x with 400 pL wash A buffer (10 mM Tris-HCI, pH
7.4, 6 M urea, 10 mM EDTA) prewarmed to 65°C, and washed 3% with 400 uL. wash B buffer (10 mM
Tris-HCI, pH 7.4, 1 M NaCl, 10 mM EDTA). RNA was eluted with 5x 100 uL of 1x wash buffer
supplemented with 0.1 M DTT, and flow-through was collected in a tube. Purified RNA was precipitated
with 30 uL 5 M NaCl, 2 uL GlycoBlue, and 1 mL 100% ethanol, incubated at —20°C overnight. Samples
were spun at 21,000g at 4°C for 30 min and resuspended in 20 pL. water. RNA quality was assessed by

running 3 pL of samples on a 1.5% agarose gel.

Transcription rate measurement using EU

Transcription rate measurements were validated by an alternative method using the metabolic
incorporation of 5-ethynyl uridine (5-EU) followed by quantifying mRNA levels by qRT-PCR. NEUwr
and NEUrTT were incubated with 0.5mM 5-EU (ThermoFisher) for 30 min. Total RNA was extracted and
processed using Click-iT Nascent RNA Capture Kit (ThermoFisher) according to the manufacturer’s
instructions. The captured RNAs were used as a template for cDNA synthesis followed by qRT-PCR to
quantify mRNA level (see primer list below). Genes were chosen to cover a wide range of transcription

rate changes determined by RATE-seq.

Half-life measurements using transcription blocking

Half-life measurements were validated by an alternative method using transcription blocking
followed by quantifying mRNA levels by qRT-PCR. 10pg/mL actinomycin D (Sigma-Aldrich) was added
to NEUwr and NEUrTT. RNASs were isolated at 1h, 3h, and 6h time points using the RNeasy Plus kit
(QIAGEN). The RNAs were used as a template for cDNA synthesis followed by qRT-PCR to quantify

mRNA level. Genes were chosen to cover a wide range of half-life changes as determined by RATE-seq.

cDNA synthesis and gRT-PCR

cDNAs were synthesized using SuperScript I1I reverse transcriptase (ThermoFisher) with random
hexamer primers according to the manufacturer’s instructions. For gqRT-PCR, we used SYBR Select PCR
Master Mix (ThermoFisher). Fold-changes were calculated by the AACt methods using Glyceraldehyde
3-phosphate dehydrogenase (GAPDH) and 18S as housekeeping genes, averaged between technical and

subsequently biological replicates to achieve an average fold difference.
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miRNA extraction and spike-in strategy

To calculate relative and absolute differences in the miRNA population in NEUwt and NEURTT,
small RNAs were extracted from two replicates of both lines using the same number of cells followed by
the addition of a set of spike-in RNAs. Small RNAs were extracted from 500,000 neurons of each line
using the SPLIT RNA extraction Kit (Lexogen) according to the manufacturer’s instructions. A set of 52
RNA spike-ins (QIAseq miRNA Library QC Spike-Ins — Qiagen) that spanned a wide range of
concentrations were added to the recovered RNAs according to the manufacturer’s instructions.
Sequencing libraries were made using the Small RNA library preparation kit NEBNext (NEB) according
to the manufacturer’s instructions. Sequencing was performed on the [llumina HiSeq 2500 using the Rapid

Run mode. Datasets are available upon request

Library preparation and RNA-sequencing

RNA-seq libraries were prepared for each time-points and seady-state sample using the QuantSeq
3> mRNA-Seq Library Prep Kit FWD for Illumina (Lexogen) automated on the NGS WorkStation
(Agilent) at The Centre for Applied Genomics (TCAG) according to the manufacturer’s instructions. PCR
cycle numbers were determined using the PCR Add-on Kit for Illumina (Lexogen). All steady-state
samples were processed with 250 ng of total RNA input. To minimize variability between time-points
within a batch, RNA samples were processed with the same total RNA input with a minimum of 100 ng
of total RNA used. Each sample was spiked-in with ERCC RNA Spike-In Control Mix 1 (Ambion)
according to the manufacturer’s instructions prior to the start of library preparation. Library quality and
quantity were measured at TCAG prior to sequencing with Bioanalyzer (Agilent) and KAPA qPCR
(Roche). Sequencing was also performed at TCAG on the Illumina HiSeq 2500 with single-end 100bp

read length yielding 40 to 50 million reads. Datasets are available upon request.

Processing of raw sequencing reads

Processing starts with trimming of reads in 4 steps using cutadapt version 1.10%¢. First, we removed
adapters exactly at the 3-end of the reads (-a AGATCGGAAGAGCACACGTCTGAACTCCAGTCAX
-O 4 -¢ 0.1 --minimum-length 25). Second, we removed internal or long stretches of adapter (-a
AGATCGGAAGAGCACACGTCTGAACTCCAGTCA -0 30 -e 0.18 --minimum-length 25). Third, we
trimmed low-quality bases at the 3'-end of the reads (-q 20 -O 4). Finally, we removed poly-A tail at the
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3"-end of the reads (-a AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAX -O 4 -e 0 —minimum-
length 25).

Generation of custom hybrid genome index and reads alignment with STAR

We generated a custom genome index to accommodate quantification of yeast, fly, and ERCC
spike-in RNA. Annotations (gencode version 29, flybase version all-r6.22, saccharomyces cerevisiae.gff
from yeastgenome.org, custom for ERCC) and genomes (hg38, dm6, sacCer3, ERCC from ThermoFisher)
for all species and ERCC were combined and then processed with STAR version 2.6.0c (--sjdbOverhang
100). Finally, reads are aligned to hybrid genome with STAR version 2.6.0c (default settings)?”.

Quantification of RNA abundance

Poly-A sites were obtained from PolyA DB version 3 and converted to hg38 coordinates with
liftOver (UCSC)3%%. Reads with MAPQ < 2 are filtered out. Finally, usage of poly-A sites was defined as
a sum of reads whose 3 -ends are falling within 20bp upstream and 10bp downstream of the poly-A sites.
The sum was counted with a custom Python script using pybedtools, pysam, pypiper***?. Annotation of
pri-miRNA transcripts structures was downloaded from Mendel lab®. Each transcript was matched to
miRNA gene based on overlaps with GENCODE annotated pre-miRNA coordinates**. Then, pri-miRNA
poly-A sites overlapping mRNA or IncRNA poly-A sites from PolyA DB were removed. Finally, usage
of pri-miRNA poly-A sites was quantified with featureCounts (strandSpecific=1, read2pos=3 from
Rsubread package)®. The abundance of mature miRNAs was quantified with mirdeep?2 pipeline*. Reads
were preprocessed and collapsed with mapper.pl script (-e -h -] -k AGATCGGAAGAGCACA -118 -m -

v) and quantified with quantifier.pl script, using hairpin and mature sequences obtained from miRbase*’.

Normalization of read counts
Human raw counts for each sample are divided by the total abundance of fly spike-in RNA,
estimated as a sum of primary alignments to the fly genome. This normalization reconstructs the fraction

of labeled human RNA at each timepoint.
Transcription rate and half-life measurements

The transcription rate was estimated from early time points. First, normalized counts at 1 hour

were divided by 2 to create a new approximate replicate at 30 mins timepoint. This assumes that RNA
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degradation is negligible for most genes at early time points. Then, before comparing cell types with a
DESeq2, counts are further quantile normalized between replicates of the same cell type with
normalize.quantiles (preprocessCore package)*®*°. Half-life was estimated in 2 separate ways: fit of a
4sU saturation curve and the ratio of steady-state to transcription rate. For the 4sU saturation curve
method, the half-life is estimated in a 2-step procedure. First, normalized counts are fit with nls (nonlinear
least squares from stats package) to approximate the true number of counts Y at each timepoint. Then, in
a second pass, normalized counts are fit again with nls, but now correcting for the increase in variance
using weights set as 1/Y. Confidence intervals are estimated with confint function (stats package). For the
ratio method, the half-life is estimated with DESeq2 using raw human counts from 30 mins, 1 hour and
steady-state timepoints (design =~ assay). In the assay factor, 30 mins and 1-hour samples correspond to

the transcription rate.

Processing of mouse datasets

Mouse data for whole-cell, nuclear and chromatin RNA-seq was downloaded from GSE128178.
Mouse Mecp2 ChIP-seq was downloaded from GSE139509. Differential expression analysis for nuclear
and chromatin RNA-seq was downloaded from the supplementary materials of the Boxer et al study®. The
abundance of 3'UTR isoforms for all samples is estimated using the QAPA standard pipeline®®. Half-life
was estimated as a ratio between whole-cell counts and nuclear or chromatin counts using the interaction
term approach in DESeq? (design =~ celltype + batch + assay + celltype:assay). Coefficient of the
celltype:assay term is used to measure the log2 fold-change in half-life between cell types. Before the

DESeq?2 run, we filter out genes with a sum of counts in replicates less than 20 in a pair of compared cell

types.

Random forest prediction of up and down-regulated genes in transcription rates and mRNA half-life
Fold-changes in human half-life in log scale log,FCy;, between cell types A and B were estimated
as follows:

log,FCqy, = log,HLg — log,HL,4

ZFC = |10g2FCHL|/\/1fCSE]23 + lfCSEi
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There, log,HL, and 1fcSE, were average and standard error of the half-life in cell type A,
estimated by DESeq? as a ratio from steady-state and transcription rate replicates. Z-score of a fold-change
Zrc was used as a measure of accuracy.

Features of the classifier are frequencies of k-mers in 3'UTR, coding sequence or gene-body,
calculated using oligonucleotideFrequency (Biostrings package)®!. In addition, the methylation status of
CA and CG in the gene-body was added for mouse analysis from GSE139509. Predicted variable denotes
genes that are either up or down-regulated in transcription rate or half-life. Thresholds for the human data
were:

1. TRyp: log,FCrr > 1 & padj < 0.1

2. TRyown: log,FCrr < —1 & padj < 0.1

3. HLyp: log,FCyhr, > 1 & Zgc > median(Zgc)

4. HLdown: log,FCyy, < —1 & Zpc > median(Zgc)

The half-life for the mouse was either from nuclear or chromatin. Thresholds for the mouse data were:

1. TRyp: log,FCrg > 0.1 & FDR < 0.1

2. TRdown: log,FCrgr < —0.1 & FDR < 0.1

3. TRpot |log,FCrr| < 0.1 or FDR > 0.1

4. HLyp: log,FCyp, > 1 & pvalue < quantile(pvalue, 0.2)

5. HLdgown: log,FCyp, < —1 & pvalue < quantile(pvalue, 0.2)

Data was split into 75% and 25% for training and test sets. The classifier is trained using randomForest
(randomForest package)’?. Precision-recall and receiver operator characteristic curves were obtained with

evalmod (precrec package)™.

Transite analysis of miRNAs and RBPs

Genes were split into up- or down-regulated according to their transcription rate and half-life fold-
change. Then, we performed multiple comparisons of 3'UTR sequences between groups of genes using
run_kmer_tsma (transite package)>*. Groups of compared genes:

1. Foreground: TRgown and HLy, Background: TRgown

2. Foreground: TRy, and HLgown Background: TRy,

3. Foreground: TRyt and HLgown Background: TRyot

These comparisons were performed for all transite RNA binding protein motifs and for TargetScan

seed sequences’®. TargetScan analysis includes 439 human miRNA-seed sequences with family
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conservation scores of 0,1,2 that were selected from miR Family Info.txt (TargetScan website).
Definitions of up- and down-regulated genes:

6. TRyp: log,FCrgr > 0.5 & padj < 0.1

7. TRaown: log,FCrr < —0.5 & padj < 0.1

8. TRt |log,FCrr| < 0.5 or padj > 0.1

9. HLyp: log,FCyp, > 1 & Zgc > median(Zgc)

10. HLgown: log,FCyp, < —1 & Zgc > median(Zgc)

The results of fransite analysis were further processed with a custom script for multiple hypothesis
correction. Motifs with a low number of sites detected in both background and foreground were removed
from the analysis. A separate threshold for the number of sites was chosen for each transite analysis. A
threshold was determined from a requirement for p-values distribution to be unimodal and enriching at

p=0. The distribution of p-values with unfiltered sites is bimodal with peaks at both p=0 and p=1.

Primer list for qRT-PCRs

CAV2 Forward ATTCTCTTTGCCACCCTCAG
Reverse GTCCTACGCTCGTACACAATG

PI15 Forward TCGCAGAATGACATGATCGC
Reverse TGGTCCCAAATGCAAGTAGC

FOXBI Forward CGCGCAACTTGAAGCAAC
Reverse TCAGCGAGATGTACGAGTAGG

DTX3L Forward AAAGGAAATCAGCCAGAGGG
Reverse GGGTATCTCTTTCCTGGGTTTG

PHLDA1 | Forward ACCAAATACCGCACCCAC
Reverse AGAAATGTGCTCGTCCCAC

FOXGI Forward CCTGCCCTGTGAGTCTTTAAG
Reverse GTTCACTTACAGTCTGGTCCC

LHX2 Forward GGTCTTCCCTACTACAATGGC
Reverse GTCGTTTTCGTTGCAGCTTAG
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FEZF1 Forward CTGTGGCAAAGGGTTTCATC
Reverse TCTTGTCGTTGTGGGTGTG
SIX3 Forward CAACCCCAGCAAGAAACG
Reverse CTCGGTCCAATGGCCTG
DLK1 Forward CGAGGATGACAATGTTTGCAG
Reverse CAGAGTCCGTGAAGGCAG
DCX Forward TATGCGCCGAAGCAAGTCTCCA
Reverse CATCCAAGGACAGAGGCAGGTA
ACTB Forward TGAAGTGTGACGTGGACATC
Reverse GGAGGAGCAATGATCTTGAT
GAPDH Forward CATGAGAAGTATGACAACAGCCT
Reverse AGTCCTTCCACGATACCAAAGT
AGO3 Forward TCCTGTTGGGAGGCAAATAACA
Reverse AAGAGTAGTGGTTCTGTCACAGA
FZD3 Forward GCTTTGCACTCTGCTCTTGTAG
Reverse TTGTACACTCACAGTTAAAGTGCT
NTSDC2 | Forward CAACCCCACCTACTTCTCAAGG
Reverse GTAGAAGGTGAAGTCCACGCG
KIF3A Forward TGAGTAATCAAGGGAAGGGTCG
Reverse AAAACAACTCCCTTTCTCCAGA
RBL2 Forward AAACTTATGACCTCTTCCTTTAGG
Reverse TTTTAAACTGCCAGGAACACCC
SKP2 Forward GTTGCACAGGAAATGATGATGCT
Reverse AACCCCAGCTCTTGTCACTAAT
18S Forward GATGGGCGGCGGAAAATAG
Reverse GCGTGGATTCTGCATAATGGT
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