

Passive inertial damping improves high-speed gaze stabilization in hoverflies

Ben J Hardcastle^{1,2*}, Karin Bierig^{1,3}, Francisco JH Heras^{1,4}, Kit D Longden^{1,5}, Daniel A Schwyn¹,
Holger G Krapp^{1*}

¹Department of Bioengineering, Imperial College London, United Kingdom

²Present address: Department of Integrative Biology and Physiology, University of California, Los Angeles, United States

³Present address: Max Planck Institute for Intelligent Systems, Tübingen, Germany

⁴Present address: Champalimaud Research, Champalimaud Center for the Unknown, Lisbon, Portugal

⁵Present address: Janelia Research Campus, Howard Hughes Medical Institute, Ashburn, USA

SUMMARY

Gaze stabilization reflexes reduce motion blur and simplify the processing of visual information by keeping the eyes level. These reflexes typically depend on estimates of the rotational motion of the body, head, and eyes, acquired by visual or mechanosensory systems. During rapid movements, there can be insufficient time for sensory feedback systems to estimate rotational motion, requiring additional mechanisms. Solutions to this common problem are likely to be adapted to an animal's behavioral repertoire. Here, we examine gaze stabilization in three families of dipteran flies, each with distinctly different flight behaviors. Through frequency response analysis based on tethered-flight experiments, we demonstrate that fast roll oscillations of the body lead to a stable gaze in hoverflies, whereas the reflex breaks down at the same speeds in blowflies and horseflies. Surprisingly, the high-speed gaze stabilization of hoverflies does not require sensory input from the halteres, their low-latency balance organs. Instead, we show how the behavior is explained by a hybrid control system that combines a sensory-driven, active stabilization component mediated by neck muscles, and a passive component which exploits physical properties of the animal's anatomy—the mass and inertia of its head. This adaptation requires hoverflies to have specializations of the head-neck joint that can be employed during flight. Our comparative study highlights how species-specific control strategies have evolved to support different visually-guided flight behaviors.

KEYWORDS motion vision | motor control | head movements | multisensory integration | frequency analysis | biomechanics | Diptera | cross-species comparison

INTRODUCTION

Agile flight maneuvers require a keen sense of vision, but without compensatory mechanisms visual processing would be severely impaired during fast movement¹. Gaze stabilizing reflexes have evolved in many animals, which reduce motion blur and keep the eyes and visual coordinates aligned with the horizon^{2–4}. When the eyes are fixed to the head or have a limited range of motion—as in barn owls and many flying insects—head movements play a pivotal role in stabilizing gaze. The actuation of compensatory head movements is a sophisticated calculation which must handle the different time delays of the various sensory feedback systems involved, as well as taking into account the mechanical properties of the head and the range of movements the neck muscles can actuate⁵.

SIGNIFICANCE STATEMENT Across the animal kingdom, reflexes are found which stabilize the eyes to reduce the impact of motion blur on vision—analogous to the image stabilization functions found in modern cameras. These reflexes can be complex, often combining predictions about planned movements with information from multiple sensory systems which continually measure self-motion and provide feedback. The processing of this information in the nervous system incurs time delays which impose limits on performance when fast stabilization is required. Hoverflies overcome the limitations of sensory-driven stabilization reflexes by exploiting the passive stability provided by the head during roll perturbations with particularly high rotational kinematics. Integrating passive and active mechanisms thus extends the useful range of vision and likely facilitates distinctive aspects of hoverfly flight.

*Correspondence: hardcastle@ucla.edu, h.g.krapp@imperial.ac.uk

The authors declare no competing interest.

Figure 1. Hoverfly gaze stabilization performance improves at high speeds

A: Experimental setup (left). Flies were tethered at the thorax to a step motor via a piece of cardboard. Oscillations of the motor simulated thorax roll perturbations of the fly. Diffuse light was delivered from the dorsal hemisphere while a dark ground in the ventral hemisphere provided a horizon as a visual reference for stabilization. A high-speed video camera captured the resulting compensatory rotations of the head (right). Painted markers on the head and tether aided tracking.

B: Average time-series from experiments using a sinusoidal chirp stimulus, for the blowfly (*C. vicina*). The stimulus oscillated the thorax (gray trace) with a time-varying frequency profile. The absolute angle of the fly's head (color trace) is overlaid, demonstrating a stabilization effort which generally reduced the roll amplitude of the head in all species. Perfect stabilization would appear as a flat line at 0° and no stabilization effort would result in the head angle following the thorax angle, oscillating at $\pm 30^\circ$. Traces show mean head roll angle across flies. Shaded area shows mean \pm standard error (8 flies).

C: As in **A**, for the horsefly (*T. bromius*: 4 flies).

D: As in **A**, for the hoverfly (*E. aeneus*: 6 flies).

15 Sensory feedback systems with low latency are particularly
16 valuable for stabilizing gaze during high-speed maneuvers, and
17 in flies (Diptera) the halteres fulfill this role⁶. The halteres
18 are a pair of club-shaped appendages on the thorax which
19 have evolved from a rear pair of wings and act as the principal
20 balance organs, sensing the angular velocity of the body^{7–11}.
21 In addition, the angular position of the head relative to the body
22 is monitored by proprioceptors, and the motion of the head is
23 measured visually through slower processing dependent on
24 the compound eyes^{12,13}. Many fly species also have ocelli,
25 a set of three small, simple lens eyes on the top of the head
26 which rapidly detect changes in orientation through differential
27 illumination^{14,15}.

28 Since dipterans are diverse and exhibit different styles of
29 flight and specializations of their sensory systems^{16–20}, we
30 hypothesized that gaze stabilization would also demonstrate
31 species-specific adaptations, whose mechanisms would reveal
32 solutions to motor control tasks at the limits of temporal precision.
33 To test our hypothesis, we compared species from three
34 families with contrasting behaviors: blowflies (Calliphoridae),
35 horseflies (Tabanidae), and hoverflies (Syrphidae)¹⁶.

36 Blowflies form the basis of our comparison, since the gaze
37 stabilization system which compensates for body-roll has been
38 extensively studied in these species^{12,13}. Their flight is char-
39 acterized by high-acceleration body saccades and banked
40 turns²¹, as well as high-speed aerial pursuits launched from a

41 perch^{22–24} and low-speed circling around food sources prior to
42 landing.

43 Female horseflies, on the other hand, use polarized light
44 cues to detect hosts from a distance across open fields and
45 exhibit direct flights toward them at speed^{25–27}. Although typi-
46 cally larger than blowflies, these insects are capable of agile
47 aerial maneuvers²⁸ and males are often observed hovering in
48 swarms for the purposes of mating^{29–31}. The horsefly species
49 we investigate here, *Tabanus bromius*, lack functional ocelli—
50 the simple eyes found dorsally on the head of blowflies and
51 hoverflies.

52 Hoverflies, while bearing similarities in many flight maneu-
53 vers to blowflies, also hover with exquisite control for ex-
54 tended periods, and are notable for darting and shadowing
55 conspecifics, as well as their ability to fly backwards while hover-
56 ing^{19,22,32,33}. We initially compared roll gaze stabilization
57 performance across the three dipteran families and searched
58 for differences which might reflect their flight behavior.

RESULTS

Hoverfly gaze stabilization improves at high speeds

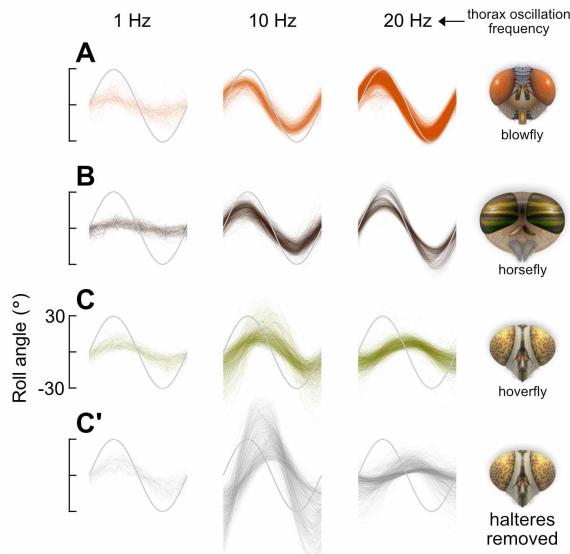

60 To evaluate gaze stabilization performance across species, we
61 used a tethered-flight paradigm and induced oscillations of the
62 thorax around the longitudinal (roll) axis of the animal (Fig. 1A
63 left). Experiments were captured on a high-speed camera, and
64 the absolute roll angles of the head and thorax were measured

Figure 2. High-speed stabilization in hoverflies does not require haltere input

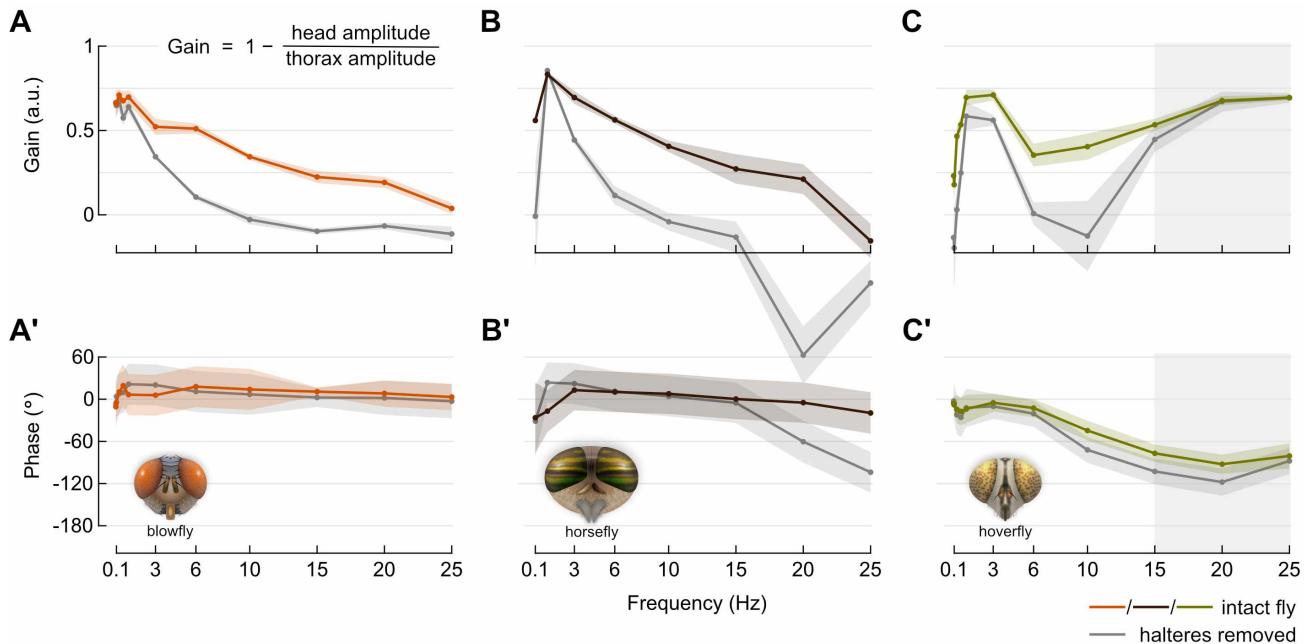
A: Time-series of head roll angle (color traces) in response to individual cycles of constant-frequency sinusoidal oscillations of the thorax (gray traces), for the blowfly (*C. vicina*: 5–13 flies). Perfect stabilization would appear as a flat line at 0° and no stabilization effort would result in the head angle following the thorax angle, oscillating at $\pm 30^\circ$.

B: As in **A**, for the horsefly (*T. bromius*: 8 flies).

C: As in **A**, for the hoverfly (*E. aeneus*: 6 flies). **C'**: Responses of the animals shown in **C** after removing the halteres. At 10 Hz (center), the motion of the head increased compared to the intact response, while at 1 Hz (left) and 20 Hz (right), the motion of the head was comparatively unaffected.

relative to the vertical axis in each frame (Fig. 1A right). We applied a $\pm 30^\circ$ sinusoidal chirp stimulus which varied the oscillation frequency of the thorax over time: first increasing linearly from 0 to 20 Hz in 5 s, then decreasing again from 20 to 0 Hz in 5 s. Perfect gaze stabilization would result in rotations of the head equal and opposite to those of the thorax, with zero delay, and would be reflected by a motionless head in the camera view.

At low frequencies, the gaze stabilization reflex in each species is effective at reducing the motion of the head compared to the motion of the thorax (0–1 s, Fig. 1B–D). But as frequency increases, stabilization performance decreases: the rotational speeds exceed the operating range of the sensory systems contributing to the stabilization reflex and the amplitude of head roll motion becomes progressively larger. For the blowfly, *Calliphora vicina*, head roll amplitude continued to grow until the thorax oscillations slowed down at the mid-point of the experiment (5 s, Fig. 1B, Movie 1). The same occurred for the horsefly, *Tabanus bromius*, where head roll approached the $\pm 30^\circ$ motion of the thorax, indicating an almost completely ineffectual stabilization reflex (Fig. 1C, Movie 2) (note that ‘amplitude’ refers here to the motion of the head as measured from the camera frame of reference: as stabilization performance decreases, the compensatory movements of the head relative to the thorax become smaller, resulting in increasing amplitude in the camera frame).


This negative relationship between frequency and gaze stabilization performance, above a certain frequency optimum, has previously been observed in flies^{34,35}, as well as in other animals (flying insects^{36,37}, birds³⁸, fish³⁹, reptiles and am-

phibians⁴⁰, crustaceans⁴¹, and mammals^{42,43}—including humans⁴⁴). Although it appears to be a common property across taxa—a consequence of the limited operating range of an animal’s visual and mechanosensory systems—the gaze stabilization performance of the hoverfly, *Eristalinus aeneus*, showed a different dependence on frequency. At the highest frequencies, the hoverfly’s head roll amplitude is smaller than at intermediate frequencies (Fig. 1D, Movie 3). It is also much reduced compared to the blowfly and horsefly.

To confirm that this effect was not caused by the time-varying frequency sweep contained within the chirp stimulus, we performed similar experiments using constant-frequency stimuli. Again, we observed that head roll amplitude grew larger with frequency for the blowfly and horsefly (Fig. 2A,B). For the hoverfly, head roll amplitude grew from an average of $\pm 8^\circ$ at 1 Hz to $\pm 18^\circ$ at 10 Hz—a similar increase to the other species (Fig. 2C). However, as in the chirp experiment, head roll amplitude then became smaller again at the highest speeds tested, falling to around $\pm 10^\circ$ at 20 Hz.

High-speed stabilization in hoverflies does not require haltere input

At high speeds, the predominant sensory input to gaze stabilization in the blowfly is provided by the halteres⁶. Are hoverfly halteres simply tuned to detect higher frequency oscillations than those of the blowfly and horsefly? When we repeated the previous experiment in the hoverfly *E. aeneus* after removing the halteres, head roll motion at the intermediate 10 Hz frequency was increased greatly compared to the intact response (Fig. 2C,C’ center). Indeed, head roll oscillations became larger than those of the thorax, consistent with a framework in which

Figure 3. Gain and phase of head roll frequency-response

A: Average gain of the head roll response for the intact blowfly (color trace) and after removing the halteres (gray trace). Data obtained from experiments using constant-frequency sinusoidal stimuli. Shaded area shows mean \pm standard error (*C. vicina*: 5–13 flies). Head and thorax amplitudes are measured from the camera frame of reference, as in Fig. 1. **A'**: Corresponding phase angle of head roll response for the data shown in **A**.

B: As in **A**, for the horsefly (*T. bromius*: 8 flies). Negative gain values at 20 and 25 Hz with the halteres removed indicate increased motion of the head relative to the motion of the thorax.

C: As in **A**, for the hoverfly (*E. aeneus*: 6 flies). Gray shaded area indicates high-frequency range in which gain is unaffected by removing the halteres (gain: $P = 0.33$ at 15 Hz, $P = 0.53$ at 20 Hz, $P = 0.33$ at 25 Hz, Wilcoxon rank-sum test). **C'**: Gray shaded area indicates high-frequency range in which gain is unaffected by removing the halteres (phase: $P < 0.005$ at 15 Hz, $P = 0.041$ at 20 Hz, $P = 0.47$ at 25 Hz, Wilcoxon rank-sum test).

126 sensory input from the halteres is crucial for effective gaze 147
 127 stabilization³⁵. Contrary to this notion, however, increasing the 148
 128 frequency to 20 Hz with the halteres removed elicited a more 149
 129 effective stabilization of the head: compared to the intact condition, 150
 130 haltere removal had no discernible effect on either the 151
 131 amplitude or the phase of head roll motion at 20 Hz (Fig. 2C,C' 152
 132 right).

133 Frequency response plots for each animal illustrate the 153
 134 differences in their gaze stabilization behavior (Fig. 3A–C). Linear 154
 135 gain—a proxy for performance—falls to around zero at 25 Hz 155
 136 in the response of the intact blowfly, and at 10 Hz with its 156
 137 halteres removed (Fig. 3A). For the horsefly, zero gain occurs at 157
 138 approximately the same frequencies as for the blowfly (Fig. 3B). 158
 139 A large negative gain is also observed at >15 Hz, which may 159
 140 be interpreted as head roll motion being increased by the gaze 160
 141 stabilization system at high speeds, rather than reduced: as the 161
 142 period of the stimulus becomes shorter, the relatively constant 162
 143 delay in visual feedback grows as a proportion of each stimulus 163
 144 cycle duration (phase lag), ultimately causing compensatory 164
 145 rotations of the head to be actuated at a phase which adds to 165
 the thorax roll instead of reducing it. 166

147 For the hoverfly, gain does not fall to zero with the halteres 148
 148 intact (Fig. 3C): the negative trend with frequency is clearly 149
 149 reversed between 3 Hz and 6 Hz. With its halteres removed, 150
 150 only frequencies <15 Hz are impacted: at 15, 20 and 25 Hz, we 151
 151 found no significant difference in gain versus the intact condition 152
 (Fig. 3C gray shaded area). At 0.3 Hz and below, we noted that 153
 the low speed oscillations often did not elicit a large stabilization 154
 effort in the hoverfly, resulting in gains well below 0.5 in both 155
 conditions.

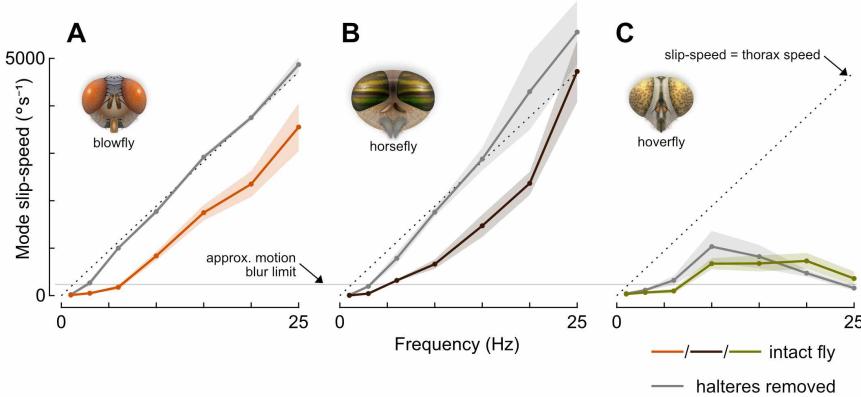
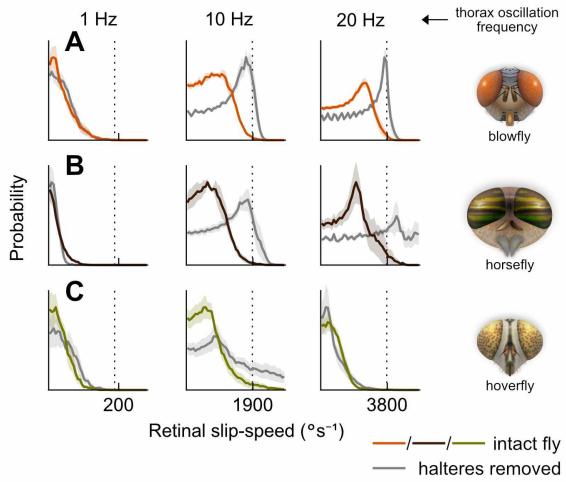


156 Two different gaze stabilization behaviors are thus evident in 157
 the hoverfly frequency response: a lower-speed regime which 158
 requires mechanosensory input from the halteres and a higher- 159
 speed regime which operates independently of the halteres. 160
 Is it possible that other sensory inputs are contributing to this 161
 higher-speed regime? If the head is sufficiently stabilized, the 162
 speeds of visual motion may be within the operating range of 163
 the compound eyes—one of the key benefits of a stabilization 164
 reflex—which would allow them to contribute to the reflex itself, 165
 as they likely do at lower speeds (see gain at 1 Hz and 3 Hz 166
 with halteres removed, Fig. 3C). However, the motion applied 167
 to the thorax at 25 Hz exceeds $5000^{\circ}\text{s}^{-1}$, and it is implausible

Figure 4. Slip-speed distributions demonstrate effectiveness of stabilization at different frequencies

A: Normalized probability distribution of visual slip experienced by the intact blowfly (color traces) during constant-frequency sinusoidal oscillations, and for the same animals after removing the halteres (gray traces). Shaded area shows mean \pm standard error (*C. vicina*: 5–13 flies). Vertical dashed line indicates theoretical maximum slip-speed experienced with no stabilization effort (i.e. head angle = thorax angle).

B: As in A, for the horsefly (*T. bromius*: 8 flies).

C: As in A, for the hoverfly (*E. aeneus*: 6 flies).

Figure 5. Gaze stabilization is effective over a wider dynamic range in hoverflies than in other flies

A: Mode (peak) values of the probability distributions of visual slip experienced by the intact blowfly (color trace) during constant-frequency sinusoidal oscillations, and for the same animals after removing the halteres (gray traces). Shaded area shows mean \pm standard error (*C. vicina*: 5–13 flies).

B: As in A, for the horsefly (*T. bromius*: 8 flies).

C: As in A, for the hoverfly (*E. aeneus*: 6 flies).

168 that the visual system alone is responsible for the stabilization
169 observed.

170 The phase lag (delay) calculated for the hoverfly head re-
171 sponse was considerably longer than for the other flies (Fig. 3A–
172 C, Fig. 2C). Combined with a gain close to unity, a long phase
173 lag could cause the stabilization system to increase the motion
174 of the head, rather than reduce it. We therefore asked how ef-
175 fective hoverfly gaze stabilization is at reducing head motion to
176 speeds which are within the operating range of the compound
177 eyes.

178 **Gaze stabilization is effective over a wider dynamic range 179 in hoverflies than in other flies**

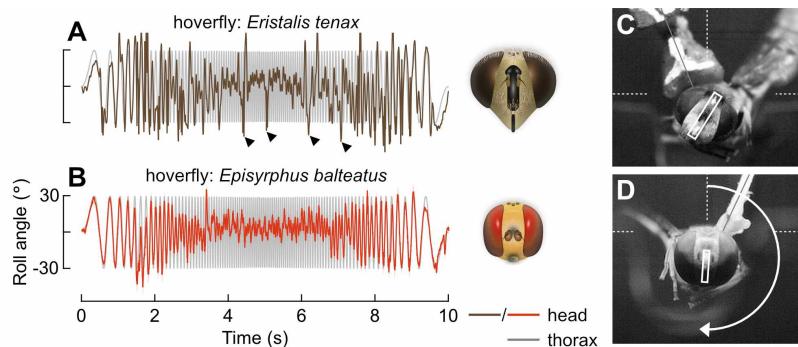
180 At each frequency tested, we found the probability distribution
181 of retinal slip-speeds experienced by each fly, i.e. the speed of
182 visual motion across the eyes (Fig. 4A–C). For each distribution
183 we also marked the maximum slip-speed that would typically
184 be experienced if no stabilization effort were made (slip-speed
185 = thorax speed).

186 As expected for the blowfly and horsefly, the peak (mode)
187 of each distribution shifts progressively further towards higher

188 slip-speeds with increasing stimulus frequency, and upon re-
189 moval of the halteres (Fig. 4A,B, Fig. 5A,B). Based on typical
190 measurements of the compound eye geometry and photo-
191 receptor response characteristics in blowflies and hoverflies, we
192 estimated the slip-speed at which motion blur would begin to
193 degrade spatial information to be between 100 – 200 $^{\circ}s^{-1}$ (see
194 Materials and Methods). The blowfly and horsefly both pass
195 this limit, and are far beyond it at 15 Hz, or 10 Hz with their
196 halteres removed (Fig. 5A,B), while slip-speed in the hoverfly
197 plateaus just above this approximate limit for the intact animal
198 (Fig. 5C). With the halteres removed, the mode of the slip-speed
199 distribution exceeds 1000 $^{\circ}s^{-1}$ in the hoverfly at 10 Hz, but is
200 brought under the limit at higher frequencies. We conclude
201 that gaze stabilization in *E. aeneus* is effective across a wider
202 dynamic range than in the other two species, and likely reduces
203 head motion to be within, or close to, a range in which visual
204 information is only mildly affected by motion blur.

205 **Hoverfly head-neck joint facilitates stabilization through 206 inertial damping**

207 We next asked whether the high-speed gaze stabilization be-
208 havior is unique to *E. aeneus*, and how it might function. To


Figure 6. Specializations of the head-neck motor system in hoverflies may enable inertial stabilization

A: Time-series from a single chirp experiment for a second species of hoverfly (*E. tenax*: 1 fly). Arrowheads indicate large angle, spontaneous roll rotations of the head which were uncorrelated with the stimulus.

B: Average time-series from chirp experiments for a third species of hoverfly. Trace shows mean head roll angle across flies. Shaded area shows mean \pm standard error (*E. balteatus*: 13 flies).

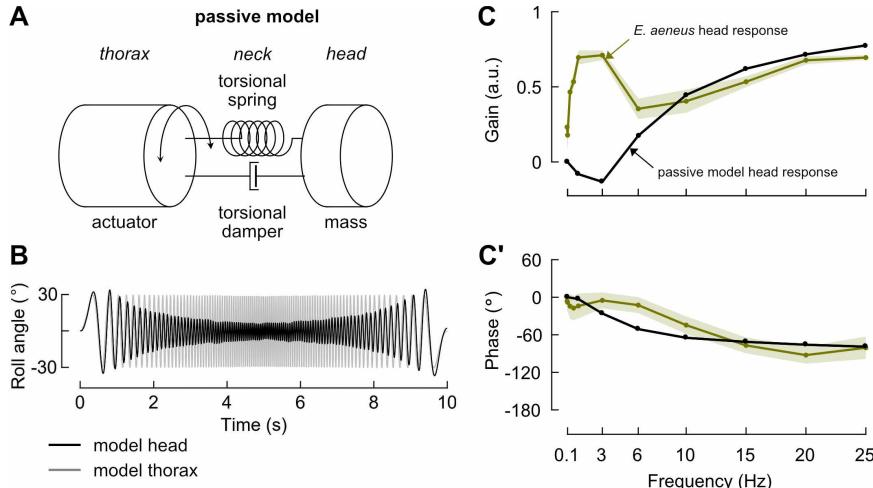
C: Frame capture of *E. tenax* chirp experiment during brief stabilization of the head at an offset roll angle (see [Movie 4](#)).

D: Frame capture of *E. balteatus* experiment showing inversion of the head (see [Movie 5](#)).

209 answer these questions we turned to two other members of
210 the Syrphidae family: the common drone fly, *Eristalis tenax*,
211 and the marmalade fly, *Episyphus balteatus*. In both of these
212 hoverfly species, we found stabilization behavior in response to
213 the chirp stimulus which was qualitatively similar to *Eristalinus*
214 *aeneus*, with a reduction in head roll amplitude at high frequencies
215 (Fig. 6A,B). This finding suggests that a similar mechanism
216 may facilitate high-speed stabilization across hoverflies.

217 During experiments with syrphids, we observed a number of
218 intriguing features of head movements that were not present in
219 the calliphorid and tabanid species we investigated—behaviors
220 which indicated specializations of the hoverfly neck motor system.
221 First, we observed an apparent loosening, or relaxation,
222 of the head-neck joint, which resulted in a distinctive ‘wobble’
223 of the head at intermediate to high frequencies (10–20 Hz).
224 Head wobble events were visible in all three hoverfly species as
225 small amplitude motion of the head (less than a few degrees)
226 at frequencies far higher than the thorax oscillation. A distin-
227 guishing feature of head wobble was periodic motion, usually
228 around the pitch or yaw axes, with a noticeable settling time
229 ([Movie 3–Movie 5](#)). These events typically occurred upon re-
230 versal of thorax motion. In each species, the head wobble gave
231 the impression of a mass rotating on a loose pivot, i.e. the
232 head-neck joint exhibited lower stiffness, damping and friction
233 than the blowfly and horsefly species, which lacked such wob-
234 ble ([Movie 1](#), [Movie 2](#)). Small mechanical juddering induced by
235 the step-motor at the extreme of each cycle appeared to shake
236 the animals, and in hoverflies the head wobbled as a result.

237 Next, we observed occasional periods of static roll angle
238 offset, during which the hoverfly’s head was stabilized and
239 relatively free of motion, but not in the default upright orien-
240 tation. Rather, the head remained rolled at an offset angle
241 (approximately 30–60°) for one or more cycles of the stimulus


(Fig. 6C, [Movie 3–Movie 5](#)). Erroneous sensory information
242 could explain this observation: the prosternal organs, for exam-
243 ple, detect head angle relative to the thorax and affect static
244 roll offsets in blowflies⁴⁵. However, the kinematics of the head
245 were qualitatively different to those at low frequencies (<10 Hz)
246 or in the blowfly or horsefly, and gave the impression that head
247 movements were not under active control of the neck muscles
248 during periods of offset ([Movie 3](#)).

249 Finally, in *E. tenax* and *E. balteatus*, large roll rotations of
250 the head occurred during experiments (Fig. 6A arrowheads).
251 In *E. balteatus*, these rotations were often extreme, completely
252 inverting the head (Fig. 6D, [Movie 5](#)). The rotations occurred
253 spontaneously, in that they were seemingly uncorrelated with
254 the motion of the thorax. Notably, the head appeared to rotate
255 until reaching a mechanical limit with sufficient force that it
256 rebounded, again indicating low damping in the head-neck
257 joint. In addition, the head did not rapidly return to an upright
258 orientation upon rebound, as would be expected if the head-
259 neck joint exerted an elastic restoring force, but returned slowly,
260 wobbled, or remained at an offset, suggesting low torsional
261 stiffness ([Movie 5](#)).

262 Based on these observations, we propose that active control
263 of the neck muscle system may at times be selectively disabled,
264 allowing mechanical forces acting on the head to passively
265 influence its motion. In this state, it is possible that the inertia
266 of the head could damp forced rotations of the thorax and stabilize
267 the default orientation of the head without sensory input.

A head-neck model captures high-speed hoverfly stabilization behavior

268 Could inertial damping explain the stabilization behavior ob-
269 served in hoverflies? Modeling a purely passive, frictionless
270 head-neck joint system with reduced torsional stiffness and
271 damping constants shows that head roll amplitude does in-

Figure 7. A head-neck model with low torsional stiffness captures high-speed hoverfly stabilization behavior

A: Diagram of a passive mechanical model of the hoverfly head, neck and thorax. The neck is modeled by a torsional spring and damper, and couples the mass of the head to the thorax, which is driven by forced oscillations.

B: Time-series from a simulated experiment using a sinusoidal chirp stimulus applied to the passive model shown in **A**. The stimulus oscillated the model thorax (gray trace) with a time-varying frequency profile. The absolute angle of the model head (black trace) is overlaid, demonstrating a completely passive, inertial stabilization which reduced the roll motion of the head relative to the thorax. Perfect stabilization would appear as a flat line at 0°.

C: Average gain of the head roll response for the model head (black trace). Data obtained from simulated experiments using constant-frequency sinusoidal stimuli. The intact hoverfly data (yellow trace) are replotted from Fig. 3C for comparison. **C'**: Corresponding phase angle of head roll response for the data shown in **C**.

deed decrease with frequency in response to a chirp stimulus (Fig. 7A,B), strongly resembling the behavioral response observed in hoverflies at high frequencies (Fig. 1D, Fig. 6A,B).

Simulations of constant-frequency oscillations further demonstrate that at low frequencies—up to around 3 Hz—the forces on the head are insufficient for inertial damping to stabilize it, and the motion of the head approximately follows the thorax, which results in gains close to zero (Fig. 7C, Fig. S1A). For the hoverfly *E. aeneus*, gains are higher than predicted by the passive model in the range 0.06–3 Hz (Fig. 7C), indicating an active gaze stabilization reflex that depends on sensory input. Where the gain of the hoverfly response drops between 3–10 Hz, the gain in the passive model increases as inertia begins to affect head motion. Between 10–25 Hz, the gain and phase of the passive modeled response closely match the hoverfly data (Fig. 7C, C'), with a similar plateau in slip-speeds at around 600°s^{-1} (Fig. S1C, Fig. 5C). This leads us to conclude that passive, inertial damping alone, with no sensory input, could provide effective gaze stabilization at high speeds, provided that the stiffness and damping of the head-neck joint are appropriately low.

DISCUSSION

Here we have presented lines of evidence which support a view of gaze stabilization through inertial damping in hoverflies. This passive behavior enables effective stabilization of the head and eyes while the thorax is free to roll at extremely high angular

velocities and accelerations. While we uncovered this behavior in a tethered-flight paradigm with a motor actuating roll oscillations of the thorax, we expect that it would be similarly activated in response to external disturbances in free-flight, such as wind gusts.

The repetitive, oscillatory motion of the sinusoidal stimuli used in our experiments is clearly different to that of a wind gust, and investigating responses to an abrupt, step-like rotation of the thorax would have been desirable in this sense. The prohibitively high inertia of the motor used in our setup did not allow us to generate roll accelerations well approximating a step function. Goulard et al. ⁴⁶, however, were able to induce step-like thorax rolls in *E. balteatus*. In their study, the hoverfly head showed an amount of overshoot upon step rotations which is congruous with the low stiffness and damping of the neck which we propose allows inertia to stabilize the head.

Inertial gaze stabilization in the context of hoverfly flight behavior

Inertial gaze stabilization, which was unaffected by removing the mechanosensory input from the halteres, was observed in our experiments at oscillation frequencies of 15 Hz and greater. At 15 Hz, the maximum angular velocity applied to the thorax was around $2800^{\circ}\text{s}^{-1}$, and maximum acceleration was around $2 \times 10^5^{\circ}\text{s}^{-2}$. Do hoverflies actually encounter roll rotations with comparable kinematics during flight? Previous studies which have captured the free-flight behavior of hoverflies (*E. tenax*, *E. balteatus*, and various other species) either did not resolve

328 or report roll rotations of the thorax ^{22,47–51}, but similar experiments
329 with blowflies (*C. vicina*) recorded roll velocities in excess
330 of $2000^{\circ}\text{s}^{-1}$ and accelerations on the order of $10^5^{\circ}\text{s}^{-2}$ during
331 fast U-turn maneuvers and saccades ²¹. Meanwhile, landing
332 maneuvers made by *C. vomitoria* can involve a rapid inversion
333 of the body about the roll axis, with velocities approaching
334 $6000^{\circ}\text{s}^{-1}$ ⁵². These volitional maneuvers took place in relatively
335 small, confined arenas, and even higher values may well be
336 expected in the wild.

337 However, our experiments captured reflexive behavior in
338 response to roll rotations caused by an external disturbance,
339 rather than voluntary movements. One study examining the
340 impact of such external perturbations on insect flight demon-
341 strated that hovering bees (*Apis mellifera*) are capable of rapid
342 recovery from a wind gust which caused roll rotations with simi-
343 lar kinematics ⁵³. In another study, a sudden free-fall situation
344 was imposed on stationary hoverflies (*E. balteatus*) hanging
345 from a ceiling, which induced a righting maneuver to recover
346 from the tumble ⁵⁴. In these experiments, extremely high roll
347 rates of over $10 \times 10^3^{\circ}\text{s}^{-1}$ were recorded. The animals' ability
348 to regain stability after such perturbations makes it reasonable
349 to assume that they regularly encounter such excessive attitude
350 changes during natural flight in turbulent conditions.

351 Why, then, does it appear that hoverflies employ inertial
352 gaze stabilization while other highly maneuverable flies like
353 blowflies do not? We find clues to answer this when we con-
354 sider the distinguishing flight behavior of hoverflies—namely,
355 hovering, for the purpose of visiting flowers, guarding territory
356 and seeking mates. While hovering, flies may be particularly
357 susceptible to being rolled by gusts of wind. Lateral instability is
358 higher when hovering than during forward flight ^{55,56} and angular
359 velocities around the roll axis are typically higher than those
360 around pitch or yaw for an insect flying in turbulent conditions,
361 due to a smaller moment of inertia ⁵⁷. Hoverflies also seem to
362 be equipped for more agile flight than the other dipteran families
363 we investigated here: wide-field motion sensitive visual neu-
364 rons in hoverflies respond more rapidly than the homologous
365 neurons in *Calliphora* spp., for example ¹⁹, and are greater in
366 number in each individual animal ^{18,58}. They also maintain sen-
367 sitivity across a wider range of temporal frequencies of image
368 motion ¹⁷.

369 Hovering in hoverflies may therefore be particularly demand-
370 ing in terms of flight maneuvers and stabilization reflexes. The
371 gaze stabilization system in other flies might not be required
372 to operate at a dynamic input range that includes such high
373 angular accelerations that may occur while holding a hovering

374 position for extended periods or during the initial phase of an
375 aerial pursuit. Another possibility is that the visually-guided be-
376 haviors which hovering flight supports are also highly demand-
377 ing in hoverflies and necessitate this alternative stabilization
378 method. For example, the detection of conspecifics before initi-
379 ating aerial pursuits from hovering likely requires near-constant
380 high-acuity, stabilized vision, which may be a less demanding
381 sensorimotor task for ground-launched pursuits. Likewise, the
382 flight reflexes to recover from a gust-induced tumble may tol-
383 erate some degree of brief motion blur due to passive stability
384 afforded by the body and wings.

385 **Anatomical specializations of the head-neck joint**

386 How could the head-neck joint work in hoverflies to enable iner-
387 tial stabilization? First, we posit that a flexible joint is required,
388 with lower stiffness and damping than the equivalent joint in the
389 species of blowfly or horsefly investigated here. Low friction
390 in the joint is also necessary, to allow the head to effectively
391 spin freely while the thorax rotates. When allowed to spin freely,
392 rotations of the thorax are decoupled from the head. The head
393 then tends to remain in a default orientation as a result of its
394 inertia—at least, for a certain range of rotational accelerations.

395 Below this range, the effect of inertia is insufficient to over-
396 come the torsional stiffness of the joint. The head is then
397 more strongly influenced by rotations of the thorax and iner-
398 tia provides little stabilization, as seen in the response of a
399 purely passive model of the head-neck system at low frequen-
400 cies (Fig. 7B). It is within this range that active, sensory-driven
401 stabilization is required, which we discuss further in the next
402 section.

403 Some of our observations highlight that there may be conse-
404 quences of a flexible head-neck joint and inertial stabilization
405 which are not obviously beneficial. At times, the head became
406 stabilized at an offset from the default level orientation (Fig. 6D),
407 with the constant error of the head angle going uncorrected over
408 multiple stimulus cycles. A similar uncorrected head angle error
409 was reported in a previous study, apparently as result of over-
410 shoot from a step rotation ⁴⁶. We suggest that the overshoot
411 itself may have been caused by the freely spinning head-neck
412 joint. Even without sensory input and stabilizing reflexes, these
413 events would not be expected to occur in other species, where
414 elasticity in the neck motor system likely provides a passive
415 restoring force to correct for static offsets during flight ⁵⁹.

416 The second requirement for the hoverfly head-neck joint is
417 an ability to switch between the aforementioned passive, free-
418 spinning mode and a mode in which the muscles of the neck
419 motor system exert control over the movement of the head.

420 Active head movements are made during flight, not just around
421 the roll axis, but also around pitch and yaw^{5,47}. Grooming,
422 feeding and other behaviors also require fine motor control of
423 the head. A mechanism should therefore exist to temporarily
424 disengage the neck motor system. Its point of action could be
425 the physiology of the muscles or their mechanical coupling of
426 the head and thorax—a feature which could be resolved with
427 fast *in vivo* imaging⁶⁰.

428 Surprisingly, both of these requirements appear to be met
429 by properties of the head-neck joint in another flying—and
430 hovering—group of insects: the dragonflies and damselflies.
431 The ‘head-arrester’ system found in the adults of all known
432 species of Odonata is an arrangement of muscles and skeletal
433 structures in the neck joint which mechanically lock the head
434 to the thorax^{61,62}. Movement of the head can be selectively
435 enabled by release from the arrested state. The head pivots
436 at a single-point and folds in the connective membranes of the
437 arrester system impart a high degree of flexibility to the joint⁶³.
438 The main purpose of the head-arrester system is thought to
439 be reinforcement of the neck, which is generally very thin com-
440 pared to the size of the head and a mechanical weak-point^{62,64}.
441 During certain behaviors, such as feeding or tandem flights, the
442 head is arrested in order to prevent injury to the neck^{61,65}.

443 For agile flight maneuvers, such as chasing, the dragonfly
444 head appears to be free to move and, just as in the hoverfly, in-
445ertia acts to stabilize it in a default orientation⁶¹. A passive gaze
446 stabilization system may be advantageous in dragonflies and
447 damselflies, since they lack the specialized fast mechanosen-
448sory input provided by the halteres in Diptera. The head is also
449 typically larger and of greater mass in dragonflies than in hover-
450 flies, which may help to passively maintain a default orientation
451 of the head even without dynamic movement⁶¹. Intriguingly, in
452 the un-arrested state certain contact points between structures
453 in the head-neck joint become physically separated, causing
454 fields of mechanosensory sensilla on their surfaces to be dis-
455 abled⁶². These sensilla usually monitor the position of the
456 head relative to the thorax and appear to be involved in flight
457 reflexes and gaze stabilization^{61,62}. Without this proprioceptive
458 information, offsets in the roll angle of the head can go uncor-
459 rected during inertial stabilization in dragonflies, just as we and
460 others⁴⁶ have observed in hoverflies.

461 The anatomy of the neck-motor system is well-described in
462 dragonflies and blowflies, and they exhibit many fundamental
463 differences to each other^{5,61}—unsurprising, given their evo-
464 lutionary divergence². Similar descriptions are unfortunately
465 lacking in hoverflies, and we can only speculate as to how iner-

466 tial stabilization of the hoverfly head may be selectively enabled
467 and disabled. However work is now underway to provide a de-
468tailed anatomical study and to search for a mechanism which
469 may be functionally equivalent to the odonate head-arrester
470 system.

471 A hybrid gaze stabilization system with active and passive 472 components

473 Hoverflies show a remarkably improved gaze stabilization per-
474 formance at high stimulation frequencies, presumably enabled
475 by a passive, inertial mechanism. An inertia-driven system ap-
476 pears only to operate under high rotational accelerations in hover-
477 flies. At stimulation frequencies below 15 Hz, we observed a
478 gaze stabilization reflex which largely resembles those found
479 in the blowfly and horsefly, whereby sensory input is required.
480 In this lower dynamic range, the halteres play a significant role
481 by sending a forward signal to initiate fast compensatory head
482 movements with low response latency. This reduces the motion
483 of the head—and thus the retinal slip speed—sufficiently to al-
484 low the motion vision pathway to also provide feedback signals
485 to the stabilization reflex^{35,66}.

486 All three families share this general principle of sensory-
487 driven, active stabilization, while hoverflies also exhibit a family-
488 specific adaptation to cope with a higher dynamic range. With-
489 out the response latency incurred by sensory transduction, neu-
490 ral processing, and the actuation of muscles in the neck-motor
491 system, an inertial system provides clear benefits during flight
492 maneuvers with particularly high accelerations, such as hover-
493 ing or departures from hovering. As with the control of flight,
494 passive stability can counterbalance the loss of fast sensory
495 input⁶⁷. And similar to damselflies and dragonflies, the hybrid
496 system that hoverflies have developed is a prime example of
497 morphological computation^{68,69} where functional anatomical
498 structures enable the highly effective performance of specific
499 sensorimotor control tasks. The design of energy-efficient, arti-
500 ficial image stabilization systems may take inspiration from this
501 novel biological approach⁷⁰.

REFERENCES

1. Land MF (1999) Motion and vision: why animals move their eyes. *J Comp Physiol A* **185**:341–352. doi:[10.1007/s003590050393](https://doi.org/10.1007/s003590050393)
2. Hardcastle BJ, Krapp HG (2016) Evolution of biological image stabilization. *Curr Biol* **26**:R1010–R1021. doi:[10.1016/j.cub.2016.08.059](https://doi.org/10.1016/j.cub.2016.08.059)
3. Walls GL (1962) The evolutionary history of eye movements. *Vision Res* **2**:69–80. doi:[10.1016/0042-6989\(62\)90064-0](https://doi.org/10.1016/0042-6989(62)90064-0)
4. Land M (2019) Eye movements in man and other animals. *Vision Res* **162**:1–7. doi:[10.1016/j.visres.2019.06.004](https://doi.org/10.1016/j.visres.2019.06.004)

5. **Strausfeld NJ, Seyan HS, Milde JJ** (1987) The neck motor system of the fly *Calliphora erythrocephala*. I. Muscles and motor neurons. *J Comp Physiol A* **160**:205–224. doi:[10.1007/BF00609727](https://doi.org/10.1007/BF00609727)
6. **Hengstenberg R** (1991) Gaze control in the blowfly *Calliphora*: a multisensory, two-stage integration process. *Seminars in Neuroscience* **3**:19–29. doi:[10.1016/1044-5765\(91\)90063-T](https://doi.org/10.1016/1044-5765(91)90063-T)
7. **Sandeman DC, Markl H** (1980) Head movements in flies (*Calliphora*) produced by deflection of the halteres. *J Exp Biol* **85**:43–60. doi:[10.1242/jeb.85.1.43](https://doi.org/10.1242/jeb.85.1.43)
8. **Nalbach G** (1993) The halteres of the blowfly *Calliphora*: I. Kinematics and dynamics. *J Comp Physiol A* **173**:293–300. doi:[10.1007/bf00212693](https://doi.org/10.1007/bf00212693)
9. **Nalbach G, Hengstenberg R** (1994) The halteres of the blowfly *Calliphora*: II. Three-dimensional organization of compensatory reactions to real and simulated rotations. *J Comp Physiol A* **175**:695–708. doi:[10.1007/bf00191842](https://doi.org/10.1007/bf00191842)
10. **Dickinson MH** (1999) Haltere-mediated equilibrium reflexes of the fruit fly, *Drosophila melanogaster*. *Philos Trans R Soc B* **354**:903–916. doi:[10.1098/rstb.1999.0442](https://doi.org/10.1098/rstb.1999.0442)
11. **Yarger AM, Fox JL** (2016) Dipteran halteres: perspectives on function and integration for a unique sensory organ. *Integr Comp Biol* **56**:865–876. doi:[10.1093/icb/icw086](https://doi.org/10.1093/icb/icw086)
12. **Hengstenberg R** (1993) Multisensory control in insect oculomotor systems. In: *Visual Motion and its Role in the Stabilization of Gaze* (ed. Miles FA, Wallman J), vol. 5. Elsevier, Amsterdam
13. **Hengstenberg R** (1984) Roll-stabilization during flight of the blowfly's head and body by mechanical and visual cues. In: *Localization and Orientation in Biology and Engineering* (ed. Varjú D, Schnitzler HU). Springer, Berlin, Heidelberg. doi:[10.1007/978-3-642-69308-3_25](https://doi.org/10.1007/978-3-642-69308-3_25)
14. **Taylor GK, Krapp HG** (2007) Sensory systems and flight stability: what do insects measure and why? In: *Insect Mechanics and Control* (ed. Casas J, Simpson SJ), vol. 34. Academic Press. doi:[10.1016/S0065-2806\(07\)34005-8](https://doi.org/10.1016/S0065-2806(07)34005-8)
15. **Krapp HG** (2009) Ocelli. *Curr Biol* **19**:R435–7. doi:[10.1016/j.cub.2009.03.034](https://doi.org/10.1016/j.cub.2009.03.034)
16. **Marshall SA** (2012) Flies: The Natural History and Diversity of Diptera. Firefly Books, Richmond Hill
17. **O'Carroll DC, Bidwell NJ, Laughlin SB, Warrant EJ** (1996) Insect motion detectors matched to visual ecology. *Nature* **382**:63–66. doi:[10.1038/382063a0](https://doi.org/10.1038/382063a0)
18. **Buschbeck EK, Strausfeld NJ** (1997) The relevance of neural architecture to visual performance: phylogenetic conservation and variation in Dipteran visual systems. *J Comp Neurol* **383**:282–304
19. **Geurten BRH, Kern R, Egelhaaf M** (2012) Species-specific flight styles of flies are reflected in the response dynamics of a homolog motion-sensitive neuron. *Front Integr Neurosci* **6**:1–15. doi:[10.3389/fnint.2012.00011](https://doi.org/10.3389/fnint.2012.00011)
20. **Park EJ, Wasserman SM** (2018) Diversity of visuomotor reflexes in two *Drosophila* species. *Curr Biol* **28**:R865–R866. doi:[10.1016/j.cub.2018.06.071](https://doi.org/10.1016/j.cub.2018.06.071)
21. **Schilstra C, van Hateren JH** (1999) Blowfly flight and optic flow. I. Thorax kinematics and flight dynamics. *J Exp Biol* **202**:1481–1490. doi:[10.1242/jeb.202.11.1481](https://doi.org/10.1242/jeb.202.11.1481)
22. **Collett TS, Land MF** (1975) Visual spatial memory in a hoverfly. *J Comp Physiol* **100**:59–84. doi:[10.1007/BF00623930](https://doi.org/10.1007/BF00623930)
23. **Boeddeker N, Kern R, Egelhaaf M** (2003) Chasing a dummy target: smooth pursuit and velocity control in male blowflies. *Proc Biol Sci* **270**:393–399. doi:[10.1098/rspb.2002.2240](https://doi.org/10.1098/rspb.2002.2240)
24. **Varennes LP, Krapp HG, Viollet S** (2019) A novel setup for 3D chasing behavior analysis in free flying flies. *J Neurosci Methods* **321**:28–38. doi:[10.1016/j.jneumeth.2019.04.006](https://doi.org/10.1016/j.jneumeth.2019.04.006)
25. **Meglič A, Ilić M, Pirih P, Škorjanc A, Wehling MF, Kretf M, Belušič G** (2019) Horsefly object-directed polarotaxis is mediated by a stochastically distributed ommatidial subtype in the ventral retina. *Proc Natl Acad Sci USA* **116**:21843–21853. doi:[10.1073/pnas.1910807116](https://doi.org/10.1073/pnas.1910807116)
26. **Horváth G, Majer J, Horváth L, Szivák I, Kriska G** (2008) Ventral polarization vision in tabanids: horseflies and deerflies (Diptera: Tabanidae) are attracted to horizontally polarized light. *Naturwissenschaften* **95**:1093–1100. doi:[10.1007/s00114-008-0425-5](https://doi.org/10.1007/s00114-008-0425-5)
27. **Mullens BA** (2019) Horse flies and deer flies (Tabanidae). In: *Medical and Veterinary Entomology* (ed. Mullen GR, Durden LA), 3rd ed. Academic Press. doi:[10.1016/B978-0-12-814043-7.00016-9](https://doi.org/10.1016/B978-0-12-814043-7.00016-9)
28. **Wilkerson RC, Butler JF** (1984) The Immelmann turn, a pursuit maneuver used by hovering male *Hybomitra hinei wrighti* (Diptera: Tabanidae). *Ann Entomol Soc Am* **77**:293–295. doi:[10.1093/aesa/77.3.293](https://doi.org/10.1093/aesa/77.3.293)
29. **Bailey NS** (1948) The hovering and mating of Tabanidae: a review of the literature with some original observations. *Ann Entomol Soc Am* **41**:403–412. doi:[10.1093/aesa/41.4.403](https://doi.org/10.1093/aesa/41.4.403)
30. **Wilkerson RC, Butler JF, Pechuman LL** (1985) Swarming, hovering and mating behavior of male horse flies and deer flies (Diptera: Tabanidae). *Myia* **3**:546
31. **Mullens BA, Freeman JV** (2017) Hovering and swarming behavior of male *Tabanus calens* (Diptera: Tabanidae) in Tennessee and New Jersey, USA. *J Med Entomol* **54**:1410–1414. doi:[10.1093/jme/tjx070](https://doi.org/10.1093/jme/tjx070)
32. **Collett TS, Land MF** (1975) Visual control of flight behaviour in the hoverfly *Syritta pipiens* L. *J Comp Physiol* **99**:1–66. doi:[10.1007/bf01464710](https://doi.org/10.1007/bf01464710)
33. **Thyselius M, Gonzalez-Bellido PT, Wardill TJ, Nordström K** (2018) Visual approach computation in feeding hoverflies. *J Exp Biol* **221**. doi:[10.1242/jeb.177162](https://doi.org/10.1242/jeb.177162)
34. **Hengstenberg R, Sandeman DC, Hengstenberg B** (1986) Compensatory head roll in the blowfly *Calliphora* during flight. *Proc R Soc B* **227**:455–482. doi:[10.1098/rspb.1986.0034](https://doi.org/10.1098/rspb.1986.0034)
35. **Schwyn DA, Heras FH, Bolliger G, Parsons MM, Krapp HG, Tanaka RJ** (2011) Interplay between feedback and feedforward control in fly gaze stabilization. In: *18th IFAC World Congress*, Milan. doi:[10.3182/20110828-6-IT-1002.03809](https://doi.org/10.3182/20110828-6-IT-1002.03809)
36. **Viollet S, Zeil J** (2013) Feed-forward and visual feedback control of head roll orientation in wasps (*Polistes humilis*, Vespidae, Hymenoptera). *J Exp Biol* **216**:1280–1291. doi:[10.1242/jeb.074773](https://doi.org/10.1242/jeb.074773)
37. **Windsor SP, Taylor GK** (2017) Head movements quadruple the range of speeds encoded by the insect motion vision system in hawkmoths. *Proc R Soc B* **284**. doi:[10.1098/rspb.2017.1622](https://doi.org/10.1098/rspb.2017.1622)
38. **Gioanni H** (1988) Stabilizing gaze reflexes in the pigeon (*Columba livia*). II. Vestibulo-ocular (VOR) and vestibulo-collic (closed-loop VCR) reflexes. *Exp Brain Res* **69**:583–593. doi:[10.1007/BF00247311](https://doi.org/10.1007/BF00247311)
39. **Beck JC, Gilland E, Tank DW, Baker R** (2004) Quantifying the ontogeny of optokinetic and vestibuloocular behaviors in zebrafish, medaka, and goldfish. *J Neurophysiol* **92**:3546–3561. doi:[10.1152/jn.00311.2004](https://doi.org/10.1152/jn.00311.2004)
40. **Dieringer N, Cochran SL, Precht W** (1983) Differences in the central organization of gaze stabilizing reflexes between frog and turtle. *J Comp Physiol* **153**:495–508. doi:[10.1007/BF00612604](https://doi.org/10.1007/BF00612604)
41. **Nalbach HO** (1990) Multisensory control of eyestalk orientation in decapod crustaceans: an ecological approach. *J Crustacean Biol* **10**:382–399. doi:[10.2307/1548328](https://doi.org/10.2307/1548328)
42. **Donaghy M** (1980) The cat's vestibulo-ocular reflex. *J Physiol* **300**:337–351. doi:[10.1113/jphysiol.1980.sp013165](https://doi.org/10.1113/jphysiol.1980.sp013165)
43. **Baarsma E, Collewijn H** (1974) Vestibulo-ocular and optokinetic reactions to rotation and their interaction in the rabbit. *J Physiol* **238**:603–625. doi:[10.1113/jphysiol.1974.sp010546](https://doi.org/10.1113/jphysiol.1974.sp010546)
44. **Barnes GR** (1993) Visual-vestibular interaction in the control of head and eye movement: the role of visual feedback and predictive mechanisms. *Prog Neurobiol* **41**:435–472. doi:[10.1016/0301-0082\(93\)90026-o](https://doi.org/10.1016/0301-0082(93)90026-o)

45. **Preuss T, Hengstenberg R** (1992) Structure and kinematics of the prosternal organs and their influence on head position in the blowfly *Calliphora erythrocephala* Meig. *J Comp Physiol A* **171**:483–493. doi:[10.1007/bf00194581](https://doi.org/10.1007/bf00194581)

46. **Goulard R, Julien-Laferriere A, Fleuriet J, Vercher JL, Viollet S** (2015) Behavioural evidence for a visual and proprioceptive control of head roll in hoverflies (*Episyrphus balteatus*). *J Exp Biol* **218**:3777–3787. doi:[10.1242/jeb.127043](https://doi.org/10.1242/jeb.127043)

47. **Geurten BRH, Kern R, Braun E, Egelhaaf M** (2010) A syntax of hoverfly flight prototypes. *J Exp Biol* **213**:2461–2475. doi:[10.1242/jeb.036079](https://doi.org/10.1242/jeb.036079)

48. **Goulard R, Vercher JL, Viollet S** (2018) Modeling visual-based pitch, lift and speed control strategies in hoverflies. *PLoS Comput Biol* **14**:e1005894. doi:[10.1371/journal.pcbi.1005894](https://doi.org/10.1371/journal.pcbi.1005894)

49. **Ellington CP** (1984) The aerodynamics of hovering insect flight. III. Kinematics. *Philos Trans R Soc B* **305**:41–78. doi:[10.1098/rstb.1984.0051](https://doi.org/10.1098/rstb.1984.0051)

50. **Liu Y, Sun M** (2008) Wing kinematics measurement and aerodynamics of hovering droneflies. *J Exp Biol* **211**:2014–2025. doi:[10.1242/jeb.016931](https://doi.org/10.1242/jeb.016931)

51. **Mou XL, Liu YP, Sun M** (2011) Wing motion measurement and aerodynamics of hovering true hoverflies. *J Exp Biol* **214**:2832–2844. doi:[10.1242/jeb.054874](https://doi.org/10.1242/jeb.054874)

52. **Liu P, Sane SP, Mongeau JM, Zhao J, Cheng B** (2019) Flies land upside down on a ceiling using rapid visually mediated rotational maneuvers. *Sci Adv* **5**:eaax1877. doi:[10.1126/sciadv.aax1877](https://doi.org/10.1126/sciadv.aax1877)

53. **Vance JT, Faruque I, Humbert JS** (2013) Kinematic strategies for mitigating gust perturbations in insects. *Bioinspir Biomim* **8**:016004. doi:[10.1088/1748-3182/8/1/016004](https://doi.org/10.1088/1748-3182/8/1/016004)

54. **Verbe A, Varennes LP, Vercher JL, Viollet S** (2020) How do hoverflies use their righting reflex? *J Exp Biol* **223**. doi:[10.1242/jeb.215327](https://doi.org/10.1242/jeb.215327)

55. **Zhu HJ, Meng XG, Sun M** (2020) Forward flight stability in a drone-fly. *Sci Rep* **10**:1975. doi:[10.1038/s41598-020-58762-5](https://doi.org/10.1038/s41598-020-58762-5)

56. **Xu N, Sun M** (2014) Lateral flight stability of two hovering model insects. *J Bionic Eng* **11**:439–448. doi:[10.1016/S1672-6529\(14\)60056-1](https://doi.org/10.1016/S1672-6529(14)60056-1)

57. **Ravi S, Crall JD, Fisher A, Combes SA** (2013) Rolling with the flow: bumblebees flying in unsteady wakes. *J Exp Biol* **216**:4299–4309. doi:[10.1242/jeb.090845](https://doi.org/10.1242/jeb.090845)

58. **Nordström K, Barnett PD, Moyer de Miguel IM, Brinkworth RSA, O'Carroll DC** (2008) Sexual dimorphism in the hoverfly motion vision pathway. *Curr Biol* **18**:661–667. doi:[10.1016/j.cub.2008.03.061](https://doi.org/10.1016/j.cub.2008.03.061)

59. **Gilbert C, Bauer E** (1998) Resistance reflex that maintains upright head posture in the flesh fly *Neobellieria bullata* (Sarcophagidae). *J Exp Biol* **201**:2735–2744. doi:[10.1242/jeb.201.19.2735](https://doi.org/10.1242/jeb.201.19.2735)

60. **Walker SM, Schwyn DA, Mokso R, Wicklein M, Müller T, Doubé M, Stampanoni M, Krapp HG, Taylor GK** (2014) In vivo time-resolved microtomography reveals the mechanics of the blowfly flight motor. *PLoS Biol* **12**:e1001823. doi:[10.1371/journal.pbio.1001823](https://doi.org/10.1371/journal.pbio.1001823)

61. **Mittelstaedt H** (1950) Physiologie des Gleichgewichtssinnes bei fliegen-den Libellen. *Z Vgl Physiol* **32**:422–463. doi:[10.1007/bf00339921](https://doi.org/10.1007/bf00339921)

62. **Gorb S** (2002) Dragonfly and damselfly head-arresting system. In: *Attachment Devices of Insect Cuticle* (ed. Gorb S). Springer, Dordrecht. doi:[10.1007/0-306-47515-4_6](https://doi.org/10.1007/0-306-47515-4_6)

63. **Gorb SN** (2000) Ultrastructure of the neck membrane in dragonflies (Insecta, Odonata). *J Zool* **250**:479–494. doi:[10.1111/j.1469-7998.2000.tb00791.x](https://doi.org/10.1111/j.1469-7998.2000.tb00791.x)

64. **Pfau HK** (2012) Functional morphology of the head movability and arrestment of *Aeshna cyanea* and some other dragonflies (Insecta: Odonata). *Entomol Gen* **33**:217–234. doi:[10.1127/entom.gen/33/2012/217](https://doi.org/10.1127/entom.gen/33/2012/217)

65. **Gorb SN** (1999) Evolution of the dragonfly head-arresting system. *Proc R Soc B* **266**:525–535. doi:[10.1098/rspb.1999.0668](https://doi.org/10.1098/rspb.1999.0668)

66. **Cellini B, Mongeau JM** (2020) Active vision shapes and coordinates flight motor responses in flies. *Proc Natl Acad Sci USA* **117**:23085–23095. doi:[10.1073/pnas.1920846117](https://doi.org/10.1073/pnas.1920846117)

67. **Ristroph L, Ristroph G, Morozova S, Bergou AJ, Chang S, Guckenheimer J, Wang ZJ, Cohen I** (2013) Active and passive stabilization of body pitch in insect flight. *J R Soc Interface* **10**:20130237. doi:[10.1098/rsif.2013.0237](https://doi.org/10.1098/rsif.2013.0237)

68. **Pfeifer R, Gómez G** (2009) Morphological computation – Connecting brain, body, and environment. In: *Creating Brain-Like Intelligence: From Basic Principles to Complex Intelligent Systems* (ed. Sendhoff B, Körner E, Sporns O, Ritter H, Doya K). Springer, Berlin, Heidelberg. doi:[10.1007/978-3-642-00616-6_5](https://doi.org/10.1007/978-3-642-00616-6_5)

69. **Müller VC, Hoffmann M** (2017) What is morphological computation? On how the body contributes to cognition and control. *Artif Life* **23**:1–24. doi:[10.1162/ARTL_a_00219](https://doi.org/10.1162/ARTL_a_00219)

70. **Sandini G, Panerai F, Miles FA** (2001) The role of inertial and visual mechanisms in the stabilization of gaze in natural and artificial systems. In: *Motion Vision: Computational, Neural, and Ecological Constraints* (ed. Zanker JM, Zeil J). Springer, Berlin, Heidelberg. doi:[10.1007/978-3-642-56550-2_11](https://doi.org/10.1007/978-3-642-56550-2_11)

71. **Parsons MM** (2008) Multisensory integration of self-motion information in the blowfly, *Calliphora vicina*. PhD thesis, University of Cambridge

72. **Land MF, Nilsson DE** (2012) *Animal Eyes*. Oxford University Press. doi:[10.1093/acprof:oso/9780199581139.001.0001](https://doi.org/10.1093/acprof:oso/9780199581139.001.0001)

73. **Horridge GA, Mimura K, Hardie RC** (1976) Fly photoreceptors. III. Angular sensitivity as a function of wavelength and the limits of resolution. *Proc R Soc B* **194**:151–177. doi:[10.1098/rspb.1976.0071](https://doi.org/10.1098/rspb.1976.0071)

74. **Straw AD, Warrant EJ, O'Carroll DC** (2006) A “bright zone” in male hoverfly (*Eristalis tenax*) eyes and associated faster motion detection and increased contrast sensitivity. *J Exp Biol* **209**:4339–4354. doi:[10.1242/jeb.02517](https://doi.org/10.1242/jeb.02517)

75. **Sabatier Q, Krapp HG, Tanaka RJ** (2014) Dynamic optimisation for fly gaze stabilisation based on noisy and delayed sensor information. In: *2014 European Control Conference (ECC)*. doi:[10.1109/ECC.2014.6862448](https://doi.org/10.1109/ECC.2014.6862448)

ACKNOWLEDGMENTS We thank Dexter Gajjar-Reid for assistance with experiments, Gregor Belušić for providing horseflies, and Kevin Fancourt of Johns Lane Farm for access to land for the collection of hoverflies. This research was supported by an EPSRC Industrial CASE PhD studentship sponsored by the Defense Science and Technology Laboratory (DSTL) to BJH, and an AFRL/AFOSR grant FA9550-14-1-0068 to HGK.

DATA AVAILABILITY The data and analysis code generated during this study are available at the Open Science Framework: <https://osf.io/bhytv>

AUTHOR CONTRIBUTIONS Ordered according to main list of authors:

Conceptualization: BJH, HGK

Data curation, validation: BJH

Formal analysis: BJH, FJHH, DAS

Funding acquisition, resources, administration: HGK

Investigation: BJH, KB

Methodology: BJH, KDL, DAS

Software: BJH, FJHH, KDL, DAS

521 **Supervision:** KDL, HGK
522 **Visualization:** BJH, FJHH
523 **Writing – original draft:** BJH, HGK
524 **Writing – review & editing:** BJH, KB, FJHH, KDL, DAS, HGK

525 MATERIALS AND METHODS

526 **Animal collection and preparation** Wild-type, adult female
527 flies of indeterminate age were used for all experiments.
528 Blowflies, *Calliphora vicina*, were collected from a colony raised
529 in lab conditions at 20°C, on a 12:12 hour dark:light cycle. Wild
530 horseflies, *Tabanus bromius*, were caught in fields in Buck-
531 ingtonshire, UK and near Ljubljana, Slovenia. Wild hover-
532 flies, *Episyrphus balteatus* and *Eristalis tenax*, were caught in
533 Buckinghamshire, UK. Hoverflies raised in commercial colonies
534 were also used, transported as pupae: *Eristalinus aeneus*
535 from Bioflytech SL, Spain, and *Episyrphus balteatus* from Katz
536 Biotech AG, Germany. Prior to experiments, animals were
537 kept in net cages with conspecifics. Individual flies were col-
538 lected from their cage and cooled on ice in a vial. A cardboard
539 tether was attached to the pro-thorax using beeswax. The
540 tether was oriented to give an approximately 0° attitude of the
541 body during tethered-flight. For experiments with the halteres
542 removed, the shaft of the halteres was severed as close as pos-
543 sible to its base using sharp micro-dissection scissors. Normal
544 wing-stroke, leg-tuck and head movements were verified before
545 experiments. Although we considered testing anesthetized or
546 sacrificed animals, finding a lack of inertial stabilization in this
547 condition could have a number of possible causes, such as a
548 disabled mechanism for switching to a passive head-neck joint.

549 **Experimental setup** Tethered animals were secured to a step-
550 motor which was controlled by a micro-stepping driver (P808,
551 Astrosyn). The motor step resolution used was either 5000 or
552 3200 steps per revolution, for 0–10 Hz or 15–25 Hz oscillations,
553 respectively. The motor driver was controlled through Matlab
554 (R2014a, Mathworks) via a DAQ (NI-6025E, National Instru-
555 ments). A hemispherical false horizon made of black-painted
556 plastic, approximately 50 mm diameter, was positioned beneath
557 the animal with the top edge close to the eye equator. A slightly
558 larger diameter translucent white plastic hemisphere was posi-
559 tioned above the fly to form a light diffuser which encompassed
560 the horizon (Fig. 1A). Illumination was provided by four light
561 guides (KL 1500, Schott). Luminance at the position of the
562 animal was measured to be 500 Cd m⁻². A small opening in
563 the front of the horizon permitted a head-on view of the ani-
564 mal. Airflow was applied continuously during experiments to
565 encourage flight.

566 Two high-speed cameras were used to record experiments:
567 one for shorter experiments (Fastcam SA3, Photron) with a
568 100 mm macro lens (Zeiss), and one with higher storage ca-
569 pacity for longer experiments (Phantom v211, Vision Research)
570 with a 180 mm macro lens (Sigma). Aperture sizes were ad-
571 justed between *f*/3.5–5.6 depending on the length of the animal
572 and depth-of-field required. Frame-rates up to 1200 fps were
573 chosen according to the length of the experiment and the stim-
574 ulus frequency, ensuring at least 1 frame per 2° of rotation.

575 **Stimulus protocol** The chirp stimulus time-series was defined
576 as:

$$x(t) = A \cdot \sin(2\pi f_0 t + \pi r t^2),$$

577 where *A* is the oscillation amplitude (30°), *f*₀ is the initial fre-
578 quency (0 Hz), *t* is the time vector, and *r* is the chirp rate—the
579 rate of change in frequency—over the time interval, *T* (10 s):
580

$$r = (f_{max} - f_0) / T$$

581 A positive and a negative chirp rate were used within each
582 experiment:
583

$$r(t) = \begin{cases} +4, & \text{for } t \leq 5 \text{ s} \\ -4, & \text{for } t > 5 \text{ s} \end{cases}$$

584 with a maximum frequency, *f*_{max}, of 20 Hz. Experiments us-
585 ing constant-frequency stimuli varied in length and number of
586 cycles, from 3 cycles at 0.06 Hz to 250 cycles at 25 Hz. Ex-
587 periments using 15–25 Hz stimuli required an initial ramp in
588 amplitude to overcome the inertia of the step motor: the ampli-
589 tude reached ±30° within 2 s, and 10 s of subsequent cycles
590 were analyzed per experiment.
591

592 **Video analysis** Recorded experiments were analyzed auto-
593 matically to extract the roll angles of the head and the car-
594 board tether in each video frame. Analysis was carried out in
595 Labview (v2013, National Instruments) using a modified version
596 of a previously-developed custom template-matching method⁷¹.
597 Only experiments in which the animal flew continuously for all
598 stimulus cycles were analyzed. Subsequent analysis of roll an-
599 gle time-series was carried out in Matlab (2020b, Mathworks).

600 **Maximum stimulus velocity** For constant-frequency sinu-
601 soidal oscillations, the angular velocity of the stimulus var-
602 ied throughout each cycle. For plots of slip-speed distribution
603 (Fig. 4, Fig. S1) we marked the theoretical maximum slip-speed
604 experienced with no stabilization effort (i.e. head angle = thorax
605 angle), which we calculated as the maximum angular velocity
606 of the stimulus in each cycle:

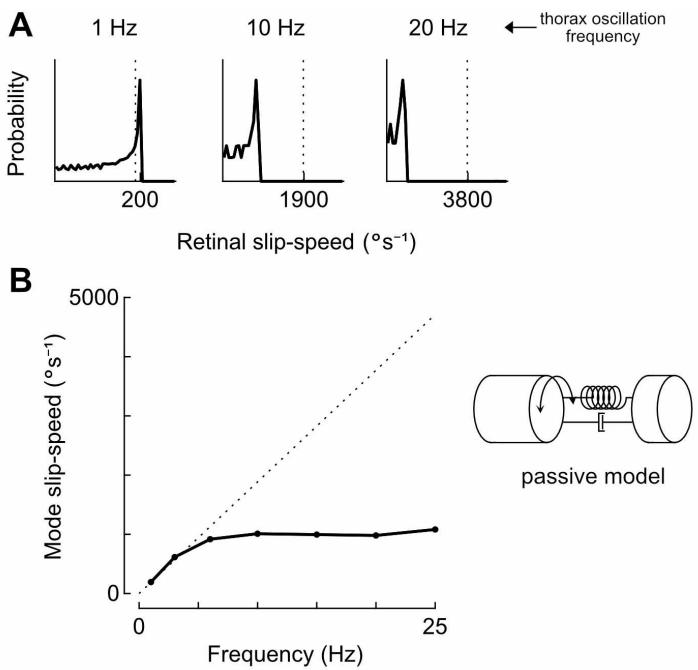
$$2\pi f A,$$

608 where f is the oscillation frequency and A is the oscillation
609 amplitude.

610 **Motion blur limit** The retinal slip speed at which motion blur
611 occurs was approximated from a rule-of-thumb of one photore-
612 ceptor acceptance angle per response time⁷². With an esti-
613 mated range of acceptance angles of 1–2° for the species stud-
614 ied^{73,74} and a response time of 10 ms, motion blur would be
615 expected to begin to degrade visual information at slip speeds
616 around 100–200°s⁻¹ and higher. Note that this does not imply
617 an upper limit to useful motion vision—responses in motion-
618 sensitive neurons in Diptera have been recorded at greater
619 image velocities¹⁷.

620 **Head-neck model** A previously-developed model of the dy-
621 namics of blowfly gaze stabilization⁷⁵ was modified to include
622 only the passive physical properties of the head and neck. The
623 following equation of motion for the head was solved at discrete
624 time intervals:

$$625 J\ddot{\theta}(t) + c\dot{\theta}(t) + k\theta(t) = c\dot{\phi}(t) + k\phi(t),$$


626 where θ is the roll angle of the head, ϕ is the roll angle of the
627 thorax (determined by the chirp stimulus time-series described
628 above), k and c are the torsional spring and damping constants
629 of the head-neck joint, respectively, and J is the moment of
630 inertia of the head, defined for a thin-walled spherical shell
631 (approximating the hoverfly head) as:

$$632 J = \frac{2}{3}mr^2,$$

633 where m is the mass of the sphere and r is its radius.

634 The following values for physical parameters were used:
635 $m = 10 \times 10^{-6}$ kg, $r = 0.002$ m, $J = 2.66 \times 10^{-11}$ kg m²,
636 $k = 1 \times 10^{-8}$ N m deg⁻¹, $c = 1 \times 10^{-9}$ N m s deg⁻¹. The values
637 chosen for k and c were one order of magnitude smaller than
638 those estimated for the blowfly⁷⁵, in order to investigate the
639 proposed low stiffness and damping of the hoverfly head-neck
640 joint.

SUPPLEMENTARY INFORMATION

Figure S1. Slip-speed distribution at different frequencies for the head-neck model

A: Normalized probability distribution of visual slip experienced by the passive model head shown in Fig. 7, during simulated constant-frequency sinusoidal oscillations. Vertical dashed line indicates theoretical maximum slip-speed experienced with no stabilization effort (i.e. head angle = thorax angle).

B: Mode (peak) values of the probability distributions of visual slip experienced by the passive model head during simulated constant-frequency sinusoidal oscillations.

Movie 1. High-speed video of *C. vicina* chirp experiment <https://osf.io/qyc3m>

Movie 2. High-speed video of *T. bromius* chirp experiment <https://osf.io/sntdf>

Movie 3. High-speed video of *E. aeneus* chirp experiment <https://osf.io/d3njt>

Movie 4. High-speed video of *E. baiteatus* chirp experiment <https://osf.io/4zrpa>

Movie 5. High-speed video of *E. tenax* chirp experiment <https://osf.io/s6kj3>