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ABSTRACT With the growing amount and diversity of intermediate omics data complementary to genomics (e.g., DNA
methylation, gene expression, and protein abundance), there is a need to develop methods to incorporate intermediate omics
data into conventional genomic evaluation. The omics data helps decode the multiple layers of regulation from genotypes to
phenotypes, thus forms a connected multi-layer network naturally. We developed a new method named NN-LMM to model the
multiple layers of regulation from genotypes to intermediate omics features, then to phenotypes, by extending conventional linear
mixed models ("LMM") to multi-layer artificial neural networks ("NN"). NN-LMM incorporates intermediate omics features by
adding middle layers between genotypes and phenotypes. Linear mixed models (e.g., pedigree-based BLUP, GBLUP, Bayesian
Alphabet, single-step GBLUP, or single-step Bayesian Alphabet) can be used to sample marker effects or genetic values
on intermediate omics features, and activation functions in neural networks are used to capture the nonlinear relationships
between intermediate omics features and phenotypes. NN-LMM had significantly better prediction performance than the recently
proposed single-step approach for genomic prediction with intermediate omics data. Compared to the single-step approach,
NN-LMM can handle various patterns of missing omics measures, and allows nonlinear relationships between intermediate
omics features and phenotypes. NN-LMM has been implemented in an open-source package called "JWAS".

KEYWORDS neural networks; multi-omics; mixed model; genomic prediction;

Introduction

The advances in high-throughput sequencing technology pro-
vide growing amount and diversity of multi-omics data comple-
mentary to genomics (e.g., DNA methylation, gene expression,
and protein abundance). As demonstrated in Figure 1, the ef-
fects of genotypes on phenotypes can be mediated by multiple
layers of omics features through mechanisms such as regulatory
cascades from epigenome, to transcriptome, and to proteome
(Ritchie ef al. 2015; Sun and Hu 2016; Wu et al. 2018). This multi-
layer regulation works as a unified system to connect genome
variations to the trait, and the relationships between different
layers can be complex with interactions and nonlinear relation-
ships (Kitano 2002; Green et al. 2017; Devijver et al. 2017; Green
et al. 2019). For example, Green et al. (2017) observed that the
relationship between gene expression level and phenotype was
non-linear, which was approximated by a generalised logistic
function.

In genotypes-to-phenotypes studies such as genomic predic-
tion (Meuwissen et al. 2001; Hayes ef al. 2009a; Heffner ef al. 2009;
Hickey et al. 2017) and genome-wide association studies (GWAS)
(Ozaki et al. 2002; Visscher et al. 2012, 2017, Atwell et al. 2010;
Korte and Farlow 2013), incorporating intermediate multi-omics
data has facilitated our understanding of the relationship be-
tween genotypes and phenotypes (Qian et al. 2019; Ritchie et al.
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Figure 1 An example of multiple layers of regulation between geno-
types to phenotypes. The DNA sequence variations may affect the
phenotypes through epigenome, transcriptome, and proteome lev-
els, and the relationships between different layers may be complex
with interactions and nonlinear relationships. This unified multi-layer
regulation system forms a connected network naturally.
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2015; Christensen et al. 2021; Riedelsheimer et al. 2012). To in-
corporate intermediate omics data (e.g., gene expression levels)
between genotypes and phenotypes for association studies, ap-
proaches such as multi-staged analysis (Ritchie et al. 2015) and
transcriptome-wide association studies (Gamazon et al. 2015;
Gusev et al. 2016; Wainberg et al. 2019) were proposed. In these
approaches, two linear models were used to describe the rela-
tionship between phenotypes and gene expression levels, and
the relationship between gene expression levels and genotypes.
Such system of two linear models has also been developed re-
cently for genomic evaluation (Weishaar et al. 2020; Christensen
et al. 2021), and further extended for genomic prediction using
incomplete omics data (Christensen et al. 2021).

In practice, there often exist missing measures in the interme-
diate omics data, because the omics features are not measured for
all individuals who have phenotypes, or different omics features
are measured in different experiments. Thus, there is a need to
develop methods to model the unified system of multi-layer reg-
ulation from genome to intermediate omics features then to the
phenotypic trait, with a capability of dealing with missing omics
data. Christensen et al. (2021) proposed a method to include
intermediate omics features into genetic evaluation, in which
two linear mixed model equations are required. The first model
describes how intermediate omics features affect phenotypes,
and the second model describes how genotypes affect interme-
diate omics features. When omics data for some individuals are
completely missing, single-step approach is used to construct
the relationship matrix for individuals with all omics features
measured and those having no omics data. This is analogous to
the popular genomic single-step approach (Legarra et al. 2009;
Christensen and Lund 2010; Legarra et al. 2014) that combines
information from both genotyped and non-genotyped relatives
in genetic evaluation. As we will show in this paper, this ap-
proach for genomic prediction using intermediate omics data
is not able to incorporate omics data that are partially missing
for some individuals, assume linear relationships between gene
expressions and phenotypes, and may give suboptimal results
even when the underlying relationship is linear.

As illustrated in Figure 1, the multi-layer regulatory system
forms a connected network naturally, thus the architecture of
artificial neural networks can be considered to construct this
unified system of multi-layer regulation. The complex relation-
ships between different layers may be approximated by the
inter-connected nodes with non-linear activation functions of
the neural network. In this paper, we focus on one middle layer
of intermediate omics data in the neural network such as gene
expression levels.

We have proposed a Bayesian neural network to extend
mixed models to multi-layer neural networks to capture the
non-linear relationships between genotypes and phenotypes for
both genomic prediction and GWAS (Zhao et al. 2021). This
model, however, is not able to incorporate intermediate omics
data. In our proposed neural network named NN-LMM in this
paper, omics data are incorporated into the middle layer. An
example of the framework of NN-LMM incorporating interme-
diate omics data is shown in Figure 2, where the nodes in the
middle layer represent both observed and unobserved interme-
diate omics features that are affected by upstream genotypes and
regulate the downstream phenotypes. Linear relationships are
assumed between genotypes and omics features in the middle
layer, such that pedigree-based BLUP (Henderson 1975; Mrode
2014), GBLUP (Habier et al. 2007; VanRaden 2008; Hayes et al.

2009b), Bayesian Alphabet (Meuwissen et al. 2001; Kizilkaya
et al. 2010; Habier et al. 2011; Park and Casella 2008; Gianola
and Fernando 2019; Erbe et al. 2012; Moser et al. 2015), single-
step GBLUP (Misztal et al. 2009; Aguilar et al. 2010), single-step
Bayesian Alphabet (Fernando ef al. 2014) and other mixed mod-
els are employed to sample marker effects or genetic values
on intermediate omics features. Nonlinear relationships are as-
sumed between intermediate omics features and the phenotype
through the activation function in the neural network such as the
sigmoid function. Unobserved intermediate omics features will
remain to be hidden nodes that will be sampled, thus NN-LMM
allows various missing patterns of omics data. For example, in
Figure 2, for an individual, the gene expression levels of the first
two genes are 0.9 and 0.1, respectively, and the gene expression
level of the last gene is missing to be sampled. The missing
patterns of gene expression levels can be different for different
individuals. Our multi-layer neural network method here can
be considered as an extension to conventional mixed models,
where the relationship between the first layer of genotypes and
the middle layer of omics features can be modeled by mixed
models. Here we name our Bayesian neural network specifically
"NN-GBLUP", "NN-BayesA", "NN-BayesB", and "NN-BayesC",
when corresponding mixed models (GBLUP, BayesA, BayeB, and
BayesC, respectively) are used. In this paper, we will present our
model, study its performance, and compare it to the single-step
approach in Christensen et al. (2021).

Genotype

g

Gene expression levels Phenotype

0.9 non-linear
§ mixed activation
models i
01 function ”
§ missing

g

Figure 2 Framework of NN-LMM incorporating intermediate omics
data such as gene expression levels. Genotypes affect the gene
expression levels, then gene expression levels regulate the phe-
notypes. Linear mixed models can be applied to sample marker
effects or genetic values on gene expression levels, and the non-
linear activation function in neural networks will be used to capture
the complex nonlinear relationships between gene expression lev-
els and phenotypes. For an individual, the gene expression levels
of the first two genes are 0.9 and 0.1, respectively, and the gene
expression of the last gene is missing to be sampled. Individuals
can have different missing gene expression levels.

Materials and methods

A detailed NN-LMM model incorporating intermediate omics
features is shown in Figure 3. For ith individual, each node in
the input layer represents a single-nucleotide polymorphism
(SNP) and there are in total [y SNPs (i.e., x;1,- -, X;},). There
are [; nodes in the middle layer representing /; intermediate
omics features (i.e., z; 1, - -,z ). Some omics features may be
missing (e.g., orange colored nodes), and different individuals
can have different missing omics features. We will use z;, to
denote a missing omics feature. The relationship between SNPs
and an intermediate omics feature is linear, and priors in con-
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ventional mixed models will be used to sample marker effects
(i.e., weights between input and middle layers) or genetic val-
ues on intermediate omics features. The relationship between
intermediate omics features and the phenotype is non-linear,
which is approximated by the non-linear activation function of
the neural network g(.), e.g., the sigmoid function. In NN-LMM,
Markov chain Monte Carlo (MCMC) approaches are used to
infer unknowns. Below we represent NN-LMM as hierarchical
Bayesian regression models.

#l, intermediate omics features

#1, SNPs #1 phenotype

xm, aeey xl-'lo

Zids s Zif s ZiJet1 0 es 21l Yi

xi.lo (0)
L1.lo

L )\ )
Y Y Y
Input Hidden Output

layer layer layer

Figure 3 A detailed framework of NN-LMM incorporating intermedi-
ate omics data. For ith individual, the relationship between SNPs
(xim, where m = 1,...,Ip) and intermediate omics features (i},
where j = 1,...,11) is linear, such that linear mixed models are

. (0) . .
applied to sample marker effects (w].’m) or genetic values of omics
features. Non-linear activation function g(.) in the neural networks
is used to capture the non-linear relationship between intermediate

omics features and phenotypes.

From middle layer (intermediate omics features) to output
layer (phenotypes): non-linear activation function

Given all intermediate omics features (observed or sampled),
the phenotype of individual 7 is modeled as

L

yi = p + Z;w}(»l)g(zi,j) +e,
j=

)

where y; is the phenotype for individual i, #1) is the over-
all mean, z;; is the jth omics feature for individual 7, g(.) is

the activation function in neural networks, w}l) is the effect of
g(z,-/]-) on y;, and ¢; is the random residual. The overall mean
]/t<1) is assigned to a flat prior. The prior of neural network

(1)

weights w i is a normal distribution with null mean and un-

(1) iid

known variance 02, i.e., W N(0,02,,). A scaled inverse
w(®) ] w(®)

chi-squared distribution is assigned as the prior for o2 ie.,
w®)
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183

2 2 2 -2 : :
(02w [V, S5y) ~ Vw(l)Sw(l)Xvw(l). The prior for ¢; is a nor-

mal distribution with null mean and unknown variance (762, ie.,
iid . . C . .

e; '~ N(0,02). A scaled inverse chi-squared distribution is

assigned as the prior for 07, i.e., (02 |ve, 53) ~ VeS2 x>

From input layer (genotypes) to middle layer (intermediate
omics features): mixed models

Given all intermediate omics features (observed or sampled),
for ith individual, the relationship between the jth intermediate
omics feature and genotypes can be written as a single-trait
mixed model (e.g., Bayesian Alphabet) as:

!

_ 0, ¢ (0)

zij=p; + Zl XinW; y + € js
m=

@)

where z; ; is the jth (with j =1, ..., ]) intermediate omics feature

(0)
. ] . . .

omics feature, x; ,, is the genotype covariate at locus m (with

m =1,...,1y) for individual i (coded as 0,1,2), w](% is the marker

for individual i, p; is the overall mean for jth intermediate

effects of locus m on jth intermediate omics feature (i.e., the
weight between mth node of the input layer and jth node of
the middle layer), and ¢;; is the random residual of ith indi-
vidual on jth intermediate omics feature. Besides Bayesian Al-
phabet (Meuwissen et al. 2001; Kizilkaya ef al. 2010; Habier et al.
2011; Park and Casella 2008; Gianola and Fernando 2019; Erbe
et al. 2012; Moser et al. 2015), the pedigree-based BLUP (Hender-
son 1975; Mrode 2014), GBLUP (Habier et al. 2007; VanRaden
2008; Hayes et al. 2009b), single-step GBLUP (Misztal ef al. 2009;
Aguilar et al. 2010), or single-step Bayesian Alphabet (Fernando
et al. 2014) models can also be used to model the relationship
(0)
i
assigned to a flat prior. Conditional on 1762] , the residuals, €ijs
have independently and identically distributed normal priors
with null means and variance ¢, which itself is assumed to
have an scaled inverse chi-squared distribution.

Multi-threaded parallelism (Bezanson et al. 2017) was imple-
mented to employ multiple single-trait mixed models in parallel
at each iteration. When a relatively small number of omics fea-
tures is used, it is computational feasible to use a multi-trait
mixed model to sample marker effects on omics features, e.g.,
multi-trait BayesC (Cheng et al. 2018b). Multi-trait models for
pedigree-based BLUP (Henderson and Quaas 1976), GBLUP
(Calus and Veerkamp 2011), and single-step methods can also be
applied to model the relationship between the first and middle
layers.

between the input and middle layers. The overall mean y; ’ is

Sample missing omics data by Hamiltonian Monte Carlo

For each missing omics feature of ith individual (e.g., z; ), it
will be treated as an unobserved intermediate trait to be sam-
pled by Hamiltonian Monte Carlo (HMC) (Betancourt 2018).
HMC will sample the missing omics feature z; ,, from its full
conditional distributions.

In HMC, each unknown parameter is paired with a "momen-
tum" variable ¢; ,,,. The HMC constructs the Markov chain by a
series of iterations. Following notations in Gelman et al. (2013),
there are three steps in each iteration of the HMC:

1. updating the momentum variable independently of the
current values of the paired parameter, i.e., ¢; o ~ N (0,m).

Neural Network for Mixed Models 3
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2. updating (z; 40, i no) Via L leapfrog steps. In each leapfrog
step, z; o and ¢; ,, are updated dependently and scaled by
t. The leapfrog step below is repeated L times:
dlogp(zio|yi, ELSE
(a) Pino < Pino + %t%}
(b) Zino < Zino + tm71¢i,no;
dlogp(zio|yi, ELSE
(©) Pino < Pino + %t%~

Zino
The resulting state at the end of L repetitions will be denoted
as (zl.*,no, (Pi*,no ).

3. calculating the acceptance rate, r, such that the resulting
state will be accepted with probability min(1,r).

As shown above, the gradient of the log full conditional
posterior distribution of z; ,, is required in HMC, which is:

dlogf(zi,no |yir ELSE)

dzi,no
(Zi,no - ,l’li(’l(()?) - 22:1 xi,mwl(;;),m)
- ‘71%0 (3)
) b (W
YVi—H Y w; g(zz,])
+ 0]2 : wr(:)) 'g/(zi,no)
¢

In our analyses, 10 leapfrog steps were used in each HMC
iteration, i.e., L = 10, m was 1, and the scale parameter t was 0.1.
A more detailed derivation and the full conditional distributions
of other parameters of interest in the Gibbs sampler are given in
the Appendix.

The estimated breeding value is calculated as g(XW(O) yw(®),
where~ denotes the point estimate of parameters of interest. In
NN-LMM, the posterior means are used as the point estimates
of parameters of interest.

Compared to an approach of two mixed model equation sys-
tem in Christensen et al. (2021)

Christensen ef al. (2021) proposed a method to include interme-
diate omics features for genetic evaluation, in which a system of
two mixed model equations is required. Using notations in this
paper, mixed models in Christensen et al. (2021) can be written
as:

y= lym +zZw) +e
Z=1pNT +xw© 1 E,

)
©)

which are equivalent to equation (1) and equation (2) when g(.)
is a linear activation function.

In equation (4) describing the relationship between pheno-
types and intermediate omics features, y is the vector of phe-
notypes, where y; is the phenotype for individual i, (1) is the
overall mean of phenotypes, Z is the matrix of intermediate
omics features, where zjj is the jth intermediate omics feature
for individual i, w(1) is the vector of effects of intermediate omics
features on phenotypes, where w;l) is the effect of jth omics fea-
ture, e is the vector of residuals, where ¢; is the residual for
ith individual. An additional polygenetic effect whose covari-
ance matrix is defined by the pedigree or/and genotypes is also
included in equation (4), and this is ignored here for simplicity.

In equation (5) describing the relationship between interme-

diate omics features and genotypes, #() is the vector of overall

247

248
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250
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260
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262

263

264

265

266
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(0)

means of intermediate omics features, where i is the overall

mean for jth intermediate omics feature, X is the genotype co-
variate matrix, where x; ,, is the genotype covariate at locus m

of ith individual, W(©) = [w§0>’ . w](.o), . Wl(10>] is the matrix of
(0)

marker effects on all intermediate omics features, where w im
is the marker effects of locus m on jth intermediate omics fea-
ture. E is a matrix of residual of intermediate omics features,
where E; ; = ¢; ; is the random residual of ith individual on jth
intermediate omics feature.

The genomic breeding values on phenotypes can be calcu-
lated as the sum of weighted breeding value from each omics
feature, i.e., (XW(O) )w<1), where XW(©) is regarded as the breed-
ing values of omics features. In Christensen et al. (2021), a matrix
of breeding values G = [gy, ..., 8j s g;,] of omics features, in-

stead of XW(©) = [Xwg()),..., Xw]<0>,..., Xw}lo)}, is used, which
is similar to expressing SNP-BLUP as GBLUP, and these two
models are equivalent in terms of breeding value prediction.
Further, breeding values g; in equation (5) are fitted as ran-
dom effects, whose covariance matrix is defined by the relation-
ship matrix H computed from genotypes or/and pedigree, i.e.,
g ~ MVN(0,Hoy ).

When all omics features are measured on all individuals, the
system of two mixed model equations in Christensen et al. (2021)
can be regarded as a special case of NN-LMM with a linear
activation function between the middle layer and the output
layer and a normal prior for marker effects on omics features.
However, by extending the mixed model to multi-layer neural
networks with non-linear activation functions, NN-LMM may
capture non-linear relationships between intermediate omics
features and phenotypes. Moreover, NN-LMM allows various
priors for marker effects.

single-step approach for incomplete omics data When some
individuals do not have an observation on any omics feature,
Christensen et al. (2021) proposed an approach that is similar
to the conventional single-step method. In conventional single-
step method (Legarra et al. 2009; Christensen and Lund 2010;
Legarra et al. 2014), when the genotype data are completely
missing for some individuals in the pedigree, the phenotypes of
these individuals are incorporated by modelling the covariances
of their breeding values with those of the genotyped individu-
als through pedigree relationships. In Christensen et al. (2021),
a similar single-step approach is used to incorporate the phe-
notypes of individuals with missing omics data by modelling
the covariances of their omics values with those of the omics-
typed individuals through genomic relationships, where the
omics value of an individual is computed as the sum of omics
contributions on phenotypes in equation (4), i.e,, u = Zwl(l).
In detail, when all omics data are observed on all individuals,
u can be considered as random effects whose covariance ma-
trix is ZZTUi )~ When all omics features are missing for some
individuals, however, Z for all individuals are not observed.
Christensen et al. (2021) proposed that the covariance matrix for
the sum of omics contributions on phenotypes for all individu-
als, i.e., u = Zw(1), can be computed by combining information
in ;1:1 (H(T(%, + 1(762] ) for all individuals and that in the omics

relationship matrix ZZTUZ]<1 , for individuals with omics data.
A potential issue with above single-step approach is that the
residual part 1062/_ is included along with the genomic and/or

pedigree relationship matrix H(7§ . Thus, when many individu-
]
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als have no omics measures, this residual part may be dominant.
As we will show below, compared to this single-step approach,
NN-LMM provides a more straightforward approach to analyze
datasets when some individuals have no omics measures, and
gives equivalent or higher prediction accuracy even when the
underlying relationships between intermediate omics features
and phenotypes are linear. Also, NN-LMM can handle various
missing patterns in omics data, whereas the single-step approach
in Christensen et al. (2021) only works when all omics features
are not measured on some individuals.

Data Analysis

Linear system To compare the prediction performance of NN-
LMM to the single-step approach in Christensen et al. (2021), a
linear activation function was used in NN-LMM, consistent with
the assumption in the single-step approach that the relationship
between intermediate omics features and phenotypes is linear.

The goal of genetic evaluation is to accurately predict breed-
ing values, rather than phenotypes, and it is not straightforward
to validate the prediction of breeding values using real datasets.
Thus, simulated data from Christensen et al. (2021) were used.
Note that in Christensen et al. (2021), an polygenic effect whose
covariance matrix is defined by the pedigree or/and genotypes
is also included in equation (4). This part is ignored here for
simplicity, and was subtracted from the simulated phenotypes.
Two patterns of missing omics data were considered: missing
omics pattern (i) as in Christensen ef al. (2021): all omics features
are not measured on some individuals; missing omics pattern
(ii): for each omics feature, some random individuals have no
omics data. Missing omics pattern (i) is a special case of missing
omics pattern (ii). The single-step approach only works with the
scenario (i), while NN-LMM allows both scenarios.

The simulated data in Christensen et al. (2021) contained
21,100 individuals from 11 generations. We randomly sampled
5% individuals from each generation to have a subset of 1,055
individuals (i.e., 55 individuals in the first generation, and 100
individuals in each of the later generations). Following Chris-
tensen et al. (2021), individuals in the last generation were used
as the testing dataset (i.e., 100 individuals), whose omics features
were observed but phenotypes were unknown, and the remain-
ing individuals (i.e., 955 individuals) were used for training. The
genotypic data consists of 15,000 SNP markers observed for all
individuals, and the intermediate omics data consists of 1,200
omics features. Each omics feature was affected by 500 QTLs
randomly selected from a set of 5,000 QTLs which were not in-
cluded in the 15,000 SNP markers, and phenotypes were affected
by all 1,200 intermediate omics features. The heritability of each
omics feature was 0.61, and the heritability of the phenotypic
trait was 0.337. More details about the simulation process are in
Christensen et al. (2021).

When all individuals have all omics features measured, the
performance of NN-LMM and the system of two mixed model
equations in Christensen ef al. (2021) were compared using 20
replicates. Different proportions of missing omics data in the
training dataset were considered, including 0%, 10%, 30%, 50%,
70%, 80%, 90%, 95%, 99%, where 0% denotes a scenario where
all omics features are measured on all individuals. For each
scenario, 20 replicates were used. The GBLUP model in conven-
tional genomic evaluation, where no omics data are available,
was used as the baseline for comparison.

The prediction accuracy was calculated as the Pearson cor-
relation between the true breeding values XWOw(l) and the
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estimated breeding values (i.e., XWOw() in NN-LMM and

XW(Ow() in the single-step approach) for individuals in the
testing datasets, where ~ denotes the point estimate of param-
eters of interest. In NN-LMM with linear activation function,
a number of 5,000 MCMC iterations was applied to ensure the
convergence.

Nonlinear system Studies have shown that the relationship be-
tween intermediate omics features and phenotypes may be non-
linear (Kitano 2002; Green et al. 2017; Devijver et al. 2017; Green
et al. 2019). One example is that Green et al. (2017) used a von
Bertalanffy growth curve, which is a generalised logistic func-
tion, to approximate the relationship between gene expression
levels and a quantitative trait. Using data in Christensen et al.
(2021), we simulated nonlinear relationships between intermedi-
ate omics features and phenotypes. In detail, the sigmoid non-
linear transformation was applied to the omics data, and the
phenotypes were affected by the nonlinear-transformed omics
data as in equation (1). Same heritability, variance components
were used as in the above linear system, as well as the number of
omics features (i.e., 1200) and the number of randomly selected
QTLs affecting each omics feature (i.e., 500). The QTLs were also
not included in the SNP markers.

The performance of NN-LMM were studied using different
activation functions in neural networks, including a linear func-
tion (i.e., the identity function) and a non-linear function (i.e.,
the sigmoid function). Both missing omics patterns (i) and (ii)
were considered, and different proportions of missing omics
data were tested. 10 replicates were applied in each scenario.
The prediction accuracy was calculated as the Pearson corre-
lation between the true breeding values g(XW(O) )w(l) and the

estimated breeding values g(XW(?))w(!) for individuals in the
testing datasets. MCMC chains of length 5,000 and 20,000 were
applied to NN-GBLUP with sigmoid and linear activation func-
tions, respectively, to ensure the convergence.

Results

Linear system

To compare the prediction performance of NN-LMM to the
single-step approach in Christensen et al. (2021), a linear ac-
tivation function was used in NN-LMM, consistent with the
assumption in the single-step approach that the relationship
between intermediate omics features and phenotypes is linear.

When all omics features are measured on all individuals, the
system of two mixed model equations in Christensen et al. (2021)
can be regarded as a special case of NN-LMM with a linear
activation function between the middle layer and the output
layer and a normal prior for marker effects on omics features.
Following Christensen et al. (2021), variance components were
treated as known for both methods to be the values used in the
simulation. NN-GBLUP had similar prediction accuracies as the
system of two mixed model equations in Christensen et al. (2021)
for all 20 replicates (correlation » = 0.999).

Results for missing omics patterns (i) and (ii) were shown
in Figure 4. Overall, the prediction accuracy decreased when
the proportion of missing omics data increased. For missing
omics pattern (i), when a small proportion of individuals had no
omics data, NN-GBLUP (red solid line) had similar prediction
performance as the single-step approach in Christensen et al.
(2021) (blue solid line). However, when a large proportion of
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individuals had no omics data (e.g., >80%), NN-GBLUP had sig-
nificantly higher prediction accuracies (pairwise t-test P-value <
0.005). When >90% individuals had no omics data, the single-
step approach performed even worse than the baseline (black
dashed line), which was a conventional GBLUP model where
no omics data were used. For missing omics pattern (ii), the
prediction accuracy of NN-GBLUP (red dashed line) decreased
with larger proportion of missing omics data, and eventually
close to the baseline, whereas the single-step approach did not
work for this scenario.

Nonlinear system

Compared to the system of two linear models (Weishaar et al.
2020; Christensen ef al. 2021; Gamazon ef al. 2015; Gusev et al.
2016; Wainberg et al. 2019), NN-LMM allows nonlinear relation-
ships between intermediate omics features and phenotypes. Un-
der the nonlinear system, the underlying relationship between
intermediate omics features and phenotypes was nonlinear for
the simulated datasets. The prediction performance of NN-
GBLUP with a linear function was compared to NN-GBLUP
with a nonlinear sigmoid activation function. All variance com-
ponents were sampled.

For different proportions of missing omics data under both
missing omics patterns, using the nonlinear activation function
in NN-LMM was significantly better than using the linear acti-
vation function. The results for the proportion of 50% missing
omics data were shown in Figure 5 (pairwise t-test P-value <
0.0001).

Effects of different priors in NN-LMM

NN-LMM allows various priors from conventional mixed mod-
els to model the relationship between the genotypes and inter-
mediate omics features. Here the performance of NN-LMM with
a GBLUP prior (i.e, NN-GBLUP) and NN-LMM with a BayesC
prior (i.e., NN-BayesC) were compared, and linear activation
functions were applied. All variance components were sampled.

NN-GBLUP had similar prediction accuracies as NN-BayesC
for the above simulated datasets. This may be due to the rela-
tively small sample size (n = 1,055) compared to the number of
SNPs (p = 15,000). Thus, we selected 1,000 SNPs evenly from
all 15,000 SNPs, and 250 SNPs were randomly selected as QTLs
from this 1,000 SNP panel. 20 intermediate omics features were
simulated, where each omics feature was affected by 50 QTLs
randomly selected from the 250 QTLs. QTLs were included in
the SNP panel. Heritability and variance components were the
same as before.

For different proportions of missing omics data, NN-BayesC
had significantly higher prediction accuracy than NN-GBLUP
under both missing omics patterns (pairwise t-test P-value <
0.0001). The results for the proportion of 50% missing omics
data were shown in Figure 6.

Discussion

Using omics data only, especially the gene expression levels,
to predict the phenotype is not new (e.g., Golub et al. (1999);
Riedelsheimer et al. (2012); Li et al. (2019); Guo et al. (2016)).
However, such methods for the prediction of phenotypic values
do not lead in themselves for genetic improvement (i.e., bet-
ter estimation of breeding values). In association studies, to
incorporate omics data as intermediate traits between genotypes
and phenotypes (Ritchie ef al. 2015; Gamazon et al. 2015; Gu-
sev et al. 2016; Wainberg et al. 2019), two linear models were

used, where one model describes how genotypes affect omics
features, and another describes how omics features affect phe-
notypes. Recently, such a system of two linear models has also
been developed for genomic evaluation (Weishaar et al. 2020;
Christensen ef al. 2021), and further extended for genomic pre-
diction using incomplete omics data when some individuals had
no omics measures (Christensen ef al. 2021).

In this paper, we proposed a new method named NN-LMM
to extend linear mixed models to multi-layer neural networks
for genomic prediction with intermediate omics features. NN-
LMM models the unified system of multi-layer regulations from
genotypes to intermediate omics features, then to the pheno-
type, such that the upstream genotypes affect the intermediate
omics features, then omics features regulate the downstream
phenotypes. Compared to other methods, NN-LMM provides a
more flexible and robust framework to incorporate intermedi-
ate omics features. First, NN-LMM allows various patterns of
missing omics data, for example, individuals can have different
missing omics features. Second, NN-LMM allows nonlinear rela-
tionships between intermediate omics features and phenotypes,
and the non-linear relationships are approximated by activa-
tion functions in neural networks. Third, various linear mixed
models can be used to model the relationship between the geno-
types and omics features. NN-LMM has been implemented in
an open-source package called "JWAS" (Cheng et al. 2018a).

In simulation analysis, NN-LMM had significantly higher
prediction accuracy than the single-step approach in Christensen
et al. (2021) when a large proportion of individuals had no omics
data. As shown in Table 1, however, incorporating those individ-
uals with no omics data, either using the single-step approach
or NN-LMM, was better than simply deleting them from the
dataset.

NN-LMM allows nonlinear relationships between intermedi-
ate omics features and phenotypes. In our simulation analysis,
when the underlying relationship between intermediate omics
features and phenotypes was nonlinear, using the nonlinear
activation function in NN-LMM had significantly better per-
formance than using the linear activation function. Given the
observations that the relationships between intermediate omics
features and the phenotypes might be nonlinear (Kitano 2002;
Green et al. 2017; Devijver et al. 2017; Green et al. 2019), NN-LMM
may be a more biological realistic approach than other system
of linear models.

However, one issue with the current implementation of NN-
LMM is computation. To sample marker effects on omics fea-
tures, a naive multi-threaded parallelism (Bezanson et al. 2017)
has been implemented to employ multiple single-trait mixed
models in parallel at each MCMC iteration. Thus, ideally, with
thousands of computer processors, the running time to sample
marker effects on thousands of omics features equals that of
one omics feature (i.e., one single-trait mixed model). However,
due to the hardware limitation (e.g., on a personal laptop), this
parallelisation was usually only a few times faster than with-
out parallel computing. In practice, it took about 10 hours on a
personal laptop to run 5,000 iterations for a dataset with 1,055
individuals, 15,000 SNPs and 1,200 omics features. Whereas
solving the system of two mixed model equations without es-
timating variance components in Christensen et al. (2021) only
required a few minutes for such a dataset. To improve the com-
putation performance of NN-LMM in the future, parallel com-
puting strategies, e.g., the strategy in Zhao ef al. (2020), needs to
be further studied.

6 Zhao et al.
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Figure 4 Prediction accuracies of NN-GBLUP with the linear activation function and the single-step approach in Christensen et al. (2021).
Different proportions of missing omics data in the training dataset were considered, including 0%, 10%, 30%, 50%, 70%, 80%, 90%, 95%,
99%. There were two missing omics patterns: missing omics pattern (i): all omics features were not measured on some individuals, and
missing omics pattern (ii): for each omics feature, some random individuals had no omics measures. Missing omics pattern (i) is a special case
of pattern (ii), and the single-step approach only works with the pattern (i). The horizontal black dashed linear represents the conventional
GBLUP model when no omics data were available, and it was used as the baseline for both methods. Each dot represents the mean of
prediction accuracies from 20 replications, and the vertical bar is the mean + its standard error. The asterisk symbol indicated that for missing
omics pattern (i), NN-GBLUP had significantly higher prediction accuracy than the single-step approach under the t-test with a significance
level of 0.005 (xx) or lower (x * x).

Neural Network for Mixed Models 7


https://doi.org/10.1101/2021.12.10.472186
http://creativecommons.org/licenses/by-nc-nd/4.0/

545

546

547

548
549

550

551

552

553

554

555

556

557

558

559

560

bioRxiv preprint doi: https://doi.org/10.1101/2021.12.10.472186; this version posted December 11, 2021. The copyright holder for this preprint
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY-NC-ND 4.0 International license.

Table 1 Comparison of the prediction performance between the strategy of deleting individuals with no omics data and incorporat-

ing those individuals via the single-step approach or NN-LMM.

% missing omics data in training dataset

Method 0% 10% 30% 50% 70% 80% 90% 95% 99%
delete individuals with no omics data  0.5772 0.564 0.526 0.487 0.419 0.357 0.291 0.218 0.096
single-step approach 0.577 0.562 0.537 0.523 0.495 0.474 0.448 0.409 0.355
NN-GBLUP 0.578 0.568 0.542 0.527 0.493 0.481 0.478 0.453 0.419
@ The prediction accuracy was presented as the mean of prediction accuracies from 20 replications.
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c
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Figure 5 The prediction performance of NN-GBLUP with the linear
activation function versus NN-GBLUP with the nonlinear sigmoid
activation function, when there were 50% missing omics data in
the training dataset. Missing omics patterns (i) and (ii) were distin-
guished by color, and 10 replicates were applied for each pattern.
The diagonal line was used for reference such that a dot above the
line represents a replicate with higher prediction accuracy for the
nonlinear sigmoid activation function.

In NN-LMM, unknowns were sampled from their full con-
ditional posterior distributions, and the posterior means were
used as the point estimates of parameters of interest. Thus, the

estimated breeding value is calculated as g(XW(©) )w(1), where
~ denotes the point estimate of parameters of interest. When
the relationship between omics features and phenotypes is lin-

ear, the estimated breeding value in NN-LMM is XW(O)W(1>,
whereas the estimated breeding value in Christensen ef al. (2021)

is XW(Ow(l), assuming W) and w(!) are independent. This
assumption of independence may affect the model performance.
Note that the goal of genetic evaluation is to accurately pre-
dict breeding values, rather than phenotypes. Thus, caution is
needed when comparing NN-LMM to methods for phenotypic
prediction.

Another approach for genomic prediction using omics fea-
tures is to include both target phenotype and omics features

571
572
573
574

575

missing omics pattern (i) missing omics pattern (ii}

Figure 6 The prediction performance of NN-GBLUP versus NN-
BayesC, when there were 50% missing omics data in the training
dataset. Linear activation function was used. Missing omics pat-
terns (i) and (ii) were distinguished by color, and 20 replicates were
applied for each pattern. The diagonal line was used for reference
such that a dot above the line represents a replicate with higher
prediction accuracy for the NN-BayesC.

as correlated traits in a multi-trait genetic model (Hayes et al.
2017). However, it would be computational infeasible to include
high-dimensional omics features, such as the expression levels
of thousand of genes, in a multi-trait model. Runcie et al. (2021)
recently proposed a linear mixed model for genomic predic-
tions with thousands of traits. However, it is difficult to model
directional regulatory cascades in a multi-trait model frame-
work when considering multiple layers of omics data, which is
straightforward for NN-LMM.

Data Availability Statement

Simulated datasets used in the analysis are publicly available
in Christensen et al. (2021). All scripts are available at https:
/lgithub.com/zhaotianjing/NN-LMM. The authors state that all data
necessary for confirming the conclusions presented in the article
are represented fully within the article.
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Appendix

MCMC in NN-LMM

sampling effects of omics features on phenotypesIn NN-
LMM, the effects of intermediate omics features on phenotypes
are weights between middle layer and output layer, wl) =

[wgl), » wj(l), . wl<11)}T’ with prior wj(l) i.id N(0, (730(1) ). The full

conditional posterior distribution of w(l is a multivariate nor-
mal distribution with mean

2

[
3(2)T8(2) +15-1"18(2) (y - 1Y) ©)
w®
and covariance matrix [¢(Z)T¢(Z) + 10‘273 17102
w(1)

sampling the overall mean of phenotypes

The overall mean of phenotypes is (1) in equation 1 with a
flat prior. The full conditional posterior distribution of u(!) is
anormal distribution with mean (171) 117 (y — g(Z)w1)) and
variance (171) 102,

sampling missing omics features

The gradient of the log full conditional posterior distribution of
the missing omics feature for individual i, i.e., z; ,, is derived
below. The full conditional posterior distribution of z; ,,, can be
expressed as:

f(zinolyi, ELSE)
0) (0
o f(Zi,no|V;(m), wglo),m/ X1y e XiJy Og)

f(yi|74(1), w§1)/ ey wl(ll)/ Zi _nosZinos Ug)

& (01%0)_%'
R (O o 0(0) N2
exp{ (Zz,no Hno szl,mwna,m) }
—207,
i — 1Y = Lo w]wg(zi,j) — (i)W 2

.
)

_1
() texpt Lo

Then, the log full conditional posterior distribution of z; ,,, is:

logf(zi,no |yi/ ELSE)

1
o — 510g(0%,)

o (Zi,no - ]’151(())) - in,mwi(ft))),m)z
202,
L [y = 1) = S0 0 8(21) — 8(2i n0) 0k |
- i Og(ge) - 2(762
(8)

Thus, the gradient of the log-full conditional posterior distri-
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bution of z; ,, is:

dlogf(zi,no ‘yi/ ELSE)
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_ (Zi,no - “l/ls,%) - ):{,(:,:1 xi,mwig?)),m)

02
[
Yi— ]’4(1) - Zj#no w](‘l)g(zi,j) - g(zi,no)wgl})) 1
+ o2 Wpo * § (Zi,no)-
e
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