

Extend Mixed Models to Multi-layer Neural Networks for Genomic Prediction Including Intermediate Omics Data

Tianjing Zhao^{*,†}, Jian Zeng[‡] and Hao Cheng^{*,†}

^{*}Department of Animal Science, University of California Davis, Davis, CA, 95616, US, [†]Integrative Genetics and Genomics Graduate Group, University of California Davis, Davis, CA, 95616, US, [‡]Institute for Molecular Bioscience, The University of Queensland, Brisbane, Queensland, Australia

ABSTRACT With the growing amount and diversity of intermediate omics data complementary to genomics (e.g., DNA methylation, gene expression, and protein abundance), there is a need to develop methods to incorporate intermediate omics data into conventional genomic evaluation. The omics data helps decode the multiple layers of regulation from genotypes to phenotypes, thus forms a connected multi-layer network naturally. We developed a new method named NN-LMM to model the multiple layers of regulation from genotypes to intermediate omics features, then to phenotypes, by extending conventional linear mixed models ("LMM") to multi-layer artificial neural networks ("NN"). NN-LMM incorporates intermediate omics features by adding middle layers between genotypes and phenotypes. Linear mixed models (e.g., pedigree-based BLUP, GBLUP, Bayesian Alphabet, single-step GBLUP, or single-step Bayesian Alphabet) can be used to sample marker effects or genetic values on intermediate omics features, and activation functions in neural networks are used to capture the nonlinear relationships between intermediate omics features and phenotypes. NN-LMM had significantly better prediction performance than the recently proposed single-step approach for genomic prediction with intermediate omics data. Compared to the single-step approach, NN-LMM can handle various patterns of missing omics measures, and allows nonlinear relationships between intermediate omics features and phenotypes. NN-LMM has been implemented in an open-source package called "JWAS".

KEYWORDS neural networks; multi-omics; mixed model; genomic prediction;

15

16 Introduction

17 The advances in high-throughput sequencing technology provide growing amount and diversity of multi-omics data complementary to genomics (e.g., DNA methylation, gene expression, and protein abundance). As demonstrated in Figure 1, the effects of genotypes on phenotypes can be mediated by multiple layers of omics features through mechanisms such as regulatory cascades from epigenome, to transcriptome, and to proteome (Ritchie *et al.* 2015; Sun and Hu 2016; Wu *et al.* 2018). This multi-layer regulation works as a unified system to connect genome variations to the trait, and the relationships between different layers can be complex with interactions and nonlinear relationships (Kitano 2002; Green *et al.* 2017; Devijver *et al.* 2017; Green *et al.* 2019). For example, Green *et al.* (2017) observed that the relationship between gene expression level and phenotype was non-linear, which was approximated by a generalised logistic function.

33 In genotypes-to-phenotypes studies such as genomic prediction (Meuwissen *et al.* 2001; Hayes *et al.* 2009a; Heffner *et al.* 2009; Hickey *et al.* 2017) and genome-wide association studies (GWAS) (Ozaki *et al.* 2002; Visscher *et al.* 2012, 2017; Atwell *et al.* 2010; Korte and Farlow 2013), incorporating intermediate multi-omics data has facilitated our understanding of the relationship between genotypes and phenotypes (Qian *et al.* 2019; Ritchie *et al.*

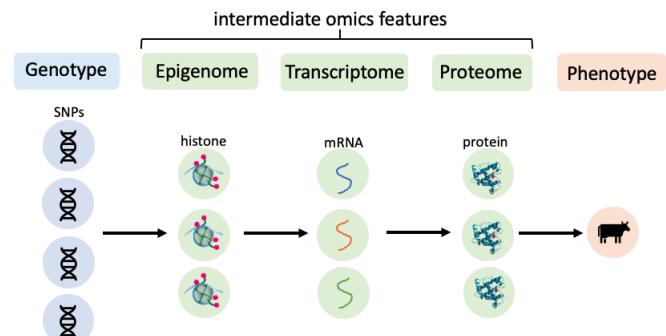


Figure 1 An example of multiple layers of regulation between genotypes to phenotypes. The DNA sequence variations may affect the phenotypes through epigenome, transcriptome, and proteome levels, and the relationships between different layers may be complex with interactions and nonlinear relationships. This unified multi-layer regulation system forms a connected network naturally.

¹ Department of Animal Science, University of California, Davis, CA, USA E-mail: qtlcheng@ucdavis.edu

40 2015; Christensen *et al.* 2021; Riedelsheimer *et al.* 2012). To incorporate intermediate omics data (e.g., gene expression levels) 41 between genotypes and phenotypes for association studies, approaches such as multi-staged analysis (Ritchie *et al.* 2015) and 42 transcriptome-wide association studies (Gamazon *et al.* 2015; 43 Gusev *et al.* 2016; Wainberg *et al.* 2019) were proposed. In these 44 approaches, two linear models were used to describe the relationship 45 between phenotypes and gene expression levels, and the relationship 46 between gene expression levels and genotypes. Such system of two 47 linear models has also been developed recently for genomic evaluation 48 (Weishaar *et al.* 2020; Christensen *et al.* 2021), and further extended for genomic prediction using 49 incomplete omics data (Christensen *et al.* 2021).

50 In practice, there often exist missing measures in the intermediate 51 omics data, because the omics features are not measured for 52 all individuals who have phenotypes, or different omics features 53 are measured in different experiments. Thus, there is a need to 54 develop methods to model the unified system of multi-layer 55 regulation from genome to intermediate omics features then to the 56 phenotypic trait, with a capability of dealing with missing omics 57 data. Christensen *et al.* (2021) proposed a method to include 58 intermediate omics features into genetic evaluation, in which 59 two linear mixed model equations are required. The first model 60 describes how intermediate omics features affect phenotypes, 61 and the second model describes how genotypes affect intermediate 62 omics features. When omics data for some individuals are 63 completely missing, single-step approach is used to construct 64 the relationship matrix for individuals with all omics features 65 measured and those having no omics data. This is analogous to 66 the popular genomic single-step approach (Legarra *et al.* 2009; 67 Christensen and Lund 2010; Legarra *et al.* 2014) that combines 68 information from both genotyped and non-genotyped relatives 69 in genetic evaluation. As we will show in this paper, this 70 approach for genomic prediction using intermediate omics data 71 is not able to incorporate omics data that are partially missing 72 for some individuals, assume linear relationships between gene 73 expressions and phenotypes, and may give suboptimal results 74 even when the underlying relationship is linear.

75 As illustrated in Figure 1, the multi-layer regulatory system 76 forms a connected network naturally, thus the architecture of 77 artificial neural networks can be considered to construct this 78 unified system of multi-layer regulation. The complex 79 relationships between different layers may be approximated by the 80 inter-connected nodes with non-linear activation functions of 81 the neural network. In this paper, we focus on one middle layer 82 of intermediate omics data in the neural network such as gene 83 expression levels.

84 We have proposed a Bayesian neural network to extend 85 mixed models to multi-layer neural networks to capture the 86 non-linear relationships between genotypes and phenotypes for 87 both genomic prediction and GWAS (Zhao *et al.* 2021). This 88 model, however, is not able to incorporate intermediate omics 89 data. In our proposed neural network named NN-LMM in this 90 paper, omics data are incorporated into the middle layer. An 91 example of the framework of NN-LMM incorporating intermediate 92 omics data is shown in Figure 2, where the nodes in the 93 middle layer represent both observed and unobserved intermediate 94 omics features that are affected by upstream genotypes and 95 regulate the downstream phenotypes. Linear relationships are 96 assumed between genotypes and omics features in the middle 97 layer, such that pedigree-based BLUP (Henderson 1975; Mrode 98 2014), GBLUP (Habier *et al.* 2007; VanRaden 2008; Hayes *et al.* 99 2014), and other mixed models are employed to sample marker 100 effects or genetic values on gene expression levels, and the 101 non-linear activation function in neural networks will be used to 102 capture the complex nonlinear relationships between gene 103 expression levels and phenotypes. For an individual, the gene 104 expression levels of the first two genes are 0.9 and 0.1, 105 respectively, and the gene expression level of the last gene is 106 missing to be sampled. The missing patterns of gene expression 107 levels can be different for different individuals. Our multi-layer 108 neural network method here can be considered as an extension 109 to conventional mixed models, where the relationship between 110 the first layer of genotypes and the middle layer of omics 111 features can be modeled by mixed models. Here we name our 112 Bayesian neural network specifically "NN-GBLUP", "NN-BayesA", 113 "NN-BayesB", and "NN-BayesC", when corresponding mixed 114 models (GBLUP, BayesA, BayeB, and BayesC, respectively) are 115 used. In this paper, we will present our model, study its 116 performance, and compare it to the single-step 117 approach in Christensen *et al.* (2021).

118 2009b), Bayesian Alphabet (Meuwissen *et al.* 2001; Kizilkaya 119 *et al.* 2010; Habier *et al.* 2011; Park and Casella 2008; Gianola 120 and Fernando 2019; Erbe *et al.* 2012; Moser *et al.* 2015), single- 121 step GBLUP (Misztal *et al.* 2009; Aguilar *et al.* 2010), single-step 122 Bayesian Alphabet (Fernando *et al.* 2014) and other mixed 123 models are employed to sample marker effects or genetic values 124 on intermediate omics features. Nonlinear relationships are 125 assumed between intermediate omics features and the phenotype 126 through the activation function in the neural network such as the 127 sigmoid function. Unobserved intermediate omics features will 128 remain to be hidden nodes that will be sampled, thus NN-LMM 129 allows various missing patterns of omics data. For example, in 130 Figure 2, for an individual, the gene expression levels of the first 131 two genes are 0.9 and 0.1, respectively, and the gene expression 132 level of the last gene is missing to be sampled. The missing 133 patterns of gene expression levels can be different for different 134 individuals. Our multi-layer neural network method here can 135 be considered as an extension to conventional mixed models, 136 where the relationship between the first layer of genotypes and 137 the middle layer of omics features can be modeled by mixed 138 models. Here we name our Bayesian neural network specifically 139 "NN-GBLUP", "NN-BayesA", "NN-BayesB", and "NN-BayesC", 140 when corresponding mixed models (GBLUP, BayesA, BayeB, and 141 BayesC, respectively) are used. In this paper, we will present our 142 model, study its performance, and compare it to the single-step 143 approach in Christensen *et al.* (2021).

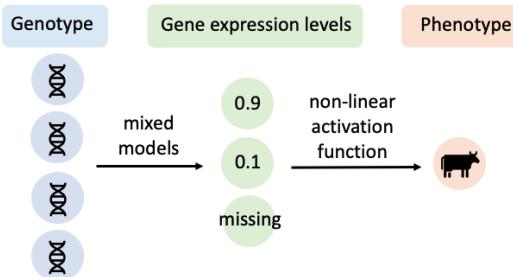


Figure 2 Framework of NN-LMM incorporating intermediate omics data such as gene expression levels. Genotypes affect the gene expression levels, then gene expression levels regulate the phenotypes. Linear mixed models can be applied to sample marker effects or genetic values on gene expression levels, and the non-linear activation function in neural networks will be used to capture the complex nonlinear relationships between gene expression levels and phenotypes. For an individual, the gene expression levels of the first two genes are 0.9 and 0.1, respectively, and the gene expression of the last gene is missing to be sampled. Individuals can have different missing gene expression levels.

128 Materials and methods

129 A detailed NN-LMM model incorporating intermediate omics 130 features is shown in Figure 3. For i th individual, each node in 131 the input layer represents a single-nucleotide polymorphism 132 (SNP) and there are in total l_0 SNPs (i.e., $x_{i,1}, \dots, x_{i,l_0}$). There 133 are l_1 nodes in the middle layer representing l_1 intermediate 134 omics features (i.e., $z_{i,1}, \dots, z_{i,l_1}$). Some omics features may 135 be missing (e.g., orange colored nodes), and different individuals 136 can have different missing omics features. We will use z_{no} to 137 denote a missing omics feature. The relationship between SNPs 138 and an intermediate omics feature is linear, and priors in con-

139 conventional mixed models will be used to sample marker effects
 140 (i.e., weights between input and middle layers) or genetic values
 141 on intermediate omics features. The relationship between
 142 intermediate omics features and the phenotype is non-linear,
 143 which is approximated by the non-linear activation function of
 144 the neural network $g(\cdot)$, e.g., the sigmoid function. In NN-LMM,
 145 Markov chain Monte Carlo (MCMC) approaches are used to
 146 infer unknowns. Below we represent NN-LMM as hierarchical
 147 Bayesian regression models.

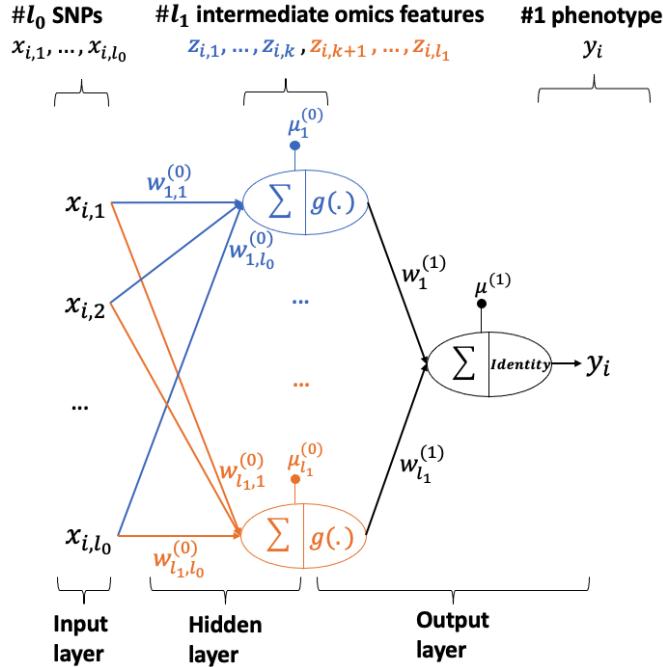


Figure 3 A detailed framework of NN-LMM incorporating intermediate omics data. For i th individual, the relationship between SNPs ($x_{i,m}$, where $m = 1, \dots, l_0$) and intermediate omics features ($z_{i,j}$, where $j = 1, \dots, l_1$) is linear, such that linear mixed models are applied to sample marker effects ($w_{j,m}^{(0)}$) or genetic values of omics features. Non-linear activation function $g(\cdot)$ in the neural networks is used to capture the non-linear relationship between intermediate omics features and phenotypes.

148 **From middle layer (intermediate omics features) to output
 149 layer (phenotypes): non-linear activation function**

Given all intermediate omics features (observed or sampled), the phenotype of individual i is modeled as

$$y_i = \mu^{(1)} + \sum_{j=1}^{l_1} w_j^{(1)} g(z_{i,j}) + e_i, \quad (1)$$

150 where y_i is the phenotype for individual i , $\mu^{(1)}$ is the over-
 151 all mean, $z_{i,j}$ is the j th omics feature for individual i , $g(\cdot)$ is
 152 the activation function in neural networks, $w_j^{(1)}$ is the effect of
 153 $g(z_{i,j})$ on y_i , and e_i is the random residual. The overall mean
 154 $\mu^{(1)}$ is assigned to a flat prior. The prior of neural network
 155 weights $w_j^{(1)}$ is a normal distribution with null mean and un-
 156 known variance $\sigma_{w^{(1)}}^2$, i.e., $w_j^{(1)} \stackrel{i.i.d.}{\sim} N(0, \sigma_{w^{(1)}}^2)$. A scaled inverse
 157 chi-squared distribution is assigned as the prior for $\sigma_{w^{(1)}}^2$, i.e.,

158 $(\sigma_{w^{(1)}}^2 | \nu_{w^{(1)}}, S_{w^{(1)}}^2) \sim \nu_{w^{(1)}} S_{w^{(1)}}^2 \chi_{\nu_{w^{(1)}}}^{-2}$. The prior for e_i is a nor-
 159 mal distribution with null mean and unknown variance σ_e^2 , i.e.,
 160 $e_i \stackrel{i.i.d.}{\sim} N(0, \sigma_e^2)$. A scaled inverse chi-squared distribution is
 161 assigned as the prior for σ_e^2 , i.e., $(\sigma_e^2 | \nu_e, S_e^2) \sim \nu_e S_e^2 \chi_{\nu_e}^{-2}$.

From input layer (genotypes) to middle layer (intermediate omics features): mixed models

Given all intermediate omics features (observed or sampled), for i th individual, the relationship between the j th intermediate omics feature and genotypes can be written as a single-trait mixed model (e.g., Bayesian Alphabet) as:

$$z_{i,j} = \mu_j^{(0)} + \sum_{m=1}^{l_0} x_{i,m} w_{j,m}^{(0)} + \epsilon_{i,j}, \quad (2)$$

162 where $z_{i,j}$ is the j th (with $j = 1, \dots, l_1$) intermediate omics feature
 163 for individual i , $\mu_j^{(0)}$ is the overall mean for j th intermediate
 164 omics feature, $x_{i,m}$ is the genotype covariate at locus m (with
 165 $m = 1, \dots, l_0$) for individual i (coded as 0,1,2), $w_{j,m}^{(0)}$ is the marker
 166 effects of locus m on j th intermediate omics feature (i.e., the
 167 weight between m th node of the input layer and j th node of
 168 the middle layer), and $\epsilon_{i,j}$ is the random residual of i th indi-
 169 vidual on j th intermediate omics feature. Besides Bayesian Al-
 170 phabet (Meuwissen *et al.* 2001; Kizilkaya *et al.* 2010; Habier *et al.*
 171 2011; Park and Casella 2008; Gianola and Fernando 2019; Erbe
 172 *et al.* 2012; Moser *et al.* 2015), the pedigree-based BLUP (Hender-
 173 son 1975; Mrode 2014), GBLUP (Habier *et al.* 2007; VanRaden
 174 2008; Hayes *et al.* 2009b), single-step GBLUP (Misztal *et al.* 2009;
 175 Aguilar *et al.* 2010), or single-step Bayesian Alphabet (Fernando
 176 *et al.* 2014) models can also be used to model the relationship
 177 between the input and middle layers. The overall mean $\mu_j^{(0)}$ is
 178 assigned to a flat prior. Conditional on $\sigma_{\epsilon_j}^2$, the residuals, $\epsilon_{i,j}$,
 179 have independently and identically distributed normal priors
 180 with null means and variance $\sigma_{\epsilon_j}^2$, which itself is assumed to
 181 have an scaled inverse chi-squared distribution.

182 Multi-threaded parallelism (Bezanson *et al.* 2017) was imple-
 183 mented to employ multiple single-trait mixed models in parallel
 184 at each iteration. When a relatively small number of omics fea-
 185 tures is used, it is computational feasible to use a multi-trait
 186 mixed model to sample marker effects on omics features, e.g.,
 187 multi-trait BayesC (Cheng *et al.* 2018b). Multi-trait models for
 188 pedigree-based BLUP (Henderson and Quaas 1976), GBLUP
 189 (Calus and Veerkamp 2011), and single-step methods can also be
 190 applied to model the relationship between the first and middle
 191 layers.

Sample missing omics data by Hamiltonian Monte Carlo

192 For each missing omics feature of i th individual (e.g., $z_{i,no}$), it
 193 will be treated as an unobserved intermediate trait to be sam-
 194 pled by Hamiltonian Monte Carlo (HMC) (Betancourt 2018).
 195 HMC will sample the missing omics feature $z_{i,no}$ from its full
 196 conditional distributions.

197 In HMC, each unknown parameter is paired with a "momentum"
 198 variable $\phi_{i,no}$. The HMC constructs the Markov chain by a
 199 series of iterations. Following notations in Gelman *et al.* (2013),
 200 there are three steps in each iteration of the HMC:

- 201 1. updating the momentum variable independently of the
 202 current values of the paired parameter, i.e., $\phi_{i,no} \sim N(0, m)$.

210 2. updating $(z_{i,no}, \phi_{i,no})$ via L leapfrog steps. In each leapfrog
 211 step, $z_{i,no}$ and $\phi_{i,no}$ are updated dependently and scaled by
 212 t . The leapfrog step below is repeated L times:
 213 (a) $\phi_{i,no} \leftarrow \phi_{i,no} + \frac{1}{2}t \frac{d\log p(z_{i,no}|y_i, \text{ELSE})}{dz_{i,no}}$;
 214 (b) $z_{i,no} \leftarrow z_{i,no} + tm^{-1}\phi_{i,no}$;
 215 (c) $\phi_{i,no} \leftarrow \phi_{i,no} + \frac{1}{2}t \frac{d\log p(z_{i,no}|y_i, \text{ELSE})}{dz_{i,no}}$.

216 The resulting state at the end of L repetitions will be denoted
 217 as $(z_{i,no}^*, \phi_{i,no}^*)$.

218 3. calculating the acceptance rate, r , such that the resulting
 219 state will be accepted with probability $\min(1, r)$.

As shown above, the gradient of the log full conditional posterior distribution of $z_{i,no}$ is required in HMC, which is:

$$\begin{aligned} & \frac{d\log f(z_{i,no}|y_i, \text{ELSE})}{dz_{i,no}} \\ & \propto -\frac{(z_{i,no} - \mu_{no}^{(0)} - \sum_{m=1}^{l_0} x_{i,m} w_{no,m}^{(0)})}{\sigma_{no}^2} \\ & + \frac{y_i - \mu^{(1)} - \sum_{j=1}^{l_1} w_j^{(1)} g(z_{i,j})}{\sigma_e^2} w_{no}^{(1)} \cdot g'(z_{i,no}) \end{aligned} \quad (3)$$

220 In our analyses, 10 leapfrog steps were used in each HMC
 221 iteration, i.e., $L = 10$, m was 1, and the scale parameter t was 0.1.
 222 A more detailed derivation and the full conditional distributions
 223 of other parameters of interest in the Gibbs sampler are given in
 224 the Appendix.

225 The estimated breeding value is calculated as $\hat{g}(\mathbf{XW}^{(0)})\mathbf{w}^{(1)}$,
 226 where $\hat{\cdot}$ denotes the point estimate of parameters of interest. In
 227 NN-LMM, the posterior means are used as the point estimates
 228 of parameters of interest.

229 **Compared to an approach of two mixed model equation sys-
 230 tem in Christensen et al. (2021)**

231 Christensen et al. (2021) proposed a method to include interme-
 232 diate omics features for genetic evaluation, in which a system of
 233 two mixed model equations is required. Using notations in this
 234 paper, mixed models in Christensen et al. (2021) can be written
 235 as:

$$\mathbf{y} = \mathbf{1}\mu^{(1)} + \mathbf{Z}\mathbf{w}^{(1)} + \mathbf{e} \quad (4)$$

$$\mathbf{Z} = \mathbf{1}(\mu^{(0)})^T + \mathbf{X}\mathbf{W}^{(0)} + \mathbf{E}, \quad (5)$$

236 which are equivalent to equation (1) and equation (2) when $g(\cdot)$
 237 is a linear activation function.

238 In equation (4) describing the relationship between pheno-
 239 types and intermediate omics features, \mathbf{y} is the vector of phe-
 240 notypes, where y_i is the phenotype for individual i , $\mu^{(1)}$ is the
 241 overall mean of phenotypes, \mathbf{Z} is the matrix of intermediate
 242 omics features, where $z_{i,j}$ is the j th intermediate omics feature
 243 for individual i , $\mathbf{w}^{(1)}$ is the vector of effects of intermediate omics
 244 features on phenotypes, where $w_j^{(1)}$ is the effect of j th omics fea-
 245 ture, \mathbf{e} is the vector of residuals, where e_i is the residual for
 246 i th individual. An additional polygenic effect whose covari-
 247 ance matrix is defined by the pedigree or/and genotypes is also
 248 included in equation (4), and this is ignored here for simplicity.

249 In equation (5) describing the relationship between interme-
 250 diate omics features and genotypes, $\mu^{(0)}$ is the vector of overall

246 means of intermediate omics features, where $\mu_j^{(0)}$ is the overall
 247 mean for j th intermediate omics feature, \mathbf{X} is the genotype co-
 248 variate matrix, where $x_{i,m}$ is the genotype covariate at locus m
 249 of i th individual, $\mathbf{W}^{(0)} = [\mathbf{w}_1^{(0)}, \dots, \mathbf{w}_j^{(0)}, \dots, \mathbf{w}_{l_1}^{(0)}]$ is the matrix of
 250 marker effects on all intermediate omics features, where $w_{j,m}^{(0)}$
 251 is the marker effects of locus m on j th intermediate omics fea-
 252 ture. \mathbf{E} is a matrix of residual of intermediate omics features,
 253 where $E_{i,j} = \epsilon_{i,j}$ is the random residual of i th individual on j th
 254 intermediate omics feature.

255 The genomic breeding values on phenotypes can be calcu-
 256 lated as the sum of weighted breeding value from each omics
 257 feature, i.e., $(\mathbf{XW}^{(0)})\mathbf{w}^{(1)}$, where $\mathbf{XW}^{(0)}$ is regarded as the breed-
 258 ing values of omics features. In Christensen et al. (2021), a matrix
 259 of breeding values $\mathbf{G} = [g_1, \dots, g_j, \dots, g_{l_1}]$ of omics features, in-
 260 stead of $\mathbf{XW}^{(0)} = [\mathbf{Xw}_1^{(0)}, \dots, \mathbf{Xw}_j^{(0)}, \dots, \mathbf{Xw}_{l_1}^{(0)}]$, is used, which
 261 is similar to expressing SNP-BLUP as GBLUP, and these two
 262 models are equivalent in terms of breeding value prediction.
 263 Further, breeding values \mathbf{g}_j in equation (5) are fitted as ran-
 264 dom effects, whose covariance matrix is defined by the relation-
 265 ship matrix \mathbf{H} computed from genotypes or/and pedigree, i.e.,
 266 $\mathbf{g}_j \sim MVN(\mathbf{0}, \mathbf{H}\sigma_{g_j}^2)$.

267 When all omics features are measured on all individuals, the
 268 system of two mixed model equations in Christensen et al. (2021)
 269 can be regarded as a special case of NN-LMM with a linear
 270 activation function between the middle layer and the output
 271 layer and a normal prior for marker effects on omics features.
 272 However, by extending the mixed model to multi-layer neural
 273 networks with non-linear activation functions, NN-LMM may
 274 capture non-linear relationships between intermediate omics
 275 features and phenotypes. Moreover, NN-LMM allows various
 276 priors for marker effects.

277 **single-step approach for incomplete omics data** When some
 278 individuals do not have an observation on any omics feature,
 279 Christensen et al. (2021) proposed an approach that is similar
 280 to the conventional single-step method. In conventional single-
 281 step method (Legarra et al. 2009; Christensen and Lund 2010;
 282 Legarra et al. 2014), when the genotype data are completely
 283 missing for some individuals in the pedigree, the phenotypes of
 284 these individuals are incorporated by modelling the covariances
 285 of their breeding values with those of the genotyped individu-
 286 als through pedigree relationships. In Christensen et al. (2021),
 287 a similar single-step approach is used to incorporate the phe-
 288 notypes of individuals with missing omics data by modelling
 289 the covariances of their omics values with those of the omics-
 290 typed individuals through genomic relationships, where the
 291 omics value of an individual is computed as the sum of omics
 292 contributions on phenotypes in equation (4), i.e., $\mathbf{u} = \mathbf{Z}\mathbf{w}^{(1)}$.
 293 In detail, when all omics data are observed on all individuals,
 294 \mathbf{u} can be considered as random effects whose covariance ma-
 295 trix is $\mathbf{Z}\mathbf{Z}^T\sigma_{w^{(1)}}^2$. When all omics features are missing for some
 296 individuals, however, \mathbf{Z} for all individuals are not observed.
 297 Christensen et al. (2021) proposed that the covariance matrix for
 298 the sum of omics contributions on phenotypes for all individu-
 299 als, i.e., $\mathbf{u} = \mathbf{Z}\mathbf{w}^{(1)}$, can be computed by combining information
 300 in $\sum_{j=1}^{l_1} (\mathbf{H}\sigma_{g_j}^2 + \mathbf{I}\sigma_{e_j}^2)$ for all individuals and that in the omics
 301 relationship matrix $\mathbf{Z}\mathbf{Z}^T\sigma_{w^{(1)}}^2$ for individuals with omics data.

302 A potential issue with above single-step approach is that the
 303 residual part $\mathbf{I}\sigma_{e_j}^2$ is included along with the genomic and/or
 304 pedigree relationship matrix $\mathbf{H}\sigma_{g_j}^2$. Thus, when many individu-

als have no omics measures, this residual part may be dominant. As we will show below, compared to this single-step approach, NN-LMM provides a more straightforward approach to analyze datasets when some individuals have no omics measures, and gives equivalent or higher prediction accuracy even when the underlying relationships between intermediate omics features and phenotypes are linear. Also, NN-LMM can handle various missing patterns in omics data, whereas the single-step approach in [Christensen et al. \(2021\)](#) only works when all omics features are not measured on some individuals.

315 Data Analysis

316 **Linear system** To compare the prediction performance of NN-
 317 LMM to the single-step approach in [Christensen et al. \(2021\)](#), a
 318 linear activation function was used in NN-LMM, consistent with
 319 the assumption in the single-step approach that the relationship
 320 between intermediate omics features and phenotypes is linear.

321 The goal of genetic evaluation is to accurately predict breeding
 322 values, rather than phenotypes, and it is not straightforward
 323 to validate the prediction of breeding values using real datasets.
 324 Thus, simulated data from [Christensen et al. \(2021\)](#) were used.
 325 Note that in [Christensen et al. \(2021\)](#), an polygenic effect whose
 326 covariance matrix is defined by the pedigree or/and genotypes
 327 is also included in equation (4). This part is ignored here for
 328 simplicity, and was subtracted from the simulated phenotypes.
 329 Two patterns of missing omics data were considered: missing
 330 omics pattern (i) as in [Christensen et al. \(2021\)](#): all omics features
 331 are not measured on some individuals; missing omics pattern
 332 (ii): for each omics feature, some random individuals have no
 333 omics data. Missing omics pattern (i) is a special case of missing
 334 omics pattern (ii). The single-step approach only works with the
 335 scenario (i), while NN-LMM allows both scenarios.

336 The simulated data in [Christensen et al. \(2021\)](#) contained
 337 21,100 individuals from 11 generations. We randomly sampled
 338 5% individuals from each generation to have a subset of 1,055
 339 individuals (i.e., 55 individuals in the first generation, and 100
 340 individuals in each of the later generations). Following [Chris-
 341 tensen et al. \(2021\)](#), individuals in the last generation were used
 342 as the testing dataset (i.e., 100 individuals), whose omics features
 343 were observed but phenotypes were unknown, and the remain-
 344 ing individuals (i.e., 955 individuals) were used for training. The
 345 genotypic data consists of 15,000 SNP markers observed for all
 346 individuals, and the intermediate omics data consists of 1,200
 347 omics features. Each omics feature was affected by 500 QTLs
 348 randomly selected from a set of 5,000 QTLs which were not in-
 349 cluded in the 15,000 SNP markers, and phenotypes were affected
 350 by all 1,200 intermediate omics features. The heritability of each
 351 omics feature was 0.61, and the heritability of the phenotypic
 352 trait was 0.337. More details about the simulation process are in
 353 [Christensen et al. \(2021\)](#).

354 When all individuals have all omics features measured, the
 355 performance of NN-LMM and the system of two mixed model
 356 equations in [Christensen et al. \(2021\)](#) were compared using 20
 357 replicates. Different proportions of missing omics data in the
 358 training dataset were considered, including 0%, 10%, 30%, 50%,
 359 70%, 80%, 90%, 95%, 99%, where 0% denotes a scenario where
 360 all omics features are measured on all individuals. For each
 361 scenario, 20 replicates were used. The GBLUP model in conven-
 362 tional genomic evaluation, where no omics data are available,
 363 was used as the baseline for comparison.

364 The prediction accuracy was calculated as the Pearson cor-
 365 relation between the true breeding values $\mathbf{X}\mathbf{W}^{(0)}\mathbf{w}^{(1)}$ and the

366 estimated breeding values (i.e., $\widehat{\mathbf{X}\mathbf{W}^{(0)}\mathbf{w}^{(1)}}$ in NN-LMM and
 367 $\widehat{\mathbf{X}\mathbf{W}^{(0)}\mathbf{w}^{(1)}}$ in the single-step approach) for individuals in the
 368 testing datasets, where $\widehat{\cdot}$ denotes the point estimate of param-
 369 eters of interest. In NN-LMM with linear activation function,
 370 a number of 5,000 MCMC iterations was applied to ensure the
 371 convergence.

372 **Nonlinear system** Studies have shown that the relationship be-
 373 tween intermediate omics features and phenotypes may be non-
 374 linear ([Kitano 2002](#); [Green et al. 2017](#); [Devijver et al. 2017](#); [Green
 375 et al. 2019](#)). One example is that [Green et al. \(2017\)](#) used a von
 376 Bertalanffy growth curve, which is a generalised logistic func-
 377 tion, to approximate the relationship between gene expression
 378 levels and a quantitative trait. Using data in [Christensen et al.
 379 \(2021\)](#), we simulated nonlinear relationships between interme-
 380 diate omics features and phenotypes. In detail, the sigmoid non-
 381 linear transformation was applied to the omics data, and the
 382 phenotypes were affected by the nonlinear-transformed omics
 383 data as in equation (1). Same heritability, variance components
 384 were used as in the above linear system, as well as the number of
 385 omics features (i.e., 1200) and the number of randomly selected
 386 QTLs affecting each omics feature (i.e., 500). The QTLs were also
 387 not included in the SNP markers.

388 The performance of NN-LMM were studied using different
 389 activation functions in neural networks, including a linear func-
 390 tion (i.e., the identity function) and a non-linear function (i.e.,
 391 the sigmoid function). Both missing omics patterns (i) and (ii)
 392 were considered, and different proportions of missing omics
 393 data were tested. 10 replicates were applied in each scenario.
 394 The prediction accuracy was calculated as the Pearson corre-
 395 lation between the true breeding values $g(\mathbf{X}\mathbf{W}^{(0)})\mathbf{w}^{(1)}$ and the
 396 estimated breeding values $g(\widehat{\mathbf{X}\mathbf{W}^{(0)}})\mathbf{w}^{(1)}$ for individuals in the
 397 testing datasets. MCMC chains of length 5,000 and 20,000 were
 398 applied to NN-GBLUP with sigmoid and linear activation func-
 399 tions, respectively, to ensure the convergence.

400 Results

401 Linear system

402 To compare the prediction performance of NN-LMM to the
 403 single-step approach in [Christensen et al. \(2021\)](#), a linear ac-
 404 tivation function was used in NN-LMM, consistent with the
 405 assumption in the single-step approach that the relationship
 406 between intermediate omics features and phenotypes is linear.

407 When all omics features are measured on all individuals, the
 408 system of two mixed model equations in [Christensen et al. \(2021\)](#)
 409 can be regarded as a special case of NN-LMM with a linear
 410 activation function between the middle layer and the output
 411 layer and a normal prior for marker effects on omics features.
 412 Following [Christensen et al. \(2021\)](#), variance components were
 413 treated as known for both methods to be the values used in the
 414 simulation. NN-GBLUP had similar prediction accuracies as the
 415 system of two mixed model equations in [Christensen et al. \(2021\)](#)
 416 for all 20 replicates (correlation $r = 0.999$).

417 Results for missing omics patterns (i) and (ii) were shown
 418 in Figure 4. Overall, the prediction accuracy decreased when
 419 the proportion of missing omics data increased. For missing
 420 omics pattern (i), when a small proportion of individuals had no
 421 omics data, NN-GBLUP (red solid line) had similar prediction
 422 performance as the single-step approach in [Christensen et al.
 423 \(2021\)](#) (blue solid line). However, when a large proportion of

424 individuals had no omics data (e.g., >80%), NN-GBLUP had sig- 483
425 nificantly higher prediction accuracies (pairwise t-test P -value < 484
426 0.005). When >90% individuals had no omics data, the single- 485
427 step approach performed even worse than the baseline (black 486
428 dashed line), which was a conventional GBLUP model where 487
429 no omics data were used. For missing omics pattern (ii), the 488
430 prediction accuracy of NN-GBLUP (red dashed line) decreased 489
431 with larger proportion of missing omics data, and eventually 490
432 close to the baseline, whereas the single-step approach did not 491
433 work for this scenario. 492

434 **Nonlinear system**

435 Compared to the system of two linear models (Weishaar *et al.* 493
436 2020; Christensen *et al.* 2021; Gamazon *et al.* 2015; Gusev *et al.* 494
437 2016; Wainberg *et al.* 2019), NN-LMM allows nonlinear relation- 495
438 ships between intermediate omics features and phenotypes. Under 496
439 the nonlinear system, the underlying relationship between 497
440 intermediate omics features and phenotypes was nonlinear for 498
441 the simulated datasets. The prediction performance of NN- 499
442 GBLUP with a linear function was compared to NN-GBLUP 500
443 with a nonlinear sigmoid activation function. All variance 501
444 components were sampled.

445 For different proportions of missing omics data under both 502
446 missing omics patterns, using the nonlinear activation function 503
447 in NN-LMM was significantly better than using the linear activa- 504
448 tion function. The results for the proportion of 50% missing 505
449 omics data were shown in Figure 5 (pairwise t-test P -value < 506
450 0.0001).

451 **Effects of different priors in NN-LMM**

452 NN-LMM allows various priors from conventional mixed 507
453 models to model the relationship between the genotypes and 508
454 intermediate omics features. Here the performance of NN-LMM with 509
455 a GBLUP prior (i.e., NN-GBLUP) and NN-LMM with a BayesC 510
456 prior (i.e., NN-BayesC) were compared, and linear activation 511
457 functions were applied. All variance components were sampled.

458 NN-GBLUP had similar prediction accuracies as NN-BayesC 512
459 for the above simulated datasets. This may be due to the 513
460 relatively small sample size ($n = 1,055$) compared to the number of 514
461 SNPs ($p = 15,000$). Thus, we selected 1,000 SNPs evenly from 515
462 all 15,000 SNPs, and 250 SNPs were randomly selected as QTLs 516
463 from this 1,000 SNP panel. 20 intermediate omics features were 517
464 simulated, where each omics feature was affected by 50 QTLs 518
465 randomly selected from the 250 QTLs. QTLs were included in 519
466 the SNP panel. Heritability and variance components were the 520
467 same as before.

468 For different proportions of missing omics data, NN-BayesC 521
469 had significantly higher prediction accuracy than NN-GBLUP 522
470 under both missing omics patterns (pairwise t-test P -value < 523
471 0.0001). The results for the proportion of 50% missing omics 524
472 data were shown in Figure 6.

473 **Discussion**

474 Using omics data only, especially the gene expression levels, 525
475 to predict the phenotype is not new (e.g., Golub *et al.* (1999); 526
476 Riedelsheimer *et al.* (2012); Li *et al.* (2019); Guo *et al.* (2016)). 527
477 However, such methods for the prediction of phenotypic values 528
478 do not lead in themselves for genetic improvement (i.e., bet- 529
479 ter estimation of breeding values). In association studies, to 530
480 incorporate omics data as intermediate traits between genotypes 531
481 and phenotypes (Ritchie *et al.* 2015; Gamazon *et al.* 2015; Gu- 532
482 sev *et al.* 2016; Wainberg *et al.* 2019), two linear models were 533

483 used, where one model describes how genotypes affect omics 484
485 features, and another describes how omics features affect phe- 486
487 notypes. Recently, such a system of two linear models has also 488
489 been developed for genomic evaluation (Weishaar *et al.* 2020; 490
491 Christensen *et al.* 2021), and further extended for genomic 492
493 prediction using incomplete omics data when some individuals had 494
495 no omics measures (Christensen *et al.* 2021).

496 In this paper, we proposed a new method named NN-LMM 497 to extend linear mixed models to multi-layer neural networks 498 for genomic prediction with intermediate omics features. NN- 499
499 LMM models the unified system of multi-layer regulations from 500
500 genotypes to intermediate omics features, then to the pheno- 501
501 type, such that the upstream genotypes affect the intermediate 502
502 omics features, then omics features regulate the downstream 503
503 phenotypes. Compared to other methods, NN-LMM provides a 504
504 more flexible and robust framework to incorporate interme- 505
505 diate omics features. First, NN-LMM allows various patterns of 506
506 missing omics data, for example, individuals can have different 507
507 missing omics features. Second, NN-LMM allows nonlinear rela- 508
508 tionships between intermediate omics features and phenotypes, 509
509 and the non-linear relationships are approximated by activa- 510
510 tion functions in neural networks. Third, various linear mixed 511
511 models can be used to model the relationship between the geno- 512
512 types and omics features. NN-LMM has been implemented in 513
513 an open-source package called "JWAS" (Cheng *et al.* 2018a).

514 In simulation analysis, NN-LMM had significantly higher 515
515 prediction accuracy than the single-step approach in Christensen 516
516 *et al.* (2021) when a large proportion of individuals had no omics 517
517 data. As shown in Table 1, however, incorporating those individ- 518
518 uals with no omics data, either using the single-step approach 519
519 or NN-LMM, was better than simply deleting them from the 520
520 dataset.

521 NN-LMM allows nonlinear relationships between interme- 522
522 diate omics features and phenotypes. In our simulation analysis, 523
523 when the underlying relationship between intermediate omics 524
524 features and phenotypes was nonlinear, using the nonlinear 525
525 activation function in NN-LMM had significantly better per- 526
526 formance than using the linear activation function. Given the 527
527 observations that the relationships between intermediate omics 528
528 features and the phenotypes might be nonlinear (Kitano 2002; 529
529 Green *et al.* 2017; Devijver *et al.* 2017; Green *et al.* 2019), NN-LMM 530
530 may be a more biological realistic approach than other system 531
531 of linear models.

532 However, one issue with the current implementation of NN- 533
533 LMM is computation. To sample marker effects on omics fea- 534
534 tures, a naive multi-threaded parallelism (Bezanson *et al.* 2017) 535
535 has been implemented to employ multiple single-trait mixed 536
536 models in parallel at each MCMC iteration. Thus, ideally, with 537
537 thousands of computer processors, the running time to sample 538
538 marker effects on thousands of omics features equals that of 539
539 one omics feature (i.e., one single-trait mixed model). However, 540
540 due to the hardware limitation (e.g., on a personal laptop), this 541
541 parallelisation was usually only a few times faster than with- 542
542 out parallel computing. In practice, it took about 10 hours on a 543
543 personal laptop to run 5,000 iterations for a dataset with 1,055 544
544 individuals, 15,000 SNPs and 1,200 omics features. Whereas 545
545 solving the system of two mixed model equations without esti- 546
546 mating variance components in Christensen *et al.* (2021) only 547
547 required a few minutes for such a dataset. To improve the com- 548
548 putation performance of NN-LMM in the future, parallel com- 549
549 puting strategies, e.g., the strategy in Zhao *et al.* (2020), needs to 550
550 be further studied.

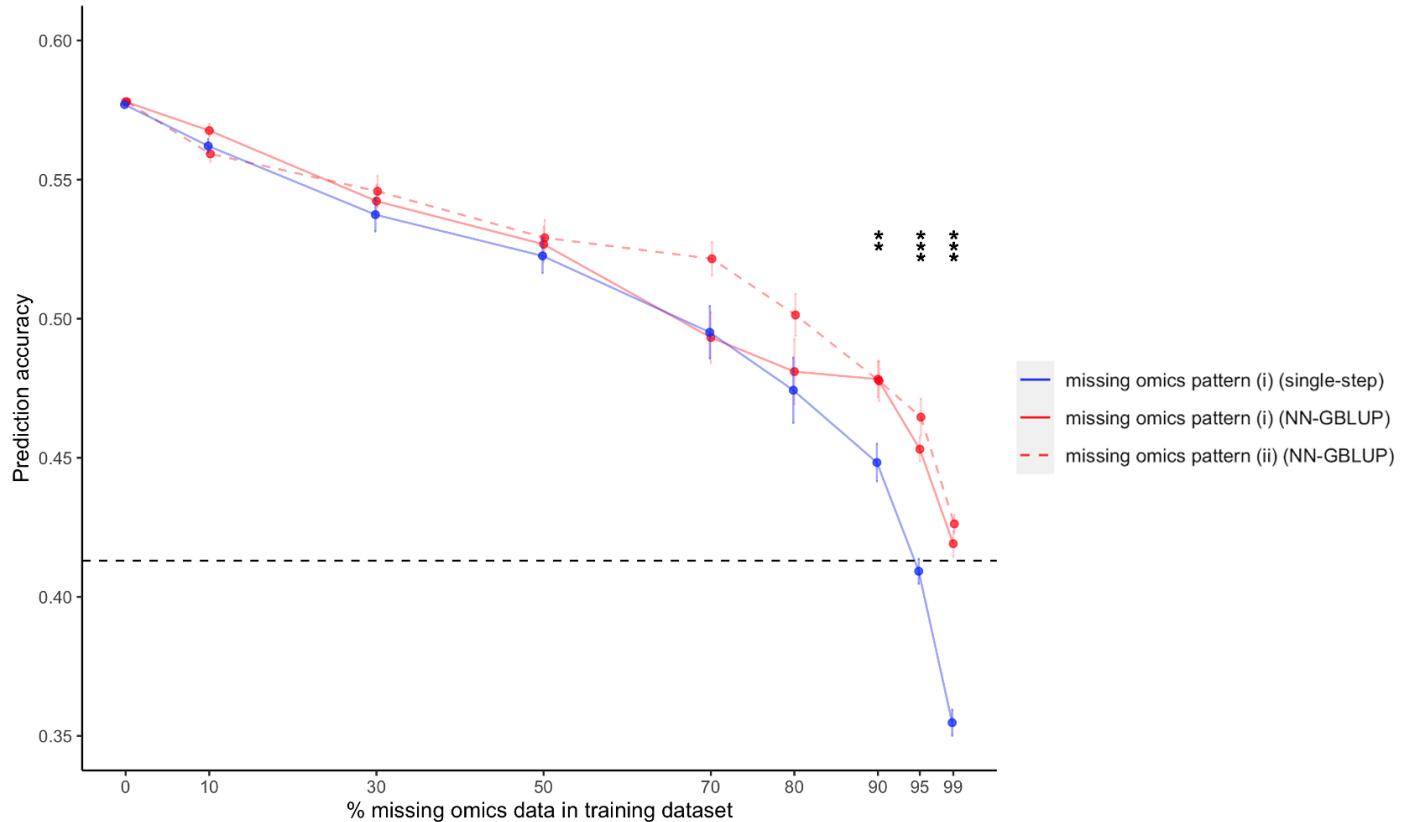
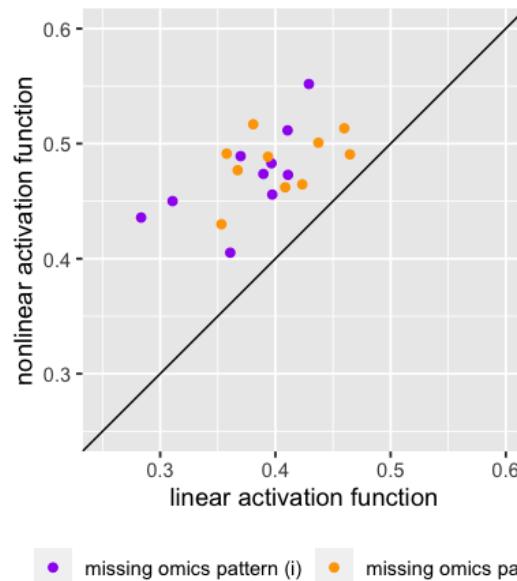


Figure 4 Prediction accuracies of NN-GBLUP with the linear activation function and the single-step approach in [Christensen et al. \(2021\)](#). Different proportions of missing omics data in the training dataset were considered, including 0%, 10%, 30%, 50%, 70%, 80%, 90%, 95%, 99%. There were two missing omics patterns: missing omics pattern (i): all omics features were not measured on some individuals, and missing omics pattern (ii): for each omics feature, some random individuals had no omics measures. Missing omics pattern (i) is a special case of pattern (ii), and the single-step approach only works with the pattern (i). The horizontal black dashed line represents the conventional GBLUP model when no omics data were available, and it was used as the baseline for both methods. Each dot represents the mean of prediction accuracies from 20 replications, and the vertical bar is the mean \pm its standard error. The asterisk symbol indicated that for missing omics pattern (i), NN-GBLUP had significantly higher prediction accuracy than the single-step approach under the t-test with a significance level of 0.005 (***) or lower (****).

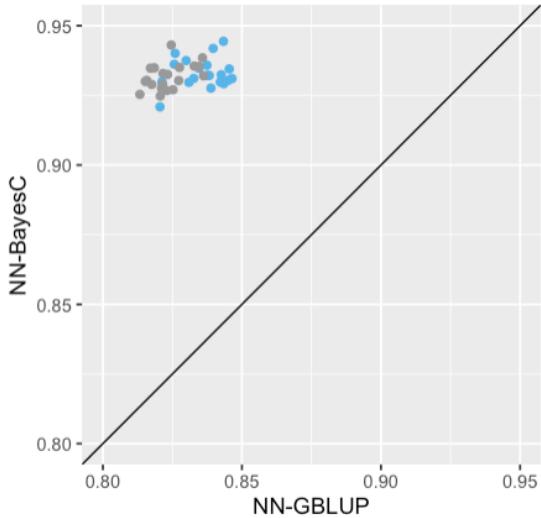
Table 1 Comparison of the prediction performance between the strategy of deleting individuals with no omics data and incorporating those individuals via the single-step approach or NN-LMM.

Method	% missing omics data in training dataset									
	0%	10%	30%	50%	70%	80%	90%	95%	99%	
delete individuals with no omics data	0.577 ^a	0.564	0.526	0.487	0.419	0.357	0.291	0.218	0.096	
single-step approach	0.577	0.562	0.537	0.523	0.495	0.474	0.448	0.409	0.355	
NN-GBLUP	0.578	0.568	0.542	0.527	0.493	0.481	0.478	0.453	0.419	

^a The prediction accuracy was presented as the mean of prediction accuracies from 20 replications.



● missing omics pattern (i) ● missing omics pattern (ii)



● missing omics pattern (i) ● missing omics pattern (ii)

Figure 5 The prediction performance of NN-GBLUP with the linear activation function versus NN-GBLUP with the nonlinear sigmoid activation function, when there were 50% missing omics data in the training dataset. Missing omics patterns (i) and (ii) were distinguished by color, and 10 replicates were applied for each pattern. The diagonal line was used for reference such that a dot above the line represents a replicate with higher prediction accuracy for the nonlinear sigmoid activation function.

Figure 6 The prediction performance of NN-GBLUP versus NN-BayesC, when there were 50% missing omics data in the training dataset. Linear activation function was used. Missing omics patterns (i) and (ii) were distinguished by color, and 20 replicates were applied for each pattern. The diagonal line was used for reference such that a dot above the line represents a replicate with higher prediction accuracy for the NN-BayesC.

545 In NN-LMM, unknowns were sampled from their full conditional posterior distributions, and the posterior means were
 546 used as the point estimates of parameters of interest. Thus, the
 547 estimated breeding value is calculated as $\widehat{g}(\mathbf{X}\mathbf{W}^{(0)})\mathbf{w}^{(1)}$, where
 548 $\widehat{\cdot}$ denotes the point estimate of parameters of interest. When
 549 the relationship between omics features and phenotypes is lin-
 550 ear, the estimated breeding value in NN-LMM is $\mathbf{X}\mathbf{W}^{(0)}\mathbf{w}^{(1)}$,
 551 whereas the estimated breeding value in Christensen *et al.* (2021)
 552 is $\widehat{\mathbf{X}\mathbf{W}^{(0)}}\widehat{\mathbf{w}^{(1)}}$, assuming $\mathbf{W}^{(0)}$ and $\mathbf{w}^{(1)}$ are independent. This
 553 assumption of independence may affect the model performance.
 554 Note that the goal of genetic evaluation is to accurately pre-
 555 dict breeding values, rather than phenotypes. Thus, caution is
 556 needed when comparing NN-LMM to methods for phenotypic
 557 prediction.
 558

559 Another approach for genomic prediction using omics fea-
 560 tures is to include both target phenotype and omics features

561 as correlated traits in a multi-trait genetic model (Hayes *et al.*
 562 2017). However, it would be computational infeasible to include
 563 high-dimensional omics features, such as the expression levels
 564 of thousand of genes, in a multi-trait model. Runcie *et al.* (2021)
 565 recently proposed a linear mixed model for genomic predic-
 566 tions with thousands of traits. However, it is difficult to model
 567 directional regulatory cascades in a multi-trait model frame-
 568 work when considering multiple layers of omics data, which is
 569 straightforward for NN-LMM.

570 Data Availability Statement

571 Simulated datasets used in the analysis are publicly available
 572 in Christensen *et al.* (2021). All scripts are available at <https://github.com/zhaotianjing/NN-LMM>. The authors state that all data
 573 necessary for confirming the conclusions presented in the article
 574 are represented fully within the article.

576 Acknowledgements

577 This work was supported by the United States Department of
578 Agriculture, Agriculture and Food Research Initiative National
579 Institute of Food and Agriculture Competitive Grant No. 2018-
580 67015-27957 and No. 2021-67015-33412.

581 Conflicts of interest

582 None declared.

583 References

584 Aguilar, I., I. Misztal, D. Johnson, A. Legarra, S. Tsuruta, *et al.*,
585 2010 Hot topic: A unified approach to utilize phenotypic, full
586 pedigree, and genomic information for genetic evaluation of
587 holstein final score. *Journal of dairy science* **93**: 743–752.

588 Atwell, S., Y. S. Huang, B. J. Vilhjálmsson, G. Willems, M. Horton,
589 *et al.*, 2010 Genome-wide association study of 107 phenotypes
590 in arabidopsis thaliana inbred lines. *Nature* **465**: 627–631.

591 Betancourt, M., 2018 A conceptual introduction to hamiltonian
592 monte carlo.

593 Bezanson, J., A. Edelman, S. Karpinski, and V. B. Shah, 2017 Julia:
594 A fresh approach to numerical computing. *SIAM review* **59**:
595 65–98.

596 Calus, M. P. and R. F. Veerkamp, 2011 Accuracy of multi-trait
597 genomic selection using different methods. *Genetics Selection
598 Evolution* **43**: 1–14.

599 Cheng, H., R. Fernando, and D. Garrick, 2018a Jwas: Julia imple-
600 mentation of whole-genome analysis software. In *Proceedings
601 of the world congress on genetics applied to livestock production*,
602 volume 11, p. 859.

603 Cheng, H., K. Kizilkaya, J. Zeng, D. Garrick, and R. Fernando,
604 2018b Genomic prediction from multiple-trait bayesian regres-
605 sion methods using mixture priors. *Genetics* **209**: 89–103.

606 Christensen, O. F., V. Börner, L. Varona, and A. Legarra, 2021
607 Genetic evaluation including intermediate omics features. *Ge-
608 netics* iyab130.

609 Christensen, O. F. and M. S. Lund, 2010 Genomic prediction
610 when some animals are not genotyped. *Genetics Selection
611 Evolution* **42**: 1–8.

612 Devijver, E., M. Gallopin, and E. Perthame, 2017 Nonlinear
613 network-based quantitative trait prediction from transcrip-
614 tomic data. *arXiv preprint arXiv:1701.07899* .

615 Erbe, M., B. Hayes, L. Matukumalli, S. Goswami, P. Bowman,
616 *et al.*, 2012 Improving accuracy of genomic predictions within
617 and between dairy cattle breeds with imputed high-density
618 single nucleotide polymorphism panels. *Journal of dairy sci-
619 ence* **95**: 4114–4129.

620 Fernando, R. L., J. C. Dekkers, and D. J. Garrick, 2014 A class
621 of bayesian methods to combine large numbers of genotyped
622 and non-genotyped animals for whole-genome analyses. *Ge-
623 netics Selection Evolution* **46**: 1–13.

624 Gamazon, E. R., H. E. Wheeler, K. P. Shah, S. V. Mozaffari,
625 K. Aquino-Michaels, *et al.*, 2015 A gene-based association
626 method for mapping traits using reference transcriptome data.
627 *Nature genetics* **47**: 1091–1098.

628 Gelman, A., J. B. Carlin, H. S. Stern, D. B. Dunson, A. Vehtari,
629 *et al.*, 2013 *Bayesian data analysis*. CRC press.

630 Gianola, D. and R. L. Fernando, 2019 A Multiple-Trait Bayesian
631 Lasso for Genome-Enabled Analysis and Prediction of Com-
632 plex Traits. *Genetics* **214**: genetics.302934.2019 – 331.

633 Golub, T. R., D. K. Slonim, P. Tamayo, C. Huard, M. Gaasenbeek,
634 *et al.*, 1999 Molecular classification of cancer: class discovery
635 and class prediction by gene expression monitoring. *science*
636 **286**: 531–537.

637 Green, R. M., J. L. Fish, N. M. Young, F. J. Smith, B. Roberts,
638 *et al.*, 2017 Developmental nonlinearity drives phenotypic
639 robustness. *Nature communications* **8**: 1–12.

640 Green, R. M., C. L. Leach, V. M. Diewert, J. D. Aponte, E. J.
641 Schmidt, *et al.*, 2019 Nonlinear gene expression-phenotype re-
642 lationships contribute to variation and clefting in the a/wyse
643 mouse. *Developmental Dynamics* **248**: 1232–1242.

644 Guo, Z., M. M. Magwire, C. J. Basten, Z. Xu, and D. Wang, 2016
645 Evaluation of the utility of gene expression and metabolic
646 information for genomic prediction in maize. *Theoretical and
647 applied genetics* **129**: 2413–2427.

648 Gusev, A., A. Ko, H. Shi, G. Bhatia, W. Chung, *et al.*, 2016 Inte-
649 grative approaches for large-scale transcriptome-wide associa-
650 tion studies. *Nature genetics* **48**: 245–252.

651 Habier, D., R. L. Fernando, and J. C. Dekkers, 2007 The impact of
652 genetic relationship information on genome-assisted breeding
653 values. *Genetics* **177**: 2389–2397.

654 Habier, D., R. L. Fernando, K. Kizilkaya, and D. J. Garrick, 2011
655 Extension of the bayesian alphabet for genomic selection. *BMC
656 bioinformatics* **12**: 186.

657 Hayes, B., J. Panizzo, C. Walker, A. Choy, S. Kant, *et al.*, 2017 Ac-
658 celerating wheat breeding for end-use quality with multi-trait
659 genomic predictions incorporating near infrared and nuclear
660 magnetic resonance-derived phenotypes. *Theoretical and ap-
661 plied genetics* **130**: 2505–2519.

662 Hayes, B. J., P. J. Bowman, A. J. Chamberlain, and M. E. God-
663 dard, 2009a Invited review: Genomic selection in dairy cattle:
664 Progress and challenges. *Journal of dairy science* **92**: 433–443.

665 Hayes, B. J., P. M. Visscher, and M. E. Goddard, 2009b Increased
666 accuracy of artificial selection by using the realized relation-
667 ship matrix. *Genetics research* **91**: 47–60.

668 Heffner, E. L., M. E. Sorrells, and J.-L. Jannink, 2009 Genomic
669 selection for crop improvement. *Crop Science* **49**: 1–12.

670 Henderson, C. and R. Quaas, 1976 Multiple trait evaluation
671 using relatives' records. *Journal of animal science* **43**: 1188–
672 1197.

673 Henderson, C. R., 1975 Best linear unbiased estimation and
674 prediction under a selection model. *Biometrics* pp. 423–447.

675 Hickey, J. M., T. Chiurugwi, I. Mackay, W. Powell, A. Eggen, *et al.*,
676 2017 Genomic prediction unifies animal and plant breeding
677 programs to form platforms for biological discovery. *Nature
678 genetics* **49**: 1297.

679 Kitano, H., 2002 Computational systems biology. *Nature* **420**:
680 206–210.

681 Kizilkaya, K., R. L. Fernando, and D. J. Garrick, 2010 Genomic
682 prediction of simulated multibreed and purebred performance
683 using observed fifty thousand single nucleotide polymor-
684 phism genotypes1. *Journal of Animal Science* **88**: 544–551.

685 Korte, A. and A. Farlow, 2013 The advantages and limitations of
686 trait analysis with gwas: a review. *Plant methods* **9**: 1–9.

687 Legarra, A., I. Aguilar, and I. Misztal, 2009 A relationship matrix
688 including full pedigree and genomic information. *Journal of
689 dairy science* **92**: 4656–4663.

690 Legarra, A., O. F. Christensen, I. Aguilar, and I. Misztal, 2014 Sin-
691 gle step, a general approach for genomic selection. *Livestock
692 Science* **166**: 54–65.

693 Li, Z., N. Gao, J. W. Martini, and H. Simianer, 2019 Integrating
694 gene expression data into genomic prediction. *Frontiers in
695 genetics* **10**: 126.

696 Meuwissen, T. H. E., B. J. Hayes, and M. E. Goddard, 2001 Predic-
697

tion of total genetic value using genome-wide dense marker maps. *Genetics* **157**: 1819–1829.

Misztal, I., A. Legarra, and o. Aguilar, 2009 Computing procedures for genetic evaluation including phenotypic, full pedigree, and genomic information. *Journal of dairy science* **92**: 4648–4655.

Moser, G., S. H. Lee, B. J. Hayes, M. E. Goddard, N. R. Wray, *et al.*, 2015 Simultaneous discovery, estimation and prediction analysis of complex traits using a bayesian mixture model. *PLoS Genet* **11**: e1004969.

Mrode, R. A., 2014 *Linear models for the prediction of animal breeding values*. Cabi.

Ozaki, K., Y. Ohnishi, A. Iida, A. Sekine, R. Yamada, *et al.*, 2002 Functional snps in the lymphotxin- α gene that are associated with susceptibility to myocardial infarction. *Nature genetics* **32**: 650–654.

Park, T. and G. Casella, 2008 The bayesian lasso. *Journal of the American Statistical Association* **103**: 681–686.

Qian, J., E. Ray, R. L. Brecha, M. P. Reilly, and A. S. Foulkes, 2019 A likelihood-based approach to transcriptome association analysis. *Statistics in medicine* **38**: 1357–1373.

Riedelsheimer, C., A. Czedik-Eysenberg, C. Grieder, J. Liseck, F. Technow, *et al.*, 2012 Genomic and metabolic prediction of complex heterotic traits in hybrid maize. *Nature genetics* **44**: 217–220.

Ritchie, M. D., E. R. Holzinger, R. Li, S. A. Pendergrass, and D. Kim, 2015 Methods of integrating data to uncover genotype–phenotype interactions. *Nature Reviews Genetics* **16**: 85–97.

Runcie, D. E., J. Qu, H. Cheng, and L. Crawford, 2021 Megalmm: Mega-scale linear mixed models for genomic predictions with thousands of traits. *Genome biology* **22**: 1–25.

Sun, Y. V. and Y.-J. Hu, 2016 Integrative analysis of multi-omics data for discovery and functional studies of complex human diseases. *Advances in genetics* **93**: 147–190.

VanRaden, P. M., 2008 Efficient methods to compute genomic predictions. *Journal of dairy science* **91**: 4414–4423.

Visscher, P. M., M. A. Brown, M. I. McCarthy, and J. Yang, 2012 Five years of gwas discovery. *The American Journal of Human Genetics* **90**: 7–24.

Visscher, P. M., N. R. Wray, Q. Zhang, P. Sklar, M. I. McCarthy, *et al.*, 2017 10 years of gwas discovery: biology, function, and translation. *The American Journal of Human Genetics* **101**: 5–22.

Wainberg, M., N. Sinnott-Armstrong, N. Mancuso, A. N. Barbeira, D. A. Knowles, *et al.*, 2019 Opportunities and challenges for transcriptome-wide association studies. *Nature genetics* **51**: 592–599.

Weishaar, R., R. Wellmann, A. Camarinha-Silva, M. Rodehutscord, and J. Bennewitz, 2020 Selecting the hologenome to breed for an improved feed efficiency in pigs—a novel selection index. *Journal of Animal Breeding and Genetics* **137**: 14–22.

Wu, Y., J. Zeng, F. Zhang, Z. Zhu, T. Qi, *et al.*, 2018 Integrative analysis of omics summary data reveals putative mechanisms underlying complex traits. *Nature communications* **9**: 1–14.

Zhao, T., R. Fernando, and H. Cheng, 2021 Interpretable artificial neural networks incorporating Bayesian alphabet models for genome-wide prediction and association studies. *G3 Genes | Genomes | Genetics* **11**, jkab228.

Zhao, T., R. Fernando, D. Garrick, and H. Cheng, 2020 Fast parallelized sampling of Bayesian regression models for whole-genome prediction. *Genetics Selection Evolution* **52**: 1 – 11.

Appendix

MCMC in NN-LMM

sampling effects of omics features on phenotypes In NN-LMM, the effects of intermediate omics features on phenotypes are weights between middle layer and output layer, $\mathbf{w}^{(1)} = [w_1^{(1)}, \dots, w_j^{(1)}, \dots, w_{l_1}^{(1)}]^T$, with prior $w_j^{(1)} \stackrel{i.i.d.}{\sim} N(0, \sigma_{w^{(1)}}^2)$. The full conditional posterior distribution of $\mathbf{w}^{(1)}$ is a multivariate normal distribution with mean

$$[g(\mathbf{Z})^T g(\mathbf{Z}) + \mathbf{I} \frac{\sigma_e^2}{\sigma_{w^{(1)}}^2}]^{-1} g(\mathbf{Z})^T (\mathbf{y} - \mathbf{1}\mu^{(1)}) \quad (6)$$

and covariance matrix $[g(\mathbf{Z})^T g(\mathbf{Z}) + \mathbf{I} \frac{\sigma_e^2}{\sigma_{w^{(1)}}^2}]^{-1} \sigma_e^2$.

sampling the overall mean of phenotypes

The overall mean of phenotypes is $\mu^{(1)}$ in equation 1 with a flat prior. The full conditional posterior distribution of $\mu^{(1)}$ is a normal distribution with mean $(\mathbf{1}^T \mathbf{1})^{-1} \mathbf{1}^T (\mathbf{y} - g(\mathbf{Z}) \mathbf{w}^{(1)})$ and variance $(\mathbf{1}^T \mathbf{1})^{-1} \sigma_e^2$.

sampling missing omics features

The gradient of the log full conditional posterior distribution of the missing omics feature for individual i , i.e., $z_{i,no}$, is derived below. The full conditional posterior distribution of $z_{i,no}$ can be expressed as:

$$\begin{aligned} f(z_{i,no} | y_i, \text{ELSE}) &\propto f(z_{i,no} | \mu_{no}^{(0)}, w_{no,m}^{(0)}, x_{i,1}, \dots, x_{i,l_0}, \sigma_{no}^2) \\ &\quad f(y_i | \mu^{(1)}, w_1^{(1)}, \dots, w_{l_1}^{(1)}, \mathbf{z}_{i,-no}, z_{i,no}, \sigma_e^2) \\ &\propto (\sigma_{no}^2)^{-\frac{1}{2}} \cdot \exp \left\{ \frac{(z_{i,no} - \mu_{no}^{(0)} - \sum x_{i,m} w_{no,m}^{(0)})^2}{-2\sigma_{no}^2} \right\} \\ &\quad \cdot (\sigma_e^2)^{-\frac{1}{2}} \exp \left\{ \frac{[y_i - \mu^{(1)} - \sum_{j \neq no} w_j^{(1)} g(z_{i,j}) - g(z_{i,no}) w_{no}^{(1)}]^2}{-2\sigma_e^2} \right\}. \end{aligned} \quad (7)$$

Then, the log full conditional posterior distribution of $z_{i,no}$ is:

$$\begin{aligned} \log f(z_{i,no} | y_i, \text{ELSE}) &\propto -\frac{1}{2} \log(\sigma_{no}^2) \\ &\quad - \frac{(z_{i,no} - \mu_{no}^{(0)} - \sum x_{i,m} w_{no,m}^{(0)})^2}{2\sigma_{no}^2} \\ &\quad - \frac{1}{2} \log(\sigma_e^2) - \frac{[y_i - \mu^{(1)} - \sum_{j \neq no} w_j^{(1)} g(z_{i,j}) - g(z_{i,no}) w_{no}^{(1)}]^2}{2\sigma_e^2}. \end{aligned} \quad (8)$$

Thus, the gradient of the log-full conditional posterior distri-

bution of $z_{i,no}$ is:

$$\begin{aligned}
 & \frac{d \log f(z_{i,no} | y_i, ELSE)}{dz_{i,no}} \\
 & \propto -\frac{(z_{i,no} - \mu_{no}^{(0)} - \sum_{m=1}^{l_0} x_{i,m} w_{no,m}^{(0)})}{\sigma_{no}^2} \\
 & + \frac{y_i - \mu^{(1)} - \sum_{j \neq no} w_j^{(1)} g(z_{i,j}) - g(z_{i,no}) w_{no}^{(1)}}{\sigma_e^2} w_{no}^{(1)} \cdot g'(z_{i,no}).
 \end{aligned} \tag{9}$$