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ABSTRACT With the growing amount and diversity of intermediate omics data complementary to genomics (e.g., DNA
methylation, gene expression, and protein abundance), there is a need to develop methods to incorporate intermediate omics
data into conventional genomic evaluation. The omics data helps decode the multiple layers of regulation from genotypes to
phenotypes, thus forms a connected multi-layer network naturally. We developed a new method named NN-LMM to model the
multiple layers of regulation from genotypes to intermediate omics features, then to phenotypes, by extending conventional linear
mixed models ("LMM") to multi-layer artificial neural networks ("NN"). NN-LMM incorporates intermediate omics features by
adding middle layers between genotypes and phenotypes. Linear mixed models (e.g., pedigree-based BLUP, GBLUP, Bayesian
Alphabet, single-step GBLUP, or single-step Bayesian Alphabet) can be used to sample marker effects or genetic values
on intermediate omics features, and activation functions in neural networks are used to capture the nonlinear relationships
between intermediate omics features and phenotypes. NN-LMM had significantly better prediction performance than the recently
proposed single-step approach for genomic prediction with intermediate omics data. Compared to the single-step approach,
NN-LMM can handle various patterns of missing omics measures, and allows nonlinear relationships between intermediate
omics features and phenotypes. NN-LMM has been implemented in an open-source package called "JWAS".
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Introduction16

The advances in high-throughput sequencing technology pro-17

vide growing amount and diversity of multi-omics data comple-18

mentary to genomics (e.g., DNA methylation, gene expression,19

and protein abundance). As demonstrated in Figure 1, the ef-20

fects of genotypes on phenotypes can be mediated by multiple21

layers of omics features through mechanisms such as regulatory22

cascades from epigenome, to transcriptome, and to proteome23

(Ritchie et al. 2015; Sun and Hu 2016; Wu et al. 2018). This multi-24

layer regulation works as a unified system to connect genome25

variations to the trait, and the relationships between different26

layers can be complex with interactions and nonlinear relation-27

ships (Kitano 2002; Green et al. 2017; Devijver et al. 2017; Green28

et al. 2019). For example, Green et al. (2017) observed that the29

relationship between gene expression level and phenotype was30

non-linear, which was approximated by a generalised logistic31

function.32

In genotypes-to-phenotypes studies such as genomic predic-33

tion (Meuwissen et al. 2001; Hayes et al. 2009a; Heffner et al. 2009;34

Hickey et al. 2017) and genome-wide association studies (GWAS)35

(Ozaki et al. 2002; Visscher et al. 2012, 2017; Atwell et al. 2010;36

Korte and Farlow 2013), incorporating intermediate multi-omics37

data has facilitated our understanding of the relationship be-38

tween genotypes and phenotypes (Qian et al. 2019; Ritchie et al.39
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Figure 1 An example of multiple layers of regulation between geno-
types to phenotypes. The DNA sequence variations may affect the
phenotypes through epigenome, transcriptome, and proteome lev-
els, and the relationships between different layers may be complex
with interactions and nonlinear relationships. This unified multi-layer
regulation system forms a connected network naturally.
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2015; Christensen et al. 2021; Riedelsheimer et al. 2012). To in-40

corporate intermediate omics data (e.g., gene expression levels)41

between genotypes and phenotypes for association studies, ap-42

proaches such as multi-staged analysis (Ritchie et al. 2015) and43

transcriptome-wide association studies (Gamazon et al. 2015;44

Gusev et al. 2016; Wainberg et al. 2019) were proposed. In these45

approaches, two linear models were used to describe the rela-46

tionship between phenotypes and gene expression levels, and47

the relationship between gene expression levels and genotypes.48

Such system of two linear models has also been developed re-49

cently for genomic evaluation (Weishaar et al. 2020; Christensen50

et al. 2021), and further extended for genomic prediction using51

incomplete omics data (Christensen et al. 2021).52

In practice, there often exist missing measures in the interme-53

diate omics data, because the omics features are not measured for54

all individuals who have phenotypes, or different omics features55

are measured in different experiments. Thus, there is a need to56

develop methods to model the unified system of multi-layer reg-57

ulation from genome to intermediate omics features then to the58

phenotypic trait, with a capability of dealing with missing omics59

data. Christensen et al. (2021) proposed a method to include60

intermediate omics features into genetic evaluation, in which61

two linear mixed model equations are required. The first model62

describes how intermediate omics features affect phenotypes,63

and the second model describes how genotypes affect interme-64

diate omics features. When omics data for some individuals are65

completely missing, single-step approach is used to construct66

the relationship matrix for individuals with all omics features67

measured and those having no omics data. This is analogous to68

the popular genomic single-step approach (Legarra et al. 2009;69

Christensen and Lund 2010; Legarra et al. 2014) that combines70

information from both genotyped and non-genotyped relatives71

in genetic evaluation. As we will show in this paper, this ap-72

proach for genomic prediction using intermediate omics data73

is not able to incorporate omics data that are partially missing74

for some individuals, assume linear relationships between gene75

expressions and phenotypes, and may give suboptimal results76

even when the underlying relationship is linear.77

As illustrated in Figure 1, the multi-layer regulatory system78

forms a connected network naturally, thus the architecture of79

artificial neural networks can be considered to construct this80

unified system of multi-layer regulation. The complex relation-81

ships between different layers may be approximated by the82

inter-connected nodes with non-linear activation functions of83

the neural network. In this paper, we focus on one middle layer84

of intermediate omics data in the neural network such as gene85

expression levels.86

We have proposed a Bayesian neural network to extend87

mixed models to multi-layer neural networks to capture the88

non-linear relationships between genotypes and phenotypes for89

both genomic prediction and GWAS (Zhao et al. 2021). This90

model, however, is not able to incorporate intermediate omics91

data. In our proposed neural network named NN-LMM in this92

paper, omics data are incorporated into the middle layer. An93

example of the framework of NN-LMM incorporating interme-94

diate omics data is shown in Figure 2, where the nodes in the95

middle layer represent both observed and unobserved interme-96

diate omics features that are affected by upstream genotypes and97

regulate the downstream phenotypes. Linear relationships are98

assumed between genotypes and omics features in the middle99

layer, such that pedigree-based BLUP (Henderson 1975; Mrode100

2014), GBLUP (Habier et al. 2007; VanRaden 2008; Hayes et al.101

2009b), Bayesian Alphabet (Meuwissen et al. 2001; Kizilkaya102

et al. 2010; Habier et al. 2011; Park and Casella 2008; Gianola103

and Fernando 2019; Erbe et al. 2012; Moser et al. 2015), single-104

step GBLUP (Misztal et al. 2009; Aguilar et al. 2010), single-step105

Bayesian Alphabet (Fernando et al. 2014) and other mixed mod-106

els are employed to sample marker effects or genetic values107

on intermediate omics features. Nonlinear relationships are as-108

sumed between intermediate omics features and the phenotype109

through the activation function in the neural network such as the110

sigmoid function. Unobserved intermediate omics features will111

remain to be hidden nodes that will be sampled, thus NN-LMM112

allows various missing patterns of omics data. For example, in113

Figure 2, for an individual, the gene expression levels of the first114

two genes are 0.9 and 0.1, respectively, and the gene expression115

level of the last gene is missing to be sampled. The missing116

patterns of gene expression levels can be different for different117

individuals. Our multi-layer neural network method here can118

be considered as an extension to conventional mixed models,119

where the relationship between the first layer of genotypes and120

the middle layer of omics features can be modeled by mixed121

models. Here we name our Bayesian neural network specifically122

"NN-GBLUP", "NN-BayesA", "NN-BayesB", and "NN-BayesC",123

when corresponding mixed models (GBLUP, BayesA, BayeB, and124

BayesC, respectively) are used. In this paper, we will present our125

model, study its performance, and compare it to the single-step126

approach in Christensen et al. (2021).127

Figure 2 Framework of NN-LMM incorporating intermediate omics
data such as gene expression levels. Genotypes affect the gene
expression levels, then gene expression levels regulate the phe-
notypes. Linear mixed models can be applied to sample marker
effects or genetic values on gene expression levels, and the non-
linear activation function in neural networks will be used to capture
the complex nonlinear relationships between gene expression lev-
els and phenotypes. For an individual, the gene expression levels
of the first two genes are 0.9 and 0.1, respectively, and the gene
expression of the last gene is missing to be sampled. Individuals
can have different missing gene expression levels.

Materials and methods128

A detailed NN-LMM model incorporating intermediate omics129

features is shown in Figure 3. For ith individual, each node in130

the input layer represents a single-nucleotide polymorphism131

(SNP) and there are in total l0 SNPs (i.e., xi,1, · · · , xi,l0 ). There132

are l1 nodes in the middle layer representing l1 intermediate133

omics features (i.e., zi,1, · · · , zi,l1 ). Some omics features may be134

missing (e.g., orange colored nodes), and different individuals135

can have different missing omics features. We will use zno to136

denote a missing omics feature. The relationship between SNPs137

and an intermediate omics feature is linear, and priors in con-138
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ventional mixed models will be used to sample marker effects139

(i.e., weights between input and middle layers) or genetic val-140

ues on intermediate omics features. The relationship between141

intermediate omics features and the phenotype is non-linear,142

which is approximated by the non-linear activation function of143

the neural network g(.), e.g., the sigmoid function. In NN-LMM,144

Markov chain Monte Carlo (MCMC) approaches are used to145

infer unknowns. Below we represent NN-LMM as hierarchical146

Bayesian regression models.147

Figure 3 A detailed framework of NN-LMM incorporating intermedi-
ate omics data. For ith individual, the relationship between SNPs
(xi,m, where m = 1, ..., l0) and intermediate omics features (zi,j,
where j = 1, ..., l1) is linear, such that linear mixed models are

applied to sample marker effects (w(0)
j,m) or genetic values of omics

features. Non-linear activation function g(.) in the neural networks
is used to capture the non-linear relationship between intermediate
omics features and phenotypes.

From middle layer (intermediate omics features) to output148

layer (phenotypes): non-linear activation function149

Given all intermediate omics features (observed or sampled),
the phenotype of individual i is modeled as

yi = µ(1) +
l1
∑
j=1

w(1)
j g(zi,j) + ei, (1)

where yi is the phenotype for individual i, µ(1) is the over-150

all mean, zi,j is the jth omics feature for individual i, g(.) is151

the activation function in neural networks, w(1)
j is the effect of152

g(zi,j) on yi, and ei is the random residual. The overall mean153

µ(1) is assigned to a flat prior. The prior of neural network154

weights w(1)
j is a normal distribution with null mean and un-155

known variance σ2
w(1) , i.e., w(1)

j
i.i.d∼ N(0, σ2

w(1) ). A scaled inverse156

chi-squared distribution is assigned as the prior for σ2
w(1) , i.e.,157

(σ2
w(1) |νw(1) , S2

w(1) ) ∼ νw(1)S2
w(1)χ

−2
ν

w(1)
. The prior for ei is a nor-158

mal distribution with null mean and unknown variance σ2
e , i.e.,159

ei
i.i.d∼ N(0, σ2

e ). A scaled inverse chi-squared distribution is160

assigned as the prior for σ2
e , i.e., (σ2

e |νe, S2
e ) ∼ νeS2

e χ−2
νe

.161

From input layer (genotypes) to middle layer (intermediate162

omics features): mixed models163

Given all intermediate omics features (observed or sampled),164

for ith individual, the relationship between the jth intermediate165

omics feature and genotypes can be written as a single-trait166

mixed model (e.g., Bayesian Alphabet) as:167

zi,j = µ
(0)
j +

l0
∑

m=1
xi,mw(0)

j,m + εi,j, (2)

where zi,j is the jth (with j = 1, ..., l1) intermediate omics feature168

for individual i, µ
(0)
j is the overall mean for jth intermediate169

omics feature, xi,m is the genotype covariate at locus m (with170

m = 1, ..., l0) for individual i (coded as 0,1,2), w(0)
j,m is the marker171

effects of locus m on jth intermediate omics feature (i.e., the172

weight between mth node of the input layer and jth node of173

the middle layer), and εi,j is the random residual of ith indi-174

vidual on jth intermediate omics feature. Besides Bayesian Al-175

phabet (Meuwissen et al. 2001; Kizilkaya et al. 2010; Habier et al.176

2011; Park and Casella 2008; Gianola and Fernando 2019; Erbe177

et al. 2012; Moser et al. 2015), the pedigree-based BLUP (Hender-178

son 1975; Mrode 2014), GBLUP (Habier et al. 2007; VanRaden179

2008; Hayes et al. 2009b), single-step GBLUP (Misztal et al. 2009;180

Aguilar et al. 2010), or single-step Bayesian Alphabet (Fernando181

et al. 2014) models can also be used to model the relationship182

between the input and middle layers. The overall mean µ
(0)
j is183

assigned to a flat prior. Conditional on σ2
εj

, the residuals, εi,j,184

have independently and identically distributed normal priors185

with null means and variance σ2
εj

, which itself is assumed to186

have an scaled inverse chi-squared distribution.187

Multi-threaded parallelism (Bezanson et al. 2017) was imple-188

mented to employ multiple single-trait mixed models in parallel189

at each iteration. When a relatively small number of omics fea-190

tures is used, it is computational feasible to use a multi-trait191

mixed model to sample marker effects on omics features, e.g.,192

multi-trait BayesC (Cheng et al. 2018b). Multi-trait models for193

pedigree-based BLUP (Henderson and Quaas 1976), GBLUP194

(Calus and Veerkamp 2011), and single-step methods can also be195

applied to model the relationship between the first and middle196

layers.197

Sample missing omics data by Hamiltonian Monte Carlo198

For each missing omics feature of ith individual (e.g., zi,no), it199

will be treated as an unobserved intermediate trait to be sam-200

pled by Hamiltonian Monte Carlo (HMC) (Betancourt 2018).201

HMC will sample the missing omics feature zi,no from its full202

conditional distributions.203

In HMC, each unknown parameter is paired with a "momen-204

tum" variable φi,no. The HMC constructs the Markov chain by a205

series of iterations. Following notations in Gelman et al. (2013),206

there are three steps in each iteration of the HMC:207

1. updating the momentum variable independently of the208

current values of the paired parameter, i.e., φi,no ∼ N(0, m).209
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2. updating (zi,no, φi,no) via L leapfrog steps. In each leapfrog210

step, zi,no and φi,no are updated dependently and scaled by211

t. The leapfrog step below is repeated L times:212

(a) φi,no ← φi,no +
1
2 t dlogp(zi,no |yi ,ELSE)

dzi,no
;213

(b) zi,no ← zi,no + tm−1φi,no;214

(c) φi,no ← φi,no +
1
2 t dlogp(zi,no |yi ,ELSE)

dzi,no
.215

The resulting state at the end of L repetitions will be denoted216

as (z∗i,no, φ∗i,no).217

3. calculating the acceptance rate, r, such that the resulting218

state will be accepted with probability min(1, r).219

As shown above, the gradient of the log full conditional
posterior distribution of zi,no is required in HMC, which is:

dlog f (zi,no|yi, ELSE)
dzi,no

∝ −
(zi,no − µ

(0)
no −∑l0

m=1 xi,mw(0)
no,m)

σ2
no

+
yi − µ(1) −∑l1

j=1 w(1)
j g(zi,j)

σ2
e

w(1)
no · g′(zi,no)

(3)

In our analyses, 10 leapfrog steps were used in each HMC220

iteration, i.e., L = 10, m was 1, and the scale parameter t was 0.1.221

A more detailed derivation and the full conditional distributions222

of other parameters of interest in the Gibbs sampler are given in223

the Appendix.224

The estimated breeding value is calculated as g(XW(0))w(1)
∧

,225

where .̂ denotes the point estimate of parameters of interest. In226

NN-LMM, the posterior means are used as the point estimates227

of parameters of interest.228

Compared to an approach of two mixed model equation sys-229

tem in Christensen et al. (2021)230

Christensen et al. (2021) proposed a method to include interme-
diate omics features for genetic evaluation, in which a system of
two mixed model equations is required. Using notations in this
paper, mixed models in Christensen et al. (2021) can be written
as:

y = 1µ(1) + Zw(1) + e (4)

Z = 1(µ(0))T + XW(0) + E, (5)

which are equivalent to equation (1) and equation (2) when g(.)231

is a linear activation function.232

In equation (4) describing the relationship between pheno-233

types and intermediate omics features, y is the vector of phe-234

notypes, where yi is the phenotype for individual i, µ(1) is the235

overall mean of phenotypes, Z is the matrix of intermediate236

omics features, where zi,j is the jth intermediate omics feature237

for individual i, w(1) is the vector of effects of intermediate omics238

features on phenotypes, where w(1)
j is the effect of jth omics fea-239

ture, e is the vector of residuals, where ei is the residual for240

ith individual. An additional polygenetic effect whose covari-241

ance matrix is defined by the pedigree or/and genotypes is also242

included in equation (4), and this is ignored here for simplicity.243

In equation (5) describing the relationship between interme-244

diate omics features and genotypes, µ(0) is the vector of overall245

means of intermediate omics features, where µ
(0)
j is the overall246

mean for jth intermediate omics feature, X is the genotype co-247

variate matrix, where xi,m is the genotype covariate at locus m248

of ith individual, W(0) = [w(0)
1 , ..., w(0)

j , ..., w(0)
l1

] is the matrix of249

marker effects on all intermediate omics features, where w(0)
j,m250

is the marker effects of locus m on jth intermediate omics fea-251

ture. E is a matrix of residual of intermediate omics features,252

where Ei,j = εi,j is the random residual of ith individual on jth253

intermediate omics feature.254

The genomic breeding values on phenotypes can be calcu-255

lated as the sum of weighted breeding value from each omics256

feature, i.e., (XW(0))w(1), where XW(0) is regarded as the breed-257

ing values of omics features. In Christensen et al. (2021), a matrix258

of breeding values G = [g1, ..., gj, ..., gl1 ] of omics features, in-259

stead of XW(0) = [Xw(0)
1 , ..., Xw(0)

j , ..., Xw(0)
l1

], is used, which260

is similar to expressing SNP-BLUP as GBLUP, and these two261

models are equivalent in terms of breeding value prediction.262

Further, breeding values gj in equation (5) are fitted as ran-263

dom effects, whose covariance matrix is defined by the relation-264

ship matrix H computed from genotypes or/and pedigree, i.e.,265

gj ∼ MVN(0, Hσ2
gj
).266

When all omics features are measured on all individuals, the267

system of two mixed model equations in Christensen et al. (2021)268

can be regarded as a special case of NN-LMM with a linear269

activation function between the middle layer and the output270

layer and a normal prior for marker effects on omics features.271

However, by extending the mixed model to multi-layer neural272

networks with non-linear activation functions, NN-LMM may273

capture non-linear relationships between intermediate omics274

features and phenotypes. Moreover, NN-LMM allows various275

priors for marker effects.276

single-step approach for incomplete omics data When some277

individuals do not have an observation on any omics feature,278

Christensen et al. (2021) proposed an approach that is similar279

to the conventional single-step method. In conventional single-280

step method (Legarra et al. 2009; Christensen and Lund 2010;281

Legarra et al. 2014), when the genotype data are completely282

missing for some individuals in the pedigree, the phenotypes of283

these individuals are incorporated by modelling the covariances284

of their breeding values with those of the genotyped individu-285

als through pedigree relationships. In Christensen et al. (2021),286

a similar single-step approach is used to incorporate the phe-287

notypes of individuals with missing omics data by modelling288

the covariances of their omics values with those of the omics-289

typed individuals through genomic relationships, where the290

omics value of an individual is computed as the sum of omics291

contributions on phenotypes in equation (4), i.e., u = Zw(1).292

In detail, when all omics data are observed on all individuals,293

u can be considered as random effects whose covariance ma-294

trix is ZZTσ2
w(1) . When all omics features are missing for some295

individuals, however, Z for all individuals are not observed.296

Christensen et al. (2021) proposed that the covariance matrix for297

the sum of omics contributions on phenotypes for all individu-298

als, i.e., u = Zw(1), can be computed by combining information299

in ∑l1
j=1(Hσ2

gj
+ Iσ2

εj
) for all individuals and that in the omics300

relationship matrix ZZTσ2
w(1) for individuals with omics data.301

A potential issue with above single-step approach is that the302

residual part Iσ2
εj

is included along with the genomic and/or303

pedigree relationship matrix Hσ2
gj

. Thus, when many individu-304
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als have no omics measures, this residual part may be dominant.305

As we will show below, compared to this single-step approach,306

NN-LMM provides a more straightforward approach to analyze307

datasets when some individuals have no omics measures, and308

gives equivalent or higher prediction accuracy even when the309

underlying relationships between intermediate omics features310

and phenotypes are linear. Also, NN-LMM can handle various311

missing patterns in omics data, whereas the single-step approach312

in Christensen et al. (2021) only works when all omics features313

are not measured on some individuals.314

Data Analysis315

Linear system To compare the prediction performance of NN-316

LMM to the single-step approach in Christensen et al. (2021), a317

linear activation function was used in NN-LMM, consistent with318

the assumption in the single-step approach that the relationship319

between intermediate omics features and phenotypes is linear.320

The goal of genetic evaluation is to accurately predict breed-321

ing values, rather than phenotypes, and it is not straightforward322

to validate the prediction of breeding values using real datasets.323

Thus, simulated data from Christensen et al. (2021) were used.324

Note that in Christensen et al. (2021), an polygenic effect whose325

covariance matrix is defined by the pedigree or/and genotypes326

is also included in equation (4). This part is ignored here for327

simplicity, and was subtracted from the simulated phenotypes.328

Two patterns of missing omics data were considered: missing329

omics pattern (i) as in Christensen et al. (2021): all omics features330

are not measured on some individuals; missing omics pattern331

(ii): for each omics feature, some random individuals have no332

omics data. Missing omics pattern (i) is a special case of missing333

omics pattern (ii). The single-step approach only works with the334

scenario (i), while NN-LMM allows both scenarios.335

The simulated data in Christensen et al. (2021) contained336

21,100 individuals from 11 generations. We randomly sampled337

5% individuals from each generation to have a subset of 1,055338

individuals (i.e., 55 individuals in the first generation, and 100339

individuals in each of the later generations). Following Chris-340

tensen et al. (2021), individuals in the last generation were used341

as the testing dataset (i.e., 100 individuals), whose omics features342

were observed but phenotypes were unknown, and the remain-343

ing individuals (i.e., 955 individuals) were used for training. The344

genotypic data consists of 15,000 SNP markers observed for all345

individuals, and the intermediate omics data consists of 1,200346

omics features. Each omics feature was affected by 500 QTLs347

randomly selected from a set of 5,000 QTLs which were not in-348

cluded in the 15,000 SNP markers, and phenotypes were affected349

by all 1,200 intermediate omics features. The heritability of each350

omics feature was 0.61, and the heritability of the phenotypic351

trait was 0.337. More details about the simulation process are in352

Christensen et al. (2021).353

When all individuals have all omics features measured, the354

performance of NN-LMM and the system of two mixed model355

equations in Christensen et al. (2021) were compared using 20356

replicates. Different proportions of missing omics data in the357

training dataset were considered, including 0%, 10%, 30%, 50%,358

70%, 80%, 90%, 95%, 99%, where 0% denotes a scenario where359

all omics features are measured on all individuals. For each360

scenario, 20 replicates were used. The GBLUP model in conven-361

tional genomic evaluation, where no omics data are available,362

was used as the baseline for comparison.363

The prediction accuracy was calculated as the Pearson cor-364

relation between the true breeding values XW(0)w(1) and the365

estimated breeding values (i.e., XW(0)w(1)
∧

in NN-LMM and366

XŴ(0)ŵ(1) in the single-step approach) for individuals in the367

testing datasets, where .̂ denotes the point estimate of param-368

eters of interest. In NN-LMM with linear activation function,369

a number of 5,000 MCMC iterations was applied to ensure the370

convergence.371

Nonlinear system Studies have shown that the relationship be-372

tween intermediate omics features and phenotypes may be non-373

linear (Kitano 2002; Green et al. 2017; Devijver et al. 2017; Green374

et al. 2019). One example is that Green et al. (2017) used a von375

Bertalanffy growth curve, which is a generalised logistic func-376

tion, to approximate the relationship between gene expression377

levels and a quantitative trait. Using data in Christensen et al.378

(2021), we simulated nonlinear relationships between intermedi-379

ate omics features and phenotypes. In detail, the sigmoid non-380

linear transformation was applied to the omics data, and the381

phenotypes were affected by the nonlinear-transformed omics382

data as in equation (1). Same heritability, variance components383

were used as in the above linear system, as well as the number of384

omics features (i.e., 1200) and the number of randomly selected385

QTLs affecting each omics feature (i.e., 500). The QTLs were also386

not included in the SNP markers.387

The performance of NN-LMM were studied using different388

activation functions in neural networks, including a linear func-389

tion (i.e., the identity function) and a non-linear function (i.e.,390

the sigmoid function). Both missing omics patterns (i) and (ii)391

were considered, and different proportions of missing omics392

data were tested. 10 replicates were applied in each scenario.393

The prediction accuracy was calculated as the Pearson corre-394

lation between the true breeding values g(XW(0))w(1) and the395

estimated breeding values g(XW(0))w(1)
∧

for individuals in the396

testing datasets. MCMC chains of length 5,000 and 20,000 were397

applied to NN-GBLUP with sigmoid and linear activation func-398

tions, respectively, to ensure the convergence.399

Results400

Linear system401

To compare the prediction performance of NN-LMM to the402

single-step approach in Christensen et al. (2021), a linear ac-403

tivation function was used in NN-LMM, consistent with the404

assumption in the single-step approach that the relationship405

between intermediate omics features and phenotypes is linear.406

When all omics features are measured on all individuals, the407

system of two mixed model equations in Christensen et al. (2021)408

can be regarded as a special case of NN-LMM with a linear409

activation function between the middle layer and the output410

layer and a normal prior for marker effects on omics features.411

Following Christensen et al. (2021), variance components were412

treated as known for both methods to be the values used in the413

simulation. NN-GBLUP had similar prediction accuracies as the414

system of two mixed model equations in Christensen et al. (2021)415

for all 20 replicates (correlation r = 0.999).416

Results for missing omics patterns (i) and (ii) were shown417

in Figure 4. Overall, the prediction accuracy decreased when418

the proportion of missing omics data increased. For missing419

omics pattern (i), when a small proportion of individuals had no420

omics data, NN-GBLUP (red solid line) had similar prediction421

performance as the single-step approach in Christensen et al.422

(2021) (blue solid line). However, when a large proportion of423
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individuals had no omics data (e.g., >80%), NN-GBLUP had sig-424

nificantly higher prediction accuracies (pairwise t-test P-value <425

0.005). When >90% individuals had no omics data, the single-426

step approach performed even worse than the baseline (black427

dashed line), which was a conventional GBLUP model where428

no omics data were used. For missing omics pattern (ii), the429

prediction accuracy of NN-GBLUP (red dashed line) decreased430

with larger proportion of missing omics data, and eventually431

close to the baseline, whereas the single-step approach did not432

work for this scenario.433

Nonlinear system434

Compared to the system of two linear models (Weishaar et al.435

2020; Christensen et al. 2021; Gamazon et al. 2015; Gusev et al.436

2016; Wainberg et al. 2019), NN-LMM allows nonlinear relation-437

ships between intermediate omics features and phenotypes. Un-438

der the nonlinear system, the underlying relationship between439

intermediate omics features and phenotypes was nonlinear for440

the simulated datasets. The prediction performance of NN-441

GBLUP with a linear function was compared to NN-GBLUP442

with a nonlinear sigmoid activation function. All variance com-443

ponents were sampled.444

For different proportions of missing omics data under both445

missing omics patterns, using the nonlinear activation function446

in NN-LMM was significantly better than using the linear acti-447

vation function. The results for the proportion of 50% missing448

omics data were shown in Figure 5 (pairwise t-test P-value <449

0.0001).450

Effects of different priors in NN-LMM451

NN-LMM allows various priors from conventional mixed mod-452

els to model the relationship between the genotypes and inter-453

mediate omics features. Here the performance of NN-LMM with454

a GBLUP prior (i.e, NN-GBLUP) and NN-LMM with a BayesC455

prior (i.e., NN-BayesC) were compared, and linear activation456

functions were applied. All variance components were sampled.457

NN-GBLUP had similar prediction accuracies as NN-BayesC458

for the above simulated datasets. This may be due to the rela-459

tively small sample size (n = 1, 055) compared to the number of460

SNPs (p = 15, 000). Thus, we selected 1,000 SNPs evenly from461

all 15,000 SNPs, and 250 SNPs were randomly selected as QTLs462

from this 1,000 SNP panel. 20 intermediate omics features were463

simulated, where each omics feature was affected by 50 QTLs464

randomly selected from the 250 QTLs. QTLs were included in465

the SNP panel. Heritability and variance components were the466

same as before.467

For different proportions of missing omics data, NN-BayesC468

had significantly higher prediction accuracy than NN-GBLUP469

under both missing omics patterns (pairwise t-test P-value <470

0.0001). The results for the proportion of 50% missing omics471

data were shown in Figure 6.472

Discussion473

Using omics data only, especially the gene expression levels,474

to predict the phenotype is not new (e.g., Golub et al. (1999);475

Riedelsheimer et al. (2012); Li et al. (2019); Guo et al. (2016)).476

However, such methods for the prediction of phenotypic values477

do not lead in themselves for genetic improvement (i.e., bet-478

ter estimation of breeding values). In association studies, to479

incorporate omics data as intermediate traits between genotypes480

and phenotypes (Ritchie et al. 2015; Gamazon et al. 2015; Gu-481

sev et al. 2016; Wainberg et al. 2019), two linear models were482

used, where one model describes how genotypes affect omics483

features, and another describes how omics features affect phe-484

notypes. Recently, such a system of two linear models has also485

been developed for genomic evaluation (Weishaar et al. 2020;486

Christensen et al. 2021), and further extended for genomic pre-487

diction using incomplete omics data when some individuals had488

no omics measures (Christensen et al. 2021).489

In this paper, we proposed a new method named NN-LMM490

to extend linear mixed models to multi-layer neural networks491

for genomic prediction with intermediate omics features. NN-492

LMM models the unified system of multi-layer regulations from493

genotypes to intermediate omics features, then to the pheno-494

type, such that the upstream genotypes affect the intermediate495

omics features, then omics features regulate the downstream496

phenotypes. Compared to other methods, NN-LMM provides a497

more flexible and robust framework to incorporate intermedi-498

ate omics features. First, NN-LMM allows various patterns of499

missing omics data, for example, individuals can have different500

missing omics features. Second, NN-LMM allows nonlinear rela-501

tionships between intermediate omics features and phenotypes,502

and the non-linear relationships are approximated by activa-503

tion functions in neural networks. Third, various linear mixed504

models can be used to model the relationship between the geno-505

types and omics features. NN-LMM has been implemented in506

an open-source package called "JWAS" (Cheng et al. 2018a).507

In simulation analysis, NN-LMM had significantly higher508

prediction accuracy than the single-step approach in Christensen509

et al. (2021) when a large proportion of individuals had no omics510

data. As shown in Table 1, however, incorporating those individ-511

uals with no omics data, either using the single-step approach512

or NN-LMM, was better than simply deleting them from the513

dataset.514

NN-LMM allows nonlinear relationships between intermedi-515

ate omics features and phenotypes. In our simulation analysis,516

when the underlying relationship between intermediate omics517

features and phenotypes was nonlinear, using the nonlinear518

activation function in NN-LMM had significantly better per-519

formance than using the linear activation function. Given the520

observations that the relationships between intermediate omics521

features and the phenotypes might be nonlinear (Kitano 2002;522

Green et al. 2017; Devijver et al. 2017; Green et al. 2019), NN-LMM523

may be a more biological realistic approach than other system524

of linear models.525

However, one issue with the current implementation of NN-526

LMM is computation. To sample marker effects on omics fea-527

tures, a naive multi-threaded parallelism (Bezanson et al. 2017)528

has been implemented to employ multiple single-trait mixed529

models in parallel at each MCMC iteration. Thus, ideally, with530

thousands of computer processors, the running time to sample531

marker effects on thousands of omics features equals that of532

one omics feature (i.e., one single-trait mixed model). However,533

due to the hardware limitation (e.g., on a personal laptop), this534

parallelisation was usually only a few times faster than with-535

out parallel computing. In practice, it took about 10 hours on a536

personal laptop to run 5,000 iterations for a dataset with 1,055537

individuals, 15,000 SNPs and 1,200 omics features. Whereas538

solving the system of two mixed model equations without es-539

timating variance components in Christensen et al. (2021) only540

required a few minutes for such a dataset. To improve the com-541

putation performance of NN-LMM in the future, parallel com-542

puting strategies, e.g., the strategy in Zhao et al. (2020), needs to543

be further studied.544
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Figure 4 Prediction accuracies of NN-GBLUP with the linear activation function and the single-step approach in Christensen et al. (2021).
Different proportions of missing omics data in the training dataset were considered, including 0%, 10%, 30%, 50%, 70%, 80%, 90%, 95%,
99%. There were two missing omics patterns: missing omics pattern (i): all omics features were not measured on some individuals, and
missing omics pattern (ii): for each omics feature, some random individuals had no omics measures. Missing omics pattern (i) is a special case
of pattern (ii), and the single-step approach only works with the pattern (i). The horizontal black dashed linear represents the conventional
GBLUP model when no omics data were available, and it was used as the baseline for both methods. Each dot represents the mean of
prediction accuracies from 20 replications, and the vertical bar is the mean ± its standard error. The asterisk symbol indicated that for missing
omics pattern (i), NN-GBLUP had significantly higher prediction accuracy than the single-step approach under the t-test with a significance
level of 0.005 (∗∗) or lower (∗ ∗ ∗).
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Table 1 Comparison of the prediction performance between the strategy of deleting individuals with no omics data and incorporat-
ing those individuals via the single-step approach or NN-LMM.

% missing omics data in training dataset

Method 0% 10% 30% 50% 70% 80% 90% 95% 99%

delete individuals with no omics data 0.577a 0.564 0.526 0.487 0.419 0.357 0.291 0.218 0.096

single-step approach 0.577 0.562 0.537 0.523 0.495 0.474 0.448 0.409 0.355

NN-GBLUP 0.578 0.568 0.542 0.527 0.493 0.481 0.478 0.453 0.419

a The prediction accuracy was presented as the mean of prediction accuracies from 20 replications.

Figure 5 The prediction performance of NN-GBLUP with the linear
activation function versus NN-GBLUP with the nonlinear sigmoid
activation function, when there were 50% missing omics data in
the training dataset. Missing omics patterns (i) and (ii) were distin-
guished by color, and 10 replicates were applied for each pattern.
The diagonal line was used for reference such that a dot above the
line represents a replicate with higher prediction accuracy for the
nonlinear sigmoid activation function.

In NN-LMM, unknowns were sampled from their full con-545

ditional posterior distributions, and the posterior means were546

used as the point estimates of parameters of interest. Thus, the547

estimated breeding value is calculated as g(XW(0))w(1)
∧

, where548

.̂ denotes the point estimate of parameters of interest. When549

the relationship between omics features and phenotypes is lin-550

ear, the estimated breeding value in NN-LMM is XW(0)w(1)
∧

,551

whereas the estimated breeding value in Christensen et al. (2021)552

is XŴ(0)ŵ(1), assuming W(0) and w(1) are independent. This553

assumption of independence may affect the model performance.554

Note that the goal of genetic evaluation is to accurately pre-555

dict breeding values, rather than phenotypes. Thus, caution is556

needed when comparing NN-LMM to methods for phenotypic557

prediction.558

Another approach for genomic prediction using omics fea-559

tures is to include both target phenotype and omics features560

Figure 6 The prediction performance of NN-GBLUP versus NN-
BayesC, when there were 50% missing omics data in the training
dataset. Linear activation function was used. Missing omics pat-
terns (i) and (ii) were distinguished by color, and 20 replicates were
applied for each pattern. The diagonal line was used for reference
such that a dot above the line represents a replicate with higher
prediction accuracy for the NN-BayesC.

as correlated traits in a multi-trait genetic model (Hayes et al.561

2017). However, it would be computational infeasible to include562

high-dimensional omics features, such as the expression levels563

of thousand of genes, in a multi-trait model. Runcie et al. (2021)564

recently proposed a linear mixed model for genomic predic-565

tions with thousands of traits. However, it is difficult to model566

directional regulatory cascades in a multi-trait model frame-567

work when considering multiple layers of omics data, which is568

straightforward for NN-LMM.569
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Appendix760

MCMC in NN-LMM761

sampling effects of omics features on phenotypes In NN-
LMM, the effects of intermediate omics features on phenotypes
are weights between middle layer and output layer, w(1) =

[w(1)
1 , ..., w(1)

j , ..., w(1)
l1

]T , with prior w(1)
j

i.i.d∼ N(0, σ2
w(1) ). The full

conditional posterior distribution of w(1) is a multivariate nor-
mal distribution with mean

[g(Z)T g(Z) + I
σ2

e
σ2

w(1)

]−1g(Z)T(y− 1µ(1)) (6)

and covariance matrix [g(Z)T g(Z) + I σ2
e

σ2
w(1)

]−1σ2
e .762

sampling the overall mean of phenotypes763

The overall mean of phenotypes is µ(1) in equation 1 with a764

flat prior. The full conditional posterior distribution of µ(1) is765

a normal distribution with mean (1T1)−11T(y− g(Z)w(1)) and766

variance (1T1)−1σ2
e .767

sampling missing omics features768

The gradient of the log full conditional posterior distribution of
the missing omics feature for individual i, i.e., zi,no, is derived
below. The full conditional posterior distribution of zi,no can be
expressed as:

f (zi,no|yi, ELSE)

∝ f (zi,no|µ
(0)
no , w(0)

no,m, xi,1, ..., xi,l0 , σ2
no)

f (yi|µ(1), w(1)
1 , ..., w(1)

l1
, zi,−no, zi,no, σ2

e )

∝ (σ2
no)
− 1

2 ·

exp{
(zi,no − µ

(0)
no −∑ xi,mw(0)

no,m)
2

−2σ2
no

}

· (σ2
e )
− 1

2 exp{
[yi − µ(1) −∑j 6=no w(1)

j g(zi,j)− g(zi,no)w
(1)
no ]

2

−2σ2
e

}.

(7)

Then, the log full conditional posterior distribution of zi,no is:

log f (zi,no|yi, ELSE)

∝ −1
2

log(σ2
no)

−
(zi,no − µ

(0)
no −∑ xi,mw(0)

no,m)
2

2σ2
no

− 1
2

log(σ2
e )−

[yi − µ(1) −∑j 6=no w(1)
j g(zi,j)− g(zi,no)w

(1)
no ]

2

2σ2
e

.

(8)

Thus, the gradient of the log-full conditional posterior distri-
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bution of zi,no is:

dlog f (zi,no|yi, ELSE)
dzi,no

∝ −
(zi,no − µ

(0)
no −∑l0

m=1 xi,mw(0)
no,m)

σ2
no

+
yi − µ(1) −∑j 6=no w(1)

j g(zi,j)− g(zi,no)w
(1)
no

σ2
e

w(1)
no · g′(zi,no).

(9)
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