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Abstract 12 

Background 13 

Polygenic risk score (PRS) analyses are now routinely applied in biomedical research, with great hope 14 
that they will aid in our understanding of disease aetiology and contribute to personalized medicine. The 15 
continued growth of multi-cohort genome-wide association studies (GWASs) and large-scale biobank 16 
projects has provided researchers with a wealth of GWAS summary statistics and individual-level data 17 
suitable for performing PRS analyses. However, as the size of these studies increase, the risk of inter-18 
cohort sample overlap and close relatedness increases. Ideally sample overlap would be identified and 19 
removed directly, but this is typically not possible due to privacy laws or consent agreements. This 20 
sample overlap, whether known or not, is a major problem in PRS analyses because it can lead to inflation 21 
of type 1 error and, thus, erroneous conclusions in published work.  22 

Results 23 

Here, for the first time, we report the scale of the sample overlap problem for PRS analyses by generating 24 
known sample overlap across sub-samples of the UK Biobank data, which we then use to produce GWAS 25 
and target data to mimic the effects of inter-cohort sample overlap. We demonstrate that inter-cohort 26 
overlap results in a significant and often substantial inflation in the observed PRS-trait association, 27 
coefficient of determination (R2) and false-positive rate. This inflation can be high even when the absolute 28 
number of overlapping individuals is small if this makes up a notable fraction of the target sample. We 29 
develop and introduce EraSOR (Erase Sample Overlap and Relatedness), a software for adjusting 30 
inflation in PRS prediction and association statistics in the presence of sample overlap or close 31 
relatedness between the GWAS and target samples. A key component of the EraSOR approach is 32 
inference of the degree of sample overlap from the intercept of a bivariate LD score regression applied to 33 
the GWAS and target data, making it powered in settings where both have sample sizes over 1,000 34 
individuals. Through extensive benchmarking using UK Biobank and HapGen2 simulated genotype-35 
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phenotype data, we demonstrate that PRSs calculated using EraSOR-adjusted GWAS summary statistics 36 
are robust to inter-cohort overlap in a wide range of realistic scenarios and are even robust to high levels 37 
of residual genetic and environmental stratification.  38 

Conclusion 39 

The results of all PRS analyses for which sample overlap cannot be definitively ruled out should be 40 
considered with caution given high type 1 error observed in the presence of even low overlap between 41 
base and target cohorts. Given the strong performance of EraSOR in eliminating inflation caused by 42 
sample overlap in PRS studies with large (>5k) target samples, we recommend that EraSOR be used in all 43 
future such PRS studies to mitigate the potential effects of inter-cohort overlap and close relatedness.  44 

Introduction 45 

Polygenic risk scores (PRSs) are proxies of individuals’ genetic liability to a trait or disease [1] that have 46 
been applied in numerous research settings, including patient stratification [2] and investigation of 47 
treatment response [3–6]. The power of PRS analyses is dependent on the heritability and polygenicity of 48 
the trait, the power of the genome wide association study (GWAS) used to derive the PRS, and the size of 49 
the target data sample [7]. The recent surge of high quality genetic and phenotypic data from large-scale 50 
biobank projects, such as the UK Biobank [8], BioBank Japan [9], Taiwan Biobank [10], and FinnGen 51 
[11], as well as GWAS resources from large consortia such as the Psychiatric Genomic Consortium 52 
(PGC) [12], GIANT [13] and the Global Lipids Genetics Consortium (GLGC) [14] have provided 53 
unprecedented opportunity to perform highly-powered PRS analyses.  54 

However, expansion in data size does not come without a cost in this setting: as sample sizes increase, 55 
there is greater risk that samples are recruited into multiple cohorts or that entire cohorts are included in 56 
multiple consortia. For PRS analyses, which typically test for association between PRS and a trait(s) or 57 
outcome of interest, overlapping samples between the GWAS and target data samples can result in 58 
spurious inflation of the coefficient of determination (R2) and association P-values, leading to false-59 
positive and exaggerated findings [15]. Overlapping samples should ideally be removed from either the 60 
GWAS or target data to avoid misinterpretation of results, but participant privacy agreements usually 61 
limit access to raw genotyping data, meaning that this is generally not an option.  62 

Here we first evaluate the extent to which different degrees of sample overlap and relatedness between 63 
GWAS and target samples generates biased PRS-trait associations. Next, to overcome the sample overlap 64 
problem, we develop and introduce EraSOR (Erase Sample Overlap and Relatedness), a python software 65 
that adjusts GWAS summary statistics [1] to correct for inflation of PRS-trait association results caused 66 
by overlapping samples between the GWAS and target samples. Through extensive simulations using the 67 
UK Biobank genetic data [8], we demonstrate that EraSOR can robustly adjust for inflation in test 68 
statistics caused by various degrees of overlapping samples, level of relatedness, or ascertainment 69 
schemes in case/control settings. We propose that EraSOR will increase the accuracy of results in all 70 
future PRS studies with known sample overlap and will act as a sensitivity tool for assessing the 71 
reliability of results in PRS studies with unknown but potential sample overlap. EraSOR is an open-72 
source software and is freely available at https://gitlab.com/choishingwan/EraSOR.  73 

 74 

 75 
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Methods 76 

EraSOR framework 77 

Consider two GWAS k = {1, 2} performed on the same continuous outcome Yk. The effect size of the gth 78 
SNP in study k (���) is estimated using a regression model  79 

�� � ��� � ������ � ���#	1�  

 80 

where ��� is the standardized genotype vector for SNP g in study k, and ��� is the random error assumed 81 
to be independent between studies. Under the null model of no contribution of SNP g to the trait, ��� �82 0, and assuming no sample overlap, then ���
  and ���
  estimated from the two GWASs should be 83 
independent, i.e., �������
 , ���
 � � 0. However, when there are overlapping samples between the two 84 
studies, then a correlation is induced between the regression coefficients, such that �������
 , ���
 � � 0. 85 
From LeBlanc et al [16], this correlation can be approximated as  86 

�������
 , ���
 � � �������
���	��, ���#	2�  

for quantitative traits, where ���	��, ��� represents the correlation between the traits; �� is the number of 87 
overlapping samples; and ��, �� are the sample sizes of studies 1 and 2, respectively [16]. Since we are 88 
considering only a single phenotype here, ���	��, ��� is equal to 1, and so we have:  89 

�������
 , ���
 � � ��
�����

#	3�90 

which captures correlations only due to sample overlap independent of the true causal effect. Assuming 91 
sample overlap does not affects the standard error estimates, LeBlanc et al [16] proposed that when the 92 
number of overlapping samples (Nc) is known, one can adjust the joint distribution of the summary 93 
statistics (z-scores) of the two GWASs as:  94 

��	
��

 � �
�.��#	��  

where z is a 2-by-M matrix containing z-scores estimated in each study, M is the number of SNPs 95 
common to both studies, and C is the 2x2 matrix with ones on its diagonal and �������
 , ���
 � as its off-96 
diagonal elements. While this adjustment is effective [16], it requires prior knowledge of Nc, which is 97 
typically unknown in PRS studies. However, we propose utilizing univariate and bivariate LD score 98 

regression [17,18] to estimate 
��

�����
 and thus �������
 , ���
 � from Eq. 3 as follows: 99 

Bivariate LD score regression is typically used to estimate the genetic correlation between two traits using 100 
the GWAS corresponding to each, and is defined in [13] by the following equation:  101 

�������� � �������
�

!� � ���

�����
� "�#��� ����� � ��������

�

�����
#	5�   102 

where !� is the LD score of SNP j; "� is the genetic covariance between the two traits; " �  "� � "�; "� 103 
is the non-genetic covariance; #��  and &� are the genetic and environmental stratification respectively. 104 
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LDSC assumes two underlying populations within each cohort, and that the levels of genetic and 105 

environmental stratification are similar in the two cohorts, e.g. #����� � #����� � #��  and &�� � &�� � &�  106 
[13]. Since we are considering only a single phenotype here, " is equal to 1, and so we have:  107 

�������� � �������
�

!� � ��
�����

� "�#��� ����� � ��������
�

�����
#	6�  108 

We wish to solve for Nc and hence apply Eq. 3 to generate a de-correlated base GWAS that does not lead 109 
to inflated PRS-trait associations due to sample overlap. To do this, we will utilize the univariate LD 110 
score regression model. The univariate LD score regression equation can be derived as a special case of 111 
the bivariate LD score equation by assuming that the two outcomes and cohorts are identical [13,17], 112 
leading to: 113 

��(�� � �)�* !� � 1 � �#��	)�#�� � &���#	7�  

Univariate LD score regression performs a regression of observed χ� on !�, with the effect size estimate of 114 

lj corresponding to a scaled estimate of heritability ()��
� and with the estimated intercept term, -�.  as 115 
follows: 116 

-�. � 1 � ��#��/)��
#�� � σ��1 

If we assume that the environmental stratification σ�� � 0, then we have:  117 

-�. � 1 � ��#��/)��
#�� � σ��1 -�. � 1 � ��#��� )��

 

#��� � -�. 2 1��)��
 #	8�  

Since we can estimate #���  using both the base and target data, we then take the weighted mean estimate 118 
of both: 119 

#���
 � 1�� � ��
4 -�. 2 1)��
�

���
#	9�  

The intercept term of the bivariate LD score regression is: 120 

- . � �������
� ρ�7#��� ����� � ��

�#��σ�������
#	10�  

Substituting Eq. 9 and &�� � 0 into Eq. 10, we have:  121 

- . � �������
� ρ�7#���
 ����� � ��

�#��σ�������
 

- . � �������
� ρ�7����� 8 1�����

4 -�. 2 1)��
�

���
9 
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- . � �������
� ρ�7������� � ��

4 -�. 2 1)��
�

���
#	11�  

Since we can estimate the genetic covariate (ρ�7�, the trait heritability )��
  and the intercepts from the 122 
univariate and bivariate LD score regression analyses of the GWAS and target data, we can obtain an 123 

estimate of 
��

�����
. Substituting this estimate into Eq. 3 will derive an estimate of �������
 , ���
 �  that can 124 

be used to produce de-correlated GWAS z-statistics via Eq.4. EraSOR automatically performs the 125 
bivariate LD score and univariate LD score regression analyses on the GWAS summary statistics 126 
generated from the base and target data. To test the performance of EraSOR, including its robustness to 127 
the modelling assumptions (e.g., assuming σ�� � 0), we performed a series of extensive simulations.  128 

UK Biobank genotype data 129 

The UK Biobank is a prospective cohort study of around 500,000 individuals recruited across the United 130 
Kingdom during 2006-2010. The genetic data from UK Biobank comprises 488,377 samples and 805,426 131 
SNPs. Standard quality control (QC) procedures were performed, removing any SNPs with minor allele 132 
frequency < 0.01, genotype missingness > 0.02 and with a Hardy Weinberg Equilibrium Test P-value < 133 
1x10-8. Samples with high levels of missingness or heterozygosity, with mismatching genetic-inferred and 134 
self-reported sex, or with aneuploidy of the sex chromosomes were removed as recommended by the UK 135 
Biobank data processing team. Next, 4-means clustering was applied to the first two Principal 136 
Components (PCs) of the genotype data and those individuals in the (largest) cluster corresponding to 137 
European ancestry were retained for the primary analyses because polygenic risk scores have been shown 138 
to have low portability between ancestries [14] motivating ancestry-matched PRS studies until cross-139 
ancestry PRS methods are developed, which our main results correspond to (see section Samples with 140 
population stratification below, which describes analyses that we also performed on individuals of all 141 
ancestries in the UK Biobank). A greedy algorithm [19] was then used to remove related individuals, with 142 
kinship coefficient > 0.044, in a way that maximized sample retention. In our simulations that investigate 143 
the effect of related individuals in the GWAS and target data, we instead randomly retain one first degree 144 
relative (defined as kinship coefficient : 0.177 and ; 0.354) of a randomly sampled individual in the 145 
GWAS data. Altogether, we retain 557,369 SNPs, 387,392 individuals and 23,429 of their first-degree 146 
relatives for the set of analyses performed. For the simulations of population stratified samples, we 147 
extracted samples 10 standard deviations from the centroid of the European cluster and defined these as 148 
“non-European” samples. Quality control procedures were repeated using the parameters described above 149 
after combining these non-European samples with the European samples, resulting in 387,365 samples of 150 
European ancestry and 21,779 individuals of non-European ancestry. Code used to perform the QC and 151 
corresponding documentation are available at https://choishingwan.gitlab.io/ukb-152 
administration/admin/master_generation/. This research has been conducted using the UK Biobank 153 
Resource under application 18177 (Dr O’Reilly). 154 

 155 
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Phenotype simulation 160 

Quantitative Traits without population structure 161 

Quantitative phenotypes (Y) with heritability (h2) of 0, 0.1, and 0.5 were simulated using the UK Biobank 162 
genotype data (post QC; see above) as input. Quantitative traits were simulated as:  163 

� � 	� � �� � ��<#	12�  

where X is the standardized genotype matrix corresponding to all samples and 10,000 randomly 164 
selected SNPs with effect size β following a standard normal distribution. Xβ were adjusted such that it 165 
has mean 0 and variance of h2; and ε represents the random error, which follows �~��0, √1 2 )��. To 166 
ensure EraSOR works for distribution that are not only standard normal, we included α as the phenotypic 167 
mean randomly sampled from a normal distribution with mean 0 and standard deviation of 1, and δ as the 168 
phenotypic variable randomly sampled from 1 to 100 to simulate phenotypes that does not follow the 169 
standard normal distribution. 170 

To model polygenic risk score analyses with sample overlap, we randomly selected either 120k or 250k 171 
individuals from the sample of 387,392 individuals available to us (see above) to generate two different 172 
sizes of base GWAS data. Next, we randomly sampled 1,000, 5,000 or 10,000 individuals from the 173 
remaining sample to act as three different sizes of target data, of which 0%, 5%, 10%, 50% or 100% were 174 
randomly selected from the base data sample so that there was a known degree of sample overlap between 175 
the base and target data. In addition, we generated an “overlap-free” base cohort in which the overlapping 176 
samples were removed from the base cohort so that we could compare the result of applying EraSOR 177 
against results of physically removing overlapped samples from the base cohort.  178 

In order to search a feasible parameter space in sufficient depth, we only simulate phenotype with 179 
heritability of 0.5, with a base cohort of 250k and target cohort of 5,000; only simulate base cohort with 180 
120k samples when the phenotypic heritability is ≤ 0.1 and target cohort has 5,000 samples; and only 181 
simulate target cohort with 1,000 and 10k samples when the base cohort contain 250k samples and the 182 
phenotypic heritability is ≤ 0.1. The entire set of simulations were repeated 100 times.  183 

Binary Trait 184 

Binary traits were simulated under the liability threshold model [20], simulating a normally distributed 185 
liability using Eq. 12 with α = 0, δ = 1, and cases defined as samples with disease liability higher than 186 
liability thresholds of 0.9, 0.7 and 0.5, corresponding to population prevalences of 0.1, 0.3 and 0.5, 187 
respectively. To limit the complexity of our simulations, the sample prevalence of our cohorts follows the 188 
population prevalence.  189 

In the binary trait setting, overlap can be ascertained such that the overlap is among cases, or among 190 
controls, or among both. To investigate the effect of case-only or control-only overlap, we randomly 191 
selected 120k effective samples (effective samples defined as ��!! � 4 	1 ��"���⁄ � 1 ��#$%&#'�⁄ �⁄  [21]) 192 
as the base cohort, and then randomly selected 5,000 effective samples as the target cohort, where 0%, 193 
5%, 10%, 30% or 50% of the cases or of the controls in the target cohort were sampled from the base 194 
cohort. We also performed simulations where the overlapping samples were selected at random among 195 
cases and controls. An “overlap-free” base cohort was generated with all overlapping samples removed. 196 
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In order to search a feasible parameter space in sufficient depth, we only vary the trait heritability when 197 
the population prevalence is 0.1, and only vary the population prevalence when the trait heritability is ≤ 198 
0.1. These simulations were repeated 100 times.  199 

Related samples 200 

Spurious inflation in PRS analysis test statistics may also be observed when there are closely related 201 
individuals between the base and target cohorts. To investigate the effects of relatedness on PRS results, 202 
we repeated the quantitative trait simulations with a modified Eq. 12: 203 

� � 	� � �� � A � ��<#	13�  

where A  is the shared environment between the related individuals and follows a random normal 204 
distribution with mean 0 and variance σ(� B 	0, 0.3, 0.6� if and only if σ(� � )� D 1, with each related pair 205 
of individuals having the same A  value. ε represents a combination of non-shared environment and 206 

random error, which follows �~� 80, E1 2 )� 2 σ(�9. To model the inter-cohort relatedness, we first 207 

select all individuals with a first-degree relative in the UK Biobank (kinship coefficient : 0.177 and ; 208 
0.354), of which there are 23,429 individuals, and then randomly select additional samples who do not 209 
have any first-degree relatives to form a base cohort containing 250k samples. We then generate target 210 
cohorts containing 5,000 samples, with either 0%, 30%, 60% or 100% of the target samples being first-211 
degree relatives of samples in the base cohort. We also generated a reference cohort from the base cohort 212 
where all the related samples in the target cohort were replaced by unrelated individuals for 213 
benchmarking the performance of EraSOR. The entire set of simulations were repeated 100 times.  214 

Samples with population stratification 215 

An assumption of the EraSOR algorithm is that the environmental stratification (σ�� ) is zero. When 216 

environmental stratification is present, 
������)�

�

�����
  from Eq. 10 is no longer 0 and a bias proportional to the 217 

environmental stratification and the genetic stratification (#�� ) may be introduced. We devised two 218 
strategies for simulating data with both environmental and genetic stratification to test the sensitivity of 219 
EraSOR to deviations of each from 0. In the first, we partitioned the UK Biobank into European and non-220 
European ancestries, while in the second we used the simulation software HapGen2 [22].  221 

In the first simulation strategy, the UK Biobank samples were divided into European and non-European 222 
ancestries based on 4-mean clustering on PC1 and PC2 (see above). Quantitative traits with 223 
environmental stratification were then simulated as:  224 

� � 	α � Xβ � S � J �<#	12�  

with the environmental stratification term (S) defined as 225 

K �
LM
N
MO2P&��2 , ��Q 2 RS��TUVQ WQ�UXY�Z

P&��2 , RS��TUVQ WQ�UXY�Z
[ 

.CC-BY 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted December 13, 2021. ; https://doi.org/10.1101/2021.12.10.472164doi: bioRxiv preprint 

https://doi.org/10.1101/2021.12.10.472164
http://creativecommons.org/licenses/by/4.0/


8 
 

where σ�� can take a value of 0, 0.3 or 0.9 if and only if σ�� � )� D 1, and \ represents the residual 226 

term, which follows �~� 80, ]V�	�� � K 2 2��]	��, K�� E�
*�
��
�

*�+��
� 9 , with cov	Xβ, S�  being the 227 

covariance between Xβ  and S. To investigate the effect of sample overlap in the presence of 228 
environmental and genetic stratification, we randomly selected either 120k or 250k individuals from the 229 
sample of 409,144 individuals available to us (see above) to generate two different sizes of base GWAS 230 
data. Next, we randomly sampled 5,000 or 10,000 individuals from the remaining sample to act as two 231 
different sizes of target data, of which 0%, 10%, 50% or 100% were randomly selected from the base data 232 
sample. To ensure that the genetic and environmental stratification is the same within the base and target 233 
data, the same ancestry ratio was maintained in all simulated data sets, matching the ratio in the full data 234 
set (~5% non-European ancestry). In addition, we generated an “overlap-free” base cohort in which the 235 
overlapping samples were remove from the base cohort to allow benchmarking the performance of 236 
EraSOR. The entire set of simulations were repeated 25 times.  237 

Given that only ~5% of the UK biobank samples correspond to individuals of non-European ancestry, the 238 
effect of genetics and environmental stratification may be limited. Thus, we developed a second strategy 239 
to test their effects in which we used HapGen2 [22] to simulate 180k Yoruban and 180k Finnish samples 240 
using recombination maps from the 1000 Genomes Project [23]. 500 “Finnish” samples and 500 241 
“Yoruban” samples were selected to calculate the LD scores using LDSC (v1.0.1) and flashPCA (v2.0) 242 
[24] was used to calculate the first 15 PCs of the data.  243 

We repeated the population stratification simulation using the HapGen2 simulated genotype data, with S 244 
represented now segregate according to the simulated population. The entire set of simulations were 245 
repeated 25 times.  246 

Genome Wide Association Study and Polygenic Score Analysis 247 

Genome wide association analyses (GWAS) were performed on the base and target cohorts using PLINK 248 
2.0 (version 2021-08-04) [25] with the --glm function. As binary traits were only simulated for the 249 
European ancestry only analyses, where population structure was not simulated, and considering the 250 
computational cost of including covariates in the logistic regression, we did not include PCs in our binary 251 
trait analysis. On the other hand, quantitative traits were simulated in all scenarios, some of which are 252 
population stratified. Thus, we included 15 PCs as a covariate for our quantitative triat analyses. The 253 
resulting summary statistics were then provided to EraSOR to generate the adjusted summary statistics 254 
using European LD scores [17] calculated from 1,000 Genomes Project Phase 3 data [23] or the LD 255 
scores calculated from a subset of the simulated genotypes (HapGen2 simulation) using LDSC (v1.0.1) 256 
[17]. PRS analyses using the adjusted, unadjusted, and the “overlap-free” summary statistics were 257 
performed using PRSice-2 (v2.3.5) [26] with the default settings. The R2 and P-value of association of the 258 
PRS-trait tests were reported.  259 

Strategy for Benchmarking 260 

To investigate the level of spurious inflation caused by inter-cohort relatedness and overlapped samples, 261 
we first established a baseline PRS R2, calculated using base cohorts without overlapped samples. The 262 
bias can then be measured as the observed PRS R2 minuses the baseline PRS R2 (∆b�), given the same 263 
phenotype and cohort sizes. For non-heritable traits, we also measure the level of false-positive, defined 264 
as any PRS with P-value < 1x10-4 [27]. 265 
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On the other hand, to compare the performance of EraSOR with the optimal strategy of directly removing 266 
overlapping samples – an option that is typically not available – we calculate PRSs: (i) using summary 267 
statistics adjusted by EraSOR (“adjusted PRS”) and (ii) using summary statistics generated from a base 268 
cohort with all overlapping and/or related samples removed (“overlap-free PRS”). We present the 269 
performance of EraSOR as the PRS-trait association R2 of the adjusted PRS minuses the R2 of the 270 
overlap-free PRS 	∆b��. If EraSOR has successfully corrected for the sample overlap, then ∆b� should 271 
be close to 0.  272 

Results 273 

Inflation caused by overlap 274 

The presence of overlapping samples between the base and target data sets is known to cause inflated 275 
association between polygenic risk scores (PRS) and phenotypes [15], but the extent and characteristics of 276 
the problem have not been described. Here, we performed extensive simulations using the UK Biobank 277 
[8] genotype data to investigate the inflation caused by different levels and types of inter-cohort sample 278 
overlap in relation to traits simulated with varying heritability and prevalence (see Methods). Base and 279 

target cohorts were generated with varying degrees of sample overlap, measured as  
��

�����
, where �� is 280 

the number of overlapping samples and �� and �� are the sample sizes of the base and target cohort, 281 
respectively. PRS analyses were conducted using the standard clumping+thresholding (C+T) PRS 282 
calculation method [1], implemented in PRSice [26].  283 

We first estimated the false-positive rate induced by sample overlap by simulating non-heritable traits and 284 
recording the fraction of significant PRS-trait association (Supplementary Fig. 1). Highly significant 285 
associations between PRS and non-heritable phenotypes were observed when even limited inter-cohort 286 
sample overlap was present (Fig. 1). Specifically, for non-heritable quantitative traits, the inflation in 287 
association (e.g. p-value of association) is highly positively correlated with the degree of overlap (Pearson 288 
Correlation coefficient 	c� = 0.96, P-value < 2.2x10-16). For example, when there is a base cohort of 250k 289 
samples, target cohort of 5,000 samples and 250 overlapping samples (5% of target sample; degree of 290 
overlap = 0.0071) the false positive rate is 17%, while this increases to 94% when there are 500 291 
overlapping samples (10% of target sample; degree of overlap = 0.014) (Fig 1a).  292 

 293 
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Figure 1. Effect of sample overlap on performance of PRS for non-heritable traits. The dotted line represents the 
significance threshold (P-value = 1x10-4) for high-resolution testing in PRSice [27]. The X-axis shows the degree of overlap, 

calculated as  and the Y-axis shows the -log10 transformed p-value of association between the PRS and the simulated 

phenotype. Shaded area represents the 95% confidence interval. However, as the confidence interval is small, it is difficult 
to observe on the scale of these plots a) Quantitative traits with different cohort sizes. b) Binary traits with population 
prevalence of 0.1 c) Binary traits with population prevalence of 0.3 d) Binary traits with population prevalence of 0.5  

 294 

In the binary trait setting, sample overlap may be among cases only, controls only, or be among both.295 
These alternatives were investigated by first simulating binary traits with different population prevalence296 
using the liability threshold model [20]. Cohorts with effective sample sizes of 120k in the base data and297 
5000 in the target data were generated with different degrees and scenarios of sample overlap. We298 
observed extreme inflation associated with case-only overlap when population prevalence is lower than299 
0.5. For a binary trait with population prevalence 0.1, a false positive rate of 43% is observed when the300 
degree of overlap is 0.001, which corresponds to 5% of the cases from the target cohort also present in the301 
base cohort (Fig 1b). When the degree of sample overlap is doubled (~0.002), the false positive rate is302 
100%. The inflation in PRS-trait association is not as sensitive to control-only sample overlap when the303 
population prevalence is small. We observe a false positive rate of ~47% when the degree of overlap is as304 
high as 0.092, which corresponds to 50% of the controls from the target cohort also present in the base305 
cohort (Fig 1b). This discrepancy between the effect of case and control overlap is a result of the306 
differential contribution of cases and controls to the PRS-trait association in our simulations. Cases are307 
sampled from the extreme upper tail of the liability distribution at a frequency corresponding to the308 

. 
ce 
nd 

e 
an 
he 
he 
is 
he 
 as 
se 
he 
re 
he 

.CC-BY 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted December 13, 2021. ; https://doi.org/10.1101/2021.12.10.472164doi: bioRxiv preprint 

https://doi.org/10.1101/2021.12.10.472164
http://creativecommons.org/licenses/by/4.0/


11 
 

disease prevalence, which is typically low: this gives each case greater weight in the calculation of the 309 
PRS-trait association and, thus, an overlapping case will generate greater inflation than an overlapping 310 
control. This was consistent with our simulation results (Fig 1c, 1d), where the inflation in ∆b� caused by 311 
overlapping cases decreases as population prevalence increases (c �  20.068, P-value = 4.70x10-5). The 312 
reverse relationship between inflation and population prevalence was observed for control-only overlap 313 
(c � 0.20, p-value = 3.90x10-34). For a population prevalence of 0.5, case-only and control-only overlap 314 
have the same impact on the inflation (Fig 1d).  315 

Given that complete overlap of individuals in the base and target data can generate PRS-trait associations 316 
that are severely inflated, closely related individuals independently enrolled into the base and target 317 
cohorts may induce some inflation considering their shared genetics and environment. Here we tested the 318 
effect of relatedness between the base and target cohorts on PRS-trait associations in non-heritable traits 319 
in a similar way to that for sample overlap (see Methods), where inter-cohort relatedness is defined as 320 
��

�����
 where �& is the number of samples in the target cohort that are first degree relatives with samples 321 

in the base cohort. A false positive rate of 76% is observed when the inter-cohort relatedness is 0.085 and 322 
the shared environment explains 30% of the trait variance (250k base, 5k target, 60% of target samples 323 
have 1st degree relatives in the base), while a false positive rate of 84% is observed with an inter-cohort 324 
relatedness of 0.042 for traits with shared environment contribution of 60% (30% related samples). See 325 
Supplementary Fig. 2 for full results regarding the effects of inter-cohort relatedness on PRS-trait 326 
association inflation.  327 

In the next section we extend these investigations to consider the effects of sample overlap on PRS-trait 328 
associations on heritable traits, but we present these findings in conjunction with results based on the 329 
application of our method EraSOR, which is designed to resolve the problem.  330 

Performance of EraSOR 331 

To tackle the problem of inflation caused by inter-cohort overlap and relatedness, we developed the Erase 332 
Sample Overlap and Relatedness (EraSOR) method. Using GWAS summary statistics generated from the 333 
base and target cohorts, EraSOR implements univariate and bivariate LD score regression [17,18] to 334 
estimate several parameters that are then used to perform a de-correlation calculation of the base GWAS 335 
test statistics (see Methods). These adjusted base GWAS summary statistics can then be used for 336 
downstream PRS analyses, with sample overlap or relatedness corrected for.  337 

In order to evaluate the performance of EraSOR, we conducted an extensive set of simulations covering a 338 
range of scenarios of inter-cohort sample overlap and relatedness (see below and Methods).  339 

Simulations using UK Biobank data 340 

We observed that for both quantitative and binary traits, EraSOR almost entirely eliminates the inflation 341 
caused by inter-cohort overlap and relatedness in our simulations based on UK Biobank (European 342 
ancestry base and target samples) data (Figure 2). These simulations modelled a range of scenarios that 343 
varied trait heritability, prevalence, degree of overlap and combinations of overlap among cases and 344 
controls. For example, simulating quantitative traits with heritability 0.1, a base cohort of 250k samples, 345 
target cohort of 5000 samples, and degree of overlap 0.141 – in which all samples in the target data are 346 
also in the base GWAS – the mean Δb� is -3.76x10-4 (standard error: 3.03x10-4). Left unadjusted, the 347 
mean Δb�  is approximately 0.35 (standard error 0.00125), suggesting that EraSOR has removed the 348 
inflation introduced by sample overlap. A similar pattern of complete removal of the effects of sample 349 
overlap is observed for the quantitative traits across the full range of heritability and cohort sample sizes 350 
tested (Figure 2a).  351 

.CC-BY 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted December 13, 2021. ; https://doi.org/10.1101/2021.12.10.472164doi: bioRxiv preprint 

https://doi.org/10.1101/2021.12.10.472164
http://creativecommons.org/licenses/by/4.0/


12 
 

EraSOR also performs extremely well for binary traits (Figure 2b, 2c, 2d). In binary traits with heritability352 
0.1, population prevalence 0.1, a base cohort of with 120k effective samples, and a target cohort of 5,000353 
effective samples, the mean  for the adjusted PRS in relation to case-only overlap is 1.61x10-4354 
(standard error = 2.11x10-4) (Fig 2b) and the mean  for the adjusted PRS in relation to control-only355 
overlap is -3.77x10-5 (standard error = 1.98x10-4) (Fig 2c). On the other hand, when unadjusted, the mean356 

  in relation to case only overlap is as high as 0.161 (standard error = 8.93x10-4), whereas the mean357 
 is 6.28x10-3 (standard error = 2.59x10-4) in relation to control-only overlap.  358 

While EraSOR effectively eliminates inflation caused by inter-cohort overlap in all simulation scenarios359 
tested in relation to heritable traits, false-positive results are still observed after EraSOR adjustment in360 
non-heritable traits when there is a large degree of overlap (> 0.29). For non-heritable quantitative traits361 
with base cohorts of 120k samples and target cohorts of 10k samples, if all target samples are also present362 
in the base cohort, then we observe a false-positive rate of 87%, with a mean  of 0.0028 (standard363 
error = 1.14x10-4). This is likely caused by the fact that a key component of the mathematics underlying364 
the EraSOR algorithm (described by Eq. 11 in Methods) includes an estimate of h2 in its denominator.365 
Therfore, when the trait is non-heritable, Eq 9 may be unstable and lead to an error in the ErasOR366 
adjustment. However, we recommend that polygenic risk score analyses should not be performed on traits367 
with estimated h2 < 0.05 (see [1]) and, thus, in sufficiently powered applications of PRS, EraSOR should368 
have strong performance.   369 

 
Figure 2. Comparing the performance of the PRS using the EraSOR adjusted summary statistics and the unadjusted summary 
statistics. The X-axis shows the degree of overlap, and the Y-axis shows the mean difference between the observed R2 and the 
expected R2. Shaded area represents the 95% confidence interval (small on this scale). a) Performance in quantitative traits 
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with 250,000 samples in the base cohort and 5,000 samples in the target cohort; b) Performance in binary traits with 
prevalence of 0.1 and where overlap samples were ascertained for cases; c) ascertained for controls; d) or were randomly 
ascertained. 
 370 

One of the main assumptions of EraSOR is that there is no environmental stratification (σ��  � 0�. To 371 
investigate the robustness of EraSOR to model misspecification, we also performed simulations by 372 
incorporating UK Biobank samples with non-European ancestry and simulated different level of 373 
environmental stratification.  374 

Overall, EraSOR is robust against model misspecification. For example, for quantitative traits with 375 
heritability of 0.1 and an environmental stratification of 0.3, the mean Δb� is -2.7x10-3 with standard error 376 
of 6.96x10-4 when the degree of overlap is 0.141 for target cohorts with 5000 samples and bas cohorts 377 
with 250k samples. EraSOR performs equally well for quantitative traits with different heritability, 378 
different level of environmental stratifications and cohorts with different sample size and overlap (see 379 
Supplementary Fig. 3-6).  380 

Robustness with diverse ancestry data 381 

While the FST between the European and non-European samples (see Methods) is high (FST = 0.018), non-382 
European samples accounts for only ~5% of the UK Biobank population. Our results might therefore be 383 
dominated by the European samples. To understand how EraSOR performs in a more heterogenous 384 
dataset, additional simulations were performed using HapGen2 simulated genotype [22]. 385 

Using HapGen2 and the Finnish and Yoruban recombination maps from 1000 genome, we simulated 386 
180k “Finnish” and 180k “Yoruban” samples. FST estimation from PLINK between the two population is 387 
only 0.00638, much lower than the reported FST > 0.1 African and European population [23]. This 388 
discrepancy is likely a result of the fact that the only difference in the simulations is the recombination 389 
map used (Supplementary Fig. 7) by HapGen2. Nonetheless, the HapGen2 simulation generates a dataset 390 
where the genetic signal is not dominated by one single population and allows us to better understand the 391 
performance of EraSOR in the presence of stratification.  392 

Under the HapGen2 simulations, for quantitative traits with heritability 0.1, base cohort size of 250k, 393 
target cohort size of 5000, degree of overlap is 0.141 (all target samples also in the base cohort), 394 
environmental stratification 0.1, then the mean Δb� for the adjusted PRS is -1.01x10-3 (standard error = 395 
9.41x10-4); the mean Δb�  of the adjusted PRS is 0.0012 (standard error = 8.17x10-4) when the 396 
environmental stratification is 0.3, showing slight inflation. Nonetheless, when compared to the 397 
unadjusted PRS, which has mean Δb� = 0.225, the inflation of the adjusted PRS is small. 398 

One potential reason for the robustness of EraSOR may be due to the simplistic population structure of 399 
the simulated genotype. As we simulated the environmental stratification according to the population 400 
label, it is possible that by adjusting for PCs, the environmental stratification was fully adjusted for. 401 
While it is highly unlikely that environmental stratification is orthogonal to population genetic structure, 402 
we performed an additional simulation in which the population label was randomly assigned to the 403 
simulated genotype. This ensured the simulation of environmental stratification independent of population 404 
genetic structure and, thus, should not be capture by PCA adjustment (see Supplementary Methods and 405 
Supplementary Fig. 8). 406 

Even when environmental stratification is simulated independently of the population genetic structure, 407 
EraSOR adjustments are still robust to different environmental structure. For quantitative traits with 408 
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heritability of 0.1, base cohort size of 250k, target cohort size of 5,000 and environmental stratification of409 
0.3, the mean  for the adjusted PRS is -6.08x10-4 (standard error = 9.68x10-4).  410 

Figure 3. Performance of EraSOR from the HapGen2 simulation. Y-axis represents the mean difference 
between the observed R2 and the expected R2 and X-axis represents the degree of overlap. Range shows 
the 95% confidence interval. Based on simulation results, it seems like EraSOR are robust against 
different environmental stratification ( ).  

 411 

Discussion 412 

The recent advent of large-scale national and regional biobank projects, such as the UK Biobank [8],413 
Japan Biobank [9] and FinnGen [11], have provided large resources of genotype-phenotype data ideal for414 
conducting polygenic risk score analyses. However, this burgeoning generation of large data has led to an415 
increased risk of inter-cohort sample overlap or relatedness, which can lead to inflated type 1 error. Due416 
to privacy laws and practical concerns, it is usually impossible to identify overlapping samples or related417 
samples across different cohorts. However, ideally researchers would be aware of the scale of the418 
potential problem and have tools to mitigate against it. Therefore, here we reported on an investigation to419 
evaluate the impact of inter-cohort sample overlap and relatedness in PRS analyses and developed a420 
method to account for potential inter-cohort overlap and relatedness that does not require access to raw421 
genotype data from the base GWAS. 422 
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We demonstrated that inter-cohort overlap results in a significant and often substantial inflation in the 423 
observed PRS-trait association, coefficient of determination (R2) and false-positive rate. This inflation can 424 
be high even when the absolute number of overlapping individuals is small if this makes up a notable 425 
fraction of the target samples. The inflation is noticeably more severe for binary traits with a small 426 
population prevalence when all the overlapping samples are cases. Therefore, PRS results will likely be 427 
misinterpreted unless inter-cohort sample overlap and close relatedness is properly accounted for.  428 

Here, we developed the Erase Sample Overlap and Relatedness (EraSOR) method. EraSOR is designed to 429 
correct for inter-cohort sample overlap and relatedness using only summary statistics, without requiring 430 
any other information. The results of PRS analyses using EraSOR-adjusted GWAS results in the presence 431 
of sample overlap or relatedness was remarkably similar to those gained when the overlap was explicitly 432 
removed in most simulated conditions. EraSOR is also robust to mis-specification of the model, for 433 
example, when there is environmental stratification. While EraSOR does not fully adjust for the bias 434 
introduced by inter-cohort overlap for non-heritable traits when the degree of overlap is high, we 435 
recommend that researchers should not perform PRS analyses on non-heritable traits in any case [1]. 436 
EraSOR performs well for the majority of simulation scenarios tested here, which we believe reflect a 437 
large fraction of PRS studies.  438 

Theoretically, as " from the bivariate LD score regression is assumed to be the phenotypic correlation 439 
[18], we can apply EraSOR in situations where the base and target cohorts measure different phenotypes. 440 
Based on LeBlanc’s equations [16], the spurious correlations caused by inter-cohort overlap and 441 
relatedness is a function of the phenotypic correlation. While this suggests that the impact of inter-cohort 442 
overlap and relatedness are likely to be smaller for cross-trait analyses, EraSOR adjustments may still be 443 
beneficial in these scenarios. Investigation of the performance of EraSOR in cross-trait analyses should be 444 
the subject of future work. Further research is also required to understand the performance and biases of 445 
EraSOR for applications in cross-trait studies and in its potential application to GWAS meta-analyses.   446 

Our algorithm is not without any limitations. First, as EraSOR depends on the LD score intercept 447 
estimates for the adjustment, all assumptions of LD score regression also apply to EraSOR. For example, 448 
LD score regression assumes the level of genetic and environmental stratification is similar between the 449 
two cohorts [13], and if this assumption is violated,  then it is likely that the bivariate LD score equation 450 
does not hold, which will lead to bias in EraSOR estimates. Moreover, due to reliance on LD score 451 
regression estimates, EraSOR only produces sufficiently accurate adjustments for application when both 452 
base and target cohorts have sample sizes greater than 1,000 and is only consistently accurate when both 453 
cohorts are greater than 5,000 samples. Nonetheless, despite its limitations, EraSOR is an ideal tool for 454 
application in settings in which there is known overlap in relation to large target samples and for 455 
sensitivity analyses in PRS studies. If the performance of PRS using the unadjusted and EraSOR adjusted 456 
summary statistics differs substantially, then this will act as a warning to the possible presence of inter-457 
cohort overlap or close relatedness that should be adjusted for in order to obtain reliable PRS analysis 458 
results.  459 

Availability of supporting source code and requirements 460 

Project Name EraSOR 
Project Homepage https://choishingwan.gitlab.io/EraSOR/ 
Programming Language Python (version 3.0+) 
License GNU General Public License version 3.0 (GPLv3) 
Any restrictions to use by non-

academics 
None 
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Simulation Scripts https://gitlab.com/choishingwan/sample_overlap_p
aper  

Availability of supporting data and materials 461 

All code used for this paper is available at https://gitlab.com/choishingwan/sample_overlap_paper 462 
and were implemented using nextflow (version 20.10.0 build 5430) [28]. 463 

Abbreviations 464 

PRS: polygenic risk score 465 

Additional files 466 

Supplementary Table 1: Simulation results 467 

Competing interests 468 

The authors declare that they have no competing interests. 469 

Funding 470 

Medical Research Council FundRef identification ID: http://dx.doi.org/10.13039/501100000265 471 
MR/N015746/1 and the National Institute of Health (R01MH122866) to P.F.O. This report represents 472 
independent research partially funded by the National Institute for Health Research (NIHR) Biomedical 473 
Research Centre at South London and Maudsley NHS Foundation Trust and King’s College London. 474 
Research reported in this paper was supported by the Office of Research Infrastructure of the National 475 
Institutes of Health under award number S10OD026880. The content is solely the responsibility of the 476 
authors and does not necessarily represent the official views of the National Institutes of Health, NHS, the 477 
NIHR or the Department of Health. 478 

Authors’ contributions 479 

Conceptualization, S.W.C. and P.F.O.; Methodology, S.W.C., T.S.H.M., C.H. and P.F.O.; Investigation, 480 
S.W.C.; Software, S.W.C.; Supervision, P.F.O.; Funding Acquisition, P.F.O.; Writing – Original Draft, 481 
S.W.C; Writing - Review and Edition, S.W.C., T.S.H.M., C.H. and P.F.O.; 482 

Acknowledgements 483 

.CC-BY 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted December 13, 2021. ; https://doi.org/10.1101/2021.12.10.472164doi: bioRxiv preprint 

https://doi.org/10.1101/2021.12.10.472164
http://creativecommons.org/licenses/by/4.0/


17 
 

We thank the participants in the UK Biobank and the scientists involved in the construction of this 484 
resource. We thank Jonathan Coleman and Kylie Glanville for helpful discussions. This research has been 485 
conducted using the UK Biobank Resource under application 18177 (P.F.O.). This work was supported in 486 
part through the computational resources and staff expertise provided by Scientific Computing at the 487 
Icahn School of Medicine at Mount Sinai.  488 

 489 

  490 

.CC-BY 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted December 13, 2021. ; https://doi.org/10.1101/2021.12.10.472164doi: bioRxiv preprint 

https://doi.org/10.1101/2021.12.10.472164
http://creativecommons.org/licenses/by/4.0/


18 
 

Reference 491 

1. Choi SW, Mak TS-H, O’Reilly PF. Tutorial: a guide to performing polygenic risk score analyses. Nat 492 
Protoc. 2020; doi: 10.1038/s41596-020-0353-1. 493 

2. Mavaddat N, Michailidou K, Dennis J, Lush M, Fachal L, Lee A, et al.. Polygenic Risk Scores for 494 
Prediction of Breast Cancer and Breast Cancer Subtypes. Am J Hum Genet. 2019; doi: 495 
10.1016/j.ajhg.2018.11.002. 496 

3. Zhang J-P, Robinson D, Yu J, Gallego J, Fleischhacker WW, Kahn RS, et al.. Schizophrenia Polygenic 497 
Risk Score as a Predictor of Antipsychotic Efficacy in First-Episode Psychosis. Am J Psychiatry. 2019; 498 
doi: 10.1176/appi.ajp.2018.17121363. 499 

4. Natarajan P, Young R, Stitziel NO, Padmanabhan S, Baber U, Mehran R, et al.. Polygenic Risk Score 500 
Identifies Subgroup with Higher Burden of Atherosclerosis and Greater Relative Benefit from Statin 501 
Therapy in the Primary Prevention Setting. Circulation. 2017; doi: 502 
10.1161/CIRCULATIONAHA.116.024436. 503 

5. Mega JL, Stitziel NO, Smith JG, Chasman DI, Caulfield MJ, Devlin JJ, et al.. Genetic risk, coronary 504 
heart disease events, and the clinical benefit of statin therapy: an analysis of primary and secondary 505 
prevention trials. The Lancet. Elsevier; 2015; doi: 10.1016/S0140-6736(14)61730-X. 506 

6. Pain O, Hodgson K, Trubetskoy V, Ripke S, Marshe VS, Adams MJ, et al.. Antidepressant Response in 507 
Major Depressive Disorder: A Genome-wide Association Study. medRxiv. Cold Spring Harbor 508 
Laboratory Press; 2020; doi: 10.1101/2020.12.11.20245035. 509 

7. Dudbridge F. Power and Predictive Accuracy of Polygenic Risk Scores. PLOS Genet. 2013; doi: 510 
10.1371/journal.pgen.1003348. 511 

8. Sudlow C, Gallacher J, Allen N, Beral V, Burton P, Danesh J, et al.. UK Biobank: An Open Access 512 
Resource for Identifying the Causes of a Wide Range of Complex Diseases of Middle and Old Age. 513 
PLOS Med. 2015; doi: 10.1371/journal.pmed.1001779. 514 

9. Nagai A, Hirata M, Kamatani Y, Muto K, Matsuda K, Kiyohara Y, et al.. Overview of the BioBank 515 
Japan Project: Study design and profile. J Epidemiol. 2017; doi: 10.1016/j.je.2016.12.005. 516 

10. Fan C-T, Lin J-C, Lee C-H. Taiwan Biobank: a project aiming to aid Taiwan’s transition into a 517 
biomedical island. Pharmacogenomics. 2008; doi: 10.2217/14622416.9.2.235. 518 

11. FinnGen. FinnGen Documentation of R3 release.  519 

12. Sullivan PF, Agrawal A, Bulik CM, Andreassen OA, Børglum AD, Breen G, et al.. Psychiatric 520 
Genomics: An Update and an Agenda. Am J Psychiatry. 2018; doi: 10.1176/appi.ajp.2017.17030283. 521 

13. Yengo L, Sidorenko J, Kemper KE, Zheng Z, Wood AR, Weedon MN, et al.. Meta-analysis of 522 
genome-wide association studies for height and body mass index in ∼700000 individuals of European 523 
ancestry. Hum Mol Genet. 2018; doi: 10.1093/hmg/ddy271. 524 

14. Global Lipids Genetics Consortium, Willer CJ, Schmidt EM, Sengupta S, Peloso GM, Gustafsson S, 525 
et al.. Discovery and refinement of loci associated with lipid levels. Nat Genet. 2013; doi: 526 
10.1038/ng.2797. 527 

.CC-BY 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted December 13, 2021. ; https://doi.org/10.1101/2021.12.10.472164doi: bioRxiv preprint 

https://doi.org/10.1101/2021.12.10.472164
http://creativecommons.org/licenses/by/4.0/


19 
 

15. Wray NR, Yang J, Hayes BJ, Price AL, Goddard ME, Visscher PM. Pitfalls of predicting complex 528 
traits from SNPs. Nat Rev Genet. 2013; doi: 10.1038/nrg3457. 529 

16. LeBlanc M, Zuber V, Thompson WK, Andreassen OA, Frigessi A, Andreassen BK, et al.. A 530 
correction for sample overlap in genome-wide association studies in a polygenic pleiotropy-informed 531 
framework. BMC Genomics. 2018; doi: 10.1186/s12864-018-4859-7. 532 

17. Bulik-Sullivan BK, Loh P-R, Finucane HK, Ripke S, Yang J, Schizophrenia Working Group of the 533 
Psychiatric Genomics Consortium, et al.. LD Score regression distinguishes confounding from 534 
polygenicity in genome-wide association studies. Nat Genet. 2015; doi: 10.1038/ng.3211. 535 

18. Bulik-Sullivan B, Finucane HK, Anttila V, Gusev A, Day FR, Loh P-R, et al.. An atlas of genetic 536 
correlations across human diseases and traits. Nat Genet. 2015; doi: 10.1038/ng.3406. 537 

19. Choi SW. GreedyRelated: Script for greedily remove related samples.  538 

20. Falconer DS. Introduction to quantitative genetics. New York,: Ronald Press Co;  539 

21. Willer CJ, Li Y, Abecasis GR. METAL: fast and efficient meta-analysis of genomewide association 540 
scans. Bioinformatics. 2010; doi: 10.1093/bioinformatics/btq340. 541 

22. Su Z, Marchini J, Donnelly P. HAPGEN2: simulation of multiple disease SNPs. Bioinforma Oxf Engl. 542 
2011; doi: 10.1093/bioinformatics/btr341. 543 

23. Auton A, Abecasis GR, Altshuler DM, Durbin RM, Abecasis GR, Bentley DR, et al.. A global 544 
reference for human genetic variation. Nature. Nature Publishing Group; 2015; doi: 10.1038/nature15393. 545 

24. Abraham G, Qiu Y, Inouye M. FlashPCA2: principal component analysis of Biobank-scale genotype 546 
datasets. Bioinformatics. 2017; doi: 10.1093/bioinformatics/btx299. 547 

25. Chang CC, Chow CC, Tellier LC, Vattikuti S, Purcell SM, Lee JJ. Second-generation PLINK: rising 548 
to the challenge of larger and richer datasets. GigaScience. 2015; doi: 10.1186/s13742-015-0047-8. 549 

26. Choi SW, O’Reilly PF. PRSice-2: Polygenic Risk Score software for biobank-scale data. 550 
GigaScience. 2019; doi: 10.1093/gigascience/giz082. 551 

27. Euesden J, Lewis CM, O’Reilly PF. PRSice: Polygenic Risk Score software. Bioinformatics. 2015; 552 
doi: 10.1093/bioinformatics/btu848. 553 

28. Di Tommaso P, Chatzou M, Floden EW, Barja PP, Palumbo E, Notredame C. Nextflow enables 554 
reproducible computational workflows. Nat Biotechnol. 2017; doi: 10.1038/nbt.3820. 555 

 556 

  557 

.CC-BY 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted December 13, 2021. ; https://doi.org/10.1101/2021.12.10.472164doi: bioRxiv preprint 

https://doi.org/10.1101/2021.12.10.472164
http://creativecommons.org/licenses/by/4.0/


20 
 

Supplementary Materials 558 

559 

Supplementary Figure 1. False positive rate corresponding to different level of sample overlap. Non-560 

heritable phenotypes were simulated. X axis shows the degree of overlap, calculated as  and the Y-561 

axis shows the percentage of false positive (PRS P-value < 1x10-4). a) Quantitative traits with different562 
cohort sizes b) Binary traits with population prevalence of 0.1 c) Binary traits with population prevalence563 
of 0.3 d) Binary traits with population prevalence of 0.5. 564 
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 565 

Supplementary Figure 2. Effect of sample relatedness on performance of PRS for non-heritability 566 
phenotypes. The dotted line represents the significant threshold i.e., p-value < 1x10-4. Y-axis represents 567 
the -log10 transformed p-value of association between the PRS and the phenotype; the X-axis represents 568 

the degree of relatedness between the target cohort and the base cohort, calculated  where  is the 569 

number of samples in the target cohort that are first degree relatives to sample in the base cohorts. Shaded 570 
area represent the 95% confidence interval. 571 
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572 

Supplementary Figure 3. Comparing the performance of PRS using the EraSOR adjusted summary573 
statistics and the unadjusted summary statistics for quantitative trait without population stratification. The574 
X-axis shows the degree of overlap, and the Y-axis shows the mean difference between the observed R2575 
and the expected R2. Mean difference in R2 = 0 is represented by the black dotted line. Each row576 
corresponds to different base cohort sizes, each column corresponds to different target cohort size and577 
different colors correspond to different trait heritability. Performance of the adjusted PRS is indicated578 
with triangle and performance of the unadjusted PRS is indicated with circle. Shaded area represents the579 
95% confidence interval, which tends to be small. 580 
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Supplementary Figure 4. Comparing the performance of PRS using the EraSOR adjusted summary582 
statistics and the unadjusted summary statistics for quantitative trait when there are population583 
stratifications. Samples from non-European ancestries were included in this analysis. Different level of584 
environmental stratifications was simulated: a) no environmental stratification b) environmental585 
stratification = 0.3.  Shaded area represents the 95% confidence interval, with different colours represent586 
different simulated heritability. Results of the unadjusted PRS were represented with circle, while results587 
of the adjusted PRS were represented with triangle.  588 

589 

Supplementary Figure 5. Comparing the performance of PRS using the EraSOR adjusted summary590 
statistics and the unadjusted summary statistics for binary trait analyses. The X-axis shows the degree of591 
overlap, and the Y-axis shows the mean difference between the observed R2 and the expected R2. Mean592 
difference in R2 = 0 is represented by the black dotted line. Each row corresponds to different trait593 
heritability, each column corresponds to different population prevalence and colors were used to represent594 
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different ascertainment of the overlapped samples. Performance of the adjusted PRS is indicated with595 
triangle and performance of the unadjusted PRS is indicated with circle. Shaded area represents the 95%596 
confidence interval, which tends to be small.  597 

 598 

Supplementary Figure 6. Performance of EraSOR when adjusting for related samples between the target 599 
cohort and the base cohort. The X-axis shows the degree of overlap, and the Y-axis shows the mean 600 
difference between the observed R2 and the expected R2. Shaded areas represent the 95% confidence 601 
interval. Different colours correspond to the amount of shared environmental contribution, and the shapes 602 
represents the heritability. Performance of EraSOR adjusted PRS are represented with the dotted line, and 603 
the performance of the unadjusted PRS are represented with the solid line.  604 

 605 

 606 

Supplementary Figure 7. Principle Component plot for HapGen2 simulated data. Samples from the two 607 
populations were clearly separated by PC1, whereas PC2 does not contribute to the separation, suggesting 608 
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that the simulated population structure might be much simpler than what would otherwise observe in real 609 
data.  610 

611 
 Supplementary Figure 8. Performance of EraSOR adjusted PRS (triangle) against unadjusted PRS 612 
(circle) in HapGen2 simulations where phenotypes were stratified with agnostic environmental 613 
stratifications. The X-axis shows the degree of overlap, and the Y-axis shows the mean difference 614 
between the observed R2 and the expected R2. Shaded area shows the 95% confidence interval. Our result 615 
suggest EraSOR are robust against different environmental stratification ( ) even when they are agnostic 616 
to the principal components.  617 

Supplementary Methods 618 

Simulate environmental stratifications agnostic to population structures 619 

Similar to the main HapGen2 simulation, we used HapGen2 [22] to simulate 180k Yoruban and 180k620 
Finnish samples using recombination maps from the 1000 Genomes Project [23]. 500 “Finnish” samples621 
and 500 “Yoruban” samples were selected to calculate the LD scores using LDSC (v1.0.1) and flashPCA622 

(v2.0) [24] was used to calculate the first 15 PCs of the data.  and  were randomly623 

assigned to each individual, disregarding their simulated population.  624 

The entire set of simulations were repeated 25 times.  625 
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