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Abstract

Background

Polygenic risk score (PRS) analyses are now routinely applied in biomedical research, with great hope
that they will aid in our understanding of disease aetiology and contribute to personalized medicine. The
continued growth of multi-cohort genome-wide association studies (GWASs) and large-scale biobank
projects has provided researchers with a wealth of GWAS summary statistics and individual-level data
suitable for performing PRS analyses. However, as the size of these studies increase, the risk of inter-
cohort sample overlap and close relatedness increases. Ideally sample overlap would be identified and
removed directly, but this is typicaly not possible due to privacy laws or consent agreements. This
sample overlap, whether known or not, isamajor problem in PRS anal yses because it can lead to inflation
of type 1 error and, thus, erroneous conclusions in published work.

Results

Here, for the first time, we report the scale of the sample overlap problem for PRS analyses by generating
known sample overlap across sub-samples of the UK Biobank data, which we then use to produce GWAS
and target data to mimic the effects of inter-cohort sample overlap. We demonstrate that inter-cohort
overlap results in a significant and often substantial inflation in the observed PRS-trait association,
coefficient of determination (R?) and false-positive rate. This inflation can be high even when the absolute
number of overlapping individuals is small if this makes up a notable fraction of the target sample. We
develop and introduce EraSOR (Erase Sample Overlap and Relatedness), a software for adjusting
inflation in PRS prediction and association statistics in the presence of sample overlap or close
relatedness between the GWAS and target samples. A key component of the EraSOR approach is
inference of the degree of sample overlap from the intercept of a bivariate LD score regression applied to
the GWAS and target data, making it powered in settings where both have sample sizes over 1,000
individuals. Through extensive benchmarking using UK Biobank and HapGen2 simulated genotype-
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phenotype data, we demonstrate that PRSs calculated using EraSOR-adjusted GWAS summary statistics
are robust to inter-cohort overlap in awide range of realistic scenarios and are even robust to high levels
of residual genetic and environmental stratification.

Conclusion

The results of al PRS anayses for which sample overlap cannot be definitively ruled out should be
considered with caution given high type 1 error observed in the presence of even low overlap between
base and target cohorts. Given the strong performance of EraSOR in eliminating inflation caused by
sample overlap in PRS studies with large (>5k) target samples, we recommend that EraSOR be used in al
future such PRS studies to mitigate the potential effects of inter-cohort overlap and close relatedness.

| ntroduction

Polygenic risk scores (PRSs) are proxies of individuals genetic liability to atrait or disease [1] that have
been applied in numerous research settings, including patient stratification [2] and investigation of
treatment response [3-6]. The power of PRS analyses is dependent on the heritability and polygenicity of
the trait, the power of the genome wide association study (GWAYS) used to derive the PRS, and the size of
the target data sample [7]. The recent surge of high quality genetic and phenotypic data from large-scale
biobank projects, such as the UK Biobank [8], BioBank Japan [9], Taiwan Biobank [10], and FinnGen
[11], as well as GWAS resources from large consortia such as the Psychiatric Genomic Consortium
(PGC) [12], GIANT [13] and the Globa Lipids Genetics Consortium (GLGC) [14] have provided
unprecedented opportunity to perform highly-powered PRS analyses.

However, expansion in data size does not come without a cost in this setting: as sample sizes increase,
there is greater risk that samples are recruited into multiple cohorts or that entire cohorts are included in
multiple consortia. For PRS analyses, which typically test for association between PRS and a trait(s) or
outcome of interest, overlapping samples between the GWAS and target data samples can result in
spurious inflation of the coefficient of determination (R?) and association P-values, leading to false-
positive and exaggerated findings [15]. Overlapping samples should ideally be removed from either the
GWAS or target data to avoid misinterpretation of results, but participant privacy agreements usualy
limit access to raw genotyping data, meaning that thisis generally not an option.

Here we first evaluate the extent to which different degrees of sample overlap and relatedness between
GWAS and target samples generates biased PRS-trait associations. Next, to overcome the sample overlap
problem, we develop and introduce EraSOR (Erase Sample Overlap and Relatedness), a python software
that adjusts GWAS summary statistics [1] to correct for inflation of PRS-trait association results caused
by overlapping samples between the GWAS and target samples. Through extensive simulations using the
UK Biobank genetic data [8], we demonstrate that EraSOR can robustly adjust for inflation in test
statistics caused by various degrees of overlapping samples, level of relatedness, or ascertainment
schemes in case/control settings. We propose that EraSOR will increase the accuracy of results in all
future PRS studies with known sample overlap and will act as a sensitivity tool for assessing the
reliability of results in PRS studies with unknown but potential sample overlap. EraSOR is an open-
source software and is freely available at https://gitlab.com/choishingwan/ErasSOR.
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Methods

EraSOR framework

Consider two GWASk ={1, 2} performed on the same continuous outcome Y. The effect size of the g™
SNPin study k (Bxg) is estimated using a regression model

Y = Qg + PrgXig + Erg#(1)

where X, isthe standardized genotype vector for SNP g in study k, and &4 is the random error assumed
to be independent between studies. Under the null model of no contribution of SNP g to the trait, B, =
0, and assuming no sample overlap, then f; ;, and f3,, estimated from the two GWASs should be
independent, i.e., cor(By4, B2,) = 0. However, when there are overlapping samples between the two

studies, then a correlation isinduced between the regression coefficients, such that cor (5,4, B2, ) # 0.
From LeBlanc et a [16], this correlation can be approximated as

cor(ﬁlg, ﬁzg) ~ ———=cor (Y, V,)#(2)

for quantitative traits, where cor(Y;, Y, ) represents the correl ation between the traits; N, isthe number of
overlapping samples; and N;, N, are the sample sizes of studies 1 and 2, respectively [16]. Since we are
considering only a single phenotype here, cor(Y;,Y,) isequal to 1, and so we have:

Cor(ﬁlg’ 182g) ~ #(3)

which captures correlations only due to sample overlap mdependent of the true causal effect. Assuming
sample overlap does not affects the standard error estimates, LeBlanc et a [16] proposed that when the
number of overlapping samples (N) is known, one can adjust the joint distribution of the summary
statistics (z-scores) of thetwo GWASs as:

Zge-corr = C~*°2#(4)

where zis a 2-by-M matrix containing z-scores estimated in each study, M is the number of SNPs
common to both studies, and C isthe 2x2 matrix with ones on its diagonal and cor(fy4, B24) asits off-
diagonal elements. While this adjustment is effective [16], it requires prior knowledge of N, whichis
typicaly unknown in PRS studies However, we propose utilizing univariate and bivariate LD score

regression [17,18] to estlmateJ_ and thus cor (4, B,4) from Eq. 3 asfollows:

Bivariate LD score regression istypically used to estimate the genetic correlation between two traits using
the GWAS corresponding to each, and is defined in [13] by the following equation:

,/N N,p N, N2Fgro?
]E[Z]_]Zz}] = 2 gl + ,—CP + ngST N]_Nz + ,—Nj';w\/:s #(5)

where [; isthe LD score of SNP j; p, isthe genetic covariance between thetwo traits; p = pg + pe; pe
is the non-genetic covariance; Fsr and o, are the genetic and environmental stratification respectively.
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LDSC assumes two underlying popul ations within each cohort, and that the levels of genetic and
environmental stratification are similar in the two cohorts, e.g. FS(Tl) ~ FS(TZ) = Fgr and gg; = 05, = 0
[13]. Since we are considering only asingle phenotype here, p isequal to 1, and so we have:
2 2
If,VCN + ngSZT NN, + Retsros #(6)

NyiNyp
Elz:;z,;] = J—M “l +m JNIN,
We wish to solve for N and hence apply Eq. 3 to generate a de-correlated base GWAS that does not lead
to inflated PRS-trait associations due to sample overlap. To do this, we will utilize the univariate LD
score regression model. The univariate LD score regression equation can be derived as a specia case of
the bivariate LD score equation by assuming that the two outcomes and cohorts are identical [13,17],
leading to:

NR?
E[x}] = =l + 1+ NFsp(h*Fsy + 02)#(7)

Univariate LD score regression performs aregression of observed x? on l;, with the effect size estimate of

l; corresponding to a scaled estimate of heritability (E?) and with the estimated intercept term, [, as
follows:

-~

L, =1+ NiFST(ELEFST + 0_%)
If we assume that the environmental stratification cré = 0, then we have:

L = 1+ NiFsr (2 Fp + 03)
I, =1+ N;F&h?
=
F2. =X —#(8)
ST Nlhlz

Since we can estimate F&- using both the base and target data, we then take the weighted mean estimate
of both:

- 1 2 T -1
F2. = Z L #(9
ST Ny + Ny Lajq h? ©)

The intercept term of the bivariate LD score regression is:

- N N2Fo.0?%
Iy = ——+ pyF& N1 N, + —=

N1iN; VNN,

Substituting Eq. 9 and 6¢ = 0 into Eq. 10, we have:

#(10)
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- N, Pg\/ N;N, Z

I —
b N].NZ N1+N2

122 Since we can estimate the genetic covariate (p,), the trait heritability hAl2 and the intercepts from the
123 univariate and bivariate LD score regression analyses of the GWAS and target data, we can obtain an

124 estimate of m Substituting this estimate into Eq. 3 will derive an estimate of cor(f,, f,,) that can

125  be used to produce de-correlated GWAS z-statistics via Eq.4. EraSOR automatically performs the
126  bivariate LD score and univariate LD score regression analyses on the GWAS summary statistics
127  generated from the base and target data. To test the performance of EraSOR, including its robustness to
128  the modelling assumptions (e.g., assuming c2 = 0), we performed a series of extensive simulations.

129 UK Biobank genotype data

130 The UK Biobank is a prospective cohort study of around 500,000 individuals recruited across the United
131  Kingdom during 2006-2010. The genetic data from UK Biobank comprises 488,377 samples and 805,426
132  SNPs. Standard quality control (QC) procedures were performed, removing any SNPs with minor alele
133  frequency < 0.01, genotype missingness > 0.02 and with a Hardy Weinberg Equilibrium Test P-value <
134 1x10®. Sampleswith high levels of missingness or heterozygosity, with mismatching genetic-inferred and
135  self-reported sex, or with aneuploidy of the sex chromosomes were removed as recommended by the UK
136  Biobank data processing team. Next, 4-means clustering was applied to the first two Principal
137  Components (PCs) of the genotype data and those individuals in the (largest) cluster corresponding to
138  European ancestry were retained for the primary analyses because polygenic risk scores have been shown
139  to have low portability between ancestries [14] motivating ancestry-matched PRS studies until cross-
140  ancestry PRS methods are developed, which our main results correspond to (see section Samples with
141  population stratification below, which describes analyses that we aso performed on individuals of al
142  ancestriesin the UK Biobank). A greedy algorithm [19] was then used to remove related individuals, with
143  kinship coefficient > 0.044, in a way that maximized sample retention. In our simulations that investigate
144  theeffect of related individualsin the GWAS and target data, we instead randomly retain one first degree
145  relative (defined as kinship coefficient = 0.177 and < 0.354) of a randomly sampled individua in the
146 GWAS data. Altogether, we retain 557,369 SNPs, 387,392 individuals and 23,429 of their first-degree
147  relatives for the set of analyses performed. For the simulations of population stratified samples, we
148  extracted samples 10 standard deviations from the centroid of the European cluster and defined these as
149  “non-European” samples. Quality control procedures were repeated using the parameters described above
150  after combining these non-European samples with the European samples, resulting in 387,365 samples of
151  European ancestry and 21,779 individuals of non-European ancestry. Code used to perform the QC and
152  corresponding documentation are available at https://choishingwan.gitlab.io/ukb-
153 administration/admin/master _generation/. This research has been conducted using the UK Biobank
154  Resource under application 18177 (Dr O’ Reilly).

155
156
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160 Phenotype ssimulation

161  Quantitative Traits without population structure

162  Quantitative phenotypes () with heritability (h?) of 0, 0.1, and 0.5 were simulated using the UK Biobank
163  genotype data (post QC; see above) as input. Quantitative traits were simulated as:

Y = (a+XB + &)6#(12)

164 where X is the standardized genotype matrix corresponding to all samples and 10,000 randomly
165  selected SNPs with effect size 5 following a standard normal distribution. X were adjusted such that it
166  has mean 0 and variance of h? and & represents the random error, which follows e~N(0,v1 — h2). To
167  ensure EraSOR works for distribution that are not only standard normal, we included o as the phenatypic
168  mean randomly sampled from a normal distribution with mean 0 and standard deviation of 1, and 6 as the

169  phenotypic variable randomly sampled from 1 to 100 to simulate phenotypes that does not follow the
170  standard normal distribution.

171  To model polygenic risk score analyses with sample overlap, we randomly selected either 120k or 250k
172  individuals from the sample of 387,392 individuals available to us (see above) to generate two different
173  sizes of base GWAS data. Next, we randomly sampled 1,000, 5,000 or 10,000 individuals from the
174  remaining sample to act as three different sizes of target data, of which 0%, 5%, 10%, 50% or 100% were
175 randomly selected from the base data sample so that there was a known degree of sample overlap between
176  the base and target data. In addition, we generated an “overlap-free” base cohort in which the overlapping
177  samples were removed from the base cohort so that we could compare the result of applying EraSOR
178  against results of physically removing overlapped samples from the base cohort.

179 In order to search a feasible parameter space in sufficient depth, we only simulate phenotype with
180 heritability of 0.5, with a base cohort of 250k and target cohort of 5,000; only simulate base cohort with
181 120k samples when the phenotypic heritability is < 0.1 and target cohort has 5,000 samples; and only
182  simulate target cohort with 1,000 and 10k samples when the base cohort contain 250k samples and the
183  phenotypic heritability is< 0.1. The entire set of simulations were repeated 100 times.

184  Binary Trait

185 Binary traits were simulated under the liability threshold model [20], simulating a normally distributed
186 liability using Eqg. 12 with o = 0, & = 1, and cases defined as samples with disease liability higher than
187  liability thresholds of 0.9, 0.7 and 0.5, corresponding to population prevalences of 0.1, 0.3 and 0.5,
188  respectively. To limit the complexity of our simulations, the sample prevalence of our cohorts follows the
189  population prevalence.

190 In the binary trait setting, overlap can be ascertained such that the overlap is among cases, or among
191  controls, or among both. To investigate the effect of case-only or control-only overlap, we randomly
192 selected 120k effective samples (effective samples defined as Nesr = 4/(1/Negges + 1/ Neonerots) [21])
193  asthe base cohort, and then randomly selected 5,000 effective samples as the target cohort, where 0%,
194 5%, 10%, 30% or 50% of the cases or of the controls in the target cohort were sampled from the base
195 cohort. We also performed simulations where the overlapping samples were selected at random among
196  casesand controls. An “overlap-free” base cohort was generated with al overlapping samples removed.
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197  In order to search afeasible parameter space in sufficient depth, we only vary the trait heritability when
198 the population prevalence is 0.1, and only vary the population prevalence when the trait heritability is <
199  0.1. These simulations were repeated 100 times.

200 Related samples

201  Spurious inflation in PRS analysis test statistics may also be observed when there are closely related
202  individuals between the base and target cohorts. To investigate the effects of relatedness on PRS resullts,
203  we repeated the quantitative trait simulations with amodified Eq. 12:

Y = (a+XB + 6 + £)5#(13)

204  where 6 is the shared environment between the related individuals and follows a random normal
205  distribution with mean 0 and variance 63 € (0, 0.3,0.6) if and only if 63 + h? < 1, with each related pair
206  of individuals having the same 8 value. ¢ represents a combination of non-shared environment and

207  random error, which follows e~N (0, /1 —h?— 05). To model the inter-cohort relatedness, we first

208  sdlect al individuals with a first-degree relative in the UK Biobank (kinship coefficient > 0.177 and <
209  0.354), of which there are 23,429 individuals, and then randomly select additional samples who do not
210 have any first-degree relatives to form a base cohort containing 250k samples. We then generate target
211  cohorts containing 5,000 samples, with either 0%, 30%, 60% or 100% of the target samples being first-
212  degreerelatives of samples in the base cohort. We a so generated a reference cohort from the base cohort
213  where al the related samples in the target cohort were replaced by unrelated individuals for
214  benchmarking the performance of EraSOR. The entire set of simulations were repeated 100 times.

215 Sampleswith population stratification

216  An assumption of the EraSOR algorithm is that the environmental stratification (o2) is zero. When
2 ()'2 . . .

217  environmenta stratification is present, % from Eq. 10 is no longer O and a bias proportional to the

218  environmental dtratification and the genetic dtratification (Fgr) may be introduced. We devised two

219  strategies for simulating data with both environmental and genetic stratification to test the sensitivity of

220  EraSOR to deviations of each from 0. In the first, we partitioned the UK Biobank into European and non-

221  European ancestries, while in the second we used the simulation software HapGen2 [22].

222  Inthefirst simulation strategy, the UK Biobank samples were divided into European and non-European
223  ancestries based on 4-mean clustering on PCl1 and PC2 (see above). Quantitative traits with
224 environmental stratification were then simulated as:

Y = (a+ XB+S + €)5#(12)

225 with the environmental stratification term (S) defined as

2

Og

~ |5 Non — European Ancestry
S=

2

Os

> European Ancestry
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226 where 62 can take a value of 0, 0.3 or 0.9 if and only if 62 + h? < 1, and € represents the residual
_h2_ 2
227  term, which follows e~N (0, var(XB + S — 2cov(XB,S)) 1h§+0;’5> , with cov(XB,S) being the
S

228  covariance between Xf and S. To investigate the effect of sample overlap in the presence of
229  environmenta and genetic stratification, we randomly selected either 120k or 250k individuals from the
230 sample of 409,144 individuals available to us (see above) to generate two different sizes of base GWAS
231  data. Next, we randomly sampled 5,000 or 10,000 individuals from the remaining sample to act as two
232  different sizes of target data, of which 0%, 10%, 50% or 100% were randomly selected from the base data
233  sample. To ensure that the genetic and environmental stratification is the same within the base and target
234  data, the same ancestry ratio was maintained in all simulated data sets, matching the ratio in the full data
235  set (~5% non-European ancestry). In addition, we generated an “overlap-free” base cohort in which the
236  overlapping samples were remove from the base cohort to alow benchmarking the performance of
237  EraSOR. Theentire set of simulations were repeated 25 times.

238  Given that only ~5% of the UK biobank samples correspond to individuals of non-European ancestry, the
239  effect of genetics and environmenta stratification may be limited. Thus, we developed a second strategy
240  to test their effects in which we used HapGen2 [22] to simulate 180k Y oruban and 180k Finnish samples
241  using recombination maps from the 1000 Genomes Project [23]. 500 “Finnish” samples and 500
242  “Yoruban” samples were selected to calculate the LD scores using LDSC (v1.0.1) and flashPCA (v2.0)
243  [24] was used to calculate the first 15 PCs of the data.

244  We repeated the population stratification simulation using the HapGen2 simulated genotype data, with S
245  represented now segregate according to the simulated population. The entire set of simulations were
246  repeated 25 times.

247  Genome Wide Association Study and Polygenic Score Analysis

248  Genome wide association analyses (GWAS) were performed on the base and target cohorts using PLINK
249 2.0 (version 2021-08-04) [25] with the --gIm function. As binary traits were only simulated for the
250  European ancestry only analyses, where population structure was not simulated, and considering the
251  computational cost of including covariates in the logistic regression, we did not include PCs in our binary
252  trait analysis. On the other hand, quantitative traits were simulated in all scenarios, some of which are
253  population stratified. Thus, we included 15 PCs as a covariate for our quantitative triat analyses. The
254  resulting summary statistics were then provided to EraSOR to generate the adjusted summary statistics
255  using European LD scores [17] calculated from 1,000 Genomes Project Phase 3 data [23] or the LD
256  scores caculated from a subset of the simulated genotypes (HapGen2 simulation) using LDSC (v1.0.1)
257 [17]. PRS anayses using the adjusted, unadjusted, and the “overlap-free” summary statistics were
258  performed using PRSice-2 (v2.3.5) [26] with the default settings. The R? and P-value of association of the
259  PRS-rait tests were reported.

260 Strategy for Benchmarking

261  Toinvestigate the level of spuriousinflation caused by inter-cohort rel atedness and overlapped samples,
262  wefirst established abaseline PRS R?, cal culated using base cohorts without overlapped samples. The
263  bias can then be measured as the observed PRS R? minuses the baseline PRS R? (AR?), given the same
264  phenotype and cohort sizes. For non-heritable traits, we also measure the level of false-positive, defined
265  asany PRSwith P-value < 1x10™[27].
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266  On the other hand, to compare the performance of EraSOR with the optimal strategy of directly removing
267  overlapping samples— an option that istypically not available — we calculate PRSs: (i) using summary
268  statistics adjusted by EraSOR (“ adjusted PRS”) and (ii) using summary statistics generated from a base
269  cohort with all overlapping and/or related samples removed (“overlap-free PRS’). We present the

270  performance of EraSOR as the PRS-trait association R? of the adjusted PRS minuses the R? of the

271  overlap-free PRS (AR?). If EraSOR has successfully corrected for the sample overlap, then AR? should
272  beclosetoO.

273 Results

274 Inflation caused by overlap

275  The presence of overlapping samples between the base and target data sets is known to cause inflated
276  association between polygenic risk scores (PRS) and phenotypes [15], but the extent and characteristics of
277  the problem have not been described. Here, we performed extensive simulations using the UK Biobank
278  [8] genotype data to investigate the inflation caused by different levels and types of inter-cohort sample
279  overlap in relation to traits simulated with varying heritability and prevalence (see Methods). Base and

280 target cohorts were generated with varying degrees of sample overlap, measured as \/NNLN where N, is

14¥2
281  the number of overlapping samples and N, and N, are the sample sizes of the base and target cohort,
282  respectively. PRS analyses were conducted using the standard clumping+thresholding (C+T) PRS

283  caculation method [1], implemented in PRSce [26].

284  Wefirst estimated the fal se-positive rate induced by sample overlap by simulating non-heritable traits and
285  recording the fraction of significant PRS-trait association (Supplementary Fig. 1). Highly significant
286  associations between PRS and non-heritable phenotypes were observed when even limited inter-cohort
287  sample overlap was present (Fig. 1). Specifically, for non-heritable quantitative traits, the inflation in
288  association (e.g. p-value of association) is highly positively correlated with the degree of overlap (Pearson
289  Correlation coefficient (y) = 0.96, P-value < 2.2x10™°). For example, when there is a base cohort of 250k
290 samples, target cohort of 5,000 samples and 250 overlapping samples (5% of target sample; degree of
291  overlap = 0.0071) the fase positive rate is 17%, while this increases to 94% when there are 500
292  overlapping samples (10% of target sample; degree of overlap = 0.014) (Fig 1a).
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Figure 1. Effect of sample overlap on performance of PRS for non-heritable traits. The dotted line represents the
significance threshold (P-value = 1x10™) for high-resolution testing in PRSice [27]. The X-axis shows the degree of overlap,
calculated as——— and the Y -axis shows the -log;, transformed p-value of association between the PRS and the simulated
phenotype. Shaded area represents the 95% confidence interval. However, as the confidence interval is small, it is difficult
to observe on the scale of these plots a) Quarntitative traits with different cohort sizes. b) Binary traits with population
prevalence of 0.1 ¢) Binary traits with population prevalence of 0.3 d) Binary traits with population prevalence of 0.5

294

295 In the binary trait setting, sample overlap may be among cases only, controls only, or be among both.
296  These alternatives were investigated by first simulating binary traits with different population prevalence
297  using the liability threshold model [20]. Cohorts with effective sample sizes of 120k in the base data and
298 5000 in the target data were generated with different degrees and scenarios of sample overlap. We
299  observed extreme inflation associated with case-only overlap when population prevalence is lower than
300 0.5. For abinary trait with population prevalence 0.1, a false positive rate of 43% is observed when the
301  degree of overlap is 0.001, which corresponds to 5% of the cases from the target cohort also present in the
302  base cohort (Fig 1b). When the degree of sample overlap is doubled (~0.002), the false positive rate is
303  100%. The inflation in PRS-trait association is not as sensitive to control-only sample overlap when the
304  population prevalence is small. We observe a false positive rate of ~47% when the degree of overlap is as
305  high as 0.092, which corresponds to 50% of the controls from the target cohort also present in the base
306 cohort (Fig 1b). This discrepancy between the effect of case and control overlap is a result of the
307  differential contribution of cases and controls to the PRS-rait association in our simulations. Cases are
308 sampled from the extreme upper tail of the liability distribution a a frequency corresponding to the
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309 disease prevaence, which is typically low: this gives each case greater weight in the calculation of the
310 PRSHtrait association and, thus, an overlapping case will generate greater inflation than an overlapping
311  control. This was consistent with our simulation results (Fig 1c, 1d), where the inflation in AR? caused by
312  overlapping cases decreases as population prevalence increases (y = —0.068, P-value = 4.70x10°). The
313  reverse relationship between inflation and population prevalence was observed for control-only overlap
314 (y =0.20, p-value = 3.90x10*). For a population prevalence of 0.5, case-only and control-only overlap
315 havethe sameimpact on the inflation (Fig 1d).

316  Given that complete overlap of individualsin the base and target data can generate PRS-trait associations
317 that are severely inflated, closely related individuals independently enrolled into the base and target
318  cohorts may induce some inflation considering their shared genetics and environment. Here we tested the
319 effect of relatedness between the base and target cohorts on PRS-trait associations in non-heritable traits
320 in asimilar way to that for sample overlap (see Methods), where inter-cohort relatedness is defined as

321 J% where N,. is the number of samples in the target cohort that are first degree relatives with samples
322  inthe base cohort. A false positive rate of 76% is observed when the inter-cohort relatedness is 0.085 and
323  the shared environment explains 30% of the trait variance (250k base, 5k target, 60% of target samples
324  have 1% degree relatives in the base), while a false positive rate of 84% is observed with an inter-cohort
325 relatedness of 0.042 for traits with shared environment contribution of 60% (30% related samples). See
326  Supplementary Fig. 2 for full results regarding the effects of inter-cohort relatedness on PRSrait
327  association inflation.

328 Inthe next section we extend these investigations to consider the effects of sample overlap on PRS-trait
329  associations on heritable traits, but we present these findings in conjunction with results based on the
330  application of our method EraSOR, which is designed to resolve the problem.

331 Peformance of EraSOR

332  Totackle the problem of inflation caused by inter-cohort overlap and relatedness, we developed the Erase
333  Sample Overlap and Relatedness (EraSOR) method. Using GWAS summary statistics generated from the
334  base and target cohorts, EraSOR implements univariate and bivariate LD score regression [17,18] to
335  estimate several parameters that are then used to perform a de-correlation calculation of the base GWAS
336 test statistics (see Methods). These adjusted base GWAS summary statistics can then be used for
337  downstream PRS analyses, with sample overlap or relatedness corrected for.

338  Inorder to evaluate the performance of EraSOR, we conducted an extensive set of simulations covering a
339  range of scenarios of inter-cohort sample overlap and rel atedness (see below and Methods).

340 Simulations using UK Biobank data

341  We observed that for both quantitative and binary traits, EraSOR amost entirely eliminates the inflation
342  caused by inter-cohort overlap and relatedness in our simulations based on UK Biobank (European
343  ancestry base and target samples) data (Figure 2). These simulations modelled a range of scenarios that
344  varied trait heritability, prevaence, degree of overlap and combinations of overlap among cases and
345  controls. For example, simulating quantitative traits with heritability 0.1, a base cohort of 250k samples,
346  target cohort of 5000 samples, and degree of overlap 0.141 — in which all samples in the target data are
347  dso in the base GWAS — the mean AR? is -3.76x10™ (standard error: 3.03x10™). Left unadjusted, the
348  mean AR? is approximately 0.35 (standard error 0.00125), suggesting that EraSOR has removed the
349 inflation introduced by sample overlap. A similar pattern of complete remova of the effects of sample
350 overlap is observed for the quantitative traits across the full range of heritability and cohort sample sizes
351  tested (Figure 24d).
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352  EraSOR also performs extremely well for binary traits (Figure 2b, 2c, 2d). In binary traits with heritability
353 0.1, population prevalence 0.1, a base cohort of with 120k effective samples, and a target cohort of 5,000
354  effective samples, the mean for the adjusted PRS in relation to case-only overlap is 1.61x10™*
355  (standard error = 2.11x10™) (Fig 2b) and the mean for the adjusted PRS in relation to control-only
356  overlap is-3.77x10” (standard error = 1.98x10™) (Fig 2c). On the other hand, when unadjusted, the mean
357 in relation to case only overlap is as high as 0.161 (standard error = 8.93x10™), whereas the mean
358 i$6.28x10° (standard error = 2.59x10) in relation to control-only overlap.

359  While EraSOR effectively eliminates inflation caused by inter-cohort overlap in all simulation scenarios
360 tested in relation to heritable traits, false-positive results are still observed after EraSOR adjustment in
361 non-heritable traits when there is a large degree of overlap (> 0.29). For non-heritable quantitative traits
362  with base cohorts of 120k samples and target cohorts of 10k samples, if all target samples are aso present
363 in the base cohort, then we observe a false-positive rate of 87%, with a mean of 0.0028 (standard
364  error = 1.14x10™). Thisis likely caused by the fact that a key component of the mathematics underlying
365 the EraSOR algorithm (described by Eq. 11 in Methods) includes an estimate of h? in its denominator.
366  Therfore, when the trait is non-heritable, Eq 9 may be unstable and lead to an error in the ErasOR
367  adjustment. However, we recommend that polygenic risk score analyses should not be performed on traits
368  with estimated h? < 0.05 (see [1]) and, thus, in sufficiently powered applications of PRS, EraSOR should
369  have strong performance.
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Figure 2. Comparing the performance of the PRS using the EraSOR adjusted summary statistics and the unadjusted summary
statistics. The X-axis shows the degree of overlap, and the Y -axis shows the mean difference between the observed R? and the
expected R?. Shaded area represents the 95% confidence interval (small on this scale). a) Performance in quantitative traits
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with 250,000 samples in the base cohort and 5,000 samples in the target cohort; b) Performance in binary traits with
prevalence of 0.1 and where overlap samples were ascertained for cases; c) ascertained for controls; d) or were randomly
ascertained.

370

371  One of the main assumptions of EraSOR is that there is no environmental stratification (62 = 0). To
372  investigate the robustness of EraSOR to model misspecification, we also performed simulations by
373 incorporating UK Biobank samples with non-European ancestry and simulated different level of
374  environmenta stratification.

375 Overdl, EraSOR is robust against model misspecification. For example, for quantitative traits with
376  heritability of 0.1 and an environmental stratification of 0.3, the mean AR? is-2.7x10"® with standard error
377  of 6.96x10" when the degree of overlap is 0.141 for target cohorts with 5000 samples and bas cohorts
378  with 250k samples. EraSOR performs equally well for quantitative traits with different heritability,
379  different level of environmental stratifications and cohorts with different sample size and overlap (see
380  Supplementary Fig. 3-6).

381 Robustnesswith diverse ancestry data

382  While the Fst between the European and non-European samples (see Methods) is high (Fst = 0.018), non-
383  European samples accounts for only ~5% of the UK Biobank population. Our results might therefore be
384  dominated by the European samples. To understand how EraSOR performs in a more heterogenous
385  dataset, additional simulations were performed using HapGen2 simulated genotype [22].

386  Using HapGen2 and the Finnish and Yoruban recombination maps from 1000 genome, we simulated
387 180k “Finnish” and 180k “Y oruban” samples. Fsr estimation from PLINK between the two population is
388 only 0.00638, much lower than the reported Fsr > 0.1 African and European population [23]. This
389  discrepancy is likely a result of the fact that the only difference in the simulations is the recombination
390  map used (Supplementary Fig. 7) by HapGen2. Nonetheless, the HapGen2 simulation generates a dataset
391  where the genetic signal is not dominated by one single population and allows us to better understand the
392  performance of EraSOR in the presence of stratification.

393  Under the HapGen2 simulations, for quantitative traits with heritability 0.1, base cohort size of 250Kk,
394  target cohort size of 5000, degree of overlap is 0.141 (all target samples aso in the base cohort),
395  environmental stratification 0.1, then the mean AR? for the adjusted PRS is -1.01x10°® (standard error =
396 9.41x107); the mean AR? of the adjusted PRS is 0.0012 (standard error = 8.17x10™) when the
397  environmental stratification is 0.3, showing dlight inflation. Nonetheless, when compared to the
398  unadjusted PRS, which has mean AR? = 0.225, the inflation of the adjusted PRSis small.

399  One potential reason for the robustness of EraSOR may be due to the simplistic population structure of
400 the simulated genotype. As we simulated the environmental stratification according to the population
401 label, it is possible that by adjusting for PCs, the environmenta stratification was fully adjusted for.
402  While it is highly unlikely that environmental stratification is orthogonal to population genetic structure,
403  we performed an additional simulation in which the population label was randomly assigned to the
404  simulated genotype. This ensured the simulation of environmental stratification independent of population
405  genetic structure and, thus, should not be capture by PCA adjustment (see Supplementary Methods and
406  Supplementary Fig. 8).

407  Even when environmental stratification is simulated independently of the population genetic structure,
408 EraSOR adjustments are still robust to different environmental structure. For quantitative traits with
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409  heritability of 0.1, base cohort size of 250k, target cohort size of 5,000 and environmental stratification of
410 0.3,themean  for the adjusted PRSis-6.08x10™ (standard error = 9.68x10).
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Figure 3. Performance of EraSOR from the HapGen2 simulation. Y -axis represents the mean difference
between the observed R? and the expected R? and X -axis represents the degree of overlap. Range shows
the 95% confidence interval. Based on simulation results, it seems like EraSOR are robust against
different environmental stratification ().

411

412 Discussion

413  The recent advent of large-scale national and regional biobank projects, such as the UK Biobank [8],
414  Japan Biobank [9] and FinnGen [11], have provided large resources of genotype-phenotype dataideal for
415  conducting polygenic risk score analyses. However, this burgeoning generation of large data has led to an
416  increased risk of inter-cohort sample overlap or relatedness, which can lead to inflated type 1 error. Due
417  to privacy laws and practical concerns, it is usualy impossible to identify overlapping samples or related
418 samples across different cohorts. However, ideally researchers would be aware of the scale of the
419  potentia problem and have tools to mitigate against it. Therefore, here we reported on an investigation to
420  evaluate the impact of inter-cohort sample overlap and relatedness in PRS anayses and developed a
421  method to account for potential inter-cohort overlap and relatedness that does not require access to raw
422  genotype data from the base GWAS.
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423  We demonstrated that inter-cohort overlap results in a significant and often substantial inflation in the
424  observed PRStrait association, coefficient of determination (R?) and false-positive rate. This inflation can
425  be high even when the absolute number of overlapping individuals is small if this makes up a notable
426  fraction of the target samples. The inflation is noticeably more severe for binary traits with a small
427  population prevalence when all the overlapping samples are cases. Therefore, PRS results will likely be
428  misinterpreted unless inter-cohort sample overlap and close relatedness is properly accounted for.

429  Here, we devel oped the Erase Sample Overlap and Relatedness (EraSOR) method. EraSOR is designed to
430  correct for inter-cohort sample overlap and relatedness using only summary statistics, without requiring
431  any other information. The results of PRS analyses using EraSOR-adjusted GWAS results in the presence
432  of sample overlap or relatedness was remarkably similar to those gained when the overlap was explicitly
433  removed in most simulated conditions. EraSOR is also robust to mis-specification of the model, for
434  example, when there is environmental stratification. While EraSOR does not fully adjust for the bias
435 introduced by inter-cohort overlap for non-heritable traits when the degree of overlap is high, we
436  recommend that researchers should not perform PRS analyses on non-heritable traits in any case [1].
437  EraSOR performs well for the magjority of simulation scenarios tested here, which we believe reflect a
438  large fraction of PRS studies.

439  Theoreticaly, as p from the bivariate LD score regression is assumed to be the phenotypic correlation
440  [18], we can apply EraSOR in situations where the base and target cohorts measure different phenotypes.
441  Based on LeBlanc's equations [16], the spurious correlations caused by inter-cohort overlap and
442  relatednessis afunction of the phenotypic correlation. While this suggests that the impact of inter-cohort
443  overlap and relatedness are likely to be smaller for cross-trait analyses, EraSOR adjustments may still be
444  beneficia in these scenarios. Investigation of the performance of EraSOR in cross-trait analyses should be
445  the subject of future work. Further research is also required to understand the performance and biases of
446  EraSOR for applicationsin cross-trait studies and in its potentia application to GWAS meta-anal yses.

447  Our agorithm is not without any limitations. First, as EraSOR depends on the LD score intercept
448  estimates for the adjustment, all assumptions of LD score regression also apply to EraSOR. For example,
449 LD score regression assumes the level of genetic and environmental stratification is similar between the
450  two cohorts [13], and if this assumption is violated, then it islikely that the bivariate LD score equation
451  does not hold, which will lead to bias in EraSOR estimates. Moreover, due to reliance on LD score
452  regression estimates, EraSOR only produces sufficiently accurate adjustments for application when both
453  base and target cohorts have sample sizes greater than 1,000 and is only consistently accurate when both
454  cohorts are greater than 5,000 samples. Nonetheless, despite its limitations, EraSOR is an idea tool for
455  agpplication in settings in which there is known overlap in relation to large target samples and for
456  sengitivity analysesin PRS studies. If the performance of PRS using the unadjusted and EraSOR adjusted
457  summary statistics differs substantially, then this will act as a warning to the possible presence of inter-
458  cohort overlap or close relatedness that should be adjusted for in order to obtain reliable PRS analysis
459  results.

460 Availability of supporting source code and requirements

Project Name EraSOR
Project Homepage https://choi shingwan.gitlab.io/EraSOR/
Programming Language Python (version 3.0+)
License GNU General Public License version 3.0 (GPLV3)
Any restrictions to use by non- None

academics
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Simulation Scripts https://gitlab.com/choishingwan/sample overlap p
aper

461 Availability of supporting data and materials

462 All code used for this paper isavailable at https://gitlab.com/choishingwan/sample overlap paper
463  and were implemented using nextflow (version 20.10.0 build 5430) [28].

464 Abbreviations
465 PRS: polygenic risk score
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560  Supplementary Figure 1. False positive rate corresponding to different level of sample overlap. Non-
561 heritable phenotypes were simulated. X axis shows the degree of overlap, calculated as——and the Y-

562  axis shows the percentage of false positive (PRS P-value < 1x10-4). a) Quantitative traits with different
563  cohort sizes b) Binary traits with population prevalence of 0.1 c) Binary traits with population prevalence
564  of 0.3 d) Binary traits with population prevalence of 0.5.
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566  Supplementary Figure 2. Effect of sample relatedness on performance of PRS for non-heritability
567  phenotypes. The dotted line represents the significant threshold i.e., p-value < 1x10™. Y -axis represents
568  the-logy transformed p-value of association between the PRS and the phenotype; the X-axis represents

569  the degree of relatedness between the target cohort and the base cohort, calculated ——=where  isthe

570 number of samplesin the target cohort that are first degree relatives to sample in the base cohorts. Shaded
571  arearepresent the 95% confidence interval.
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Supplementary Figure 3. Comparing the performance of PRS using the EraSOR adjusted summary
statistics and the unadjusted summary statistics for quantitative trait without population stratification. The
X-axis shows the degree of overlap, and the Y-axis shows the mean difference between the observed R?
and the expected R®. Mean difference in R? = 0 is represented by the black dotted line. Each row
corresponds to different base cohort sizes, each column corresponds to different target cohort size and
different colors correspond to different trait heritability. Performance of the adjusted PRS is indicated
with triangle and performance of the unadjusted PRS is indicated with circle. Shaded area represents the
95% confidence interval, which tends to be small.
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581 Adjustment * Unadjusted + Adjusted Heritability % 0 % 0.1 = 05
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582  Supplementary Figure 4. Comparing the performance of PRS using the EraSOR adjusted summary
583  datistics and the unadjusted summary dtatistics for quantitative trait when there are population
584  stratifications. Samples from non-European ancestries were included in this analysis. Different level of
585  environmental stratifications was simulated: a) no environmental stratification b) environmental
586  stratification = 0.3. Shaded area represents the 95% confidence interval, with different colours represent
587  different simulated heritability. Results of the unadjusted PRS were represented with circle, while results
588  of the adjusted PRS were represented with triangle.
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589 Degree of Overlap

590 Supplementary Figure 5. Comparing the performance of PRS using the EraSOR adjusted summary
591  datistics and the unadjusted summary statistics for binary trait analyses. The X-axis shows the degree of
592  overlap, and the Y -axis shows the mean difference between the observed R? and the expected R%. Mean
593 difference in R? = 0 is represented by the black dotted line. Each row corresponds to different trait
594  heritability, each column corresponds to different population prevaence and colors were used to represent

24


https://doi.org/10.1101/2021.12.10.472164
http://creativecommons.org/licenses/by/4.0/

595
596
597

598

599
600
601
602
603
604

605

606

607
608

bioRxiv preprint doi: https://doi.org/10.1101/2021.12.10.472164; this version posted December 13, 2021. The copyright holder for this preprint
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY 4.0 International license.

different ascertainment of the overlapped samples. Performance of the adjusted PRS is indicated with

triangle and performance of the unadjusted PRS is indicated with circle. Shaded area represents the 95%
confidence interval, which tends to be small.
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Supplementary Figure 6. Performance of EraSOR when adjusting for rel ated samples between the target
cohort and the base cohort. The X-axis shows the degree of overlap, and the Y -axis shows the mean
difference between the observed R? and the expected R?. Shaded areas represent the 95% confidence
interval. Different colours correspond to the amount of shared environmental contribution, and the shapes
represents the heritability. Performance of EraSOR adjusted PRS are represented with the dotted line, and
the performance of the unadjusted PRS are represented with the solid line.
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Supplementary Figure 7. Principle Component plot for HapGen2 simulated data. Samples from the two
populations were clearly separated by PC1, whereas PC2 does not contribute to the separation, suggesting
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609 that the simulated population structure might be much simpler than what would otherwise observe in rea
610 data
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611 Degree of Overlap

612 Supplementary Figure 8. Performance of EraSOR adjusted PRS (triangle) against unadjusted PRS

613  (circle) in HapGen2 simulations where phenotypes were stratified with agnostic environmental

614  dratifications. The X-axis shows the degree of overlap, and the Y -axis shows the mean difference

615  between the observed R? and the expected R®. Shaded area shows the 95% confidence interval . Our result

616  suggest EraSOR are robust against different environmental stratification () even when they are agnostic
617  totheprincipal components.

618 Supplementary Methods

619 Simulate environmental stratifications agnostic to population structures

620  Similar to the main HapGen2 simulation, we used HapGen2 [22] to simulate 180k Y oruban and 180k
621  Finnish samples using recombination maps from the 1000 Genomes Project [23]. 500 “Finnish” samples
622  and 500 Y oruban” samples were selected to calculate the LD scores using LDSC (v1.0.1) and flashPCA

623  (v2.0) [24] was used to calculate the first 15 PCs of the data. —and — were randomly
624  assigned to each individual, disregarding their simulated popul ation.

625 Theentire set of simulations were repeated 25 times.
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