
Cognitive experience alters cortical involvement in navigation decisions 1 

Charlotte Arlt1, Roberto Barroso-Luque1, Shinichiro Kira1, Carissa A. Bruno1, Ningjing Xia1, Selmaan N. 2 

Chettih1, Sofia Soares1, Noah L. Pettit1, Christopher D. Harvey1,23 

1 Department of Neurobiology, Harvard Medical School, Boston, MA 02115 4 
2 Correspondence should be addressed to: harvey@hms.harvard.edu 5 

Abstract 6 

The neural correlates of decision-making have been investigated extensively, and recent work aims to 7 

identify under what conditions cortex is actually necessary for making accurate decisions. We discovered 8 

that mice with distinct cognitive experiences, beyond sensory and motor learning, use different cortical 9 

areas and neural activity patterns to solve the same task, revealing past learning as a critical determinant 10 

of whether cortex is necessary for decision-making. We used optogenetics and calcium imaging to study 11 

the necessity and neural activity of multiple cortical areas in mice with different training histories. 12 

Posterior parietal cortex and retrosplenial cortex were mostly dispensable for accurate decision-making 13 

in mice performing a simple navigation-based decision task. In contrast, these areas were essential for the 14 

same simple task when mice were previously trained on complex tasks with delay periods or association 15 

switches. Multi-area calcium imaging showed that, in mice with complex-task experience, single-neuron 16 

activity had higher selectivity and neuron-neuron correlations were weaker, leading to codes with higher 17 

task information. Therefore, past experience sets the landscape for how future tasks are solved by the 18 

brain and is a key factor in determining whether cortical areas have a causal role in decision-making. 19 
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Introduction 20 

Correlations between neural activity and decision-making have been studied extensively in the 21 

mammalian cortex, but the factors that determine whether cortical areas are actually necessary for 22 

decision tasks are not fully understood (Gold & Shadlen, 2007; Hanks et al., 2006; Katz et al., 2016; 23 

Salzman et al., 1990). Across studies, the necessity of cortical areas has been tested during a variety of 24 

decision-making tasks that involve different sensory, behavioral, and cognitive features (Ceballo et al., 25 

2019; Erlich et al., 2011; Fischer et al., 2020; Goard et al., 2016; Guo et al., 2014; Harvey et al., 2012; 26 

Inagaki et al., 2018; Licata et al., 2017; Raposo et al., 2014; Yang & Zador, 2012; Zhou & Freedman, 2019; 27 

Znamenskiy & Zador, 2013). Collectively, these studies have formed proposals on the types of decisions 28 

for which specific cortical areas are essential. For example, in rodents, posterior parietal cortex (PPC) is 29 

necessary for visual, but not auditory, discrimination tasks (Licata et al., 2017) and is considered to be 30 

especially involved in tasks that have a short-term memory component, such as a delay period between 31 

sensory cues and choice reports, or a requirement for evidence accumulation over time (Lyamzin & 32 

Benucci, 2019). As another example, area LIP in monkeys is thought to be essential for sensory but not 33 

motor aspects of visual motion discrimination tasks (Zhou & Freedman, 2019). Notably, these studies have 34 

focused on how specific features of a task-of-interest determine which cortical areas are causally involved. 35 

However, in addition to the task-of-interest in a study, individual animals have learned a variety of 36 

associations throughout their lifetime and may have performed a diversity of tasks previously, often with 37 

different experiences between individuals. Although it is intuitive that past learning, beyond the demands 38 

of the task-of-interest, may impact how individuals make decisions, most studies of decision-making have 39 

not investigated the effect of past learning on the involvement of cortex. It therefore is not well 40 

understood how learning of previous tasks affects the necessity of cortical activity for decision-making. 41 

Two previous studies investigated this topic in the sensory domain, comparing the involvement of visual 42 

area MT in depth and motion perception in monkeys with different perceptual experience (Chowdhury & 43 

DeAngelis, 2008; Liu & Pack, 2017). For coarse depth discrimination, MT was only necessary in monkeys 44 

that had no prior experience in fine depth discrimination tasks (Chowdhury & DeAngelis, 2008), showing 45 

a decrease in cortical involvement with additional experience. In contrast, for motion discrimination, 46 

previous training on moving dot stimuli rendered MT necessary for discriminating the motion of gratings 47 

(Liu & Pack, 2017), showing that sensory experience can also increase cortical involvement. Relatedly, 48 

studies of motor learning have shown that cortex is essential during the learning process but becomes 49 

dispensable after learning is completed (Hwang et al., 2019; Kawai et al., 2015). In these cases, the 50 

animal’s prior training was largely based on sensory or motor experience. However, studies have not 51 

investigated the impact of “cognitive experience”, which we broadly define as learning that extends 52 

beyond sensory or motor learning and includes learning of task rules and associations. 53 

Here, we developed a paradigm to study the effects of previous task learning on the necessity and activity 54 

patterns of cortical areas. Mice performed a simple decision-making task in virtual reality, and we 55 

compared different groups of mice that either had or had not been previously trained on complex 56 

decision-making tasks. We used optogenetics and calcium imaging to measure the necessity and neural 57 

activity patterns of cortical areas during this simple task. Critically, we kept the sensory and movement 58 

aspects of the complex and simple tasks as identical as possible to test the effect of “cognitive experience” 59 
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instead of perceptual or motor learning. We focused on areas of cortex that are thought to be critical for 60 

decision-making during navigation, including PPC, which converts sensory cues into motor plans 61 

(Freedman & Ibos, 2018), and retrosplenial cortex (RSC), which is critical for planning navigation 62 

trajectories (Alexander & Nitz, 2015). 63 

We discovered that mice with different previous task experience used distinct sets of brain areas to solve 64 

the same simple task. During the simple decision task, mice without prior training on complex decision 65 

tasks performed well above chance levels when RSC or PPC was inhibited. In contrast, during the same 66 

simple task, mice with prior complex task training performed close to chance levels when these areas 67 

were inhibited. In addition, calcium imaging revealed that prior complex task experience resulted in 68 

increased selectivity of neural activity patterns for task-relevant variables and decreased correlations in 69 

neural activity during the simple task. Thus, individuals with distinct cognitive experience make outwardly 70 

identical decisions using different combinations of brain areas and neural activity patterns. We suggest 71 

that, because neural circuits are optimized for a wide range of computations beyond the ones required 72 

by a current task-of-interest, a global set of constraints and optimizations can dramatically impact the 73 

cortical areas that are necessary for decisions. 74 

Results 75 

Increased necessity of cortical association areas in complex versus simple decision tasks 76 

We developed a paradigm in which head-restrained mice running on a spherical treadmill were trained to 77 

use visual cues to make navigation decisions in a virtual reality Y-maze (Figure 1A-B). We used this 78 

paradigm to create a “simple task” and two “complex tasks”. In the simple task, mice learned to associate 79 

visual cues – horizontal and vertical bars – with left and right turns, respectively, to obtain rewards. In this 80 

task, the visual cue was present throughout the entire Y-maze, and the rewarded cue-choice associations 81 

(e.g., horizontal bars-left choice) did not change (Figure 1C).  82 

The complex tasks were designed based on the same Y-maze concept and used the identical horizontal 83 

and vertical bars as visual cues. In the “delay task”, the visual cues were only present at the beginning of 84 

the maze, followed by a neutral visual pattern on the walls for the remainder of the maze (Figure 1E). This 85 

neutral pattern was identical across trials and did not provide information about the reward location. This 86 

design was based on the commonly used approach of inserting a delay period between the sensory cues 87 

and choice reports and has been used previously in navigation decision tasks (Driscoll et al., 2017; Harvey 88 

et al., 2012). In the “switching task”, the rewarded relationships between the visual cues and left-right 89 

choices were switched across blocks within a single session, resulting in two rules (Rules A and B) (Figure 90 

1G). The same visual cue was thus associated with left choices in one rule block and right choices in the 91 

other rule block. The current rule and rule switch were not explicitly signaled, so the mouse learned rule 92 

switches by trial and error and stored a belief of the current rule in memory. Therefore, after rule switches, 93 

a mouse’s performance dropped and then recovered to high and stable levels after tens of trials (Figure 94 

1G). For one of the two rules (Rule A), the trials were the same as in the simple task, including the same 95 

cues and rewarded choices. In fact, the software code used to create the virtual environments was 96 

identical between the simple task and Rule A of the switching task. Across both the simple and complex 97 

tasks, the mice experienced the same choice-informative sensory cues and had to run through similar or 98 
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Figure 1. Increased necessity of cortical association areas in complex versus simple decision tasks 

(A) Schematic overview of the behavioral tasks and task training sequences used in this study. Top row: One
group of mice is trained in the simple task only. Middle row: Another group of mice is trained on the delay
task and then transitioned to the simple task. Bottom row: Another group of mice is trained on the
switching task and then transitioned to the simple task. The middle and bottom rows indicate complex
training histories.

(B) Top: Schematic of virtual reality behavioral setup. Bottom right: Schematic of optogenetic inhibition with
bilateral target locations. Bottom left: Top view of Y-maze. Inhibition lasted from trial onset throughout
maze traversal.

(C) Left: Simple task schematic indicating two trial types (horizontal or vertical cues) and corresponding
rewarded navigation decisions (running left or right). Corresponding VR screenshots at the trial start are
below. Right: Top view of the two maze schematics. Water drops indicate hidden reward locations.

(D) Left: Example session in the simple task showing mean performance for each inhibited location. Right:
Performance in the simple task for each inhibited location across 45 sessions from 4 mice. Bars indicate mean
± sem of a bootstrap distribution of the mean. S1 p = 0.84; RSC p < 0.001; PPC p = 0.006; from bootstrapped
distributions of ΔFraction Correct (difference from control performance) compared to 0, two-tailed test, α
= 0.05 plus Bonferroni correction. Sessions per mouse: 11 ± 2. Trials per session: 53 ± 23 (control), 19 ± 8
(S1), 18 ± 9 (RSC), 20 ± 9 (PPC), mean ± SD.

(E) Similar to (C), but for the delay task.
(F) Similar to (D), but for the delay task. 62 sessions from 7 mice. S1 p = 0.006; RSC p < 0.001; PPC p < 0.001.

Sessions per mouse: 9 ± 4. Trials per session: 60 ± 15 (control), 16 ± 6 (S1), 15 ± 4 (RSC), 17 ± 5 (PPC), mean
± SD.

(G) Left: Schematic of the switching task, utilizing the identical mazes as the simple task. The cue-choice
associations from the simple task (Rule A) were switched within a session (to Rule B). Right: Behavioral
performance from an example session. Dotted orange lines indicate rule switches.

(H) Similar to (D), but for the switching task, Rule A trials only. 89 sessions from 6 mice. S1 p = 0.036; RSC p <
0.001; PPC p < 0.001. Sessions per mouse: 15 ± 5. Trials per session: 26 ± 9 (control), 8 ± 3 (S1), 7 ± 4 (RSC),
8 ± 3 (PPC), mean ± SD.

(I) Comparison of inhibition effects (ΔFraction Correct) in the simple and the delay tasks for each cortical
inhibition location. Bars indicate mean ± sem of a bootstrap distribution of the mean; two-tailed
comparisons of bootstrapped ΔFraction Correct distributions, α = 0.05. Same datasets as in (F, G).

(J) Similar to (I), but for the simple vs. switching task (Rule A trials only). Same datasets as in (F, H).

(K) Left: Comparison of performance on control trials across tasks, using only the first two laser-on blocks in each
session. Bars indicate mean ± sem of a bootstrap distribution of the mean. Delay vs. simple p < 0.001;
switching vs. simple p < 0.001; two-tailed comparisons of bootstrapped Fraction Correct distributions, α =
0.05. Right: Number of training sessions needed to reach performance criteria across tasks (Methods).
Bars indicate mean ± sem across mice, n = 4 for simple task, n = 5 for delay task, n = 6 for switching task.
Both delay and switching task data were compared to the simple task data using an unpaired two-sided t-test.
Delay vs. simple p = 0.04; switching vs. simple p = 0.006.
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identical mazes to report their choices. Thus, the key difference between the simple and complex tasks 99 

was due to “cognitive” complexity through the addition of a delay period or frequent switches in the 100 

associations, rather than differences in the sensory cues informing choices or differences in motor output. 101 

 

We tested the necessity of various cortical areas during the simple and complex tasks using optogenetics 102 

to activate GABAergic interneurons, which leads to silencing of nearby excitatory neurons (Guo et al., 103 

2014; Li et al., 2019; Minderer et al., 2019). Channelrhodopsin-2 (ChR2) was expressed in inhibitory 104 

interneurons in transgenic mice and photostimulated using a clear-skull preparation with a two-105 

dimensional laser scanning system (Figure 1B). We focused inhibition on two cortical association areas 106 

previously linked to decision-making and navigation, PPC and RSC (Driscoll et al., 2017; Fischer et al., 2020; 107 

Harvey et al., 2012). To match each area’s anatomical extent, we used three inhibition spots in each 108 

hemisphere for RSC and one spot per hemisphere for PPC. As a control, we inhibited a spot in primary 109 

somatosensory cortex (S1), an area not implicated in visual decision-making (Figure 1B). Inhibition trials 110 

were interleaved with control trials in which the laser spot was positioned outside the mouse’s brain. On 111 

inhibition trials, photostimulation was applied bilaterally and throughout the duration of the mouse’s 112 

maze traversal.  113 

 

We first considered inhibition effects on performance of the simple task in mice that had only been trained 114 

in the simple task (Figure 1D). Silencing S1 did not affect performance, and inhibition of PPC resulted in a 115 

very small performance decrease, with mean performance of 90 ± 2% correct (mean ± SEM). Inhibition of 116 

RSC had the largest effect, resulting in intermediate performance levels of 77 ± 3% correct. However, mice 117 

still performed well above chance (50% correct). To assess whether the effect of RSC inhibition was 118 

specific to the cognitive requirements of the simple task or related to lower-level processes required for 119 

task performance such as vision, movement, and basic navigation, we silenced the same areas in an even 120 

simpler task in which mice ran towards a visual target present on either side of the maze end to obtain 121 

rewards (Harvey et al., 2012). Effects on performance were similar in this run-to-target task, suggesting 122 

that RSC inhibition in the simple task may impair lower-level processes such as basic navigation instead of 123 

decision-making based on cue-choice associations (Figure 1—figure supplement 1). Together, these 124 

results indicate that the cortical areas we silenced were only modestly involved in the decision in the 125 

simple task. 126 

 

We next considered the effects of inhibition on mice performing the delay task or the switching task 127 

(Figure 1,E,F,G,H). In the switching task, we silenced cortical areas during the periods of high performance 128 

after accuracy had recovered following a rule switch (Figure 1G). S1 inhibition during the complex tasks 129 

caused a modest decrease in performance, but mice still performed the tasks at high levels (Figure 1F, H). 130 

In contrast, inhibition of PPC or RSC greatly impaired performance in the delay and switching tasks and 131 

resulted in performance of 55 ± 3% correct, which is close to chance levels. With PPC and RSC inhibition, 132 

many mice exhibited biases in the choices they made, whereas others appeared to choose randomly 133 

between left and right (Figure 1 —figure supplement 2). The effects of inhibiting PPC and RSC were 134 

markedly larger in the delay and switching tasks than in the simple task (Figure 1I-J). Therefore, adding a 135 

delay epoch to the trial or frequent association switches across trials increased the necessity of cortex 136 

relative to the simple task.  137 
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We also asked whether the increased cortical necessity was especially apparent in the task period that 138 

was changed compared to the simple task. In the delay task, we thus restricted photoinhibition to the cue 139 

or the delay segment of the trial (Figure 1—figure supplement 3). Inhibition of PPC or RSC in both trial 140 

segments decreased performance to a greater degree than in the simple task, indicating that PPC and RSC 141 

are necessary for multiple epochs of the task. In the switching task, the main difference relative to the 142 

simple task is the introduction of association switches, so activity in PPC and RSC may be necessary for 143 

storing or updating the rule. Taking advantage of interleaved control and inhibition trials, we found that 144 

the effects of inhibition were restricted to the current trial, as inhibition did not affect subsequent control 145 

trials (Figure 1—figure supplement 4). We also looked for a role in updating the rule, which is likely critical 146 

following the completion of a trial, in particular after a rule switch. We focused on PPC as a candidate for 147 

updating the rule because PPC has sensory- and choice-related history signals (Akrami et al., 2018; Morcos 148 

& Harvey, 2016). We silenced PPC during the inter-trial interval on every trial following a rule switch, for 149 

50 consecutive trials. However, PPC inhibition did not affect the recovery of performance after a rule 150 

switch (Figure 1—figure supplement 4). Together, these results suggest that the large inhibition effects 151 

during the switching task are not due to impaired storing or updating of the rule. Thus, the increased 152 

necessity of PPC and RSC during the delay and switching tasks did not appear to be specific to the added 153 

task components. 154 

 

Overall, our results indicate that more complex tasks require cortical activity, specifically in PPC and RSC, 155 

to a larger extent than a simple task. We verified that the complex tasks were indeed more challenging 156 

for mice. Relative to the simple task, it took mice longer to become experts at the delay and switching 157 

tasks (see Methods), and their performance on control trials was lower (Figure 1K). These findings are 158 

consistent with, and extend, previous work that concluded cortical necessity increases with task 159 

complexity (Harvey et al., 2012; Pinto et al., 2019).  160 

 

The necessity of PPC and RSC depends on a mouse’s previous cognitive experience 161 

This set of tasks provided a platform for testing the effects of prior learning on cortical necessity for 162 

decision-making in the simple task, by comparing groups of mice with or without previous training on the 163 

complex tasks. A first group of mice was only trained on the simple task. The second group was first trained 164 

on one of the complex tasks and then transitioned to the simple task for 14 consecutive sessions (one 165 

session per day), without experiencing the complex task again. Different cohorts of mice were transitioned 166 

to the simple task from the switching task and delay task. This design allowed us to compare different 167 

mice performing the same task (the simple task) but with distinct training histories.  168 

 

We first considered the mice that were trained to be experts on the delay task and then transitioned to 169 

the simple task (Figure 2A). In these mice, inhibition of PPC and RSC during the simple task greatly 170 

impaired behavioral performance to mean levels of 67 ± 3% and 62 ± 2% correct (mean ± SEM), 171 

respectively (Figure 2B-C). Thus, these mice needed PPC and RSC activity to perform at high levels on the 172 

simple task. These results were strikingly different from the inhibition effects in mice trained only on the 173 

simple task. Without complex-task experience, mice performed at 90 ± 2% and 77 ± 3% correct with PPC 174 

or RSC inhibited (Figure 2C), respectively, indicating they did not strongly rely on PPC or RSC activity for 175 

task performance. The larger effect of PPC and RSC inhibition due to previous delay task experience was 176 
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Figure 2. Delay task experience increases the necessity of RSC and PPC in a simple decision task 

(A) Schematic of the training history sequence. One group of mice was trained on the delay task and then 
permanently transitioned to the simple task. This group of mice was compared to another group trained 
only on the simple task.  

(B) Performance of an example mouse transitioned from the delay task to the simple task on control and 
inhibition trials.  

(C) Performance in the simple task for each inhibited location in mice with simple task experience only (gray, 45 
sessions from 4 mice, same dataset as in Figure 1F), and in mice with previous delay task experience (blue, 70 
sessions from 5 mice). Bars indicate mean ± sem of a bootstrap distribution of the mean. S1 p = 0.012; RSC 
p < 0.001; PPC p < 0.001; from bootstrapped distributions of ΔFraction Correct (difference from control 
performance) compared to 0, two-tailed test, α = 0.05 plus Bonferroni correction. Sessions per mouse: 14. 
Trials per session: 53 ± 7 (control), 13 ± 3 (S1), 13 ± 2 (RSC), 14 ± 2 (PPC), mean ± SD.  

(D) Inhibition effects (ΔFraction Correct) across sessions in the simple task in mice with only simple task 
experience (gray), and in mice with previous delay task experience (blue), for each cortical inhibition 
location. Thin lines show individual mice (n = 4 with simple task experience, n = 5 with delay task 
experience), thick lines show average across mice. ΔFraction Correct was smoothed with a moving average 
filter of 3 sessions.  

(E) Comparison of inhibition effects (ΔFraction Correct) in the simple task for mice with simple task experience 
only (45 sessions from 4 mice) versus delay task experience 1 or 2 weeks after transition from the delay 
task to the simple task (35 sessions per week from 5 mice). Bars indicate mean ± sem of a bootstrap 
distribution of the mean; two-tailed comparisons of bootstrapped ΔFraction Correct distributions, α = 0.05. 
Simple experience datasets are the same as in Figures 1F and Figure 2C. 

(F) Comparison of performance on control trials in the simple task with simple versus delay task experience, using 
only the first two laser-on blocks in each session. Bars indicate mean ± sem of a bootstrap distribution of the 
mean. Simple task data in week 1 (p = 0.59) and week 2 (p = 0.19) after transition from the delay task were 
compared to the simple task only experience data; two-tailed comparisons of bootstrapped Fraction Correct 
distributions, α = 0.05. Trials per session: 51 ± 23 (simple experience), 51 ± 6 (delay experience, week 1), 53 
± 3 (delay experience, week 2), mean ± SD.  
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not only apparent immediately after the transition to the simple task but persisted for the full two weeks 177 

that we investigated (Figure 2D-E). Therefore, the effect of PPC and RSC inhibition had markedly larger 178 

effects in the simple task when mice had previous training in the delay task, both in the first and second 179 

week after the task transition. This persistent difference is particularly surprising because the task 180 

transition should be immediately apparent to mice due to the lack of a delay period in each trial. Indeed, 181 

performance on control trials in the simple task was as high in mice with delay task experience as in mice 182 

with simple task experience only, indicating that subjective task difficulty did not differ depending on 183 

training history (Figure 2F). Also, inhibition of S1 had little effect on performance in the simple task both 184 

with and without previous delay task training. Therefore, mice with distinct previous task experience 185 

require different cortical areas to perform the same task.  186 

 

We reached a similar conclusion when we compared mice performing the simple task with and without 187 

previous training on the switching task (Figure 3A). In mice that had previously been experts on the 188 

switching task, PPC and RSC inhibition resulted in performance of 67 ± 3% and 61 ± 3% correct (mean ± 189 

SEM), respectively, on the simple task (Figure 3B-C). As for previous training on the delay task, this effect 190 

of PPC and RSC inhibition during the simple task was markedly larger than when these areas were inhibited 191 

in mice without previous training on the switching task (Figure 3D-E). PPC activity was necessary even two 192 

weeks after the transition to the simple task. RSC’s involvement was greatest in the first week after the 193 

transition. Therefore, mice with previous experience in the switching task require PPC and RSC activity to 194 

perform the simple task, whereas these areas are largely dispensable during performance of the same 195 

simple task in mice without this previous training. 196 

 

We wondered if the mice transitioned from the switching task to the simple task might continue to behave 197 

as if they were in the dynamic context of the switching task. However, it appeared that mice adapted 198 

behaviorally to the simple task quickly after the transition. First, performance on control trials improved 199 

to levels observed in mice without previous training on the switching task (Figure 3F). Also, in the 200 

switching task, performance at the start of sessions was only at intermediate levels as mice determined 201 

the current rule (Figure 3—figure supplement 1). In contrast, after a few days in the simple task, 202 

performance was near perfect even in the first tens of trials within a session. Interestingly, when 203 

presented with the opposite rule from the switching task again after two weeks on the simple task, mice 204 

could still switch back to the long unseen rule within a single session (Figure 3—figure supplement 1). 205 

Thus, although mice appeared to retain an understanding of potential association switches, their behavior 206 

did not reflect such expectations soon after they were transitioned to the simple task.  207 

 

We also assessed whether the persistent increase of cortical necessity due to complex-task experience 208 

extended to the run-to-target task. Notably, inhibition of PPC and RSC during the run-to-target task 209 

resulted in similarly minor performance drops in groups of mice with and without prior complex-task 210 

experience (Figure 3—figure supplement 2). Thus, previous experience did not make cortex essential for 211 

all tasks. 212 

 

Collectively, these results highlight that the cortical areas used to perform a task can be profoundly shaped 213 

by experience from weeks ago. Mice with different previous task experience use distinct sets of cortical 214 
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Figure 3. Switching task experience increases the necessity of RSC and PPC in a simple decision task  

(A) Schematic of the training history sequence. One group of mice was trained on the switching task and then 
permanently transitioned to the simple task. This group of mice was compared to another group trained 
only on the simple task.  

(B) Performance of an example mouse transitioned from the switching task to the simple task on control and 
inhibition trials.  

(C) Performance in the simple task for each inhibited location in mice with simple task experience only (gray, 
45 sessions from 4 mice, same dataset as in Figure 1F), and in mice with previous switching task experience 
(red, 69 sessions from 5 mice). Bars indicate mean ± sem of a bootstrap distribution of the mean. S1 p = 
0.26; RSC p < 0.001; PPC p < 0.001; from bootstrapped distributions of ΔFraction Correct (difference from 
control performance) compared to 0, two-tailed test, α = 0.05 plus Bonferroni correction. Sessions per 
mouse: 13 ± 0.4. Trials per session: 55 ± 11 (control), 14 ± 4 (S1), 13 ± 4 (RSC), 15 ± 4 (PPC), mean ± SD.  

(D) Inhibition effects (ΔFraction Correct) across sessions in the simple task in mice with only simple task 
experience (grey), and in mice with previous switching task experience (red), for each cortical inhibition 
location. Thin lines show individual mice (n = 4 with simple task experience, n = 5 with switching task 
experience), thick lines show average across mice. ΔFraction Correct was smoothed with a moving average 
filter of 3 sessions. 

(E) Comparison of inhibition effects (ΔFraction Correct) in the simple task for mice with simple task experience 
only (45 sessions from 4 mice) versus switching task experience 1 (35 sessions from 5 mice) or 2 (34 
sessions from 5 mice) weeks after transition from the switching task to the simple task. Bars indicate mean 
± sem of a bootstrap distribution of the mean; two-tailed comparisons of bootstrapped ΔFraction Correct 
distributions, α = 0.05. Same datasets as in Figures 1F and Figure 3C. 

(F) Comparison of performance on control trials in the simple task with simple versus switching task experience 
using only the first two laser-on blocks in each session. Bars indicate mean ± sem of a bootstrap distribution 
of the mean. Simple task data in week 1 (p = 0.32) and week 2 (p = 0.81) after transition from the switching 
task were compared to the simple task only experience data; two-tailed comparisons of bootstrapped 
Fraction Correct distributions, α = 0.05. Trials per session: 51 ± 23 (simple experience), 51 ± 5 (switching 
experience, week 1), 50 ± 7 (switching experience, week 2), mean ± SD. 
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areas to solve the same task. Therefore, an understanding of which areas of cortex are necessary for 215 

decision tasks requires considering both the demands of the task-of-interest and the previous experiences 216 

of the individual. 217 

 

PPC and RSC neurons have activity patterns with higher selectivity in the switching task 218 

Given that the necessity of cortical areas was modulated by previous training, we next asked if the neural 219 

activity patterns in these areas are also affected. One possibility is that the increased necessity of cortical 220 

areas as a result of previous learning is due to changes in the neural activity patterns within the area. 221 

Alternatively, previous learning might not affect a cortical area’s activity, and instead the change in a 222 

cortical area’s necessity could be due solely to how its activity is read out by downstream areas 223 

(Chowdhury & DeAngelis, 2008; Liu & Pack, 2017). 224 

 

We simultaneously measured the activity of neurons in PPC, RSC, and V1 with two-photon calcium imaging 225 

using a large field-of-view, random-access microscope (Sofroniew et al., 2016) (Figure 4A-C). This 226 

microscope allowed us to simultaneously image hundreds of neurons in each of these three cortical areas, 227 

with single-cell resolution. We focused our imaging on PPC and RSC because these areas showed major 228 

differences in necessity for decisions depending on previous experience. We also included V1 because it 229 

is densely interconnected with PPC and RSC (Zhang et al., 2016) and is likely necessary for visual navigation 230 

tasks, at least for visual processing (Resulaj et al., 2018). We restricted our imaging experiments to the 231 

simple task and the switching task, given that they contain the identical virtual environments. 232 

 

We first imaged neural activity in separate sets of mice in the simple task and switching task (Figure 4D). 233 

To compare identical trial types across tasks, that is trials with the same cue-choice associations, we 234 

compared neural activity in mice performing the simple task to activity specifically in Rule A of mice 235 

performing the switching task. In the switching task, we only included trials once performance had 236 

recovered to high levels after rule switches. We started by looking at a basic measure of neural activity, 237 

the overall level of activity in individual neurons. Interestingly, this basic measure revealed differences 238 

across tasks, as neurons in RSC and PPC had higher activity in the switching task than in the simple task 239 

(Figure 4D).  240 

 

Next, we considered that a direct way a cortical area may contribute to a decision task is by having activity 241 

that is different for the two trial types containing distinct cue-choice associations. Trial-type selectivity is 242 

a common measure for neural correlates of decision-related functions because it would allow a 243 

downstream area to read out the identity of the association and to execute the appropriate choice. We 244 

measured this selectivity as our ability to identify the trial type based on a neuron’s activity and quantified 245 

it as the area under the receiver operating characteristics curve (auROC, Figure 4E). PPC and RSC neurons 246 

showed higher average levels of trial-type selectivity in the switching task than in the simple task (Figure 247 

4F). At the level of populations of neurons, the trial-type selectivity was structured as sequences of neural 248 

activity, in which individual neurons were transiently active and different neurons were active at different 249 

locations along the maze (Figure 4—figure supplement 1). In addition, the fraction of RSC or PPC neurons 250 

with significant trial-type selectivity was higher in the switching task than in the simple task (Figure 4G).  251 
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Figure 4. RSC and PPC neurons have activity patterns with higher selectivity in the switching task  

(A) Left: Schematic of virtual reality behavioral setup with mesoscopic two-photon imaging. Right: Two-
photon overview image of cortical window and locations of three areas imaged simultaneously. Scale bar:  
500 μm.  

(B) Mean intensity two-photon images of each imaged area, color-coded by area as in (A). Areas were imaged 
at two depths. Scale bars: 100 μm.  

(C) Example activity traces of ten cells from each area.  
(D) In each area, mean activity levels across cells by maze segment are compared in the simple (gray) versus 

the switching (orange) task (only Rule A trials). The maze segments are the first half of the Y-stem (15-75 
cm Y-Position), the second half of the Y-stem (75-150 cm), and the Y-arms (150-220 cm). Shading indicates 
mean ± sem of bootstrapped distributions of the mean. P(segment) shows p values of two-tailed comparisons 
of bootstrapped distributions per maze segment. P(overall) shows the p value for the task factor from a two-
way ANOVA (factors: task and maze segment). Simple task: n = 3 mice, 4 sessions per mouse, neurons per 
session by area: RSC: 1438 ± 217, PPC: 456 ± 172, V1: 498 ± 170. Switching task: n = 3 mice, 4 sessions per 
mouse, neurons per session by area: RSC: 1510 ± 398, PPC: 513 ± 304, V1: 363 ± 92 (mean ± SD).  

(E) Left and right panel columns show activity from two different example neurons. Top: Spatially binned 
activity separated by trial type. Each row shows a single trial. Trials were subsampled to 30 trials per trial 
type. Middle: Mean activity for each trial type (pink: right trials, blue: left trials). Bottom: The area under 
the ROC curve (auROC) was calculated for each spatial bin. A shuffled distribution of auROC values (gray) 
was generated by randomly assigning left/right trial labels to each trial and recomputing auROC 100 times. 
Trial-type selectivity was defined as an absolute deviation of auROC from chance level (2*|auROC-0.5|). 
To determine significance of trial-type selectivity, at each bin, this value was compared to the trial-type 
selectivity of the shuffle distribution (gray, significance threshold of p < 0.01).  

(F) Similar to (D), except for the metric of trial-type selectivity, i.e. 2*|auROC-0.5|.  
(G) Similar to (D), except for the fraction of trial-type selective cells as determined from comparing each cell’s 

selectivity value to a distribution with shuffled trial labels (significance threshold of p < 0.01).   
(H) In each area, trial-type decoding accuracy using activity of subsampled neurons is compared in the simple 

versus the switching task (Rule A trials only). Shading indicates mean ± sem across sessions. p value is for 
the task factor from a two-way ANOVA (factors: task and neuron number).   
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We next assessed how well the current trial type could be decoded from the activity of neural populations 252 

of varying sizes in each area. In the simple task, RSC and PPC populations contained task-relevant 253 

information that led to above-chance decoding from a population of neurons. However, for the same size 254 

population in the switching task, this decoding accuracy in RSC and PPC was even higher, in line with the 255 

observed increased selectivity and larger fraction of selective neurons relative to the simple task (Figure 256 

4H). These differences in activity across tasks in RSC and PPC were especially striking because, in the 257 

simple task and Rule A of the switching task, mice ran through a maze with identical visual cues and made 258 

similar left-right behavioral choices in both tasks. Therefore, the activity levels and selectivity of single 259 

neurons are higher in PPC and RSC when mice perform a more complex task, even when the sensory 260 

stimuli and choice reports in the tasks are identical, leading to better ability to decode the trial type. 261 

 

We verified that the differences in selectivity across tasks were not due to differences in running patterns. 262 

When we selected sessions so that the time course and magnitude of decoding the mouse’s reported 263 

choice from its running were similar across tasks, we largely observed the same differences in neural trial-264 

type selectivity as reported above (Figure 4—figure supplement 2). Thus, the differences in neural 265 

selectivity cannot be trivially explained by differences in running patterns. 266 

 

In contrast, V1 neurons had similar levels of activity, selectivity, and population-level trial-type decoding 267 

in the simple and switching tasks (Figure 4D-H). This finding is consistent with the identical visual scene in 268 

these tasks but is perhaps surprising given that V1 neurons have been shown to contain many non-visual 269 

signals (Koay et al., 2020). 270 

 

Previous switching task experience increases neural trial-type selectivity in PPC and RSC 271 

We then examined if previous experience in the switching task affected the neural activity patterns in the 272 

simple task. Similar to our tests of cortical necessity, we compared neural activity during the simple task 273 

in mice that either had or had not been trained previously in the switching task (Figure 5A). We trained 274 

one group of mice on the switching task and then permanently transitioned these mice to the simple task. 275 

A separate set of mice was trained only on the simple task. We thus compared the activity patterns in 276 

PPC, RSC, and V1 in mice performing decisions in the same task except with distinct experience.  277 

 

Strikingly, during the simple task, neurons in RSC and PPC had higher activity in mice with experience in 278 

the switching task than in mice trained only in the simple task (Figure 5B). Furthermore, in mice with 279 

switching task experience, RSC and PPC neurons had higher average selectivity for the trial type and higher 280 

fractions of neurons with significant trial-type selectivity (Figure 5C-D). As a result, the decoding of the 281 

trial type from population activity was more accurate in these areas in mice with the complex task 282 

experience (Figure 5E). Notably, selectivity in V1 neurons was similar between mice with and without 283 

complex task experience. Therefore, the activity patterns of single neurons in PPC and RSC, including mean 284 

activity levels and selectivity, are strongly influenced by previous task experience. 285 

 

Switching task experience decreases noise correlations 286 

A key feature of neural codes beyond the properties of single cells is the collective activity of populations 287 

of neurons. Properties of population codes affect the amount of information in neural populations and 288 
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Figure 5. Previous switching task experience increases trial-type selectivity in RSC and PPC 
(A) Schematic of the training history sequence. One group of mice was trained on the switching task and then 

permanently transitioned to the simple task. This group of mice was compared to another group trained 
only on the simple task. 

(B) In each area, mean activity levels across cells by maze segment are compared in the simple task in mice 
with (red) and without (gray) previous experience in the switching task. Shading indicates mean ± sem of 
bootstrapped distributions of the mean. P(segment) shows p values of two-tailed comparisons of 
bootstrapped distributions per maze segment. P(overall) shows the p value for the previous task experience 
factor from a two-way ANOVA (factors: previous task experience and maze segment). Simple task: n = 3 
mice, 4 sessions per mouse, cells per session by area: RSC: 1438 ± 217, PPC: 456 ± 172, V1: 498 ± 170 
(same dataset as in Figure 4D-H). Simple task after switching task experience: n = 2 mice, 3 and 5 sessions 
per mouse, neurons per session by area: RSC: 1407 ± 327, PPC: 744 ± 219, V1: 351 ± 90 (mean ± SD). 

(C) Similar to (B), except for the metric of trial-type selectivity, i.e. 2*|auROC-0.5|.  
(D) Similar to (B), except for the fraction of trial-type selective cells as determined from comparing each cell’s 

selectivity value to a distribution with shuffled trial labels.   
(E) In each area, trial-type decoding accuracy using activity of subsampled neurons is compared in the simple 

task in mice with and without previous experience in the switching task. Shading indicates mean ± sem 
across sessions. p value is for the previous task experience factor from a two-way ANOVA (factors: previous 
task experience and neuron number).  
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have been shown to depend on behavioral context, task learning, and other factors (Cohen & Kohn, 2011). 289 

We thus examined if features of the neural population code are also affected by task complexity and past 290 

experience. We took advantage of the simultaneous recording of hundreds of neurons per area and 291 

analyzed the correlation in activity for pairs of neurons on a given trial type, a measure commonly referred 292 

to as noise correlation, that quantifies trial-to-trial co-fluctuations in neurons (Cohen & Kohn, 2011). As 293 

for analyses of trial-type selectivity, we restricted analyses to the maze traversal period and only included 294 

correct trials from high performance periods (see Methods). The noise correlations within individual areas 295 

and across pairs of areas were lower on average in mice performing the switching task than in mice 296 

performing the simple task (Figure 6A-C). Strikingly, when we compared mice with different experience 297 

as they performed the same simple task, we also observed a difference in noise correlations both within 298 

and across cortical areas, with lower correlations in mice with switching task experience compared to 299 

mice trained only in the simple task (Figure 6A-C). Therefore, mice with different task experience have 300 

significant differences in their population codes as they perform the same task. 301 

 

Noise correlations can in some cases have detrimental effects on population codes by limiting the 302 

information capacity because these correlations are co-fluctuations in activity that cannot be removed by 303 

averaging across neurons (Averbeck et al., 2006; Kafashan et al., 2021; Panzeri et al., 1999; Zohary et al., 304 

1994). To reveal the impact of correlations on coding in our experiments, we disrupted noise correlations 305 

by shuffling trials of a given trial type separately for each neuron and repeated the trial-type decoding. 306 

The accuracy of decoding the trial type was slightly higher with correlations disrupted (Figure 6D). 307 

Therefore, the lower correlations in mice performing the switching task or the simple task with switching 308 

task experience boosts information encoding along with higher trial-type selectivity levels.  309 

 

Thus, these results reveal that the activity patterns in single neurons and neural populations are shaped 310 

by previous experience. Together, our findings demonstrate that different sets of cortical areas and 311 

distinct neural activity patterns are utilized for the same task depending on an individual’s training history. 312 

 

Discussion 313 

We have shown that the same task, with the same visual cues and behavioral choice reports, is solved 314 

using distinct cortical areas and activity patterns depending on the past experience of the individual. Thus, 315 

the necessity of cortical areas for a decision task depends on factors separate from the task itself. Here, 316 

we aimed to vary the “cognitive experience” of the mouse, which we define as the features of the task 317 

other than the choice-informative sensory stimuli and the behavioral outputs. We varied the cognitive 318 

experience by adding delay periods or frequent switches of associations within a session, but the maze 319 

shape, and thus behavioral outputs needed, and choice-informative cues were identical between the 320 

complex and simple tasks. Thus, the differences between mice with and without training on the complex 321 

tasks is likely due to cognitive experience instead of sensory or motor learning. Our results reveal that 322 

mice with enhanced cognitive experience due to previous training on complex tasks require PPC and RSC 323 

to perform simple decision tasks. In contrast, in mice without this previous training, PPC and RSC are 324 

largely dispensable for performing the same, simple task. This difference in cortical necessity was 325 

accompanied by differences in the activity patterns of single neurons and neural populations. During the 326 

same task, mice with complex training experience had higher selectivity in single neurons and weakened 327 

19

.CC-BY 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted December 10, 2021. ; https://doi.org/10.1101/2021.12.10.472106doi: bioRxiv preprint 

https://doi.org/10.1101/2021.12.10.472106
http://creativecommons.org/licenses/by/4.0/


-0.02

-0.01

0

-0.02

-0.01

0

Figure 6

A

C

B

-0.02

-0.01

0

M
ea

n 
Tr

ia
l-T

yp
e 

D
ec

od
in

g
Ac

cu
ra

cy
 (R

ea
l -

 S
hu

ffl
ed

) V1PPCRSC
D

Simple TaskSwitching Task

or

Simple Task only

VERSUS

Simple Task,
Simple Experience

RSC
PPC V1

V1

PPC

RSC

Switching Task

RSC
PPC V1

V1

PPC

RSC

M
ea

n 
no

is
e 

co
rre

la
tio

n

0

0.01

0.02

RSC
PPC
V1
RSC-PPC
RSC-V1
PPC-V1

Simple Task,
Switching Experience

RSC
PPC V1

V1

PPC

RSC

0
0.005

0.01
0.015

0.02
0.025

p = 3.88e-08

Simple Experience

Switching ExperienceM
ea

n 
no

is
e 

co
rre

la
tio

n
(S

im
pl

e 
Ta

sk
)

Simple Task

Switching Task
0

0.005
0.01

0.015
0.02

0.025

M
ea

n 
no

is
e 

co
rre

la
tio

n p = 7.32e-16

Switching Task

Simple Task,
Simple Experience

Simple Task,
Switching Experience

20

.CC-BY 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted December 10, 2021. ; https://doi.org/10.1101/2021.12.10.472106doi: bioRxiv preprint 

https://doi.org/10.1101/2021.12.10.472106
http://creativecommons.org/licenses/by/4.0/


Figure 6. Switching task experience decreases noise correlations 
(A) Schematic of the training history sequence. One group of mice was first trained on the switching task and 

then permanently transitioned to the simple task. Another group was trained only on the simple task.  
(B) Mean pairwise noise correlations within and across areas from bootstrapped distributions of the mean in 

the switching task (left), the simple task with previous switching task experience (middle), and the simple 
task with only simple task experience (right). Noise correlations were calculated on spatially binned data 
in correct trials during high performance periods (Methods). 

(C) Left: Comparison of mean noise correlations in the switching task versus the simple task, p value is for the 
task factor from a two-way ANOVA (factors: task and area-combination). Error bars indicate mean ± sem 
across sessions per area combination (n = 6 area combinations, n sessions: 12 (simple task), 12 (switching 
task)). Right: Similar to left, except for the comparison of simple task noise correlations with and without 
previous switching task experience. n sessions: 12 (simple experience), 8 (switching experience). 

(D) For each area and task or previous task experience, the difference in trial-type decoding accuracy between 
neural populations (200 subsampled neurons) with intact and disrupted noise correlations. Noise 
correlations were disrupted by shuffling trials independently for each cell within a given trial type. Error 
bars show mean ± sem across sessions.  
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neuron-neuron correlations, compared to mice without this history, which together allowed for easier 328 

decoding of the relevant information from a population of neurons. Together, these results show that 329 

distinct sets of cortical areas can be used to solve the same task.  330 

 

We specifically varied the cognitive experience of mice while keeping the sensory cues and behavioral 331 

choice reports the same across decisions, with a focus on cortical association areas. Previous studies of 332 

perceptual experience and motor learning have emphasized that cortical necessity decreases with 333 

experience (Chowdhury & DeAngelis, 2008; Hwang et al., 2019; Kawai et al., 2015) (but see (Liu & Pack, 334 

2017)). Instead, we found an increased necessity of cortical association areas for simple decisions due to 335 

cognitive experience in two distinct, complex tasks (delay and switching tasks). Future work should aim to 336 

understand how differences in the type of experience (cognitive versus perceptual), types of tasks, and 337 

areas studied (association versus sensory or motor cortices) influence whether experience increases or 338 

decreases cortical necessity. 339 

 

In addition, these earlier works did not identify differences in neural tuning in MT with perceptual 340 

experience despite differences in necessity, leading to the proposal that differences in cortical necessity 341 

with experience arise from whether an area’s activity is read out by a downstream network. Here, we did 342 

find differences in neural selectivity specifically in association areas. However, these areas already 343 

contained task-relevant information in the simple task without complex task experience. It appears 344 

unlikely that the observed boost in neural selectivity with complex task experience is the sole reason for 345 

the large increase in cortical necessity for task performance. Increased cortical necessity may rather result 346 

from a combination of increases in task information, reshaped representations of information, and/or 347 

modifications to information readouts (Ruff & Cohen, 2019). Further work will be needed to test directly 348 

the relationship between specific features of the neural code and the causal roles of PPC and RSC in 349 

decision tasks. 350 

 

We found that cortical association areas had higher selectivity in their neural activity and were more 351 

strongly required for the complex tasks than the simple task. This finding supports the notion that cortex 352 

is needed for cognitively more challenging tasks. Previous work presented a similar finding but focused 353 

on tasks with a wide gap in their demands, such as comparing running toward a visual target versus using 354 

learned cue-choice associations to make navigation decisions (Buschman et al., 2011; Ceballo et al., 2019; 355 

Fuster, 1997; Harvey et al., 2012; Lashley, 1931; Pinto et al., 2019; Sarma et al., 2015). In our work, we 356 

extended this concept by keeping the visual and behavioral aspects of the complex and simple tasks as 357 

similar as possible and adding specific cognitive challenges. Our goal here was not to compare the specific 358 

features of the different tasks, and instead we used the complex tasks to establish different previous 359 

experiences. Future work will be needed to compare in more depth the neural activity in the different 360 

tasks and to understand how PPC and RSC might contribute to the switching and delay tasks.  361 

 

Our results have crucial implications for the experimental study of cortical involvement in decision-362 

making. Many studies, including our previous work, test an area’s involvement or activity patterns in a 363 

single task and develop interpretations of an area’s functions by extrapolating across studies (Lyamzin & 364 

Benucci, 2019). However, given that factors beyond the task-of-interest contribute to an area’s necessity 365 
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and activity in a task, we encourage consideration of a variety of factors that have often been ignored and 366 

not reported. Because prior task expertise can have a large effect on the involvement of cortical areas, it 367 

seems critical to report the full details of how animals were trained on a task and what previous 368 

experiences they encountered, both of which are commonly omitted from publications.  369 

 

Together, our results indicate that the cortical implementation of a decision task flexibly depends on initial 370 

conditions, as defined by past experience, and the overall optimization goal for the animal, which in many 371 

cases is not just a single task but also previous tasks or other tasks occurring in parallel (Golub et al., 2018; 372 

Sadtler et al., 2014). These results highlight the tremendous flexibility of the brain to perform outwardly 373 

identical tasks using distinct sets of brain areas and neural activity patterns and raise exciting challenges 374 

for understanding neural computation in the framework of dynamic and distinct neural solutions for a 375 

given cognitive problem. We propose that understanding cognitive processes will require considering the 376 

wider set of functions an animal is trying to optimize, beyond the decision or computation of interest in a 377 

particular study. To understand how long-ago cognitive experience and current cognitive demands set up 378 

these different neural circuit landscapes for outwardly identical decisions, we suggest to carefully control 379 

for and to intentionally vary cognitive experience in laboratory settings (Plitt & Giocomo, 2021; Sharpe et 380 

al., 2021), thereby approximating more naturalistic decision-making scenarios. We anticipate this 381 

approach will be particularly powerful to illuminate neural circuit differences underlying inter-individual 382 

variability and changes in neural dynamics during learning (Oby et al., 2019; Sadtler et al., 2014). 383 
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METHODS 404 

Mice 405 

All experimental procedures were approved by the Harvard Medical School Institutional Animal Care and 406 

Use Committee and were performed in compliance with the Guide for the Care and Use of Laboratory 407 

Animals. All optogenetic inhibition data were acquired from 19 male VGAT-ChR2-YFP mice (The Jackson 408 

Laboratory, stock 014548). All calcium imaging data were acquired from six C57BL/6J-Tg(Thy1-GCaMP6s) 409 

GP4.3Dkim/J mice (stock 024275) of both sexes (5 female, 1 male). Mice were 11-32 weeks old at the start 410 

of behavioral training. Age at training start did not vary systematically across tasks (simple task: 21 ± 7 411 

weeks (n = 7), switching task: 17 ± 5 weeks (n = 13), delay task: 21 ± 11 weeks (n = 5), mean ± SD, including 412 

photoinhibition and calcium imaging mice). Mice were kept on a reverse dark/light cycle and housed in 413 

groups of 2-3 littermates per cage (mice for optogenetic inhibition) or single-housed (mice for calcium 414 

imaging).  415 

 

Virtual reality setup 416 

Virtual reality environments (Harvey et al., 2009) were designed and operated in VirRMEn (Virtual Reality 417 

Mouse Engine) (Aronov & Tank, 2014). A novel, custom-made compact virtual reality design was 418 

employed (overall dimensions of approximately 15 inches wide x 21 deep x 18 high), using modifiable 419 

laser-cut acrylic and mirror pieces. A micro projector (Laser Beam Pro) projected the virtual environment 420 

onto a double-mirror system and a 15-inch diameter half-cylindrical screen. The mouse was head-fixed 421 

on top of an 8-inch diameter Styrofoam spherical treadmill. The mouse’s position in the virtual 422 

environment, and thus the projection, was controlled by the mouse’s movement of the treadmill, which 423 

was measured with two optical sensors (ADNS-9800, Avago Technologies) placed 90° apart from each 424 

other beneath the ball. The treadmill velocity was translated into pitch, roll, and yaw velocity relative to 425 

the mouse’s body axis using custom code on a Teensy microcontroller (PJRC). Pitch controlled 426 

forward/backward movement in the virtual world, while roll controlled lateral movement. The virtual view 427 

angle was fixed so that the mouse could not rotate in the virtual world. Designs for the virtual reality 428 

apparatus are available at https://github.com/HarveyLab/mouseVR. 429 

 

Behavioral training  430 

Mice were limited to 1 mL of water per day for several days before starting training. Body weight and 431 

body condition were checked daily. Mice were maintained at approximately 80% of their body weight 432 

prior to water restriction and received additional water if their body weight fell below 75% of their original 433 

weight. Mice were trained daily for 45-80 minutes (except for some weekends, when they received 1 mL 434 

of water without training). In the first training phase, to get accustomed to the experimental setup and to 435 

moving in virtual space, mice had to run down the length of a rectangular environment (‘linear maze’) 436 

towards a checkerboard pattern. When reaching the checkerboard, they received a reward (3- L of 10% 437 

sweetened condensed milk in water delivered through a lick spout) and were teleported back to the 438 

beginning after a brief inter-trial-interval (ITI, 1 s). The linear maze contained the visual cues on the walls 439 

that the mice would later learn to associate with rewarded choice directions. Linear maze length was 440 

increased on a session-by-session basis until mice completed approximately 200 trials of a 200 cm maze 441 

in 60 minutes (minimum / maximum maze length of 10 cm / 200 cm).  442 
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Y-Maze training, general procedures 443 

After training on the linear maze, mice were transitioned to a Y-shaped maze (180 cm long) in which they 444 

had to run towards one of two possible Y-arms to get rewarded. In all tasks, visual cues presented on 445 

maze walls were associated with rewarded choice arms at the end of the maze. Initially, in all tasks, the 446 

correct choice was signaled with a checkerboard at the end of the correct Y-arm (100% “visually guided 447 

trials”). Throughout training, the fraction of “visually guided trials” was gradually reduced on a session-448 

by-session basis by the experimenter, based on the mouse’s previous performance. For the simple and 449 

delay task, average performance in the preceding session had to exceed 80%. For the switching task, 450 

overall performance including periods after rule switches had to exceed 70% correct, performance after 451 

rule switches was inspected for drops followed by recovery over tens of trials, and mice had to obtain at 452 

least two rule switches per session. Across all tasks, after extensive training, a minority of trials were still 453 

“visually guided trials” (10-15%). In non-visually guided trials, the checkerboard appeared for 2 s as visual 454 

feedback once the mouse made a correct choice, followed by the reward and an ITI with a gray screen of 455 

2 s. After incorrect choices, no checkerboard was presented, and the ITI lasted for 4 s. A different cohort 456 

of mice was trained on each task unless specified otherwise. As some mice developed biases during 457 

training, making predominantly left or right choices, we employed a bias correction algorithm in some 458 

training sessions. If the mouse made the same choice on the last five trials irrespective of correctness, the 459 

next trial would contain a maze in which the opposite choice would be correct. This bias correction was 460 

only used at intermediate training stages and was not employed during inhibition or calcium imaging 461 

sessions.  462 

 

Simple task 463 

In the simple task, mice encountered one of two possible cues in a given trial, with a fixed association 464 

between cue identity and rewarded Y-arm. Horizontal gratings were associated with a left rewarded 465 

choice and vertical gratings were associated with a right rewarded choice. This pair of associations 466 

constitutes what we call ‘Rule A’ in the switching task. Visual cues were present along the entire extent of 467 

the maze, including the stem and the Y-arms.  468 

 

Delay task 469 

Mice trained in the delay task were first trained in the simple task. After reaching high performance levels 470 

in the simple task (at least 90% correct), a delay was introduced, i.e. a neutral visual texture present in all 471 

trial types that was uninformative about the choice to make on a given trial. In the first sessions of delay 472 

task training, the delay texture was only present in the Y-arms of the maze. Then the delay onset (i.e. cue 473 

offset) was gradually shifted earlier in the trial by 10 cm increments on a session-by-session basis if 474 

performance in the preceding session exceeded 80% correct, until only the first half of the Y-maze stem 475 

contained the visual cue (50 cm). Thus, mice had to traverse the rest of the maze without the informative 476 

cue on the walls. A subset of mice (2 out of 7: Mouse IDs 38, 41) were used for photoinhibition 477 

experiments both during the simple task before delay task training, and later during the delay task after 478 

delay task training. 479 
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Switching task 480 

In the switching task, mice encountered the trial types that were visually identical to those in the simple 481 

task, but now the associations between visual cue and rewarded choice were switched in blocks (Rule A 482 

and Rule B). In ‘Rule B’, mice had to make the opposite choices given the same cue identities as in Rule A 483 

to get rewarded, i.e. horizontal / vertical gratings were associated with a rightward / leftward choice, 484 

respectively. Rule switches were not explicitly signaled to the mice, so they had to integrate information 485 

of past cues, choices, and rewards to inform their belief about the current rule. Rule switches were present 486 

from the first day of the Y-maze training period. Given the increased cognitive demand of the switching 487 

task, the fraction of visually guided trials was reduced more slowly in the switching task than in the simple 488 

task. The initial rule in a given session was alternated on a daily basis, starting out with Rule A on the first 489 

day of training. Within a training session, a rule switch occurred if several criteria were met: a minimum 490 

of 75 trials from the previous rule switch or the session start, a minimum average performance in the last 491 

30 trials of 85% correct, and a correct choice on the immediately preceding trial. Mice encountered 2-3 492 

rule switches per session, indicating they could repeatedly switch associations successfully.  493 

 

Run-to-visual-target task 494 

To establish a baseline for cortical involvement in a simple navigation task in which mice did not use visual 495 

cues on the maze walls to guide their choices, we employed a run-to-visual target task. The maze had the 496 

standard Y-shape architecture, but no informative visual cues on the maze walls. Instead, mice simply had 497 

to run towards the checkerboard present at one of the two Y-arm ends in each trial. The checkerboard 498 

location (left or right) was randomly chosen on each trial. We used mice previously trained in either the 499 

simple task only (Figure 1—figure supplement 1) or trained on a complex task (switching or delay) before 500 

simple-task-only exposure (Figure 3—figure supplement 2), so the mice already knew that the 501 

checkerboard signified a reward location and required minimal training on this task (1-2 days prior to 502 

photoinhibition).  503 

 

Photoinhibition experiments 504 

Clear skull cap surgery 505 

We followed procedures described previously (Guo et al., 2014; Minderer et al., 2019). In brief, the scalp 506 

and the periosteum were removed from the dorsal skull surface. The skull surface was covered with a thin 507 

layer of cyanoacrylate glue (Insta-Cure, Bob Smith Industries). A bar-shaped titanium headplate was 508 

attached to the interparietal bone using dental cement (Metabond, Parkell). Several layers of transparent 509 

dental acrylic (Jet Repair Acrylic, Lang Dental, P/N 1223-clear) were applied to the parietal and frontal 510 

bones to create a transparent skull cap. In a subsequent procedure preceding photoinhibition 511 

experiments, the acrylic was polished with a polishing drill (Model 6100, Vogue Professional) with denture 512 

polishing bits (HP0412, AZDENT). Clear nail polish was applied on top of the polished acrylic (Electron 513 

Microscopy Sciences, 72180). An aluminum ring was attached to the skull using dental cement mixed with 514 

carbon powder (Sigma-Aldrich) for light-shielding.  515 
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Experimental setup and logic 516 

Light from a 470 nm collimated laser (LRD-0470-PFFD-00200, Laserglow Technologies) was focused onto 517 

the skull using an achromatic doublet lens (f = 300 mm, AC508-300-A-ML, Thorlabs). We coupled the laser 518 

to a pair of galvanometric scan mirrors (6210H, Cambridge Technology) in combination with rapid analog 519 

laser power modulation to allow fast movement of the focused beam between cortical target sites. At the 520 

focus, the laser beam had a diameter of approximately 200 µm.  521 

We started photoinhibition only after mice reached expert performance in a given task (criterion for the 522 

simple or delay task: performance of approximately 85% correct or higher, criteria in the switching task: 523 

at least two rule switches with only 15% visually-guided trials per session). We thus started inhibition after 524 

shorter training times in the simple task group of mice, compared to the complex task (delay or switching) 525 

groups that required longer training times to reach expert performance (see Figure 1). In each session, we 526 

bilaterally targeted PPC, RSC, S1, and a control site outside of the brain (on the dental cement) on 527 

separate, interleaved trials. For PPC, S1, and control targets, we used single bilateral laser spots, with laser 528 

power sinusoidally modulated at 40 Hz and a time-average power of approximately 6.5 mW/spot. For RSC, 529 

we used three spots on each hemisphere to match the region’s anatomical extent, with laser power 530 

sinusoidally modulated at 20 Hz and a mean power of approximately 5 mW/spot. The target coordinates 531 

in mm from bregma were: RSC (-3.5, -2.5, -1.5 anterior-posterior (AP); 0.5 medial-laterial (ML)); PPC (-2 532 

AP, 1.75 ML); S1 (-0.5 AP, 2.5 ML); control (2 AP, 5 ML). Based on previous calibration studies (Guo et al., 533 

2014; Pinto et al., 2019), we estimate that the laser powers employed here inhibited a cortical area with 534 

a radius of 1-2 mm per inhibition spot.  535 

 

In each experimental session, blocks of at least 50 trials without laser light were alternated with laser-on 536 

blocks of 50 trials. Laser-on blocks only started if the mouse’s average performance in the preceding 30 537 

trials was at least 85% correct. Thus, in the switching task, laser-on blocks occurred once the mouse had 538 

reached stable performance in the current rule block. In the switching task, rule switches happened after 539 

the end of each laser-on block. Within laser-on blocks, approximately 50% of trials were control trials, and 540 

the laser target location was randomly chosen for each trial. Within a trial, the laser was on from 0.5 s 541 

before visual cue onset at the trial beginning until the mouse reached the end of the maze, excluding the 542 

visual feedback and reward / ITI periods of the trial. In the run-to-visual-target task and a subset of 543 

sessions in the simple task, a single long block of 200 laser-on trials was delivered after the mouse reached 544 

high performance levels, again with approximately 50% control trials randomly interleaved with cortical 545 

inhibition trials. In the simple task, inhibition effects did not vary between sessions with laser-on blocks 546 

of 50 or 200 trials.  547 

 

For experiments with maze segment-specific inhibition in the delay task (Figure 1—figure supplement 3), 548 

the stem of the Y-maze was doubled in length to 200 cm, and the laser-on period per session was 549 

restricted to either only the cue period (maze beginning until delay onset) or the delay period (delay onset 550 

until the end of the maze, excluding visual feedback and reward / ITI periods). Cue only and delay only 551 

inhibition sessions were generally alternated from day to day.  552 

For experiments with ITI inhibition in the switching task (Figure 1—figure supplement 4), PPC was the only 553 

cortical inhibition target. PPC was inhibited during the ITI for 50 consecutive trials following either the first 554 
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or the second rule switch per session. In all other trials, the laser was steered to the control location during 555 

the ITI so that rule switches could not be inferred simply from the presence of laser light. Inhibition started 556 

upon the mouse reaching one of the two possible Y-arm maze ends and lasted throughout checkerboard 557 

feedback presentation and the ITI / reward delivery.  558 

 

Long-term experimental stability and order of experiments across tasks 559 

To ensure stability of experimental conditions across long times, we maintained constant laser power by 560 

measuring maximum power daily and cleaning optics if necessary. To ensure stability of inhibition 561 

conditions per mouse, we verified the alignment of the laser beam orientation to the mouse’s skull by 562 

creating a laser cross pattern to be centered on Bregma and to be aligned with the mouse’s AP-ML skull 563 

axes. To aid in the latter, we added marks on the mouse’s dental cement in AP and ML that the laser cross 564 

had to intersect. To change alignment horizontally or vertically, we moved an X-Y stage that the laser 565 

apparatus was mounted on. We controlled for rotation by slight adjustments to the posts holding the 566 

mouse’s headplate. Experiments in different cohorts across tasks were not systematically interleaved but 567 

were clustered in time as we iterated through hypotheses throughout the project. We have several 568 

indicators that experimental conditions remained stable and that differences across tasks were not the 569 

result of experimental drift. First, data for the switching task were collected in several groups of mice 570 

spanning the full range of data collection times, yet the average inhibition effects on performance were 571 

similar (group 1 (early) (mouse IDs 24, 27, 42) versus group 2 (late) (mouse IDs 72, 73, 74): ΔFraction 572 

correct for Rule A: S1: -9 ± 2 % vs -7 ± 2%, RSC: -31 ± 1% vs -38 ± 4%, PPC: -34 ± 3% vs -30 ± 3 %, mean ± 573 

sem). Second, data from the simple task with notably smaller inhibition effects were collected in between 574 

these two groups and were partly on overlapping days as the first group. Third, in some mice (Mouse IDs 575 

38, 41), we tested the effect of inhibition in the identical mice in the simple task first, as well as after they 576 

learned the delay task, observing large differences in cortical inhibition effects in the same mice within 577 

weeks (ΔFraction correct in simple versus delay task: S1: -1 ± 2 % vs -18 ± 18%, RSC: -16 ± 6% vs -36 ± 3%, 578 

PPC: -5 ± 2% vs -37 ±  8 %, mean ± sem).  579 

 

Calcium imaging experiments 580 

Large chronic cranial window surgery 581 

We slightly modified procedures described previously (Kim et al., 2016; Kılıç et al., 2021). Mice were 582 

injected with Dexamethasone (3 µg per g body weight) 4-8 h prior to surgery and anesthetized with 583 

isoflurane (1-2% in air). A cranial window surgery was performed to either fit a ‘crystal skull’ curved 584 

window (LabMaker UG) exposing the dorsal surface of both hemispheres (Kim et al., 2016) or the left 585 

hemisphere only (Kılıç et al., 2021), or to fit a stack of custom laser-cut quartz glass coverslips (three 586 

coverslips with #1 thickness each (Electron Microscopy Sciences), cut to a ‘D’-shape with maximum 587 

dimensions of 5.5 mm medial-lateral and 7.7 mm anterior-posterior, and glued together with UV-curable 588 

optical adhesive (Norland Optics NOA65)), exposing the left cortical hemisphere. The skull was kept moist 589 

using saline throughout the drilling procedure and soaked in saline for one to two minutes before being 590 

lifted. The dura was removed before sealing the window using dental cement (Parkell). A custom titanium 591 

headplate was affixed to the skull using dental cement mixed with carbon powder (Sigma-Aldrich) to 592 

prevent light contamination. A custom aluminum ring was affixed on top of the headplate using dental 593 
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cement. During imaging, this ring interfaced with a black rubber balloon enclosing the microscope 594 

objective for light-shielding.  595 

 

Calcium imaging setup and data acquisition 596 

Data were collected using a large field of view two-photon microscope assembled as described previously 597 

(Sofroniew et al., 2016). In brief, the system consisted of a combination of a fast resonant scan mirror and 598 

two large galvanometric scan mirrors allowing for large scan angles. Together with a remote focusing unit 599 

to rapidly move the focus depth, this setup enabled random access imaging in a field of view of 5 mm 600 

diameter with 1 mm depth. The setup was assembled on a vertically mounted breadboard whose XYZ 601 

positions and rotation were controlled electronically via a gantry system (Thorlabs). Thus, to position the 602 

imaging objective with respect to the mouse, the position and rotation of the entire microscope were 603 

adjusted while the position of the mouse remained fixed. The excitation wavelength was 920 nm, and the 604 

average power at the sample was 60-70 mW. The microscope was controlled by ScanImage 2016 (Vidrio 605 

Technologies). We imaged in three distinct regions in the left cortical hemisphere: V1, PPC, and RSC. These 606 

regions were identified based on retinotopic mapping (see below). In each region, we acquired images in 607 

layer 2/3 from two planes spaced 50 µm in depth, at 5.36 Hz per plane at a resolution of 512 x 512 pixels 608 

(600 µm x 600 µm). Imaging was performed in expert mice in the simple task, switching task, and simple 609 

task after switching task experience (criterion for the simple task: performance of approximately 85% 610 

correct or higher, criteria in the switching task: at least two rule switches with only 15% visually-guided 611 

trials per session). The stem of the Y-maze was extended by 50% (50 cm) compared to the maze 612 

architecture in photoinhibition sessions, resulting in a maze length of 230 cm.  Each imaging session lasted 613 

45-80 minutes. During imaging, slow drift of the image was occasionally corrected manually by moving 614 

the gantry to align the current image with an image from the beginning of the session. For synchronization 615 

of imaging and behavior data, both the imaging and the behavior frame clock were recorded on another 616 

computer using Wavesurfer (https://wavesurfer.janelia.org/). 617 

 

Retinotopic mapping for selecting calcium imaging locations 618 

We performed retinotopic mapping in mice used for calcium imaging experiments as previously described 619 

(Driscoll et al., 2017; Minderer et al., 2019). Mice were lightly anesthetized with isoflurane (0.7 – 1.2% in 620 

air). A tandem-lens macroscope was used in combination with a CMOS camera to image GCaMP 621 

fluorescence at 60 Hz (455 nm excitation, 469 nm emission). A periodic spherically corrected black and 622 

white checkered moving bar (Marshel et al., 2011) was presented in four movement directions on a 623 

gamma-corrected 27 inch IPS LCD monitor (MG279Q, Asus). The monitor was centered in front of the 624 

mouse’s right eye at an angle of 30 degrees from the mouse’s midline. To produce retinotopic maps, we 625 

calculated the temporal Fourier transform at each pixel of the imaging data and extracted the phase at 626 

the stimulus frequency (Kalatsky & Stryker, 2003). These phase images were smoothed with a Gaussian 627 

filter (25 μm s.d.). Field sign maps were generated by computing the sine of the angle between the 628 

gradients of the average horizontal and vertical retinotopic maps. 629 

  

For each retinotopic mapping session, we acquired an image of the superficial brain vasculature pattern 630 

under the same field of view. We acquired a similar brain vasculature image under the large field of view 631 

two-photon microscope. These two reference images were manually aligned and used to directly locate 632 
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V1 and PPC locations for two-photon imaging. The location for RSC imaging was positioned adjacent to 633 

the midline and about 300 μm anterior of the PPC location.  634 

 

General analyses 635 

Statistical estimates and significance were generally generated with hierarchical bootstrapping 636 

(Saravanan et al., 2020), and data are reported as mean ± sem of hierarchical bootstrap distributions, 637 

unless noted otherwise. Standard error of the mean was calculated as the standard deviation of the means 638 

from a bootstrap distribution (n = 10000 resampled datasets). For analyses of optogenetic inhibition 639 

effects, resampled datasets were generated by sampling with replacement first at the level of sessions 640 

pooled across mice and then at the level of trials. For analyses of calcium imaging data, resampled datasets 641 

were generated by resampling at the level of sessions then neurons. For significance testing of differences 642 

between bootstrap distributions, the probability that one was greater or less than the other, whichever 643 

was smaller, was computed. To obtain a p-value for a two-tailed test with α = 0.05, this probability was 644 

doubled. Analyses were performed with custom code in MATLAB. No statistical methods were used to 645 

predetermine sample sizes, but our sample sizes were similar to ones in previous publications in the field. 646 

Allocation of individual mice into experimental groups, i.e. behavioral tasks, was not randomized, and co-647 

housed mice were trained on the same behavioral task and task sequence. Data collection was not 648 

performed blind to the experimental groups. Blinding experimenters would have been challenging as 649 

experimenters remained present throughout behavioral sessions to ensure the sessions were running 650 

smoothly, and many experimental groups were inferable by observing the virtual reality display and 651 

rewarded choices over time. Data collection was performed by four different experimentalists. Analyses 652 

were also non-blinded but performed by two different experimentalists. A small number of behavioral 653 

sessions were excluded from analysis due to low performance of the mouse on control trials. Imaging 654 

sessions were excluded in case of noticeable drift after motion correction.  655 

 

Analysis of photoinhibition experiments 656 

Effects of photoinhibition on performance 657 

Performance was quantified as ‘fraction correct’, the fraction of trials in which the mouse made the 658 

correct choice. Chance performance was 50% correct. Effects of cortical inhibition were measured as 659 

ΔFraction Correct, the fraction correct with inhibition minus the fraction correct with the laser steered to 660 

the control (off-cortex) spot. Fraction correct and ΔFraction Correct were calculated on a session-basis. 661 

For comparisons of control performance and performance with various cortical inhibition targets within 662 

a task, significance levels were adjusted with the Bonferroni method.  663 

 

Quantification of learning times 664 

To compare the number of training sessions necessary to achieve expert performance across tasks (Figure 665 

1), training sessions were counted from the first day on the Y-maze, after training on the linear maze, until 666 

both of the following performance criteria were reached per session: maximum of 20% “visually guided 667 

trials” and average fraction correct of at least 70% correct (switching task) or 85% (simple task and delay 668 

task). Note that in the switching task, these performance criteria included all trials per session, including 669 

trials following rule switches. For the delay task, an additional performance criterion was a delay length 670 
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of 50 cm, and only mice without prior photoinhibition sessions in the simple task were included (5 out of 671 

7 delay task mice). 672 

 

Photoinhibition effects on biases and running parameters 673 

Choice biases were calculated per mouse and task (Figure 1—figure supplement 2). For each session, a 674 

signed choice bias value for each inhibition target was calculated as: (Frac Corrleft – Frac Corrright) / (Frac 675 

Corrleft + Frac Corrright). Thus, a signed choice bias of 1 or -1 indicates that the mouse only made left or 676 

right choices, respectively. Inhibition effects on running parameters for each inhibition target were 677 

calculated by averaging the treadmill velocity for forward running (pitch axis) per trial during inhibition 678 

and normalizing each value by the average treadmill pitch velocity in control trials of the same session. 679 

The resulting values were averaged within each mouse before averaging across mice.  680 

 

Analysis of calcium imaging experiments 681 

Pre-processing of imaging data 682 

To correct for motion artifacts, custom code was used as described in detail previously (Chettih & Harvey, 683 

2019): https://github.com/HarveyLab/Acquisition2P_class/tree/motionCorrection. In brief, motion 684 

correction was implemented as a sum of shifts on three distinct temporal scales: sub-frame, full-frame, 685 

and minutes-to-hour-long warping. After motion correction, regions of interest (ROIs) were extracted with 686 

Suite2P (Pachitariu et al., 2016). Afterwards, somatic sources were identified with a custom two-layer 687 

convolutional network in MATLAB trained on manually annotated labels to classify ROIs as neural somata, 688 

processes, or other (Chettih & Harvey, 2019). Only somatic sources were used. After identifying individual 689 

neurons, average fluorescence in each ROI was computed and converted into a normalized change in 690 

fluorescence (ΔF/F). We corrected the numerator of the ΔF/F calculation for neuropil by subtracting a 691 

scaled version of the neuropil signal estimated per neuron during source extraction: 692 

 

FneuropilCorrected = F - 0.7*Fneuropil.  693 

 

The baseline fluorescence of this trace was estimated as the 8th percentile of fluorescence within a 60 s 694 

window (baselineneuropilCorrected), and subtracted to get the numerator:  695 

 

ΔF = FneuropilCorrected - baselineneuropilCorrected 696 

 

We divided this by the baseline (again 8th percentile of 60 s window) of the raw fluorescence signal to get 697 

ΔF/F. The ΔF/F trace per neuron was deconvolved using the constrained AR-1 OASIS method (Friedrich et 698 

al., 2017). Decay constants were initialized at two seconds and optimized separately for each neuron.  699 

 

All analyses were performed on deconvolved activity that was spatially binned along the long axis of the 700 

maze (5 cm bins). To be able to compare neural activity across tasks, only correct trials from high 701 

performance periods were included (minimum of 80% correct in a window of 10 trials, which excludes 702 
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periods after rule switches in the switching task). In the switching task, only trials from a single rule (Rule 703 

A, i.e. the vertical grating cue/horizontal grating cue requires a right/left choice) were included. 704 

Furthermore, for comparisons of trial-type selectivity, noise correlations, or trial-type decoding across 705 

tasks, trials were subsampled to the low number of trials per trial type (i.e. horizontal cue / left trial versus 706 

vertical cue / right trial) per session in the switching task when considering only high performance trials 707 

for Rule A (n = 30 trials per trial type).  708 

 

Trial-type selectivity  709 

To quantify if activity of single neurons was informative about the current trial type, the area under the 710 

receiver operating characteristics curve (auROC) was calculated for each bin and averaged per maze 711 

segment (first half of stem, second half of stem, Y-arms). Trial-type selectivity was defined as the unsigned 712 

version of the auROC: 2*|auROC – 0.5| (Najafi et al., 2020). To identify neurons with significant trial-type 713 

selectivity, for each neuron, unsigned auROC values were recomputed 100 times with shuffled trial labels, 714 

and the original value was compared to the resulting distribution. Trial-type selectivity was considered 715 

significant if the probability of drawing this value from the shuffled distribution was less than 0.01. The 716 

fraction of trial-type selective neurons was calculated for each spatial bin and subsequently averaged per 717 

maze segment.  718 

 

Trial-type decoding 719 

For each session and area, at each spatial bin, a linear SVM was trained to predict the current trial type 720 

(i.e. horizontal cue / left trial versus vertical cue / right trial) using the activity of a subsample of neurons 721 

(n = 5, 10, 25, 50, 75, 150 or 200 neurons, activity of each neuron z-scored), with 10-fold cross-validation. 722 

This procedure was repeated 40 times for populations of 5 or 10 neurons, and 20 times for populations 723 

of 25-200 neurons. For each repetition, the decoding accuracy per bin was calculated as the fraction of 724 

test trials in which the trial type was predicted correctly. Decoding accuracy was averaged across spatial 725 

bins and repetitions per subsampled population per session. To compare trial-type decoding across tasks, 726 

a two-way ANOVA with factors for task and population size was used.  727 

 

Noise correlations 728 

To measure pairwise noise correlations, we calculated the Pearson correlation coefficient for pairs of 729 

neurons separately for each trial type, and then averaged the coefficients across trial types. To compare 730 

noise correlations across tasks, a two-way ANOVA with factors for task and brain area combination was 731 

used. To assess the effect of noise correlations on population information, we disrupted noise correlations 732 

by shuffling the order of trials for each neuron independently for each trial type and repeated the trial-733 

type decoding analysis above. We then calculated the difference in decoding accuracy, subtracting the 734 

mean accuracy with disrupted noise correlations from the mean accuracy with intact noise correlations, 735 

for a given population size and task. 736 

 

Choice decoding based on running parameters 737 

To quantify how well a mouse’s reported choice could be decoded from its running parameters in a given 738 

task, a generalized linear model was fit using as predictors the instantaneous treadmill velocities for all 739 

axes (pitch, roll, yaw), and the lateral maze position. Running parameters were spatially binned along the 740 
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maze’s long axis (5 cm bins), and a different model was trained for each bin with 10-fold cross-validation. 741 

In photoinhibition experiments, only control trials were used. Only correct trials from high performance 742 

periods were used (minimum of 80% correct in a window of 10 trials, which excludes periods after rule 743 

switches in the switching task), and in each session, trials were subsampled to the low number of trials 744 

per trial type in the switching task when considering only high-performance trials for a single rule per 745 

session (n = 30 trials per trial-type). To sub-select calcium imaging sessions with similar running patterns 746 

to control for differences in running patterns across tasks (Figure 4—figure supplement 2), we used a 747 

session-wise criterion of average choice decoding accuracy of 85-95% in the maze stem.  748 
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Figure 1—figure supplement 1. Similar deficits from inhibition in a run-to-target task as in the simple 
task 
(A) Schematic and virtual reality screenshots of run-to-target task showing left and right trials.  
(B) Performance in the run-to-target task for each inhibited location across 15 sessions from 3 mice. Bars 

indicate mean ± sem of a bootstrap distribution of the mean. S1 p = 0.85; RSC p < 0.001; PPC p = 0.16; 
from bootstrapped distributions of ΔFraction Correct (difference from control performance) 
compared to 0, two-tailed test, α = 0.05 plus Bonferroni correction. Sessions per mouse: 5 ± 2. Trials 
per session: 93 ± 11 (control), 26 ± 5 (S1), 24 ± 5 (RSC), 28 ± 6 (PPC), mean ± SD.  

(C) Comparison of performance on control trials in the simple task (same dataset as in Figure 1K) versus the 
run-to-target task using only the first two laser-on blocks in each session. Bars indicate mean ± sem of a 
bootstrap distribution of the mean; p < 0.001, two-tailed comparison of bootstrapped Fraction Correct 
distributions, α = 0.05. Trials per session: 51 ± 23 (simple task), 93 ± 11 (run-to-target task), mean ± SD.  

(D) Comparison of inhibition effects (ΔFraction Correct) in the simple task (same dataset as in Figure 1F) 
and the run-to-target task for each cortical inhibition location. Bars indicate mean ± sem of a bootstrap 
distribution of the mean; two-tailed comparisons of bootstrapped ΔFraction Correct distributions, α = 
0.05.  
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Figure 1—figure supplement 2. Inhibition effects on choice biases and running parameters across tasks 
(A) Signed choice bias for each inhibited location in each task. Line colors indicate different mice. Error 

bars indicate mean ± sem across sessions. Sessions per task per mouse: 11 ± 2 (simple), 15 ± 5 
(switching), 9 ± 4 (delay). 

(B) Same as in (A), except for the absolute value of choice bias. 
(C) Percent change in forward running velocity with inhibition, averaged across the entire maze. Error 

bars indicate mean ± sem across mice. Mice per task: 4 (simple), 6 (switching), 7 (delay). 
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Figure 1—figure supplement 3. Cue only or delay only inhibition in the delay task 
(A) Left: schematic of the delay task. Right: Inhibition was restricted to either the cue period only or the 

delay period only in a given session. 
(B) Performance in the delay task with cue only (blue, 48 sessions from 5 mice) or delay only (green, 45 sessions 

from 5 mice) inhibition for each inhibited location. Bars indicate mean ± sem of a bootstrap distribution 
of the mean. For cue only or delay only inhibition individually, inhibition performance was compared 
to control performance, two-tailed test, α = 0.05 plus Bonferroni correction. Cue only: S1 p = 0.09; 
RSC p < 0.001; PPC p < 0.001. Sessions per mouse: 10 ± 2. Trials per session: 59 ± 16 (control), 14 ± 6 
(S1), 14 ± 5 (RSC), 15 ± 5 (PPC), mean ± SD. Delay only: S1 p = 0.27; RSC p < 0.001; PPC p < 0.001. 
Sessions per mouse: 9 ± 2. Trials per session: 61 ± 15 (control), 14 ± 5 (S1), 15 ± 4 (RSC), 15 ± 5 (PPC), 
mean ± SD.  

(C) Comparison of inhibition effects (ΔFraction Correct) in the simple task (same dataset as in Figure 1F) 
and the delay task with cue inhibition only for each cortical location. Bars indicate mean ± sem of a 
bootstrap distribution of the mean; two-tailed comparisons of bootstrapped ΔFraction Correct 
distributions, α = 0.05.  

(D) Similar to (C), but for delay inhibition only in the delay task.  
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Figure 1—figure supplement 4. Performance on trials following inhibition and rule switching with 
inhibition during the feedback/ITI period 
(A) Left: Schematic of the inhibition locations (same as in Figure 1). Middle: inhibition lasted from trial 

onset throughout maze traversal. Right: As in Figure 1, inhibition target locations per trial were 
randomly interleaved. Analysis here used performance on control trials that directly followed 
inhibition of the labeled location on the preceding trial.  

(B) Performance on control trials immediately following an inhibition trial, for the simple task, for each 
inhibited location across 45 sessions from 4 mice. Bars indicate mean ± sem of a bootstrap distribution 
of the mean. S1 p = 1; RSC p = 1; PPC p = 1; from bootstrapped distributions of ΔFraction Correct 
(difference from control performance) compared to 0, two-tailed test, α = 0.05 plus Bonferroni 
correction. Sessions per mouse: 11 ± 2. Trials per session: 22 ± 12 (control), 8 ± 3 (S1), 8 ± 4 (RSC), 9 ± 
4 (PPC), mean ± SD.  

(C) Similar to (B), except for the delay task. 62 sessions from 7 mice. S1 p = 1; RSC p = 0.12; PPC p = 0.50. 
Sessions per mouse: 9 ± 4. Trials per session: 29 ± 8 (control), 8 ± 3 (S1), 9 ± 4 (RSC), 7 ± 3 (PPC).  

(D) Similar to (B), except for the switching task (Rule A trials only). 89 sessions from 6 mice. S1 p = 0.66; 
RSC p = 0.27; PPC p = 0.19. Sessions per mouse: 15 ± 5. Trials per session: 13 ± 6 (control), 4 ± 2 (S1), 
5 ± 2 (RSC), 4 ± 2 (PPC).  

(E) Top: Schematic of the switching task. Bottom: schematic of a single trial with inhibition during the 
feedback and ITI period.  

(F) Left: Schematic of PPC and control targets. Right top: Example behavioral performance in one session 
in the switching task. Right bottom: inhibition blocks of 50 trials started after a rule switch, with 
inhibition during the feedback/ITI period. The same area was targeted on every trial.  

(G) Average performance after a rule switch with PPC (blue) or control (black) inhibition on every trial 
during the feedback/ITI. 33 sessions from 4 mice (8 ± 2 sessions per mouse, mean ± SD). Shading 
indicates mean ± sem across sessions. Thin lines indicate single sessions. Fraction Correct was 
Gaussian-filtered (window of 7 trials, sigma of 3 trials) and smoothed again with a moving average 
filter of 3 trials for plotting. 

(H) Comparison of mean performance with PPC versus control inhibition after a rule switch in bins of 10 
trials. Error bars indicate mean ± SEM across sessions, gray lines show single sessions (n = 33). Paired 
two-sided t-tests. p (trials 1-10): 0.42; p (trials 11-20): 0.43; p (trials 21-30): 0.64; p (trials 31-40): 0.66; 
p (trials 41-50): 0.34.  
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Figure 3—figure supplement 1
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Figure 3—figure supplement 1. Mice with experience in the switching task perform at high levels on no-
laser trials in the simple task and can still switch rules 
(A) Schematic of the training history sequence. One group of mice was trained on the switching task and 

then permanently transitioned to the simple task. This group of mice was compared to another group 
trained only on the simple task.  

(B) Left: Performance for an example mouse with switching task experience across the first 30 trials per 
session for sessions 1, 2, and 14 in the simple task. Each session started with a block of no-laser trials 
(minimum of 50 trials) before the first laser-on block. Fraction Correct was Gaussian-smoothed with 
a window size of 7 trials, sigma of 3 trials. Middle: Average performance in the first 30 no-laser trials 
of a session in the simple task. Gray lines: individual mice. Bars indicate mean ± sem across mice (n = 
5). Right: Average initial performance in the switching task (orange, 90 sessions from 6 mice), in each 
week in the simple task of mice with previous switching task experience (red, 35 and 34 sessions from 
5 mice in week 1 and 2, respectively), and in the simple task in mice with simple-task-only experience 
(gray, 45 sessions from 4 mice). Bars indicate mean ± sem across sessions. Unpaired two-sided t-tests 
comparing performance in the simple task with and without switching task experience. Week 1: p = 
0.00096, week 2: p = 0.43.  

(C) Schematic of task sequence: After training in the switching task, mice were transitioned to the simple 
task without any rule switches for 14 days. Then for a single session, mice were exposed to the rule 
they had not been exposed to for 14 days.  

(D) Performance in the rule mice had not experienced for 14 days. Gray lines: individual mice. Black line: 
average across mice. Lines are only shown until the next rule switch, which different mice 
encountered at different numbers of trials based on their performance.  
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Figure 3—figure supplement 2. Increased cortical involvement in the simple task after complex task 
experience does not generalize to the run-to-target task 
(A) Schematic of task training sequence. One group of mice was trained in the simple task and then 

transitioned to the run-to-target task. Another group of mice was first trained in a complex task 
(switching or delay task), then transitioned to the simple task for 14 days, and then tested on the run-
to-target task.  

(B) Comparison of inhibition effects (ΔFraction Correct) in the run-to-target task in mice with simple task-
only versus complex and simple task experience, for each cortical inhibition location. Bars indicate 
mean ± sem of a bootstrap distribution of the mean; two-tailed comparisons of bootstrapped 
ΔFraction Correct distributions, α = 0.05. Simple task-only experience (same dataset as in Figure 1—
figure supplement 1): 15 sessions from 3 mice, 5 ± 2 sessions per mouse. Trials per session: 93 ± 11 
(control), 26 ± 5 (S1), 24 ± 5 (RSC), 28 ± 6 (PPC), mean ± SD. Complex task and simple task experience: 
11 sessions from 3 mice, 4 ± 2 sessions per mouse. Trials per session: 94 ± 4 (control), 28 ± 2 (S1), 23 ± 
2 (RSC), 28 ± 4 (PPC), mean ± SD.  
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Figure 4—figure supplement 1
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Figure 4—figure supplement 1. Neuronal trial-type selectivity is sequentially organized 
(A) Trial-type selectivity (absolute deviation of auROC from chance level, 2*|auROC-0.5|) was calculated 

per neuron and spatial maze bin (5 cm bin size) and is shown for all neurons pooled across mice and 
sessions in each cortical area and task. Neurons were sorted by the maze position of their selectivity 
peak. Mice per task: simple (3), switching (3), simple after switching (2).  
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Figure 4—figure supplement 2
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Figure 4—figure supplement 2. Trial-type selectivity for sessions with similar running patterns 
(A) Left: Decoding accuracy of the reported choice using instantaneous treadmill velocities and lateral 

position, binned along the maze’s long axis (5 cm bins). Shading indicates mean ± sem across all 
sessions per task. Sessions per task: 12 (simple), 12 (switching), 8 (simple after switching). Right: 
Decoding accuracy using a subset of sessions with similar running patterns, i.e. with average choice 
decoding accuracy in the maze stem ranging from 85-95%. Sessions per task: 4 (simple), 5 (switching), 
5 (simple after switching). 

(B) For sessions with similar running patterns, in each area, mean trial-type selectivity levels across cells 
by maze segment are compared in the simple versus the switching task (Rule A trials only). Shading 
indicates mean ± sem of bootstrapped distributions. p(segment) shows p values of two-tailed 
comparisons of bootstrapped distributions per maze segment. p(overall) shows the p value for the task 
factor from a two-way ANOVA (factors: task and maze segment). 

(C) For sessions with similar running patterns, similar to (B), except for the fraction of trial-type selective 
cells as determined from comparing each cell’s selectivity value to a distribution with shuffled trial 
labels (significance threshold of p < 0.01).  

(D) For sessions with similar running patterns, similar to (B), but for the simple task after switching task 
experience.  

(E) For sessions with similar running patterns, similar to (C), but for the simple task after switching task 
experience.  
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