

1 **A nanobody-based toolset to monitor and modify the mitochondrial GTPase Miro1**
2 *Funmilayo O. Fagbadebo¹, Philipp D. Kaiser², Katharina Zittlau³, Natascha Bartlick⁴, Teresa*
3 *R. Wagner^{1,2}, Theresa Froehlich¹, Grace Jarjour¹, Stefan Nueske⁵, Armin Scholz⁵, Bjoern*
4 *Traenkle², Boris Macek³ and Ulrich Rothbauer^{1,2#}*

5

6 **Affiliations/Addresses**

7 ¹ Pharmaceutical Biotechnology, Eberhard Karls University Tübingen, Germany

8 ² NMI Natural and Medical Sciences Institute at the University of Tübingen, Reutlingen,
9 Germany

10 ³ Quantitative Proteomics, Department of Biology, Interfaculty Institute of Cell Biology,
11 Eberhard Karls University Tübingen, Germany

12 ⁴ Interfaculty Institute of Biochemistry, Eberhard Karls University Tübingen, Germany
13 ⁵ Livestock Center of the Faculty of Veterinary Medicine, Ludwig Maximilians University
14 Munich, Oberschleissheim, Germany

15

16 [#] corresponding author

17 Prof. Dr. Ulrich Rothbauer, Natural and Medical Sciences Institute at the University of
18 Tübingen

19 Markwiesenstr. 55, 72770 Reutlingen, Germany.

20 E-mail: ulrich.rothbauer@uni-tuebingen.de

21 Phone: +49 7121 51530-415

22 Fax: +49 7121 51530-816

23 Orcid ID: 0000-0001-5923-8986

24

25 **Abstract**

26 The mitochondrial outer membrane (MOM)-anchored GTPase Miro1, is a central player in
27 mitochondrial transport and homeostasis. The dysregulation of Miro1 in amyotrophic lateral
28 sclerosis (ALS) and Parkinson's disease (PD) suggests that Miro1 may be a potential
29 biomarker or drug target in neuronal disorders. However, the molecular functionality of Miro1
30 under (patho-) physiological conditions is poorly known. For a more comprehensive
31 understanding of the molecular functions of Miro1, we have developed Miro1-specific
32 nanobodies (Nbs) as novel research tools. We identified seven Nbs that bind either the N- or
33 C-terminal GTPase domain of Miro1 and demonstrate their application as research tools for
34 proteomic and imaging approaches. To visualize the dynamics of Miro1 in real time, we
35 selected intracellularly functional Nbs, which we reformatted into chromobodies (Cbs) for time-
36 lapse imaging of Miro1. By genetic fusion to an Fbox domain, these Nbs were further converted
37 into Miro1-specific degrons and applied for targeted degradation of Miro1 in live cells. In
38 summary, this study presents a collection of novel Nbs that serve as a toolkit for advanced
39 biochemical and intracellular studies and modulations of Miro1, thereby contributing to the
40 understanding of the functional role of Miro1 in disease-derived model systems.

41

42 **Introduction**

43 Neurodegenerative disorders including Alzheimer's disease, Parkinson's disease (PD) and
44 amyotrophic lateral sclerosis (ALS) pose a major public health challenge especially in societies
45 with a rapidly aging population. Due to the fundamental role of mitochondria in energy
46 production, calcium homeostasis, reactive oxygen species (ROS) formation, and initiation of
47 apoptosis [1], pathological mitochondrial morphologies and a dysfunctional quality control are
48 among the main drivers in the development and progression of neurodegeneration [2, 3].
49 Within cells, mitochondria are continuously transported along actin- and microtubule-based
50 cytoskeletal pathways to areas in demand of ATP supply or calcium buffering [4, 5].
51 Microtubule-based transport is effected by the motor proteins kinesins and dyneins in
52 anterograde and retrograde directions, respectively [6]. Miro1, a member of the Rho GTPase
53 family, which is mainly located on the surface of the mitochondrial outer membrane (MOM) [7-
54 9], acts as an adaptor to tether motor complexes to mitochondria. Structurally, Miro1 is
55 composed of two distinct N- and C-terminally located GTPase domains flanking a pair of
56 calcium ion (Ca^{2+}) binding EF-hands and a C-terminal transmembrane domain anchored in the
57 MOM [10, 11]. By its cytoplasmic domains, Miro1 interacts with the adaptor proteins TRAK1
58 and TRAK2 [11], which recruit the motor proteins kinesin-1 (KIF5B) and dynein/dynactin to
59 facilitate mitochondrial transport along microtubules [12, 13]. This motor/adaptor complex is
60 regulated by Ca^{2+} levels. At high concentrations, Ca^{2+} arrests mitochondrial transport by
61 binding to the EF hand domains of Miro1, causing the motor complex to detach from the
62 organelle [14-17]. Similarly, Miro1 interacts with Cenp-F for cell cycle-dependent distribution
63 of mitochondria during cytokinesis [18, 19], and overexpression of Miro1 was shown to
64 enhance intercellular transfer of mitochondria from mesenchymal stem cells to stressed
65 epithelial cells [20, 21]. Besides mitochondria, Miro1 was also shown to play an important role
66 in peroxisomal transport [19, 22].
67 Additionally, Miro1 is a known substrate of the mitophagy-associated PINK1/Parkin quality
68 control system [23] and impaired Miro1 ubiquitination has been recently linked to Parkin
69 mutants found in Parkinson's disease (PD) patients and in fibroblasts from an at-risk cohort

70 [24, 25]. This was further confirmed by the identification of mutations in the Miro1 gene *RHOT1*
71 causing an altered mitophagy response [26, 27]. Although not yet demonstrated at the
72 molecular level, dysregulated cellular levels of Miro1 have been described in ALS animal
73 models and in patients [28, 29]. These results, in combination with recent data describing
74 aberrant peroxisomal metabolism in PD patients [27, 30], strongly suggest a multifactorial link
75 between Miro1 and neurological diseases. Consequently, Miro1 is considered as an emerging
76 biomarker and potential drug target in neuropathology [25, 31].

77 Despite previously conducted *in vitro* and *in vivo* studies on Miro1, detailed information about
78 its structure-related function and cellular dynamics are still lacking [32]. This can be partially
79 attributed to a limited availability of research tools to appropriately study Miro1. Most analyses
80 rely on ectopic expression of fluorescent fusion constructs or epitope-tagged Miro1 [10, 11, 18,
81 19, 33]. On the other hand, only a limited number of Miro1-specific reagents such as antibodies
82 are available to visualize and study endogenous Miro1.

83 Single-domain antibody fragments, also known as nanobodies (Nbs), derived from heavy
84 chain-only antibodies found in camelids [34] have been established as attractive alternatives
85 to conventional antibodies for a multitude of biochemical assays [35-38] and advanced imaging
86 applications (reviewed in [39-41]). Additionally, their small size, high solubility and stability
87 qualify Nbs for intracellular expression (reviewed in [42, 43]). Intracellularly functional Nbs
88 genetically fused to fluorescent proteins, designated as chromobodies (Cbs), have been
89 successfully applied for tracing their target antigens in different cellular compartments as well
90 as in whole organisms (reviewed in [39, 44]). For the generation of advanced research tools
91 to study Miro1, we developed specific Nbs from an immunized library. Following an in depth
92 characterization of their binding properties, we selected candidates applicable as capture and
93 detection reagents in biochemical assays, immunofluorescence staining and live-cell imaging.
94 Additionally, we designed specific degrons for selective degradation of Miro1 within living cells.
95 Based on our results, we propose that the presented Nb-based toolkit opens new opportunities
96 for more comprehensive studies of Miro1 and helps to elucidate its multifaceted roles for
97 mitochondrial malfunction in neurological disorders.

98 **Results**

99 *Identification of Miro1-specific Nbs*

100 To generate Nbs specific for human Miro1 (Miro1), we immunized an alpaca (*Vicugna pacos*)
101 with recombinant Miro1 adopting a 91-day immunization protocol. After confirmation of a
102 successful immune response in a serum ELISA (**Supplementary Figure 1**), we generated a
103 phagemid library of $\sim 1.5 \times 10^7$ clones from peripheral B lymphocytes of the immunized animal,
104 representing the diverse repertoire of variable domains (VHHs or Nbs) of the heavy chain-only
105 antibodies. For selection of Miro1-specific Nbs, we performed phage display using either
106 passively adsorbed Miro1, or GFP-Miro1 from HEK293 cells with site-directed immobilization
107 employing the GFP moiety (**Supplementary Figure 2A**). After two and three rounds of
108 biopanning against Miro1 or GFP-Miro1, we analysed a total of 200 individual clones by phage
109 ELISA and identified 42 positive binders (**Supplementary Figure 2B, C**). Sequence analysis
110 revealed seven unique Nbs with highly diverse complementarity determining regions (CDR) 3
111 (**Figure 1A**). For further analysis, Miro1-Nbs were produced with a C-terminal His₆ tag in
112 *Escherichia coli* (*E.coli*) and purified via immobilized metal ion affinity chromatography (IMAC)
113 followed by size exclusion chromatography (SEC) (**Figure 1B**). Binding affinities were
114 assessed by biolayer interferometry (BLI) for which we immobilized biotinylated Nbs on
115 streptavidin (SA) biosensors and measured their binding kinetics by loading different
116 concentrations of Miro1. Our results showed that all seven Nbs bind Miro1 with high affinities
117 in the low nanomolar range with K_D values ranging from 1.9 to 29.5 nM (**Figure 1C, Table 1**,
118 **Supplementary Figure 3A-F**).

119

120 *Immobilized Miro1-Nbs specifically precipitate Miro1*

121 Considering that a variety of Nbs covalently immobilized to solid matrices such as agarose
122 particles have been applied as pulldown reagents to capture their antigens [35, 45, 46], we
123 used this approach to investigate the functionality of Miro1-Nb candidates for
124 immunoprecipitation (IP). We chemically coupled Miro1-Nbs to N-hydroxysuccinimide (NHS)-
125 activated agarose particles thereby generating Miro1-nanotrap. First, these nanotrap were

126 incubated with the soluble fraction of cell lysates derived from HEK293 cells expressing GFP-
127 Miro1 or GFP as control. Immunoblot analysis of input and bound fractions revealed that all
128 Miro1-nanotrap except M11 and M85 efficiently precipitated GFP-Miro1, with M114 and M119
129 exhibiting the highest pulldown efficiencies comparable to the commercially available high-
130 affinity GFP nanotrap [35] (ChromoTek) (**Figure 2A**). Notably, none of the tested nanotrap
131 showed unspecific binding to GFP or GAPDH used as an endogenous control (**Figure 2A**,
132 **Supplementary Figure 4**). Next, we investigated the potential of the nanotrap to precipitate
133 endogenous Miro1 from soluble HEK293 protein extracts. Immunoblot analysis revealed Miro1
134 in the bound fractions of M41, M114, M119 and M189. The levels of precipitated Miro1 were
135 comparable or slightly higher to those obtained with a conventional anti-Miro1 antibody, while
136 no unspecific binding of Miro1 to a nanotrap displaying a non-related Nb was detected (**Figure**
137 **2B**). Because we generally observed rather low levels of endogenous Miro1, we tested
138 different cell types such as U2OS or HeLa cells, different lysis conditions, or the use of different
139 Miro1-specific antibodies for detection (**Supplementary Figure 5**). From these results it can
140 be concluded that only minor fractions of endogenous Miro1 are released under non-
141 denaturing lysis conditions, making it difficult to study Miro1 regardless of the capturing reagent
142 used.

143

144 *Immunofluorescence studies with Miro1-Nbs*

145 For a second functional testing, we examined the performance of Miro1-Nbs in
146 immunofluorescence (IF). Therefore we applied the Nbs as primary binding molecules in
147 combination with fluorescently labelled anti-VHH antibodies in fixed and permeabilized HeLa
148 cells transiently expressing GFP-Miro1. Interestingly, Nbs M11 and M25, which did not capture
149 Miro1 by immunoprecipitation showed a clear co-localization with GFP-Miro1 at mitochondrial
150 structures. With M41-Nb, we identified one candidate which displayed functionality in both
151 assay types (**Figure 2C**). Taken together, our data from IP and IF analysis showed the
152 identified Miro1-Nb candidates have the potential to capture and detect their antigen *in vitro*.

153

154 *Selected Miro1-Nbs bind different domains of Miro1*
155 To generate well-characterized binders, detailed knowledge of their recognized epitopes or
156 domains is mandatory. Considering that Nbs preferentially bind conformational epitopes [47,
157 48], we performed domain mapping to identify the binding regions recognized by our Miro1-
158 Nbs. Therefore, we generated a series of Miro1 domain deletion constructs fused C-terminally
159 to GFP (**Figure 3A**) and performed pulldown studies upon expression of these deletion
160 constructs in HEK293 cells as described above. Analysis of the bound fractions revealed that
161 M11, M41, M85, M114 and M189 specifically recognize epitopes within the C-terminal GTPase
162 domain while M25 addresses an epitope spanning the N-terminal GTPase in combination with
163 the EF-hand domains. For M119, we observed interactions involving regions of the EF hands
164 as well as the C-terminal GTPase domains (**Figure 3B**).

165
166 *Optimized, bivalent Nbs show improved capture and detection of Miro1*
167 With M41- and M114-Nb we identified two candidates that have high affinities, are devoid of
168 additional disulfide bonds and tested positive in IP and/ or IF detection of Miro1. In the
169 monovalent format, however, both Nbs bind only small amounts of Miro1. To improve their
170 binding performance, we genetically fused the coding sequences of two M41- or two M114-
171 Nbs head-to-tail, inserting a flexible Gly-Ser linker ((G₄S)₄) of 20 amino acids and generated a
172 bivalent M41-Nb (_{biv}M41) and a bivalent M114-Nb (_{biv}M114). Following production and
173 purification from mammalian cells (**Supplementary Figure 6A**), we analyzed their binding
174 kinetics by BLI measurements showing similar or slightly improved affinities (**Supplementary**
175 **Figure 6B**). To avoid potential reduction in binding due to nonspecific modification of lysine
176 residues by NHS-based coupling, we changed to a site-specific functionalization strategy.
177 Thus, we introduced an azide-modified peptide at the C-terminus of the bivalent Nbs via
178 chemoenzymatic sortagging [49, 50] followed by click-chemistry addition of a
179 dibenzocyclooctyne (DBCO) derivate. This enabled us to flexibly conjugate either agarose
180 particles or fluorescent dyes specifically to the C-terminus of the bivalent Nbs [51]. With this

181 approach, we converted $_{\text{biv}}\text{M41}$ and $_{\text{biv}}\text{M114}$ into fluorescently labeled bivalent imaging probes
182 and nanotrap, which we further tested in their respective applications.

183 First, we performed IF staining of GFP-Miro1 expressing HeLa cells with either the monovalent
184 Nbs, which were chemically coupled to AlexaFluor (AF) 647 ($\text{M41}_{647\text{-NHS}}$; $\text{M114}_{647\text{-NHS}}$) or the
185 bivalent formats, which were C-terminally conjugated to AF647 ($_{\text{biv}}\text{M41}_{647\text{-sort}}$; $_{\text{biv}}\text{M114}_{647\text{-sort}}$).
186 For $_{\text{biv}}\text{M41}_{647\text{-sort}}$, image analysis showed a significantly improved staining and a crisp overlap
187 of the GFP-Miro1 and Nb signal at mitochondrial structures compared to the monovalent
188 version. For M114-Nb, for which no Miro1 was detectable with the monovalent version,
189 mitochondrial structures became visible once this Nb was applied in the bivalent format.
190 Notably, when tested for detection of endogenous Miro1 in HeLa cells, $_{\text{biv}}\text{M114}_{647\text{-sort}}$ shows a
191 strong mitochondrial staining comparable to the conventional Miro1 antibody (**Figure 4**).
192 Next, we tested the different nanotrap to pull down endogenous Miro1. Comparative
193 immunoprecipitation of endogenous Miro1 from lysates of HEK293 cells using either the
194 chemically immobilized monovalent nanotrap (M41_{NHS} ; M114_{NHS}) or the site-directed modified
195 versions ($_{\text{biv}}\text{M41}_{\text{sort}}$; $_{\text{biv}}\text{M114}_{\text{sort}}$) revealed a considerably increased accumulation of
196 endogenous Miro1 after pulldown with $_{\text{biv}}\text{M41}_{\text{sort}}$ and also slightly higher enrichment for
197 $_{\text{biv}}\text{M114}_{\text{sort}}$. Notably, in both cases the amount of precipitated Miro1 was higher compared with
198 the conventional Miro1 antibody used as a positive control (**Figure 5A**). For a more detailed
199 analysis, we continued and performed an in-depth comparison of the mono- and bivalent
200 nanotrap (M41_{NHS} ; M114_{NHS} and $_{\text{biv}}\text{M41}_{\text{sort}}$; $_{\text{biv}}\text{M114}_{\text{sort}}$) using mass-spectrometry analysis to
201 evaluate their potential use in protein interaction studies. In total, three technical replicates for
202 each nanotrap were performed, with equal cell number as input material, which allowed us to
203 apply label-free quantification. Initially, we validated the reproducibility between replicates,
204 which showed a Spearman rank correlation close to one (**Supplementary Figure 7A**).
205 Correlation was lower between the different monovalent or bivalent nanotrap, suggesting a
206 difference in their performance. These findings were further supported by principal component
207 analysis (PCA), for which we observed that ~66% of the sample variance can be explained in
208 the first component by the two different nanotrap formats used (**Supplementary Figure 7B**).

209 Next, we analysed the efficiency of each nanotrap to capture endogenous Miro1. Sequence
210 alignment analysis of the eight annotated Miro1 isoforms showed a high level of sequence
211 identity between isoforms (data not shown). In total, 31 “razor” peptides were identified for
212 Miro1 isoform 3 and 30 peptides, including one unique peptide, for isoform 2 (**Supplementary**
213 **Figure 7C**). Both bivalent nanotrap, as well as the M114_{NHS} nanotrap, were able to capture
214 isoform 2 in addition to isoform 3. Notably, bivalent nanotraps allowed for the identification of
215 more Miro1 peptides compared to their monovalent formats, which is also reflected by the
216 higher Miro1 sequence coverage (**Supplementary Figure 7D**). We validated the enrichment
217 efficiency of Miro1 capture based on intensity based absolute quantification (iBAQ) (**Figure**
218 **5B**). Overall, we detected a higher background for bivalent nanotraps of up to 1,760 proteins,
219 which is comparable to the controls. Despite the high background, the highest level of Miro1
220 isoform 3 and 2 was detected for both bivalent nanotraps. While the M41_{NHS} nanotrap showed
221 comparable levels of Miro1 as the controls, M114_{NHS} as well as the bivalent nanotraps all
222 showed an increased Miro1 capture. Finally, we classified known Miro1 interactors (based on
223 STRING database annotation), by their direct or indirect interaction with Miro1 in combination
224 with the confidence score. While all nanotraps showed a clear enrichment of Miro1, in
225 comparison to the control nanotraps, only the _{biv}M114_{sort} allowed for the enrichment of class 1
226 interactors such as MFN2 or FKBP8 (**Figure 5C**).

227 In summary, these results demonstrate how the performance of Nbs as capture and detection
228 tools can be improved by generating bivalent binding molecules in combination with site-
229 specific functionalization. From our data we concluded that the bivalent Miro1-Nbs have a high
230 potential as detection probes to visualize even low levels of endogenous Miro1. Similarly, the
231 bivalent nanotraps showed an improved performance in capturing Miro1. Especially the site-
232 specifically modified _{biv}M114-Nb might be a suitable capture reagent to be applied in future
233 interactome studies of Miro1.

234

235 *Characterization of intracellular binding of Miro1-Cbs*

236 The advantage of Cbs, defined as chimeric expression constructs comprising a Nb genetically
237 fused to a fluorescent protein, is that they can visualize dynamic redistribution and expression
238 levels of endogenous antigens within living cells with spatial and temporal resolution (reviewed
239 in [44]). To analyse the functionality of selected Miro1-Nbs for intracellular targeting and tracing
240 of Miro1 in living cells, we converted them into Cbs by fusing the Nb-coding sequences via a
241 flexible GS linker to TagRFP. The Cb constructs were transiently expressed either alone or in
242 combination with GFP-Miro1 in HeLa cells followed by live-cell fluorescence imaging. For
243 M41-, M85- and M114-Cb, we observed a clear relocalization of the Cb signal to mitochondrial
244 networks in the presence of GFP-Miro1 (**Figure 6A**), whereas all other Miro1-Cbs seem to lose
245 their binding properties or could not access their epitopes within the cellular localized antigen
246 (**Supplementary Figure 8**). Additionally, we examined whether the intracellular functional
247 M41-, M85- and M114-Cb could recognize the previously identified domains of Miro1 within
248 living cells. Thus, we expressed the Miro1 domain deletion constructs described above (**Figure**
249 **3A**) along with the Cb constructs in HeLa cells. Subsequent cellular imaging showed that
250 ectopic expression of the C-terminal GTPase domain of Miro1 resulted in specific relocalization
251 of M41-, M85- and M114-Cb to the mitochondrial network, confirming our results from pulldown
252 domain mapping for these Cbs (**Supplementary Figure 9A-C**). However, when we examined
253 Cb binding to endogenous Miro1, we observed a rather diffuse cellular distribution of the Cb
254 signal and we did not detect any characteristic mitochondrial structures as seen with an anti-
255 Miro1 antibody staining of Cb expressing cells (**Supplementary Figure 9D**).
256

257 *Visualization of compound-induced mitochondrial dynamics in living cells*

258 Our Cb-based imaging results indicated that the M114-Cb shows a slightly better intracellular
259 binding compared to M41- and M85-Cb. Thus, we continued and investigated the utility of this
260 Cb as an intracellular biosensor to track changes in mitochondrial morphology in living cells.
261 For real-time analysis, U2OS cells transiently co-expressing the M114-Cb or a mito-mKate2
262 construct and GFP-Miro1 were treated with Sorafenib or DMSO as control. Sorafenib has been

263 shown to induce mitochondrial fragmentation and apoptosis in a time-dependent manner [52,
264 53]. By time-lapse imaging, we visualized changes in mitochondrial morphology within single
265 cells over a two hour period with an imaging interval of 30 min (**Figure 6B, Supplementary**
266 **Figure 10**). Following 30 min of Sorafenib treatment, images revealed the collapse of the
267 mitochondrial network reflected by gradual disappearance of elongated mitochondria. After
268 90 min, condensed mitochondrial networks were visible in the majority of treated cells. Both,
269 the Sorafenib induced mitochondrial morphological transitions as well as normal shape
270 changes observable in the DMSO control were successfully visualized by the M114-Cb. These
271 results underline the applicability of the M114-Cb to monitor morphological changes of
272 mitochondria in real time.

273

274 *Selective degradation of Miro1 in living cells*

275 Previously, it was reported that depletion of Miro1 by pharmacological intervention or genetic
276 silencing rescues mitophagy activation [31]. To test whether our Nbs could also be used to
277 induce targeted degradation of Miro1 in living cells, we engineered genetically encoded Miro1-
278 specific degrons. To this end, we fused the intracellularly functional Nbs, M41 and M114, or
279 the GFP-Nb (GBP) as control, N-terminally to the mammalian Fbox domain to generate a
280 specific loading platform at Miro1 for components of the mammalian E3 ligase complex,
281 namely SKP1 and Cul1 (**Figure 7A**). Notably, similar approaches using other Nbs were
282 successfully applied to induce selective protein knockdown within cells or organisms [54-58].
283 These Fbox-Nb constructs were cloned into mammalian expression vectors containing an
284 independently transcribed nuclear TagRFP (TagRFP-NLS) to facilitate the identification of
285 transfected cells in cellular imaging analysis. First, we examined whether Fbox-GBP, Fbox-
286 M41, and Fbox-M114 are functional binders and can bind transiently co-expressed GFP-Miro1
287 in HeLa cells. A clear overlap of the Fbox-Nb signal with GFP-Miro1 after IF staining using an
288 anti-VHH antibody showed that N-terminal fusion of the Fbox domain did not affect intracellular
289 binding of the Nbs (**Supplementary Figure 11A**). Furthermore, quantification of fluorescence
290 intensity in cells coexpressing the Fbox-Nb constructs and GFP-Miro1 revealed a ~80%

291 reduction of the GFP signal in cells expressing Fbox-M114, ~50% in cells expressing Fbox-
292 M41, and ~50% in cells expressing Fbox-GBP, respectively. Co-expression of a nonspecific
293 Nb-Fbox construct (Fbox-NR) results only in a non-significant reduction in GFP-Miro1
294 (**Supplementary Figure 11B-C**). Although we could not detect a clear relocalization of
295 intracellularly expressed Nbs to endogenous Miro1 before, we continued and investigated the
296 Fbox fusions with respect to their potential to degrade endogenous Miro1. Therefore, HeLa
297 cells were transfected with Fbox-Nbs and cellular levels of Miro1 following 24 h of expression
298 were monitored by quantitative IF imaging using an anti-Miro1 antibody in cells displaying a
299 nuclear TagRFP signal. While characteristic mitochondrial structures were still observable
300 (**Figure 7B**), quantification of the antibody signals in a statistically relevant number of cells
301 ($n > 500$ cells) showed a ~16% and ~30% decrease in the IF signal upon expression of Fbox-
302 M41 and Fbox-M114, respectively. Notably, expression of the nonspecific Fbox-NR results
303 only in a minor reduction of less than ~4% of the Miro1 signal (**Figure 7C**). From these results
304 we concluded that both specific Fbox-Nb fusion constructs can address endogenous Miro1 in
305 live cells and induce targeted degradation of their antigen.

306

307 **Discussion**

308 The emerging role of Miro1 in the development and progression of diseases, particularly
309 neurological disorders, underscores the need for new methods and tools to study this protein
310 in detail at the molecular level [25, 59-62]. Currently, most studies rely on expression of
311 exogenous tagged Miro1 [18, 22, 62, 63]. However, this has been shown to affect mitochondrial
312 morphology and transport in living cells [11] and can also lead to biases in proteomic data, for
313 example, to elucidate potential interaction partners. To expand the ability to study Miro1 in
314 different experimental settings, we developed a collection of Nbs, which were screened for
315 their performance as i) affinity capture tools, ii) labelling probes for fluorescence imaging, iii)
316 intrabodies for visualization and monitoring of Miro1 in live cells, and iv) as Miro1-specific
317 degrons. In total, we selected seven specific binding molecules, which recognize distinct
318 domains of Miro1 with affinities down to the low nanomolar range. These Nbs can be easily
319 produced in high yields in bacteria and four of them were successfully functionalized by simple
320 chemical conjugation as capture molecules to precipitate Miro1 from soluble cell lysates in the
321 monovalent format.

322 After determining that the identified Nbs in their monovalent format were not suitable as primary
323 probes for visualization of endogenous Miro1, we decided to convert the most promising
324 candidates, M41 and M114, to a bivalent format. In combination with an advanced labeling
325 strategy using site-specific functionalization via sortase tagging in combination with click
326 chemistry, we were able to generate highly functional capture reagents. Our mass
327 spectrometry data indicate that these modified bivalent Miro1 nanotrap are well suited to
328 capture different isoforms of Miro1 and thus have high potential for future interactome studies.
329 Interestingly, only the site-directed modified bivalent M114-Nb also allowed detection of
330 endogenous Miro1 by immunofluorescence imaging. Consistent with previous findings, this
331 confirms the critical impact of Nb formatting and functionalization for the generation of efficient
332 binding molecules that enable one-step detection of their antigens [50, 64, 65]. Considering
333 that IF staining of Miro1 with these bivalent Nbs does not require a secondary antibody and
334 thus a greater spatial proximity of the fluorophore to the target can be achieved, we assume

335 that especially with the _{biv}M114-Nb, which also strongly recognizes endogenous Miro1, a
336 promising candidate for the visualization of Miro1 has been generated. We have already
337 developed and used such Nb-based imaging probes for the detection of endogenous vimentin
338 using stochastic optical reconstruction microscopy (STORM) [39, 50]. Thus, we anticipate that
339 the _{biv}M114 can be similarly adapted for such advanced imaging techniques on more relevant
340 cells including primary neurons or neurons derived from induced pluripotent stem cells of PD
341 patients which might offer an unprecedented insight in the cellular localization of Miro1 in those
342 models.

343 Besides their application as recombinant capturing and detection tools, numerous studies
344 reported how Nbs can be functionally expressed in the reducing milieu of living cells to visualize
345 subcellular antigen location or to modulate their target structure and function [43, 45, 66-68].
346 Accordingly, with M41, M85 and M114, we identified three Nbs, which we converted into
347 intracellularly functional Cbs to visualize Miro1 in living cells. Although, we were not able to
348 detect endogenous Miro1 with Cbs probably due to low levels and a disperse localization of
349 different endogenous isoforms of Miro1, these Cbs could visualize dynamic changes of
350 exogenous Miro1 in time-lapse imaging series. From our treatment studies with Sorafenib we
351 concluded that the Cbs are unaffected by changes in the mitochondrial membrane potential
352 and stably bind their antigen after fixation. This might be advantageous compared to other
353 fluorescent dyes e.g. the MitoTracker series, which bind to thiol groups within mitochondria
354 and have been shown to be sensitive to changes in the membrane potential [69].

355 To mimic Parkin-mediated Miro1 degradation in living cells, we decided for the application of
356 an artificial nanobody-coupled ubiquitin ligase system. Therefore, we used the M41-Nb and
357 M114-Nb as specific substrate recognition modules for the SKP1-Cul1-Fbox complex to
358 mediate the selective degradation of endogenous and exogenous Miro1. It has to be noted
359 that expression of these degrons did not result in complete depletion of endogenous Miro1. It
360 is possible that the efficacy is due to insufficient binding of endogenous Miro1 yet, which could
361 be further investigated e.g. by FRAP (fluorescent recovery after photobleaching) experiments
362 [45, 70]. Alternatively, it can be speculated whether other known degron entities, such as fusion

363 with TRIM21 [71] or the auxin-dependent degradation system [72], might be better suited for
364 depletion of Miro1 using the target-specific Nbs identified here. Although expression of the
365 degron did not completely deplete endogenous Miro1, the effect was replicable and not
366 observed in the absence of the Fbox protein or in the presence of an unrelated Nb-based
367 degron. For functional studies, CRISPR and RNAi approaches are currently employed to knock
368 down endogenous Miro1 in loss-of-function studies. However, apart from the inherent
369 limitations of each approach, both methods lead to complete loss of Miro1 disrupting
370 mitochondrial homeostasis [59, 73]. For this reason, the Nb-based degrons holds great benefit
371 as an option for targeted Miro1 depletion. With the ongoing development of an inducible system
372 applied in PD neuronal models, Fbox-Nb-mediated Miro1 degradation could expand the
373 possibilities to study PD-related mitophagy impairment.

374 In summary, this study introduces for the first time, an adaptable and flexible toolset of specific
375 Nbs for the multi-faceted study of the mitochondrial GTPase, Miro1. In the nanotrap format,
376 the identified Nbs are promising capture tools for the proteomic characterization of Miro1
377 domain-dependent interactions. Conjugated to fluorophores, Nbs have a distinct potential to
378 be applied as labelling probes for one step detection e.g. in high-resolution imaging of Miro1
379 at mitochondria. Formatted into Cbs, formidable intracellular biosensors of Miro1 dynamics
380 within live cells were generated. As intracellular Miro1 binding agents, the Nbs can be easily
381 fused with different protein domains for the targeted modulation of Miro1 in live cells. The
382 versatile applicability of our Nb set underscores its substantial potential as Miro1-specific
383 research toolkit, and we propose that its scope will soon expand to decipher novel and/or
384 further confirm proposed functions of Miro1 in pathophysiological relevant states.

385 **Materials and Methods**

386 *Nanobody library construction*

387 Alpaca immunization with purified Miro1 and Nb library construction were carried out as
388 previously described [66]. Animal immunization was approved by the government of Upper
389 Bavaria (Permit number: 55.2-1-54-2532.0-80-14). In brief, one alpaca (*Vicugna pacos*) was
390 immunized with recombinant human Miro1 expressed in *E.coli*. After an initial priming dose of
391 1 mg, the animal received booster injections of 0.5 mg after the 3rd, 4th, 7th and 12th week.
392 20 mL serum samples collected after the 9th and 13th week were analysed for seroconversion.
393 13 weeks after the initial immunization, 100 mL of blood was collected and lymphocytes were
394 isolated by Ficoll gradient centrifugation using the Lymphocyte Separation Medium (PAA
395 Laboratories GmbH). Total RNA was extracted using TRIzol (Life Technologies) and mRNA
396 was reverse transcribed to cDNA using a First-Strand cDNA Synthesis Kit (GE Healthcare).
397 The Nb repertoire was isolated in 3 nested PCR reactions using following primer combinations:
398 (i) *CALL001* and *CALL002*, (ii) forward primer set *FR1-1*, *FR1-2*, *FR1-3*, *FR1-4* and reverse
399 primer *CALL002*, and (iii) forward primer *FR1-ext1* and *FR1-ext2* and reverse primer set *FR4-*
400 *1*, *FR4-2*, *FR4-3*, *FR4-4*, *FR4-5* and *FR4-6* introducing *Sfi* and *Not* restriction sites. The
401 sequences of all primers used in this study are shown in **Supplementary Table 1**. The Nb
402 library was subcloned into the *Sfi*/ *Not* sites of the pHEN4 phagemid vector [74].

403

404 *Nanobody screening*

405 For the selection of Miro1-specific Nbs, two and three consecutive phage enrichment rounds
406 were performed either with recombinant Miro1 immobilized on NuncTM ImmunoTM MaxiSorpTM
407 tubes (Thermo Scientific) or HEK293-expressed GFP-Miro1 immobilized on ChromoTek GFP-
408 Trap[®] Multiwell plate (Proteintech). To generate Nb-presenting phages, *E.coli* TG1 cells
409 comprising the Miro1-Nb library in pHEN4 vector were infected with the M13K07 helper phage.
410 . 1 x 10¹¹ phages, prepared from culture supernatant by PEG precipitation, were used for each
411 panning process. Extensive blocking of antigen and phages was performed in each selection
412 round with 5% milk or BSA in PBST (PBS, 0.05% Tween 20, pH 7.4) [48].

413 For the selection process using recombinant Miro1, phages were first applied on immunotubes
414 coated with GFP (10 µg/mL) to deplete non-specific binders and then transferred to
415 immunotubes either coated with Miro1 (10 µg/mL) or GFP (10 µg/mL) as non-related antigen.
416 Incubation steps were performed at RT for 2 h. Washing stringency was increased for each
417 selection round. Bound phages were eluted in 100 mM triethylamine (pH 12.0), followed by
418 immediate neutralization with 1 M Tris/HCl pH 7.4. For the panning process using GFP-Miro1,
419 2 × 10⁷ HEK293 cells transiently expressing GFP-Miro1 or GFP were harvested and lysed as
420 previously described [75]. GFP-Miro1 and GFP were immobilized respectively on GFP-Trap®
421 Multiwell plates according to manufacturer's protocol. To deplete GFP-specific binding
422 molecules, phages were first applied into wells displaying GFP and then transferred into wells
423 with immobilized GFP-Miro1. All incubation steps of three consecutive selection rounds were
424 performed at 4 °C for 2 h under constant mixing. Washing and elution steps were carried out
425 equally as described above. After each panning round exponentially growing *E.coli* TG1 cells
426 were infected with eluted phages and spread on selection plates to rescue phagemids.
427 Antigen-specific enrichment for each round was monitored by counting colony forming unit
428 (CFUs). Following panning, 100 individual clones from both panning strategies were screened
429 by phage ELISA procedures using immobilized Miro1 or GFP-Miro1 as antigen and GFP as
430 control. Bound phages were detected using a horseradish peroxidase-labeled anti-M13
431 monoclonal antibody (GE Healthcare) and Thermo Scientific™ 1-Step™ Ultra TMB solution.

432

433 *Expression Plasmids*

434 For the bacterial expression, Nb sequences were cloned into the pHEN6C vector [35], thereby
435 adding a C-terminal sortase tag (LPETG) followed by a His₆ tag for IMAC purification as
436 described previously [50]. For mammalian expression, the coding sequence for _{biv}M41 was
437 produced by gene synthesis (Thermo Fisher Scientific) and cloned into the pCDNA3.4
438 expression vector downstream of an N-terminal signal peptide (MGWTLVFLFLLSVTAGVHS)
439 for secretion using restriction enzymes *Xba*I and *Age*I sites. _{biv}M114 was generated by insertion
440 of two coding sequences of M114 into the pCDNA3.4 expression vector in three steps: first,

441 M114 sequence was amplified in two separate PCRs using primer sets *bivM114GA-for*,
442 *nterm1273_rev* and *bivM114GA2_for*, *downEcoRI_rev*; second, both amplicons were then
443 fused by overlap-extension PCR with additional use of primers *bivM114FPCR_for* and
444 *bivM114FPCR_rev*; third, the resulting sequence was cloned into *Esp3I*- and *EcoRI*- digested
445 pCDNA3.4 expression vector by Gibson assembly according to the manufacturer's protocol.
446 To generate Miro1-Cbs, Nb sequences were genetically fused with TagRFP by ligation into
447 *BgIII*- and *BstEII*-sites of the plasmid previously described as PCNA-chromobody [70]. The
448 expression construct for GFP-Miro1 was generated by Gibson assembly cloning [76] of three
449 fragments: the pEGFP-N1 vector (Takara Bio) backbone, amplified with the primer set
450 *vectorGA_for* and *vectorGA_rev* and the cDNA of human Miro1 isoform 1 (UniProtKB Q8IXI2-
451 1), amplified in two fragments from the Miro1-V5-HisA plasmid, a gift from Julia Fitzgerald [26]
452 using the primer set *Miro1fragA_for* and *Miro1fragA_rev* and primer set *Miro1fragB_for* and
453 *Miro1fragB_rev* respectively. Miro1 domain deletion constructs for mammalian expression
454 were cloned from the GFP-Miro1 expression plasmid generated in this study. Respective
455 domains and vector backbone were amplified by PCR using the following primer sets:
456 *nGTP_for* and *nGTP_rev* for eGFP-nGTPase-TMD; *nGTP_for* and *nGTPEF2_rev* for eGFP-
457 nGTPase-EF1-EF2-TMD, *ΔnGTP_for* and *ΔnGTP_rev* for eGFP-EF1-EF2-TMD. Amplicons
458 comprising additional terminal *KpnI* recognition sites were purified, digested with *KpnI/DpnI*
459 and intramolecular re-ligated according to standard protocols. The eGFP-cGTPase-TMD
460 expression plasmid was generated by site directed mutagenesis with the primers, *cGTP_for*
461 and *cGTP_rev* using the Q5 Site-Directed Mutagenesis Kit (New England Biolabs) according
462 to the manufacturer's protocol. The mammalian expression construct for GFP was previously
463 described [46]. For molecular cloning of the mammalian expression vector
464 pcDNA3_Fbox-Nb-IRES-tRFP-NLS, DNA assembly of the following three fragments was
465 performed. Fragment 1 - the complete sequence of plasmid pcDNA3_NSImb-vhhGFP4, a gift
466 from Markus Affolter (Addgene plasmid #35579) [56] amplified by PCR using primers
467 *NM95_for* and *NM95_rev*; fragment 2- the IRES sequence, amplified by PCR from a pcDNA3.1
468 vector variant, pcDNA3.1(+)-IRES-GFP, a gift from Kathleen_L Collins (Addgene plasmid

469 #51406) with primers *frag2IRES_for* and *frag2IRES_rev* and fragment 3, generated in two
470 steps. First, an NLS sequence was inserted downstream of the TagRFP sequence in the Cb
471 expression vector described above with primers *nls-insert_for* and *nls-insert_rev* using the Q5
472 Site-Directed Mutagenesis Kit (NEB) and the resulting plasmid was used as a template to
473 subsequently amplify the TagRFP-NLS sequence using the primers *frag3-tRFP-nls_for* and
474 *frag3-tRFP-nls_rev*. Fragment assembly was carried out using NEBuilder HiFi DNA assembly
475 Master Mix (New England Biolabs) according to manufacturer's protocol. In the resulting
476 pcDNA3_Fbox-Nb-IRES-tRFP-NLS plasmid the GFP-Nb (vhGFP4) was replaced by Miro1-
477 Nbs using BamHI and BstEII restriction sites. All generated expression constructs were
478 sequence analyzed after cloning. For fluorescent labeling of mitochondria in living cells, the
479 mammalian expression vector pmKate2-mito (Evrogen plasmid #FP187) was used.

480

481 *Protein expression and Purification*

482 Miro1-Nbs were expressed and purified as previously described [44, 45]. Bivalent Nbs were
483 expressed using the ExpiCHO™ system (Thermo Fisher Scientific) according to the
484 manufacturer's protocol. For quality control, all purified proteins were analyzed by SDS-PAGE
485 according to standard procedures. Protein samples were denatured (5 min, 95 °C) in 2x SDS-
486 sample buffer containing 60 mM Tris/HCl, pH 6.8; 2% (w/v) SDS; 5% (v/v) 2-mercaptoethanol,
487 10% (v/v) glycerol, 0.02% bromphenol blue prior to analysis. All proteins were visualized by
488 InstantBlue Coomassie (Expedeon) staining. For immunoblotting, proteins were transferred to
489 nitrocellulose membrane (GE Healthcare) and detection was performed using anti-His primary
490 antibody (Penta-His Antibody, #34660, Qiagen) followed by donkey-anti-mouse secondary
491 antibody labeled with AlexaFluor647 (Invitrogen). A Typhoon Trio scanner (GE-Healthcare,
492 excitation 633 nm, emission filter settings 670 nm BP 30) was used for the readout of
493 fluorescence signals.

494

495 *Affinity measurements by biolayer interferometry (BLI)*

496 Analysis of binding kinetics of Miro1-specific Nbs was performed using the Octet RED96e
497 system (Sartorius) according to the manufacturer's recommendations. In brief, 2 - 10 μ g/mL
498 solution of biotinylated Miro1-Nbs diluted in Octet buffer (HEPES, 0.1% BSA) was used for
499 40 s to immobilize the Nb on streptavidin coated biosensor tips (SA, Sartorius). In the
500 association step, a dilution series of Miro1 ranging from 3.9 nM - 1 μ M were reacted for 300 s
501 followed by dissociation in Octet buffer for 720 s. Every run was normalized to a reference run
502 using Octet buffer for association. Data were analyzed using the Octet Data Analysis HT 12.0
503 software applying the 1:1 ligand-binding model and global fitting.

504

505 *Cell culture, transfections and compound treatment*

506 HEK293 and U2OS cells were obtained from ATCC (CRL3216, HTB-96), HeLa Kyoto cell line,
507 (Cellosaurus no. CVCL_1922) was obtained from S. Narumiya (Kyoto University, Japan) and
508 HAP1 cells were obtained from Horizon Discovery (UK, catalog number C631). The cell lines
509 were tested for mycoplasma using the PCR mycoplasma kit Venor GeM Classic (Minerva
510 Biolabs, Berlin, Germany) and the Taq DNA polymerase (Minerva Biolabs). Since this study
511 does not include cell line-specific analysis, cell lines were used without additional
512 authentication. Cell lines were cultured according to standard protocols. Briefly, growth media
513 containing DMEM (high glucose, pyruvate, with GlutaMAX™, Thermo Fisher Scientific)
514 supplemented with 10% (v/v) fetal calf serum (FCS, Thermo Fisher Scientific) and 1% (v/v)
515 penicillin/streptomycin (Thermo Fisher Scientific) was used for cultivation. Cells were routinely
516 passaged using 0.05% trypsin-EDTA (Thermo Fisher Scientific) and were cultivated at 37 °C
517 in a humidified chamber with a 5% CO₂ atmosphere. Transient transfection of U2OS and HeLa
518 Kyoto cells with Lipofectamine 2000 (Thermo Fisher Scientific) was carried out according to
519 manufacturer's instruction. HEK293 cells were transfected with Polyethyleneimine (PEI, Sigma
520 Aldrich) as previously described [46, 77]. Compound treatment was done with 10 μ M Sorafenib
521 tosylate (Sellekchem) for up to 2 h.

522

523 *Nanobody immobilization on NHS-Sepharose matrix*

524 2 mL of purified Miro1-Nbs at 1 mg/mL concentration in phosphate-buffered saline (PBS) were
525 immobilized on 1 mL NHS-Sepharose (GE-Healthcare) according to the manufacturer's
526 protocol.

527

528 *Sortase labelling of Nanobodies*

529 Sortase A pentamutant (eSrtA) in pET29 expression vector, a gift from David Liu (Addgene
530 plasmid # 75144) was expressed and purified as described [78]. The substrate peptide H-Gly-
531 Gly-Gly-propyl-azide (sortase substrate) was custom synthesized by Intavis AG. For sortase
532 labelling, 50 μ M Nb, 250 μ M sortase substrate peptide dissolved in sortase buffer (50 mM Tris,
533 pH 7.5, and 150 mM NaCl) and 10 μ M sortase were mixed in coupling buffer (sortase buffer
534 with 10 mM CaCl₂) and incubated for 4 h at 4 °C. Uncoupled Nb and sortase were depleted by
535 IMAC. Unbound excess of unreacted peptide was removed using Zeba Spin Desalting
536 Columns (ThermoFisher Scientific). Azide-coupled Nbs were then labelled by SPAAC (strain-
537 promoted azide-alkyne cycloaddition) click chemistry reaction with 2-fold molar excess of
538 Alexa-Fluor conjugated dibenzocyclooctyne (DBCO-AF647, Jena Bioscience) for 2 h at 25 °C.
539 For generation of the bivalent nanotrap, 1 mg of azide coupled bivalent Nb was incubated
540 with 0.5 mL DBCO-Agarose (Jena Bioscience) slurry for 4 h at 25 °C. The beads were
541 centrifuged at 2700 x g for 2 min and the supernatant was removed. Samples of the input and
542 flow-through fractions were analysed by SDS-PAGE according to standard protocol. The
543 Nb-coupled beads were washed thrice with 2.5 mL PBS and stored in 1 mL PBS.

544

545 *Immunoprecipitation*

546 3 x 10⁶ HEK 293 cells were seeded in 100 mm culture dishes (Corning) and cultivated for 24 h.
547 For the pulldown of endogenous Miro1, the cells were harvested and lysed after 24 h. For the
548 pulldown of GFP-Miro1 or GFP, the cells were subjected to plasmid DNA transfection with
549 equal amounts of expression vectors and cultivated for 24 h. Subsequently, cells were washed
550 in PBS (pH 7.4) and harvested, snap-frozen in liquid nitrogen, stored at -20 °C or thawed for
551 immediate use. Cell pellets were homogenized in 200 μ L lysis buffer (50 mM Tris/HCl pH 7.5,

552 150 mM NaCl, 1 mM EDTA, 0.5% Triton X-100, 1 mM PMSF, 1 µg/mL DNaseI, 2.5 mM MgCl₂,
553 1 x protease inhibitor cocktail (Serva)) by passing through needles of decreasing gauge and
554 intermittent vortexing for 60 min on ice. Lysates were clarified by subsequent centrifugation at
555 18,000 x g for 15 min at 4 °C. The supernatant was adjusted with dilution buffer (50 mM
556 Tris/HCl, 150 mM NaCl, 0.5 mM EDTA, 1 mM PMSF) to 500 µL. 5 µL (1%) was added to 2 x
557 SDS-containing sample buffer (60 mM Tris/HCl, 2% (w/v) SDS, 5% (v/v) 2-mercaptoethanol,
558 10% (v/v) glycerol, 0.02% bromphenol blue; referred to as input). For immunoprecipitation, 40
559 – 80 µL of sepharose-coupled Miro1 Nbs (nanotrap) were added to the protein solution and
560 incubated for 16 h on an end over end rotor at 4 °C. As a positive control, 2.5 µg of rabbit anti-
561 Miro1 antibody (# PA5-42646, ThermoFisher) was added to the protein solution and incubated
562 under the same conditions. For pulldown of immunocomplexes, 40 µL of an equilibrated mixture
563 of protein A/G-Sepharose (Amersham Biosciences) were added, and incubation continued for
564 4 h. As a negative control, a non-related Nb (PepNb) immobilized on sepharose beads was
565 used. After centrifugation (2 min, 2700 x g, 4 °C) supernatant was removed and the bead pellet
566 was washed three times in 0.5 mL dilution buffer. On the third wash, the beads were
567 transferred to a pre-cooled 1.5 mL tube (Eppendorf), resuspended in 2 x SDS-containing
568 sample buffer and boiled for 10 min at 95 °C. Samples (1% input, 20% bound) were analysed
569 by SDS-PAGE followed by Western blotting according to standard procedures. Immunoblots
570 were probed with the following primary antibodies: anti-Miro1 (clone 4H4, Sigma-Aldrich), anti-
571 GFP (clone 3H9, ChromoTek) and anti-GAPDH (Santa Cruz) antibody as a negative control
572 to detect unspecific binding to the nanotrap. Full scans of western blots from all
573 immunoprecipitation experiments are included in **Supplementary Figure 12**.

574

575 *Immunofluorescence*

576 HeLa cells were seeded at 1 x 10⁴ per well in µClear 96 well plates (Greiner). Next day, the
577 cells were transfected with plasmids coding for GFP-Miro1 or a GFP-tagged non-related
578 protein. 24 h post transfection, the cells were washed twice with PBS and fixed with 4% (w/v)
579 paraformaldehyde (PFA) in PBS for 10 min at RT and blocked with 5% BSA in TBST for 30 min

580 at RT. Incubation with purified Miro1 Nbs or AF647 conjugated Nbs (100 – 200 nM in 5% BSA
581 in TBST) or rabbit anti-Miro1 antibody (# NBP1-89011, Novus Biologicals) was performed
582 overnight at 4 °C. Unbound nanobodies were removed by three washing steps with TBST.
583 Unlabelled Miro1 Nbs were detected by addition of a Cy5-conjugated Goat Anti-Alpaca IgG
584 (Jackson Immunoresearch) according to manufacturer's guidelines. For Miro1 antibody
585 detection, an AF647 conjugated goat anti-rabbit secondary antibody (Invitrogen) was used.
586 Nuclei were subsequently stained with 4', 6-diamidino-2-phenylindole (DAPI, Sigma-Aldrich)
587 and images were acquired immediately afterwards with an ImageXpress™ Micro Confocal
588 High Content Screening system (Molecular Devices) at 40x magnification.

589

590 *Liquid chromatography-MS analysis*

591 Miro1 pull-down samples, by application of the mono- and bivalent M41 and M114 nanotrap,
592 were compared to control nanotrap in three technical replicates. Proteins were purified by
593 SDS- PAGE (4-12% NuPAGE tris gel (Invitrogen) for 7 min at 200 V. Coomassie stained
594 protein gel pieces were excised and applied to tryptic digestion as described previously [79].
595 Samples were measured on an Exploris480 mass spectrometer (Thermo Fisher Scientific)
596 online-coupled to an Easy-nLC 1200 UHPLC (Thermo Fisher Scientific). Peptides were
597 separated on an in-house packed (ReproSil-Pur C18-AQ 1.9 µm silica beads (Dr Maisch
598 GmbH, Ammerbuch, Germany)), 20 cm analytical HPLC column (75 µm ID PicoTip fused silica
599 emitter (New Objective, Berks, UK)). Peptides were eluted with a 36 min gradient, generated
600 by solvent A (0.1% formic acid) and solvent B (80% Acetonitrile in 0.1% formic acid) at a flow
601 rate of 200 nL/min at 40°C. Nanospray ionization at 2.3 kV together with a capillary
602 temperature of 275°C was applied for peptide ionization. Full MS spectra were acquired at
603 resolution 60k within a scan range of 300-1750 m/z and tandem MS (MS/MS) spectra were
604 acquired at 15k resolution. Maximum Injection Time Mode and automated control target were
605 set to Auto and Standard respectively for full MS and MS/MS scans. The 20 most intense
606 peptides with multiple charge were selected for MS/MS sequencing by higher-energy
607 collisional dissociation (HCD) with a dynamic exclusion of 30 s.

608

609 *Mass Spectrometry Data analysis*

610 Raw data files were processed using the MaxQuant software suit (version 2.0.3.0)[80]. Spectra
611 were searched against Uniprot *Homo sapiens* database (released 11.12.2019, 96,817 entries),
612 *Vicugna pacos* specific nanotrap and commonly observed contaminants. Peptide mass
613 tolerance was set to 4.5 ppm for MS and to 20 ppm for MS/MS. Peptide and protein false
614 discovery rate was set to 1%. Methionine oxidation and protein N-terminus acetylation were
615 selected as variable modification, while carbamidomethylation on Cysteine was defined as
616 fixed modification. A maximum of two missed cleavages were accepted for specific trypsin
617 digestion mode. For label-free quantification a minimum number of two ratio count was
618 requested. Intensity based absolute quantification was enabled. Statistical analysis was
619 performed with the Perseus software suit (version 1.6.15.0). First, contaminants, reversed and
620 proteins only identified by site proteins were filtered out. Only proteins present in two out of
621 three replicates of each nanotrap were allowed for downstream significance testing.
622 Significantly enriched proteins were determined by t-test as Class A with S0 set to 0.1 and
623 FDR threshold ≤ 0.01 or Class B with S0 set to 0.1 and FDR threshold ≤ 0.05 . Additional
624 graphical visualization were performed in the R environment (version 4.1.1). For Miro1
625 interactome analysis the top 50 protein interactors were classified based on the direct or
626 indirect interaction with Miro1 and the confidence score derived from STRING database. As
627 class 1 interactors, proteins were assigned that are direct interactors with Miro1, and had a
628 confidence score greater than 0.9. Proteins with a direct interaction with Miro1 and a
629 confidence score smaller than 0.9 were annotated as class 2 interactors. Class 3 interactors
630 were annotated based on indirect Miro1 interaction and a confidence score greater than 0.9.

631

632 *Microscopy and time lapse imaging*

633 8×10^3 U2OS or 1×10^4 HeLa cells/well were plated in a black μ clear 96-well plate (Greiner).
634 24h after plating, cells were transiently co-transfected with plasmids coding for GFP-Miro1 and
635 M41-Cb, M85-Cb or M114-Cb. The next day, the medium was replaced by live-cell

636 visualization medium DMEM^{9fp-2} (Evrogen) supplemented with 10% FBS and 2 mM L-
637 glutamine. For the time-lapse acquisition, U2OS cells transiently expressing GFP-Miro1 and
638 M114-CB or mito-mKate2 were either treated with 10 μ M Sorafenib tosylate or DMSO in live-
639 cell visualization medium and imaged every 15 min for up to 2 h. Images were acquired under
640 standard conditions with the ImageXpressTM Micro Confocal High Content Screening system
641 (Molecular Devices) at 40x magnification.

642

643 *Image segmentation and analysis*

644 For the targeted Miro1 degradation experiments, 8×10^3 - 1×10^4 wildtype HeLa cells or HeLa
645 cells transiently expressing Fbox-Nb-IRES-tRFP-NLS constructs were fixed and permeabilized
646 in a black uclear 96-well plate (Greiner). Immunofluorescence staining of Miro1 was performed
647 as previously described and images were acquired immediately with an ImageXpressTM micro
648 XL system (Molecular Devices) at 40x magnification. Image analysis was performed with
649 MetaXpress software (64 bit, 6.2.3.733, Molecular Devices). Fluorescence images comprising
650 a statistically relevant number of cells (>200 cells) were acquired for each construct. For
651 quantitative fluorescence analysis, the mean Miro1 fluorescence in the cytosol was
652 determined. Using the Custom Module Editor (version 2.5.13.3) of the MetaXpress software,
653 we established an image segmentation algorithm that identifies areas of interest based the
654 parameters of size, shape, and fluorescence intensity above local background. For nuclear
655 segmentation, DAPI stained nuclei or nuclear localized TagRFP in transfected cells were
656 defined as selection criteria. To segment the cytosolic compartment of the cell, Miro1
657 fluorescence signals were used to generate a segmentation mask. The average Miro1
658 fluorescence intensities in whole cells were determined for each image followed by subtraction
659 of background fluorescence. The resulting values from the transfected cells were normalized
660 to the non-transfected control. Standard errors were calculated for three independent
661 replicates and student's *t* test was used for statistical analysis.

662

663 *Analyses and Statistics*

664 Graph preparation and statistical analysis was performed using the GraphPad Prism Software
665 (Version 9.0.0 or higher).

666

667 **Author contributions**

668 F.O.F. and U.R. conceived the study and analyzed the data. F.O.F., P.D.K., T.R.W., B.T., T.F.,
669 and G.J. perform all cellular and biochemical experiments including imaging studies. N.B.
670 provided recombinant Miro1. S.N. and A.S. immunized the alpaca. K.Z. and B.M. performed
671 and analyzed mass spectrometry experiments. F.O.F. and U.R. wrote the manuscript with the
672 help of all authors.

673

674 **Acknowledgements**

675 This research was supported by the German Research Foundation (DFG) through RTG 2364
676 "MOMbrane" to F.O.F., K.Z., B.M and U.R. The authors also gratefully acknowledge the
677 Ministry of Science, Research and Arts of Baden-Württemberg (V.1.4.-H3-1403-74) for
678 financial support.

679

680 **References**

- 681 1. Duchen, M.R., Roles of Mitochondria in Health and Disease. *Diabetes*, 2004.
682 53(suppl 1): p. S96.
- 683 2. Wang, Y., et al., Mitochondrial dysfunction in neurodegenerative diseases and the
684 potential countermeasure. *CNS Neurosci Ther*, 2019. 25(7): p. 816-824.
- 685 3. Monzio Compagnoni, G., et al., The Role of Mitochondria in Neurodegenerative
686 Diseases: the Lesson from Alzheimer's Disease and Parkinson's Disease. *Mol
687 Neurobiol*, 2020. 57(7): p. 2959-2980.
- 688 4. Reis, K., Å. Fransson, and P. Aspenström, The Miro GTPases: At the heart of the
689 mitochondrial transport machinery. *FEBS Letters*, 2009. 583(9): p. 1391-1398.
- 690 5. Rube, D.A. and A.M. Van Der Bliek, Mitochondrial morphology is dynamic and varied,
691 in *Molecular and Cellular Biochemistry*. 2004. p. 331-339.
- 692 6. Boldogh, I.R. and L.A. Pon, Mitochondria series Mitochondria on the move. *Trends in
693 Cell Biology*, 2007. 17(10).
- 694 7. Boureux, A., et al., Evolution of the Rho family of ras-like GTPases in eukaryotes. *Mol
695 Biol Evol*, 2007. 24(1): p. 203-16.
- 696 8. Yamaoka, S. and I. Hara-Nishimura, The mitochondrial Ras-related GTPase Miro:
697 views from inside and outside the metazoan kingdom. *Frontiers in plant science*, 2014.
698 5: p. 350-350.
- 699 9. Kay, L., et al., Understanding Miro GTPases: Implications in the Treatment of
700 Neurodegenerative Disorders. *Molecular Neurobiology*, 2018. 55(9): p. 7352-7365.
- 701 10. Fransson, Å., A. Ruusala, and P. Aspenström, Atypical Rho GTPases Have Roles in
702 Mitochondrial Homeostasis and Apoptosis *. *Journal of Biological Chemistry*, 2003.
703 278(8): p. 6495-6502.
- 704 11. Fransson, Å., A. Ruusala, and P. Aspenström, The atypical Rho GTPases Miro-1 and
705 Miro-2 have essential roles in mitochondrial trafficking. *Biochemical and Biophysical
706 Research Communications*, 2006. 344(2): p. 500-510.

- 707 12. van Spronsen, M., et al., TRAK/Milton Motor-Adaptor Proteins Steer Mitochondrial
708 Trafficking to Axons and Dendrites. *Neuron*, 2013. 77(3): p. 485-502.
- 709 13. MacAskill, A.F., et al., GTPase dependent recruitment of Grif-1 by Miro1 regulates
710 mitochondrial trafficking in hippocampal neurons. *Molecular and Cellular
711 Neuroscience*, 2009. 40(3): p. 301-312.
- 712 14. Saotome, M., et al., Bidirectional Ca²⁺-dependent control of mitochondrial dynamics
713 by the Miro GTPase. *Proceedings of the National Academy of Sciences*, 2008. 105: p.
714 20728.
- 715 15. MacAskill, A.F., et al., Miro1 Is a Calcium Sensor for Glutamate Receptor-Dependent
716 Localization of Mitochondria at Synapses. *Neuron*, 2009. 61(4): p. 541-555.
- 717 16. Wang, X. and T.L. Schwarz, The Mechanism of Ca²⁺-Dependent Regulation of
718 Kinesin-Mediated Mitochondrial Motility. *Cell*, 2009. 136(1): p. 163-174.
- 719 17. Schwarz, T.L., Mitochondrial trafficking in neurons. *Cold Spring Harb Perspect Biol*,
720 2013. 5(6).
- 721 18. Kanfer, G., et al., Mitotic redistribution of the mitochondrial network by Miro and Cenp-
722 F. 2015.
- 723 19. Okumoto, K., et al., New splicing variants of mitochondrial Rho GTPase-1 (Miro1)
724 transport peroxisomes. *The Journal of cell biology*, 2018. 217(2): p. 619-633.
- 725 20. Ahmad, T., et al., Miro1 regulates intercellular mitochondrial transport & enhances
726 mesenchymal stem cell rescue efficacy. *The EMBO Journal*, 2014. 33(9): p. 994-1010.
- 727 21. Babenko, V., et al., Miro1 Enhances Mitochondria Transfer from Multipotent
728 Mesenchymal Stem Cells (MMSC) to Neural Cells and Improves the Efficacy of Cell
729 Recovery. *Molecules*, 2018. 23(3): p. 687-687.
- 730 22. Castro, I.G., et al., A role for Mitochondrial Rho GTPase 1 (MIRO1) in motility and
731 membrane dynamics of peroxisomes. *Traffic (Copenhagen, Denmark)*, 2018. 19(3): p.
732 229-229.
- 733 23. Wang, X., et al., PINK1 and Parkin target Miro for phosphorylation and degradation to
734 arrest mitochondrial motility. *Cell*, 2011. 147(4): p. 893-906.

- 735 24. Hsieh, C.-H., et al., Functional Impairment in Miro Degradation and Mitophagy Is a
736 Shared Feature in Familial and Sporadic Parkinson's Disease. *Cell Stem Cell*, 2016.
737 19(6): p. 709-724.
- 738 25. Nguyen, D., et al., Miro1 Impairment in a Parkinson's At-Risk Cohort. *Front Mol*
739 *Neurosci*, 2021. 14: p. 734273.
- 740 26. Grossmann, D., et al., Mutations in RHOT1 Disrupt Endoplasmic Reticulum–
741 Mitochondria Contact Sites Interfering with Calcium Homeostasis and Mitochondrial
742 Dynamics in Parkinson's Disease. *Antioxidants & Redox Signaling*, 2019. 31(16): p.
743 1213-1234.
- 744 27. Grossmann, D., et al., The Emerging Role of RHOT1/Miro1 in the Pathogenesis of
745 Parkinson's Disease. *Frontiers in Neurology* | www.frontiersin.org, 2020. 11: p. 587-
746 587.
- 747 28. Zhang, F., et al., Miro1 deficiency in amyotrophic lateral sclerosis. *Frontiers in aging*
748 *neuroscience*, 2015. 7: p. 100-100.
- 749 29. Moller, A., et al., Amyotrophic lateral sclerosis-associated mutant SOD1 inhibits
750 anterograde axonal transport of mitochondria by reducing Miro1 levels. *Human*
751 *Molecular Genetics*, 2017. 26(23): p. 4668-4679.
- 752 30. Dragonas, C., et al., Plasmalogens as a marker of elevated systemic oxidative stress
753 in Parkinson's disease. *Clin Chem Lab Med*, 2009. 47(7): p. 894-7.
- 754 31. Hsieh, C.H., et al., Miro1 Marks Parkinson's Disease Subset and Miro1 Reducer
755 Rescues Neuron Loss in Parkinson's Models. *Cell Metab*, 2019. 30(6): p. 1131-
756 1140.e7.
- 757 32. Smith, K.P., et al., Insight into human Miro1/2 domain organization based on the
758 structure of its N-terminal GTPase. *Journal of Structural Biology*, 2020. 212(3): p.
759 107656.
- 760 33. Modi, S., et al., Miro clusters regulate ER-mitochondria contact sites and link cristae
761 organization to the mitochondrial transport machinery. *Nature Communications*, 2019.
762 10(1): p. 4399.

- 763 34. Hamers-Casterman, C., et al., Naturally occurring antibodies devoid of light chains.
764 Nature, 1993. 363(6428): p. 446-8.
- 765 35. Rothbauer, U., et al., A versatile nanotrap for biochemical and functional studies with
766 fluorescent fusion proteins. Mol Cell Proteomics, 2008. 7(2): p. 282-9.
- 767 36. Cheloha, R.W., et al., Exploring cellular biochemistry with nanobodies. Journal of
768 Biological Chemistry, 2020. 295(45): p. 15307-15327.
- 769 37. Wagner, T.R., et al., NeutrobodyPlex—monitoring SARS-CoV-2 neutralizing immune
770 responses using nanobodies. EMBO reports, 2021. 22(5): p. e52325.
- 771 38. He, J., et al., Multivalent nanobody–biotin amplified enzyme-linked immunosorbent
772 assay for the environmental detection of 3-phenoxybenzoic acid. Analytical Methods,
773 2021. 13(43): p. 5247-5253.
- 774 39. Traenkle, B. and U. Rothbauer, Under the Microscope: Single-Domain Antibodies for
775 Live-Cell Imaging and Super-Resolution Microscopy. Front Immunol, 2017. 8: p. 1030.
- 776 40. Hryncak, I., et al., Nanobody-Based Theranostic Agents for HER2-Positive Breast
777 Cancer: Radiolabeling Strategies. International journal of molecular sciences, 2021.
778 22(19): p. 10745.
- 779 41. Naidoo, D.B. and A.A. Chuturgoon, Nanobodies Enhancing Cancer Visualization,
780 Diagnosis and Therapeutics. International journal of molecular sciences, 2021. 22(18):
781 p. 9778.
- 782 42. Helma, J., et al., Nanobodies and recombinant binders in cell biology. J Cell Biol, 2015.
783 209(5): p. 633-44.
- 784 43. Wagner, T.R. and U. Rothbauer, Nanobodies Right in the Middle: Intrabodies as
785 Toolbox to Visualize and Modulate Antigens in the Living Cell. Biomolecules, 2020.
786 10(12).
- 787 44. Wagner, T.R. and U. Rothbauer, Nanobodies – Little helpers unravelling intracellular
788 signaling. Free Radical Biology and Medicine, 2021. 176: p. 46-61.

- 789 45. Maier, J., B. Traenkle, and U. Rothbauer, Real-time analysis of epithelial-mesenchymal
790 transition using fluorescent single-domain antibodies. *Scientific Reports*, 2015. 5(1): p.
791 13402.
- 792 46. Braun, M.B., et al., Peptides in headlock--a novel high-affinity and versatile peptide-
793 binding nanobody for proteomics and microscopy. *Sci Rep*, 2016. 6: p. 19211.
- 794 47. De Genst, E., et al., Molecular basis for the preferential cleft recognition by dromedary
795 heavy-chain antibodies. *Proc Natl Acad Sci U S A*, 2006. 103(12): p. 4586-91.
- 796 48. Pardon, E., et al., A general protocol for the generation of Nanobodies for structural
797 biology. *Nat Protoc*, 2014. 9(3): p. 674-93.
- 798 49. Popp, M.W.-L. and H.L. Ploegh, Making and Breaking Peptide Bonds: Protein
799 Engineering Using Sortase. *Angewandte Chemie International Edition*, 2011. 50(22):
800 p. 5024-5032.
- 801 50. Virant, D., et al., A peptide tag-specific nanobody enables high-quality labeling for
802 dSTORM imaging. *Nat Commun*, 2018. 9(1): p. 930.
- 803 51. Jewett, J.C. and C.R. Bertozzi, Cu-free click cycloaddition reactions in chemical
804 biology. *Chemical Society Reviews*, 2010. 39(4): p. 1272-1279.
- 805 52. Zhao, X., et al., OPA1 downregulation is involved in sorafenib-induced apoptosis in
806 hepatocellular carcinoma. *Laboratory Investigation*, 2013. 93(1): p. 8-19.
- 807 53. Zhang, C., et al., Sorafenib targets the mitochondrial electron transport chain
808 complexes and ATP synthase to activate the PINK1-Parkin pathway and modulate
809 cellular drug response. *The Journal of biological chemistry*, 2017. 292(36): p. 15105-
810 15120.
- 811 54. Kuo, C.-L., G.A. Oyler, and C.B. Shoemaker, Accelerated Neuronal Cell Recovery from
812 Botulinum Neurotoxin Intoxication by Targeted Ubiquitination. 2011.
- 813 55. Bery, N., et al., A Targeted Protein Degradation Cell-Based Screening for Nanobodies
814 Selective toward the Cellular RHOB GTP-Bound Conformation. *Cell Chemical Biology*,
815 2019. 26(11): p. 1544-1558.e6.

- 816 56. Caussinus, E., O. Kanca, and M. Affolter, Fluorescent fusion protein knockout mediated
817 by anti-GFP nanobody. *Nat Struct Mol Biol*, 2011. 19(1): p. 117-21.
- 818 57. Baudisch, B., et al., Nanobody-Directed Specific Degradation of Proteins by the 26S-
819 Proteasome in Plants. 2018.
- 820 58. Chen, G., et al., A Promising Intracellular Protein-Degradation Strategy: TRIMbody-
821 Away Technique Based on Nanobody Fragment. *Biomolecules*, 2021. 11(10).
- 822 59. López-Doménech, G., et al., Loss of neuronal Miro1 disrupts mitophagy and induces
823 hyperactivation of the integrated stress response. *Embo j*, 2021. 40(14): p. e100715.
- 824 60. Kontou, G., et al., Miro1-dependent mitochondrial dynamics in parvalbumin
825 interneurons. *Elife*, 2021. 10.
- 826 61. Kassab, S., et al., Mitochondrial Arrest on the Microtubule Highway-A Feature of Heart
827 Failure and Diabetic Cardiomyopathy? *Front Cardiovasc Med*, 2021. 8: p. 689101.
- 828 62. Fatiga, F.F., et al., Miro1 functions as an inhibitory regulator of MFN at elevated
829 mitochondrial Ca(2+) levels. *J Cell Biochem*, 2021.
- 830 63. Nemanic, N., et al., MIRO-1 Determines Mitochondrial Shape Transition upon GPCR
831 Activation and Ca(2+) Stress. *Cell Rep*, 2018. 23(4): p. 1005-1019.
- 832 64. Götzke, H., et al., The ALFA-tag is a highly versatile tool for nanobody-based
833 bioscience applications. *Nat Commun*, 2019(2041-1723 (Electronic)).
- 834 65. Pleiner, T., M. Bates, and D. Gorlich, A toolbox of anti-mouse and anti-rabbit IgG
835 secondary nanobodies. *J Cell Biol*, 2018. 217(3): p. 1143-1154.
- 836 66. Rothbauer, U., et al., Targeting and tracing antigens in live cells with fluorescent
837 nanobodies. *Nat Methods*, 2006. 3(11): p. 887-9.
- 838 67. Kirchhofer, A., Helma, J., Schmidthals, K., Frauer, C., Cui, S., Karcher, A., Pellis, M.,
839 Muyllemans, S., Casas-Delucchi, C. S., Cardoso, M. C., Leonhardt, H., Hopfner, K.
840 P., and U. Rothbauer, Modulation of protein properties in living cells using nanobodies.
841 *Nat Struct Mol Biol*, 2010(1545-9985 (Electronic)).
- 842 68. Keller, B.M., et al., Chromobodies to Quantify Changes of Endogenous Protein
843 Concentration in Living Cells. *Mol Cell Proteomics*, 2018. 17(12): p. 2518-2533.

- 844 69. Chazotte, B., Labeling Mitochondria with MitoTracker Dyes. *Cold Spring Harbor*
845 *Protocols*, 2011. 2011(8): p. pdb.prot5648-pdb.prot5648.
- 846 70. Panza, P., et al., Live imaging of endogenous protein dynamics in zebrafish using
847 chromobodies. *Development*, 2015. 142(10): p. 1879-84.
- 848 71. Clift, D., et al., A Method for the Acute and Rapid Degradation of Endogenous Proteins.
849 *Cell*, 2017. 171(7): p. 1692-1706 e18.
- 850 72. Daniel, K., et al., Conditional control of fluorescent protein degradation by an auxin-
851 dependent nanobody. *Nat Commun*, 2018. 9(1): p. 3297.
- 852 73. López-Doménech, G., et al., Loss of Dendritic Complexity Precedes
853 Neurodegeneration in a Mouse Model with Disrupted Mitochondrial Distribution in
854 Mature Dendrites. *Cell Reports*, 2016. 17(2): p. 317-327.
- 855 74. Arbab Ghahroudi, M., et al., Selection and identification of single domain antibody
856 fragments from camel heavy-chain antibodies. *FEBS Letters*, 1997. 414(3): p. 521-526.
- 857 75. Traenkle, B., et al., A novel epitope tagging system to visualize and monitor antigens
858 in live cells with chromobodies. *Scientific reports*, 2020. 10(1): p. 1-13.
- 859 76. Gibson, D.G., et al., Enzymatic assembly of DNA molecules up to several hundred
860 kilobases. *Nature Methods*, 2009. 6(5): p. 343-345.
- 861 77. Zolghadr, K., et al., A fluorescent two-hybrid assay for direct visualization of protein
862 interactions in living cells. *Mol Cell Proteomics*, 2008. 7(11): p. 2279-87.
- 863 78. Chen, I., B.M. Dorr, and D.R. Liu, A general strategy for the evolution of bond-forming
864 enzymes using yeast display. *Proc Natl Acad Sci U S A*, 2011. 108(28): p. 11399-404.
- 865 79. Shevchenko, A., et al., In-gel digestion for mass spectrometric characterization of
866 proteins and proteomes. *Nature Protocols*, 2006. 1(6): p. 2856-2860.
- 867 80. Cox, J. and M. Mann, MaxQuant enables high peptide identification rates,
868 individualized p.p.b.-range mass accuracies and proteome-wide protein quantification.
869 *Nat Biotechnol*, 2008. 26(12): p. 1367-72.
- 870

871 **Figures**

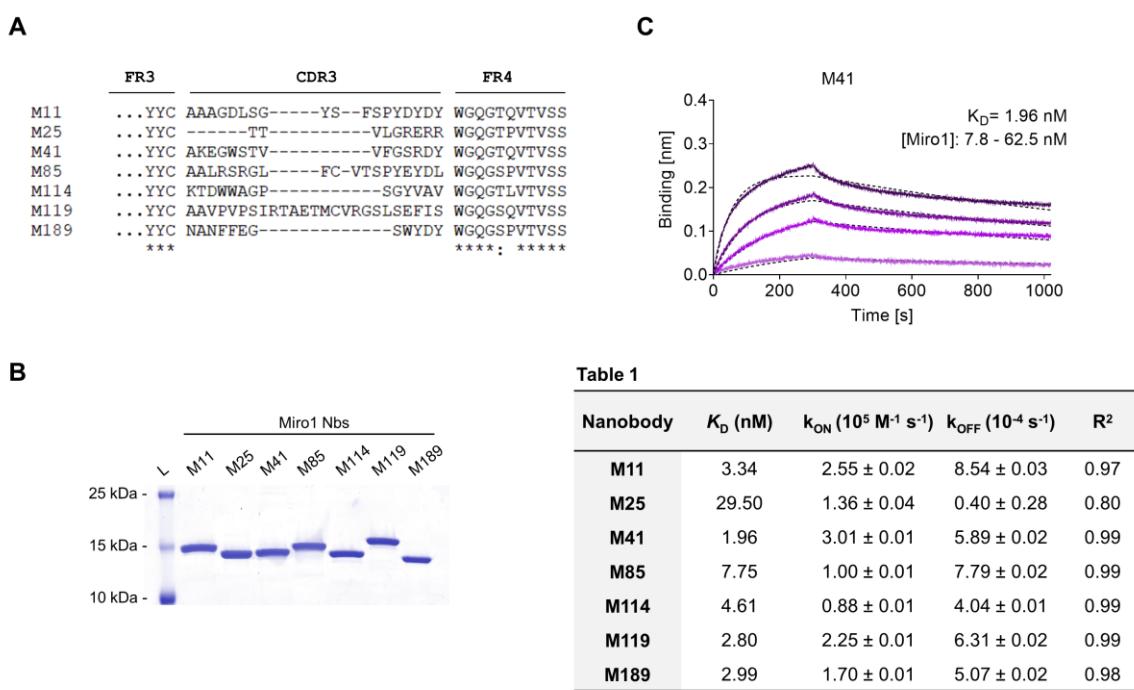
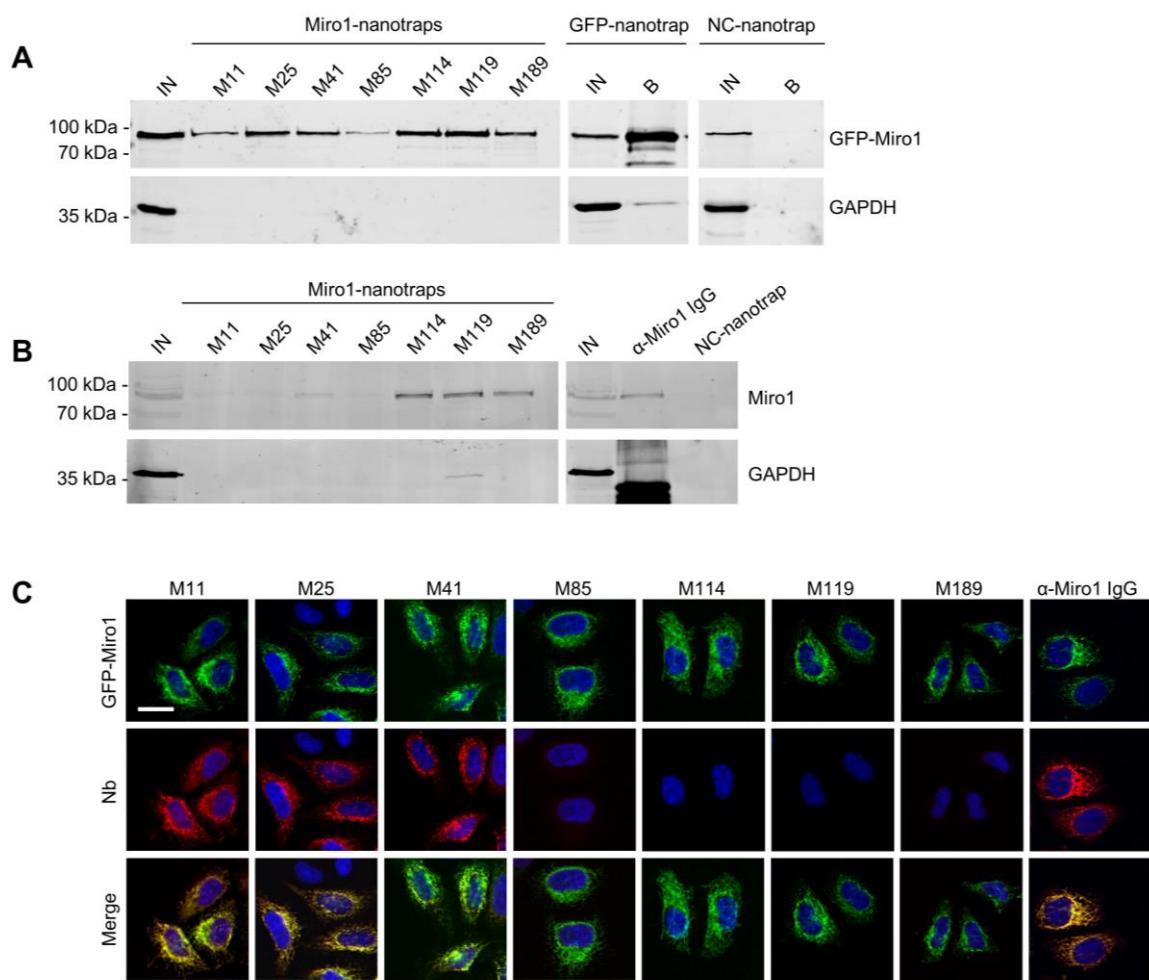


Table 1


Nanobody	K_D (nM)	k_{ON} (10^5 M $^{-1}$ s $^{-1}$)	k_{OFF} (10 $^{-4}$ s $^{-1}$)	R^2
M11	3.34	2.55 ± 0.02	8.54 ± 0.03	0.97
M25	29.50	1.36 ± 0.04	0.40 ± 0.28	0.80
M41	1.96	3.01 ± 0.01	5.89 ± 0.02	0.99
M85	7.75	1.00 ± 0.01	7.79 ± 0.02	0.99
M114	4.61	0.88 ± 0.01	4.04 ± 0.01	0.99
M119	2.80	2.25 ± 0.01	6.31 ± 0.02	0.99
M189	2.99	1.70 ± 0.01	5.07 ± 0.02	0.98

872

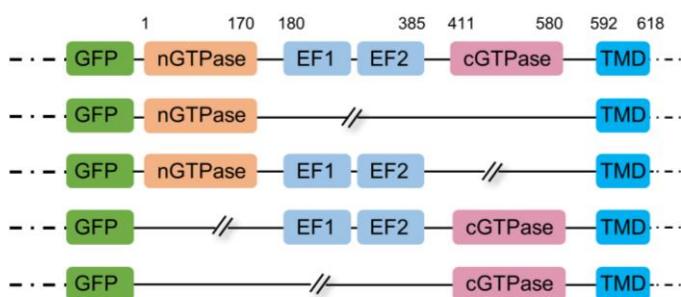
873 **Figure 1. Biochemical characterization of Miro1 specific Nbs.**

874 (A) Amino acid sequence alignment of the complementary determining region (CDR) 3 of
 875 seven unique Miro1-Nbs positively identified by phage ELISA.
 876 (B) Recombinant expression and purification of Nbs using immobilized metal affinity
 877 chromatography (IMAC) and size exclusion chromatography (SEC).
 878 (C) For biolayer interferometry based affinity measurements, Miro1-Nbs were biotinylated and
 879 immobilized on streptavidin sensors. Kinetic measurements were performed by using four
 880 concentrations of purified Miro1 ranging from 3.9 nM – 1 μ M. As an example, the sensogram
 881 of Miro1 on immobilized M41-Nb at indicated concentrations (illustrated with increasingly
 882 darker shades from low to high concentration) is shown and global 1:1 fits are illustrated as
 883 dashed line (upper panel). The table summarizes affinities (K_D), association (k_{ON}) and
 884 dissociation constants (k_{OFF}), and coefficient of determination (R^2) determined for individual
 885 Nbs (lower panel).

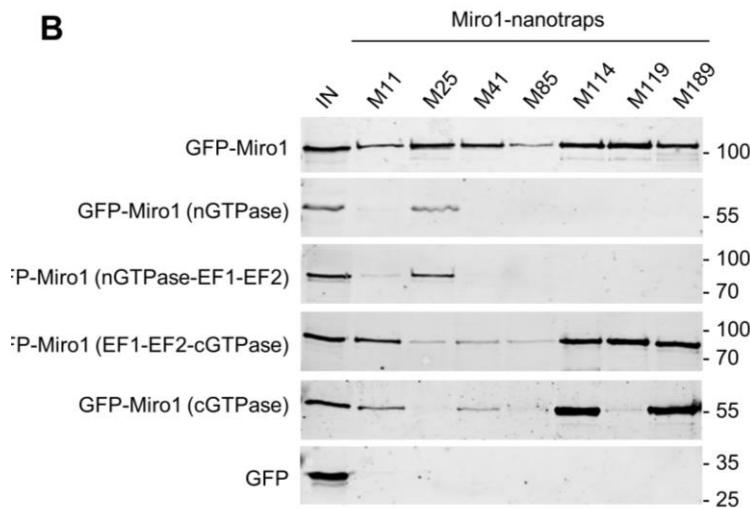
886

887

888 **Figure 2. Immunoprecipitation of Miro1 with Nbs.**


889 **(A)** For immunoprecipitation with immobilized Nbs (nanotrap), soluble protein fraction of
890 HEK293 cells transiently expressing GFP-Miro1 or GFP as control, was adjusted to 2 mg/mL
891 and incubated with equal amounts of nanotrap. Input (IN, 1% of total) and bound (20% of
892 total) fractions were subjected to SDS-PAGE followed by immunoblot analysis using antibodies
893 specific for GFP (upper panel) and GAPDH (lower panel). As positive control GFP-nanotrap
894 and as negative a non-specific (NC) nanotrap were used.

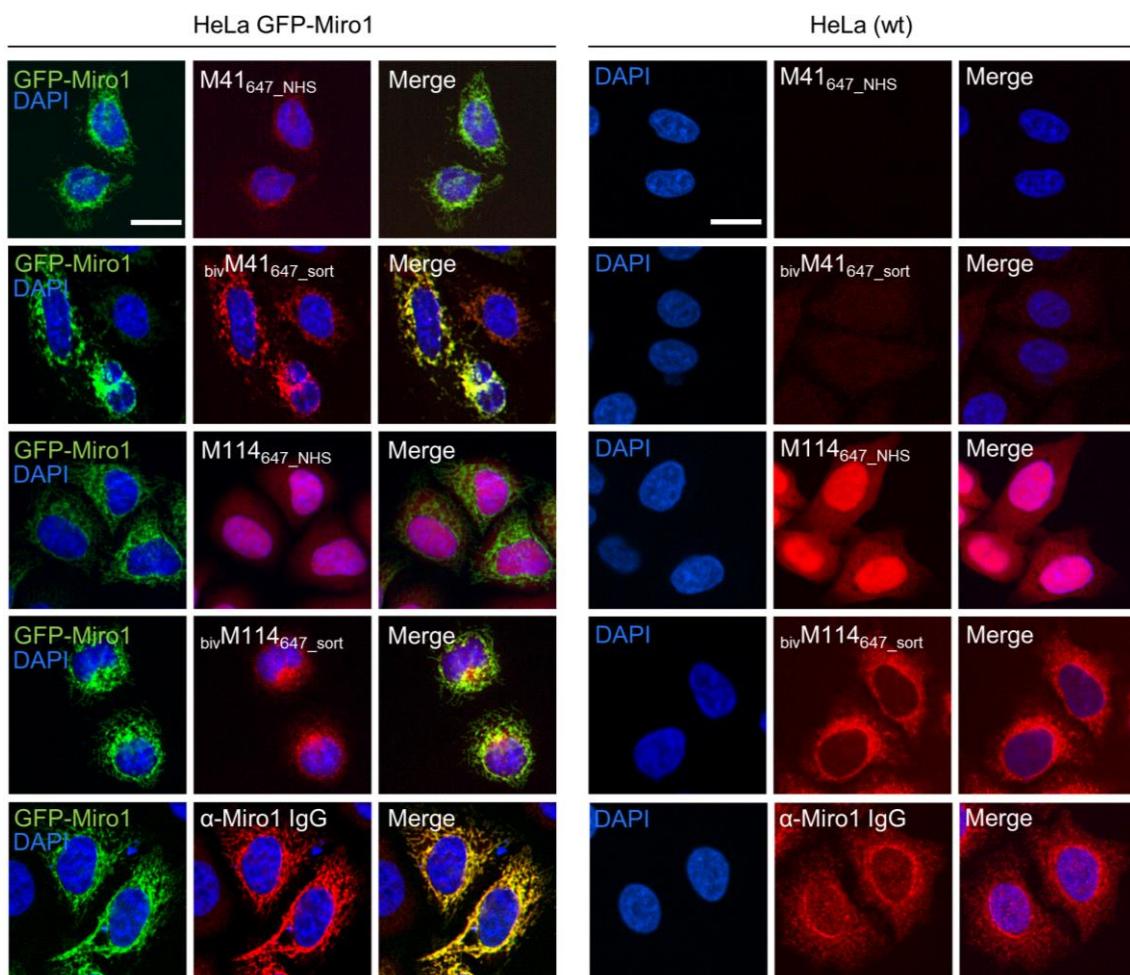
895 **(B)** Immunoprecipitation from non-transfected HEK293 as described in **A** were performed.
896 Input and bound fractions were analysed with an anti-Miro1 antibody. As positive control anti-
897 Miro1 IgG immobilized on Protein A/G sepharose and as negative control a non-specific (NC)
898 nanotrap was used.


899 (C) Immunofluorescence (IF) detection of GFP-Miro1 in fixed and permeabilized HeLa cells
900 after staining with Miro1-Nbs as primary labelling probes. Representative confocal laser
901 scanning (CLSM) images are shown of each individual Nb detected with anti-VHH antibody
902 labelled with Cy5 (middle row). As positive control, transfected cells were stained with anti-
903 Miro1 antibody followed by detection with a Cy5-labelled secondary antibody. Nuclei were
904 counterstained with DAPI. Scale bar 20 μ m.

905

A

B

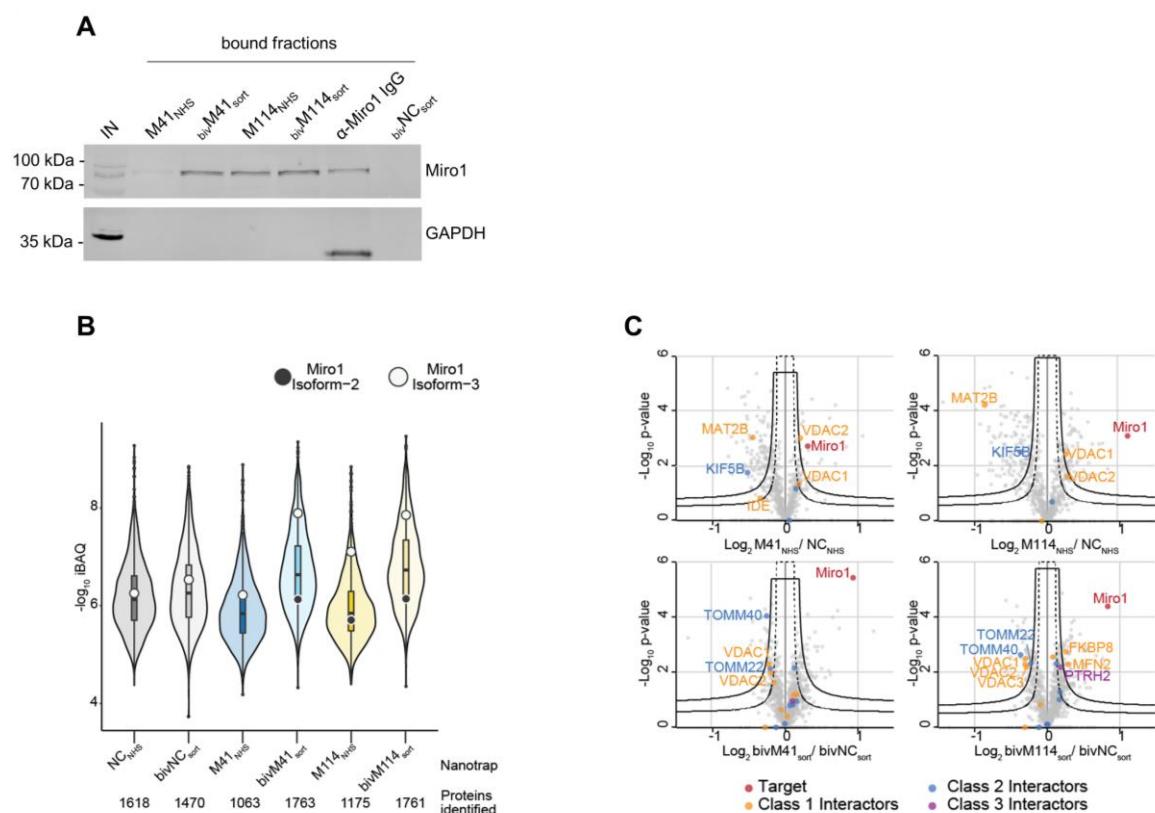

906

907 **Figure 3. Domain mapping of Miro1-Nbs.**

908 **(A)** Schematic illustration of GFP-labelled Miro1 deletion constructs and domains used for
909 domain specific binding studies.

910 **(B)** Soluble protein fractions of HEK293 cells transiently expressing indicated Miro1 deletion
911 constructs or GFP (as control) were subjected to immunoprecipitation with selected Miro1
912 nanotrap proteins followed by western blot analysis of input (IN) and bound fractions with an anti-GFP
913 antibody.

914

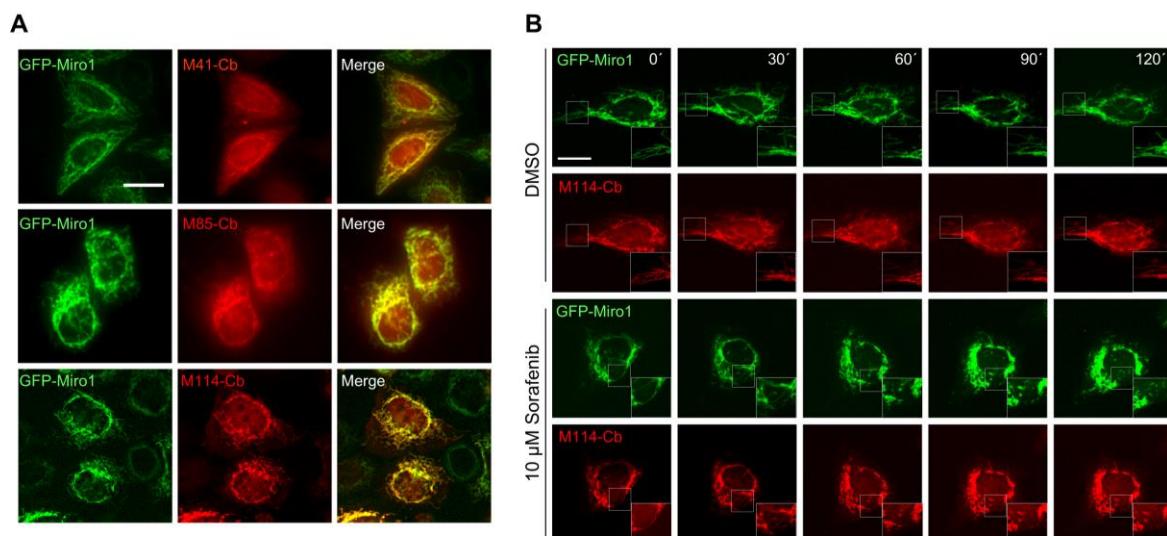


915

916 **Figure 4. Comparison of monovalent and site specifically conjugated bivalent M41- and**
917 **M114-Nbs in immunofluorescence.**

918 For comparable IF analysis HeLa cell transiently expressing GFP-Miro1 (left panel) or wildtype
919 (wt) HeLa cells (right panel) were fixed and stained with the mono- or bivalent Nbs conjugated
920 either chemically (M41₆₄₇_NHS, M114₆₄₇_NHS) or site-specifically via sortagging (bivM41₆₄₇_sort,
921 bivM114₆₄₇_sort) to AlexaFluor 647 (647). As positive control respective cells were stained with
922 an anti-Miro1 IgG followed by detection with a secondary antibody conjugated to AlexaFluor
923 647 (bottom row). Representative fluorescence images are shown from three independent
924 biological replicates. Nuclei were counterstained with DAPI. Scale bar 20 μ m.

925


926

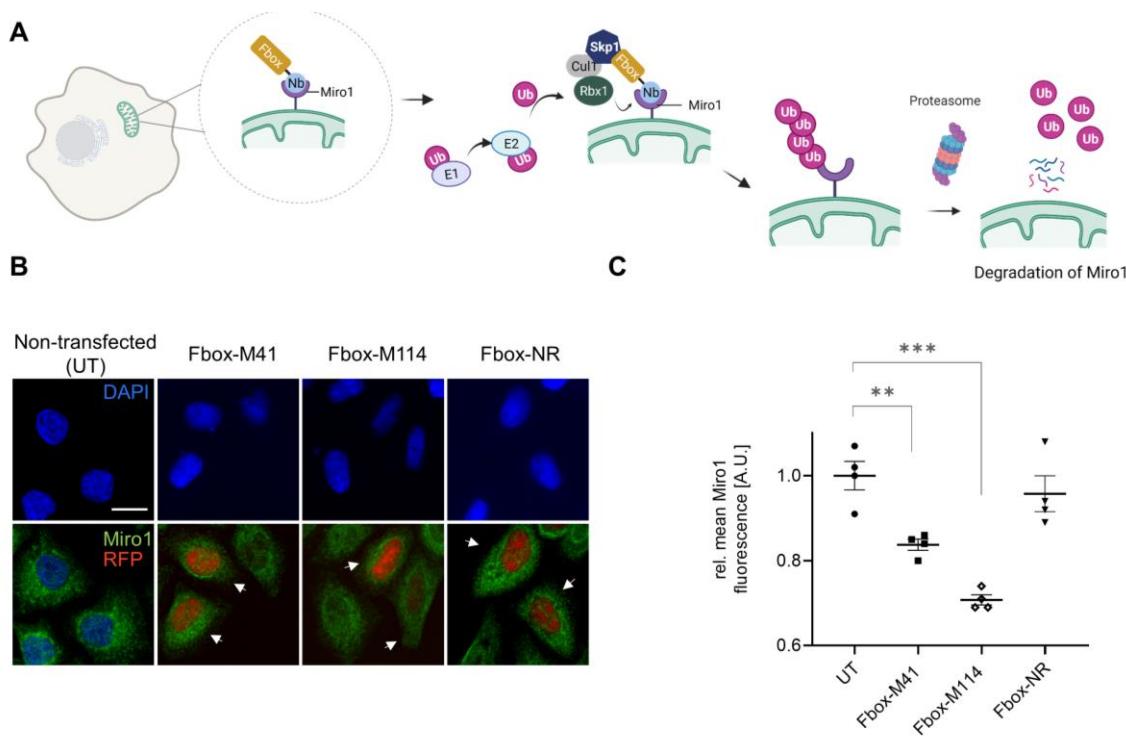
927 **Figure 5. Proteomic analysis of Miro1 capture.**

928 (A) For comparable immunoprecipitation soluble protein fraction of HEK293 cells were
929 incubated either with monovalent Nbs either chemically coupled to NHS sepharose (M41_{NHS},
930 M114_{NHS}) or the bivalent formats, which were site specifically conjugated to agarose particles
931 by sortagging and click chemistry (bivM41_{sort}, bivM114_{sort}). Input and bound fractions were
932 analysed with an anti-Miro1 antibody. As positive control anti-Miro1 IgG immobilized on Protein
933 A/G sepharose and as negative control a non-specific bivalent and site specifically conjugated
934 nanotrap (bivNC_{sort}) was used. Shown is a representative immunoblot stained with an anti-
935 Miro1 antibody reflecting the results of three independent biological replicates.

936 (B) Capture efficiency by mono- and bivalent nanotrap. Averaged iBAQ (intensity based
937 absolute quantification) values for Miro1 isoform 2 (white circles) and isoform 3 (black circles)
938 of three biological replicates are shown.

939 (C) Classification of Miro1 interactor based on STRING database. Class 1: direct interactor,
940 confidence score >0.9; Class 2: direct interactor, confidence score <0.9; Class 3: indirect
941 interactor, confidence score >0.9.

942


943 **Figure 6. Live-cell imaging of Miro1 with selected Miro1-Cbs.**

944 (A) Representative fluorescence images of living HeLa cells transiently expressing GFP-Miro1
945 (left column) in combination with red fluorescently labelled (TagRFP) M41-, M85- or M114-Cb
946 (middle column). Scale bars 20 μ m.

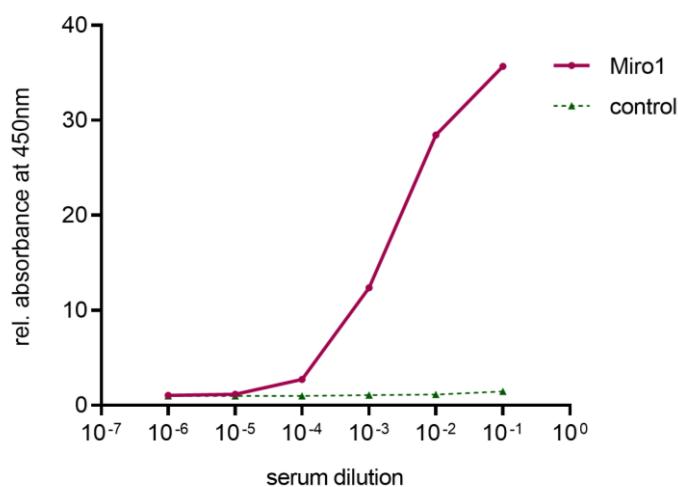
947 (B) Time-lapse microscopy of U2OS cells transiently expressing GFP-Miro1 in combination
948 with either M114-Cb or mitoMkate2. To visually track morphological mitochondrial changes,
949 cells were treated with either DMSO as a control (top two rows) or 10 μ M Sorafenib (bottom
950 two rows) followed by time-lapse imaging over a 2 hour period. Shown are representative
951 images of three biological replicates. Scale bar 25 μ m. Squares at the bottom right represent
952 enlargements of the selected image section.

953

954

955

956 **Figure 7. Targeted intracellular degradation of endogenous Miro1 by Fbox-Nb-based**
957 **degrons.**

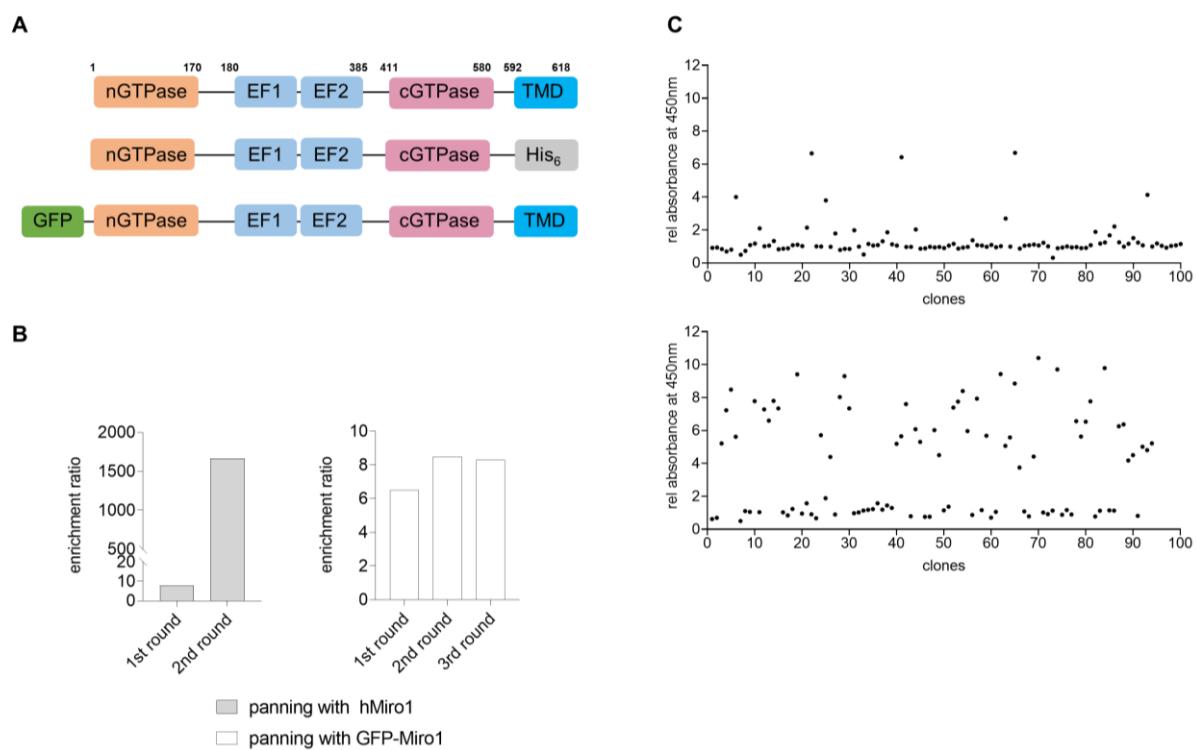

958 (A) Schematic illustration of the targeted degradation of Miro1 mediated by Miro1-Nb-Fbox
959 fusions (illustration created with Biorender.com)

960 (B) Representative confocal images of HeLa cells transiently expressing indicated Miro1-
961 specific Fbox-Nbs (Fbox-M41, Fbox-M114) or a non-related Fbox-Nb (Fbox-NR) construct. For
962 quantitative IF analysis, cells were fixed and permeabilized 24 h after transfection followed by
963 detection of endogenous Miro1 with Miro1 antibody (shown in green). Fbox-Nb expressing
964 cells were identified by a nuclear TagRFP signal indicated by white arrows and subjected to
965 automated image analysis and quantification as described in Material and Methods. Scale bar
966 20 μm.

967 (C) Mean Miro1 fluorescence intensity from HeLa cells expressing Fbox-Nbs determined by
968 quantitative fluorescence imaging. Mean Miro1 fluorescence was calculated from four samples
969 (n= 4; >500 cells) and normalized to untransfected cells, UT (set to 1). As control, a non-related
970 Fbox-Nb construct (Fbox-NR) was used. Data are represented as mean ± SEM. For statistical
971 analysis, Student's t-test was performed, **p < 0.01, ***p < 0.001.

972 **Supplementary information**

973 **Supplementary Data**

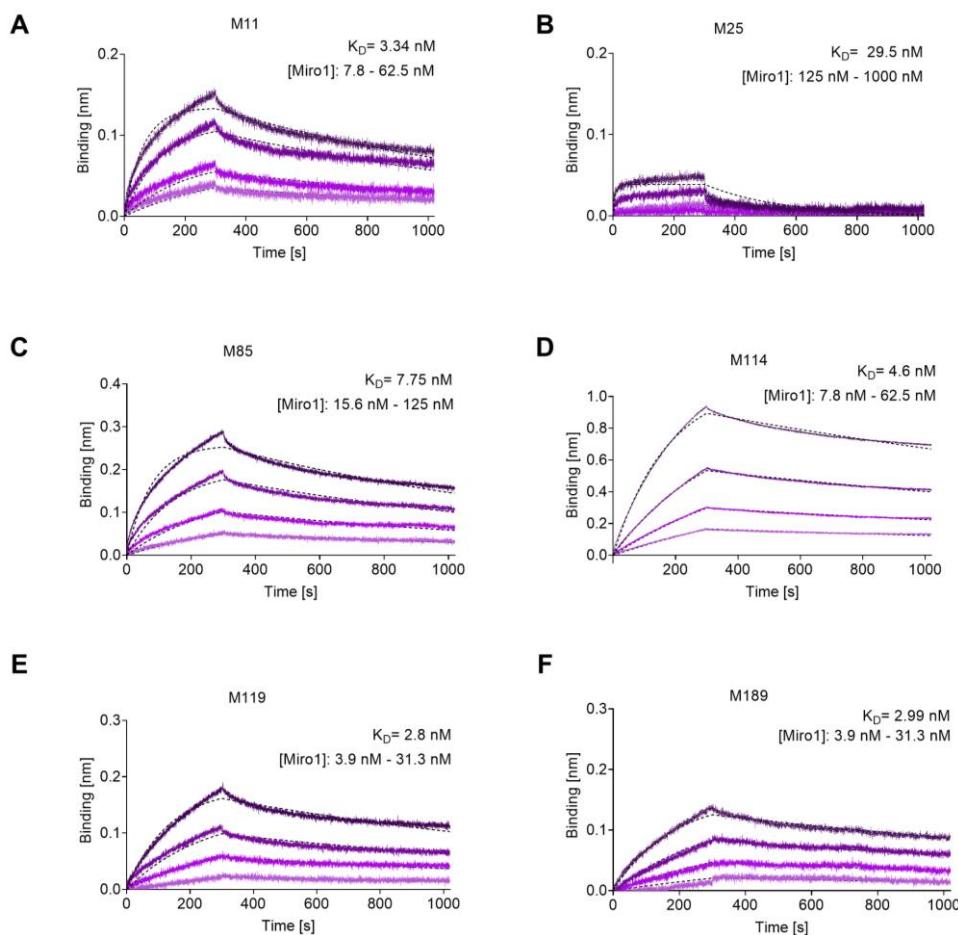

974

975 **Supplementary Figure 1. Analysis of seroconversion upon vaccination with Miro1.**

976 To monitor an immune response upon vaccination, a serum sample was from the immunized
977 Alpaca (*Vicugna pacos*) on day 63 after starting immunization. Formation of Miro1 specific
978 antibodies by the animal was measured in a serum ELISA at indicated dilutions in multiwall
979 plates either coated with hMiro1 or bovine serum albumin (BSA) as negative control. Bound
980 antibodies were detected using an anti-heavy chain antibody secondary antibody labelled with
981 horse radish peroxidase. Obtained ELISA signals for hMiro1 were normalized to signals
982 obtained for the negative control.

983

984

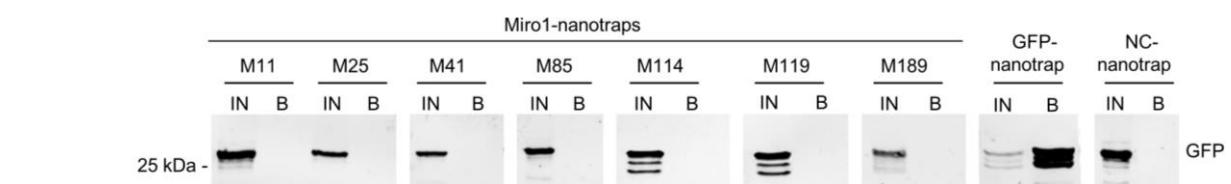


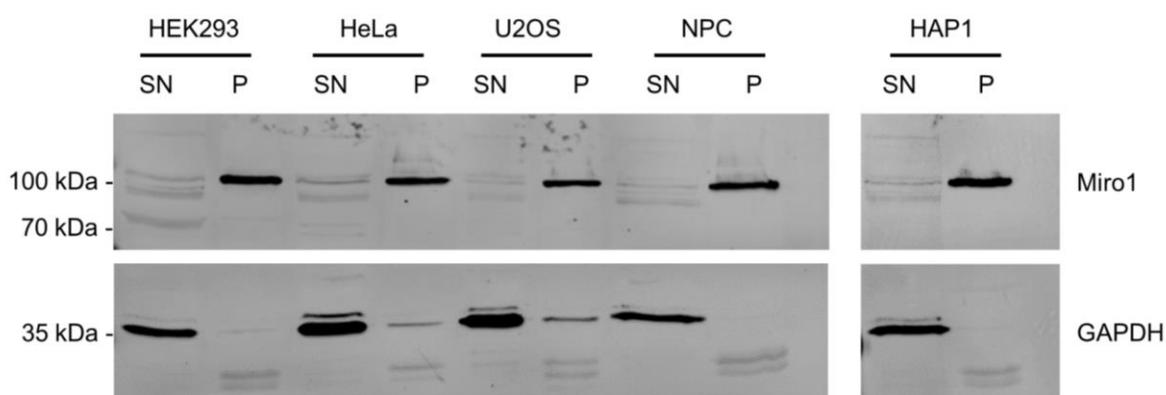
985

986 **Supplementary Figure 2. Enrichment and selection of Miro1 nanobodies (Nbs) by phage**
987 **display and phage ELISA.**

988 (A) Illustration of wildtype Miro1 and recombinant Miro1 constructs used for phage display.
989 (B) Bar charts showing the enrichment of Miro1-Nb phages after two iterative panning rounds
990 against bacterial expressed hMiro1 (left panel, grey bars) and three iterative panning rounds
991 against GFP-Miro1 (right panel, white bars).
992 (C) Phage ELISA profile of 100 eluted phage clones tested for binding to hMiro1 (top panel) or
993 GFP-Miro1 (lower panel). Signal intensities were normalized to a signal obtained for BSA used
994 as negative control.

995

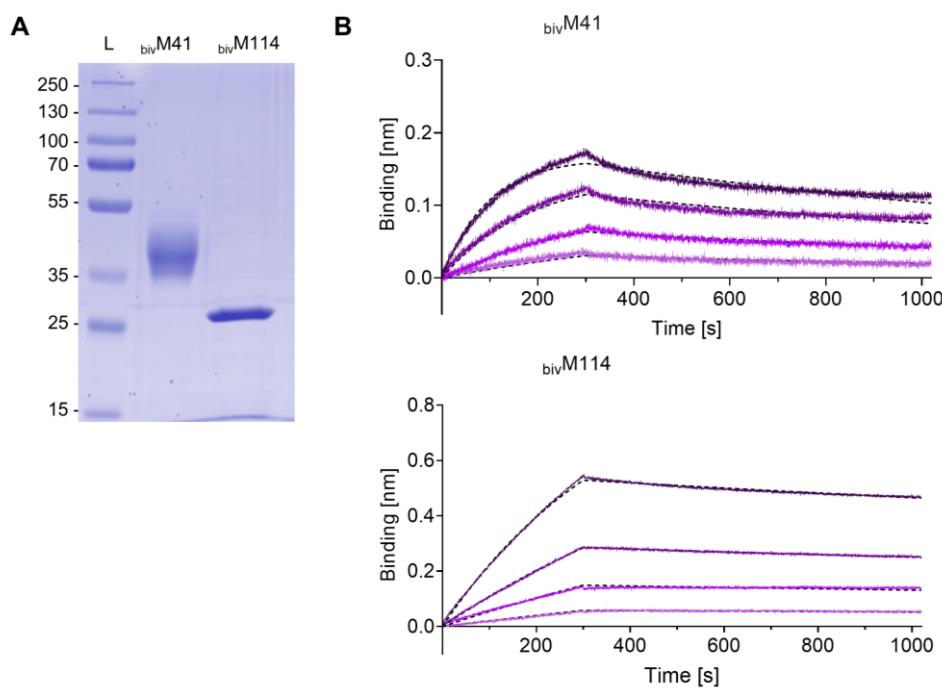



996

997 **Supplementary Figure 3. Affinities of identified Miro1-Nbs.**

998 Affinities of Miro1-Nbs were analysed by biolayer interferometry based affinity measurements.
999 Miro1-Nbs were biotinylated and immobilized on streptavidin sensors. Kinetic measurements
1000 were performed by using four concentrations of hMiro1. The sensograms of hMiro1 on M11
1001 (A), M25 (B), M85 (C), M114 (D), M119 (E) and M189 (F) at indicated concentrations
1002 (illustrated with increasingly darker shades from low to high concentration) are shown and
1003 global 1:1 fits are illustrated as dashed lines. A summary of the affinities (K_D), association
1004 constants (K_{ON}) and dissociation constants (K_{OFF}) determined for all seven Miro1-Nbs are
1005 shown in **Figure 1C, Table 1**.

1006



1015

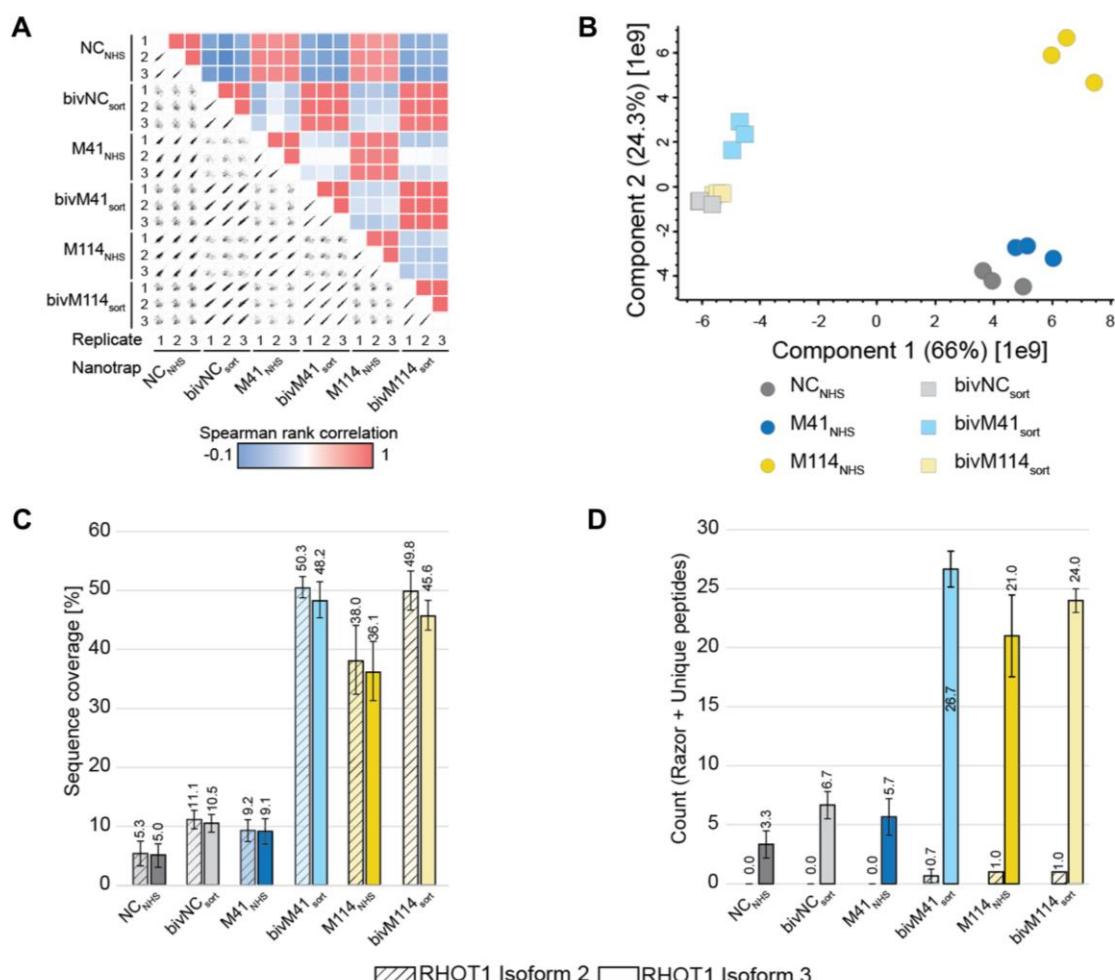
1016 **Supplementary Figure 5. Endogenous Miro1 retains in the insoluble protein fraction in**
1017 **different cell lines.**

1018 Representative western blot analysis of 20 µg of soluble (SN) and insoluble/pellet (P) fractions
1019 of HEK293, HeLa, U2OS, HAP1 and neuroprogenitor (NPC) cells. Shown is a representative
1020 example of an immunoblot after cell lysis using 0.5% NP-40 in the lysis buffer. The upper part
1021 of the blots were detected with anti-Miro1 antibody. Detection of GAPDH with an anti-GAPDH
1022 antibody was used as lysis and loading control.

1023

Table 1

	K_D (nM)	k_{ON} ($10^5 M^{-1} s^{-1}$)	k_{OFF} ($10^{-4} s^{-1}$)	R^2
bivM41	1.86	3.19 ± 0.02	5.95 ± 0.02	0.99
bivM114	2.35	0.78 ± 0.00	1.83 ± 0.01	0.99

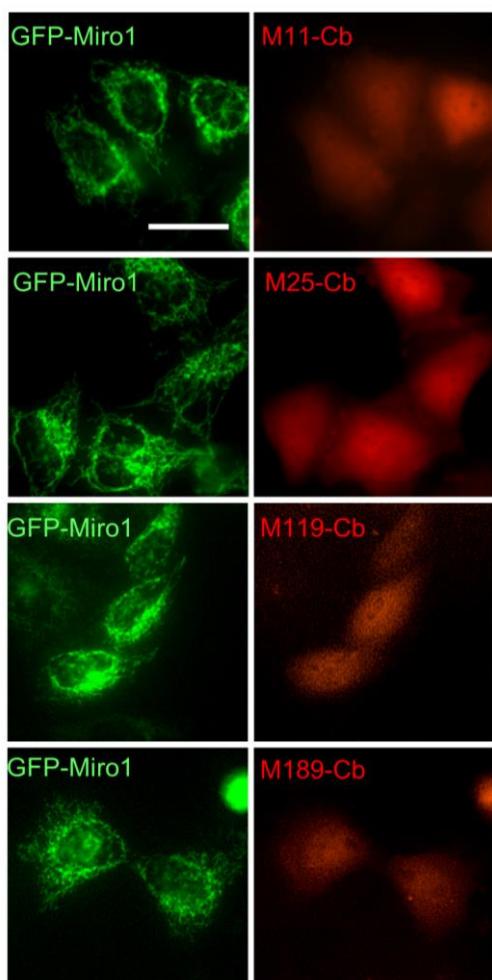

1024

1025 **Supplementary Figure 6. Recombinant expression, purification and characterization of**
1026 **bivalent M41- and M114-Nbs.**

1027 (A) Coomassie stained SDS-PAGE of 2 μ g bivM41- and bivM114-Nbs purified from ExpiCHO™
1028 cells is shown.

1029 (B) Affinities of bivalent Miro1-Nbs were analysed by biolayer interferometry (BLI) based
1030 affinity measurements. Bivalent Miro1-Nbs were biotinylated and immobilized on streptavidin
1031 sensors. Kinetic measurements were performed by using four concentrations of hMiro1
1032 ranging from 3.9 nM – 31.3 nM (illustrated with increasing concentrations in darker shades).
1033 The sensograms of purified Miro1 on bivM41-Nb (top) and bivM114-Nb (bottom) are shown and
1034 global 1:1 fits are illustrated as dashed lines. The table summarizes affinities (K_D), association
1035 (k_{ON}) and dissociation constants (k_{OFF}), and coefficient of determination (R^2) determined for
1036 both bivalent Nbs.

1037



1038

1039 **Supplementary Figure 7. Enrichment efficiency of bivalent nanotraps.**

- 1040 (A) Multi correlation between replicates and nanotraps. High Spearman rank correlation
 1041 between replicates and mono- or bivalent nanotraps.
- 1042 (B) Principle component analysis (PCA) reflects highest similarity between replicates. 66% of
 1043 variance between samples explained by nanotrap valency.
- 1044 (C) Identification of Miro1 peptides (razor and unique) for Miro1 isoforms. Averaged across
 1045 three replicates.
- 1046 (D) Averaged sequence coverage of Miro1 higher for bivalent nanotraps

1047

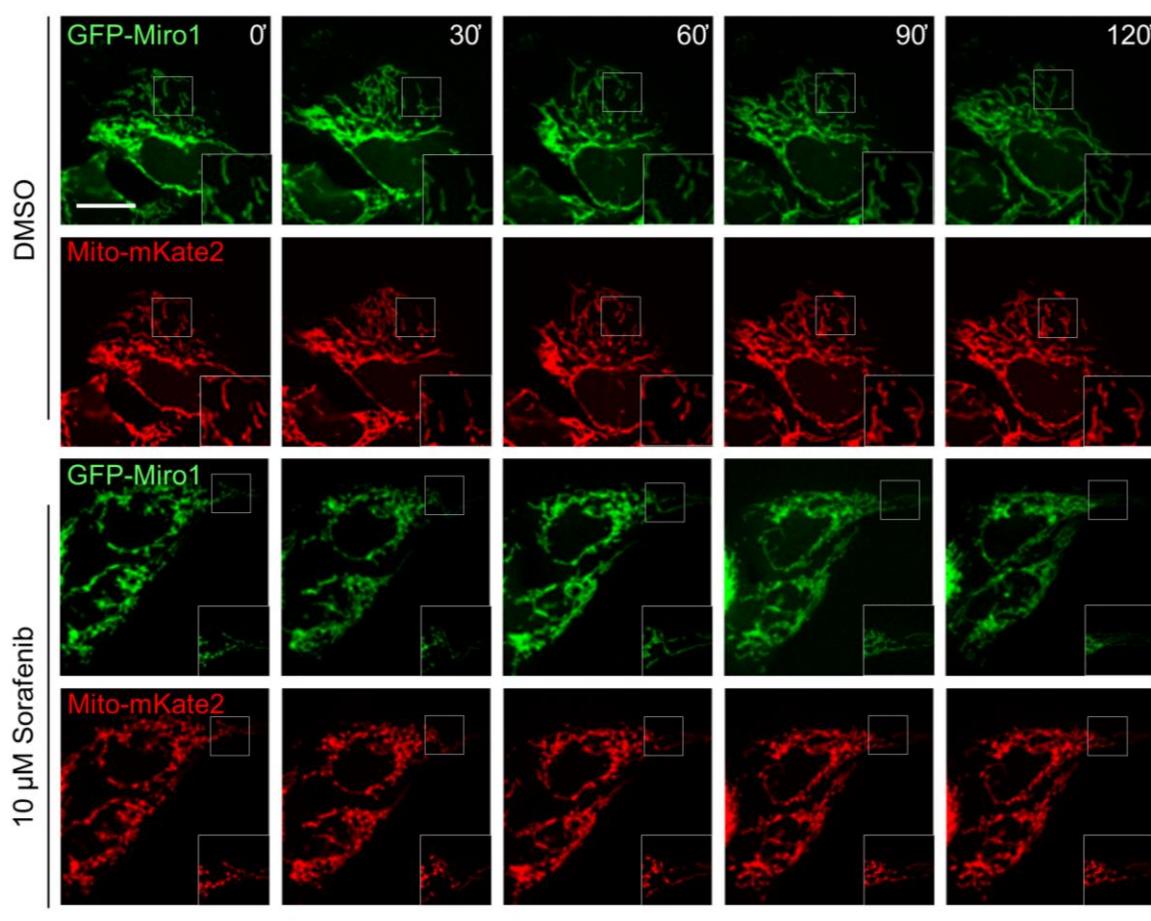


1048

1049 **Supplementary Figure 8. Detection of intracellular binding capacities of Miro1-Cbs.**

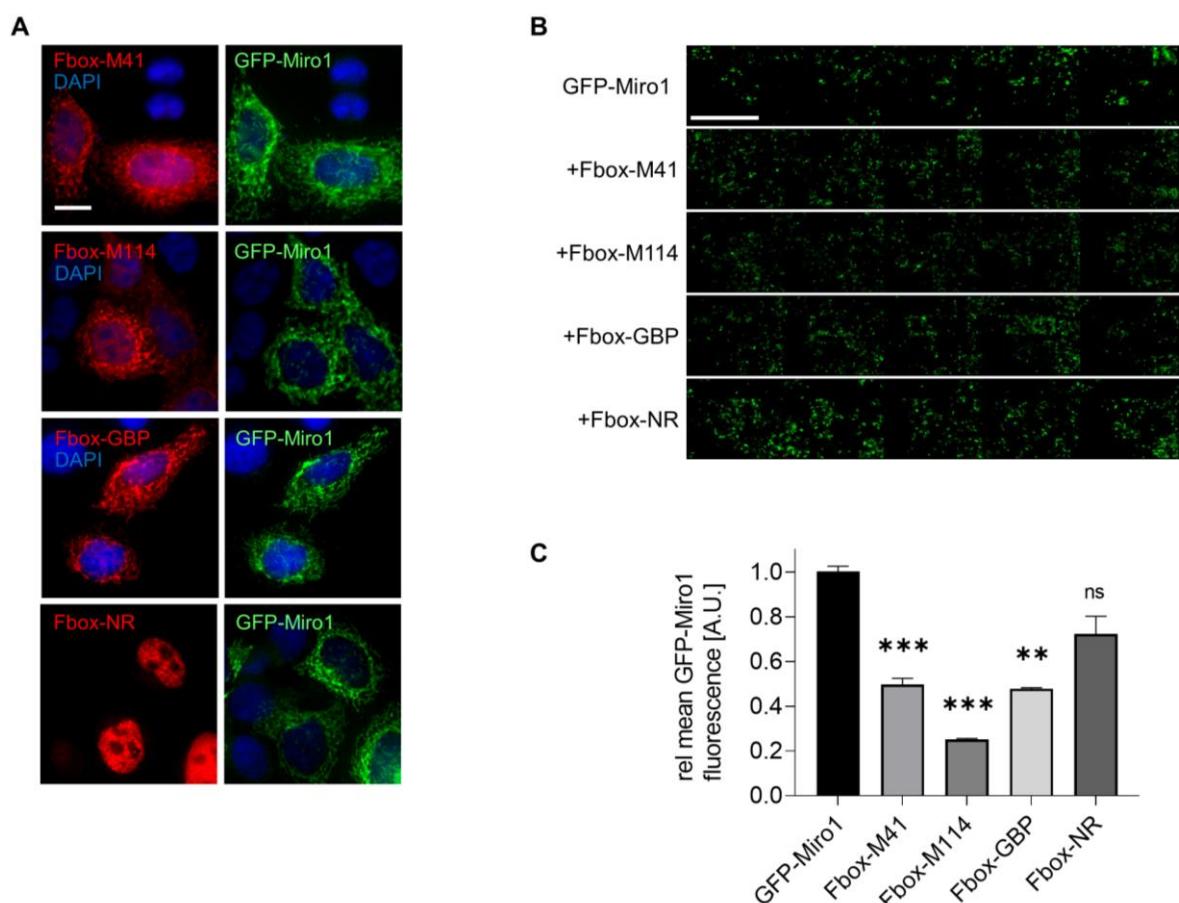
1050 Representative fluorescence images of live HeLa cells transiently expressing GFP-Miro1 (left
1051 column) in combination with TagRFP-labelled Miro1-Cbs (right column). Scale bar 20 μ m.

1052



1053

1054 **Supplementary Figure 9. Intracellular characterization of domain specific binding of**
1055 **selected Miro1-Cbs.**

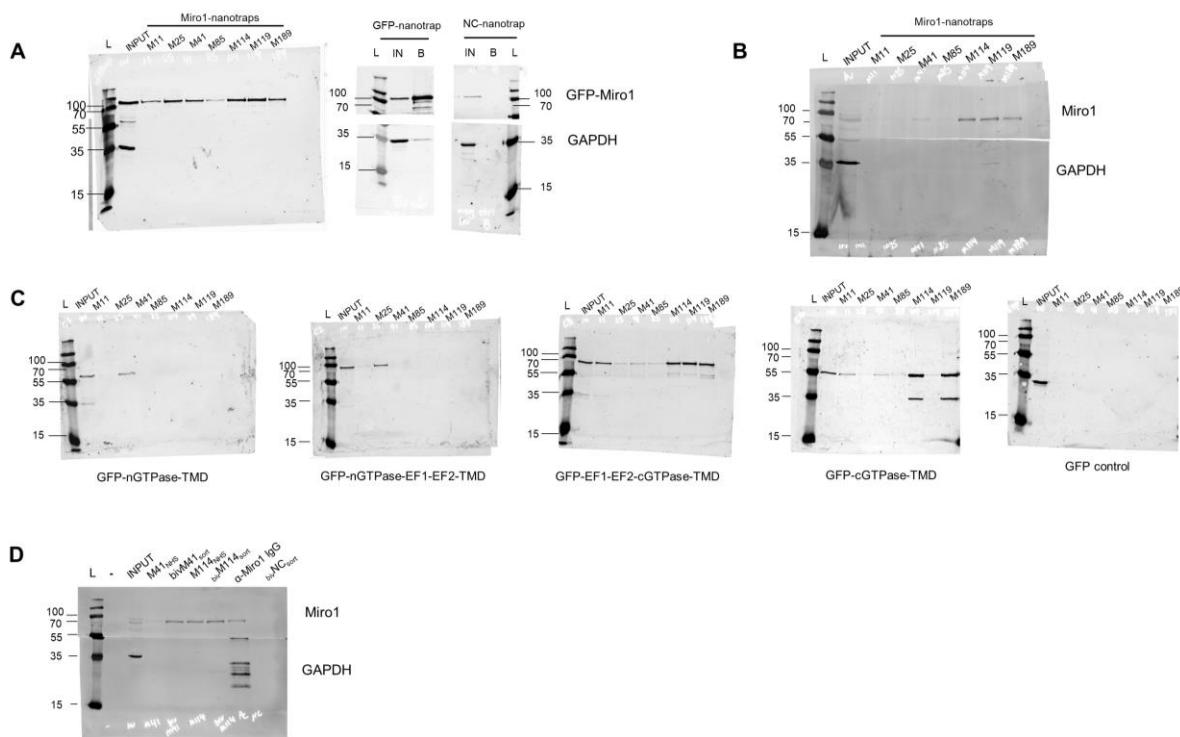

1056 Representative fluorescent images of live HeLa cells transiently expressing GFP-Miro1 and
1057 indicated GFP-tagged Miro1 domain deletion constructs (top row) in combination with
1058 TagRFP-labelled M41-Cb (**A**), M85-Cb (**B**) or M114-Cb (**C**) (middle row). Scale bar 20 μ m.
1059 (**D**) Immunofluorescence detection of endogenous Miro1 in HeLa cells expressing M41-, M85-
1060 and M114-Cb (left panel) using an anti-Miro1 antibody (right panel). Scale bar 25 μ m.

1061

1064 Time-lapse microscopy of U2OS cells transiently expressing GFP-Miro1 and mitoMkate2 (as
1065 a mitochondrial marker). To visually track morphological mitochondrial changes, cells were
1066 treated with either DMSO as a control (top two rows) or 10 μ M Sorafenib (bottom two rows)
1067 followed by time-lapse imaging over a 2 hour period. Shown are representative images of three
1068 biological replicates. Scale bar 25 μ m. Squares at the bottom right represent enlargements of
1069 the selected image section.

1070

1071


1072 **Supplementary Figure 11. Targeted degradation of GFP-Miro1 by Fbox-Nb-based**
1073 **degrons in live cells.**

1074 (A) Representative confocal images of HeLa cells transiently co-expressing GFP-Miro1 and
1075 indicated Miro1-specific Fbox-Nbs (Fbox-M41, Fbox-M114) or a non-related Fbox-Nb (Fbox-
1076 NR) construct are shown. For quantitative IF analysis, cells were fixed and permeabilized 24 h
1077 after transfection followed by staining with Cy5 conjugated anti-VHH antibody and DAPI. Fbox-
1078 Nb expressing cells were subjected to automated image analysis and quantification as
1079 described in Material and Methods. Scale bar 20 μ m.

1080 (B) Representative fluorescence thumbnail images of HeLa cells coexpressing GFP-Miro1 and
1081 Fbox-Nb constructs. Scale bar 1 mm.

1082 (C) Mean GFP-Miro1 fluorescence intensity from HeLa cells co-expressing GFP-Miro1 and
1083 Fbox-Nbs constructs were determined by quantitative fluorescence imaging. Fluorescence
1084 intensity values were calculated from three samples (n= 3; >500 cells) and normalized to the
1085 GFP-Miro1 signal intensity (set to 1). Positive control; GFP-specific Fbox-Nb (Fbox-GBP),

1086 negative control; non-related Fbox-Nb construct (Fbox-NR). Data are represented as mean ±
1087 SEM. For statistical analysis, student's t-test was performed, **p < 0.01, ***p < 0.001.

1088

1089 **Supplementary Figure 12. Western blot data.**

1090 **(A)** Full size of Western blots shown in **Figure 2A**, top halves stained with anti-GFP antibody,
1091 bottom halves stained with anti-GAPDH antibody

1092 **(B)** Full size of Western blots shown in **Figure 2B**, top half detected by anti-Miro1 antibody,
1093 bottom half by anti-GAPDH antibody.

1094 **(C)** Full size of Western blots shown in **Figure 3B**, detection with anti-GFP antibody.

1095 **(D)** Full size of Western blots shown in **Figure 5**, top half detected by anti-Miro1 antibody and
1096 the bottom half by anti-GAPDH antibody.

1097

1098 **Supplementary Table 1.** List of oligonucleotides used in this study

1099

Name	Sequence 5'-3'	purpose
CALL001	GTCCTGGCTGCTCTTACAAGG	Nb library generation
CALL002	GGTACGTGCTTGAACGTGTTCC	
FR1-1	CATGGCNSANGTGCAGCTGGTGGANTCNGGNNG	
FR1-2	CATGGCNSANGTGCAGCTGCAGGANTCNGGNNG	
FR1-3	CATGGCNSANGTGCAGCTGGTGGANAGYGGNNG	
FR1-4	CATGGCNSANGTGCAGCTGCAGGANAGYGGNNG	
FR1-ext1	GTAAGCCCAGCCGCCATGGCNSANGTGCAGCTGGTGG	
FR1-ext2	GTAAGCCCAGCCGCCATGGCNSANGTGCAGCTGCAGGA	
FR4-1	GATGCGGCCGCGNGANGANACGGTGACCGNRYNCC	
FR4-2	GATGCGGCCGCGNGANGANACGGTGACCGNNGANCC	
FR4-3	GATGCGGCCGCGNGANGANACGGTGACCGNRCNTNCC	
FR4-4	GATGCGGCCGCRCTNGANACGGTGACCGNNGANCC	
FR4-5	GATGCGGCCGCRCTNGANACGGTGACCGNNGANCC	
FR4-6	GATGCGGCCGCRCTNGANACGGTGACCGNRCNTNCC	
Miro1fragB_for	CAACAATGGCCATGTATCCACACGTGACACAAGCTGACCTCA	Cloning of GFP-Miro1 mammalian expression construct
Miro1fragB_rev	CAAGCTCTTCAGCAATATCACGG	
Miro1fragA_for	CGTGTGGATACATGGCATTGTTGTCAATTAAACAAAGA	
Miro1fragA_rev	TGGTGGCGGAGGTAGCATGAAGAAAGACGTGCGGATC	
vectorGA_for	TGGCTACCCGTGATATTGCTG	
vectorGA_rev	CGTCTTCTTCATGCTACCTCCGCCACCACTTC	
nGTP_for	ATTGGTACCTTTGGCTTCGAGCAAGTTTGG	Cloning of Miro1 domain deletion constructs
nGTP_rev	ATTGGTACCCCTCTCTCTCTGGGC	
nGTPEF2_rev	GCGGGTACCATTTCTTGAGTTGTTCTGCAGG	
Delta nGTP_for	ATTGGTACCGAGGAGAAGGAGATGAAACCAGC	
Delta nGTP_rev	GCTGGTACCCATGCTACCTCCGCCACC	
cGTP_for	AAAAAACAAACTCAAAGAAATGTGTTAGATG	
cGTP_rev	CATGCTACCTCCGCCACCACTTC	
bivM114GA_for	GCCGGCGTGCACCTGAGGTACAGCTGCAGGAGTCGGG	Cloning of bivM114 expression construct
nterm1273_rev	CACCAACGCCAGATCCACCGCCACCTGATCCTCCGCCCTCC	
bivM114GA2_for	GGTGGATCTGGCGGTGGTGGAAAGTGGTGGCGGAGGTAGT	
	GAGGTACAGCTGCAGGAGTCGGG	
downEcoRI_rev	GTTGTAAAACGACGGCCAGTG	
bivM114FPCR_for	GTCTGTGACCGCCGGCGTGCACCTCTGAG	
bivM114FPCR_rev	TTTAATTAAGCGGCCCGAATTGTTGAAACGACGGCCAGTG	
NM95_for	TAATCTAGAGGGCCCTATTCTATAGTG	Cloning of Fbox-M41, Fbox-M114 and Fbox-NR constructs
NM95_rev	GCTGGAGACGGTGACCTG	
frag2IRES_for	CCCAGGTACCGTCTCCAGCTAACTAGAGGTTAACGAATT	
frag2IRES_rev	GGTTGTGGCCATATTATC	
nls-insert_for	AAGAAGAGGAAGGTTGAGCGGCCGCGACTCTA	
nls-insert_rev	CTTAGGGCTGCCTCCATTAAGTTGTGCCCGAGTTGCTAG	
frag3-tRFP-nls_for	ATGATAATATGCCACACCAGGTGTCTAAGGGCGAAG	
frag3-tRFP-nls_rev	GAATAGGGCCCTCTAGATTAAACCTCCTCTTCTTAGG	

1100

1101 **Supplementary Table 2.** Amino acid sequences of all selected Miro1-Nbs.

Miro1-Nbs	Amino acid sequence
M11	QVQLVESGGGVQPGGSLRLSCAASGFSFSSNVMSWARQAPGKGLEWVSGIYV DGRTHYADSVKGRFTISRDNAKNTVYLQMNSLKPEDTAVYYCAAAGDLSGYSFSP YDYDYWGQGTQTVSS
M25	HVQLVESGGGLVQPGGSLRLSCIASGFTFSDVGMAWYRQIPGKERDMVASITSFG DQTSYAHSVKGRFTISRDNAKNTVYLQMNTLIPDDTAMYYCTTVLGRERRWGQG TPVTVSS
M41	EVQLVESGGGLVHPGGSLRISCAASGFSFNSSAMSWARQAPGKGLEWVSGIQAD GTTGYAHSVKGRFNISRDNAKNIVYLQMSSLKPEDSAVYYCAKEGWSTVVFGSRD YWGQGTQTVSS
M85	DVQLVESGGGVQSGGSLRLSCAASGSKLDDYSIGWFRQAPGKGREGISCITMK TGSFEYVDSVKGRFTISADNAKNTVHLQMNNLKPEDTGIYYCAALRSRGLFCVTSP YEYDLWGQGSPVTVSS
M114	EVQLQESGGGLVQPGGSLRLSCTASGFPVSSAAMSWARQSPGKELEWVSGIYT DGSADYADSLKGRFTISRDDVENTINLQMNSLKPEDTAVYYCKTDWWAGPSGYV AVWGQGTLVTVSS
M119	DVQLVESGGGLVQPGGSLRLSCATSGFPLDNYAIGWFRQAPGSEREGVSCISSS GSYFPGSGSRTHYAHSVKGRFTISRDGAKNTVYLQMDNLKPEDTAVYYCAAVPV PSIRTAETMCVRGSLSEFISWGQGSQVTVSS
M189	EVQLVESGGGLVQPGGSLRLSCTASGFPVSSAAMSWARQSPGKELEWVSGIYTD GSADYADSLKGRFTISRDDVENTINLQMNNLKPEDTAIYYCNANFFEGSWYDYWG QGSPVTVSS

1102

1103