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Abstract

Smoldering multiple myeloma (SMM) is a precursor condition of multiple myeloma (MM)
with significant heterogeneity in disease progression. EXxisting clinical models of
progression risk do not fully capture this heterogeneity. Here we integrated 42 genetic
alterations from 214 SMM patients using unsupervised binary matrix factorization (BMF)
clustering and identified six distinct genetic subtypes. These subtypes were differentially
associated with established MM-related RNA signatures, oncogenic and immune
transcriptional profiles, and evolving clinical biomarkers. Three subtypes were associated
with increased risk of progression to active MM in both the primary and validation cohorts,
indicating they can be used to better predict high and low-risk patients within the currently

used clinical risk stratification model.
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Multiple Myeloma (MM) is an incurable plasma cell malignancy with significant inter- and
intra-patient heterogeneity. It is almost always preceded by the asymptomatic precursor
stages monoclonal gammopathy of undetermined significance (MGUS) and smoldering
multiple myeloma (SMM). Approximately 1.5% of MGUS patients will progress to MM per
year, while SMM patients have a higher overall progression risk of 10% per year!?. Like
MM, SMM is a heterogeneous condition—some patients have over a 50% risk of
progression within two years, while others have more MGUS-like disease that progresses

slowlys.

Several risk stratification models exist to help clinicians differentiate patients with high risk
of progression to active myeloma from those for whom a ‘watchful waiting’ approach is
appropriate. The existing models rely solely on clinical measurements, many of which are
indicators of tumor burden and universal biomarkers of MM for risk stratification. These
models, however, do not fully partition progressors from non-progressors, and patients
classified as low- or intermediate-risk still progress to active MM and have a 2-year
progression risk of 6% and 18%, respectively (compared to 44% for high-risk patients)?,
which warrants a more accurate models that also represent the molecular heterogeneity
in MM. We recently showed that genomic alterations in mitogen-activated protein kinase
(MAPK) and DNA repair pathways or MYC are independently predictive of progression
risk*. While these genomic biomarkers improved upon the clinical models, they represent

only a few alterations that do not capture the full extent of genetic heterogeneity in SMM.

Multiple myeloma is characterized by multiple chromosomal gains or losses, structural
variations, driver single nucleotide variations (SNVs)®>7, and other structural alterations
involving known oncogenes®. The IgH translocations and copy number alterations (CNAS)
are considered early events in the pathogenesis of MM, while other CNAs and SNVs
usually occur later during clonal evolution, providing more proliferative capacity to the
tumor cells*. Multiple SMM studies have shown that CNAs, including whole chromosome
duplications and arm-level losses or gains, are the most common events, followed by
SNVs, and then translocations*’%19, These alterations have all been detected at the SMM
stage, and we previously showed that the genomic makeup of the MM tumor clone is fully
acquired by the time of SMM diagnosis in most cases*1%-12, | Furthermore, certain genetic

alterations were found to occur more frequently together*’, therefore, studying these
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genetic alterations as groups or networks rather than individual risk factors may improve
our understanding of disease molecular groups and the overall risk stratification in SMM.

In this study, we apply an unsupervised binary matrix factorization (BMF) clustering
method to identify groups of genomic alterations that tend to occur together, and show

that the resulting clusters represent distinct biological and clinical subtypes in SMM
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Results

Identification of six clusters with distinct genetic features.

We leveraged DNA sequencing data from a cohort of 214 patients at the time of SMM
diagnosis, with matched RNA sequencing data of 89 patients from the same cohort, and
baseline clinical information for the whole cohort (Figure 1A and Supp. Table 1). The
patients in this cohort harbored a median of 7 driver events, several of which tended to
co-occur*®’, suggesting that additional analyses may reveal distinct patterns (i.e.,
clusters) of genetic alterations. To identify these patterns, binarized DNA features (42
driver SNVs, CNVs, and translocations) were curated for each sample representing the
presence or absence of each genomic alteration. Chapuy et al successfully subtyped
diffuse B-cell ymphoma patients with consensus non-negative matrix (NMF) factorization
of numeric DNA features. We instead apply consensus BMF for this multi-omics subtyping
to accommodate these binarized DNA features, appropriately model summative features
that span multiple subtypes (i.e. hyperdiploidy), and handle sparse matrices (Methods).
We identified six distinct patterns of drivers that accordingly partitioned the patient to six
clusters based on their most enriched pattern. Samples in four of these clusters were
hyperdiploid (more than 48 chromosomes), while those in the other two were enriched for

known MM IgH translocations (Figure 1B).

Cluster 1: the tumors of this cluster exhibited a hyperdiploid genotype as the primary
event and were significantly enriched in NRAS, TRAF3, and MAX mutations. We named
this cluster Hyperdiploid-likel (HL1). Cluster 2: the tumors of this cluster harbored
frequent arm-level deletions, including 16q, 69, 1p, 17p, 4q, 18q, and 20q, and the IgH
translocation t(14;20), which upregulates the transcription factor MAFB. Moreover,
mutations in NRAS, BRAF, TP53, ATM, MAFB, and CDKN2C genes were enriched in
this subgroup. Hyperdiploidy was detected in 69% of the tumors in this cluster. We named
this cluster Hyperdiploid-like2 (HL2). The tumors of this cluster were significantly enriched
in deletion(16q), which involves CYLD tumor suppressor and other genes. The presence
of both hyperdiploidy and t(14;20) in the same cluster could be explained by either the
small number of samples with these alterations as seen in other studies as well, or that

in few cases they co-occur together. Indeed, half of patients with t(14;20) in our cohort
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had hyperdiploidy. Cluster 3: Tumors of this cluster exhibited primary events such as
t(4;14), which upregulates FGFR3 and MMSET genes; t(14;16), which upregulates the
transcription factor MAF; and copy number losses of 14q, 1p, 8p, 10p, 11q, 12p, and 17p.
We named this cluster Translocation-likel (TL1). This cluster was also enriched for
hypodiploid tumors, defined as having fewer than 45 chromosomes (adjusted P = 0.04).
Tumors in this cluster also harbored mutations in BRAF, DIS3, MAF, FGFR3, PRKD2,
PRDM1, IRF4, and HIST1H1E. Many of these proteins and mutations in their encoding
genes are essential to tumor cell survival and play roles in protein translation, secretion,
and plasma cell differentiation 73, Differential gene expression analysis revealed that
TL1 tumors have downregulation of ribosomal proteins and the negative regulator of the
MAPK pathway TRAF2. The upregulated genes included WHSC1(MMSET), FGFR3,
KLHL4, CCNDS3, and genes involved in the endoplasmic reticulum (ER) stress response
(Figure 2A). Cluster 4: this cluster comprises tumors with a hyperdiploid genotype that
harbored mutations in KRAS and NFKBIA genes, and MYC translocations as the only
significant features. We named this cluster Hyperdiploid-like3 (HL3). Cluster 5: the tumors
in this cluster mainly exhibited t(11;14), CCND1 mutations, and gain of chromosome 11
or its long arm. We named this cluster Translocation-likel (TL1). Interestingly, this cluster
had significantly lower M-protein levels and was enriched in light-chain disease compared
to the other clusters (P < 0.001 for both). Tumors of TL2 had 243 differentially expressed
genes (q <0.1, log2FC|> 1.5; 180 upregulated, 63 downregulated), including
overexpression of CCND1, ERBB4, E2F7, E2F1, TRAK2, RBL1, and downregulation of
DUSP4, TRAF6, PRKD3, CCDC6, and ZNF844. Furthermore, this cluster had the highest
expression of CCND1 compared to the other clusters (Figure 2B). Cluster 6: this is a
hyperdiploid cluster similar to HL1; however, its tumors are also enriched in NFKB2 and
KLHL6 mutations and exhibit copy gains in 2p. Interestingly, copy gains of 1q were more
frequent in this cluster than HL1 and the other hyperdiploid clusters (P < 0.001 for both
comparisons). We named this cluster Hyperdiploid-like4 (HL4). Additionally, key
individual genes in myeloma pathogenesis were overexpressed in tumors of specific
genetic subtypes. MCL1 was upregulated in all the genetic subgroups with the lowest
expression observed in HL1 tumors compared to the other subtypes (P = 0.001) (Figure

2C). MYC oncogene was also highly expressed in the four hyperdiploid clusters (P =


https://doi.org/10.1101/2021.12.10.471975
http://creativecommons.org/licenses/by-nc-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2021.12.10.471975; this version posted December 11, 2021. The copyright holder for this preprint
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY-NC-ND 4.0 International license.

0.009, Wilcoxon Test) (Figure 2D). Cyclin D1 (CCND1) was significantly upregulated in
TL2 tumors (P = 0.0001), while CCND2 was upregulated in TL1 and HL2 tumors
compared to the rest of the genetic subtypes (P = 0.004) (Figure 2E, F). Moreover, in the
four hyperdiploid clusters, we found that CCND1 expression was higher in tumors with
11q gain, while CCND2 expression was higher in samples without 119 gain (Supp Figure
1).

The genetic subgroups are enriched with specific MM expression signatures.

To date, ten distinct RNA expression signatures have been defined and validated as
prognostic in newly diagnosed and relapsed MM patients'41°, Each expression signature
was then associated to specific primary genetic lesions identified by fluorescent in situ
hybridization (FISH), including hyperdiploidy and IgH translocations that activate c-MAF
and MAFB, CCND1, CCND3, or MMSET*15>, We asked whether these expression
signatures were present in our SMM cohort and correlated with the six genetic subgroups.
To address this, we performed a gene-set enrichment analysis of these expression
signatures among the genetic subtypes (lower panel of Figure 2G). We observed that the
hyperdiploid expression (HP) signature'**>, which is seen in hyperdiploid MM patients, is
upregulated in the tumors of our hyperdiploid clusters (HL1-4). The Cyclin D(CD)
expression signatures, including CD-1 that highly expresses CCND1 and CD-2, which
expresses the B cell markers CD20, CD79A, and CCND1 were significantly upregulated
in the TL2 genetic subgroup. Moreover, the high-risk MMSET (MS) expression signature,
which is enriched in patients with t(4;14) and upregulates MMSET and FGFR3 genes,
was upregulated in the TL1 cluster. The MAF (MF) signature, which has been reported in
patients with t(14;16) and t(14;20) that upregulate MAF and MAFB genes, respectively,
was enriched in both the TL1 and HL2 subgroups, consistent with the presence of these
genetic alterations in their tumors. The low bone (LB) disease signature, which has not
been previously mapped to a specific MM genetic alteration, was upregulated in the HL4,
TL1, and HL2 subgroups, suggesting it could be linked to 1q gain, which occurs frequently
in these three subgroups. Interestingly, the PR signature, which is found in proliferative

tumor cells, was enriched in the HL3 and TL2 subgroups. Furthermore, the NFkB
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signature was upregulated only in HL2, which could be explained by the high frequency
of 16q deletions and CYLD mutations in this subgroup. Finally, the PRL3 signature, which
overexpresses the protein tyrosine phosphatase PTP4A3 and 27 additional genes, was
upregulated only in HL4. This suggests it could also be linked to the presence of 1q gain,

which is found in all the tumors of the HNF subgroup.

We further examined whether our genetic subtypes were enriched in specific mutational
signatures for 72 samples with matched normal whole exome sequencing (Methods). We
found that the APOBEC mutational signature activity (SBS 2,13 COSMIC v3.0) differed
between the genetic subtypes (P = 0.027, Kruskal-Wallis) while AID mutational signatures
did not (P = 0.17) (Supp Fig 1E-G). Specifically, we found APOBEC activity enriched in
the HL2 & TL1 clusters vs. the rest of tumors (P = 0.006) (Supp Fig 1H).

Genetic subgroups have distinct transcriptional profiles.

We performed GSEA on the available transcriptomic resulting data to explore which
genes and biological pathways were differentially expressed among the genetic
subgroups we identified. Pathways that were significantly enriched within the six genetic
subtypes are described and illustrated (Figure 2G). We found that protein secretion,
unfolded protein response (UPR), glycolysis, hypoxia, and mTOR signatures were
specifically enriched in the TL1 subgroup, while E2F target genes, cell cycle, heme
metabolism, complement, and proliferation signatures were enriched in TL2 tumors.
Genes induced by MYC were highly expressed in HL3 and HL4, consistent with MYC
upregulation in these two clusters. The NFkB, cytosolic DNA sensing, and JAK-STAT
signatures were enriched in the tumors of HL2. The interferon alpha and gamma
response signatures were high in HL2 but low in TL1. Interestingly, oxidative
phosphorylation, WNT-beta-catenin, and TGF-beta signaling were enriched only in
tumors of HL4, and the TNFa and inflammatory signatures were uniquely enriched in HL3.
Ribosome biosynthesis was low in TL1, TL2, and HL3 but high in HL1, HL2, and HL4

subgroups.

We also looked at signatures related to the tumor immune microenvironment. Signatures
of regulatory T cells and NK cells were high in HL2 and HL3, while the M2 macrophage

signature was high in TL2 and HL4 tumors. The HL3 and TL2 tumors were enriched for
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the monocyte signature. In contrast, the signature of plasmacytoid dendritic cells, known
for their immunosuppressive effect'®, was only enriched in the TL1 subtype.

Genetic subtypes are differentially associated with risk of progression and
evolving clinical biomarkers.

To investigate the relationship between these genetic subtypes and clinical outcome, we
analyzed a subset of patients (n = 87) who were followed for the natural course of their
disease and did not receive any treatment in a clinical trial setting before progression to
MM. Their baseline characteristics are reported in Supp. Table 2. The median follow-up
time for these patients was 7.1 years and the median time to progression (TTP) was 4
years (95% ClI, 3-6). In this cohort, 57 patients (66%) have progressed, while 30 (34%)
remained asymptomatic as of the last follow-up (put date of last follow up in the methods
section). The genetic subgroups had different outcomes, measured by TTP to active MM
(log-rank P = 0.007) (Supp Figure 7A). Median TTP for patients in HL2, TL1, and HL3
was 3.7, 2.6, and 2.2 years, respectively, while it was 4.3, 11, and 5.2 years for HL1, TL2,
and HL4, respectively. The HL2, TL1, and HL3 genetic subgroups had increased hazards
of progression (HR > 4.5) to active myeloma (Supp. Figure 7B).

We then divided the genetic subtypes based on their TTP and hazards of progression
into high- (HL2, TL1, HL3), intermediate- (HL1, HL4), and low-risk (TL2) subtypes. The
high- and intermediate-risk subtypes had significantly shorter TTP and increased risk of
progression compared to the low-risk subtype (2.6 and 5.2 vs. 11 years, respectively, P
< 0.0001) (Figure 3A). We also stratified the patients according to the 20-2-20 model,
which uses three cutoffs of M-protein > 2g/dL, FLC ratio > 20, and bone marrow
plasmacytosis > 20% to define low, intermediate, and high-risk groups based on the
presence of none, one, and two or all these variables, respectively®. The intermediate-
and high-risk genetic subtypes and the clinically high-risk SMM group (according to the
20-2-20 model) were the only significant predictors of progression to active MM in our
multivariate analysis (Figure 3B). Moreover, the prediction performance of the combined
clinical and genetic models was higher than the clinical model alone (C-index: 0.76 vs

0.71, respectively) (Supp. Table 3). Interestingly, within the high-risk clinical group,
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patients in the high-risk genetic subgroups had increased progression risk (HR 3.7, 95%
Cl:1.1-12.8, P = 0.04). The two-year progression risk was 59% for the genetic high-risk
compared to 41% for the genetic low-risk patients (Supp. Fig 7C). We observed a similar
findings in the intermediate-risk clinical group, where patients from the high-risk genetic
groups had shorter TTP (3.4 vs. 9.4 years, P = 0.003, with a two-year progression risk of
33% vs. 0%, respectively). (Supp. Fig 7D). We found that high-risk genetic subtypes were
significantly enriched with specific genetic alterations, such as, KRAS, TP53, t(4;14),
t(14;16), 1g gain, 16qg and 1p deletions among others (Supp. Table 3).

We also identified patients with evolving M protein (eMP), which is defined as a > 25%
increase in M-protein within 12 months of diagnosis with a minimum absolute increase of
0.5 g/dL, and evolving hemoglobin (eHb), which is defined as a = 0.5 g/dl decrease within
12 months of diagnosis!’. These changing patterns were reported to confer a higher risk
of progression to active MM in different SMM cohorts. We found that the odds of eMP
and eHb were 9.4 and 5.3 times higher (P = 0.006 and 0.007, respectively) in patients
with the high-risk genetic subtypes. These results indicate that high-risk genetic
subgroups have distinct genetic and transcriptomic features as well as different clinical

outcomes in terms of progression to active MM and evolution of its biomarkers over time.

Validation of the molecular subtypes in external cohorts:

To validate our findings on the clinical significance of the genetic subtypes, we developed
a classifier based on the features of the clusters we identified in our primary cohort. We
used an external cohort of 75 SMM patients to validate the classifier and investigate
whether the genetic subtypes are predictive for progression!t. The patients in this cohort
were enriched in the low-risk clinical stage and had a median TTP of 5 years. Similar to
the primary cohort, patients in the intermediate and high-risk genetic subtypes had
increased risk of progression to active MM in multivariate analysis accounting for the
clinical risk stage (HR: 4.5 and 9, P = 0.039 and 0.002, respectively) (Figure 3C). We
found that adding the genetic risk groups improved the prediction of progression
compared to the clinical model only (C-index: 0.76 vs 0.65, respectively) (Supp. Table

4). We also obtained another smaller cohort of 67 patients with targeted capture data,
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including common MM translocations, CNAs and SNVs, and added it to the previous
cohort'?. In those 142 patients, HL2, TL1, HL3, and HL4 subtypes were independent
predictors of progression to active myeloma (Figure 3D) and the high-risk genetic
subtypes were associated with increased risk of progression in multivariate analysis (HR:
3.4, 95% CI :1.68-6.7). We then asked, given the small number of patients in the different
cohorts, whether combining the three cohorts would provide more power and increase
the significance of our genetic classification. The combined cohort contained 229 SMM
patients with median follow-up and TTP of 6.9 and 5.2 years, respectively. Indeed, the
genetic subtypes had a different TTP (Figure 3F), and the high-risk genetic subtypes had
significantly shorter TTP compared to the low or the intermediate risk groups (Figure 3F).
We also found that both the individual genetic subtypes and the genetic risk groups were
independent predictors of progression in the combined cohort multivariate analysis,
validating our initial findings (Figure 3G). We also observed that within the high-risk
clinical stage, patients in the low-risk genetic subgroups had significantly lower
progression risk (HR 0.26, 95% CI: 0.1-0.6, P = 0.001), while in the intermediate-risk
clinical group, patients from the high-risk genetic groups were more likely to progress to
symptomatic MM (HR 4.4, 95% ClI: 1.7- 11.6, P = 0.002) (Supp. Fig 7F-H).
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Discussion

This study modeled the genetic heterogeneity seen in SMM by identifying genetic
subtypes that correspond to phenotypic attributes and clinical outcomes, providing a
deeper understanding of SMM pathogenesis. We and others have previously cataloged
individual driver genetic aberrations in SMM and MM cohorts**112, However, the present
study expands on this work and identifies SMM genetic subtypes defined by multiple
recurrent DNA genetic aberrations, unlike previous classification efforts that were mainly
based on gene expression data. Our findings suggest that these genetic subtypes could
have distinct evolutionary histories depending on the initiating genetic events
(translocations or CNAs), which may influence the subsequent acquisition of cooperating

genetic aberrations.

The genetic subtypes had distinct clinical outcomes of disease progression into
symptomatic MM, which could provide us with comprehensive molecular models for
predicting progression and dynamic changes in clinical biomarkers over time. They also
have specific dysregulated molecular and oncogenic pathways, which could facilitate the
identification of specific targets and selection of therapies for each genetic subtype to
empower precision medicine efforts, much like the efficacy of venetoclax specifically in
patients with t(11;14).1819

We identified six clusters based on the detected genetic alterations. We divided them into
three high-risk (HL2, TL1, HL3), two intermediate-risk (HL1, HL4), and one low-risk (TL2)
genetic groups based on progression risk to active MM. We found that DNA repair
aberrations were exclusive to HL2 and TL1 subgroups, which were enriched in TP53
mutations and deletions. Also, MYC expression was higher in the hyperdiploid subgroups
than the non-hyperdiploid ones, consistent with previous reports of a higher frequency of
MYC alterations in hyperdiploid MM patients?°. The key Cyclin D genes, CCND1 and
CCND2, were highly expressed in TL2 and TL1, respectively, while MCL1 expression
was not different among the genetic subtypes but was lowest in HL1 tumors. Of note,
CCND1 and CCND2 expressions were reported to distinguish between hyperdiploid
groups, indeed in our four hyperdiploid clusters, we found the former to be enriched in

tumors with 11q gain, while the latter is highly expressed in tumors without 11q gain.
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However, we couldn’t assess their prognostic impact due to the small number of samples

with gene expression data in patients who were followed for their disease course.

The gene expression signatures of specific molecular and oncogenic processes also
varied significantly between the genetic subgroups. For example, TL1 tumors showed
specific enrichment for protein secretion, ER stress, UPR, glycolysis and mTOR signaling.
This molecular phenotype manifested clinically where patients with this genetic subtype
had the highest increase in M-protein levels at six and twelve months from diagnosis.
Such patients may benefit from drugs inducing cellular stress, such as proteasome
inhibitors or novel molecules targeting the ER stress and UPR pathways?!. Alternatively,
TL2 tumors were uniquely enriched with genes related to B-lymphocytes, cell cycle, heme
metabolism, and complement activation signaling. Clinically, these patients had the
longest TTP, lowest baseline M-protein level and the least increase over time. We also
found that the HL2 tumors were enriched for interferon alpha response, cytosolic DNA
sensing, and JAK-STAT signatures. These results underscore the phenotypic difference
among the genetic subtypes and provide a conceptual framework for further functional
studies that aim to validate or therapeutically target the dysregulated pathways and tumor

dependencies in them.

In our multicenter cohort, we found that the genetic subtypes also differed in the clinical
outcome of progression to active MM. The three high-risk subgroups (HL2, TL1, and HL3)
had a higher rate of progression and were associated with evolving hemoglobin and M-
protein levels, showing that these subgroups are also predictive of the dynamic changes
in MM clinical biomarkers over time. The high-risk genetic subtypes were independent
risk factors of progression to overt MM after accounting for the clinical risk stage by the
20-2-20 model. Moreover, among those patients considered high- and intermediate-risk
by this model, those with the high-risk genetic subtypes progressed faster to active
myeloma than the rest in the same clinical risk group. Finally, to validate and test the
significance of the genetic subtypes, we trained a classifier and tested it on two external
SMM cohorts and found the genetic subtypes and risk groups to be predictive for
progression in those external cohorts similar to the primary cohort. Furthermore, to
increase the power of our analysis, we combined the three cohorts together and found

the same effect with more significance levels compared to our initial findings. Of note, the
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genetic features enriched in the high-risk genetic group were also found to confer a
higher-risk of progression as individual features, with exception of t(14;16) and t(14;20)
(Supp. Tables 5 and 6). In fact, we and others haven’t found them to confer a high risk
of progression on their own*1%11, However, multiple studies have shown that t(14;16) is
frequently associated with APOBEC signature and genomic instability 4-°. In our study it
was found in 5% of patients and with similar rates in the validation cohorts, so larger
studies with cohorts enriched for t(14;16) may be needed to confidently determine their
prognostic significance in SMM. One of the limitations of our study is that we couldn’t
assess the prognostic impact of the MM signatures in comparison to our DNA subgroups
because of the small number of cases with this data. Moreover, we propose this genetic
classification to be applied only in the SMM stage as we haven't tested its prognostic

significance in active or relapsed MM settings.

In conclusion, these findings move us closer to identifying the SMM patients who are truly
at a high risk of disease progression through better predictive models that integrate the
molecular makeup of the tumor cells and may also guide precision medicine efforts to
match targeted therapies with the optimal patient groups in multiple myeloma

asymptomatic stages.
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Methods

We studied a total of 214 patients with SMM at the time of diagnosis from multiple centers
in the US and Europe. We performed whole-exome sequencing (WES) on 166 tumors,
including 72 matched tumor-normal samples and 94 tumor-only samples. RNA
sequencing was performed on 100 of the 166 tumors. We also performed targeted
capture and sequencing with an in-house MM gene panel on 48 additional samples.
Patients who presented with MM symptoms at diagnosis, including hypercalcemia, renal
impairment, anemia, or bone lytic lesions (CRAB), or had any myeloma-defining event
were excluded from the analysis??. All samples were obtained after written informed
consent, according to the Declaration of Helsinki. Fisher's exact test was used to test for
association between categorical variables. ORs and 95% Cls were calculated for binary
outcomes from contingency tables or logistic regression for continuous predictors. The
Wilcoxon or Kruskal-Wallis rank-sum test was used to assess a location shift in the
distribution of continuous variables between two or more than two groups, respectively.
Descriptive statistics (proportions, medians, etc.) were reported with 95% exact binomial
Cls or range. Time-to-event endpoints were estimated using the method of Kaplan and
Meier. Time to progression (TTP) was measured from the date of diagnosis to the date
of documented progression to MM. Differences in survival curves were assessed using a
log-rank test. Median follow-up was calculated using the reverse Kaplan-Meier method.
Cox modeling was performed to assess the impact of specific variables on clinical
outcome measures. All P values were two-sided, and adjustment for multiple hypothesis
testing was performed using the Benjamini and Hochberg method?®; P and q value
thresholds for significance were set at 0.05 and 0.1. Statistical analysis is described in

detail in the Supplemental Methods.

BMF Clustering Workflow

To identify patients with shared, co-occurring DNA features, we applied a variant of non-
negative matrix consensus clustering algorithm adapted for binarized input and output
features, Binary Matrix Factorization (BMF). Our input matrix for subtyping consisted of a
combined binarized input matrix of 42 driver genes, CNVs, and 5 translocations. To select

the number of clusters (K) for the consensus clustering, we randomly downsampled our
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input matrix and computed silhouette scores using Dice dissimilarity, residuals of
factorization fit, variance explained, and K-L divergence on binary matrix factorizations
over a range of K. We found a decrease in K-L divergence with our full dataset from K =
5 to K = 6, which suggested that 6 clusters were best suited to ensure a converged
factorization for N = 214 (Supp. Fig 2A-E). Additionally, we found that variance stabilized
when we performed down sampling analyses at N = 75-100, suggesting we were powered
to perform binary matrix factorization for a cohort at this minimum size. We concluded
that a minimum of 100 samples and 6 clusters were suited for this approach. We take

the following steps for subtyping:
1. Run BMF for our primary cohort (n=214) from K=2 to K=10

2. Run hierarchical clustering of the consensus matrix with Euclidean distance and

Ward linkage
3. Select K=6 clusters from downsampling results

We assessed binary feature importance by performing a Fisher's exact test to count
feature representation within each cluster and outside of this cluster, testing for an equal
proportion. The false discovery rate (FDR) was calculated using the Benjamini-Hochberg

procedure.

Subtype Classifier

We trained a random forest classifier on 36 overlapping translocations, SNVs, and CNVs
between both our primary cohort and validation cohort found in at least 3 or more patients
to predict molecular subtypes for each patient. We used sklearn’s Random Forest
Classifier class and reported a mean 5-fold cross validation accuracy on our primary
cohort of 86.7% (SD +/- 5%) after performing a randomized grid search to hypertune

parameters. The classifier was then used on unseen data on 75 SMM samples.

Bulk RNA-Sequencing
We processed a subset of 89 matched RNA samples out of the 214 patients using the
GTEXx V8 pipeline?®, aligned to Hg19 and using the Gencode v19 gene annotation.
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RNA Differential Expression and Pathway Analysis

We performed one vs. rest gene differential expression for each identified DNA-based
subtype in matching RNA samples. The limma-voom pipeline?” was used with FDR
computed using the Benjamini-Hochberg procedure. We performed ranked gene-set
enrichment analysis (GSEA) using the fGSEA R package, with a rank of signed-log fold-
change from limma-voom. We computed pathway enrichments for the HALLMARK and
KEGG gene sets from MsigDB?8.2°,

Mutational Signatures

We use default settings of SignatureAnalyzer to extract de novo mutational signatures
from a 96 base-pair context for 72 samples with WES. Extracted signatures were mapped

to Cosmic 3.0 using cosine similarity.
Code Availability
All code is provided for reproducibility: https://github.com/getzlab/SMM __clustering_2020

Data Availability

The DNA and RNA sequencing data and analyses presented in the current publication
have been deposited in and are available from the dbGaP database under dbGaP

accession phs001323.v2 p1.
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Figure 1

A) Flowchart of analyses performed in this study. Clusters were generated based on DNA
sequencing data, then clusters were analyzed for correlations with transcriptomic and
clinical data. B) The genomic profile of individual patients with smoldering multiple
myeloma grouped by cluster and significant genomic features. C) Summary table
including the 6 subtypes identified and enriched genetic features.

Figure 1
U A 1 W ) e— e (O
A SMM Tumor Exomes & B wl.ll-llll.llll ni lllllll-'-l“ I =l g
Target Capture [ S —

=214 XOOK i i i =

"‘"“"’“"“"""l '—.v—l'*'qnl%u i Wb =

Bampses a214) A | ) i Il" 1 i | ] 1

3 TS TR =

| | ] -

Vigd B VE

.'5‘ g ‘h : |:' m} | “:

' im " 1

|: J' n'} |p | I||‘ " 1" s
1 A ton|! l\'illlll: l:l:ll !

L) 1 n % " B 1 ==
' | !
v 4 [ |
HL1 HL2 m HL3 TL2 HL4
C Genomi: Sutsypes of SMM [ne214)
Harw et M e Fownbcwion
Cl ® It rtevsckaes SRAS TRAFL MAX "
c2 wa e VAR AR RN TRER AT R L P e o
(o I "y e AAE RED MY MR, PR A 14y Dw 13 O 10 [FOPRIAMEIET] 104 W I
Caw w3 W TS, MPIEA w o
Y » NT e 115 Ave SR 155 Ul
CO®  Ma vk el W by Ao

21


https://doi.org/10.1101/2021.12.10.471975
http://creativecommons.org/licenses/by-nc-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2021.12.10.471975; this version posted December 11, 2021. The copyright holder for this preprint
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY-NC-ND 4.0 International license.

Figure 2

A-D) Comparison the expression levels of MCL1, MYC, CCND1, and CCND2
genes among the six genetic subtypes.. E) Comparison the expression levels of
MYC oncogene between the four hyperdiploid (HP) subgroups and the two non
hyperdiploid ones. Expression is measured by the log value of transcript per million
of each gene, and the comparison is done using the Kruskal-Wallis test. F)
Differential expression (DE) analysis of FMD genetic subtype vs. the others. G) DE
analysis of CND genetic subtype vs. the others. H) Gene set enrichment analysis
of different molecular and oncogenic pathways (top), immune cell signatures
(middle), and MM-specific signatures (bottom) among the six genetic subtypes.
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Figure 3

A) Kaplan-Meier curves for analysis of TTP in patients belonging to the three genetic risk
groups. B) Multivariate cox regression analysis of the low, intermediate, and high-risk
genetic subtypes and clinical risk stages according to the IMWG 20/2/20 model in the
primary cohort. C) Multivariate cox regression analysis of the low, intermediate, and high-
risk genetic subtypes and clinical risk stages according to the IMWG 20/2/20 model in the
validation cohort. D) Multivariate cox regression analysis of the genetic subtypes and
clinical risk stages according to the IMWG 20/2/20 model in the two validation cohorts of
74 and 67 patients. E) Kaplan-Meier curves for analysis of TTP in patients from the 6
genetic subtypes in the combined cohort of 229 patients. F) Kaplan-Meier curves for
analysis of TTP in patients belonging to the three genetic risk groups of the combined
cohort. F) Multivariate cox regression analysis of the low, intermediate, and high-risk
genetic subtypes and clinical risk stages according to the IMWG 20/2/20 model in the

combined cohorts.
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