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Abstract  

Smoldering multiple myeloma (SMM) is a precursor condition of multiple myeloma (MM) 

with significant heterogeneity in disease progression. Existing clinical models of 

progression risk do not fully capture this heterogeneity. Here we integrated 42 genetic 

alterations from 214 SMM patients using unsupervised binary matrix factorization (BMF) 

clustering and identified six distinct genetic subtypes. These subtypes were differentially 

associated with established MM-related RNA signatures, oncogenic and immune 

transcriptional profiles, and evolving clinical biomarkers. Three subtypes were associated 

with increased risk of progression to active MM in both the primary and validation cohorts, 

indicating they can be used to better predict high and low-risk patients within the currently 

used clinical risk stratification model. 
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Multiple Myeloma (MM) is an incurable plasma cell malignancy with significant inter- and 

intra-patient heterogeneity. It is almost always preceded by the asymptomatic precursor 

stages monoclonal gammopathy of undetermined significance (MGUS) and smoldering 

multiple myeloma (SMM). Approximately 1.5% of MGUS patients will progress to MM per 

year, while SMM patients have a higher overall progression risk of 10% per year1,2. Like 

MM, SMM is a heterogeneous condition—some patients have over a 50% risk of 

progression within two years, while others have more MGUS-like disease that progresses 

slowly3. 

Several risk stratification models exist to help clinicians differentiate patients with high risk 

of progression to active myeloma from those for whom a ‘watchful waiting’ approach is 

appropriate. The existing models rely solely on clinical measurements, many of which are 

indicators of tumor burden and universal biomarkers of MM for risk stratification. These 

models, however, do not fully partition progressors from non-progressors, and patients 

classified as low- or intermediate-risk still progress to active MM and have a 2-year 

progression risk of 6% and 18%, respectively (compared to 44% for high-risk patients)3, 

which warrants a more accurate models that also represent the molecular heterogeneity 

in MM. We recently showed that genomic alterations in mitogen-activated protein kinase 

(MAPK) and DNA repair pathways or MYC are independently predictive of progression 

risk4. While these genomic biomarkers improved upon the clinical models, they represent 

only a few alterations that do not capture the full extent of genetic heterogeneity in SMM.  

Multiple myeloma is characterized by multiple chromosomal gains or losses, structural 

variations, driver single nucleotide variations (SNVs)5-7, and other structural alterations 

involving known oncogenes8. The IgH translocations and copy number alterations (CNAs) 

are considered early events in the pathogenesis of MM, while other CNAs and SNVs 

usually occur later during clonal evolution, providing more proliferative capacity to the 

tumor cells4. Multiple SMM studies have shown that CNAs, including whole chromosome 

duplications and arm-level losses or gains, are the most common events, followed by 

SNVs, and then translocations4,7,9,10. These alterations have all been detected at the SMM 

stage, and we previously showed that the genomic makeup of the MM tumor clone is fully 

acquired by the time of SMM diagnosis in most cases4,10-12. . Furthermore, certain genetic 

alterations were found to occur more frequently together4,7, therefore, studying these 
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genetic alterations as groups or networks rather than individual risk factors may improve 

our understanding of disease molecular groups and the overall risk stratification in SMM. 

In this study, we apply an unsupervised binary matrix factorization (BMF) clustering 

method to identify groups of genomic alterations that tend to occur together, and show 

that the resulting clusters represent distinct biological and clinical subtypes in SMM  
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Results 

Identification of six clusters with distinct genetic features.  

We leveraged DNA sequencing data from a cohort of 214 patients at the time of SMM 

diagnosis, with matched RNA sequencing data of 89 patients from the same cohort, and 

baseline clinical information for the whole cohort (Figure 1A and Supp. Table 1). The 

patients in this cohort harbored a median of 7 driver events, several of which tended to 

co-occur4,6,7, suggesting that additional analyses may reveal distinct patterns (i.e., 

clusters) of genetic alterations. To identify these patterns, binarized DNA features (42 

driver SNVs, CNVs, and translocations) were curated for each sample representing the 

presence or absence of each genomic alteration. Chapuy et al successfully subtyped 

diffuse B-cell lymphoma patients with consensus non-negative matrix (NMF) factorization 

of numeric DNA features. We instead apply consensus BMF for this multi-omics subtyping 

to accommodate these binarized DNA features, appropriately model summative features 

that span multiple subtypes (i.e. hyperdiploidy), and handle sparse matrices (Methods). 

We identified six distinct patterns of drivers that accordingly partitioned the patient to six 

clusters based on their most enriched pattern. Samples in four of these clusters were 

hyperdiploid (more than 48 chromosomes), while those in the other two were enriched for 

known MM IgH translocations (Figure 1B). 

Cluster 1: the tumors of this cluster exhibited a hyperdiploid genotype as the primary 

event and were significantly enriched in NRAS, TRAF3, and MAX mutations. We named 

this cluster Hyperdiploid-like1 (HL1). Cluster 2: the tumors of this cluster harbored 

frequent arm-level deletions, including 16q, 6q, 1p, 17p, 4q, 18q, and 20q, and the IgH 

translocation t(14;20), which upregulates the transcription factor MAFB. Moreover, 

mutations in NRAS, BRAF, TP53, ATM, MAFB, and CDKN2C genes were enriched in 

this subgroup. Hyperdiploidy was detected in 69% of the tumors in this cluster. We named 

this cluster Hyperdiploid-like2 (HL2). The tumors of this cluster were significantly enriched 

in deletion(16q), which involves CYLD tumor suppressor and other genes. The presence 

of both hyperdiploidy and t(14;20) in the same cluster could be explained by either the 

small number of samples with these alterations as seen in other studies as well, or that 

in few cases they co-occur together. Indeed, half of patients with t(14;20) in our cohort 
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had hyperdiploidy. Cluster 3: Tumors of this cluster exhibited primary events such as 

t(4;14), which upregulates FGFR3 and MMSET genes; t(14;16), which upregulates the 

transcription factor MAF; and copy number losses of 14q, 1p, 8p, 10p, 11q, 12p, and 17p. 

We named this cluster Translocation-like1 (TL1). This cluster was also enriched for 

hypodiploid tumors, defined as having fewer than 45 chromosomes (adjusted P = 0.04). 

Tumors in this cluster also harbored mutations in BRAF, DIS3, MAF, FGFR3, PRKD2, 

PRDM1, IRF4, and HIST1H1E. Many of these proteins and mutations in their encoding 

genes are essential to tumor cell survival and play roles in protein translation, secretion, 

and plasma cell differentiation 7,9,13. Differential gene expression analysis revealed that 

TL1 tumors have downregulation of ribosomal proteins and the negative regulator of the 

MAPK pathway TRAF2. The upregulated genes included WHSC1(MMSET), FGFR3, 

KLHL4, CCND3, and genes involved in the endoplasmic reticulum (ER) stress response 

(Figure 2A). Cluster 4: this cluster comprises tumors with a hyperdiploid genotype that 

harbored mutations in KRAS and NFKBlA genes, and MYC translocations as the only 

significant features. We named this cluster Hyperdiploid-like3 (HL3). Cluster 5: the tumors 

in this cluster mainly exhibited t(11;14), CCND1 mutations, and gain of chromosome 11 

or its long arm. We named this cluster Translocation-like1 (TL1). Interestingly, this cluster 

had significantly lower M-protein levels and was enriched in light-chain disease compared 

to the other clusters (P < 0.001 for both). Tumors of TL2 had 243 differentially expressed 

genes (q <0.1, log2FC|> 1.5; 180 upregulated, 63 downregulated), including 

overexpression of CCND1, ERBB4, E2F7, E2F1, TRAK2, RBL1, and downregulation of 

DUSP4, TRAF6, PRKD3, CCDC6, and ZNF844. Furthermore, this cluster had the highest 

expression of CCND1 compared to the other clusters (Figure 2B). Cluster 6: this is a 

hyperdiploid cluster similar to HL1; however, its tumors are also enriched in NFKB2 and 

KLHL6 mutations and exhibit copy gains in 2p. Interestingly, copy gains of 1q were more 

frequent in this cluster than HL1 and the other hyperdiploid clusters (P < 0.001 for both 

comparisons). We named this cluster Hyperdiploid-like4 (HL4). Additionally, key 

individual genes in myeloma pathogenesis were overexpressed in tumors of specific 

genetic subtypes. MCL1 was upregulated in all the genetic subgroups with the lowest 

expression observed in HL1 tumors compared to the other subtypes (P = 0.001) (Figure 

2C). MYC oncogene was also highly expressed in the four hyperdiploid clusters (P = 
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0.009, Wilcoxon Test) (Figure 2D). Cyclin D1 (CCND1) was significantly upregulated in 

TL2 tumors (P = 0.0001), while CCND2 was upregulated in TL1 and HL2 tumors 

compared to the rest of the genetic subtypes (P = 0.004) (Figure 2E, F). Moreover, in the 

four hyperdiploid clusters, we found that CCND1 expression was higher in tumors with 

11q gain, while CCND2 expression was higher in samples without 11q gain (Supp Figure 

1). 

 

The genetic subgroups are enriched with specific MM expression signatures. 

To date, ten distinct RNA expression signatures have been defined and validated as 

prognostic in newly diagnosed and relapsed MM patients14,15. Each expression signature 

was then associated to specific primary genetic lesions identified by fluorescent in situ 

hybridization (FISH), including hyperdiploidy and IgH translocations that activate c-MAF 

and MAFB, CCND1, CCND3, or MMSET14,15. We asked whether these expression 

signatures were present in our SMM cohort and correlated with the six genetic subgroups. 

To address this, we performed a gene-set enrichment analysis of these expression 

signatures among the genetic subtypes (lower panel of Figure 2G). We observed that the 

hyperdiploid expression (HP) signature14,15, which is seen in hyperdiploid MM patients, is 

upregulated in the tumors of our hyperdiploid clusters (HL1-4). The Cyclin D(CD) 

expression signatures, including CD-1 that highly expresses CCND1 and CD-2, which 

expresses the B cell markers CD20, CD79A, and CCND1 were significantly upregulated 

in the TL2 genetic subgroup. Moreover, the high-risk MMSET (MS) expression signature, 

which is enriched in patients with t(4;14) and upregulates MMSET and FGFR3 genes, 

was upregulated in the TL1 cluster. The MAF (MF) signature, which has been reported in 

patients with t(14;16) and t(14;20) that upregulate MAF and MAFB genes, respectively, 

was enriched in both the TL1 and HL2 subgroups, consistent with the presence of these 

genetic alterations in their tumors. The low bone (LB) disease signature, which has not 

been previously mapped to a specific MM genetic alteration, was upregulated in the HL4, 

TL1, and HL2 subgroups, suggesting it could be linked to 1q gain, which occurs frequently 

in these three subgroups. Interestingly, the PR signature, which is found in proliferative 

tumor cells, was enriched in the HL3 and TL2 subgroups. Furthermore, the NFkB 

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted December 11, 2021. ; https://doi.org/10.1101/2021.12.10.471975doi: bioRxiv preprint 

https://doi.org/10.1101/2021.12.10.471975
http://creativecommons.org/licenses/by-nc-nd/4.0/


9 

signature was upregulated only in HL2, which could be explained by the high frequency 

of 16q deletions and CYLD mutations in this subgroup. Finally, the PRL3 signature, which 

overexpresses the protein tyrosine phosphatase PTP4A3 and 27 additional genes, was 

upregulated only in HL4. This suggests it could also be linked to the presence of 1q gain, 

which is found in all the tumors of the HNF subgroup.  

We further examined whether our genetic subtypes were enriched in specific mutational 

signatures for 72 samples with matched normal whole exome sequencing (Methods). We 

found that the APOBEC mutational signature activity (SBS 2,13 COSMIC v3.0) differed 

between the genetic subtypes (P = 0.027, Kruskal-Wallis) while AID mutational signatures 

did not (P = 0.17) (Supp Fig 1E-G). Specifically, we found APOBEC activity enriched in 

the HL2 & TL1 clusters vs. the rest of tumors (P = 0.006) (Supp Fig 1H).  

Genetic subgroups have distinct transcriptional profiles. 

We performed GSEA on the available transcriptomic resulting data to explore which 

genes and biological pathways were differentially expressed among the genetic 

subgroups we identified. Pathways that were significantly enriched within the six genetic 

subtypes are described and illustrated (Figure 2G). We found that protein secretion, 

unfolded protein response (UPR), glycolysis, hypoxia, and mTOR signatures were 

specifically enriched in the TL1 subgroup, while E2F target genes, cell cycle, heme 

metabolism, complement, and proliferation signatures were enriched in TL2 tumors. 

Genes induced by MYC were highly expressed in HL3 and HL4, consistent with MYC 

upregulation in these two clusters. The NFkB, cytosolic DNA sensing, and JAK-STAT 

signatures were enriched in the tumors of HL2. The interferon alpha and gamma 

response signatures were high in HL2 but low in TL1. Interestingly, oxidative 

phosphorylation, WNT-beta-catenin, and TGF-beta signaling were enriched only in 

tumors of HL4, and the TNFa and inflammatory signatures were uniquely enriched in HL3. 

Ribosome biosynthesis was low in TL1, TL2, and HL3 but high in HL1, HL2, and HL4 

subgroups.  

We also looked at signatures related to the tumor immune microenvironment. Signatures 

of regulatory T cells and NK cells were high in HL2 and HL3, while the M2 macrophage 

signature was high in TL2 and HL4 tumors. The HL3 and TL2 tumors were enriched for 
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the monocyte signature. In contrast, the signature of plasmacytoid dendritic cells, known 

for their immunosuppressive effect16, was only enriched in the TL1 subtype.  

 

Genetic subtypes are differentially associated with risk of progression and 

evolving clinical biomarkers. 

To investigate the relationship between these genetic subtypes and clinical outcome, we 

analyzed a subset of patients (n = 87) who were followed for the natural course of their 

disease and did not receive any treatment in a clinical trial setting before progression to 

MM. Their baseline characteristics are reported in Supp. Table 2. The median follow-up 

time for these patients was 7.1 years and the median time to progression (TTP) was 4 

years (95% CI, 3-6). In this cohort, 57 patients (66%) have progressed, while 30 (34%) 

remained asymptomatic as of the last follow-up (put date of last follow up in the methods 

section). The genetic subgroups had different outcomes, measured by TTP to active MM 

(log-rank P = 0.007) (Supp Figure 7A). Median TTP for patients in HL2, TL1, and HL3 

was 3.7, 2.6, and 2.2 years, respectively, while it was 4.3, 11, and 5.2 years for HL1, TL2, 

and HL4, respectively. The HL2, TL1, and HL3 genetic subgroups had increased hazards 

of progression (HR > 4.5) to active myeloma (Supp. Figure 7B).  

We then divided the genetic subtypes based on their TTP and hazards of progression 

into high- (HL2, TL1, HL3), intermediate- (HL1, HL4), and low-risk (TL2) subtypes. The 

high- and intermediate-risk subtypes had significantly shorter TTP and increased risk of 

progression compared to the low-risk subtype (2.6 and 5.2 vs. 11 years, respectively, P 

< 0.0001) (Figure 3A). We also stratified the patients according to the 20-2-20 model, 

which uses three cutoffs of M-protein > 2g/dL, FLC ratio > 20, and bone marrow 

plasmacytosis > 20% to define low, intermediate, and high-risk groups based on the 

presence of none, one, and two or all these variables, respectively3. The intermediate- 

and high-risk genetic subtypes and the clinically high-risk SMM group (according to the 

20-2-20 model) were the only significant predictors of progression to active MM in our 

multivariate analysis (Figure 3B). Moreover, the prediction performance of the combined 

clinical and genetic models was higher than the clinical model alone (C-index: 0.76 vs 

0.71, respectively) (Supp. Table 3). Interestingly, within the high-risk clinical group, 
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patients in the high-risk genetic subgroups had increased progression risk (HR 3.7, 95% 

CI:1.1-12.8, P = 0.04). The two-year progression risk was 59% for the genetic high-risk 

compared to 41% for the genetic low-risk patients (Supp. Fig 7C). We observed a similar 

findings in the intermediate-risk clinical group, where patients from the high-risk genetic 

groups had shorter TTP (3.4 vs. 9.4 years, P = 0.003, with a two-year progression risk of 

33% vs. 0%, respectively). (Supp. Fig 7D). We found that high-risk genetic subtypes were 

significantly enriched with specific genetic alterations, such as, KRAS, TP53, t(4;14), 

t(14;16), 1q gain, 16q and 1p deletions among others (Supp. Table 3). 

We also identified patients with evolving M protein (eMP), which is defined as a ≥ 25% 

increase in M-protein within 12 months of diagnosis with a minimum absolute increase of 

0.5 g/dL, and evolving hemoglobin (eHb), which is defined as a ≥ 0.5 g/dl decrease within 

12 months of diagnosis17. These changing patterns were reported to confer a higher risk 

of progression to active MM in different SMM cohorts. We found that the odds of eMP 

and eHb were 9.4 and 5.3 times higher (P = 0.006 and 0.007, respectively) in patients 

with the high-risk genetic subtypes. These results indicate that high-risk genetic 

subgroups have distinct genetic and transcriptomic features as well as different clinical 

outcomes in terms of progression to active MM and evolution of its biomarkers over time. 

 

Validation of the molecular subtypes in external cohorts: 

To validate our findings on the clinical significance of the genetic subtypes, we developed 

a classifier based on the features of the clusters we identified in our primary cohort. We 

used an external cohort of 75 SMM patients to validate the classifier and investigate 

whether the genetic subtypes are predictive for progression11. The patients in this cohort 

were enriched in the low-risk clinical stage and had a median TTP of 5 years. Similar to 

the primary cohort, patients in the intermediate and high-risk genetic subtypes had 

increased risk of progression to active MM in multivariate analysis accounting for the 

clinical risk stage (HR: 4.5 and 9, P = 0.039 and 0.002, respectively) (Figure 3C). We 

found that adding the genetic risk groups improved the prediction of progression 

compared to the clinical model only (C-index: 0.76 vs 0.65, respectively) (Supp. Table 

4). We also obtained another smaller cohort of 67 patients with targeted capture data, 
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including common MM translocations, CNAs and SNVs, and added it to the previous 

cohort12. In those 142 patients, HL2, TL1, HL3, and HL4 subtypes were independent 

predictors of progression to active myeloma (Figure 3D) and the high-risk genetic 

subtypes were associated with increased risk of progression in multivariate analysis (HR: 

3.4, 95% CI :1.68-6.7). We then asked, given the small number of patients in the different 

cohorts, whether combining the three cohorts would provide more power and increase 

the significance of our genetic classification. The combined cohort contained 229 SMM 

patients with median follow-up and TTP of 6.9 and 5.2 years, respectively. Indeed, the 

genetic subtypes had a different TTP (Figure 3F), and the high-risk genetic subtypes had 

significantly shorter TTP compared to the low or the intermediate risk groups (Figure 3F). 

We also found that both the individual genetic subtypes and the genetic risk groups were 

independent predictors of progression in the combined cohort multivariate analysis, 

validating our initial findings (Figure 3G). We also observed that within the high-risk 

clinical stage, patients in the low-risk genetic subgroups had significantly lower 

progression risk (HR 0.26, 95% CI: 0.1-0.6, P = 0.001), while in the intermediate-risk 

clinical group, patients from the high-risk genetic groups were more likely to progress to 

symptomatic MM (HR 4.4, 95% CI: 1.7- 11.6, P = 0.002) (Supp. Fig 7F-H).  
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Discussion 

This study modeled the genetic heterogeneity seen in SMM by identifying genetic 

subtypes that correspond to phenotypic attributes and clinical outcomes, providing a 

deeper understanding of SMM pathogenesis. We and others have previously cataloged 

individual driver genetic aberrations in SMM and MM cohorts4,11,12. However, the present 

study expands on this work and identifies SMM genetic subtypes defined by multiple 

recurrent DNA genetic aberrations, unlike previous classification efforts that were mainly 

based on gene expression data. Our findings suggest that these genetic subtypes could 

have distinct evolutionary histories depending on the initiating genetic events 

(translocations or CNAs), which may influence the subsequent acquisition of cooperating 

genetic aberrations.  

The genetic subtypes had distinct clinical outcomes of disease progression into 

symptomatic MM, which could provide us with comprehensive molecular models for 

predicting progression and dynamic changes in clinical biomarkers over time. They also 

have specific dysregulated molecular and oncogenic pathways, which could facilitate the 

identification of specific targets and selection of therapies for each genetic subtype to 

empower precision medicine efforts, much like the efficacy of venetoclax specifically in 

patients with t(11;14).18,19 

We identified six clusters based on the detected genetic alterations. We divided them into 

three high-risk (HL2, TL1, HL3), two intermediate-risk (HL1, HL4), and one low-risk (TL2) 

genetic groups based on progression risk to active MM. We found that DNA repair 

aberrations were exclusive to HL2 and TL1 subgroups, which were enriched in TP53 

mutations and deletions. Also, MYC expression was higher in the hyperdiploid subgroups 

than the non-hyperdiploid ones, consistent with previous reports of a higher frequency of 

MYC alterations in hyperdiploid MM patients20. The key Cyclin D genes, CCND1 and 

CCND2, were highly expressed in TL2 and TL1, respectively, while MCL1 expression 

was not different among the genetic subtypes but was lowest in HL1 tumors. Of note, 

CCND1 and CCND2 expressions were reported to distinguish between hyperdiploid 

groups, indeed in our four hyperdiploid clusters, we found the former to be enriched in 

tumors with 11q gain, while the latter is highly expressed in tumors without 11q gain. 
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However, we couldn’t assess their prognostic impact due to the small number of samples 

with gene expression data in patients who were followed for their disease course. 

The gene expression signatures of specific molecular and oncogenic processes also 

varied significantly between the genetic subgroups. For example, TL1 tumors showed 

specific enrichment for protein secretion, ER stress, UPR, glycolysis and mTOR signaling. 

This molecular phenotype manifested clinically where patients with this genetic subtype 

had the highest increase in M-protein levels at six and twelve months from diagnosis. 

Such patients may benefit from drugs inducing cellular stress, such as proteasome 

inhibitors or novel molecules targeting the ER stress and UPR pathways21. Alternatively, 

TL2 tumors were uniquely enriched with genes related to B-lymphocytes, cell cycle, heme 

metabolism, and complement activation signaling. Clinically, these patients had the 

longest TTP, lowest baseline M-protein level and the least increase over time. We also 

found that the HL2 tumors were enriched for interferon alpha response, cytosolic DNA 

sensing, and JAK-STAT signatures. These results underscore the phenotypic difference 

among the genetic subtypes and provide a conceptual framework for further functional 

studies that aim to validate or therapeutically target the dysregulated pathways and tumor 

dependencies in them. 

In our multicenter cohort, we found that the genetic subtypes also differed in the clinical 

outcome of progression to active MM. The three high-risk subgroups (HL2, TL1, and HL3) 

had a higher rate of progression and were associated with evolving hemoglobin and M-

protein levels, showing that these subgroups are also predictive of the dynamic changes 

in MM clinical biomarkers over time. The high-risk genetic subtypes were independent 

risk factors of progression to overt MM after accounting for the clinical risk stage by the 

20-2-20 model. Moreover, among those patients considered high- and intermediate-risk 

by this model, those with the high-risk genetic subtypes progressed faster to active 

myeloma than the rest in the same clinical risk group. Finally, to validate and test the 

significance of the genetic subtypes, we trained a classifier and tested it on two external 

SMM cohorts and found the genetic subtypes and risk groups to be predictive for 

progression in those external cohorts similar to the primary cohort. Furthermore, to 

increase the power of our analysis, we combined the three cohorts together and found 

the same effect with more significance levels compared to our initial findings. Of note, the 
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genetic features enriched in the high-risk genetic group were also found to confer a 

higher-risk of progression as individual features, with exception of t(14;16) and t(14;20) 

(Supp. Tables 5 and 6). In fact, we and others haven’t found them to confer a high risk 

of progression on their own4,10,11. However, multiple studies have shown that t(14;16) is  

frequently associated with APOBEC signature and genomic instability 4-10. In our study it 

was found in 5% of patients and with similar rates in the validation cohorts, so larger 

studies with cohorts enriched for t(14;16) may be needed to confidently determine their 

prognostic significance in SMM. One of the limitations of our study is that we couldn’t 

assess the prognostic impact of the MM signatures in comparison to our DNA subgroups 

because of the small number of cases with this data. Moreover, we propose this genetic 

classification to be applied only in the SMM stage as we haven’t tested its prognostic 

significance in active or relapsed MM settings. 

   

In conclusion, these findings move us closer to identifying the SMM patients who are truly 

at a high risk of disease progression through better predictive models that integrate the 

molecular makeup of the tumor cells and may also guide precision medicine efforts to 

match targeted therapies with the optimal patient groups in multiple myeloma 

asymptomatic stages. 
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Methods 

We studied a total of 214 patients with SMM at the time of diagnosis from multiple centers 

in the US and Europe. We performed whole-exome sequencing (WES) on 166 tumors, 

including 72 matched tumor-normal samples and 94 tumor-only samples. RNA 

sequencing was performed on 100 of the 166 tumors. We also performed targeted 

capture and sequencing with an in-house MM gene panel on 48 additional samples. 

Patients who presented with MM symptoms at diagnosis, including hypercalcemia, renal 

impairment, anemia, or bone lytic lesions (CRAB), or had any myeloma-defining event 

were excluded from the analysis22.  All samples were obtained after written informed 

consent, according to the Declaration of Helsinki. Fisher's exact test was used to test for 

association between categorical variables. ORs and 95% CIs were calculated for binary 

outcomes from contingency tables or logistic regression for continuous predictors. The 

Wilcoxon or Kruskal-Wallis rank-sum test was used to assess a location shift in the 

distribution of continuous variables between two or more than two groups, respectively. 

Descriptive statistics (proportions, medians, etc.) were reported with 95% exact binomial 

CIs or range. Time-to-event endpoints were estimated using the method of Kaplan and 

Meier. Time to progression (TTP) was measured from the date of diagnosis to the date 

of documented progression to MM. Differences in survival curves were assessed using a 

log-rank test. Median follow-up was calculated using the reverse Kaplan-Meier method. 

Cox modeling was performed to assess the impact of specific variables on clinical 

outcome measures. All P values were two-sided, and adjustment for multiple hypothesis 

testing was performed using the Benjamini and Hochberg method23; P and q value 

thresholds for significance were set at 0.05 and 0.1. Statistical analysis is described in 

detail in the Supplemental Methods. 

BMF Clustering Workflow 

To identify patients with shared, co-occurring DNA features, we applied a variant of non-

negative matrix consensus clustering algorithm adapted for binarized input and output 

features, Binary Matrix Factorization (BMF). Our input matrix for subtyping consisted of a 

combined binarized input matrix of 42 driver genes, CNVs, and 5 translocations. To select 

the number of clusters (K) for the consensus clustering, we randomly downsampled our 
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input matrix and computed silhouette scores using Dice dissimilarity, residuals of 

factorization fit, variance explained, and K-L divergence on binary matrix factorizations 

over a range of K. We found a decrease in K-L divergence with our full dataset from K = 

5 to K = 6, which suggested that 6 clusters were best suited to ensure a converged 

factorization for N = 214 (Supp. Fig 2A-E). Additionally, we found that variance stabilized 

when we performed down sampling analyses at N = 75-100, suggesting we were powered 

to perform binary matrix factorization for a cohort at this minimum size. We concluded 

that a minimum of 100 samples and 6 clusters were suited for this approach.  We take 

the following steps for subtyping: 

1. Run BMF for our primary cohort (n=214) from K=2 to K=10 

2. Run hierarchical clustering of the consensus matrix with Euclidean distance and 

Ward linkage 

3. Select K=6 clusters from downsampling results 

We assessed binary feature importance by performing a Fisher’s exact test to count 

feature representation within each cluster and outside of this cluster, testing for an equal 

proportion. The false discovery rate (FDR) was calculated using the Benjamini-Hochberg 

procedure. 

Subtype Classifier 

We trained a random forest classifier on 36 overlapping translocations, SNVs, and CNVs 

between both our primary cohort and validation cohort found in at least 3 or more patients 

to predict molecular subtypes for each patient. We used sklearn’s Random Forest 

Classifier class and reported a mean 5-fold cross validation accuracy on our primary 

cohort of 86.7% (SD +/- 5%) after performing a randomized grid search to hypertune 

parameters. The classifier was then used on unseen data on 75 SMM samples. 

Bulk RNA-Sequencing 

We processed a subset of 89 matched RNA samples out of the 214 patients using the 

GTEx V8 pipeline26, aligned to Hg19 and using the Gencode v19 gene annotation. 
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RNA Differential Expression and Pathway Analysis 

We performed one vs. rest gene differential expression for each identified DNA-based 

subtype in matching RNA samples. The limma-voom pipeline27 was used with FDR 

computed using the Benjamini-Hochberg procedure. We performed ranked gene-set 

enrichment analysis (GSEA) using the fGSEA R package, with a rank of signed-log fold-

change from limma-voom. We computed pathway enrichments for the HALLMARK and 

KEGG gene sets from MsigDB28,29. 

Mutational Signatures 

We use default settings of SignatureAnalyzer to extract de novo mutational signatures 

from a 96 base-pair context for 72 samples with WES. Extracted signatures were mapped 

to Cosmic 3.0 using cosine similarity. 

Code Availability 

All code is provided for reproducibility: https://github.com/getzlab/SMM_clustering_2020 

Data Availability 

The DNA and RNA sequencing data and analyses presented in the current publication 

have been deposited in and are available from the dbGaP database under dbGaP 

accession phs001323.v2 p1.     
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Figure 1 

A) Flowchart of analyses performed in this study. Clusters were generated based on DNA 

sequencing data, then clusters were analyzed for correlations with transcriptomic and 

clinical data. B) The genomic profile of individual patients with smoldering multiple 

myeloma grouped by cluster and significant genomic features. C) Summary table 

including the 6 subtypes identified and enriched genetic features. 
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Figure 2 

A-D) Comparison the expression levels of MCL1, MYC, CCND1, and CCND2  

genes among the six genetic subtypes.. E) Comparison the expression levels of 

MYC oncogene between the four hyperdiploid (HP) subgroups and the two non 

hyperdiploid ones. Expression is measured by the log value of transcript per million 

of each gene, and the comparison is done using the Kruskal-Wallis test. F) 

Differential expression (DE) analysis of FMD genetic subtype vs. the others. G) DE 

analysis of CND genetic subtype vs. the others. H) Gene set enrichment analysis 

of different molecular and oncogenic pathways (top), immune cell signatures 

(middle), and MM-specific signatures (bottom) among the six genetic subtypes. 
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Figure 3  

A) Kaplan-Meier curves for analysis of TTP in patients belonging to the three genetic risk 

groups. B) Multivariate cox regression analysis of the low, intermediate, and high-risk 

genetic subtypes and clinical risk stages according to the IMWG 20/2/20 model in the 

primary cohort. C) Multivariate cox regression analysis of the low, intermediate, and high-

risk genetic subtypes and clinical risk stages according to the IMWG 20/2/20 model in the 

validation cohort. D) Multivariate cox regression analysis of the genetic subtypes and 

clinical risk stages according to the IMWG 20/2/20 model in the two validation cohorts of 

74 and 67 patients. E) Kaplan-Meier curves for analysis of TTP in patients from the 6 

genetic subtypes in the combined cohort of 229 patients. F) Kaplan-Meier curves for 

analysis of TTP in patients belonging to the three genetic risk groups of the combined 

cohort. F) Multivariate cox regression analysis of the low, intermediate, and high-risk 

genetic subtypes and clinical risk stages according to the IMWG 20/2/20 model in the 

combined cohorts. 
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