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Abstract

A diverse set of driver genes, such as regulators of DNA methylation, RNA splicing, and chromatin
remodeling, have been associated with pre-malignant clonal expansion of hematopoietic stem cells
(HSCs). The factors mediating expansion of these mutant clones remain largely unknown, partially due
to a paucity of large cohorts with longitudinal blood sampling. To circumvent this limitation, we
developed and validated a method to infer clonal expansion rate from single timepoint data called
PACER (passenger-approximated clonal expansion rate). Applying PACER to 5,071 persons with clonal
hematopoiesis accurately recapitulated the known fitness effects due to different driver mutations. A
genome-wide association study of PACER revealed that a common inherited polymorphism in the TCL1A
promoter was associated with slower clonal expansion. Those carrying two copies of this protective
allele had up to 80% reduced odds of having driver mutations in TET2, ASXL1, SF3B1, SRSF2, and JAK2,
but not DNMT3A. TCL1A was not expressed in normal or DNMT3A-mutated HSCs, but the introduction
of mutations in TET2 or ASXL1 by CRISPR editing led to aberrant expression of TCL1A and expansion of
HSCs in vitro. These effects were abrogated in HSCs from donors carrying the protective TCL1A allele.
Our results indicate that the fitness advantage of multiple common driver genes in clonal hematopoiesis
is mediated through TCL1A activation. PACER is an approach that can be widely applied to uncover
genetic and environmental determinants of pre-malignant clonal expansion in blood and other tissues.

Main

Aging is characterized by the accumulation of somatic mutations, nearly all of which are
“passengers” that have little fitness consequence on the cells in which they occur. However, infrequent
fitness-increasing mutations, called “drivers”, may result in an expanded lineage of cells, termed a clone.
Clonal hematopoiesis of indeterminate potential (CHIP) is defined by the acquisition of specific, cancer-
associated driver mutations in hematopoietic stem cells (HSC) from persons without a blood cancer?.
Previous reports have associated CHIP with increased risk for hematologic malignancy, coronary heart
disease, and mortality>™®. The variant allele fraction (VAF), defined as the proportion of sequencing reads
at a locus containing the mutant allele, is an approximate measure of clone size. In contrast to low VAF
clones, which are ubiquitous in older individuals’, large VAF CHIP clones are less common and more
likely to result in hematologic malignancy and cardiovascular disease>®8°,

The genes commonly mutated in CHIP include regulators of DNA methylation (TET2, DNMT3A),
chromatin remodeling (ASXL1), and RNA splicing (SF3B1, SRSF2, U2AF1). Even though these mutations
are highly prevalent in CHIP and hematological cancers, the mechanisms driving clonal expansion remain
largely unknown. This is partially due to a lack of sizable cohorts with serially sampled blood over
decades which would otherwise enable studies on genetic and environmental correlates of clonal
expansion. To address this gap, we developed a method for approximating the rate of clonal expansion
from a single timepoint, termed PACER, which was validated using longitudinal sequencing over 10 years
in 55 CHIP carriers. We then used PACER to perform the first large-scale investigation of the germline
determinants of clonal expansion in 5,071 CHIP carriers from the NHLBI Trans-Omics for Precision
Medicine (TOPMed) program®!!, which revealed activation of TCL1A as an event driving clonal
expansion for multiple mutated genes in CHIP.
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Derivation and validation of PACER

We identified high-confidence somatic mutations in peripheral blood DNA by analyzing TOPMed
whole genome sequencing (WGS) data with Mutect2®2. To remove sequencing artifacts and germline
variants we performed stringent variant filtering and quality control. We identified CHIP mutations in
5,071 individuals using a curated list of leukemogenic driver mutations (Supplemental Table 1)
(Methods). As described in our previous report!!, the prevalence of CHIP was strongly associated with
age at blood draw, and >75% of these mutations were in DNMT3A, TET2, or ASXL1.

In HSCs, passenger mutations accrue at a rate that is fairly constant over time and that is
similar across individuals'*=*°, Thus, the number of passenger mutations in the founding cell of a CHIP
clone can be used to approximate the date of acquisition of the driver mutation (Figure 1a). Prior studies
have enumerated passenger mutation burden in HSCs by performing WGS on colonies derived from
single cells!®”. We theorized that the passenger mutation burden in the founding cell for a CHIP clone
could instead be approximated from WGS of whole blood DNA without isolation of single cells. As a
mutant clone expands, the VAF of both the driver and passenger mutations increases. The number of
passengers in any given cell is simply the sum of the mutations present prior to the acquisition of the
driver event (ancestral passengers) and mutations acquired after the driver event (sub-clonal
passengers). Because the limit of detection for mutations from WGS at ~38X coverage depth is ~8-10%
VAF, the detectable passengers in whole blood DNA are far more likely to be ancestral passengers than
sub-clonal passengers. This is because the sub-clonal passengers are private to each subsequent division
of the original mutant cell, and, in the absence of a second driver event, quickly fall below the limit of
detection in WGS data from bulk tissue (Supplementary Text 1). Furthermore, as the size of the clone
also determines the number of detectable passengers from WGS due to the limited sensitivity of
detection at 38X depth, high fitness clones will harbor more detectable passengers than lower fitness
clones that arose at the same time. Based on these observations, we used the detectable passengers as
a composite measure of clone fitness and birth date. For two individuals of the same age and with
clones of the same size, we expect the clone with more passengers to be more fit, as it must have
expanded to the same size in less time.

To estimate the number of passenger mutations, we first performed genome-wide somatic
variant calling for 5,071 CHIP carriers and 23,320 controls without CHIP driver mutations. As these raw
variant calls contain a combination of true somatic variants, germline variants, and sequencing artifacts,
we implemented a series of stringent filters to enrich for the detection of true passengers (see
Methods). We first selected only those variants that were found in a single individual in the dataset, as
recurrent variants are enriched for germline polymorphisms and recurrent artifacts. We also excluded
variants with a VAF greater than 35%, as these would also be enriched for germline polymorphisms.
Since different base substitutions varied in their association with age at blood draw, we selected only
C>T and T>C mutations, as these were the most strongly age-associated in our data, consistent with
prior work identifying such mutations as essential elements of the “clock-like” signature?®,

Amongst the 5,071 CHIP carriers, individuals had on average 271 passengers in WGS identified
by our approach (interquartile range: 142 — 317). The passengers were increased by 54% (95% Cl: 51%-
57%) in the CHIP carriers (Extended Data Fig 1) compared to the controls after adjusting for age and
study using a negative binomial regression. In the controls without CHIP, we presumed the detected
passengers were reflective of clonal hematopoiesis without known driver mutations or due to drivers we
could not assess such as mosaic chromosomal alterations (mCAs)*°. Some of these could also have been
incompletely removed artifacts. The passengers were also positively associated with age, on average
increasing by 13.7% (95% Cl: 13.0%-14.3%) each decade. Of the CHIP carriers in TOPMed, 89% had a
single driver mutation. We found that each additional driver mutation detected in a given sample was
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associated with an increase in passenger mutation counts (Extended Data Fig 2). This is likely due to the
presence of cooperating driver mutations in the same clone in these persons, as each successive
expansion caused by a new driver mutation captures additional passenger mutations that accumulated
in the time between the last driver event and the newer one. For this reason, we limited further
analyses on clonal expansion rate only to the 4,536 CHIP carriers with a single driver event.

We validated the passengers as an estimator of fitness both theoretically and empirically. For
the theoretical validation, we constructed a simulation of HSC dynamics to characterize the relationship
between fitness and detectable passenger counts (Supplementary Text 1). The simulation indicated that
founding passengers were associated with driver fitness (spearman p=0.09, pvalue < 2 x 10%¢). We
estimated a passenger mutation rate per diploid genome per year of 2.3, or a per-base pair rate of 3.83
x 102, Assuming 100,000 HSCs*?°, this results in a per-base-pair passenger mutation rate of 3.83 x 10°'°
per HSC clone per year without correction for the sensitivity of the sequencing technology used. This
number is substantially lower than previous estimates using WGS from single hematopoietic colonies,
likely due the low sensitivity of detecting true passengers in whole blood DNA compared to the gold
standard of single-cell derived colonies and also because we limited the base substitutions in our
analysis to C>T or T>C. Nonetheless, we were able to use these data to derive a hierarchical Bayesian
estimator of clone fitness (Methods), which adjusts for age at blood draw and cohort effects, and
confirmed its correspondence to the observed passenger counts.

PACER predicts fitness of distinct driver mutations

Building on recent computational estimates of variant fitness?°, we estimated the distribution of
passenger counts for the most common CHIP driver genes. We used non-R882 DNMT3A mutations as a
reference point and estimated the relative abundances of passengers in other genes using negative
binomial regression adjusting for age, VAF, and study. We termed this approach PACER (passenger-
approximated clonal expansion rate). Mutations in splicing factors (SF3B1, SRSF2, U2AF1) and JAK2
V617F mutations were the fastest growing according to PACER, while DNMT3A R882- was among the
slowest (Figure 1b-c, Supplementary Table 2). Mutations in TET2, ASXL1, PPM1D, TP53, ZBTB33, and
GNB1 were in the next tier and had approximately the same level of fitness estimated from PACER.
Relative to the R882- carriers, we observed a modest increase in fitness in DNMT3A R882 mutant clones.
These observations are concordant with prior empirical estimates of variant fitness derived from
longitudinal sequencing of samples with clonal hematopoiesis®!”?%?2 and provides further validation of
our approach.

To empirically validate the predictive ability of passenger count, we performed targeted
sequencing for driver variants from two blood samples taken approximately 10 years apart in 55 CHIP
carriers from the Women'’s Health Initiative (WHI, Methods). WGS from the first time point was used to
determine passenger count. We quantified clonal expansion by dividing the change in VAF by the change

in time (years) (%) of the driver variants identified at the first blood draw. Of the sequenced carriers,
40 had clones with a single CHIP mutation that were constant in size or expanded. We constructed a
simple estimator of% using only the passengers, VAF, and age from the first blood draw (Methods).

Our theoretical framework considered passengers to be an estimate of clone fitness after accounting for
age and VAF, hence these latter two variables were also considered in the model. A model only including
VAF had lower predictive ability (Rsq = 0.30%, Adjusted Rsq = -1.60%) for clonal expansion than a model
only including passengers (Rsq = 12.6 %, Adjusted Rsq = 11%). A model including only age had similar
performance (Rsq = 13.9%, Adjusted Rsq = 12.3%) to the passenger model. A model that included age
and VAF in addition to passenger count improved the prediction of clonal expansion (Rsq = 32.5%,
Adjusted Rsq = 28.6%, Figure 1d-e). These results suggested that inferring clonal expansion from age-
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and VAF-adjusted passenger mutation counts was able to not only describe past growth, but also predict
future growth rate.

Genome wide association study identifies inherited determinants of clonal expansion

We performed a genome-wide association study (GWAS) of PACER in CHIP carriers to identify
inherited genetic variation that associates with clonal expansion. Association analyses were performed
using the SAIGE? statistical package. We included age at blood draw, study, VAF, and the first ten
genetic ancestry principal components as covariates.

The GWAS identified a single locus at genome-wide significance overlapping TCL1A (Figure 2a).
We used SuSIE?* to perform genetic fine-mapping to identify the most likely causal set of variants, which
further narrowed down the associated region to a credible set containing a single variant, rs2887399
(Extended Data Fig. 3). Each additional alternative (alt) allele (T) was associated with a 0.15 decrease in
passenger count z-score (pvalue = 4.5 x10*2). The alt-allele is common, occurring in 26% of haplotypes
sequenced in TOPMed. rs2887399 lies in the core promoter of TCL1A as defined by the Ensembl
regulatory build®®, 162 base-pairs from the canonical transcription start site (TSS) and in a CpG island.
Analysis of the variant by the Open Targets?® variant-to-gene prediction algorithm also nominated TCL1IA
as the causal gene. We did not find any association between PACER and rare variants near rs2887399,
suggesting that rs2887399 is not tagging other genetic variants and is the causal variant at this locus
(Extended Data Fig. 4-5). TCL1A has been implicated in lymphoid malignancies as a translocation partner
in T-prolymphocytic leukemia?’, but it has not been studied in the context of HSC biology. TCL1A is also
the only gene in the duplicated region of chromosome 14q32 associated with an inherited
predisposition to develop myeloid malignancies shared by all kindreds?®%°. Of note, the region in the
TCL1A promoter where rs2887399 resides is only partially conserved between humans and other
primates, and poorly conserved with non-primate species (Extended Data Fig 6).

We next performed a genome-wide search of rare variation associated with the passengers. We
identified 15 windows associated with passenger counts at Bonferroni significance (pvalue = 2.9 x 107,
Supplementary Table 4). We identified an intergenic region 113kb from the TSS of TNFAIP3 (pvalue = 5.4
x 107) that is a distal enhancer of TNFAIP3 (GeneHancer®).

Association of rs2887399 with specific driver genes

We asked whether the association between rs2887399 and PACER was modified by CHIP driver
gene. Using DNMT3A as the reference, we investigated whether other genes had different effect
estimates for rs2887399. We observed that alt-allele dosage in rs2887399 was more protective against
clonal expansion in TET2 than DNMT3A (beta = -0.24, pvalue = 9.6 x 10, Figure 2b, Supplementary
Table 5).

Clones with a decreased expansion rate may never grow large enough to be detected, so we
also performed association tests between rs2887399 and presence of a CHIP-associated driver mutation
stratified by gene. In our previous analysis'?, we reported that the alt-allele was associated with
increased risk for DNMT3A mutations. Prior reports have also identified that the alt-allele of rs2887399
decreases risk for mosaic loss of the Y chromosome (LOY)3! (OR = 0.80, pvalue = 4.3 x107%). Here, we
observed that rs2887399 was associated with significantly reduced odds of mutations in TET2, ASXL1,
SF3B1, SRSF2, and possibly JAK2 (Figure 2c). The effect size of rs2887399 was large for a common
variant, as those carrying 2 copies of the alt-allele had odds ratios for having a driver mutation in these
genes ranging from 0.22 to 0.63 (Figure 2d). The risk reduction was particularly strong for mutations in
SF3B1 and SRSF2, as well as for having >1 non-DNMT3A driver mutations (Figure 2c-d, Supplementary
Table 6-7, Methods). The latter group is particularly relevant clinically, as these persons have a high risk
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of risk of transformation, and in some cases may already have early-stage MDS>%32 | In sum, these

results indicate that the alt-allele at rs2887399 is protective against CHIP due to driver mutations in
several genes that have higher risk of progression to frank hematologic malignancy®.

Previous analyses in UK Biobank33 have also implicated rs2887399 in reduced blood cell counts
(Supplementary Table S8), consistent with an effect on hematopoiesis, but it is unknown if this is
independent of hematological malignancy or CHIP.

TCL1A expression in hematopoietic cells

Next, we sought to establish how rs2887399 might shape the hematologic phenotypes
observed. We first asked if the variant was associated with TCL1A expression in any cell type. As
identified in the GTEx v8 eQTL release®, the alt-allele reduces expression of TCL1A in whole blood
(normalized effect size = -0.13, pvalue = 1.4 x 10°). The GWAS of PACER colocalized with cis-expression
guantitative trait loci (eQTLs) for TCL1A in whole blood (posterior probability of a single shared causal
variant = 97.1%, Extended Data Fig 7). The association in whole blood is likely driven by B-cells, as TCL1A
is highly expressed in B-cells but appears to have absent or low expression in all other cell types in blood
except for rare plasmacytoid dendritic cells (Supplementary Table 9, Supplementary Figure 1).

Little is known about TCL1A expression in HSCs. We examined whether CHIP-associated
mutations altered the regulation of the TCL1A locus in human hematopoietic stem and progenitor cells
(HSPCs) using publicly available single-cell RNA sequencing (scRNAseq) and ATAC-sequencing (ATAC-seq)
datasets of normal and malignant hematopoiesis. TCL1A was expressed in fewer than 1 in 1000 cells
identified as HSC/MPPs in scRNAseq data from 6 normal human marrow samples (range 0-0.17%)3>3¢. In
contrast, TCL1A was expressed in a much higher fraction of HSC/MPPs in 3 out of 5 samples from
persons with TET2 or ASXL1-mutated myeloid malignancies (range 2.7-7%) (Figure 3a). Next, using a
dataset of ATAC-seq in normal and pre-leukemic HSCs (pHSCs)?°, we evaluated chromatin accessibility at
the TCL1A promotor. Consistent with the lack of TCL1A transcripts in normal HSCs, we observed that the
promoter was not accessible in either normal human donor HSCs or in HSCs from patients with AML that
were not part of the mutant clone. We also did not observe accessible chromatin in two carriers of
DNMT3A mutated pHSCs. In contrast, the two patients with TET2 mutated pHSCs had clearly accessible
chromatin at the TCL1A promoter (Figure 3b).

Functional effect of rs2887399 on normal and CHIP-mutated HSCs

These observations led us to propose the following mechanistic model: Normally, the TCL1A
promoter is inaccessible and gene expression is absent or very low in HSCs. In the presence of driver
mutations in TET2, ASXL1, SF3B1, SRSF2, or LOY, TCL1A is aberrantly expressed and drives clonal
expansion of the mutated HSCs. The presence of the alt-allele of rs2887399 inhibits accessibility of
chromatin at the TCL1A promoter, leading to reduced expression of TCL1A RNA and protein and
abrogation of the clonal advantage due to the mutations (Extended Data Fig 8).

To test our model experimentally, we first obtained human CD34+ mobilized peripheral blood
cells from donors who were GG (homozygous reference), TT (homozygous alternate), or GT
(heterozygous) genotype at rs2887399. The three donors were healthy and between 29-32 years old at
the time of donation. To mimic CHIP-associated mutations, we used CRISPR to introduce insertion-
deletion mutations in DNMT3A, TET2, or ASXL1 in HSPCs for each rs2887399 genotype. Editing at the
adeno-associated virus integration site 1 (AAVS1) was done as a control for each rs2887399 genotype
(Figure 4a). High efficiency of editing was confirmed by Sanger sequencing (Extended Data Fig 9).
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First, we examined whether the accessibility of the TCL1IA promoter seen in the setting of TET2
mutations was altered by rs2887399 genotype. We edited bulk CD34 cells from each genotype for TET2,
sorted cells with a marker profile of HSCs and multipotent progenitors (MPPs) (Lineage- CD34+ CD38-
CD45RA-), cultured them for 5 days in cytokine-supported media, and then performed ATAC-seq
(Extended Data Fig 10). Consistent with the pre-leukemic HSC data, we detected accessibility at the
TCL1A promoter in TET2-edited cells from the rs2887399 GG donor. However, accessibility at the TCL1A
promoter was decreased in the TET2-edited cells in samples from carriers of the T allele in a dose-
dependent manner, indicating that the protective effect of the alt-allele of rs2887399 is mediated by
blocking promoter accessibility (Figure 4b). These results also suggest that alterations in the chromatin
profile of HSPCs can occur within days after the introduction of a TET2 mutation.

Next, we asked if the differential chromatin accessibility due to rs2887399 altered TCL1A protein
expression in HSCs/MPPs. We edited CD34+ cells from donors with the three rs2887399 genotypes at
AAVS1, DNMT3A, TET2, and ASXL1. After 11 days in culture, we performed a flow cytometry-based assay
for TCL1A protein expression. We found that ~1% of HSCs/MPPs from AAVS1 or DNMT3A edited
samples were positive for TCL1A, which did not vary by rs2887399 genotype. In contrast, 4.6-9.3% of
HSCs/MPPs from the GG donor that had been edited for ASXL1 or TET2 expressed TCL1A, and the
proportion of TCL1A positive HSC/MPPs decreased in donor samples with each additional T allele (4
biological replicates per condition) (Figure 4c-d). There was minimal expression of TCL1A in any non-
HSC/MPP CD34+ population in any of the samples. Notably, the proportion of TCL1A expressing
HSC/MPPs was less than 10% in all samples even though the proportion of mutant cells was >90%
(Extended Data Fig 9). This suggests that even in the presence of driver mutations in TET2 or ASXL1, only
a fraction of HSC/MPPs are capable of expressing TCL1A at any given time and is consistent with the
single-cell RNA sequencing data from hematological malignancy samples (Figure 3b).

Finally, we asked if rs2887399 had any effect on expansion of HSPCs in vitro. For this
experiment, we edited the CD34+ cells from GG and TT donors, sorted HSCs (Lin- CD34+ CD38- CD45RA-
CD90+), and allowed the cultures to grow for 14 days, at which time cells were counted and analyzed for
HSPC markers by flow cytometry. There was a notable expansion of cells bearing markers of HSCs/MPPs
in the ASXL1 and TET2 edited samples from the rs2887399 GG donor compared to the AAVS1 edited
sample, but this effect was abrogated in edited samples from the rs2887399 TT donor. A population of
cells that was Lin-/lo CD34+ CD38- CD45RA dim (CD45RAY™ HSPCs), presumably progenitors descended
from the HSC/MPP population, was also markedly expanded in the ASXL1 and TET2 edited samples from
the GG donor, but the degree of expansion was partially reversed in the edited samples from the TT
donor. There were no differences in any populations in the AAVS1 or DNMT3A edited samples based on
rs2887399 genotype (4 biological replicates per condition) (Figure 4e-f). Thus, carrying the alt-allele of
rs2887399 abrogates the clonal expansion of HSPCs with ASXL1 and TET2 mutations in an experimental
system.

DISCUSSION

Here, we have developed a novel method that allows us to infer clonal expansion rate from a
single time point. Our results extend and apply recently developed theory on the evolutionary fitness of
clones to permit estimation of fitness within a single individual®. Unlike prior methods which used the
VAFs of driver variants to estimate fitness?°, our development of a fitness estimator based on passenger
mutations counts permits us to perform association tests for other factors associated with clonal
expansion, such as inherited genetic variation and environmental exposures.
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We performed the first ever GWAS for determinants of clonal expansion rate and identified a
common variant of large effect in the promoter of TCL1A as the top hit. Remarkably, this single variant,
which has previously been linked to reduced risk of LOY*’, was also associated with protection from
driver mutations in TET2, ASXL1, SF3B1, SRSF2, and possibly JAK2. We also demonstrated with
experimental work that TCL1A was normally lowly expressed in HSCs, but that the introduction of
mutations in TET2 or ASXL1 led to expression of the protein, possibly by permitting promoter chromatin
accessibility and hence transcription of the gene. This was completely prevented by the alt-allele of
rs2887399, explaining the reduction in predicted clonal expansion rate by PACER and decreased
prevalence of these driver mutations in those carrying the allele. To our knowledge, TCL1A itself is not
somatically mutated in CHIP, perhaps because gain-of-function point mutations are not directly possible.
How TCL1A expression causes clonal expansion of HSCs is an important question for future studies, but
could be related to its reported role in AKT activation®. Importantly, our results suggest that
pharmacologically targeting TCL1A may suppress growth of CHIP and hematological cancers associated
with mutations in these genes.

The large protective effect seen with rs2887399 suggests that TCL1A expression is likely a
dominant factor mediating clonal expansion due to these mutations. This was especially the case for
driver mutations in SRSF2 and SF3B1 which were very rare in those homozygous for the alt-allele,
suggesting that activation of TCL1A expression may be a near requirement for clonal expansion due to
these mutations. We do not explore how splicing factor mutations are mechanistically linked to TCLIA
activation in this study, but one possibility is that mutations in SF3B1 or SRSF2 lead to a cryptic splice
junction®>4% within the TCL1A 3’ UTR, which may lead to increased stability of the transcript in HSCs*! .
These results may also potentially explain why mutations in Asx/1, Sf3b1, and Srsf2 in mouse HSCs do
not lead to robust clonal expansion, as the regulatory elements and non-coding regions of the mouse
Tcl1 gene are not well conserved with human TCLIA. We previously reported that the alt-allele of
rs2887399 was associated with increased risk of DNMT3A mutations!?, but here we found that carrying
the alt-allele did not increase expansion rate of DNMT3A clones by PACER or result in increased
expansion of DNMT3A edited HSPCs in vitro. One explanation for these discordant results is that the
relative reduction in fitness advantage for other non-DNMT3A drivers in carriers of the alt-allele permits
more opportunity for low fitness DNMT3A mutant clones to expand as hematopoiesis becomes more
oligoclonal with aging!®. Alternatively, the interaction of DNMT3A mutations with TCL1A genotype may
not be apparent in middle-aged or older persons, as it has recently been shown that the fitness of
DNMT3A mutant clones declines with age®’.

Though our approach yielded several novel insights into clonal expansion, our study has
limitations. The sequencing coverage in TOPMed WGS was 38x, which does not enable detection of
mutations with VAFs below 5%!*. More sensitive assays would increase detection of both driver and
passenger mutations and would reduce error in estimation of clonal expansion using PACER.
Additionally, the use of bulk-WGS precludes analysis of the clonal expansion rate in those with more
than one driver mutation. Lastly, we were underpowered to identify germline determinants of clonal
expansion in less frequently mutated genes in CHIP, but the addition of WGS data from other cohorts in
the coming years should enable additional gene-level analyses of PACER.

In summary, we developed a novel tool for inferring clonal expansion rate and used it to identify
TCL1A as a factor underlying the clonal fitness advantage of several driver mutations in CHIP. PACER is a
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powerful approach for identifying the genetic and environmental factors mediating clonal expansion in
humans at population scale and may be applied to any tissue where pre-malignant clones exist 474,
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METHODS
Study Samples

Whole genome sequencing (WGS) was performed on 127,946 samples as part of 51 studies
contributing to Freeze 8 NHLBI TOPMed program as previously described®. None of the TOPMed studies
included selected individuals for sequencing because of hematologic malignancy. Each of the included
studies provided informed consent. Age was obtained for 82,807 of the samples, and the median age
was 55, the mean age 52.5, and the maximum age 98. The samples have diverse reported ethnicity (40%
European, 32% African, 16% Hispanic/Latino, 10% Asian).

WGS Processing, Variant Calling and CHIP annotation

BAM files were remapped and harmonized through the functionally equivalent pipeline*. SNPs
and indels were discovered across TOPMed and were jointly genotyped across samples using the
GotCloud pipeline®. An SVM filter was trained to discriminate between high- and low-quality variants.
Variants were annotated with snpEff 4.3, Sample quality was assessed through mendelian discordance,
contamination estimates, sequencing converge, and among other quality control metrics.

Putative somatic SNPs were called with GATK Mutect2*?, which searches for sites where there is
evidence for alt-reads that support evidence for variation, and then performs local haplotype assembly.
We used a panel of normals to filter sequencing artifacts and used an external reference of germline
variants to exclude germline calls. We deployed this pipeline on Google Cloud using Cromwell*,

As described in our previous report 1, samples were annotated as having CHIP if the Mutect2
output contained at least one variant in a curated list of leukemogenic driver mutations with at least
three alt-reads supporting the call. We expanded the list of driver mutations to include those in recently
identified CHIP genes*, increasing the number of CHIP cases from our previous report.

We called somatic singletons by identifying somatic variants that appeared in a single individual
among the CHIP carriers and 23,320 additional controls for a total of 28,391 individuals. We excluded
any variant that appeared in the TOPMed Freeze 5 germline call set (463 million variants). We excluded
variants with a depth below 25 or above 100 and excluded any variants in low complexity regions or
segmental duplications, as these are challenging for variant calling. We only included somatic singletons
that were aligned to the primary chromosomal contigs. We excluded any variant with a VAF exceeding
35% as these may be enriched for germline variants that were not included in our other filters. We used
cyvcf2% to parse the Mutect2 VCFs and encoded each variant in an int64 value using the variant key
encoding®. We developed a bespoke Python application to perform the singleton identification and
filtering.

A special approach was required to identify somatic variants in U2AF1 since an erroneous
segmental duplication in the region of the gene in the hg38 reference genome resulted in a mapping
score of zero during alignment of the FASTQ file>*. We developed a Rust-HTSLIB binary
(https://github.com/weinstockj/pileup_region) to specifically identify reads associated with the U2AF1
variants S34F, S34Y, R156H, Q157P, and Q157R. A minimum of 5 alternate reads was required to include
a variant in the somatic set of CHIP calls. The variant set was judged to have a high likelihood of being
somatic based on the strong age association for persons carrying mutations as well as a high rate of co-
mutation with other known drivers. The VAF was estimated by dividing the alternate read count by the
total read count for U2AF1.
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Amplicon sequencing validation

Targeted sequencing of the CHIP driver genes from 80 samples from the Women’s Health
Initiative (WHI) was performed using single-molecule molecular inversion probe sequencing
(smMIPS'+*1), Reads were aligned with bwa-mem and processed with the mimips pileline >2. We called
somatic variants using an ensemble of VarScan®3, Mutect2'?, and manual inspection with IGV>4,

Single Variant Association

Single variant association for each variant in the TOPMed Freeze 8 germline genetic variant call
set 1% with a MAC > 20 was performed with SAIGE? using the TOPMed Encore analysis server. To
identify associations between rs2887399 and the acquisition of specific CHIP mutations, we used the
same methods as our previous report on an analysis set of 74,974 individuals, including 4,697 cases and
70,277 controls. Age, genotype inferred sex, the first ten genetic ancestry principal components, and
study were included as covariates.

We performed SAIGE single variant association analyses on the passengers including age at
blood draw, sex, VAF, study, and the first ten genetic ancestry principal components as covariates. We
applied an inverse normal transformation to the passenger counts. We declared variants from this
analysis as significant if their p-value was less than 5 x 108,

Estimation of association between rs2887399 genotypes and CHIP mutation acquisition

We coded the rs2887399 genotypes as a categorical variable rather than a linear quantitative
coding to estimate effects separately for the heterozygotes and the alt-homozygotes using the ref-
homozygotes as the reference level. We estimated the associations using firth logistic regression to
reduce bias in estimation resulting from low cell counts®, and included age, genotype inferred sex, and
the first ten genetic ancestry components as covariates.

Fine-mapping of the TCL1A region

We applied the SuSIE** algorithm to the genotypes included in a 200kb region surrounding
TCL1A. We used the same covariates as the single variant association analysis. We used the posterior
inclusion probabilities (PIP) and credible sets identified by SuSIE to identify the putative causal variant.
We used LD directly calculated on the genotypes as opposed to an external reference.

Rare Variant Analyses

We performed gene-based tests on 1,698 cancer associated genes their flanking regions using
the SCANG®® procedure. We identified these genes by downloading the targets associated with cancer in
Open Targets?!, and then filtered to include only genes with an association score of 1.0. The most
prevalent CHIP driver genes were included among this list. We used the inverse normal transformed
passenger counts as the phenotype with the same covariates as before. We specified the minimum size
of the grouped regions as 30 variants and the maximum as 200. We included all PASS variants with a
minor allele count greater than four and less than 300 (MAF of 3.7% in the analyzed samples). We
parsed the genotypes using cyvcf2°” and stored them as dgCMatrix using the Matrix®® package from the
R 3.6.1 programming language®.

We set the p-value filter to calculate SKAT test-statistics at 5 x 10, We did not group the
variants by annotation and we declared regions as significant if their pvalue was less than 2.9 x10° (.05 /
1,698). We controlled for relatedness by incorporating a sparse kinship matrix as estimated by the PC-
AiR method from the GENESIS R package®®. We specified separate residual variance terms for each study
to control for heterogeneous residual variance. We grouped together all studies where the number of
analyzed samples was less than 200.
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Enrichment of passengers by driver gene

We estimated the association between the driver genes and the passenger counts using
DNMT3A as the reference in a negative binomial regression using the gim.nb function from the MASS R
package®. We included age, study, VAF, and sex as covariates. We included driver genes with at least 30
mutations and reported genes that had a different effect relative effect than DNMT3A if the pvalue of
the coefficient was less than 1 x 102,

Estimation of passenger mutation rate, clone fitness, and clone birth date

We developed a hierarchical Bayesian latent variable model using the Stan®*% probabilistic
programming language. We used the negative binomial likelihood with a mean and overdispersion
parameterization to facilitate interpretation. We used the identity function to link the passenger counts
to the predictors as we modeled the effects on an additive scale. We modeled the expectation and
overdispersion of the passenger counts observed at time (¢;) as

E(countsl- (tl-)) =uT; +s;(t; —T;) + ay

counts;(t;) ~ NB(E (counts;(t;)),1(i € CHIP)8, + (1 — I(i € CHIP))0;)

Where T; is the time of the driver acquisition for sample i with a blood draw at time t;, i is the mutation
rate per diploid genome per year for the HSC population, s; is the fitness of the clone, and a;, represents
a study specific random intercept for sample i included in study k. We can interpret t; — T; as the
lifetime of the clone in years. We used a negative binomial likelihood as there was overdispersion
relative to a Poisson distribution.

We included several constraints and priors on the parameters to make them identifiable. We
constrained T; to be positive but exceeded by t; such that the parameter would be in yearly units. We
included case-control specific overdispersion terms 6, and 8, as the CHIP carriers had greater
dispersion. To adjust for batch effects, we included a random intercept, as the amount of singletons in
controls varied by study.

To include the constraint on T;, we defined T; = ¥; * age;, with Y; constrained between 0 and
1, and age; is the age at blood draw. We placed an uninformative Beta(1, 1.3) prior on 1;, which is
equivalent to the supposition that the driver mutation is twice as likely to be acquired in the second half
of life (at the time of blood draw) then the first. We assumed the study specific deviations were
exchangeable with respect to a N(0,20) prior, providing some shrinkage on the study specific
intercepts. We placed a N(0,1) prior on the s; parameter to aid identification. Further details are
described in the supplement.

To estimate the posterior, we used the Stan Hamiltonian monte-carlo (HMC) sampler with four
separate chains, and used 400 samples of burn-in. We assessed convergence using the Rhat and effect-
sample size statistics. We tried multiple parameterizations to reduce the number of divergent
transitions. We performed posterior predictive checks to assess the model fit.

Simulation of HSC dynamics
We simulated the number of cells within an HSC clone as a birth-death continuous time Markov
chain, which models the size of an HSC clone as the composite of simultaneous Poisson birth and
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Poisson death point processes (Supplementary Text 1). Following Watson et al.2%, HSCs could transition
to one of three states: asymmetric renewal, symmetric self-renewal, and symmetric differentiation. The
rate of transition was determined by the symmetric differentiation rate of the cell per year, which was
set to five. The symmetric self-renewal and symmetric differentiation increase and decrease the size of
the HSC clone respectively. As asymmetric division does not affect the size of the clone, we did not
explicitly simulate transition to this state. The proclivity towards self-renewal was determined by the
fitness of the clone. We set the entire HSC population to acquire a single driver mutation during the
‘lifetime’ of the simulation.

Passengers were accumulated over time using a birth Poisson point process. We then calculated
the number of ‘detectable’ passengers that preceded the acquisition of the driver based on whether the
underlying clone had expanded to a great enough proportion of HSC cells. We examined the association
between the number of detectable passengers and the fitness of the underlying HSC clone. We
implemented this simulation in the Julia programming language 1.4%.

Re-analysis of single-cell RNA sequencing data

The cell-by-gene count matrix data for each sample from Psaila et al*°, generated using the 10X
Genomics platform, was downloaded from Gene Expression Omnibus (GSE144568). Each matrix was
loaded in Seurat with the read10X command, and only cells with a minimum of 200 features were
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retained using the CreateSeuratObject command. Data was log normalized using a scale factor of 10000
by the NormalizeData command. We then used the FindVariableFeatures command with ‘vst’ selection
method and 2000 features. The data was scaled using ScaleData using all genes as features. We then
used the RunPCA command with VariableFeatures identified earlier. For clustering, we used
FindNeighbors set to the first 10 PCA dimensions and FindClusters using a resolution of 0.5. We excluded
samples that did not have a distinct cluster of HSC/MPPs, defined as clusters enriched for cells that were
CD34+ CD38-/lo THY1+. This left 5 healthy marrow samples (id01, id06, id09, id13, id17) and 4 MPN
samples (id2, id7, id11, id14). For each of these samples, we assessed the number of cells with TCL1A
transcripts within the cluster or clusters that contained HSC/MPPs, as defined above.

Additional preprocessed single-cell RNAseq from Velten et al.?%, generated using MutaSeq, was
downloaded from Gene Expression Omnibus (GSE75478) as an RDS file. We utilized data from one
patient with AML (P1) and the healthy control (H1). We then determined the number of cells containing
TCL1A transcript in the preleukemic ‘HSC/MPP’ and preleukemic ‘CD34+ blasts and HSPCs’ clusters for
the P1 sample and the ‘HSC/MPP’ cluster for the H1 sample, in both cases as defined by the original
study authors.

Re-analysis of ATACseq data

We downloaded ATAC-seq data for AML samples as well as healthy controls from Corces et al.®®
available at Gene Expression Omnibus (GSE75478). For our analysis, we used data from HSCs, defined as
Lin- CD34+ CD38- CD90+ CD10- by the authors, from a healthy donor (donor7256), or preleukemic HSCs
(pHSC), defined as Lin- CD34+ CD38- TIM3- CD99- by the authors. For the pHSC samples, we selected 2
where there were no detectable driver mutations in the pHSC compartment (SU336, SU306), 2 where
there were DNMT3A mutations only (SU444, SU575), and 2 where there were TET2 mutations only
(SU070, SU501).

Fastq files were downloaded, and ATAC-seq data analysis was performed as previously
described® .


https://doi.org/10.1101/2021.12.10.471810
http://creativecommons.org/licenses/by-nc-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2021.12.10.471810; this version posted December 13, 2021. The copyright holder for this preprint
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY-NC-ND 4.0 International license.

Briefly, reads were trimmed and filtered using fastp and mapped to the hg38 reference genome
using hisat2 with the --no-spliced-alignment option. Bam files were deduplicated using Picard. Only
reads mapping to chromosomes 1-22 and chrX were retained -- chrY reads, mitochondrial reads, and
other reads were discarded. Genome track files were created by loading the fragments for each sample
into R, and exporting bigwig files normalized by reads in transcription start sites using
‘rtracklayer::export’. Coverage files were visualized using the Integrative Genomics Viewer.

CRISPR—-Cas9 editing of CD34" human HSPCs

CD34* HSPCs from adult donors were purchased from the Cooperative Center of Excellence in
Hematology (CCEH) at the Fred Hutch Cancer Research Center, Seattle, USA. TCL1A rs2887399
genotyping was performed using ThermoFisher SNP assay (Assay ID: C__15842295 20). CD34+ cells
were thawed and cultured in HSC Expansion media (StemSpanll + 10% CD34+ Expansion Supplement +
0.1% Penicillin/Streptomycin) for 48 hours before CRISPR editing. Editing of AAVS, TET2, DNMT3A, and
ASXL1 was performed by electroporation of Cas9 ribonucleoprotein complex (RNP). For each
combination of rs2887399 genotype and gRNA, 100,000 cells were incubated with 3.2 ug of Synthego
synthetic sgRNA guide and 8.18 ug of IDT Alt-R S.p. Cas9 Nuclease V3 for 15 minutes at room
temperature before electroporation. CD34+ cells were resuspended in 18 uL of Lonza P3 solution and
mixed with the ribonucleoprotein complex, and then transferred to Nucleocuvette strips for
electroporation with program DZ-100 (Lonza 4D Nucleofector). Immediately following electroporation,
each condition of 100,000 cells was transferred to 2 mL's of HSC Expansion media, and allowed to
recover for 24 hours. CRISPR editing efficiency was measured using Sanger Sequencing and ICE Analysis.

Target Guide Sequence Sanger Forward Primer Sanger Reverse Primer
AAVS GCCAGTAGCCAGCCCCGTCC GGGTCCAGGCCAAGTAGGT TGGCTCTTCACCTTTCTAGTCCC
TET2 TCATGGAGCATGTACTACAA GGTTATGCCACAGCTTAATACAGA TGACACCCCTTTAAAACTTTGG
DNMT3A GCCCGTGGGGTCCGATGCTG

GGAGCTCCATCTGAATGAGG GGCTGGAATTGTGTGACTTG
ASXL1 GTATCCGTGGACTCACCGTG TACCCATCCCATCGAATGAT GCAGCAACTGCATCACAAGT

Liquid Culture Expansion Assay

24 hours post electroporation, Lineage- CD34+ CD38- CD90+ CD45RA- cells were sorted on a BD
FACS Aria Ill from the electroporated CD34+ cells All cells were harvested and stained with the following
extracellular HSC marker panel in 100 uL of PBS + 2% FBS + 1 mm EDTA.

Antibody Vendor Clone Catalog# Concentration
APC-CD34 BioLegend 561 343608 1:50
PE/Cy7-CD38 BioLegend HIT2 303515 1:100

BV421-CD90 BioLegend 5E10 562556 1:25
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BV605-CD45RA BioLegend HI100 304134 1:40
PE/Cy5-CD2 BioLegend RPA-2.10 300210 1:100
PE/Cy5-CD3 BioLegend HIT3a 300310 1:100
PE/Cy5-CD4 BioLegend SK3 344654 1:100
PE/Cy5-CD8a BioLegend HIT8a 300910 1:100
PE/Cy5-CD16 BioLegend 3G8 302010 1:100
PE/Cy5-CD19 BioLegend HIB19 302210 1:100
PE/Cy5-CD20 BioLegend 2H7 302308 1:100
PE/Cy5-CD56 BioLegend 5.1H11 362516 1:100
PE/Cy5-CD235a BioLegend HIR2 306606 1:100
PE/Cy5-CD14 BioLegend M5E2 301864 1:100
Fixable Viability Stain ~ BD 564997 1:1000
700

4 replicates of 1,000 Lineage- CD34+ CD38- CD90+ CD45RA- cells were sorted into 100 ulL of HSC
Expansion media and cells were plated into a 96 well plate. The edges of 96 well plate were filled with
water to keep the cultures hydrated. 4 days post sort, another 100 uL of HSC Expansion media was
added to each well. 10 days post sort, the samples were transferred from the 96 well plate to a 48 well
plate and an additional 400 ulL of HSC Expansion media was added. 14 days post sort, the cells were
harvested, and live cells were counted using trypan blue and hemocytometer. Additionally, the cells
were stained with the extracellular HSC marker panel, and flow cytometry analysis was performed.
Absolute number of HSC/MPPs (defined as Lin- CD34+ CD38- CD45RA-) and CD45RAprogenitors
(defined as Lin-/lo CD34+ CD38- CD45RA°) were determined by multiplying the total cell count at 14
days by the percentage of cells in each compartment as determined by flow cytometry.

Flow cytometry for TCL1A staining
Anti-human TCL1A antibody clone eBio1-21 was obtained from ThermoFisher. The specificity of
the antibody was assessed by staining NALM®6 cells that had been CRISPR edited for TCL1A with the
antibody, which confirmed only a low level of non-specific binding.
To assess for TCL1A expression in cultured human HSPCs, cells in HSC Expansion media were
harvested and intracellularly stained 11 days following electroporation.
Antibody Vendor Clone Catalog# Concentration

e450-TCL1A ThermoFisher  eBiol-21  48-6699-42 lug

APC-CD34 BioLegend 561 343608 1:50
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PE/Cy7-CD38 BioLegend HIT2 303515 1:100
FITC-CD90 BioLegend 5E10 562556 1:15
BV605-CD45RA BioLegend HI100 304134 1:25
PE/Cy5-CD2 BioLegend RPA-2.10 300210 1:100
PE/Cy5-CD3 BioLegend HIT3a 300310 1:100
PE/Cy5-CD4 BioLegend SK3 344654 1:100
PE/Cy5-CD8a BioLegend HIT8a 300910 1:100
PE/Cy5-CD16 BioLegend 3G8 302010 1:100
PE/Cy5-CD19 BioLegend HIB19 302210 1:100
PE/Cy5-CD20 BioLegend 2H7 302308 1:100
PE/Cy5-CD56 BioLegend 5.1H11 362516 1:100
PE/Cy5-CD235a BioLegend HIR2 306606 1:100
PE/Cy5-CD14 BioLegend M5E2 301864 1:100
Fixable Viability Stain  BD 564997 1:1000
700

Cells were first stained with the Live/Dead and extracellular HSC markers simultaneously for 30
minutes in the dark on ice. After a PBS wash, cells were stained with 100 ulL of IC Fixation Buffer for 30
minutes in the dark at room temperature. Cells were then washed twice with 1X Permeabilization
Buffer. Next, cells were resuspended in 100 uL of 1X Permeabilization Buffer, and blocked with 2 uL of
goat serum and 2.5 ul of TruStain FcX for 15 minutes in the dark at room temperature. Next, 1 ug of
e450 antibodies (anti-TCL1A or isotype control) was added to each sample tube and stained for 30
minutes in the dark at room temperature. Cells were then washed twice with 1X Permeabilization Buffer
and then resuspended in PBS before flow cytometry was performed. HSC/MPPs were defined as Lin-
CD34+ CD38- CD45RA-.

ATAC-seq

24 hours post electroporation, Lineage- CD34+ CD38- CD45RA- cells were sorted from the
electroporated CD34+ cells using a BD FACS Aria lll. Cells were allowed to culture for 5 days before
40,000 cells were harvested, and bulk Omni-ATAC®” was performed on them. Briefly, cells were lysed
with ATAC-Resuspension Buffer containing 0.1% NP40, 0.1% Tween-20, and 0.01% Digitonin for 3
minutes, and then the transposition was performed for 30 minutes at 37 C using 100 nM of lllumina
Tagment DNA TDE1 Enzyme and Buffer Kit per 50,000 cells . The fragmented DNA was then cleaned up
using a Zymo DNA Clean and Concentrator-5 Kit (cat# D4014). The transposed fragments were amplified
and indexed using NEBNext 2x Master Mix. The final PCR product was purified using the Zymo DNA
Clean and Concentrator-5 Kit. Prior to sequencing, the quality of the libraries was evaluated via DNA
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High Sensitivity Bioanalyzer assays. The sequencing was performed using 2x75 bp reads on an Illumina
NextSeq550 instrument using the High Output Kit.

ATAC-seq data analysis was performed as previously described above. Briefly, reads were
trimmed and filtered using fastp and mapped to the hg38 reference genome using hisat2 with the --no-
spliced-alignment option. Bam files were deduplicated using Picard. Only reads mapping to
chromosomes 1-22 and chrX were retained -- chrY reads, mitochondrial reads, and other reads were
discarded. Genome track files were created by loading the fragments for each sample into R, and
exporting bigwig files normalized by reads in transcription start sites using ‘rtracklayer::export’.
Coverage files were visualized using the Integrative Genomics Viewer.

DATA AVAILABILITY

Individual whole-genome sequence data for TOPMed whole genomes, individual-level harmonized
phenotypes and the CHIP variant call sets used in this analysis are available through restricted access via
the dbGaP TOPMed Exchange Area available to TOPMed investigators. Controlled-access release to the
general scientific community via dbGaP is ongoing.

CODE AVAILABILITY

https://github.com/weinstockj/hsc_simulation
https://github.com/weinstockj/pileup_region

https://github.com/weizhouUMICH/SAIGE

https://github.com/zilinli1988/SCANG
https://dockstore.org/workflows/github.com/broadinstitute/gatk/mutect2:4.1.8.1?tab=info

https://stephenslab.github.io/susieR/index.html
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Fig 1| PACER Enables Estimation of Clonal Expansion from a Single Blood Draw
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Covariates Rsq(%) Adjusted-Rsq(%) AIC
passengers 12.60% 11.00% 139.3
age 13.90% 12.30% 138.5
VAF 0.30% -1.6% 146.6
passengers and age 31.70% 29.10% 1278
passengers, age, and VAF 32.50% 28.60% 129.1

A, A schematic depiction of using passenger counts to estimate the rate of expansion of a hematopoietic
stem cell (HSC) clone after the acquisition of a driver mutation. The passengers (blue) that precede the
driver (red) can be used to date the acquisition of the driver. B, The relative abundances of passenger
counts were estimated for CHIP driver genes with at least 30 cases using a negative binomial regression,
adjusting for age at blood draw, driver VAF, and study. The coefficients are relative to DNMT3A R882-
CHIP. C, The relative abundances of passenger counts are plotted against the empirical estimates of
gene fitness derived from the longitudinal deep sequencing in Fabre et al.”. The estimate of the
association from weighted least squares (slope = 2.7, pvalue = 9.6 x 10, R?> = 80%) is plotted as a dashed
line. D, The observed clonal expansion rates (dVAFdT), as expressed in the change in variant allele
frequency (VAF) over time (years), were associated with increased passenger counts in 55 CHIP carriers
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from the Women’s Health Initiative. Colors indicate the mutated driver gene. E, A multivariate model
including passenger counts, age at blood draw, and VAF indicates the relative contributions of age and
VAF over baseline models. AIC is Akaike information criteria, where smaller values indicate better model
fit.
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Fig 2| GWAS of PACER Identifies Germline Determinants of Clonal Expansion in Blood
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A, A genome-wide association study (GWAS) of passenger counts identifies TCL1A as a genome-wide
significant locus. B, The association between the genotypes of rs2887399 and PACER varied between
TET2 and DNMT3A. Alt-alleles were associated with decreased PACER score in TET2 mutation carriers, in
contrast to DNMT3A carriers, where no association was observed. C, The association between alt-alleles
at rs2887399 and presence of specific CHIP mutations varies by CHIP mutations. Forest plot shows the
effect estimates of a single T allele and two T-alleles respectively, estimating using Firth logistic
regression. On the right of the forest plot, effect estimates and p-values are included from SAIGEZ,
which uses an additive coding of the alt-alleles for hypothesis testing. In the additive tests, SF3B1 and
SRSF2 were grouped together to aid convergence.
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Figure 3| TET2 and ASXL1 mutations permit aberrant TCL1A accessibility and transcript expression in

HSCs and MPPs
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A. Quantification of fraction of HSCs and MPPs expressing TCL1A transcripts in patients with TET2 or
ASXL1 driven acute myeloid leukemia (AML) or myeloproliferative neoplasm (MPN) compared to healthy
donors. Data is from single-cell RNA sequencing generated in Psaila et al**and Velten et al®*. B. ATAC-
sequencing tracks of the TCL1A locus near rs2887399 in HSCs form healthy donors (row 1), pre-leukemic
hematopoietic stem cells (pHSCs) from patients with AML but no detected driver mutations (rows 2-3),
pHSCs with DNMT3A mutations (rows 4-5), and in pHSCs with TET2 mutations (rows 6-7). Amino acid
change and variant allele fraction (VAF) for the driver mutations are shown. Data is from Corces et al®.
Vertical grey bar indicates location of the rs2887399 SNP. Black hash marks indicate positions of GTEX v8
eQTLs for TCL1A in whole blood, blue hash marks indicate positions of genome-wide significant SNPs,
and the red hash mark indicates the position of the single causal variant identified by fine-mapping,

rs2887399.
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Figure 4] T allele of rs2887399 reduces TCL1A expression and extinguishes clonal expansion
phenotype of TET2 and ASXL1 mutant HSPCs
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A. Schematic of experimental workflow. Human HSPCs from donors carrying rs2887399 GG, GT, or TT
genotypes were electroporated with Cas9 targeting AAVS1, TET2, DNMT3A, or ASXL1 and cultured for
OMNI-ATAC, intracellular flow cytometric analysis of TCL1A expression, or an in vitro HSPC expansion
assay. B. ATAC-sequencing tracks illustrating chromatin accessibility at rs2887399 in TET2-edited HSPCs
cultured for 5 days from donors of the GG, GT, and TT genotypes. Red line indicates location of
rs2887399. C. Representative intracellular flow plots of TCL1A protein expression in edited HSCs/MPPs
from each rs2887399 donor after 11 days in culture. D. Quantification of percent HSCs/MPPs expressing
TCL1A from flow cytometry, stratified by edited gene and rs2887399 genotype. Results of a linear
regression model for the effect of edited gene (referent to AAVS1), number of T-alleles at rs2887399,
and the interaction term of edited gene with T-alleles are presented below. Est. = estimate, S.E. =
standard error, p. val. = p-value. E. Quantification of Lin- CD34+ CD38- CD45RA- HSC/MPP counts after
14 days of in vitro expansion stratified by edited gene and rs2887399 genotype. Results of a linear
regression model for the effect of edited gene (referent to AAVS1), rs2887399 genotype (referent to
GG), and the interaction term of edited gene with rs2887399 genotype are presented below. F.
Quantification of Lin-/lo CD34+ CD38- CD45RAlo HSPCs (CD45RAlo HSPCs) after 14 days of in vitro
expansion stratified by edited gene and rs2887399 genotype. Results of a linear regression model for
the effect of edited gene (referent to AAVS1), rs2887399 genotype (referent to GG), and the interaction
term of edited gene with rs2887399 genotype are presented below.
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Extended Data Fig 1 | CHIP Carriers are Enriched for Passengers
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The passenger counts are enriched by 54% (95% Cl: 51%-57%) after adjusting for age and study using a
negative binomial regression. The different colors in the density plots correspond to quartiles of the
marginal probability distributions. As the density estimates are smoothed, the underlying data points
are indicated with hash marks. The data use a log2 scale, such that an increase by 1 indicates a single
doubling has occurred.
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Extended Data Fig 2 | Passenger Counts Linearly Increase with Number of Driver Mutations
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The distributions of passenger counts are stratified by the number of CHIP driver variants acquired. The
different colors in the density plots correspond to quartiles of the marginal probability distributions.
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Extended Data Fig 3 | Fine-mapping TCL1A Locus Identifies a Single Causal Variant rs2887399
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The posterior inclusion probabilities (PIP) as estimated by SuSIE* are plotted on the y-axis, and the
genomic position of a 0.8 Mb region including TCL1A is plotted on the x-axis. The linkage disequilibrium
(LD) estimates are plotted on a color scale and are estimated on the genotypes used for association
analyses.
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Extended Data Fig 4 | Rare Variant Analysis Of TCL1A Locus Identifies a Suggestive Signal Prior to
Conditioning on rs2887399
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Rare variant analyses were performed using the SCANG>® rare variant scan procedure including all
variants with a minor allele count less than 300. Identified rare variant windows are plotted as gray

rectangles where the width corresponds to the size of the genomic region and the height corresponds to
the pvalue of the SCANG test statistic for the window.
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Extended Data Fig 5 | Conditioning on rs2887399 Attenuates Independent Rare Variant Signal
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Rare variant analyses were performed including the rs2887399 genotypes as covariate.
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Extended Data Fig 6 | TCL1A Promoter is Not Well Conserved In Vertebrates
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Multiz alighments across multiple species are shown for the TCL1A locus.
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Extended Data Fig 7 | PACER Signal Colocalizes with TCL1A eQTLs
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In the top panel, plotted are the -log10 pvalues from both the PACER GWAS and TCL1A cis-eQTLs in
whole blood from GTEx v8. In the bottom panel, posterior probability of colocalization from COLOC®®
identifies rs2887399 as the likely shared causal variant.
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Extended Data Figure 8 | Schematic Description of rs2887399 Mediation on TET2 Clonal Expansion
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Proposed model for clonal advantage due to mutations in TET2. In cells with the rs2887399 REF/REF
genotype, loss of TET2 function leads to an accessible TCL1A locus, aberrant TCL1A RNA and protein
expression in hematopoietic stem cells (HSC's) and multi-potent progenitors (MPP's), and subsequent
clonal expansion. The presence of rs2887399 ALT alleles diminishes the TET2 clonal expansion
phenotype by limiting TCL1A locus accessibility and downstream protein expression.
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Extended Data Figure 9 | CRISPR Editing Efficiency
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A. ICE analysis of Sanger traces to determine targeted CRISPR editing efficiency. Bar plots display
percent of CD34+ CD38- CD45RA- cells with indel formation in gene of interest. These cells were used for
the OMNI-ATAC and intracellular TCL1A flow assays. B. ICE analysis of Sanger traces to determine
targeted CRISPR editing efficiency. Bar plots display percent of CD34+ CD38- CD45RA- cells with indel
formation in gene of interest. These cells were used for the 14 day expansion assay.
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Extended Data Figure 10 | HSC/MPP Flow Gating Scheme
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Flow gating scheme for identifying and sorting CD34+ CD38- CD45RA- hematopoietic stem cells (HSC's)
and multi-potent progenitors (MPP's).
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