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Abbreviations 

AUC Area under the curve 
CCD Cortical collecting duct 
CNT Connecting tubule 
CTAL Cortical thick ascending limb of the loop of Henle 
DC Dendritic cell 
DCT Distal convoluted tubule 
Endo Endothelial 
IC-A Intercalated cells type A 
IC-B Intercalated cells type B 
IRI Ischemia-reperfusion injury 
LogFC Log Fold Change 
MP Mononuclear phagocyte 
MHC Major histocompatibility complex 
NK cell Natural killer cell 
Non-PT Non proximal tubular parenchymal cell 
PBMCs Peripheral blood mononuclear cells 
PGE2 Prostaglandin E2 
PT Proximal tubule 
RBC Red blood cell 
scRNAseq Single cell RNA sequencing 
STC Scattered tubular cell 
TCA Tricarboxylic Acid 
TCR T cell receptor 
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Abstract  1 

Maintaining organ homeostasis requires complex functional synergy between distinct cell types, a 2 

snapshot of which is glimpsed through the simultaneously broad and granular analysis provided by 3 

single-cell atlases. Knowledge of the transcriptional programs underpinning the complex and 4 

specialized functions of human kidney cell populations at homeostasis is limited by difficulty 5 

accessing healthy, fresh tissue. Here, we present a single-cell perspective of healthy human kidney 6 

from 19 living donors, with equal contribution from males and females, profiling the transcriptome 7 

of 27677 high-quality cells to map healthy kidney at high resolution. Our sex-balanced dataset 8 

revealed sex-based differences in gene expression within proximal tubular cells, specifically, 9 

increased anti-oxidant metallothionein genes in females and the predominance of aerobic 10 

metabolism-related genes in males. Functional differences in metabolism were confirmed between 11 

male and female proximal tubular cells, with male cells exhibiting higher oxidative phosphorylation 12 

and higher levels of energy precursor metabolites. Within the immune niche, we identified kidney-13 

specific lymphocyte populations with unique transcriptional profiles indicative of kidney-adapted 14 

functions and validated findings by flow cytometry. We observed significant heterogeneity in 15 

resident myeloid populations and identified an MRC1+ LYVE1+ FOLR2+ C1QC+ population as the 16 

predominant myeloid population in healthy kidney. This study provides a detailed cellular map of 17 

healthy human kidney, revealing novel insights into the complexity of renal parenchymal cells and 18 

kidney-resident immune populations. 19 

 20 

  21 
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Introduction 22 

The complex functions of the kidney that maintain body homeostasis are executed by a diverse range 23 

of specialized parenchymal cells residing in distinct compartments. Within tissues, resident immune 24 

populations function in surveillance, maintenance of self-tolerance, response to infection and injury,  25 

and interface with parenchymal cells to maintain tissue homeostasis1-3. There is limited 26 

understanding of this network of kidney parenchymal and resident immune cells in humans due to 27 

lack of access to healthy, fresh tissue. Much of our knowledge is based on studies that used kidneys 28 

rejected for transplant or tumour-adjacent nephrectomy specimens, where parenchymal 29 

populations can have altered molecular programs, and immune populations and their signalling 30 

circuits may not be entirely reflective of the steady-state4,5. Further, sex-based dichotomy in gene 31 

expression within human kidney cell populations has not been thoroughly examined, but is of great 32 

significance to acute and chronic kidney disease, ischemia-reperfusion injury (IRI) and progression of 33 

diabetic kidney disease, which exhibit a male preponderance6-8.  34 

Here we present a detailed atlas of healthy human kidney using single cell RNA sequencing 35 

(scRNAseq) of living donor kidney biopsies, capturing parenchymal and immune cell transcriptomes 36 

reflective of a healthy state. We explore sex-based dichotomy in gene expression among kidney 37 

populations, revealing altered transcriptional programs between male and female proximal tubular 38 

cells, and perform an in-depth characterization of the immune niche in healthy, non-inflamed kidney.   39 

 40 

Single-cell map of healthy human kidney  41 

We examined the cellular landscape of human kidney using pre-implantation kidney biopsies from 42 

19 sex-matched living kidney donors (Fig. 1a, b). Our dissociation method was developed to maximize 43 

viability to preserve representation of rare and fragile cell populations, and we employed rigorous 44 

quality control. Minimal immune cell representation in healthy kidney (~0.3% of cells captured) 45 

necessitated CD45-enrichment for immune cells in 10/19 biopsy samples (5 female, 5 male) (Fig. 1a). 46 
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Of 27677 cells in our map, 6899 cells were from CD45-enriched samples, while 20778 cells were from 47 

non-CD45-enriched samples. Twenty-three clusters were identified including several distinct 48 

immune cell populations, alongside all anticipated parenchymal populations of the nephron (Fig. 1c, 49 

Supplementary Fig. 1a). Clusters were comprised of cells captured from multiple donors, there was 50 

no exceptional variability in cell cycle state across clusters, and most clusters had symmetrical 51 

distribution of donor sex (Figure 1b-e, Supplemental Figure 1). 52 

 As anticipated, Proximal Tubular (PT) cells comprised 75% of sequenced cells. Sub-clustering 53 

revealed 6 distinct clusters (PT1-PT6) (Fig. 1d, Supplementary Fig. 2a), with some heterogeneity 54 

between individuals, methods of sample preparation, and sexes noted (Supplementary Fig. 2b). PT 55 

segment-specific separation is evident; PT1, 4, and 6 are enriched for PT segment 1 (S1) marker 56 

SLC5A2 and S1/2-abundant genes (SLC7A7, ANK2, SLC4A4, SLC6A19, SLC22A8), while PT2 shows 57 

increased expression of S3-abundant genes (DCXR, AGXT, SLC22A7, SLC7A13) (Fig. 1e)9,10. PT3 highly 58 

expresses dissociation stress-associated genes3, together with general (LRP2, CUBN) and segment-59 

specific PT genes, indicating cell contributions from all PT segments (Fig. 1e, Supplementary Fig. 2c). 60 

PT5 (VIM+S100A6+VCAM1+DCDC2+ANXA4+) displays similarity to a putative regenerative PT 61 

population – termed ‘scattered tubular cells’ (STC)11,12. These genes also characterize a population 62 

which expands following IRI and is postulated to reflect failed PT repair, though expression was also 63 

observed in healthy kidney13. Some STC-associated genes were exclusively expressed by PT5 or PT3, 64 

while others were expressed in both populations (Supplementary Fig. 2d-f). This transcriptional 65 

overlap between the regenerative STC-like PT5 and stressed PT3 cells may indicate attempted 66 

initiation of repair in PT3 cells. Transcription factor analysis (Supplementary Fig. 2g) of PT5 genes 67 

revealed potential upstream regulators directing cell differentiation and migration (SNAI2, ZNF217), 68 

and epithelial phenotype maintenance (ELF3), alongside NFE2L2 (NRF2), a key regulator of 69 

antioxidant and cytoprotective genes14. Predicted upstream regulators for PT3 (EGR1, FOS, and JUN) 70 
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are associated with oxidative stress and fibrogenesis. Predicted regulator ATF3 (protective in renal 71 

IRI15) supports potential reparative processes in this cluster (Supplementary Fig. 2g). 72 

Fourteen non-PT parenchymal cell populations were identified9 (Fig. 1f-g) including rare but 73 

important glomerular populations such as podocytes, mesangial cells, and parietal epithelial cells. 74 

We detected notable heterogeneity in CTAL and endothelial populations. Two CTAL subpopulations 75 

expressing CLDN10 and CLDN16, respectively, identify cells with differing paracellular cation-76 

resorption preferences in CLDN10-dominant (Na+) versus CLDN16-dominant tight junctions (Ca2+, 77 

Mg2+) (Supplementary Fig. 3a-e)16. Among endothelial subpopulations (Endo1-4) (Fig. 1f), we 78 

identified two populations (Endo1, Endo3) of peritubular capillary cells (PLVAP+TMEM88+DNASE1L3+) 79 

(Supplementary Fig. 3a, f, g). Endo1 expressed ESM1 – required for VEGF-related maintenance of 80 

the peritubular capillary network17, while Endo3 expressed motility and angiogenesis markers 81 

MARCKS, CLU, ACKR1, SEMA3D (Supplementary Fig. 3f). Endo2 (SOX17+SERPINE2+CLDN5+CXCL12+) 82 

represents afferent arterioles and vasa recta, exhibiting reduced KDR expression and increased 83 

expression of extracellular matrix-encoding genes (Supplementary Fig. 3g). Endo4 expresses the 84 

glomerular microvascular endothelial cell markers EDH3, SOST, and TBX3, a transcriptional regulator 85 

critical to fenestrated glomerular endothelial development (Supplementary Fig. 3f)18.  86 

 87 

Identification of sex-based transcriptomic differences in proximal tubular cells 88 

Leveraging the sex-balanced large sample size, we examined differences in gene expression in 89 

healthy human kidney between males and females. Using varimax-rotated principal component 90 

analysis, we examined individual kidney populations for separation due to donor sex, and observed 91 

a clear separation for the PT population (left panel in Fig. 2a, Supplementary Fig. 4a). Such separation 92 

was not evident in other cell populations, perhaps reflecting insufficient power with fewer cells. 93 

Consequently, subsequent analyses focused on PT cells. Using machine learning, we identified the 94 

most discriminant subset of genes in our dataset that could correctly classify cell sex. Model-1 (80 95 
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genes) correctly classified cell sex with an area under the curve (AUC) of 0.98 (training dataset), and 96 

an accuracy of 84% (validation dataset) (middle panel in Fig. 2a, Supplementary Fig. 4b,c,f). As X- 97 

and Y-linked genes potentially drive sex-biased effects19, we removed all sex chromosome-encoded 98 

genes and derived Model-2 (15 genes), which correctly classified cell sex in the training dataset (AUC 99 

0.85), but had reduced accuracy (68%) in the validation set (Supplementary Fig. 4d-f). Using an 100 

independent single-cell kidney dataset for validation20, our gene signatures accurately classified cell 101 

sex in 79% (Model-1) and 66% (Model-2) of cells (Supplementary Fig. 4f). Next, we identified genes 102 

with significant differential expression between males and females (n=75 genes, p-value <0.05, 103 

LogFC>0.25) (right panel in Fig. 2a). As our conservative analysis excluded genes expressed uniquely 104 

by one sex (e.g. Y-chromosome-encoded genes), these genes (n=12) were added for downstream 105 

analyses (Fig. 2b). Results from our three analyses were compared (Supplementary Table 1). In 106 

agreement with previous studies21,22, the majority of the sex-biased genes uncovered are located in 107 

autosomes, rather than in sex chromosomes. Several sex-biased genes are consistent with previous 108 

reports of genes upregulated in murine male (NAT8, FKBP5, KDM5D, DGKG) and female (MGST3, 109 

SLC3A1, CYP4A11, RPS29) PT cells, respectively21-23.  110 

Twenty-two genes featured in all three analyses (Fig. 2c), including 9 Y- and 3 X-chromosome 111 

encoded genes. An additional 18 genes featured in differential expression analysis (MAST+) and one 112 

other analysis (Fig. 2c). The X-chromosome genes reported are known to escape X-chromosome 113 

inactivation, explaining their higher expression in females19. Many of the autosomal-encoded genes 114 

or their family members are associated with primary sex determination (SRSF524, GATM25, 115 

GADD45A), sex-biased expression (CISH, SRSF5, ACTG1, GATM, AOX1), or sex-specific effects 116 

(SLC2A926). Intriguingly, many of the genes have established links with kidney disease, including 117 

SLC27A2 (diabetic kidney disease)27, SLC3A1 (cystinuria), and GATM28; while others are associated 118 

with hypoxia (PHGD, CA12), inflammation (PPIA), and genotoxic stress (ASS1). Metallothionein gene 119 

family members (MT1F, MT1G, MT1H), which encode cysteine-rich antioxidant proteins29, were 120 
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notably higher in females (Fig. 2a,c). Additional differentially expressed genes also relate to cysteine-121 

glutathione availability and metabolism, including SLC3A130, MGST3, and HRASLS2.  122 

We next aimed to validate sex-biased gene expression profiles using commercially-available 123 

human primary PT cells from 3 male and 3 female independent healthy donors (Supplementary 124 

Table 2, age range of donors 50-59 years old). As expected, Y-linked genes KDM5D, UTY, and EIF1AY 125 

were exclusively expressed in male PT cells (Fig. 2d). We also studied the X-linked genes EIF1AX and 126 

DDX3X. While proposed as ‘X-inactivation escapees’, the extent of X-inactivation can be highly 127 

variable across genes, tissues, and individuals31. In agreement with our scRNAseq findings, primary 128 

female PT cells displayed increased transcript levels of EIF1AX and DDX3X, compared to male cells 129 

(Fig. 2d). Female sex is linked to lower oxidative stress markers in the kidney in vivo6 but whether the 130 

sex of PT cells is a major contributor to this effect is unknown. Gene expression of MT1F, MT1G, 131 

MT1H was significantly increased in primary female PT cells, compared to male cells, as identified by 132 

scRNAseq and validated with qPCR in these independent donors (Fig. 2a,c,d). Of note, many of the 133 

transcripts exhibiting sex dimorphism in our scRNAseq analysis were absent when using matched 134 

single nucleus RNA sequencing, likely due to cytosolic or mitochondrial localization of the transcripts 135 

(Supplementary  Fig. 5) 136 

We next investigated the biological processes enriched among the genes showing sex-biased 137 

expression in PT cells. Pathway analysis (Fig. 3a, Supplementary Table 3) revealed processes related 138 

to amino acid metabolism, PT transport, and regulation of the inflammatory response as increased 139 

in females. Among the pathways increased in males, processes related to mitochondrial aerobic 140 

metabolism (‘oxidative phosphorylation’, ‘tricarboxylic acid (TCA) cycle’ and ‘electron transport 141 

chain’) predominated. Two additional metabolic processes, namely ‘generation of precursor 142 

metabolites’ and ‘nucleoside triphosphate metabolism’, were also enriched in males. To validate 143 

these observations, we studied functional differences in mitochondrial metabolism and precursor 144 

metabolite generation in male and female PT cells. We exposed primary male and female PT cells to 145 
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minimal media containing glucose and glutamine, which serve as mitochondrial substrates. We then 146 

measured their oxygen consumption rate (OCR), as a marker of mitochondrial respiration32. 147 

Supporting our pathway analysis, male PT cells showed a significant increase in OCR at baseline and 148 

after metabolic stress, compared to female PT cells (Fig. 3b). By calculating the corresponding areas 149 

under the OCR curves, we determined that male PT cells had a significantly higher basal respiration, 150 

ATP-linked respiration, maximal respiratory capacity, and reserve capacity than female cells (Fig. 3c). 151 

Together with mitochondrial respiration, glycolysis is a major mechanism of glucose-derived energy 152 

production33. Thus, a parallel increase in glycolysis and aerobic respiration is often indicative of a 153 

higher energy state34. Increased OCR in our male PT cells was linked to a significant increase in their 154 

glycolytic capacity (Supplementary Fig. 6), suggesting that they are energetically more active than 155 

female PT cells. Mitochondrial respiration results in the generation of two key energy precursors - 156 

NAD and ATP35. In line with increased aerobic metabolism, male PT cells exhibited a significant 157 

increase in the intracellular levels of NAD, β-nicotinamide mononucleotide (NAD precursor), ATP, 158 

and three additional nucleoside triphosphate metabolites - GTP, ITP, and UTP (Fig. 3d).  159 

 160 

Immune landscape of healthy human kidney  161 

Despite the relative paucity of immune cells in healthy human kidney, we examined kidney-resident 162 

immune cells to delineate their steady-state phenotypes and functions. Sub-clustering of immune 163 

cells yielded 12 clusters (Fig. 4a). T cells (CD3E+), Natural Killer (NK) cells (NKG7+CD3E-), and a small B 164 

cell population (CD79A+) mainly expressing the immunoglobulin chain IGHM were identified (Fig. 4b, 165 

Supplementary Fig. 7a). Plasma cells (CD38+XBP1+) were scarce in healthy kidney tissue 166 

(Supplementary Fig. 7b). Myeloid clusters (CD68+) (Fig. 4b) displayed enrichment of phagocyte-167 

related pathways including “receptor-mediated endocytosis”, “regulation of TLR signaling”, and 168 

“antigen processing and presentation via MHC class II” (Supplementary Fig. 7c). 169 
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 T cell cluster T1 expressed CD4+ T helper (Th) cell genes (IL7R+CD40LG+LTB +) and enrichment 170 

of “T-helper cell differentiation” and “Interleukin-7-mediated signaling” pathways (Fig. 4c, 171 

Supplementary Fig. 7c). T1 also included CCR7+ SELL+ cells, suggesting central memory T cell identity 172 

(Supplementary Fig. 8)36. T2 demonstrates expression of a cytotoxic program (GZMA, GZMB, GZMH, 173 

GNLY, PRF1) alongside NK receptor genes (KLRD1, KLRG1), consistent with effector memory T cell or 174 

NKT cell identity (Fig. 4c), T2 also contained some gamma-delta (gd) T cells, marked by co-expression 175 

of TCR chain components TRDV2 and TRDC (Fig. 4b). T3 had sparse expression of resident memory T 176 

cell (Trm) markers (CXCR6, ITGA1), while T4 was marked by high GZMK expression, a marker of 177 

circulating age-associated memory T cells (Fig. 4b, c)37. FOXP3+CD4+ regulatory T cells were notably 178 

absent from scRNAseq and flow cytometry analyses (Supplementary Fig. 9a), while being observed 179 

in kidney pathologies38,39, indicating they are likely recruited during inflammation. NK cell cluster NK1 180 

displayed a cytotoxic gene program and broad FCGR3A(CD16) expression. Flow cytometry confirmed 181 

~95% of renal NK cells are CD56dimCD16+(Supplementary Fig. 10a). Low abundance of ILC2s, ILC3s 182 

and CD56bright NK cells was suggested by a predictive classifier and confirmed by flow cytometry 183 

(Supplementary Fig. 10b, c). 184 

As we noted differences in our lymphocytes signatures to those reported using other tissue 185 

sources, we directly compared lymphocytes in living donor kidney with tumor-unaffected renal 186 

tissue. We confirmed the presence of many similar immune populations across tissue sources, yet 187 

also observed differences in abundance and transcriptional signatures. When T cell and NK cell 188 

clusters were compared between these different tissue sources, alterations in checkpoint molecule 189 

expression (i.e TIGIT, CTLA4, PDCD1) were noted, with some of these differences also being observed 190 

at the protein level. We also observed high donor heterogeneity in immune infiltration and generally 191 

a greater proportion of immune cells in nephrectomy specimens, supporting the immune niche can 192 

be altered from healthy kidney.  193 
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 Mononuclear phagocytes (MP) acquire tissue-adapted phenotypes and functions40. 194 

Definitively attributing macrophage or DC identity to myeloid populations based on gene expression 195 

alone is particularly challenging within the kidney due to a lack of consensus on lineage defining 196 

markers41 and here they are annotated more generally as five MP populations. Cluster MP1 highly 197 

expressed complement components (C1QA, C1QB, C1QC) and markers of alternative macrophage 198 

activation or anti-inflammatory function (CD163, LYVE1, STAB1, MRC1, VSIG4, FOLR2) (Fig. 4b-c, 199 

Supplementary Fig. 12). Efferocytosis receptor MERTK expression supports homeostasis or repair 200 

functions (Supplementary Fig. 12). MP3 contained cells expressing cDC2 markers (CLEC10A, CD1C), 201 

alongside a subgroup of cells co-expressing lipid-associated genes (CD9, TREM2, APOE, APOC1) (Fig. 202 

4b). Similar populations have been identified as kidney-resident macrophages and are expanded in 203 

fibrotic tissues42. MP2 and MP4 (FCGR3A+SIGLEC10+FCN1+) resemble CD16+ non-classical monocytes 204 

(Fig. 4b-c, Supplementary Fig. 12). MP4 had elevated expression of IL1B, MHC Class-II genes, and 205 

CX3CR1 while MP2 had higher expression of CXCR4 and FPR1 (Supplementary Fig. 7d). MP5 206 

expressed markers of classical CD14+ monocytes (S100A8, S100A9, CD14, VCAN), yet was 207 

predominantly from one individual with elevated hemoglobin transcripts, indicative of increased 208 

circulating cells in this particular sample (Fig. 4b, c, Supplementary Fig. 7e). Flow cytometry 209 

confirmed greater abundance of CD16+ cells in kidney relative to blood, as well as low proportions of 210 

CD14+CD16- MPs resembling MP5 and the presence of MRC1+HLA-DR+ MPs in kidney that align with 211 

MP1 (Supplementary Fig. 10e, f). 212 

 213 

Identification of a distinct resident macrophage population in healthy kidney 214 

Due to unique aspects of our study, including short ischemic times to which resident 215 

macrophages are especially sensitive43,44, and use of flushed living donor-derived kidney tissue, we 216 

examined shared and unique MP populations in healthy kidney compared to those reported 217 

previously in kidney tissue from other sources. CD68+ cells from three prior studies3,45,46 were 218 
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classified to match cluster identities of our study. MPs from these studies most resembled MP5 219 

(classical CD14+ monocyte-like), the lowest abundance MP cluster in living donor samples 220 

(Supplementary Fig. 13a). MP3 (DC-like and lipid-associated MPs) as well as MP2 and MP4 (CD16+ 221 

non-classical monocyte-like) were shared across datasets. Strikingly, few cells from these studies 222 

corresponded to MP1 (resident macrophages) – the largest MP population in living donor kidney. 223 

Next, CD68+ cells from these prior studies3,45,46 and our study were merged, identifying five myeloid 224 

cell states (CS) across all studies (Fig. 3d). Based on transcriptomic profiles, CS2 and CS4 include 225 

resident macrophages and antigen-presenting cells, CS0 is consistent with non-classical CD16+ 226 

monocytes, CS3 represents classical CD14+ monocytes and CS1 may represent a transition state, 227 

supported by trajectory analysis (Supplementary Fig. 13b, c). CS2, which was almost entirely 228 

comprised of living donor kidney cells (Supplementary Fig. 13b), is defined by expression of genes 229 

associated with alternatively activated macrophages (C1QA/B/C+RNASE1+CD163+LYVE1+FOLR2+), in 230 

contrast to all other CS which expressed markers associated with monocytes and classically activated 231 

macrophages (S100 family members, FCN1, LYZ, and pro-inflammatory SOD2) (Fig. 4d, 232 

Supplementary Fig. 13b). CS2 constitutes the predominant MP population in healthy kidney (MP1), 233 

while CS3 and CS4 abundance is limited (Fig. 4e) 234 

 235 

Kidney-resident lymphocytes are antigen-experienced with distinct gene expression 236 

Due to unexpected heterogeneity and novel transcriptional profiles in kidney lymphocyte 237 

populations (Fig. 4a-c), we directly compared lymphocyte proportions, signatures, and phenotypes 238 

to those in healthy donor blood. Increased proportions of NK (CD3-CD56+) and NKT cells (CD3+CD56+) 239 

were noted in kidney, while T cell (CD3+CD56-) abundance was unchanged (Fig. 5a). CD8+ T cells were 240 

present in higher proportions than CD4+ T cells in kidney and the presence of gdT cells was validated 241 

by flow cytometry (Fig. 5b, Supplementary Fig. 9a).  242 
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To identify specific markers and transcriptional profiles of kidney-resident lymphocytes, we 243 

integrated our dataset with public PBMC scRNA-seq datasets47,48(Supplementary Fig. 14a-j, 244 

Supplementary Table 4) and validated differences by flow cytometry. Unsurprisingly, blood 245 

lymphocytes exhibited higher expression of naïve T cell genes (CCR7, SELL, LEF1, TCF7). In contrast, 246 

the tissue residency-associated transcription factor PRDM1 (BLIMP-1)49 was upregulated in kidney 247 

lymphocytes, as was CD69, which marks Trms in several organs and prevents tissue egress via S1PR1 248 

antagonism50 (Supplementary Fig. 14j). Antigen-experienced T cells upregulate CD45RO and can 249 

become Trm51. 60-98% of kidney CD4+ and CD8+ T cells were CD45RO+ in contrast to low proportions 250 

of memory T cells in blood (Fig. 5c). NK cells with memory functions may also express CD45RO52; 251 

however, this was not observed in renal NK cells (Fig. 5c). Flow cytometry confirmed elevated CD69 252 

on T cells and NK cells, with CD69-CD103 co-expression by CD8+ T cells, consistent with a Trm 253 

phenotype (Supplementary Fig. 9c). Further characterization of memory CD4+ T helper (Th) cell 254 

subsets revealed enrichment of Th1/17 cells with reduced Th2 marker expression (Fig. 5d, 255 

Supplementary Fig. 9b).  256 

We also sought to validate Granzyme K production in kidney lymphocytes, as T4 cluster was 257 

marked by high GZMK expression. In agreement with scRNAseq findings, Granzyme K was detected 258 

in 21% of kidney T cells (Fig. 5e), with minimal co-expression with Granzyme B, indicating that 259 

Granzyme K+ T cells form a distinct subset of renal T cells (Fig. 5e). Most Granzyme K+ T cells also did 260 

not have detectable perforin expression (Fig. 5e), in line with Granzyme K produced by these T cells 261 

having extracellular functions rather than the canonical cytolytic function of granzymes dependent 262 

on intracellular delivery via perforin.  263 

Kidney lymphocytes were distinguished from circulating lymphocytes by elevated expression 264 

of chemokine receptors (CXCR4, CXCR6), integrin components (ITGB1, ITGA4), and inhibitory NK 265 

receptors (KLRD1, KLRC1) (Fig. 5f, Supplementary Fig. 14j). Flow cytometry confirmed VLA-4 integrin 266 

components a4 (CD49d) and b1 (CD29) were highly expressed in renal T cells suggesting VLA-4 267 
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contributes to their residency or function (Fig. 5g). This is consistent with expression of VLA-4 ligands 268 

fibronectin and VCAM-1 in kidney53. Kidney NK cells have higher levels of CD69 compared to 269 

circulating NK cells, while no difference in CD29 or CD49d was detected (Fig. 5h). Finally, CXCR6 270 

protein expression was elevated on kidney T and NK cells, while CXCR4 was not, despite high gene 271 

expression (Fig. 5g, h, i). Notably, renal myeloid cells expressed CXCL16, the chemokine ligand for 272 

CXCR6, indicating participation in lymphocyte recruitment, supported by significant aggregate rank 273 

scores using cell-cell communication inference (Supplementary Fig. 9d, Supplementary Tables 5, 6).  274 

Other differentially expressed genes suggest tissue-adapted function of kidney lymphocytes. 275 

AREG, encoding the growth factor amphiregulin, was highly expressed by NK1 and validated by flow 276 

cytometry (Supplementary Fig. 10d, Supplementary Fig, 11f, g), suggesting tissue-reparative 277 

functions. The prostaglandin E2 (PGE2) receptor PTGER4 and prostaglandin D synthase PTGDS were 278 

upregulated (Supplementary Fig. 14j), indicating kidney lymphocytes synthesize and recognize 279 

prostaglandins, known mediators of kidney function54. PGE2 promotes Th17 and Th1/17 cell 280 

development and function, perhaps explaining Th1/17 cell enrichment in kidney (Fig. 4d)55. 281 

Collectively these studies capture the heterogeneity of myeloid and lymphocyte populations within 282 

healthy human kidney and provide an important reference of immune cell phenotypes and functions 283 

at steady state.  284 

 285 

Discussion  286 

We present a scRNAseq atlas of healthy human kidney using biopsies from living donors. Our 287 

resolution of healthy kidney PT, endothelial, epithelial, and immune subpopulations will inform 288 

future studies addressing underling mechanisms of kidney pathologies, including chronic kidney 289 

disease, fibrosis, IRI, renal cancer and allograft rejection. 290 

 The sex-balanced design in the present study enabled novel examination of sex-based 291 

dichotomy in gene expression among human kidney cell populations. Prior studies were constrained 292 
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by small sample size and use of animal models, or instead used bulk transcriptional analysis where 293 

sex-specific signatures of individual kidney cell populations cannot be resolved19,23,57. Our study is 294 

aligned with the conclusion of scRNAseq studies in mouse by Ransick et al. 23 that PT cells are sexually 295 

dimorphic. However, the overlap in sexually dimorphic PT genes between human and mouse is small, 296 

perhaps due to distinct orthologues in mouse, small number of samples sequenced, or true biological 297 

differences between human and mouse.   298 

We report striking sex-based transcriptional differences in PT cells, suggesting higher baseline 299 

metabolic activity in males, and enhanced expression of antioxidant genes in females. We validated 300 

these sex-based observations at the level of gene expression, metabolite generation, and metabolic 301 

function in vitro. Increased oxidative stress is reported in males58, while female sex hormones 302 

augment antioxidant gene transcription59. Metallothionein genes (MT1F, MT1G, MT1H), which are 303 

potent endogenous antioxidants60, were increased in female PT cells. Metallothionein depletion 304 

exacerbates diabetic and hypoxia-induced kidney injury61,62, whereas augmented expression is 305 

protective63. Several sex-altered genes further relate to cysteine-glutathione metabolism. 306 

Glutathione is critical to cellular antioxidant defences64 and glutathione metabolism exhibits sexual 307 

dimorphism22,65. These sex-based differences in PT gene expression discovered by use of scRNAseq 308 

which can capture transcripts localized to the mitochondria and cytosol, may provide insights into 309 

the well-recognized, but previously unexplained sexual dimorphism observed in most kidney 310 

diseases. In particular, why females may be less susceptible to metabolism-related kidney injury6-311 

8,66,67.   312 

  313 

Our study provides a steady-state map of the kidney immune niche. Kidney T cells are 314 

predominantly Trms and exhibit unique phenotypes previously unreported in kidney, including 315 

Granzyme K+ T cells. The function of Granzyme K+ T cells in humans is poorly characterized, and here 316 

we show that Granzyme K+ T cells are a distinct subset separate from Granzyme B+Perforin+ T cells in 317 
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the kidney. The lack of perforin co-expression suggests that Granzyme K produced by renal T cells 318 

may have extracellular targets, such as inducing endothelial cell activation68, promoting sensitivity to 319 

LPS-induced inflammation69, and regulating angiogenesis70.  320 

Renal CD4+ memory Th cells are skewed towards a Th1/17 phenotype, which may be relevant 321 

to Th17-related kidney diseases including glomerulonephritis, lupus nephritis, and transplant 322 

rejection71,72. Renal abundance of CD56+CD16+ NK cells with high expression of amphiregulin 323 

compared to circulating NK cells suggests non-canonical tissue-adapted functions. We demonstrate 324 

an enrichment of a resident macrophage population with little-to-no presence in prior datasets from 325 

discarded deceased donor or tumor nephrectomy specimens, suggesting altered kidney 326 

environments impact this myeloid population. Indeed, sensitivity of self-renewing resident 327 

macrophage populations to extended ischemic injury and inflammation is reported44. Additional 328 

comparison of lymphocyte populations in tumor-unaffected versus living donor renal tissue revealed 329 

alterations in tumor-unaffected tissue relative to the steady-state immune niche in healthy living 330 

donor kidney. Increased B and T cell proportions, increased expression of activation and exhaustion-331 

associated molecules by lymphocytes, in addition to a trend for increased immune infiltration in 332 

nephrectomy specimens was observed (Supplementary Fig. 11), in agreement with prior reports that 333 

tumour-affected kidneys can have altered immune infiltrates5,56. Future studies exploring alterations 334 

in immune cells in tumor-unaffected kidney tissue of renal cancer patients may have implications for 335 

development of immunotherapies. 336 

Collectively, our description of healthy human kidney provides a reference point for 337 

understanding the cellular basis of kidney disease development, represents a ‘normal’ target for 338 

stem cell-derived kidney organoids, and expands our understanding of the complexity of sex-based 339 

gene expression and kidney-resident immune populations.  340 

 341 

  342 
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 554 

 555 
Figure 1. Identification and annotation of kidney parenchymal cells. (a) Different cell type proportions were 556 
captured by sequencing total kidney homogenate and CD45-enriched samples to create the total combined 557 
dataset. (b) UMAP clustering of total combined dataset with cell type annotations. (c) Graphical depiction of 558 
location of nephron cell types captured within the data. (d) UMAP plot of compartment-specific analysis of 559 
20772 proximal tubular cells, comprising 6 clusters. (e) Heat map showing the expression levels of cluster 560 
marker genes. (f) UMAP plot of compartment-specific analysis of 4436 non-proximal tubular parenchymal 561 
cells, with 14 cell populations represented, including four distinct endothelial clusters. (g) Heat map showing 562 
the expression levels of cell type marker genes across the 14 non-PT cell populations. 563 
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 564 
Figure 2. Identifying genes differentially expressed between male and female proximal tubular cells. (a) 2-565 
Dimensional plots of Varimax-rotated PCA and sPLS-DA showing separation of male and female cells, and 566 
volcano plot showing differential expression of genes between sexes from MAST analysis with sample random 567 
effect. (b) Genes expressed exclusively by all samples of one sex and none of the opposite sex, which were 568 
added to the MAST results for comparison across methods in c. (c) Venn diagram depicting genes identified 569 
through each analysis, with bubble plots highlighting genes identified by all three methods or by MAST plus 570 
one additional method. The size of the circle is proportional to absolute logFC and the colour indicates 571 
whether the gene was higher in male (orange) or female (dark purple) PT cells. (d) Differences in gene 572 
expression of KDM5D (p<0.0001, t=17.32, df=30), UTY (p<0.0001, t=18.75, df=30), EIF1AY (p<0.0001, t=18.04, 573 
df=30), EIF1AX (p<0.0001, t=9.077, df=29), DDX3X (p<0.0001, t=5.619, df=29), MT1F (p<0.0001, t=16.04, 574 
df=30), MT1G (p<0.0001, u=0), and MT1H (p<0.0001, t=6.286, df=30) were determined in primary male and 575 
female PT cells, and normalized to RPL31 (n=3 donors/sex; n=4-6 replicates/donor). Group-to-group 576 
differences were assessed using two-tailed unpaired t-tests for variables following a normal distribution, and 577 
Mann-Whitney tests for variables with a non-parametric distribution. ****p<0.0001. PT, proximal tubule. 578 
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 580 
Figure 3. Sex differences in the mitochondrial respiration and energy precursor metabolism of proximal 581 
tubular cells. (a) Depiction of selected significant (FDR<0.25) terms identified by GSEA analysis as being 582 
enriched in males and females respectively. (b) Oxygen consumption rate (OCR) was monitored to assess the 583 
mitochondrial respiration of male and female PT cells at baseline and after metabolic stress. To induce 584 
metabolic stress, the following sequence of drugs was injected: 1μM oligomycin, 0.3μM FCCP, 100mM 2-DG, 585 
1mM Rot/AA. The OCR was monitored in male and female PT cells (n=3 donors/sex; n=6-8 replicates/donor). 586 
(c) The basal OCR (p<0.0001, u=48), ATP-linked respiration (p<0.0001, t=5.223, df=42), reserve capacity 587 
(p<0.0001, t=5.018, df=42) and maximal respiratory capacity (p<0.0001, t=5.281, df=42) of male and female 588 
PT cells were calculated from the OCR curves in panel B. Group-to-group differences were assessed using two-589 
tailed unpaired T tests for variables following a normal distribution, and Mann-Whitney tests for variables 590 
with a non-parametric distribution.  (d) In a separate experiment, the intracellular levels of ATP (p<0.0001, 591 
t=5.959, df=34), NAD (p=0.029, u=93), β-nicotinamide mononucleotide (p<0.0001, t=4.575, df=34), GTP 592 
(p<0.0001, t=7.45, df=34), ITP (p=0.0001, u=46), and UTP (p=0.0001, t=4.316, df=34) were determined in male 593 
and female PT cells (n=3 donors/sex; n=6 replicates/donor). Group-to-group differences were assessed using 594 
two-tailed unpaired T tests for variables following a normal distribution, and Mann-Whitney tests for variables 595 
with a non-parametric distribution. , *p<0.05;**p<0.01;***p<0.001;****p<0.0001. PT, proximal tubule; AUC, 596 
area under the curve; OCR, oxygen consumption rate; FCCP, p-trifluoromethoxy carbonyl cyanide phenyl 597 
hydrazone; 2-DG, 2-deoxyglucose; Rot, rotenone; AA: antimycin A; df: degrees of freedom. 598 
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 603 
Figure 4. Identification and annotation of kidney immune cells. (a) Compartment-specific analysis of 2491 604 
immune cells comprising 12 clusters and (b) cell type markers used for cluster annotations (c) Heatmap of cell-605 
type defining and highly expressed genes by each cluster separated by lymphoid and myeloid lineage. (d) 606 
UMAP plot showing the living donor myeloid cell data clustered together with the same three published 607 
datasets to define five cell states across datasets and their respective cluster markers. (e) UMAP plots 608 
highlighting the distribution of dataset membership across the cell states. 609 
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 613 
Figure 5: Characterization of kidney-resident T and NK cells. (a) NK cells (p=0.0025, t=3.998, df=10) and NKT 614 
cells (p=0.0327, t=2.476, df=10) are proportionally enriched in kidney relative to blood, while T cell (p=0.379, 615 
t=0.918, df=10) abundance is unchanged. (n= 6) (b) Within the kidney T cell population, there is an enrichment 616 
of CD8+ T cells (p=0.0060, t=3.327, df=12) and a reduction in CD4+ T cell (p=0.0025, t=3.815, df=12) abundance 617 
with no change in TCRgd+ T cells (p=0.2158, u=14) relative to blood. (n=6) (c) Kidney T cells are predominantly 618 
antigen-experienced, marked by expression of CD45RO, while NK cells express minimal CD45RO. (d) Within 619 
kidney memory CD4+ T cells, there is an enrichment in the Th1/17 subpopulation (CXCR3+CCR6+) (p=0.0238, 620 
u=0) and a reduction in Th2 subpopulation (CRTh2+) (p=0.0098, t=3.513, df=7) abundance relative to blood 621 
while Th1 (CXCR3+) (p=0.3810, u=5) and Th17 (CCR6+) (p=0.5476, u=6) proportions were unchanged. (n=3) (e) 622 
T cells expressing Granzyme K do not co-express perforin, indicating that they are a distinct T cell subset from 623 
Granzyme B+Perforin+ cytotoxic T cells. (f) Violin plots showing differential gene expression of select markers 624 
in kidney T cells and NK cells relative to blood. (g) Surface levels of CD29 (p=0.0061, t=3.869, df=7), CD49d 625 
(p=0.0027, t=4.519, df=7) and CD69 (p=0.0203, t=2.756, df=10) were higher on kidney T cells relative to blood 626 
as measured by flow cytometry, while CXCR4 (p=0.5887, u=14) was not (n=6). (h) Surface levels of CD69 627 
(p=0.0427, t=2.321, df=10) was higher on kidney NK cells relative to blood while CD29 (p=0.6899, t=0.4159, 628 
df=7) , CD49d (p=0.9040, t=0.1250, df=7), and CXCR4 (p=0.9326, t=0.0868, df=10) were not. (n=6) (i) CXCR6 629 
abundance was higher at the protein level on both T cells (p=0.0086, t=3.258, df=10) and NK cells (p=p=0.0364, 630 
t=2.414, df=10) relative to blood. (j) Histograms showing no difference in CXCR4, increased CD69 and 631 
increased CXCR6 protein abundance in kidney T cells relative to blood. Group-to-group differences were 632 
assessed using two-tailed unpaired T tests for variables following a normal distribution, and Mann-Whitney 633 
tests for variables with a non-parametric distribution. , *p<0.05;**p<0.01;***p<0.001;****p<0.0001. 634 
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 635 
Materials and Methods 636 

EXPERIMENTAL MODEL AND SUBJECT DETAILS  637 

Human Specimens 638 

Kidney tissue from tumour-unaffected nephrectomy specimens was used for initial method optimization. 639 

Pre-implantation core biopsies were obtained from living donor kidneys after organ retrieval and flushing. 640 

20 live donor kidney samples (10 male donors and 10 female donors) were processed for sequencing. 641 

Additional living donor kidney samples were used in flow cytometry experiments for method optimization 642 

and immunophenotyping. All experiments were conducted with institutional ethics approval from University 643 

Health Network (CAPCR: 18-5914.0,  Living donor; CAPCR: 18-5489.0, Tumour nephrectomy). Patient 644 

demographic information for sequenced samples is summarized in Supplementary Table 7. All patients 645 

provided informed written consent for inclusion in this study.  646 

 647 

Murine Specimens 648 

Murine kidneys from C57BL/6 mice (AUP: 6156) were used for digestion optimization experiments. 649 

 650 

EXPERIMENTAL METHOD DETAILS  651 

Tissue digestion and CD45-enrichment 652 

All living donor samples used for sequencing were processed within one hour of organ retrieval. Briefly, 653 

biopsies were collected in RPMI 1640 (Gibco, cat # 11875119) on ice, and mechanically dissociated with a 654 

blade before enzymatic digestion at 37ºC with 0.1 mg/ml DNase I (STEMCELL, cat # 07470), 3300 CDA 655 

units/ml Collagenase MA (VitaCyte, cat # 001-2030) and 1430 NP units/ml BP neutral protease (VitaCyte, cat 656 

# 003-1000) for 20 minutes at 37ºC with intermittent agitation in an dissociation protocol optimized to 657 

maximize viability and to preserve representation of rare and fragile cell populations (Supplementary Fig. 658 

15). Cell suspensions were filtered through 35µm cell strainer snap-cap FACS tubes (Falcon, cat# 352235) 659 

and a plunger from a 1ml syringe was used to gently mash remaining tissue in the strainer before rinsing 660 

strainer lid with 1:1 volume of FBS (HyClone, cat # SH3039603PM) on ice. A low frequency (<1%) of immune 661 
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cells in the single cell suspension from a kidney biopsy core (Fig. 1a) necessitated immune enrichment in 10 662 

samples (5 males, 5 females) using magnetic EasySep Human CD45 depletion kit II (STEMCELL, cat# 17898), 663 

as per the manufacturer’s modified instructions for positive selection of CD45-expressing cells.  664 

 665 

Single-cell RNA sequencing 666 

Samples were prepared according to 10X Genomics Single Cell 3’ v3 Reagent kit user guide73. The pilot 667 

sequencing sample from nephrectomy tissue was sequenced using 10X Genomics Single Cell 5’ v2 Reagents. 668 

Samples were washed twice in PBS (Life Technologies) plus 0.04% BSA, and viability was determined by a 669 

hemocytometer (Thermo Fisher) via Trypan Blue staining. Following counting, the appropriate volume for 670 

each sample was calculated for a target capture of 9,000 cells. For CD45-enriched samples, all cells were 671 

sequenced. Samples that were too low in cell concentration as defined by the user guide were washed, re-672 

suspended in a reduced volume and counted again using a haemocytometer prior to loading onto the 10x 673 

single cell B chip. After droplet generation, samples were transferred onto a pre-chilled 96 well plate 674 

(Eppendorf), heat sealed and incubated overnight in a Veriti 96-well thermos cycler (Thermo Fisher). The 675 

next day, sample cDNA was recovered using Recovery Agent provided by 10x and subsequently cleaned up 676 

using a Silane DynaBead (Thermo Fisher) mix as outlined by the user guide. Purified cDNA was amplified for 677 

11 cycles before being cleaned up using SPRIselect beads (Beckman). Samples were diluted 4:1 (elution 678 

buffer (Qiagen):cDNA) and run on a Bioanalyzer (Agilent Technologies) to determine cDNA concentration. 679 

cDNA libraries were prepared as outlined by the Single Cell 3’ Reagent Kits v3 user guide with modifications 680 

to the PCR cycles based on the calculated cDNA concentration. 681 

The molarity of each library was calculated based on library size as measured bioanalyzer (Agilent 682 

Technologies) and qPCR amplification data (Roche). Samples were pooled and normalized to 1.5 nM. Library 683 

pool was denatured using 0.2N NaOH (Sigma) for 8 minutes at room temperature, neutralized with 400mM 684 

Tris-HCL (Sigma). Library pool at a final concentration of 300pM were loaded to sequence on Novaseq 6000 685 

(Illumina). Samples were sequenced with the following run parameters: Read 1-28 cycles, Read 2- 90, index 686 

1-10 cycles, index 2-10 cycles. Across samples, cells were sequenced to a target depth of 40,000 reads per 687 
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cell. Mapping and quantification were performed using the 10X Genomics CellRanger pipeline version 688 

3.1.0. Cell metric summaries for each sample in Supplementary Table 8.  689 

 690 

Single-nucleus RNA sequencing 691 

A pilot single-nucleus RNA sequencing experiment was undertaken to compare single cell versus single 692 

nuclear results from a matched sample. The biopsy was collected fresh and divided into 8 segments, evenly 693 

distributed to be processed fresh for single cell RNA sequencing as above, and the remainder was flash 694 

frozen in liquid nitrogen. The sample was later retrieved from liquid nitrogen and processed on dry ice 695 

according to the protocol in74 with a lysis buffer containing: 0.32 mM sucrose (BioShop SUC507.1), 5 mM 696 

CaCl2 (VWR, 97062-820), 3 mM MgCl2 (Thermo Fisher AM9530G), 20 mM Tris-HCl pH 7.5 (Thermo Fisher, 697 

15567027), 0.1% TritonX-100 (Sigma Aldrich T8787-50ML), 0.1 mM EDTA pH 8.0 (Thermo Fisher AM9260G), 698 

40 U/ml Protector RNAse inhibitor (Sigma Aldrich 3335399001) in UltraPure DNAse/RNAse-free water 699 

(Thermo Fisher 10977015). The nuclei were captured and sequenced using 10X Genomics Single Cell 3’ v3 700 

Reagents as above. 701 

 702 

Data quality control, clustering, differential expression, pathway analysis and cell-cell interaction 703 

inference 704 

Original study recruitment included samples from 20 donors, however, data from one male donor was poor 705 

quality and was excluded from downstream analysis. Thus, our final dataset consisted of 19 donors (10 706 

female, 9 male), with 10 CD45-enriched samples (5 female, 5 male) and 9 samples not enriched for CD45+ 707 

cells referred to as “total kidney” (5 female, 4 males). To preserve representation of rare cell types with 708 

uniquely expressed genes, we retained genes expressed in a minimum of 1 cell in the individual datasets.  709 

Ambient RNA contamination was corrected using the AutoEst function in SoupX75 (Supplementary 710 

Fig. 16). DoubletFinder76 was used to identify and remove cells most likely to be doublets, rather than 711 

implementation of a maximum gene or feature threshold. For total samples, a high doublet rate threshold of 712 

7.5% was applied (as utilized in comparable studies77), while for CD45-enriched samples, the doublet rate 713 

was calculated as 0.8% per 1000 cells captured, as per 10X Genomics estimated doublet rates73. The 714 
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individual datasets were then merged. Upon merging all of the individual datasets, the cells clustered 715 

according to cell type rather than donor/batch, and importantly, no batch correction of the data was 716 

required. 717 

Cell type-specific thresholds were set to remove low quality cells. For immune cells (clusters 718 

expressing PTPRC), all cells with >10% of UMIs mapped to mitochondrial genes were removed, along with 719 

cells that had low transcript abundance (<1000) or gene diversity (<200 unique genes). Separately, prior to 720 

removing cells with low transcripts/features, data was mined for the presence of granulocyte lineage cells 721 

such as neutrophils which are often removed by typical QC thresholds due to high RNAse activity and low 722 

gene content, however very few neutrophils (>20) were identified by marker expression in the raw data 723 

across all samples. For parenchymal cells, all cells with >40% of mitochondrial-mapped UMIs were removed;  724 

this high threshold was imposed due to known high mitochondrial content of proximal tubular cells78. 725 

Additionally, cells with low transcript abundance <1000) and low gene diversity (<750 unique genes) were 726 

removed. Cells expressing hemoglobin genes (HBB, HBA1/2) (n=160) were removed. Following normalization 727 

(SCTransform79) and feature selection (M3Drop/DANB80), principal component analysis was used for 728 

dimensionality reduction (RunPCA) and cells were clustered using the Louvain algorithm with 30 principal 729 

components (FindNeighbors and FindClusters) (Seurat81). Clusters were visualized using UMAP algorithm82.  730 

 The dataset was divided into 3 broad subgroups identified as being Immune (PTPRC+) or 731 

Parenchymal (Proximal Tubular (expressing CUBN, HNF4A, SLC34A1, LRP2, SLC17A1 ) or non-Proximal 732 

Tubular) in origin. These subgroups were re-clustered and further annotated using a curated marker list 733 

(Supplementary Table 6). Cluster defining genes were identified by Seurat’s FindMarkers81. 734 

 Ranked gene lists were generated using Wilcoxon rank sum testing from the presto package 735 

(wilcoxauc function)83 were used as input for pathway analysis using GSEA84. Reference gene sets were 736 

acquired from the Bader lab repository (http://download.baderlab.org/EM_Genesets/) – Geneset used: 737 

(Human_GOBP_AllPathways_no_GO_iea_January_13_2021_symbol.gmt.txt).  To identify pathways enriched 738 

in immune cell clusters, the ranked gene lists were generated for each cluster comparing that cluster versus 739 

all other clusters.  740 
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 Cell-cell communication was inferred from the sequencing data using LIANA which generates a 741 

consensus ranking across several methods85. The OmniPath interaction database was used86 with the 742 

following methods for inferring interactions implemented through the package: SingleCellSignalR87, iTalk88, 743 

NATMI89, Connectome90, CellChat91 and CellPhoneDB92. Results are summarized in Supplementary Table 5.  744 

Separately, SingleCellSignalR, NATMI, iTALK and Connectome methods were used to generate a consensus 745 

score using the CellPhoneDB database to infer interactions inclusive of multimeric complexes as accounted 746 

for in the CellPhoneDB interaction database, summarized in Supplementary Table 6. 747 

 748 

Identification of innate lymphoid cells 749 

A predictive tool for cell type classification (scPred93) was trained on single-cell data generated from flow 750 

cytometry-sorted ILCs94 and T cells95. Using this classifier, some cells present within our dataset were 751 

putatively identified as ILCs.  752 

 753 

Transcription factor analysis 754 

Top cluster defining genes for PT5 and PT3, respectively were uploaded to CHEA396 755 

(https://maayanlab.cloud/chea3/), and the top 10 predicted upstream regulators were identified.  756 

  757 

Comparison of kidney immune cells to PBMCs 758 

To identify differences in gene expression between T cells and NK cells from peripheral blood versus kidney, 759 

PBMC data (GSE148665)47 was integrated with the immune only kidney data using Harmony97. A second 760 

independent PBMC dataset48, was separately integrated with the kidney data for dataset-independent 761 

validation. NK cells and T cells (clusters expressing NKG7 and/or CD3E) were compared using Seurat’s 762 

FindAllMarkers function. Violin plots and volcano plots were created using Seurat and EnhancedVolcano98. 763 

 764 

Comparison of Myeloid cells 765 

To identify differences in myeloid cell populations in living kidney donors compared to publicly available 766 

human kidney single-cell RNA sequencing datasets from tumour nephrectomy or deceased donor tissue 767 
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sources, CD68-expressing clusters from Stewart & Ferdinand et al.,3 Zimmerman et al.,45 and Argüello et al.46 768 

were scored using a random forest classifier (SingleCellNet99) to identify cells from the published datasets 769 

corresponding to the five myeloid clusters in the living donor data. Separately, all myeloid cells from this 770 

data and the three published studies were integrated and clustered to identify cell states using OCAT100. The 771 

datasets were also integrated and batch corrected using Seurat v3 integration (FindIntegrationAnchors and 772 

IntegrateData functions). The cell state identities from OCAT were mapped onto the integrated object and 773 

marker genes of cell states were identified using Seurat’s FindAllMarkers function. Lineage analysis by 774 

pseudotime inference was applied to the OCAT-identified clustering of the combined myeloid populations 775 

using slingshot101, without indicating any clusters as either start or end points. 776 

 777 

Sex differences analysis 778 

Principal component analysis (PCA) followed by Varimax rotation was performed on all major parenchymal 779 

and immune populations. Varimax-rotated principal components 2:25 were serially plotted against 780 

component 1, to identify whether a separation on the basis of sex was evident. If seen, the top 100 genes 781 

(50 from each end of the gene loading list) associated with the Varimax-rotated principal component were 782 

retained for further analysis.   783 

 Sex differences in proximal tubular cells were identified using sparse partial least squares 784 

discriminant analysis (sPLS-DA) in mixOmics102. Using the tuning function (tune.splsda), the optimal values 785 

for sparsity parameters were determined to be 1 component with 80 variables (genes). To test the classifier, 786 

the data were separated into a training dataset (⅔ of cells sampled) and a query dataset (remaining ⅓). 787 

Next, our 80-gene signature was applied to an external dataset (Liao et al.20) for validation. Here, the entire 788 

living donor dataset was used as the training dataset and the external dataset was used as the query 789 

dataset. To determine the contribution of sex chromosome encoded genes to the model, all X- and Y-790 

chromosome encoded genes were removed from the datasets prior to analysis, where the tuned 791 

parameters identified the optimal model to include 1 component with 15 variables. This 15-gene signature 792 

was also validated in the Liao et al. dataset.  Hierarchical structure, zero inflation, and pseudoreplication bias 793 

in single-cell data pose specific challenges for differential expression analyses103-105. To circumvent these 794 
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limitations, we implemented a mixed effects model using MAST105,106. For differential expression testing 795 

between male and female proximal tubule cells, the dataset was filtered to include only genes which were 796 

expressed in each sample (9792 genes). Differential expression testing was conducted using MAST with a 797 

random effect for sample (zlm~ cellular detection rate + donor sex + (1| sampleID)). As this approach 798 

excluded genes expressed exclusively by one sex (e.g. Y chromosome encoded genes, and XIST), such genes 799 

were added to MAST differentially expressed genes (MAST+) for comparison with the results of the other 800 

methods (Varimax, sPLS-DA). 801 

All significant genes returned using MAST analysis were subjected to enrichment analysis (GSEA84,107) 802 

using reference gene sets acquired from the Bader lab repository: 803 

(http://download.baderlab.org/EM_Genesets/); Geneset used: 804 

(Human_GOBP_AllPathways_no_GO_iea_January_13_2021_symbol.gmt.txt).   805 

 806 

Cryopreservation 807 

Cells from additional (non-sequenced) fresh living donor biopsies or cells remaining following 10X cell 808 

capture for sequencing were resuspended in 90% human serum (Sigma, cat# H4522) and 10% DMSO for 809 

cryopreservation and cooled to -80ºC in a Mr.Frosty (Sigma, cat #C1562), then transferred to liquid nitrogen 810 

for long term storage. 811 

 812 

Flow Cytometry 813 

After fresh tissue digestion, cells were washed in PBS + 2% FCS before staining. Cryopreserved cells were 814 

thawed and washed twice in PBS + 2% FCS. Cells were incubated at 4ºC for 15 minutes with an Fc receptor 815 

blocker (BioLegend TruStain FcX, cat # 422302) according to manufacturer instructions before cocktails of 816 

surface antibodies were added for 30 minutes at 4ºC. If intracellular targets/transcription factors were 817 

included in the panel, cells were resuspended in FOXP3 transcription factor fix perm buffer (eBio, cat # 00-818 

5523-00) and stained with intracellular antibodies in 1X permeabilization buffer (eBio, cat # 00-8333-56). If 819 

no intracellular targets were included in the staining panel, cells were fixed in 2% PFA (Thermo Scientific, cat 820 

# J19443) after surface staining. 821 
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Cells were stained with the following surface antibodies: Anti-human CD8a FITC (1:100, clone RPA-822 

T8, BioLegend, cat # 301050), Anti-human TCRgd FITC (1:100, clone B1, BioLegend, cat # 331208), Anti-823 

human CD3 FITC (1:100, clone UCHT1, BioLegend, cat # 300440), Anti-human CD8a PerCP (1:50, clone RPA-824 

T8, BioLegend, cat # 301030), Anti-human CXCR6 PerCP Cy5.5 (1:50, clone K041E5, BioLegend, cat # 825 

356010), Anti-human CCR8 PE (1:100, clone L263G8, BioLegend, cat # 360604), Anti-human CD127 PE (1:50, 826 

clone hIL-7R-M21, BD Biosciences, cat # 557938), Anti-human CD15 PE (1:100, clone W6D3, BD Biosciences, 827 

cat # 562371), Anti-human CD163 PE (1:50, clone GHI/61, BioLegend, cat # 333606), Anti-human CD49d PE 828 

Dazzle 594 (1:100, clone 9F10, BioLegend, cat # 304325), Anti-human CRTh2 PE Dazzle 594 (1:50, clone 829 

BM16, BioLegend, cat # 350126), Anti-human CD31 PE Dazzle 594 (1:100, clone WM59, BioLegend, cat # 830 

303130), Anti-human CD16 PE Dazzle 594 (1:100, clone 3G8, BioLegend, cat # 302054), Anti-human CD45 PE-831 

CF594 (1:100, clone HI30, BD Biosciences, cat # 562279), Anti-human CD29 PE Cy7 (1:100, clone TS2/16, 832 

BioLegend, cat # 303025), Anti-human CD45RO PE Cy7 (1:50, clone UCHL1, BD Biosciences, cat # 560608), 833 

Anti-human MerTK PE Cy7 (1:50, clone 590H11G1E3, BioLegend, cat # 367610), Anti-human TIGIT PE Cy 7 834 

(1:50, clone MBSA43, Invitrogen, cat # 25-9500-42), Anti-human CD94 APC (1:100, clone HP-3D9, 835 

eBioscience, cat # 17-5094-42), Anti-human CCR6 APC (1:25, clone G034E3, BioLegend, cat # 353416), Anti-836 

human CD206 APC (1:50, clone 15-2, BioLegend, cat # 321110), Anti-human CD4 Alexa700 (1:50, clone RPA-837 

T4, eBioscience, cat # 56-0049-42), Anti-human CD127 Alexa700 (1:50, clone eBioRDR5, eBioscience, cat # 838 

56-1278-42), Anti-human CXCR4 APC Cy7 (1:50, clone 12G5, BioLegend, cat # 306528), Anti-human CTLA4 839 

APC Cy7 (1:25, clone BNI3, BioLegend, cat # 369634),  Anti-human CD56 APC Cy7 (1:50, clone HCD56, 840 

BioLegend, cat # 318332), Anti-human CD45 APC Cy7 (1:100, clone HI30, BioLegend, cat # 304014), Anti-841 

human CD14 APC eF780 (1:100, clone 61D3, eBioscience, cat # 47-0149-42), Anti-human CXCR3 BV421 (1:50, 842 

clone G025H7, BioLegend, cat # 353716), Anti-human CD13 BV421 (1:50, clone WM15, BioLegend, cat # 843 

301716), Anti-human TCRgd BV510 (1:100, clone B1, BioLegend, cat # 331220), Anti-human TCRab BV510 844 

(1:100, clone IP26, BioLegend, cat # 306734), Anti-human CD5 BV510 (1:100, clone L17F12, BioLegend, cat # 845 

364018), Anti-human FcER1 BV510 (1:100, clone AER-37, BioLegend, cat # 334626), Anti-human CD303 846 

BV510 (1:100, clone 201A, BioLegend, cat # 354232), Anti-human CD123 BV510 (1:100, clone 6H6, 847 

BioLegend, cat # 306022), Anti-human CD34 BV510 (1:100, clone 581, BioLegend, cat #343528), Anti-human 848 
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CD20 BV510 (1:100, clone 2H7, BioLegend, cat # 302340), Anti-human CD3 BV510 (1:100, clone OKT3, 849 

BioLegend, cat # 317332), Anti-human CD14 BV510 (1:100, clone M5E2, BioLegend, cat # 301842), Anti-850 

human CD19 BV510 (1:100, clone HIB19, BioLegend, cat # 302242), Anti-human CD4 BV510 (1:100, clone 851 

RPA-T4, BioLegend, cat # 300546), Anti-human CD56 BV605 (1:50, clone HCD56, BioLegend, cat # 318334), 852 

Anti-human CD69 BV650 (1:100, clone FN50, BioLegend, cat # 310934), Anti-human CD8a BV650 (1:50, clone 853 

RPA-T8, BioLegend, cat # 301042), Anti-human CD326 BV650 (1:100, clone 9C4, BioLegend, cat # 324226), 854 

Anti-human CD107a BV750 (1:50, clone H4A3, BioLegend, cat # 328638), Anti-human CD103 BV711 (1:100, 855 

clone Ber-ACT8, BioLegend, cat # 350222), Anti-human CD10 BV711 (1:100, clone HI10a, BioLegend, cat # 856 

312226), Anti-human CD45 BV711 (1:100, clone HI30, BioLegend, cat # 304050), Anti-human CD3 BV785 857 

(1:100, clone OKT3, BioLegend, cat # 317330), Anti-human HLA-DR BV785 (1:50, clone L243, BioLegend, cat # 858 

307642), Anti-human PD-1 BV785 (1:50, clone EH12.2H7, BioLegend, cat # 329930), Anti-human CD45 859 

BUV395 (1:100, clone HI30, BD Biosciences, cat # 563792), Anti-human CD16 BUV395 (1:100, clone 3G8, BD 860 

Biosciences, cat # 563785), Anti-human CD3 BUV395 (1:100, clone UCHT1, BD Biosciences, cat # 563546), 861 

Anti-human CD69 BUV496 (1:50, clone FN50, BD Biosciences, cat # 750214), Anti-human CD16 BUV737 862 

(1:100, clone 3G8, BD Biosciences, cat # 564434). The following antibodies were used for intracellular 863 

staining: Anti-human TBET FITC (1:50, clone 4B10, BioLegend, cat # 644812), Anti-human Granzyme B FITC 864 

(1:100, clone QA16A02, BioLegend, cat # 372206), Anti-human Granzyme K PE (1:25, clone GM26E7, 865 

BioLegend, cat # 370512), Anti-human FOXP3 PE CF594 (1:25, clone 236A/E7, BD Biosciences, cat # 563955), 866 

Anti-human GATA3 PE CF594 (1:25, clone L50-823, BD Bioscience, cat # 563510), Anti-human Amphiregulin 867 

PE Cy 7 (1:25, clone AREG559, Invitrogen, cat # 25-5370-42), Anti-mouse Nur77 APC (1:25, clone REA704, 868 

Miltenyi, cat # 130-111-231), Anti-human EOMES APC eF780 (1:25, clone WD1928, eBioscience, cat #47-869 

4877-42), Anti-human RORgT BV650 (1:50, clone Q21-559, BD Biosciences, cat # 563424), Anti-human 870 

Perforin eF450 (1:100, clone dG9, Invitrogen, cat # 48-9994-42). Cells were analyzed on a BD LSR Fortessa 871 

flow cytometer. Data were plotted using FlowJo v10.7.1 (TreeStar) and Prism (Graphpad, v9). 872 

 873 

PT cell culture 874 
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Commercially available human primary PTs from 6 donors (3 males and 3 females, Lonza Walkersville Inc) 875 

were expanded at passage 4, and studied at passage 5. The main donor characteristics are summarized in 876 

Supplementary Table 2. Cells were grown in custom-made Dulbecco’s modified Eagle’s medium (DMEM) 877 

containing 5.55mM D-glucose, 4mM L-glutamine, and 1mM sodium pyruvate, and supplemented with 878 

10ng/mL human EGF, 0.05M hydrocortisone, 1x of Transferrin/Insulin/Selenium (Invitrogen), 10% v/v dialyzed 879 

fetal bovine serum (FBS), 50g/mL streptomycin, and 50units/mL penicillin, as previously108,109. Cells were 880 

serum-starved for 24h prior to collection for gene expression, metabolite measurements, and assessment of 881 

metabolic function. For gene expression experiments, cells were washed with PBS, harvested with trypsin, 882 

and snap-frozen at -80°C until further analysis.  883 

 884 

Assessment of metabolic function in human primary PT cells 885 

Mitochondrial respiration was assessed in male and female PTECs by measuring their oxygen consumption 886 

rate (OCR) in a Seahorse XFe96 analyzer (Agilent). Glycolysis was also assessed by monitoring the extracellular 887 

acidification rate (ECAR). Upon 80-90% confluence, cells were detached with 0.25% trypsin (5min, 37°C), 888 

counted and seeded in a Seahorse XFe96 Cell Culture Microplate at a density of 15,000 cells/well in 100µL of 889 

DMEM complete media. After adhering for 6h, PT cells were exposed to serum starvation conditions for 24h.  890 

One hour prior to the metabolic function assay, cells were washed with phenol-free basal media (Agilent) and 891 

exposed to 150µL of assay media, which included 2mM glutamine and 5.55mM glucose. During the assay, OCR 892 

and ECAR were recorded at baseline and after metabolic stress. To induce metabolic stress, 25µL of 893 

oligomycin, p-trifluoromethoxy carbonyl cyanide phenyl hydrazone (FCCP), 2-deoxyglucose (2-DG), and 894 

Rotenone + Antimycin A (Rot+AA) were sequentially injected into the microplate wells.  After optimization, 895 

the following working concentrations were stablished for each drug: oligomycin: 1µM; FCCP: 0.3µM, 2-DG: 896 

100mM; Rot: 1µM; AA: 1µM. Basal respiration, ATP-linked respiration, maximal respiratory capacity, and 897 

reserve capacity were assessed by calculating the area under the curve (AUC) from OCR curves (Fig. 3b, c ). 898 

Basal glycolysis, maximal glycolytic capacity, and glycolytic reserve were determined by calculating the AUC 899 

from ECAR curves (Supplementary Fig. 6).  900 

 901 
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Cell metabolite measurements 902 

Sample preparation 903 

Male and female primary PTs were grown on 6-well plates and subjected to starvation as described above. 904 

The levels of intracellular metabolites were then determined using liquid chromatography-mass 905 

spectrometry. After collecting the supernatant, 1mL of extraction solvent (80:20 mixture of methanol:water) 906 

was added into each well, in order to extract intracellular metabolites. Plates were placed on dry ice. The 907 

adherent material was then triturated, collected into Eppendorf tubes, and stored at -80oC. Cell lysate 908 

collection was followed by 3 freeze-thawing cycles in dry ice (to shift sample temperature between -80oC and 909 

-20oC). The insoluble material from each sample was then precipitated by centrifugation at full speed for 5min. 910 

The resulting pellet was dried at room temperature and used for total RNA quantification using the Quant-iT 911 

Ribogreen assay (Invitrogen). In turn, the metabolite extract was dried under high purity nitrogen gas 912 

(turbovap) and resuspended with appropriate volume of buffer (0.5µL of LC-MS grade water to 1µg of RNA) 913 

based on total RNA levels. The appropriate volumes of heavy-labelled (13C/15N) reference metabolites were 914 

spiked into each reconstituted sample for quantitation. The heavy-labelled metabolites used as internal 915 

reference standards were acquired in as a metabolite extract from yeast that had been 99% labelled with 13C-916 

glucose and 15N-ammonia. To determine background metabolite signals, a mock plate without cells and equal 917 

volume of media was processed in parallel to the study plates.  918 

 919 

Liquid chromatography-mass spectrometry (LC-MS) 920 

Cellular metabolites were measured by injecting 2µL of sample in full scan MS1 mode using an Agilent 6550 921 

qToF mass spectrometer coupled to an Agilent 1290 binary pump UPLC system. Most polar metabolite 922 

analytes presented here were measured using an Agilent ZORBAX ExtendC18 1.8 µm, 2.1 mm X 150 mm 923 

reverse phase chromatography using tributylamine as an ion paring agent as previously described110. The 924 

Agilent 6550 qToF was fitted with a dual AJS ESI  source and an iFunnel with a gas temperature set to 150oC 925 

at 14L/min and 45psig. Sheath gas  temperature was set to 325oC at 12L/min. Capillary and nozzle voltages 926 

were set to 2000V. Funnel conditions were changed from default to -30V DC, high pressure funnel drop -100V 927 

and RF voltage of 110V, low pressure funnel drop -50V and RF voltage of 60V. Metabolite annotation in full 928 
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scan data was achieved by matching exact mass and retention time to an in-house database. The retention 929 

time and exact mass database were prepared by analyzing a collection of neat standards using the 930 

chromatographic method described above and confirming retention times by MS/MS fragmentation of neat 931 

standards.  932 

 933 

Metabolite data analysis 934 

Metabolite raw data was extracted directly from .d folders and integrated in profile mode using an R-based 935 

software package developed by the Rosebrock Lab; ChromXtractorPro (personal correspondence K. Laverty 936 

and A. Rosebrock, adam.rosebrock@stonybrook.edu). The metabolites whose intensity in all the study 937 

samples fell at or below their intensity in the blank (consisting of resuspension buffer only) were excluded 938 

from further analyses. Next, the integrated light (L) intensity of each metabolite was normalized to the 939 

intensity of its internal heavy (H) standard. The L/H ratio minimized the potential stochastic variation in the 940 

signal produced by the instrument due to changes in humidity and/or temperature, enabling the relative 941 

quantitation and  942 

comparative analysis of each metabolite. The analysis enabled the detection of 158 intracellular 943 

metabolites111. Data corresponding to the intracellular levels of NAD, β-nicotinamide mononucleotide, ATP, 944 

GTP, ITP, UTP were interrogated.  945 

 946 

Gene expression validation studies 947 

RNA was extracted from the cell pellets of human primary male and female PT cells using the RNAeasy Mini 948 

Kit (Qiagen). After quantifying RNA concentration in a Nanodrop instrument (Thermo), 300-700ng of RNA 949 

were retrotranscribed to cDNA using the High-Capacity cDNA Reverse Transcription Kit (Applied Biosystems). 950 

Male  and female PTs had been grown and serum-starved as above. In these cells, gene levels of KDM5D, UTY, 951 

EIF1AY, EIF1AX, DDX3X, MT1F, MT1G, and MT1H were measured by real-time quantitative PCR using a Power 952 

SYBR® Green PCR Master Mix reagent (Applied Biosystems) and normalized to RPL31. The fluorescent signal 953 

was measured in a LightCycler® 480 Instrument II (Roche). All primer sequences employed in this study are 954 

summarized in Supplementary Table 10. 955 

.CC-BY-NC-ND 4.0 International licenseperpetuity. It is made available under a
preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in 

The copyright holder for thisthis version posted December 10, 2021. ; https://doi.org/10.1101/2021.12.09.471943doi: bioRxiv preprint 

https://doi.org/10.1101/2021.12.09.471943
http://creativecommons.org/licenses/by-nc-nd/4.0/


 40 

 956 

Quantification and statistical analysis 957 

Statistical tests were conducted within R and using GraphPad Prism 9 software. For all comparisons, normality 958 

was determined using a Shapiro-Wilk test. Group-to-group differences were assessed using two-tailed 959 

unpaired T tests for variables following a normal distribution, and Mann-Whitney tests for variables with a 960 

non-parametric distribution. All p values below 0.05 were considered significant. Significance level for each 961 

test is indicated in the figures. For each experiment, n is reported in the figure legends and represents the 962 

number of samples. 963 

 964 

Data availability 965 

Count matrices from our complete data object are being submitted to NCBI GEO, and will be made publicly 966 

available upon publication. Additional information and data are available from the authors upon reasonable 967 

request, and in line with University Health Network (UHN) and UHN Research Ethics Board policies.  968 

 969 

Code availability 970 

We are preparing a Github repository for the custom scripts generated for data analysis.  971 

 972 

Methods References 973 

73.974 
 https://assets.ctfassets.net/an68im79xiti/4tjk4KvXzTWgTs8f3tvUjq/2259891d68c53693e75975 
3e1b45e42de2d/CG000183_ChromiumSingleCell3__v3_UG_Rev_C.pdf. 2021. (Accessed 976 
03/05/2021, at 977 
https://assets.ctfassets.net/an68im79xiti/4tjk4KvXzTWgTs8f3tvUjq/2259891d68c53693e753e1b45978 
e42de2d/CG000183_ChromiumSingleCell3__v3_UG_Rev_C.pdf.) 979 
74. Slyper M, Porter CBM, Ashenberg O, et al. A single-cell and single-nucleus RNA-Seq toolbox 980 
for fresh and frozen human tumors. Nat Med 2020;26:792-802. 981 
75. Young MD, Behjati S. SoupX removes ambient RNA contamination from droplet-based 982 
single-cell RNA sequencing data. Gigascience 2020;9. 983 
76. McGinnis CS, Murrow LM, Gartner ZJ. DoubletFinder: Doublet Detection in Single-Cell RNA 984 
Sequencing Data Using Artificial Nearest Neighbors. Cell Syst 2019;8:329-37 e4. 985 
77. Park J, Shrestha R, Qiu C, et al. Single-cell transcriptomics of the mouse kidney reveals 986 
potential cellular targets of kidney disease. Science 2018;360:758-63. 987 
78. Pagliarini DJ, Calvo SE, Chang B, et al. A mitochondrial protein compendium elucidates 988 
complex I disease biology. Cell 2008;134:112-23. 989 

.CC-BY-NC-ND 4.0 International licenseperpetuity. It is made available under a
preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in 

The copyright holder for thisthis version posted December 10, 2021. ; https://doi.org/10.1101/2021.12.09.471943doi: bioRxiv preprint 

https://doi.org/10.1101/2021.12.09.471943
http://creativecommons.org/licenses/by-nc-nd/4.0/


 41 

79. Hafemeister C, Satija R. Normalization and variance stabilization of single-cell RNA-seq data 990 
using regularized negative binomial regression. Genome Biol 2019;20:296. 991 
80. Andrews TS, Hemberg M. M3Drop: dropout-based feature selection for scRNASeq. 992 
Bioinformatics 2019;35:2865-7. 993 
81. Stuart T, Butler A, Hoffman P, et al. Comprehensive Integration of Single-Cell Data. Cell 994 
2019;177:1888-902 e21. 995 
82. Becht E, McInnes L, Healy J, et al. Dimensionality reduction for visualizing single-cell data 996 
using UMAP. Nat Biotechnol 2018. 997 
83. . (Accessed 03/05/2021, at https://github.com/immunogenomics/presto.) 998 
84. Subramanian A, Tamayo P, Mootha VK, et al. Gene set enrichment analysis: a knowledge-999 
based approach for interpreting genome-wide expression profiles. Proc Natl Acad Sci U S A 1000 
2005;102:15545-50. 1001 
85. Daniel Dimitrov DT, Charlotte Boys, James Nagai, Ricardo Ramirez Flores, Hyojin Kim, Bence 1002 
Szalai, Ivan Costa, Aurelien Dugourd, Alberto Valdeolivas, Julio Saez Rodriguez. Cell-cell 1003 
Communication Inference from Single-cell RNA-Seq Data: a Comparison of Methods and Resources. 1004 
Research Square 2021. 1005 
86. Turei D, Valdeolivas A, Gul L, et al. Integrated intra- and intercellular signaling knowledge for 1006 
multicellular omics analysis. Mol Syst Biol 2021;17:e9923. 1007 
87. Cabello-Aguilar S, Alame M, Kon-Sun-Tack F, Fau C, Lacroix M, Colinge J. SingleCellSignalR: 1008 
inference of intercellular networks from single-cell transcriptomics. Nucleic Acids Res 2020;48:e55. 1009 
88. Wang Y WR, Zhang S,  Song S, Jiang C,  Han G, Wang M, Ajani J, Futreal A, Wang L. iTALK: an 1010 
R Package to Characterize and Illustrate Intercellular Communication. BioRxiv 2019. 1011 
89. Hou R, Denisenko E, Ong HT, Ramilowski JA, Forrest ARR. Predicting cell-to-cell 1012 
communication networks using NATMI. Nat Commun 2020;11:5011. 1013 
90. Raredon MSB, Junchen Yang, James Garritano, Meng Wang, Dan Kushnir, Jonas Christian 1014 
Schupp, Taylor S. Adams, Allison M. Greaney, Katherine L. Leiby, Naftali Kaminski, Yuval Kluger, 1015 
Andre Levchenko, Laura E. Niklason. Connectome: computation and visualization of cell-cell 1016 
signaling topologies in single-cell systems data. bioRxiv 2021. 1017 
91. Jin S, Guerrero-Juarez CF, Zhang L, et al. Inference and analysis of cell-cell communication 1018 
using CellChat. Nat Commun 2021;12:1088. 1019 
92. Efremova M, Vento-Tormo M, Teichmann SA, Vento-Tormo R. CellPhoneDB: inferring cell-1020 
cell communication from combined expression of multi-subunit ligand-receptor complexes. Nat 1021 
Protoc 2020;15:1484-506. 1022 
93. Alquicira-Hernandez J, Sathe A, Ji HP, Nguyen Q, Powell JE. scPred: accurate supervised 1023 
method for cell-type classification from single-cell RNA-seq data. Genome Biol 2019;20:264. 1024 
94. Bernink JH, Ohne Y, Teunissen MBM, et al. c-Kit-positive ILC2s exhibit an ILC3-like signature 1025 
that may contribute to IL-17-mediated pathologies. Nat Immunol 2019;20:992-1003. 1026 
95. https://support.10xgenomics.com/single-cell-gene-expression/datasets/2.1.0/t_4k. 2017. at 1027 
https://support.10xgenomics.com/single-cell-gene-expression/datasets/2.1.0/t_4k.) 1028 
96. Keenan AB, Torre D, Lachmann A, et al. ChEA3: transcription factor enrichment analysis by 1029 
orthogonal omics integration. Nucleic Acids Res 2019;47:W212-W24. 1030 
97. Korsunsky I, Millard N, Fan J, et al. Fast, sensitive and accurate integration of single-cell data 1031 
with Harmony. Nat Methods 2019;16:1289-96. 1032 
98. Blighe K RS, Lewis M EnhancedVolcano: Publication-ready volcano plots with enhanced 1033 
colouring and labeling. https://github.com/kevinblighe/EnhancedVolcano.2020. 1034 
99. Tan Y, Cahan P. SingleCellNet: A Computational Tool to Classify Single Cell RNA-Seq Data 1035 
Across Platforms and Across Species. Cell Syst 2019;9:207-13 e2. 1036 
100. Wang C, Zhang L, Wang B. One Cell At a Time: A Unified Framework to Integrate and 1037 
Analyze Single-cell RNA-seq Data. bioRxiv 2021:2021.05.12.443814. 1038 

.CC-BY-NC-ND 4.0 International licenseperpetuity. It is made available under a
preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in 

The copyright holder for thisthis version posted December 10, 2021. ; https://doi.org/10.1101/2021.12.09.471943doi: bioRxiv preprint 

https://doi.org/10.1101/2021.12.09.471943
http://creativecommons.org/licenses/by-nc-nd/4.0/


 42 

101.  Street K, Risso D, Fletcher RB, et al. Slingshot: cell lineage and pseudotime inference for 1039 
single-cell transcriptomics. BMC Genomics 2018;19:477. 1040 
102. Rohart F, Gautier B, Singh A, Le Cao KA. mixOmics: An R package for 'omics feature selection 1041 
and multiple data integration. PLoS Comput Biol 2017;13:e1005752. 1042 
103. Soneson C, Robinson MD. Bias, robustness and scalability in single-cell differential 1043 
expression analysis. Nat Methods 2018;15:255-61. 1044 
104. Wang T, Li B, Nelson CE, Nabavi S. Comparative analysis of differential gene expression 1045 
analysis tools for single-cell RNA sequencing data. BMC Bioinformatics 2019;20:40. 1046 
105. Zimmerman KD, Espeland MA, Langefeld CD. A practical solution to pseudoreplication bias 1047 
in single-cell studies. Nat Commun 2021;12:738. 1048 
106. Finak G, McDavid A, Yajima M, et al. MAST: a flexible statistical framework for assessing 1049 
transcriptional changes and characterizing heterogeneity in single-cell RNA sequencing data. 1050 
Genome Biol 2015;16:278. 1051 
107. Reimand J, Isserlin R, Voisin V, et al. Pathway enrichment analysis and visualization of omics 1052 
data using g:Profiler, GSEA, Cytoscape and EnrichmentMap. Nat Protoc 2019;14:482-517. 1053 
108. Konvalinka A, Zhou J, Dimitromanolakis A, et al. Determination of an angiotensin II-1054 
regulated proteome in primary human kidney cells by stable isotope labeling of amino acids in cell 1055 
culture (SILAC). J Biol Chem 2013;288:24834-47. 1056 
109. Clotet-Freixas S, McEvoy CM, Batruch I, et al. Extracellular Matrix Injury of Kidney Allografts 1057 
in Antibody-Mediated Rejection: A Proteomics Study. J Am Soc Nephrol 2020;31:2705-24. 1058 
110. Wan LC, Mao DY, Neculai D, et al. Reconstitution and characterization of eukaryotic N6-1059 
threonylcarbamoylation of tRNA using a minimal enzyme system. Nucleic Acids Res 2013;41:6332-1060 
46. 1061 
111. Clotet-Freixas S.; Zaslaver, O.;  Pastrello, C.; Kotlyar, M.; McEvoy, C.M.; Farkona, S.; Saha, A.; 1062 
Boshart, A.; Chan, S.;  Riera, M.;  Soler, M.J.; Isenbrandt, A.;  Lamontagne-Proulx, J. ; Pradeloux, S.; 1063 
Coulombe, K.; Soulet, D.; Dart, A.B.; Wicklow,B.; McGavock, J.M. ;Blydt-Hansen, T.D.;  Jurisica, I.;  1064 
Woo, M. ; Scholey, J.W. ; Röst, H.; Konvalinka, A. Cell Sex and Sex Hormones Modulate Kidney 1065 
Glucose and Glutamine Metabolism in Health and Diabetes. BioRxiv 2021. 1066 
 1067 

 1068 

 1069 

 1070 

 1071 
  1072 

.CC-BY-NC-ND 4.0 International licenseperpetuity. It is made available under a
preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in 

The copyright holder for thisthis version posted December 10, 2021. ; https://doi.org/10.1101/2021.12.09.471943doi: bioRxiv preprint 

https://doi.org/10.1101/2021.12.09.471943
http://creativecommons.org/licenses/by-nc-nd/4.0/


 43 

 1073 

 1074 

 1075 

Supplementary Data 1076 

 1077 
Authors: Caitriona M. McEvoy†1,2,3, Julia M. Murphy†1,2,4, Lin Zhang5, Sergi Clotet-Freixas^1,2, Jessica 1078 
A. Mathews^1,2, James An1,2,4, Mehran Karimzadeh6, Delaram Pouyabahar7,8, Shenghui Su1,2, Olga 1079 
Zaslaver7,8, Hannes Röst7,8, Madhurangi Arambewela1,2, Lewis Y. Liu1,2,4, Sally Zhang12, Keith A. 1080 
Lawson12, Antonio Finelli12, Bo Wang6,9,10,11, Sonya A. MacParland1,2,4,10, Gary D. Bader7,8,12,13, Ana 1081 
Konvalinka*,1,2,3,10,14, Sarah Q. Crome*,1,2,4 1082 

 1083 
Affiliations: 1084 
1Toronto General Hospital Research Institute, University Health Network; Toronto, ON, Canada. 1085 
2Ajmera Transplant Centre, University Health Network; Toronto, ON, Canada. 1086 
3Department of Medicine, Division of Nephrology, University Health Network; Toronto, ON, Canada. 1087 
4Department of Immunology, University of Toronto; Toronto, ON, Canada. 1088 
5Department of Statistical Sciences, University of Toronto; Toronto, ON, Canada. 1089 
6Vector Institute; Toronto, ON, Canada. 1090 
7Department of Molecular Genetics, University of Toronto; Toronto, ON, Canada. 1091 
8The Donnelly Centre, University of Toronto; Toronto, ON, Canada. 1092 
9Department of Computer Science, University of Toronto; Toronto, ON, Canada. 1093 
10Department of Laboratory Medicine and Pathobiology, University of Toronto; Toronto, ON, 1094 
Canada. 1095 
11Peter Munk Cardiac Centre, University Health Network; Toronto, ON, Canada. 1096 
12Princess Margaret Cancer Centre, University Health Network; Toronto, ON, Canada 1097 
13The Lunenfeld-Tanenbaum Research Institute, Mount Sinai Hospital;Toronto, ON, Canada 1098 
14Institute of Medical Science, University of Toronto; Toronto, ON, Canada. 1099 
 1100 
† co-first authorship 1101 
* co-corresponding authorship 1102 
^ equal contribution 1103 
 1104 
*co-corresponding authors: 1105 
Sarah Q. Crome (sarah.crome@utoronto.ca) 1106 
Ana Konvalinka (Ana.Konvalinka@uhn.ca) 1107 
  1108 

.CC-BY-NC-ND 4.0 International licenseperpetuity. It is made available under a
preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in 

The copyright holder for thisthis version posted December 10, 2021. ; https://doi.org/10.1101/2021.12.09.471943doi: bioRxiv preprint 

https://doi.org/10.1101/2021.12.09.471943
http://creativecommons.org/licenses/by-nc-nd/4.0/


 44 

Supplementary Tables 1109 
A total of 10 supplementary tables are prepared for this manuscript. As some of the individual 1110 
tables are large and not in a format that can be easily incorporated into the manuscript, they are 1111 
not included with the pre-print PDF. If of interest, please reach out to corresponding authors to 1112 
discuss.  1113 
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which primary proximal tubular epithelial cells were isolated for metabolic studies. 1122 
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Supplementary Table 3. ST3-GSEA significant results. Summary of significant gene set enrichment 1124 
analysis terms between male and female proximal tubular cells. 1125 
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Supplementary Table 4. ST4- DEGs LD NK & T cells Vs PBMC. Results of differential gene expression 1127 
analysis using Seurat comparing kidney NK and T lymphocytes to circulating lymphocytes from two 1128 
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 1152 
Supplementary Figure 1: Additional proportion plots of total kidney dataset.(a) Clustering of total combined 1153 
dataset of 27677 cells results in 23 clusters (b) Individual sample contribution to clustering, demonstrating that 1154 
clusters are comprised of cells captured from multiple donors and in most cases all 19 samples contribute to 1155 
each cluster. (c) Cell cycle assignment of clusters, with no exceptional variability in cell cycle state across 1156 
clusters. (d) Distribution of sample preparation method (total homogenate versus CD45-positive magnetic bead 1157 
enrichment) across clusters. (e) Distribution of donor sex across clusters. 1158 
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 1159 
Supplementary Figure 2. Heterogeneity within Proximal Tubular (PT) dataset. (a) Subclustering of PT 1160 
dataset yielded 6 clusters; PT6 is predominantly composed of cells from one donor: “Total6”. (b) Distribution of 1161 
sample preparation method, sex, and donor identity across the PT dataset; PT4 is composed of cells from 1162 
CD45-enriched samples. (c) Stacked violin plots showing enrichment of dissociation stress markers in PT3. (d-1163 
f) Stacked violin plots showing markers of the ‘scattered tubular cell’ and ‘failed PT repair’ population enriched 1164 
in PT5(d), PT3(e), and both PT3 and PT5(f). (g) Transcription factor analysis using CHEA3, which illustrates 1165 
the top 10 transcription factors predicted to regulate PT3, and separately, PT5 genes. 1166 
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 1168 
Supplementary Figure 3. Heterogeneity in CTAL and Endothelial cell populations. (a) 5 CTAL clusters 1169 
and 4 endothelial clusters were identified. (b) Heatmap depicting expression of the marker genes of CTAL1-5. 1170 
(c) CTAL2 and 4 are each chiefly comprised of cells from one donor (Total9 and CD45_9, respectively). 1171 
Selected marker genes of CLDN10-enriched CTAL1 (d) and CLDN16- enriched CTAL3 (e) populations, 1172 
respectively. (f) Bubble plot showing enrichment for specific endothelial cell markers in all subpopulations; 1173 
expression of peritubular capillary markers (PLVAP, TMEM88, DNASE1L3) in Endo1 and Endo3 respectively; 1174 
expression of afferent arteriole and vasa recta genes (SOX17, SERPINE2, CLDN5, CXCL12 and reduced KDR) 1175 
in Endo2; and expression of glomerular microvascular endothelial cell markers in Endo4 (EDH3, SOST and 1176 
TBX3).(g) Increased expression of extracellular matrix genes seen in Endo2 (characterised as afferent 1177 
arterioles and vasa recta). Of the two peritubular populations described (Endo1 and Endo3), Endo3 is shown 1178 
to have higher expression of vasodilators (PTGIS and NOS3) than Endo1. Endo4 illustrates expression of GJA5 1179 
and PTGIS. 1180 
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 1182 
Supplementary Figure 4. Varimax PCA and sparse partial least squares discriminant analysis (sPLS-1183 
DA) identifies sex differences in proximal tubular (PT) epithelial cells. (a) Top 100 genes (50 from each 1184 
end of the component) associated with varimax-rotated principal component 12 which revealed sex differences 1185 
in proximal tubule cells. (b) Plot of 80 genes that were selected as variables in the sPLS-DA classifier (Model 1186 
1) from all detected genes. (c) Receiver operating characteristic (ROC) curve from Model 1 predict male and 1187 
female sex with accuracy of 98%. (d) Plot of 15 genes in Model 2 (using all detected genes except those 1188 
encoded on X or Y chromosomes as input) where 15 genes were selected as variables in the classifier. (e) 1189 
ROC curve from Model 2. (f) Barplot of classification accuracy using Model 1 versus Model 2 to classify PT 1190 
cells of the living donor data and of a validation dataset from Liao et al.20 1191 
 1192 
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 1194 
Supplementary Figure 5. Comparison of single nucleus RNA sequencing and single cell RNA 1195 
sequencing. (a) Data integration from a pilot sequencing experiment in which a single biopsy was divided and 1196 
subjected to scRNAseq and single nucleus  RNAseq (snRNAseq). From the integrated data, PT cell clusters 1197 
were identified and analyzed. (b) Expression of PT cell marker genes used to identify clusters of PT cells in the 1198 
integrated datasets. (c) Comparison of select genes from scRNAseq and snRNAseq reveals that several key 1199 
genes exhibiting dichotomous expression across sexes as reported here are differentially captured by the two 1200 
sequencing techniques. 1201 
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 1203 

 1204 
 1205 
Supplementary Figure 6. Sex differences in the glycolytic rate of proximal tubular (PT) cells. (a) The 1206 
extracellular acidification rate (ECAR) was monitored to assess the glycolytic metabolism of male and female 1207 
PT cells at baseline and after metabolic stress. To induce metabolic stress, the following sequence of drugs 1208 
was injected: 1μM oligomycin, 0.3μM FCCP, 100mM 2-DG, 1mM Rot/AA. (b) The basal glycolysis (p=0.063, 1209 
u=162), maximal glycolytic capacity (p=0.0004, t=3.832, df=42), and glycolytic reserve (p<0.0001, t=5.331, 1210 
df=42) of male and female PT cells were calculated from the ECAR curves in (a) (n=3 donors/sex; n=6-8 1211 
replicates/donor). Group-to-group differences were assessed using two-tailed unpaired t-test for variables 1212 
following a normal distribution, and Mann-Whitney tests for variables with a non-parametric distribution. 1213 
*p<0.05; ***p<0.001; ****p<0.0001. PT, proximal tubule; AUC, area under the curve; ECAR, extracellular 1214 
acidification rate; FCCP, p-trifluoromethoxy carbonyl cyanide phenyl hydrazone; 2-DG, 2-deoxyglucose; Rot, 1215 
rotenone; AA: antimycin A. 1216 
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 1217 
Supplementary Figure 7. Additional immune cell phenotyping data. (a)Expression of immunoglobulin 1218 
heavy chain genes within the B cell cluster, showing low abundance of class-switched B cells in living donor 1219 
kidney. No IGHE transcripts were detected. (b) Very few plasma cells marked by high XBP1 and CD38 1220 
expression were identified. (c) Pathway analysis summary for immune populations, indicating an enrichment in 1221 
cell-type specific pathways in support of cluster annotations. (d) Differential gene expression between two 1222 
clusters (MP2 and MP4) of CD16+ monocyte-like cells identified an enrichment in antigen presentation genes 1223 
in MP4, and differential expression of CX3CR1 versus CXCR4. (e) Expression of hemoglobin transcripts in the 1224 
CD45-enriched sequencing datasets, prior to any quality control thresholds or data cleanup steps. Sample 1225 
HKB28 had the highest abundance of cells positive for hemoglobin transcripts, suggesting more circulating cells 1226 
in this sample. 1227 
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 1229 
Supplementary Figure 8. Annotation of lymphocyte populations. Additional feature plots used to annotate 1230 
of lymphocyte cell types including general T cell markers and subset-specific markers of T resident memory, T 1231 
effector memory, and T central memory cells, as well as markers of regulatory T cells, gdT cells, innate lymphoid 1232 
cells and B cells. 1233 
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 1234 
Supplementary Figure 9. Additional supporting data for the identification of resident signatures in 1235 
kidney lymphocytes. (a) No FOXP3 expression was noted on T cells, and TCRgd staining validated the 1236 
presence of gdT cells within healthy kidney. (b) Gating strategy for the identification of T helper subsets. (c) Co-1237 
expression of CD69 and CD103, characteristic of Trm cells on CD8+ and CD4+ T cells and NK cells of the blood 1238 
(grey, top row) versus kidney (blue, bottom row). (d) Expression of the chemokine CXCL16 in myeloid cells of 1239 
the kidney supporting recruitment of CXCR6+ lymphocytes. 1240 
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 1242 
Supplementary Figure 10. Identification of innate lymphoid cell and myeloid populations in healthy 1243 
human kidney. (a) The majority of NK cells within kidney are CD56dimCD16+, while (b) helper ILCs are present 1244 
in very low abundance in kidney tissue. (c) Predictive identification of CD56brightCD16- NK cells, ILC3s, and 1245 
ILC2s within kidney immune transcriptomic data. (d) High expression of AREG encoding amphiregulin in kidney 1246 
NK cells. (f) Gating strategy to remove lymphocytes from the population of interest. (f) Relative to blood, kidney 1247 
tissue is enriched in CD16+ myeloid populations, and also allowed for identification of a CD14+ CD206+HLA-1248 
DR+ population likely representing MP1. 1249 
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 1251 
Supplementary Figure 11. Comparison of sequencing data from nephrectomy versus living donor 1252 
kidney specimens. (a) Integrated UMAP of kidney immune cells highlighting the contributions of cells derived 1253 
from living donor versus nephrectomy tissue. (b) Within the T cell compartment, the activation marker NR4A1 1254 
(encoding Nur77) along with checkpoint molecules PDCD1 (encoding PD-1), CTLA4 and TIGIT were more 1255 
highly expressed in nephrectomy data. (c), NR4A1 percent positivity (p=0.0152, t=3.076, df=8) and MFI 1256 
(p=0.4206, u=8) on CD3+ T cells, PD-1 percent positivity (p=0.6905, u=10) and MFI (p=0.7024 t=0.3961 df=8) 1257 
on CD8+ T cells, CTLA-4 percent positivity (p=0.0541, t=2.256, df=8) and MFI (p=0.0851, t=1.964, df=8) on 1258 
CD4+ T cells and TIGIT percent positivity (p=0.2833, t=1.238, df=4) on CD3+ T cells were compared between 1259 
living donor and nephrectomy-derived T cells. (d) Representative plots of CTLA-4 on CD4+ T cells and PD-1 1260 
on CD8+ T cells of living donor and nephrectomy-derived cells.  (e) NK cells exhibited similar trends at the 1261 
transcript level with higher NR4A1, AREG, and TIGIT gene expression in nephrectomy data. (f) While Nur77 1262 
protein was not differentially detected by percent positivity (p=0.5397, u=9) or MFI (p>0.999, u=12), AREG was 1263 
higher in living donor NK cells by percentage (p=0.0006, t=5.420, df=8) and MFI (p=0.0182, t=2.959, df=8), and 1264 
TIGIT (p=0.0015, t=7.728, df=4) was more highly detected on nephrectomy NK cells as shown in representative 1265 
plots in g. (h) CD45+ cell elevation in nephrectomy samples did not reach significance (p=0.1129, t=1.780, 1266 
df=8), however, increased immune cell (CD45+) abundance was observed in 3/5 nephrectomy samples tested, 1267 
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with high donor heterogeneity in immune cell abundance was observed, indicative of greater differences in 1268 
tissue microenvironment between nephrectomy specimens. Group-to-group differences were assessed using 1269 
two-tailed unpaired t-test for variables following a normal distribution, and Mann-Whitney tests for variables with 1270 
a non-parametric distribution. *p<0.05; **p<0.01;***p<0.001; ****p<0.0001. Neph= nephrectomy, MFI=Median 1271 
Fluoresence Intensity. 1272 
 1273 

 1274 
Supplementary Figure 12. Annotation of myeloid populations. Additional feature plots of myeloid cells 1275 
supporting cell type annotations, highlighting general myeloid lineage markers, expression of scavenger 1276 
receptors, and markers of dendritic cells, monocytes and macrophages. 1277 
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 1282 
Supplementary Figure 13. Additional supporting plots for macrophage cell state identification. (a) Based 1283 
on our identification of 5 clusters of myeloid lineage cells in living donor kidney, we used SingleCellNet to 1284 
classify cells from previously published datasets3,45,46 into our 5 cluster framework. Most cells captured in prior 1285 
studies were classified as MP5 (CD14+ monocytes), the smallest cluster in living donors; while MP1 (circled) 1286 
the largest cluster in living donor data was scarcely represented in previously published data. (b) Merging the 1287 
three datasets specified in (a) with our living donor dataset confirmed 5 cell states (CS) where living donor data 1288 
comprised the majority of CS2. A volcano plot depicts genes enriched in CS2 versus the remaining four cell 1289 
states, supporting that CS2 represents a resident alternatively-activated tissue macrophage population that is 1290 
uniquely enriched in living donor kidney tissue. (c)Slingshot pseudotime analysis supporting the annotation of 1291 
CS1 as a transitional myeloid population across two suggested trajectories which placed CS2 and CS0 as the 1292 
potential trajectory endpoints.  1293 
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 1294 
Supplementary Figure 14. Integration of PBMCs and kidney immune single-cell data. (a) scRNAseq data 1295 
from living donor kidney immune cells and PBMCs48 were integrated using Harmony. (b) Feature plots 1296 
demonstrating expression of CD3E, NKG7, CD79A, and CD68 used to annotate major immune populations in 1297 
the combined dataset. (c) Annotation of major immune populations including T cells, NK cells, B cells and 1298 
myeloid cells in the integrated PBMC and kidney immune dataset. Feature plots showing gene expression in 1299 
PBMCs versus living donor kidney data of marker genes used for validation at the protein level including 1300 
(d)CXCR4, (e)ITGB1, (f)CD69, (g)CXCR6, (h)ITGA4 and (i)ITGAE. (j) Differential expression analysis of the T 1301 
cells and NK cell clusters identifies genes which are upregulated in kidney lymphocytes and may represent 1302 
kidney-adapted gene expression of these cells. 1303 
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 1305 
Supplementary Figure 15. Optimization of kidney tissue digestion protocol. (a) Final experimental protocol 1306 
for generating single-cell RNA sequencing data from living donor kidney. (b) Workflow of options tested in 1307 
determining the optimal digestion method. (c) Using mouse tissue, a commercial Miltenyi kidney digestion kit 1308 
was compared to a collagenase and neutral protease mixture to compare yield and viability, with collagenase 1309 
and neutral protease demonstrating superior yield and comparable viability. (d) Using human nephrectomy 1310 
tissue, Liberase was compared with collagenase and neutral protease, and flow cytometry was used to 1311 
determine viability and cell phenotype, where it was determined that collagenase/neutral protease preserved 1312 
key surface markers that appear to be cleaved by Liberase. (e) Fractions of dissociated human nephrectomy 1313 
were centrifuged at different speeds to determine cell viability, which was reduced beyond speeds of 400 x g. 1314 
(f) Using markers of key cell populations, by flow cytometry the contribution of different cell populations to 1315 
each fraction by differential centrifugation determined that cell types were captured proportionally up to 1316 
speeds of 400 x g. (g) To optimize yield and preservation of parenchymal cell viability, digestion in either HBSS 1317 
or RPMI medium with collagenase and neutral protease was tested alongside physical methods of dissociation 1318 
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including using GentleMACs, a scalpel and a small volume of dissociation medium (n=2), and a scalpel with 1319 
incubation with constant agitation in a shaker (n=2). Over all methods, RPMI preserved parenchymal viability 1320 
better than HBSS, while overall the greatest viability was in using a scalpel and small volume of dissociation 1321 
medium. (h) Viability of immune (CD45+) and parenchymal (CD45-) populations across physical methods and 1322 
centrifuge speeds to test whether the relative abundance of cell population viability changes with more 1323 
aggressive physical dissociation, where generally more gentle dissociation preserved parenchymal cell viability 1324 
whereas more aggressive physical dissociation improved yield of immune cells. Different Gentlemacs™Tissue 1325 
dissociator settings named based on organ optimized for were tested (liver, intestine, etc). No clear change in 1326 
fractionation was observed in differential centrifugation of the samples. n=1 unless otherwise specified. (i) 1327 
Flow cytometric analysis of kidney parenchymal cells, depicting the capture of live proximal tubular epithelial 1328 
cells (CD10+CD13+) and endothelial cells (CD31+HLA-DR+/-). 1329 
  1330 
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 1331 

 1332 
Supplementary Figure 16. Ambient RNA contamination. Feature plots showing the expression of UMOD, a 1333 
gene specific to cTAL/LOH cells, with widespread low level expression present across all clusters prior to 1334 
ambient RNA correction and more biologically appropriate expression patterns after ambient RNA correction, 1335 
demonstrated with a sample dataset (Total9). 1336 
 1337 
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gene specific to cTAL/LOH cells, with widespread low level expression present across all clusters prior to ambient 

RNA correction and more biologically appropriate expression patterns after ambient RNA correction, demonstrated 

with a sample dataset (Total9). 
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