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Abbreviations

AUC Area under the curve

Cccb Cortical collecting duct

CNT Connecting tubule

CTAL Cortical thick ascending limb of the loop of Henle
DC Dendritic cell

DCT Distal convoluted tubule

Endo Endothelial

IC-A Intercalated cells type A

IC-B Intercalated cells type B

IRI Ischemia-reperfusion injury

LogFC Log Fold Change

MP Mononuclear phagocyte

MHC Major histocompatibility complex
NK cell Natural killer cell

Non-PT Non proximal tubular parenchymal cell
PBMCs Peripheral blood mononuclear cells
PGE2 Prostaglandin E2

PT Proximal tubule

RBC Red blood cell

scRNAseq Single cell RNA sequencing

STC Scattered tubular cell

TCA Tricarboxylic Acid

TCR T cell receptor
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Abstract

Maintaining organ homeostasis requires complex functional synergy between distinct cell types, a
snapshot of which is glimpsed through the simultaneously broad and granular analysis provided by
single-cell atlases. Knowledge of the transcriptional programs underpinning the complex and
specialized functions of human kidney cell populations at homeostasis is limited by difficulty
accessing healthy, fresh tissue. Here, we present a single-cell perspective of healthy human kidney
from 19 living donors, with equal contribution from males and females, profiling the transcriptome
of 27677 high-quality cells to map healthy kidney at high resolution. Our sex-balanced dataset
revealed sex-based differences in gene expression within proximal tubular cells, specifically,
increased anti-oxidant metallothionein genes in females and the predominance of aerobic
metabolism-related genes in males. Functional differences in metabolism were confirmed between
male and female proximal tubular cells, with male cells exhibiting higher oxidative phosphorylation
and higher levels of energy precursor metabolites. Within the immune niche, we identified kidney-
specific lymphocyte populations with unique transcriptional profiles indicative of kidney-adapted
functions and validated findings by flow cytometry. We observed significant heterogeneity in
resident myeloid populations and identified an MRC1* LYVE1* FOLR2* C1QC’ population as the
predominant myeloid population in healthy kidney. This study provides a detailed cellular map of
healthy human kidney, revealing novel insights into the complexity of renal parenchymal cells and

kidney-resident immune populations.
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Introduction

The complex functions of the kidney that maintain body homeostasis are executed by a diverse range
of specialized parenchymal cells residing in distinct compartments. Within tissues, resident immune
populations function in surveillance, maintenance of self-tolerance, response to infection and injury,
and interface with parenchymal cells to maintain tissue homeostasis'3. There is limited
understanding of this network of kidney parenchymal and resident immune cells in humans due to
lack of access to healthy, fresh tissue. Much of our knowledge is based on studies that used kidneys
rejected for transplant or tumour-adjacent nephrectomy specimens, where parenchymal
populations can have altered molecular programs, and immune populations and their signalling
circuits may not be entirely reflective of the steady-state*®. Further, sex-based dichotomy in gene
expression within human kidney cell populations has not been thoroughly examined, but is of great
significance to acute and chronic kidney disease, ischemia-reperfusion injury (IRI) and progression of
diabetic kidney disease, which exhibit a male preponderance®?.

Here we present a detailed atlas of healthy human kidney using single cell RNA sequencing
(scRNAseq) of living donor kidney biopsies, capturing parenchymal and immune cell transcriptomes
reflective of a healthy state. We explore sex-based dichotomy in gene expression among kidney
populations, revealing altered transcriptional programs between male and female proximal tubular

cells, and perform an in-depth characterization of the immune niche in healthy, non-inflamed kidney.

Single-cell map of healthy human kidney

We examined the cellular landscape of human kidney using pre-implantation kidney biopsies from
19 sex-matched living kidney donors (Fig. 1a, b). Our dissociation method was developed to maximize
viability to preserve representation of rare and fragile cell populations, and we employed rigorous
quality control. Minimal immune cell representation in healthy kidney (~0.3% of cells captured)

necessitated CD45-enrichment for immune cells in 10/19 biopsy samples (5 female, 5 male) (Fig. 1a).
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Of 27677 cells in our map, 6899 cells were from CD45-enriched samples, while 20778 cells were from
non-CD45-enriched samples. Twenty-three clusters were identified including several distinct
immune cell populations, alongside all anticipated parenchymal populations of the nephron (Fig. 1c,
Supplementary Fig. 1a). Clusters were comprised of cells captured from multiple donors, there was
no exceptional variability in cell cycle state across clusters, and most clusters had symmetrical
distribution of donor sex (Figure 1b-e, Supplemental Figure 1).

As anticipated, Proximal Tubular (PT) cells comprised 75% of sequenced cells. Sub-clustering
revealed 6 distinct clusters (PT1-PT6) (Fig. 1d, Supplementary Fig. 2a), with some heterogeneity
between individuals, methods of sample preparation, and sexes noted (Supplementary Fig. 2b). PT
segment-specific separation is evident; PT1, 4, and 6 are enriched for PT segment 1 (S1) marker
SLC5A2 and S1/2-abundant genes (SLC7A7, ANK2, SLC4A4, SLC6A19, SLC22A8), while PT2 shows
increased expression of S3-abundant genes (DCXR, AGXT, SLC22A7, SLC7A13) (Fig. 1e)>°. PT3 highly
expresses dissociation stress-associated genes3, together with general (LRP2, CUBN) and segment-
specific PT genes, indicating cell contributions from all PT segments (Fig. 1e, Supplementary Fig. 2c).
PT5 (VIM*S100A6*VCAM1*DCDC2*ANXA4*) displays similarity to a putative regenerative PT
population — termed ‘scattered tubular cells’ (STC)!%!2. These genes also characterize a population
which expands following IRI and is postulated to reflect failed PT repair, though expression was also
observed in healthy kidney!3. Some STC-associated genes were exclusively expressed by PT5 or PT3,
while others were expressed in both populations (Supplementary Fig. 2d-f). This transcriptional
overlap between the regenerative STC-like PT5 and stressed PT3 cells may indicate attempted
initiation of repair in PT3 cells. Transcription factor analysis (Supplementary Fig. 2g) of PT5 genes
revealed potential upstream regulators directing cell differentiation and migration (SNAI2, ZNF217),
and epithelial phenotype maintenance (ELF3), alongside NFE2L2 (NRF2), a key regulator of

antioxidant and cytoprotective genes'®. Predicted upstream regulators for PT3 (EGR1, FOS, and JUN)
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are associated with oxidative stress and fibrogenesis. Predicted regulator ATF3 (protective in renal
IRI*) supports potential reparative processes in this cluster (Supplementary Fig. 2g).

Fourteen non-PT parenchymal cell populations were identified® (Fig. 1f-g) including rare but
important glomerular populations such as podocytes, mesangial cells, and parietal epithelial cells.
We detected notable heterogeneity in CTAL and endothelial populations. Two CTAL subpopulations
expressing CLDN10 and CLDN16, respectively, identify cells with differing paracellular cation-
resorption preferences in CLDN10-dominant (Na*) versus CLDN16-dominant tight junctions (Ca?",
Mg?*) (Supplementary Fig. 3a-e)'®. Among endothelial subpopulations (Endo1-4) (Fig. 1f), we
identified two populations (Endo1, Endo3) of peritubular capillary cells (PLVAP*TMEMS88*DNASE1L3")
(Supplementary Fig. 3a, f, g). Endol expressed ESM1 — required for VEGF-related maintenance of
the peritubular capillary network!’, while Endo3 expressed motility and angiogenesis markers
MARCKS, CLU, ACKR1, SEMA3D (Supplementary Fig. 3f). Endo2 (SOX17*SERPINE2*CLDN5*CXCL12%)
represents afferent arterioles and vasa recta, exhibiting reduced KDR expression and increased
expression of extracellular matrix-encoding genes (Supplementary Fig. 3g). Endo4 expresses the
glomerular microvascular endothelial cell markers EDH3, SOST, and TBX3, a transcriptional regulator

critical to fenestrated glomerular endothelial development (Supplementary Fig. 3f)*2.

Identification of sex-based transcriptomic differences in proximal tubular cells

Leveraging the sex-balanced large sample size, we examined differences in gene expression in
healthy human kidney between males and females. Using varimax-rotated principal component
analysis, we examined individual kidney populations for separation due to donor sex, and observed
a clear separation for the PT population (left panel in Fig. 2a, Supplementary Fig. 4a). Such separation
was not evident in other cell populations, perhaps reflecting insufficient power with fewer cells.
Consequently, subsequent analyses focused on PT cells. Using machine learning, we identified the

most discriminant subset of genes in our dataset that could correctly classify cell sex. Model-1 (80
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genes) correctly classified cell sex with an area under the curve (AUC) of 0.98 (training dataset), and
an accuracy of 84% (validation dataset) (middle panel in Fig. 2a, Supplementary Fig. 4b,c,f). As X-
and Y-linked genes potentially drive sex-biased effects'®, we removed all sex chromosome-encoded
genes and derived Model-2 (15 genes), which correctly classified cell sex in the training dataset (AUC
0.85), but had reduced accuracy (68%) in the validation set (Supplementary Fig. 4d-f). Using an
independent single-cell kidney dataset for validation?, our gene signatures accurately classified cell
sex in 79% (Model-1) and 66% (Model-2) of cells (Supplementary Fig. 4f). Next, we identified genes
with significant differential expression between males and females (n=75 genes, p-value <0.05,
LogFC>0.25) (right panel in Fig. 2a). As our conservative analysis excluded genes expressed uniquely
by one sex (e.g. Y-chromosome-encoded genes), these genes (n=12) were added for downstream
analyses (Fig. 2b). Results from our three analyses were compared (Supplementary Table 1). In
agreement with previous studies?'?2, the majority of the sex-biased genes uncovered are located in
autosomes, rather than in sex chromosomes. Several sex-biased genes are consistent with previous
reports of genes upregulated in murine male (NAT8, FKBP5, KDM5D, DGKG) and female (MGST3,
SLC3A1, CYP4A11, RPS29) PT cells, respectively?l-23,

Twenty-two genes featured in all three analyses (Fig. 2c), including 9 Y- and 3 X-chromosome
encoded genes. An additional 18 genes featured in differential expression analysis (MAST+) and one
other analysis (Fig. 2c). The X-chromosome genes reported are known to escape X-chromosome
inactivation, explaining their higher expression in females'®. Many of the autosomal-encoded genes
or their family members are associated with primary sex determination (SRSF5%, GATM?,
GADDA45A), sex-biased expression (CISH, SRSF5, ACTG1, GATM, AOX1), or sex-specific effects
(SLC2A9%°). Intriguingly, many of the genes have established links with kidney disease, including
SLC27A2 (diabetic kidney disease)?’, SLC3A1 (cystinuria), and GATM?%; while others are associated
with hypoxia (PHGD, CA12), inflammation (PPIA), and genotoxic stress (ASS1). Metallothionein gene

family members (MT1F, MT1G, MT1H), which encode cysteine-rich antioxidant proteins?®, were
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notably higher in females (Fig. 2a,c). Additional differentially expressed genes also relate to cysteine-
glutathione availability and metabolism, including SLC3A13°, MGST3, and HRASLS2.

We next aimed to validate sex-biased gene expression profiles using commercially-available
human primary PT cells from 3 male and 3 female independent healthy donors (Supplementary
Table 2, age range of donors 50-59 years old). As expected, Y-linked genes KDM5D, UTY, and EIF1IAY
were exclusively expressed in male PT cells (Fig. 2d). We also studied the X-linked genes EIF1IAX and
DDX3X. While proposed as ‘X-inactivation escapees’, the extent of X-inactivation can be highly
variable across genes, tissues, and individuals!. In agreement with our scRNAseq findings, primary
female PT cells displayed increased transcript levels of EIF1IAX and DDX3X, compared to male cells
(Fig. 2d). Female sex is linked to lower oxidative stress markers in the kidney in vivo® but whether the
sex of PT cells is a major contributor to this effect is unknown. Gene expression of MT1F, MTIG,
MT1H was significantly increased in primary female PT cells, compared to male cells, as identified by
scRNAseq and validated with gPCR in these independent donors (Fig. 2a,c,d). Of note, many of the
transcripts exhibiting sex dimorphism in our scRNAseq analysis were absent when using matched
single nucleus RNA sequencing, likely due to cytosolic or mitochondrial localization of the transcripts
(Supplementary Fig. 5)

We next investigated the biological processes enriched among the genes showing sex-biased
expression in PT cells. Pathway analysis (Fig. 3a, Supplementary Table 3) revealed processes related
to amino acid metabolism, PT transport, and regulation of the inflammatory response as increased
in females. Among the pathways increased in males, processes related to mitochondrial aerobic
metabolism (‘oxidative phosphorylation’, ‘tricarboxylic acid (TCA) cycle’ and ‘electron transport
chain’) predominated. Two additional metabolic processes, namely ‘generation of precursor
metabolites’ and ‘nucleoside triphosphate metabolism’, were also enriched in males. To validate
these observations, we studied functional differences in mitochondrial metabolism and precursor

metabolite generation in male and female PT cells. We exposed primary male and female PT cells to
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minimal media containing glucose and glutamine, which serve as mitochondrial substrates. We then
measured their oxygen consumption rate (OCR), as a marker of mitochondrial respiration32.
Supporting our pathway analysis, male PT cells showed a significant increase in OCR at baseline and
after metabolic stress, compared to female PT cells (Fig. 3b). By calculating the corresponding areas
under the OCR curves, we determined that male PT cells had a significantly higher basal respiration,
ATP-linked respiration, maximal respiratory capacity, and reserve capacity than female cells (Fig. 3c).
Together with mitochondrial respiration, glycolysis is a major mechanism of glucose-derived energy
production®3. Thus, a parallel increase in glycolysis and aerobic respiration is often indicative of a
higher energy state34. Increased OCR in our male PT cells was linked to a significant increase in their
glycolytic capacity (Supplementary Fig. 6), suggesting that they are energetically more active than
female PT cells. Mitochondrial respiration results in the generation of two key energy precursors -
NAD and ATP®. In line with increased aerobic metabolism, male PT cells exhibited a significant
increase in the intracellular levels of NAD, B-nicotinamide mononucleotide (NAD precursor), ATP,

and three additional nucleoside triphosphate metabolites - GTP, ITP, and UTP (Fig. 3d).

Immune landscape of healthy human kidney

Despite the relative paucity of immune cells in healthy human kidney, we examined kidney-resident
immune cells to delineate their steady-state phenotypes and functions. Sub-clustering of immune
cells yielded 12 clusters (Fig. 4a). T cells (CD3E*), Natural Killer (NK) cells (NKG7*CD3E’), and a small B
cell population (CD79A*) mainly expressing the immunoglobulin chain IGHM were identified (Fig. 4b,
Supplementary Fig. 7a). Plasma cells (CD38*'XBP1*) were scarce in healthy kidney tissue
(Supplementary Fig. 7b). Myeloid clusters (CD68*) (Fig. 4b) displayed enrichment of phagocyte-

”n “"

related pathways including “receptor-mediated endocytosis”, “regulation of TLR signaling”, and

I”

“antigen processing and presentation via MHC class Il” (Supplementary Fig. 7c).
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T cell cluster T1 expressed CD4* T helper (Th) cell genes (IL7R*CD40LG*LTB*) and enrichment
of “T-helper cell differentiation” and “Interleukin-7-mediated signaling” pathways (Fig. 4c,
Supplementary Fig. 7c). T1 also included CCR7* SELL" cells, suggesting central memory T cell identity
(Supplementary Fig. 8)3°. T2 demonstrates expression of a cytotoxic program (GZMA, GZMB, GZMH,
GNLY, PRF1) alongside NK receptor genes (KLRD1, KLRG1), consistent with effector memory T cell or
NKT cell identity (Fig. 4c), T2 also contained some gamma-delta (yd) T cells, marked by co-expression
of TCR chain components TRDV2 and TRDC (Fig. 4b). T3 had sparse expression of resident memory T
cell (Trm) markers (CXCR6, ITGA1), while T4 was marked by high GZMK expression, a marker of
circulating age-associated memory T cells (Fig. 4b, c)3’. FOXP3*CD4"* regulatory T cells were notably
absent from scRNAseq and flow cytometry analyses (Supplementary Fig. 9a), while being observed
in kidney pathologies3®3°, indicating they are likely recruited during inflammation. NK cell cluster NK1
displayed a cytotoxic gene program and broad FCGR3A(CD16) expression. Flow cytometry confirmed
~95% of renal NK cells are CD569™CD16*(Supplementary Fig. 10a). Low abundance of ILC2s, ILC3s
and CD56""8" NK cells was suggested by a predictive classifier and confirmed by flow cytometry
(Supplementary Fig. 10b, c).

As we noted differences in our lymphocytes signatures to those reported using other tissue
sources, we directly compared lymphocytes in living donor kidney with tumor-unaffected renal
tissue. We confirmed the presence of many similar immune populations across tissue sources, yet
also observed differences in abundance and transcriptional signatures. When T cell and NK cell
clusters were compared between these different tissue sources, alterations in checkpoint molecule
expression (i.e TIGIT, CTLA4, PDCD1) were noted, with some of these differences also being observed
at the protein level. We also observed high donor heterogeneity in immune infiltration and generally
a greater proportion of immune cells in nephrectomy specimens, supporting the immune niche can

be altered from healthy kidney.

10
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Mononuclear phagocytes (MP) acquire tissue-adapted phenotypes and functions®.
Definitively attributing macrophage or DC identity to myeloid populations based on gene expression
alone is particularly challenging within the kidney due to a lack of consensus on lineage defining
markers*! and here they are annotated more generally as five MP populations. Cluster MP1 highly
expressed complement components (C1QA, C1QB, C1QC) and markers of alternative macrophage
activation or anti-inflammatory function (CD163, LYVE1, STAB1, MRC1, VSIG4, FOLR2) (Fig. 4b-c,
Supplementary Fig. 12). Efferocytosis receptor MERTK expression supports homeostasis or repair
functions (Supplementary Fig. 12). MP3 contained cells expressing cDC2 markers (CLEC10A, CD1C),
alongside a subgroup of cells co-expressing lipid-associated genes (CD9, TREMZ2, APOE, APOC1) (Fig.
4b). Similar populations have been identified as kidney-resident macrophages and are expanded in
fibrotic tissues*?. MP2 and MP4 (FCGR3A*SIGLEC10*FCN1*) resemble CD16* non-classical monocytes
(Fig. 4b-c, Supplementary Fig. 12). MP4 had elevated expression of /L1B, MHC Class-Il genes, and
CX3CR1 while MP2 had higher expression of CXCR4 and FPR1 (Supplementary Fig. 7d). MP5
expressed markers of classical CD14* monocytes (S100A8, S100A9, CD14, VCAN), yet was
predominantly from one individual with elevated hemoglobin transcripts, indicative of increased
circulating cells in this particular sample (Fig. 4b, c, Supplementary Fig. 7e). Flow cytometry
confirmed greater abundance of CD16* cells in kidney relative to blood, as well as low proportions of
CD14*CD16 MPs resembling MP5 and the presence of MRC1*HLA-DR* MPs in kidney that align with

MP1 (Supplementary Fig. 10e, f).

Identification of a distinct resident macrophage population in healthy kidney

Due to unique aspects of our study, including short ischemic times to which resident
macrophages are especially sensitive****, and use of flushed living donor-derived kidney tissue, we
examined shared and unique MP populations in healthy kidney compared to those reported

previously in kidney tissue from other sources. CD68* cells from three prior studies®>*>% were

11
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classified to match cluster identities of our study. MPs from these studies most resembled MP5
(classical CD14* monocyte-like), the lowest abundance MP cluster in living donor samples
(Supplementary Fig. 13a). MP3 (DC-like and lipid-associated MPs) as well as MP2 and MP4 (CD16*
non-classical monocyte-like) were shared across datasets. Strikingly, few cells from these studies
corresponded to MP1 (resident macrophages) — the largest MP population in living donor kidney.
Next, CD68" cells from these prior studies®>*>*® and our study were merged, identifying five myeloid
cell states (CS) across all studies (Fig. 3d). Based on transcriptomic profiles, CS2 and CS4 include
resident macrophages and antigen-presenting cells, CSO is consistent with non-classical CD16*
monocytes, CS3 represents classical CD14* monocytes and CS1 may represent a transition state,
supported by trajectory analysis (Supplementary Fig. 13b, c). CS2, which was almost entirely
comprised of living donor kidney cells (Supplementary Fig. 13b), is defined by expression of genes
associated with alternatively activated macrophages (C1QA/B/C'RNASE1*CD163*LYVEI*FOLR2"), in
contrast to all other CS which expressed markers associated with monocytes and classically activated
macrophages (S100 family members, FCN1, LYZ, and pro-inflammatory SOD2) (Fig. 4d,
Supplementary Fig. 13b). CS2 constitutes the predominant MP population in healthy kidney (MP1),

while CS3 and CS4 abundance is limited (Fig. 4e)

Kidney-resident lymphocytes are antigen-experienced with distinct gene expression

Due to unexpected heterogeneity and novel transcriptional profiles in kidney lymphocyte
populations (Fig. 4a-c), we directly compared lymphocyte proportions, signatures, and phenotypes
to those in healthy donor blood. Increased proportions of NK (CD3°CD56*) and NKT cells (CD3*CD56")
were noted in kidney, while T cell (CD3*CD56°) abundance was unchanged (Fig. 5a). CD8* T cells were
present in higher proportions than CD4* T cells in kidney and the presence of y3T cells was validated

by flow cytometry (Fig. 5b, Supplementary Fig. 9a).
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To identify specific markers and transcriptional profiles of kidney-resident lymphocytes, we
integrated our dataset with public PBMC scRNA-seq datasets*’*8(Supplementary Fig. 14a-j,
Supplementary Table 4) and validated differences by flow cytometry. Unsurprisingly, blood
lymphocytes exhibited higher expression of naive T cell genes (CCR7, SELL, LEF1, TCF7). In contrast,
the tissue residency-associated transcription factor PRDM1 (BLIMP-1)*° was upregulated in kidney
lymphocytes, as was CD69, which marks Trms in several organs and prevents tissue egress via SIPR1
antagonism>® (Supplementary Fig. 14j). Antigen-experienced T cells upregulate CD45RO and can
become Trm>!. 60-98% of kidney CD4* and CD8* T cells were CD45R0" in contrast to low proportions
of memory T cells in blood (Fig. 5¢). NK cells with memory functions may also express CD45R0°?;
however, this was not observed in renal NK cells (Fig. 5c). Flow cytometry confirmed elevated CD69
on T cells and NK cells, with CD69-CD103 co-expression by CD8* T cells, consistent with a Trm
phenotype (Supplementary Fig. 9c). Further characterization of memory CD4* T helper (Th) cell
subsets revealed enrichment of Th1/17 cells with reduced Th2 marker expression (Fig. 5d,
Supplementary Fig. 9b).

We also sought to validate Granzyme K production in kidney lymphocytes, as T4 cluster was
marked by high GZMK expression. In agreement with scRNAseq findings, Granzyme K was detected
in 21% of kidney T cells (Fig. 5e), with minimal co-expression with Granzyme B, indicating that
Granzyme K* T cells form a distinct subset of renal T cells (Fig. 5e). Most Granzyme K* T cells also did
not have detectable perforin expression (Fig. 5e), in line with Granzyme K produced by these T cells
having extracellular functions rather than the canonical cytolytic function of granzymes dependent
on intracellular delivery via perforin.

Kidney lymphocytes were distinguished from circulating lymphocytes by elevated expression
of chemokine receptors (CXCR4, CXCR6), integrin components (/ITGB1, ITGA4), and inhibitory NK
receptors (KLRD1, KLRC1) (Fig. 5f, Supplementary Fig. 14j). Flow cytometry confirmed VLA-4 integrin

components a4 (CD49d) and 1 (CD29) were highly expressed in renal T cells suggesting VLA-4
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contributes to their residency or function (Fig. 5g). This is consistent with expression of VLA-4 ligands
fibronectin and VCAM-1 in kidney®3. Kidney NK cells have higher levels of CD69 compared to
circulating NK cells, while no difference in CD29 or CD49d was detected (Fig. 5h). Finally, CXCR6
protein expression was elevated on kidney T and NK cells, while CXCR4 was not, despite high gene
expression (Fig. 5g, h, i). Notably, renal myeloid cells expressed CXCL16, the chemokine ligand for
CXCR6, indicating participation in lymphocyte recruitment, supported by significant aggregate rank
scores using cell-cell communication inference (Supplementary Fig. 9d, Supplementary Tables 5, 6).

Other differentially expressed genes suggest tissue-adapted function of kidney lymphocytes.
AREG, encoding the growth factor amphiregulin, was highly expressed by NK1 and validated by flow
cytometry (Supplementary Fig. 10d, Supplementary Fig, 11f, g), suggesting tissue-reparative
functions. The prostaglandin E2 (PGE2) receptor PTGER4 and prostaglandin D synthase PTGDS were
upregulated (Supplementary Fig. 14j), indicating kidney lymphocytes synthesize and recognize
prostaglandins, known mediators of kidney function®. PGE2 promotes Th17 and Th1/17 cell
development and function, perhaps explaining Th1/17 cell enrichment in kidney (Fig. 4d)*.
Collectively these studies capture the heterogeneity of myeloid and lymphocyte populations within
healthy human kidney and provide an important reference of immune cell phenotypes and functions

at steady state.

Discussion
We present a scRNAseq atlas of healthy human kidney using biopsies from living donors. Our
resolution of healthy kidney PT, endothelial, epithelial, and immune subpopulations will inform
future studies addressing underling mechanisms of kidney pathologies, including chronic kidney
disease, fibrosis, IRI, renal cancer and allograft rejection.

The sex-balanced design in the present study enabled novel examination of sex-based

dichotomy in gene expression among human kidney cell populations. Prior studies were constrained
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by small sample size and use of animal models, or instead used bulk transcriptional analysis where
sex-specific signatures of individual kidney cell populations cannot be resolved!®?>’, Qur study is
aligned with the conclusion of scRNAseq studies in mouse by Ransick et al. 23 that PT cells are sexually
dimorphic. However, the overlap in sexually dimorphic PT genes between human and mouse is small,
perhaps due to distinct orthologues in mouse, small number of samples sequenced, or true biological
differences between human and mouse.

We report striking sex-based transcriptional differences in PT cells, suggesting higher baseline
metabolic activity in males, and enhanced expression of antioxidant genes in females. We validated
these sex-based observations at the level of gene expression, metabolite generation, and metabolic
function in vitro. Increased oxidative stress is reported in males®®, while female sex hormones
augment antioxidant gene transcription®®. Metallothionein genes (MT1F, MT1G, MT1H), which are
potent endogenous antioxidants®®, were increased in female PT cells. Metallothionein depletion
exacerbates diabetic and hypoxia-induced kidney injury®%®2, whereas augmented expression is
protective®®. Several sex-altered genes further relate to cysteine-glutathione metabolism.
Glutathione is critical to cellular antioxidant defences® and glutathione metabolism exhibits sexual
dimorphism?%%>, These sex-based differences in PT gene expression discovered by use of scRNAseq
which can capture transcripts localized to the mitochondria and cytosol, may provide insights into
the well-recognized, but previously unexplained sexual dimorphism observed in most kidney

diseases. In particular, why females may be less susceptible to metabolism-related kidney injury®

8,66,67

Our study provides a steady-state map of the kidney immune niche. Kidney T cells are
predominantly Trms and exhibit unique phenotypes previously unreported in kidney, including
Granzyme K* T cells. The function of Granzyme K* T cells in humans is poorly characterized, and here

we show that Granzyme K* T cells are a distinct subset separate from Granzyme B*Perforin*T cells in
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the kidney. The lack of perforin co-expression suggests that Granzyme K produced by renal T cells
may have extracellular targets, such as inducing endothelial cell activation®8, promoting sensitivity to
LPS-induced inflammation®, and regulating angiogenesis’.

Renal CD4* memory Th cells are skewed towards a Th1/17 phenotype, which may be relevant
to Thl7-related kidney diseases including glomerulonephritis, lupus nephritis, and transplant
rejection’t’2, Renal abundance of CD56'CD16* NK cells with high expression of amphiregulin
compared to circulating NK cells suggests non-canonical tissue-adapted functions. We demonstrate
an enrichment of a resident macrophage population with little-to-no presence in prior datasets from
discarded deceased donor or tumor nephrectomy specimens, suggesting altered kidney
environments impact this myeloid population. Indeed, sensitivity of self-renewing resident
macrophage populations to extended ischemic injury and inflammation is reported**. Additional
comparison of lymphocyte populations in tumor-unaffected versus living donor renal tissue revealed
alterations in tumor-unaffected tissue relative to the steady-state immune niche in healthy living
donor kidney. Increased B and T cell proportions, increased expression of activation and exhaustion-
associated molecules by lymphocytes, in addition to a trend for increased immune infiltration in
nephrectomy specimens was observed (Supplementary Fig. 11), in agreement with prior reports that
tumour-affected kidneys can have altered immune infiltrates>°®. Future studies exploring alterations
in immune cells in tumor-unaffected kidney tissue of renal cancer patients may have implications for
development of immunotherapies.

Collectively, our description of healthy human kidney provides a reference point for
understanding the cellular basis of kidney disease development, represents a ‘normal’ target for
stem cell-derived kidney organoids, and expands our understanding of the complexity of sex-based

gene expression and kidney-resident immune populations.
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Figure 1. Identification and annotation of kidney parenchymal cells. (a) Different cell type proportions were
captured by sequencing total kidney homogenate and CD45-enriched samples to create the total combined
dataset. (b) UMAP clustering of total combined dataset with cell type annotations. (c) Graphical depiction of
location of nephron cell types captured within the data. (d) UMAP plot of compartment-specific analysis of
20772 proximal tubular cells, comprising 6 clusters. (e) Heat map showing the expression levels of cluster
marker genes. (f) UMAP plot of compartment-specific analysis of 4436 non-proximal tubular parenchymal
cells, with 14 cell populations represented, including four distinct endothelial clusters. (g) Heat map showing
the expression levels of cell type marker genes across the 14 non-PT cell populations.

23


https://doi.org/10.1101/2021.12.09.471943
http://creativecommons.org/licenses/by-nc-nd/4.0/

564
565

566
567
568
569
570
571
572
573
574
575
576
577
578
579

bioRxiv preprint doi: https://doi.org/10.1101/2021.12.09.471943; this version posted December 10, 2021. The copyright holder for this
preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in
perpetuity. It is made available under aCC-BY-NC-ND 4.0 International license.

a Varimax sPLS-DA MAST A X-chromosome @ Autosomal
Il
; 6 - |
:l
o 2 GATM Hb Q
- o4+ | o .
g o~ &> PCBY. o  MTIF
2 ) S RPL2 Y
S © T 2+ vl A MTHH O MTiG
g‘ § "--lﬁrLS--J:"':‘maH % RPSAX-— -Hk_MT-\L.A_‘I'T """"""""""""""""
o >< 0 L 11& T T T T
Component 1 X variate 1 0 10 20 30 40
b LongoId change
DDX3Y Male
BIFIA Female  x|sT
EB%AEW © Male Donor 1 @ Female Donor 1
TTTY14
TTTv1s Male Donor2 @ Female Donor 2
'LI'J'IS"FD\E()%B A Male Donor3 A Female Donor 3
UTY
ZFY Q KDM5D UTY EIF1AY EIF1AX
ZFY-AST 157 xxxx 20 20 257 yyxx
c X %k %k %
c £
0=
ZFY-AST uTY Absolute logFC 22 1.0
ZFY sreFs{s 0 §E
USP9Y slcaai{e @10 it
-y . TTTY15 ® 20 2 205
TTTY14 SLC2A9 @ 30 3
RPS4Y1 SLC27A2 1+ ® 20 o
RPS4X {® PPIA 0
RPS26 HLRASLS2
RGS3 1« GATM
PNPLA4 |« Q
PHGDH DDX3X { * DDX3X MT1F MT1G MT1H
PCP4 CLTRN{® 2 2
MT1H |® CISH |+ § PO pew B0 e 207 L., 5] e
MT1G 1@ CCDC198 { » 2=20 2.0 i =
MT1F | ® 8 R3] * 15 I A
MGST3 { e CA127 - ST 15 15
ASS1 or ] 10
KDM5D ® 510 & 10
GADD45A { = ARSE { » % A : 5
EIF1AY AOX1 S os5{ £° 05 5 & A
EIF1AX { e ACTGH o
DDX3Y ACE2 0 v T 0 T T 0 T 0 T
ALB - @ Q Q Q
MAST + sPLS-DA

; All 3 methods
e ccmmmmmmmmmmmm e » or MAST + Varimax

Figure 2. Identifying genes differentially expressed between male and female proximal tubular cells. (a) 2-
Dimensional plots of Varimax-rotated PCA and sPLS-DA showing separation of male and female cells, and
volcano plot showing differential expression of genes between sexes from MAST analysis with sample random
effect. (b) Genes expressed exclusively by all samples of one sex and none of the opposite sex, which were
added to the MAST results for comparison across methods in c. (¢) Venn diagram depicting genes identified
through each analysis, with bubble plots highlighting genes identified by all three methods or by MAST plus
one additional method. The size of the circle is proportional to absolute logFC and the colour indicates
whether the gene was higher in male (orange) or female (dark purple) PT cells. (d) Differences in gene
expression of KDM5D (p<0.0001, t=17.32, df=30), UTY (p<0.0001, t=18.75, df=30), EIF1AY (p<0.0001, t=18.04,
df=30), EIF1IAX (p<0.0001, t=9.077, df=29), DDX3X (p<0.0001, t=5.619, df=29), MT1F (p<0.0001, t=16.04,
df=30), MT1G (p<0.0001, u=0), and MT1H (p<0.0001, t=6.286, df=30) were determined in primary male and
female PT cells, and normalized to RPL31 (n=3 donors/sex; n=4-6 replicates/donor). Group-to-group
differences were assessed using two-tailed unpaired t-tests for variables following a normal distribution, and
Mann-Whitney tests for variables with a non-parametric distribution. ****p<0.0001. PT, proximal tubule.
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Figure 3. Sex differences in the mitochondrial respiration and energy precursor metabolism of proximal
tubular cells. (a) Depiction of selected significant (FDR<0.25) terms identified by GSEA analysis as being
enriched in males and females respectively. (b) Oxygen consumption rate (OCR) was monitored to assess the
mitochondrial respiration of male and female PT cells at baseline and after metabolic stress. To induce
metabolic stress, the following sequence of drugs was injected: 1uM oligomycin, 0.3uM FCCP, 100mM 2-DG,
1mM Rot/AA. The OCR was monitored in male and female PT cells (n=3 donors/sex; n=6-8 replicates/donor).
(c) The basal OCR (p<0.0001, u=48), ATP-linked respiration (p<0.0001, t=5.223, df=42), reserve capacity
(p<0.0001, t=5.018, df=42) and maximal respiratory capacity (p<0.0001, t=5.281, df=42) of male and female
PT cells were calculated from the OCR curves in panel B. Group-to-group differences were assessed using two-
tailed unpaired T tests for variables following a normal distribution, and Mann-Whitney tests for variables
with a non-parametric distribution. (d) In a separate experiment, the intracellular levels of ATP (p<0.0001,
t=5.959, df=34), NAD (p=0.029, u=93), B-nicotinamide mononucleotide (p<0.0001, t=4.575, df=34), GTP
(p<0.0001, t=7.45, df=34), ITP (p=0.0001, u=46), and UTP (p=0.0001, t=4.316, df=34) were determined in male
and female PT cells (n=3 donors/sex; n=6 replicates/donor). Group-to-group differences were assessed using
two-tailed unpaired T tests for variables following a normal distribution, and Mann-Whitney tests for variables
with a non-parametric distribution. , *p<0.05;**p<0.01;***p<0.001;****p<0.0001. PT, proximal tubule; AUC,
area under the curve; OCR, oxygen consumption rate; FCCP, p-trifluoromethoxy carbonyl cyanide phenyl
hydrazone; 2-DG, 2-deoxyglucose; Rot, rotenone; AA: antimycin A; df: degrees of freedom.
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Figure 4. Identification and annotation of kidney immune cells. (a) Compartment-specific analysis of 2491
immune cells comprising 12 clusters and (b) cell type markers used for cluster annotations (c) Heatmap of cell-
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Figure 5: Characterization of kidney-resident T and NK cells. (a) NK cells (p=0.0025, t=3.998, df=10) and NKT
cells (p=0.0327, t=2.476, df=10) are proportionally enriched in kidney relative to blood, while T cell (p=0.379,
t=0.918, df=10) abundance is unchanged. (n=6) (b) Within the kidney T cell population, there is an enrichment
of CD8* T cells (p=0.0060, t=3.327, df=12) and a reduction in CD4+ T cell (p=0.0025, t=3.815, df=12) abundance
with no change in TCRgd* T cells (p=0.2158, u=14) relative to blood. (n=6) (c) Kidney T cells are predominantly
antigen-experienced, marked by expression of CD45R0, while NK cells express minimal CD45RO0. (d) Within
kidney memory CD4* T cells, there is an enrichment in the Th1/17 subpopulation (CXCR3*CCR6*) (p=0.0238,
u=0) and a reduction in Th2 subpopulation (CRTh2*) (p=0.0098, t=3.513, df=7) abundance relative to blood
while Th1 (CXCR3*) (p=0.3810, u=5) and Th17 (CCR6*) (p=0.5476, u=6) proportions were unchanged. (n=3) (e)
T cells expressing Granzyme K do not co-express perforin, indicating that they are a distinct T cell subset from
Granzyme B*Perforin* cytotoxic T cells. (f) Violin plots showing differential gene expression of select markers
in kidney T cells and NK cells relative to blood. (g) Surface levels of CD29 (p=0.0061, t=3.869, df=7), CD49d
(p=0.0027, t=4.519, df=7) and CD69 (p=0.0203, t=2.756, df=10) were higher on kidney T cells relative to blood
as measured by flow cytometry, while CXCR4 (p=0.5887, u=14) was not (n=6). (h) Surface levels of CD69
(p=0.0427, t=2.321, df=10) was higher on kidney NK cells relative to blood while CD29 (p=0.6899, t=0.4159,
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t=2.414, df=10) relative to blood. (j) Histograms showing no difference in CXCR4, increased CD69 and
increased CXCR6 protein abundance in kidney T cells relative to blood. Group-to-group differences were
assessed using two-tailed unpaired T tests for variables following a normal distribution, and Mann-Whitney
tests for variables with a non-parametric distribution. , *p<0.05;**p<0.01;***p<0.001;****p<0.0001.
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Materials and Methods

EXPERIMENTAL MODEL AND SUBJECT DETAILS

Human Specimens

Kidney tissue from tumour-unaffected nephrectomy specimens was used for initial method optimization.
Pre-implantation core biopsies were obtained from living donor kidneys after organ retrieval and flushing.
20 live donor kidney samples (10 male donors and 10 female donors) were processed for sequencing.
Additional living donor kidney samples were used in flow cytometry experiments for method optimization
and immunophenotyping. All experiments were conducted with institutional ethics approval from University
Health Network (CAPCR: 18-5914.0, Living donor; CAPCR: 18-5489.0, Tumour nephrectomy). Patient
demographic information for sequenced samples is summarized in Supplementary Table 7. All patients

provided informed written consent for inclusion in this study.

Murine Specimens

Murine kidneys from C57BL/6 mice (AUP: 6156) were used for digestion optimization experiments.

EXPERIMENTAL METHOD DETAILS

Tissue digestion and CD45-enrichment

All living donor samples used for sequencing were processed within one hour of organ retrieval. Briefly,
biopsies were collected in RPMI 1640 (Gibco, cat # 11875119) on ice, and mechanically dissociated with a
blade before enzymatic digestion at 372C with 0.1 mg/ml DNase | (STEMCELL, cat # 07470), 3300 CDA
units/ml Collagenase MA (VitaCyte, cat # 001-2030) and 1430 NP units/ml BP neutral protease (VitaCyte, cat
# 003-1000) for 20 minutes at 372C with intermittent agitation in an dissociation protocol optimized to
maximize viability and to preserve representation of rare and fragile cell populations (Supplementary Fig.
15). Cell suspensions were filtered through 35um cell strainer snap-cap FACS tubes (Falcon, cat# 352235)
and a plunger from a 1ml syringe was used to gently mash remaining tissue in the strainer before rinsing

strainer lid with 1:1 volume of FBS (HyClone, cat # SH3039603PM) on ice. A low frequency (<1%) of immune

28


https://doi.org/10.1101/2021.12.09.471943
http://creativecommons.org/licenses/by-nc-nd/4.0/

662

663

664

665

666

667

668

669

670

671

672

673

674

675

676

677

678

679

680

681

682

683

684

685

686

687

bioRxiv preprint doi: https://doi.org/10.1101/2021.12.09.471943; this version posted December 10, 2021. The copyright holder for this
preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in
perpetuity. It is made available under aCC-BY-NC-ND 4.0 International license.

cells in the single cell suspension from a kidney biopsy core (Fig. 1a) necessitated immune enrichment in 10
samples (5 males, 5 females) using magnetic EasySep Human CD45 depletion kit Il (STEMCELL, cat# 17898),

as per the manufacturer’s modified instructions for positive selection of CD45-expressing cells.

Single-cell RNA sequencing

Samples were prepared according to 10X Genomics Single Cell 3’ v3 Reagent kit user guide’®. The pilot
sequencing sample from nephrectomy tissue was sequenced using 10X Genomics Single Cell 5’ v2 Reagents.
Samples were washed twice in PBS (Life Technologies) plus 0.04% BSA, and viability was determined by a
hemocytometer (Thermo Fisher) via Trypan Blue staining. Following counting, the appropriate volume for
each sample was calculated for a target capture of 9,000 cells. For CD45-enriched samples, all cells were
sequenced. Samples that were too low in cell concentration as defined by the user guide were washed, re-
suspended in a reduced volume and counted again using a haemocytometer prior to loading onto the 10x
single cell B chip. After droplet generation, samples were transferred onto a pre-chilled 96 well plate
(Eppendorf), heat sealed and incubated overnight in a Veriti 96-well thermos cycler (Thermo Fisher). The
next day, sample cDNA was recovered using Recovery Agent provided by 10x and subsequently cleaned up
using a Silane DynaBead (Thermo Fisher) mix as outlined by the user guide. Purified cDNA was amplified for
11 cycles before being cleaned up using SPRIselect beads (Beckman). Samples were diluted 4:1 (elution
buffer (Qiagen):cDNA) and run on a Bioanalyzer (Agilent Technologies) to determine cDNA concentration.
cDNA libraries were prepared as outlined by the Single Cell 3’ Reagent Kits v3 user guide with modifications
to the PCR cycles based on the calculated cDNA concentration.

The molarity of each library was calculated based on library size as measured bioanalyzer (Agilent
Technologies) and gPCR amplification data (Roche). Samples were pooled and normalized to 1.5 nM. Library
pool was denatured using 0.2N NaOH (Sigma) for 8 minutes at room temperature, neutralized with 400mM
Tris-HCL (Sigma). Library pool at a final concentration of 300pM were loaded to sequence on Novaseq 6000
(lumina). Samples were sequenced with the following run parameters: Read 1-28 cycles, Read 2- 90, index

1-10 cycles, index 2-10 cycles. Across samples, cells were sequenced to a target depth of 40,000 reads per
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cell. Mapping and quantification were performed using the 10X Genomics CellRanger pipeline version

3.1.0. Cell metric summaries for each sample in Supplementary Table 8.

Single-nucleus RNA sequencing

A pilot single-nucleus RNA sequencing experiment was undertaken to compare single cell versus single
nuclear results from a matched sample. The biopsy was collected fresh and divided into 8 segments, evenly
distributed to be processed fresh for single cell RNA sequencing as above, and the remainder was flash
frozen in liquid nitrogen. The sample was later retrieved from liquid nitrogen and processed on dry ice
according to the protocol in”* with a lysis buffer containing: 0.32 mM sucrose (BioShop SUC507.1), 5 mM
CaCl2 (VWR, 97062-820), 3 mM MgCI2 (Thermo Fisher AM9530G), 20 mM Tris-HCI pH 7.5 (Thermo Fisher,
15567027), 0.1% TritonX-100 (Sigma Aldrich T8787-50ML), 0.1 mM EDTA pH 8.0 (Thermo Fisher AM9260G),
40 U/ml Protector RNAse inhibitor (Sigma Aldrich 3335399001) in UltraPure DNAse/RNAse-free water
(Thermo Fisher 10977015). The nuclei were captured and sequenced using 10X Genomics Single Cell 3’ v3

Reagents as above.

Data quality control, clustering, differential expression, pathway analysis and cell-cell interaction
inference
Original study recruitment included samples from 20 donors, however, data from one male donor was poor
quality and was excluded from downstream analysis. Thus, our final dataset consisted of 19 donors (10
female, 9 male), with 10 CD45-enriched samples (5 female, 5 male) and 9 samples not enriched for CD45*
cells referred to as “total kidney” (5 female, 4 males). To preserve representation of rare cell types with
uniquely expressed genes, we retained genes expressed in a minimum of 1 cell in the individual datasets.
Ambient RNA contamination was corrected using the AutoEst function in SoupX” (Supplementary
Fig. 16). DoubletFinder’® was used to identify and remove cells most likely to be doublets, rather than
implementation of a maximum gene or feature threshold. For total samples, a high doublet rate threshold of
7.5% was applied (as utilized in comparable studies’’), while for CD45-enriched samples, the doublet rate

was calculated as 0.8% per 1000 cells captured, as per 10X Genomics estimated doublet rates’®. The
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individual datasets were then merged. Upon merging all of the individual datasets, the cells clustered
according to cell type rather than donor/batch, and importantly, no batch correction of the data was
required.

Cell type-specific thresholds were set to remove low quality cells. For immune cells (clusters
expressing PTPRC), all cells with >10% of UMIs mapped to mitochondrial genes were removed, along with
cells that had low transcript abundance (<1000) or gene diversity (<200 unique genes). Separately, prior to
removing cells with low transcripts/features, data was mined for the presence of granulocyte lineage cells
such as neutrophils which are often removed by typical QC thresholds due to high RNAse activity and low
gene content, however very few neutrophils (>20) were identified by marker expression in the raw data

across all samples. For parenchymal cells, all cells with >40% of mitochondrial-mapped UMIs were removed;

this high threshold was imposed due to known high mitochondrial content of proximal tubular cells’®.
Additionally, cells with low transcript abundance <1000) and low gene diversity (<750 unique genes) were
removed. Cells expressing hemoglobin genes (HBB, HBA1/2) (n=160) were removed. Following normalization
(SCTransform’®) and feature selection (M3Drop/DANB®), principal component analysis was used for
dimensionality reduction (RunPCA) and cells were clustered using the Louvain algorithm with 30 principal
components (FindNeighbors and FindClusters) (Seurat®!). Clusters were visualized using UMAP algorithm?®2,
The dataset was divided into 3 broad subgroups identified as being Immune (PTPRC') or
Parenchymal (Proximal Tubular (expressing CUBN, HNF4A, SLC34A1, LRP2, SLC17A1) or non-Proximal
Tubular) in origin. These subgroups were re-clustered and further annotated using a curated marker list
(Supplementary Table 6). Cluster defining genes were identified by Seurat’s FindMarkers®®.
Ranked gene lists were generated using Wilcoxon rank sum testing from the presto package
)83

(wilcoxauc function)®® were used as input for pathway analysis using GSEA®*. Reference gene sets were

acquired from the Bader lab repository (http://download.baderlab.org/EM Genesets/) — Geneset used:

(Human_GOBP_AllPathways_no_GO_iea January_13 2021 symbol.gmt.txt). To identify pathways enriched
in immune cell clusters, the ranked gene lists were generated for each cluster comparing that cluster versus

all other clusters.
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741 Cell-cell communication was inferred from the sequencing data using LIANA which generates a
742 consensus ranking across several methods®®. The OmniPath interaction database was used® with the

743 following methods for inferring interactions implemented through the package: SingleCellSignalR¥, iTalk®,
744  NATMI®, Connectome®, CellChat®® and CellPhoneDB®2. Results are summarized in Supplementary Table 5.
745 Separately, SingleCellSignalR, NATMI, iTALK and Connectome methods were used to generate a consensus
746 score using the CellPhoneDB database to infer interactions inclusive of multimeric complexes as accounted
747  forin the CellPhoneDB interaction database, summarized in Supplementary Table 6.

748

749  Identification of innate lymphoid cells

750 A predictive tool for cell type classification (scPred®®) was trained on single-cell data generated from flow
751 cytometry-sorted ILCs® and T cells®. Using this classifier, some cells present within our dataset were

752  putatively identified as ILCs.

753

754  Transcription factor analysis

755  Top cluster defining genes for PT5 and PT3, respectively were uploaded to CHEA3%®

756  (https://maayanlab.cloud/chea3/), and the top 10 predicted upstream regulators were identified.

757

758  Comparison of kidney immune cells to PBMCs

759  Toidentify differences in gene expression between T cells and NK cells from peripheral blood versus kidney,
760  PBMC data (GSE148665)*” was integrated with the immune only kidney data using Harmony®’. A second
761 independent PBMC dataset*, was separately integrated with the kidney data for dataset-independent

762  validation. NK cells and T cells (clusters expressing NKG7 and/or CD3E) were compared using Seurat’s

763 FindAllMarkers function. Violin plots and volcano plots were created using Seurat and EnhancedVolcano®.
764

765  Comparison of Myeloid cells

766  To identify differences in myeloid cell populations in living kidney donors compared to publicly available

767 human kidney single-cell RNA sequencing datasets from tumour nephrectomy or deceased donor tissue
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sources, CD68-expressing clusters from Stewart & Ferdinand et al.,> Zimmerman et al.,* and Argiiello et al.*®
were scored using a random forest classifier (SingleCellNet®®) to identify cells from the published datasets
corresponding to the five myeloid clusters in the living donor data. Separately, all myeloid cells from this
data and the three published studies were integrated and clustered to identify cell states using OCAT*®. The
datasets were also integrated and batch corrected using Seurat v3 integration (FindIntegrationAnchors and
IntegrateData functions). The cell state identities from OCAT were mapped onto the integrated object and
marker genes of cell states were identified using Seurat’s FindAllIMarkers function. Lineage analysis by
pseudotime inference was applied to the OCAT-identified clustering of the combined myeloid populations

using slingshot!??, without indicating any clusters as either start or end points.

Sex differences analysis

Principal component analysis (PCA) followed by Varimax rotation was performed on all major parenchymal
and immune populations. Varimax-rotated principal components 2:25 were serially plotted against
component 1, to identify whether a separation on the basis of sex was evident. If seen, the top 100 genes
(50 from each end of the gene loading list) associated with the Varimax-rotated principal component were
retained for further analysis.

Sex differences in proximal tubular cells were identified using sparse partial least squares
discriminant analysis (sPLS-DA) in mixOmics%. Using the tuning function (tune.splsda), the optimal values
for sparsity parameters were determined to be 1 component with 80 variables (genes). To test the classifier,
the data were separated into a training dataset (% of cells sampled) and a query dataset (remaining %).
Next, our 80-gene signature was applied to an external dataset (Liao et al.?°) for validation. Here, the entire
living donor dataset was used as the training dataset and the external dataset was used as the query
dataset. To determine the contribution of sex chromosome encoded genes to the model, all X- and Y-
chromosome encoded genes were removed from the datasets prior to analysis, where the tuned
parameters identified the optimal model to include 1 component with 15 variables. This 15-gene signature
was also validated in the Liao et al. dataset. Hierarchical structure, zero inflation, and pseudoreplication bias

in single-cell data pose specific challenges for differential expression analyses'®*%, To circumvent these
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limitations, we implemented a mixed effects model using MAST!%>1% For differential expression testing
between male and female proximal tubule cells, the dataset was filtered to include only genes which were
expressed in each sample (9792 genes). Differential expression testing was conducted using MAST with a
random effect for sample (zIm~ cellular detection rate + donor sex + (1| samplelD)). As this approach
excluded genes expressed exclusively by one sex (e.g. Y chromosome encoded genes, and XIST), such genes
were added to MAST differentially expressed genes (MAST+) for comparison with the results of the other
methods (Varimax, sPLS-DA).

All significant genes returned using MAST analysis were subjected to enrichment analysis (GSEA3%107)

using reference gene sets acquired from the Bader lab repository:

(http://download.baderlab.org/EM Genesets/); Geneset used:

(Human_GOBP_AllPathways_no_GO_iea_January_13 2021 symbol.gmt.txt).

Cryopreservation

Cells from additional (non-sequenced) fresh living donor biopsies or cells remaining following 10X cell
capture for sequencing were resuspended in 90% human serum (Sigma, cat# H4522) and 10% DMSO for
cryopreservation and cooled to -802C in a Mr.Frosty (Sigma, cat #C1562), then transferred to liquid nitrogen

for long term storage.

Flow Cytometry

After fresh tissue digestion, cells were washed in PBS + 2% FCS before staining. Cryopreserved cells were
thawed and washed twice in PBS + 2% FCS. Cells were incubated at 42C for 15 minutes with an Fc receptor
blocker (BioLegend TruStain FcX, cat # 422302) according to manufacturer instructions before cocktails of
surface antibodies were added for 30 minutes at 42C. If intracellular targets/transcription factors were
included in the panel, cells were resuspended in FOXP3 transcription factor fix perm buffer (eBio, cat # 00-
5523-00) and stained with intracellular antibodies in 1X permeabilization buffer (eBio, cat # 00-8333-56). If
no intracellular targets were included in the staining panel, cells were fixed in 2% PFA (Thermo Scientific, cat

# J19443) after surface staining.
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Cells were stained with the following surface antibodies: Anti-human CD8a FITC (1:100, clone RPA-
T8, BioLegend, cat # 301050), Anti-human TCRgd FITC (1:100, clone B1, BioLegend, cat # 331208), Anti-
human CD3 FITC (1:100, clone UCHT1, BioLegend, cat # 300440), Anti-human CD8a PerCP (1:50, clone RPA-
T8, BioLegend, cat # 301030), Anti-human CXCR6 PerCP Cy5.5 (1:50, clone KO41E5, BioLegend, cat #
356010), Anti-human CCR8 PE (1:100, clone L263GS8, BioLegend, cat # 360604), Anti-human CD127 PE (1:50,
clone hIL-7R-M21, BD Biosciences, cat # 557938), Anti-human CD15 PE (1:100, clone W6D3, BD Biosciences,
cat #562371), Anti-human CD163 PE (1:50, clone GHI/61, BioLegend, cat # 333606), Anti-human CD49d PE
Dazzle 594 (1:100, clone 9F10, BioLegend, cat # 304325), Anti-human CRTh2 PE Dazzle 594 (1:50, clone
BM16, BioLegend, cat # 350126), Anti-human CD31 PE Dazzle 594 (1:100, clone WM59, BioLegend, cat #
303130), Anti-human CD16 PE Dazzle 594 (1:100, clone 3GS8, BioLegend, cat # 302054), Anti-human CD45 PE-
CF594 (1:100, clone HI30, BD Biosciences, cat # 562279), Anti-human CD29 PE Cy7 (1:100, clone TS2/16,
BioLegend, cat # 303025), Anti-human CD45R0 PE Cy7 (1:50, clone UCHL1, BD Biosciences, cat # 560608),
Anti-human MerTK PE Cy7 (1:50, clone 590H11G1E3, BiolLegend, cat # 367610), Anti-human TIGIT PE Cy 7
(1:50, clone MBSA43, Invitrogen, cat # 25-9500-42), Anti-human CD94 APC (1:100, clone HP-3D9,
eBioscience, cat # 17-5094-42), Anti-human CCR6 APC (1:25, clone GO34E3, BioLegend, cat # 353416), Anti-
human CD206 APC (1:50, clone 15-2, BioLegend, cat # 321110), Anti-human CD4 Alexa700 (1:50, clone RPA-
T4, eBioscience, cat # 56-0049-42), Anti-human CD127 Alexa700 (1:50, clone eBioRDR5, eBioscience, cat #
56-1278-42), Anti-human CXCR4 APC Cy7 (1:50, clone 12G5, BioLegend, cat # 306528), Anti-human CTLA4
APC Cy7 (1:25, clone BNI3, BioLegend, cat # 369634), Anti-human CD56 APC Cy7 (1:50, clone HCD56,
BioLegend, cat # 318332), Anti-human CD45 APC Cy7 (1:100, clone HI30, BioLegend, cat # 304014), Anti-
human CD14 APC eF780 (1:100, clone 61D3, eBioscience, cat # 47-0149-42), Anti-human CXCR3 BV421 (1:50,
clone GO25H7, BiolLegend, cat # 353716), Anti-human CD13 BV421 (1:50, clone WM15, BiolLegend, cat #
301716), Anti-human TCRgd BV510 (1:100, clone B1, BioLegend, cat # 331220), Anti-human TCRab BV510
(1:100, clone IP26, BioLegend, cat # 306734), Anti-human CD5 BV510 (1:100, clone L17F12, BioLegend, cat #
364018), Anti-human FcER1 BV510 (1:100, clone AER-37, BiolLegend, cat # 334626), Anti-human CD303
BV510 (1:100, clone 201A, BiolLegend, cat # 354232), Anti-human CD123 BV510 (1:100, clone 6H6,

BioLegend, cat # 306022), Anti-human CD34 BV510 (1:100, clone 581, BioLegend, cat #343528), Anti-human
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849 CD20 BV510 (1:100, clone 2H7, BioLegend, cat # 302340), Anti-human CD3 BV510 (1:100, clone OKT3,

850 BioLegend, cat # 317332), Anti-human CD14 BV510 (1:100, clone M5E2, BioLegend, cat # 301842), Anti-
851 human CD19 BV510 (1:100, clone HIB19, BioLegend, cat # 302242), Anti-human CD4 BV510 (1:100, clone
852 RPA-T4, BioLegend, cat # 300546), Anti-human CD56 BV605 (1:50, clone HCD56, BioLegend, cat # 318334),
853 Anti-human CD69 BV650 (1:100, clone FN50, BioLegend, cat # 310934), Anti-human CD8a BV650 (1:50, clone
854 RPA-T8, BioLegend, cat # 301042), Anti-human CD326 BV650 (1:100, clone 9C4, BioLegend, cat # 324226),
855 Anti-human CD107a BV750 (1:50, clone H4A3, BioLegend, cat # 328638), Anti-human CD103 BV711 (1:100,
856 clone Ber-ACT8, BiolLegend, cat # 350222), Anti-human CD10 BV711 (1:100, clone HI10a, BioLegend, cat #
857 312226), Anti-human CD45 BV711 (1:100, clone HI30, BioLegend, cat # 304050), Anti-human CD3 BV785
858 (1:100, clone OKT3, BioLegend, cat # 317330), Anti-human HLA-DR BV785 (1:50, clone L243, BioLegend, cat #
859 307642), Anti-human PD-1 BV785 (1:50, clone EH12.2H7, BioLegend, cat # 329930), Anti-human CD45

860 BUV395 (1:100, clone HI30, BD Biosciences, cat # 563792), Anti-human CD16 BUV395 (1:100, clone 3GS8, BD
861 Biosciences, cat # 563785), Anti-human CD3 BUV395 (1:100, clone UCHT1, BD Biosciences, cat # 563546),
862  Anti-human CD69 BUV496 (1:50, clone FN50, BD Biosciences, cat # 750214), Anti-human CD16 BUV737

863 (1:100, clone 3G8, BD Biosciences, cat # 564434). The following antibodies were used for intracellular

864  staining: Anti-human TBET FITC (1:50, clone 4B10, BioLegend, cat # 644812), Anti-human Granzyme B FITC
865 (1:100, clone QA16A02, BioLegend, cat # 372206), Anti-human Granzyme K PE (1:25, clone GM26E7,

866 BioLegend, cat # 370512), Anti-human FOXP3 PE CF594 (1:25, clone 236A/E7, BD Biosciences, cat # 563955),
867  Anti-human GATA3 PE CF594 (1:25, clone L50-823, BD Bioscience, cat # 563510), Anti-human Amphiregulin
868 PE Cy 7 (1:25, clone AREG559, Invitrogen, cat # 25-5370-42), Anti-mouse Nur77 APC (1:25, clone REA704,
869 Miltenyi, cat # 130-111-231), Anti-human EOMES APC eF780 (1:25, clone WD1928, eBioscience, cat #47-
870  4877-42), Anti-human RORgT BV650 (1:50, clone Q21-559, BD Biosciences, cat # 563424), Anti-human

871 Perforin eF450 (1:100, clone dG9, Invitrogen, cat # 48-9994-42). Cells were analyzed on a BD LSR Fortessa
872  flow cytometer. Data were plotted using FlowJo v10.7.1 (TreeStar) and Prism (Graphpad, v9).

873

874 PT cell culture
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Commercially available human primary PTs from 6 donors (3 males and 3 females, Lonza Walkersville Inc)
were expanded at passage 4, and studied at passage 5. The main donor characteristics are summarized in
Supplementary Table 2. Cells were grown in custom-made Dulbecco’s modified Eagle’s medium (DMEM)
containing 5.55mM D-glucose, 4mM L-glutamine, and 1mM sodium pyruvate, and supplemented with
10ng/mL human EGF, 0.05M hydrocortisone, 1x of Transferrin/Insulin/Selenium (Invitrogen), 10% v/v dialyzed
fetal bovine serum (FBS), 50g/mL streptomycin, and 50units/mL penicillin, as previously®®1%°  Cells were
serum-starved for 24h prior to collection for gene expression, metabolite measurements, and assessment of
metabolic function. For gene expression experiments, cells were washed with PBS, harvested with trypsin,

and snap-frozen at -80°C until further analysis.

Assessment of metabolic function in human primary PT cells

Mitochondrial respiration was assessed in male and female PTECs by measuring their oxygen consumption
rate (OCR) in a Seahorse XFe96 analyzer (Agilent). Glycolysis was also assessed by monitoring the extracellular
acidification rate (ECAR). Upon 80-90% confluence, cells were detached with 0.25% trypsin (5min, 37°C),
counted and seeded in a Seahorse XFe96 Cell Culture Microplate at a density of 15,000 cells/well in 100uL of
DMEM complete media. After adhering for 6h, PT cells were exposed to serum starvation conditions for 24h.
One hour prior to the metabolic function assay, cells were washed with phenol-free basal media (Agilent) and
exposed to 150l of assay media, which included 2mM glutamine and 5.55mM glucose. During the assay, OCR
and ECAR were recorded at baseline and after metabolic stress. To induce metabolic stress, 25uL of
oligomycin, p-trifluoromethoxy carbonyl cyanide phenyl hydrazone (FCCP), 2-deoxyglucose (2-DG), and
Rotenone + Antimycin A (Rot+AA) were sequentially injected into the microplate wells. After optimization,
the following working concentrations were stablished for each drug: oligomycin: 1uM; FCCP: 0.3uM, 2-DG:
100mM; Rot: 1uM; AA: 1uM. Basal respiration, ATP-linked respiration, maximal respiratory capacity, and
reserve capacity were assessed by calculating the area under the curve (AUC) from OCR curves (Fig. 3b, c ).
Basal glycolysis, maximal glycolytic capacity, and glycolytic reserve were determined by calculating the AUC

from ECAR curves (Supplementary Fig. 6).

37


https://doi.org/10.1101/2021.12.09.471943
http://creativecommons.org/licenses/by-nc-nd/4.0/

902

903

904

905

906

907

908

909

910

911

912

913

914

915

916

917

918

919

920

921

922

923

924

925

926

927

928

bioRxiv preprint doi: https://doi.org/10.1101/2021.12.09.471943; this version posted December 10, 2021. The copyright holder for this
preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in
perpetuity. It is made available under aCC-BY-NC-ND 4.0 International license.

Cell metabolite measurements

Sample preparation

Male and female primary PTs were grown on 6-well plates and subjected to starvation as described above.
The levels of intracellular metabolites were then determined using liquid chromatography-mass
spectrometry. After collecting the supernatant, ImL of extraction solvent (80:20 mixture of methanol:water)
was added into each well, in order to extract intracellular metabolites. Plates were placed on dry ice. The
adherent material was then triturated, collected into Eppendorf tubes, and stored at -80°C. Cell lysate
collection was followed by 3 freeze-thawing cycles in dry ice (to shift sample temperature between -80°C and
-20°C). The insoluble material from each sample was then precipitated by centrifugation at full speed for 5min.
The resulting pellet was dried at room temperature and used for total RNA quantification using the Quant-iT
Ribogreen assay (Invitrogen). In turn, the metabolite extract was dried under high purity nitrogen gas
(turbovap) and resuspended with appropriate volume of buffer (0.5uL of LC-MS grade water to 1ug of RNA)
based on total RNA levels. The appropriate volumes of heavy-labelled (}3C/*°N) reference metabolites were
spiked into each reconstituted sample for quantitation. The heavy-labelled metabolites used as internal
reference standards were acquired in as a metabolite extract from yeast that had been 99% labelled with 3C-
glucose and *’N-ammonia. To determine background metabolite signals, a mock plate without cells and equal

volume of media was processed in parallel to the study plates.

Liquid chromatography-mass spectrometry (LC-MS)

Cellular metabolites were measured by injecting 2uL of sample in full scan MS1 mode using an Agilent 6550
gToF mass spectrometer coupled to an Agilent 1290 binary pump UPLC system. Most polar metabolite
analytes presented here were measured using an Agilent ZORBAX ExtendC18 1.8 um, 2.1 mm X 150 mm
reverse phase chromatography using tributylamine as an ion paring agent as previously described!. The
Agilent 6550 qToF was fitted with a dual AJS ESI source and an iFunnel with a gas temperature set to 150°C
at 14L/min and 45psig. Sheath gas temperature was set to 325°C at 12L/min. Capillary and nozzle voltages
were set to 2000V. Funnel conditions were changed from default to -30V DC, high pressure funnel drop -100V

and RF voltage of 110V, low pressure funnel drop -50V and RF voltage of 60V. Metabolite annotation in full
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scan data was achieved by matching exact mass and retention time to an in-house database. The retention
time and exact mass database were prepared by analyzing a collection of neat standards using the
chromatographic method described above and confirming retention times by MS/MS fragmentation of neat

standards.

Metabolite data analysis

Metabolite raw data was extracted directly from .d folders and integrated in profile mode using an R-based
software package developed by the Rosebrock Lab; ChromXtractorPro (personal correspondence K. Laverty
and A. Rosebrock, adam.rosebrock@stonybrook.edu). The metabolites whose intensity in all the study
samples fell at or below their intensity in the blank (consisting of resuspension buffer only) were excluded
from further analyses. Next, the integrated light (L) intensity of each metabolite was normalized to the
intensity of its internal heavy (H) standard. The L/H ratio minimized the potential stochastic variation in the
signal produced by the instrument due to changes in humidity and/or temperature, enabling the relative
guantitation and

comparative analysis of each metabolite. The analysis enabled the detection of 158 intracellular
metabolites!!!. Data corresponding to the intracellular levels of NAD, B-nicotinamide mononucleotide, ATP,

GTP, ITP, UTP were interrogated.

Gene expression validation studies

RNA was extracted from the cell pellets of human primary male and female PT cells using the RNAeasy Mini
Kit (Qiagen). After quantifying RNA concentration in a Nanodrop instrument (Thermo), 300-700ng of RNA
were retrotranscribed to cDNA using the High-Capacity cDNA Reverse Transcription Kit (Applied Biosystems).
Male and female PTs had been grown and serum-starved as above. In these cells, gene levels of KDM5D, UTY,
EIF1AY, EIF1AX, DDX3X, MT1F, MT1G, and MT1H were measured by real-time quantitative PCR using a Power
SYBR® Green PCR Master Mix reagent (Applied Biosystems) and normalized to RPL31. The fluorescent signal
was measured in a LightCycler® 480 Instrument Il (Roche). All primer sequences employed in this study are

summarized in Supplementary Table 10.
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Quantification and statistical analysis

Statistical tests were conducted within R and using GraphPad Prism 9 software. For all comparisons, normality
was determined using a Shapiro-Wilk test. Group-to-group differences were assessed using two-tailed
unpaired T tests for variables following a normal distribution, and Mann-Whitney tests for variables with a
non-parametric distribution. All p values below 0.05 were considered significant. Significance level for each
test is indicated in the figures. For each experiment, n is reported in the figure legends and represents the

number of samples.

Data availability
Count matrices from our complete data object are being submitted to NCBI GEO, and will be made publicly
available upon publication. Additional information and data are available from the authors upon reasonable

request, and in line with University Health Network (UHN) and UHN Research Ethics Board policies.

Code availability

We are preparing a Github repository for the custom scripts generated for data analysis.
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Supplementary Tables

A total of 10 supplementary tables are prepared for this manuscript. As some of the individual
tables are large and not in a format that can be easily incorporated into the manuscript, they are
not included with the pre-print PDF. If of interest, please reach out to corresponding authors to
discuss.

Supplementary Tables

Supplementary Table 1. ST1-Results of sex analyses. Results of genes identified with Varimax
rotated PCA, sPLS-DA, and differential gene expression analysis using MAST comparing male and
female proximal tubular cells.

Supplementary Table 2. ST2-Primary PT donor characteristics. Characteristics of the donors from
which primary proximal tubular epithelial cells were isolated for metabolic studies.

Supplementary Table 3. ST3-GSEA significant results. Summary of significant gene set enrichment
analysis terms between male and female proximal tubular cells.

Supplementary Table 4. ST4- DEGs LD NK & T cells Vs PBMC. Results of differential gene expression
analysis using Seurat comparing kidney NK and T lymphocytes to circulating lymphocytes from two
studies.

Supplementary Table 5. ST5-Cell cell interactions Omnipath. Results of aggregate cell cell
communication inference with consensus and individual scores across methods, with Omnipath
used as the reference interaction database

Supplementary Table 6. ST5-Cell cell interactions with complexes CellPhoneDB. Results of
aggregate cell cell communication inference with consensus and individual scores across methods,
with CellPhoneDB used as the reference interaction database

Supplementary Table 7. ST7-Patient characteristics. Characteristics of the study population.

Supplementary Table 8. ST8- CellRanger summaries of sequenced samples. CellRanger summaries
with sample metrics for each sequenced sample.

Supplementary Table 9. ST9- Curated cell annotation file. Curated marker gene list for cell type
annotations.

Supplementary Table 10. ST10- gPCR sequences. Primer sequences used for qPCR validation of sex
differences in PT cells.
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Supplementary Figure 1: Additional proportion plots of total kidney dataset.(a) Clustering of total combined
dataset of 27677 cells results in 23 clusters (b) Individual sample contribution to clustering, demonstrating that
clusters are comprised of cells captured from multiple donors and in most cases all 19 samples contribute to
each cluster. (¢) Cell cycle assignment of clusters, with no exceptional variability in cell cycle state across
clusters. (d) Distribution of sample preparation method (total homogenate versus CD45-positive magnetic bead
enrichment) across clusters. (e) Distribution of donor sex across clusters.
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Supplementary Figure 2. Heterogeneity within Proximal Tubular (PT) dataset. (a) Subclustering of PT
dataset yielded 6 clusters; PT6 is predominantly composed of cells from one donor: “Total6”. (b) Distribution of
sample preparation method, sex, and donor identity across the PT dataset; PT4 is composed of cells from
CD45-enriched samples. (¢) Stacked violin plots showing enrichment of dissociation stress markers in PT3. (d-
f) Stacked violin plots showing markers of the ‘scattered tubular cell’ and ‘failed PT repair’ population enriched
in PT5(d), PT3(e), and both PT3 and PT5(f). (g) Transcription factor analysis using CHEA3, which illustrates
the top 10 transcription factors predicted to regulate PT3, and separately, PT5 genes.
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Supplementary Figure 3. Heterogeneity in CTAL and Endothelial cell populations. (a) 5 CTAL clusters
and 4 endothelial clusters were identified. (b) Heatmap depicting expression of the marker genes of CTAL1-5.
(¢) CTAL2 and 4 are each chiefly comprised of cells from one donor (Total9 and CD45_9, respectively).
Selected marker genes of CLDN10-enriched CTAL1 (d) and CLDN16- enriched CTAL3 (e) populations,
respectively. (f) Bubble plot showing enrichment for specific endothelial cell markers in all subpopulations;
expression of peritubular capillary markers (PLVAP, TMEM88, DNASE1L3) in Endo1 and Endo3 respectively;
expression of afferent arteriole and vasa recta genes (SOX17, SERPINE2, CLDN5, CXCL12 and reduced KDR)
in Endo2; and expression of glomerular microvascular endothelial cell markers in Endo4 (EDH3, SOST and
TBX3).(g) Increased expression of extracellular matrix genes seen in Endo2 (characterised as afferent
arterioles and vasa recta). Of the two peritubular populations described (Endo1 and Endo3), Endo3 is shown
to have higher expression of vasodilators (PTGIS and NOS3) than Endo1. Endo4 illustrates expression of GJAS
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Supplementary Figure 4. Varimax PCA and sparse partial least squares discriminant analysis (sPLS-
DA) identifies sex differences in proximal tubular (PT) epithelial cells. (a) Top 100 genes (50 from each
end of the component) associated with varimax-rotated principal component 12 which revealed sex differences
in proximal tubule cells. (b) Plot of 80 genes that were selected as variables in the sPLS-DA classifier (Model
1) from all detected genes. (¢) Receiver operating characteristic (ROC) curve from Model 1 predict male and
female sex with accuracy of 98%. (d) Plot of 15 genes in Model 2 (using all detected genes except those
encoded on X or Y chromosomes as input) where 15 genes were selected as variables in the classifier. (e)
ROC curve from Model 2. (f) Barplot of classification accuracy using Model 1 versus Model 2 to classify PT
cells of the living donor data and of a validation dataset from Liao et al.20
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Supplementary Figure 5. Comparison of single nucleus RNA sequencing and single cell RNA
sequencing. (a) Data integration from a pilot sequencing experiment in which a single biopsy was divided and
subjected to scRNAseq and single nucleus RNAseq (snRNAseq). From the integrated data, PT cell clusters
were identified and analyzed. (b) Expression of PT cell marker genes used to identify clusters of PT cells in the
integrated datasets. (¢) Comparison of select genes from scRNAseq and snBRNAseq reveals that several key
genes exhibiting dichotomous expression across sexes as reported here are differentially captured by the two
sequencing techniques.
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Supplementary Figure 6. Sex differences in the glycolytic rate of proximal tubular (PT) cells. (a) The
extracellular acidification rate (ECAR) was monitored to assess the glycolytic metabolism of male and female
PT cells at baseline and after metabolic stress. To induce metabolic stress, the following sequence of drugs
was injected: 1uM oligomycin, 0.3uM FCCP, 100mM 2-DG, 1mM Rot/AA. (b) The basal glycolysis (p=0.063,
u=162), maximal glycolytic capacity (p=0.0004, t=3.832, df=42), and glycolytic reserve (p<0.0001, t=5.331,
df=42) of male and female PT cells were calculated from the ECAR curves in (a) (n=3 donors/sex; n=6-8
replicates/donor). Group-to-group differences were assessed using two-tailed unpaired t-test for variables
following a normal distribution, and Mann-Whitney tests for variables with a non-parametric distribution.
*p<0.05; ***p<0.001; ****p<0.0001. PT, proximal tubule; AUC, area under the curve; ECAR, extracellular
acidification rate; FCCP, p-trifluoromethoxy carbonyl cyanide phenyl hydrazone; 2-DG, 2-deoxyglucose; Rot,
rotenone; AA: antimycin A.
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Supplementary Figure 7. Additional immune cell phenotyping data. (a)Expression of immunoglobulin
heavy chain genes within the B cell cluster, showing low abundance of class-switched B cells in living donor
kidney. No IGHE transcripts were detected. (b) Very few plasma cells marked by high XBP1 and CD38
expression were identified. (¢) Pathway analysis summary for immune populations, indicating an enrichment in
cell-type specific pathways in support of cluster annotations. (d) Differential gene expression between two
clusters (MP2 and MP4) of CD16+ monocyte-like cells identified an enrichment in antigen presentation genes
in MP4, and differential expression of CX3CR1 versus CXCR4. (e) Expression of hemoglobin transcripts in the
CD45-enriched sequencing datasets, prior to any quality control thresholds or data cleanup steps. Sample
HKB28 had the highest abundance of cells positive for hemoglobin transcripts, suggesting more circulating cells

in this sample.
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1229
1230  Supplementary Figure 8. Annotation of lymphocyte populations. Additional feature plots used to annotate

1231 of lymphocyte cell types including general T cell markers and subset-specific markers of T resident memory, T
1232 effector memory, and T central memory cells, as well as markers of regulatory T cells, y8T cells, innate lymphoid
233 cells and B cells.
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235  Supplementary Figure 9. Additional supporting data for the identification of resident signatures in
1236  kidney lymphocytes. (a) No FOXP3 expression was noted on T cells, and TCRy3 staining validated the
1237  presence of y8T cells within healthy kidney. (b) Gating strategy for the identification of T helper subsets. (¢) Co-
1238  expression of CD69 and CD103, characteristic of Trm cells on CD8+ and CD4+ T cells and NK cells of the blood
1239  (grey, top row) versus kidney (blue, bottom row). (d) Expression of the chemokine CXCL16 in myeloid cells of
1240  the kidney supporting recruitment of CXCR6+ lymphocytes.
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243  Supplementary Figure 10. Identification of innate lymphoid cell and myeloid populations in healthy
1244 human kidney. (a) The majority of NK cells within kidney are CD564mCD16+, while (b) helper ILCs are present
1245  in very low abundance in kidney tissue. (¢) Predictive identification of CD569nCD16- NK cells, ILC3s, and
246  ILC2s within kidney immune transcriptomic data. (d) High expression of AREG encoding amphiregulin in kidney
1247  NKcells. (f) Gating strategy to remove lymphocytes from the population of interest. (f) Relative to blood, kidney
1248  tissue is enriched in CD16+ myeloid populations, and also allowed for identification of a CD14+ CD206+HLA-
1249 DR+ population likely representing MP1.
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Supplementary Figure 11. Comparison of sequencing data from nephrectomy versus living donor
kidney specimens. (a) Integrated UMAP of kidney immune cells highlighting the contributions of cells derived
from living donor versus nephrectomy tissue. (b) Within the T cell compartment, the activation marker NR4A1
(encoding Nur77) along with checkpoint molecules PDCD1 (encoding PD-1), CTLA4 and TIGIT were more
highly expressed in nephrectomy data. (c), NR4A1 percent positivity (p=0.0152, t=3.076, df=8) and MFI
(p=0.4206, u=8) on CD3+ T cells, PD-1 percent positivity (p=0.6905, u=10) and MFI (p=0.7024 t=0.3961 df=8)
on CD8+ T cells, CTLA-4 percent positivity (p=0.0541, t=2.256, df=8) and MFI (p=0.0851, t=1.964, df=8) on
CD4+ T cells and TIGIT percent positivity (p=0.2833, t=1.238, df=4) on CD3+ T cells were compared between
living donor and nephrectomy-derived T cells. (d) Representative plots of CTLA-4 on CD4+ T cells and PD-1
on CD8+ T cells of living donor and nephrectomy-derived cells. (e) NK cells exhibited similar trends at the
transcript level with higher NR4A1, AREG, and TIGIT gene expression in nephrectomy data. (f) While Nur77
protein was not differentially detected by percent positivity (p=0.5397, u=9) or MFI (p>0.999, u=12), AREG was
higher in living donor NK cells by percentage (p=0.0006, t=5.420, df=8) and MFI (p=0.0182, t=2.959, df=8), and
TIGIT (p=0.0015, t=7.728, df=4) was more highly detected on nephrectomy NK cells as shown in representative
plots in g. (h) CD45+ cell elevation in nephrectomy samples did not reach significance (p=0.1129, t=1.780,
df=8), however, increased immune cell (CD45+) abundance was observed in 3/5 nephrectomy samples tested,
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with high donor heterogeneity in immune cell abundance was observed, indicative of greater differences in
tissue microenvironment between nephrectomy specimens. Group-to-group differences were assessed using
two-tailed unpaired t-test for variables following a normal distribution, and Mann-Whitney tests for variables with
a non-parametric distribution. *p<0.05; **p<0.01;***p<0.001; ****p<0.0001. Neph= nephrectomy, MFI=Median
Fluoresence Intensity.
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Supplementary Figure 12. Annotation of myeloid populations. Additional feature plots of myeloid cells
supporting cell type annotations, highlighting general myeloid lineage markers, expression of scavenger
receptors, and markers of dendritic cells, monocytes and macrophages.
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Supplementary Figure 13. Additional supporting plots for macrophage cell state identification. (a) Based
on our identification of 5 clusters of myeloid lineage cells in living donor kidney, we used SingleCellNet to
classify cells from previously published datasets34546into our 5 cluster framework. Most cells captured in prior
studies were classified as MP5 (CD14+ monocytes), the smallest cluster in living donors; while MP1 (circled)
the largest cluster in living donor data was scarcely represented in previously published data. (b) Merging the
three datasets specified in (a) with our living donor dataset confirmed 5 cell states (CS) where living donor data
comprised the majority of CS2. A volcano plot depicts genes enriched in CS2 versus the remaining four cell
states, supporting that CS2 represents a resident alternatively-activated tissue macrophage population that is
uniquely enriched in living donor kidney tissue. (¢)Slingshot pseudotime analysis supporting the annotation of
CS1 as a transitional myeloid population across two suggested trajectories which placed CS2 and CSO0 as the

potential trajectory endpoints.
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Supplementary Figure 14. Integration of PBMCs and kidney immune single-cell data. (a) scRNAseq data
from living donor kidney immune cells and PBMCs# were integrated using Harmony. (b) Feature plots
demonstrating expression of CD3E, NKG7, CD79A, and CD68 used to annotate major immune populations in
the combined dataset. (¢) Annotation of major immune populations including T cells, NK cells, B cells and
myeloid cells in the integrated PBMC and kidney immune dataset. Feature plots showing gene expression in
PBMCs versus living donor kidney data of marker genes used for validation at the protein level including
(d)CXCR4, (e)ITGB1, (f)CD69, (g)CXCR6, (h)ITGA4 and (i)ITGAE. (j) Differential expression analysis of the T
cells and NK cell clusters identifies genes which are upregulated in kidney lymphocytes and may represent
kidney-adapted gene expression of these cells.
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Supplementary Figure 15. Optimization of kidney tissue digestion protocol. (a) Final experimental protocol
for generating single-cell RNA sequencing data from living donor kidney. (b) Workflow of options tested in
determining the optimal digestion method. (c) Using mouse tissue, a commercial Miltenyi kidney digestion kit
was compared to a collagenase and neutral protease mixture to compare yield and viability, with collagenase
and neutral protease demonstrating superior yield and comparable viability. (d) Using human nephrectomy
tissue, Liberase was compared with collagenase and neutral protease, and flow cytometry was used to
determine viability and cell phenotype, where it was determined that collagenase/neutral protease preserved
key surface markers that appear to be cleaved by Liberase. (e) Fractions of dissociated human nephrectomy
were centrifuged at different speeds to determine cell viability, which was reduced beyond speeds of 400 x g.
(f) Using markers of key cell populations, by flow cytometry the contribution of different cell populations to
each fraction by differential centrifugation determined that cell types were captured proportionally up to
speeds of 400 x g. (g) To optimize yield and preservation of parenchymal cell viability, digestion in either HBSS
or RPMI medium with collagenase and neutral protease was tested alongside physical methods of dissociation
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319 including using GentleMACs, a scalpel and a small volume of dissociation medium (n=2), and a scalpel with
320  incubation with constant agitation in a shaker (n=2). Over all methods, RPMI preserved parenchymal viability
1321 better than HBSS, while overall the greatest viability was in using a scalpel and small volume of dissociation
322  medium. (h) Viability of immune (CD45%) and parenchymal (CD45") populations across physical methods and
1323 centrifuge speeds to test whether the relative abundance of cell population viability changes with more
1324  aggressive physical dissociation, where generally more gentle dissociation preserved parenchymal cell viability
1325 whereas more aggressive physical dissociation improved yield of immune cells. Different Gentlemacs™Tissue
326  dissociator settings named based on organ optimized for were tested (liver, intestine, etc). No clear change in
327  fractionation was observed in differential centrifugation of the samples. n=1 unless otherwise specified. (i)
1328 Flow cytometric analysis of kidney parenchymal cells, depicting the capture of live proximal tubular epithelial
1329  cells (CD10*CD13*) and endothelial cells (CD31*HLADR*).
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333  Supplementary Figure 16. Ambient RNA contamination. Feature plots showing the expression of UMOD, a
1334  gene specific to cTAL/LOH cells, with widespread low level expression present across all clusters prior to
335  ambient RNA correction and more biologically appropriate expression patterns after ambient RNA correction,
L1336  demonstrated with a sample dataset (Total9).
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