

1 **Title**

2 Identification of novel Ebola virus inhibitors using biologically contained virus

3

4 **Authors**

5 Bert Vanmechelen¹, Joren Stroobants², Winston Chiu², Joost Schepers², Arnaud Marchand³, Patrick

6 Chaltin^{3,4}, Kurt Vermeire² and Piet Maes^{1,*}

7

8 **Affiliations**

9 ¹ KU Leuven, Department of Microbiology, Immunology and Transplantation, Rega Institute,

10 Laboratory of Clinical and Epidemiological Virology, Leuven, Belgium.

11 ² KU Leuven, Department of Microbiology, Immunology and Transplantation, Rega Institute,

12 Laboratory of Virology and Chemotherapy, Leuven, Belgium.

13 ³ CISTIM Leuven vzw, Gaston Geenslaan 2, 3000 Leuven, Belgium

14 ⁴ Centre for Drug Design and Discovery (CD3), KU Leuven, Gaston Geenslaan 2, 3000 Leuven, Belgium

15

16 *Corresponding author

17 Piet.maes@kuleuven.be

18

19

20 **Abstract**

21 Despite recent advancements in the development of vaccines and monoclonal antibody therapies for
22 Ebola virus disease, treatment options remain limited. Moreover, management and containment of
23 Ebola virus outbreaks is often hindered by the remote nature of the locations in which the outbreaks
24 originate. Small-molecule compounds offer the advantage of being relatively cheap and easy to
25 produce, transport and store, making them an interesting modality for the development of novel
26 therapeutics against Ebola virus disease. Furthermore, the repurposing of small-molecule compounds,
27 previously developed for alternative applications, can aid in reducing the time needed to bring
28 potential therapeutics from bench to bedside. For this purpose, the Medicines for Malaria Venture
29 provides collections of previously developed small-molecule compounds for screening against other
30 infectious diseases. In this study, we used biologically contained Ebola virus to screen over 4,200 small-
31 molecule drugs and drug-like compounds provided by the Medicines for Malaria Venture (i.e., the
32 Pandemic Response Box and the COVID Box) and the Centre for Drug Design and Discovery (CD3, KU
33 Leuven, Belgium). In addition to confirming known Ebola virus inhibitors, illustrating the validity of our
34 screening assays, we identified eight novel selective Ebola virus inhibitors. Although the inhibitory
35 potential of these compounds remains to be validated in vivo, they represent interesting compounds
36 for the study of potential interventions against Ebola virus disease and might serve as a basis for the
37 development of new therapeutics.

38 **Introduction**

39 Ebola virus (EBOV), previously known as Zaire Ebola virus, was first discovered in 1976 in the
40 Democratic Republic of the Congo (previously called Zaire) and has since then caused several disease
41 outbreaks, predominantly in central Africa [1,2]. Ebola virus disease (EVD) is a zoonotic hemorrhagic
42 fever that, once introduced into humans, spreads from human-to-human via direct contact [3]. The
43 incubation time varies from 2-21 days, after which symptoms develop suddenly, most frequently
44 including fever, fatigue, headache, a sore throat and muscle pain, followed by vomiting, rash and
45 diarrhea [4]. The average case fatality rate is 65%, although this varies strongly from outbreak to
46 outbreak [5]. While vaccines have been developed that have been successfully used to limit the spread
47 of EBOV outbreaks, treatment options for infected individuals are limited [6,7]. The current
48 recommended treatment of Ebola patients is focused on early supportive care and symptomatic
49 treatment, although a recent clinical trial found early-administered single-dose injections of two
50 monoclonal antibodies, REGN-EB3 (Inmazeb) and MAb114 (Ebanga), to offer improvements in overall
51 mortality [8]. A number of small-molecule compounds have also been evaluated as potential
52 treatments for EVD, but none have proven efficacious in humans so far, potentially partly attributable
53 to difficulties in establishing scientifically sound clinical trials in the field [9,10]. Even the nucleoside
54 analogue remdesivir, which shows strong *in vitro* inhibition of EBOV and other negative-stranded RNA
55 viruses, and which has been shown to efficiently protect non-human primates from EBOV challenge,
56 failed to reduce mortality in the abovementioned trial [8,11,12]. However, it should be noted that only
57 one dosing regimen was tested in this trial.

58 Even though the recent availability of efficacious vaccines and monoclonal antibodies have somewhat
59 improved the outlook for future outbreak management, there remains a strong need for the discovery
60 and development of more effective treatment options. However, because of the high risk these viruses
61 pose, resulting in their classification as biosafety level 4 (BSL-4) agents, research with infectious virus
62 is restricted to a limited number of BSL-4 facilities, hindering the rapid development of additional

63 countermeasures [13]. To circumvent this need for BSL-4 laboratories, several virus alternatives have
64 been developed that allow researchers to study EBOV in lower biosafety settings, including
65 minigenome systems and virus-like particle systems [14]. Despite the limitations and drawbacks each
66 of these systems has, their ability to be used in standard BSL-2 laboratories has resulted in these
67 systems becoming commonly used tools for EBOV research and they have significantly boosted our
68 knowledge and understanding of EBOV biology and outbreak management.

69 An alternative approach to studying EBOV in lower biosafety laboratories is by using 'biologically
70 contained EBOV'. In 2008, Peter Halfmann and colleagues showed that it is possible to confine EBOV
71 to a specific cell line by removing one of the essential genes (VP30) from the virus genome and
72 providing the missing protein in trans in the cell line of choice [15]. This results in the production of
73 EBOV that is phenotypically near indistinguishable from wild-type virus, but which is safe to handle.
74 Based on this principle, we created a biologically contained EBOV system in which the virus is confined
75 to cell lines stably transduced with a lentiviral construct expressing EBOV VP30, while the VP30 gene
76 in the virus genome is replaced by an eGFP reporter gene.

77 In this study, we used this system to screen two large repurposing compound libraries for their activity
78 against EBOV. The first set consists of two compound libraries that are made freely available by the
79 Medicines for Malaria Venture (MMV), the Pandemic Response Box and the COVID box, totaling 560
80 compounds. The Pandemic Response Box is a set of "400 diverse drug-like molecules active against
81 bacteria, viruses or fungi" (MMV, The Pandemic Response Box, www.mmv.org/mmv-open/pandemic-response-box), while the COVID Box consists of 160 compounds "with known or predicted activity
82 against the coronavirus SARS-CoV-2" (MMV, The COVID Box, www.mmv.org/mmv-open/covid-box)[16,17]. The second set is an in-house library provided by the Centre for Drug Design and Discovery
83 (CD3, KU Leuven, Belgium), comprising more than 3,600 repurposing compounds. In addition to
84 confirming known EBOV inhibitors, we identified several novel *in vitro* EBOV inhibitors, opening up
85 new avenues for the development of novel EBOV therapeutics.

88 **Materials and methods**

89 *Cell lines*

90 Human embryonic kidney cells (HEK293FT; Thermo Fisher Scientific), Human hepatocellular carcinoma
91 cells (Huh-7; Thermo Fisher Scientific) and African green monkey kidney cells (Vero E6; Vero C1008,
92 ATCC) were passaged in DMEM (Thermo Fisher Scientific), supplemented with 10% FBS (Biowest) and
93 5% Penicilline-Streptomycin-Glutamine (Thermo Fisher Scientific). Additional supplements were 0.2%
94 Amphotericin B (Thermo Fisher Scientific) and 2 µg/ml gentamicin (Thermo Fisher Scientific) for the
95 Vero E6 cells, and 1% sodium bicarbonate (Thermo Fisher Scientific) and 1% NEAA (Thermo Fisher
96 Scientific) for the Huh-7 cells. During assays, serum concentration was lowered to 2% for Vero E6 cells
97 and 5% for Huh-7 cells.

98 *Plasmids*

99 pCAGGS plasmids encoding the EBOV L, NP, VP30 and VP35 proteins, as well as a T7-3E-Luc-5E
100 minigenome plasmid (all based on the Mayinga strain), were kindly provided by Prof. Stephan Becker.
101 A plasmid encoding an eGFP-containing EBOV antigenome was generated through assembly of
102 fragments using the NEBuilder HiFi DNA assembly cloning kit (New England Biolabs (NEB)). The vector
103 backbone, T7 promoter, virus leader, virus trailer, HdVRz and T7 terminator sequences were derived
104 from the T7-3E-Luc-5E vector. Fragments covering the NP and L genes were derived from the
105 corresponding pCAGGS helper plasmids. The rest of the antigenome, from the intergenic region in
106 front of the VP35 gene to the intergenic region behind the VP24 gene, with an eGFP gene replacing
107 the VP30 coding region, was synthesized in a pUC57 vector by GenScript Biotech based on EBOV strain
108 Mayinga (GenBank: AF272001). This fragment was digested with NotI-HF and SmaI (NEB), while all
109 other fragments were amplified by PCR using the Q5 HotStart High-Fidelity 2X master mix (NEB). All
110 plasmids were sequence-verified with Sanger sequencing (Macrogen Europe, Amsterdam, The
111 Netherlands) before use.

112 *Lentiviral constructs*

113 Cell lines expressing VP30 were made by lentiviral transduction. Using the NEBuilder HiFi DNA
114 assembly cloning kit (NEB), EBOV VP30 was inserted into a pLenti6.3 vector (Thermo Fisher Scientific),
115 in which the CMV promoter was replaced by an SFFV promoter derived from a pHR-SFFV-dCas9-BFP-
116 KRAB vector (www.addgene.org, Cat. #46911). An internal ribosomal entry site (IRES) cassette was
117 inserted between the VP30 gene and the blasticidin resistance marker by restriction enzyme digestion
118 of the vector with Spel-HF and Sall-HF (NEB), and digestion of a pEF1a-IRES vector
119 (www.takarabio.com, Cat. # 631970) with NheI-HF and Sall-HF (NEB). Fragments were ligated with the
120 Quick Ligation kit (NEB).

121 *Lentiviral transduction*

122 For lentivirus production, 50-70% confluent HEK293FT cells in T-25 flasks were transfected with
123 Lipofectamine LTX & PLUS Reagent (Thermo Fisher Scientific). LTX solution and transfection mixes
124 containing 3 µg of lentiviral EBOV vector, 5.83 µg of psPAX2 vector, 3.17 µg of pMD2.G vector and 12
125 µL PLUS reagent were prepared in serum-free Opti-MEM (Thermo Fisher Scientific). Following a five-
126 minute incubation at room temperature, solutions were mixed and incubated for an additional 20
127 minutes. Cell medium was replaced by 5 mL of fresh medium, after which transfection complexes were
128 added, followed by a 21-hour incubation at 37°C. Next, sodium butyrate (10 mM) was added and cells
129 were incubated for an additional 3 hours, after which the medium was replaced with 5 mL of fresh
130 medium. Virus-containing supernatants were harvested into 15 mL conical tubes 24 hours after sodium
131 butyrate addition and centrifuged at 2000g for 15 minutes at 4°C to pellet cell debris. Transduction of
132 cell lines with the harvested lentivirus was done according to the ViraPower HiPerform T-Rex Gateway
133 Expression System (Thermo Fisher Scientific) manufacturer's protocol. Six µg/ml Polybrene (Sigma-
134 Aldrich, Saint-Louis, MO, USA) was used to increase transduction efficiency. Following transduction,
135 cell medium was supplemented with 10 µg/ml blasticidin (InvivoGen) during passaging.

136 *EBOV rescue*

137 Huh-7 cells transduced with EBOV VP30 (Huh-7-EBOV-VP30) were seeded in a 6-well plate (300.000
138 cells/well). Following overnight incubation, the cells were transfected with 1000 ng EBOV antigenome,
139 1000 ng T7 polymerase, 1000 ng pCAGGS-EBOV-NP, 2000 ng pCAGGS-EBOV-L, 500 ng pCAGGS-EBOV-
140 VP35 and 500 ng pCAGGS-EBOV-VP30, using 3:1 Transit-LT1 Transfection Reagent (Mirus Bio). Twenty-
141 four hours later, the medium was replaced by fresh medium. Six days post-transfection, cells were
142 trypsinized and mixed with fresh Huh-7-EBOV-VP30 cells in a T-25 flask. After three days, supernatant
143 from flasks showing widespread eGFP expression was collected and used to infect Vero E6-EBOV-VP30
144 cells seeded one day prior in a T-25 flask. After six days, the supernatant was used to infect additional
145 T-75 flasks of Vero E6-EBOV-VP30 cells, from which, after seven days, the supernatant was collected,
146 centrifuged at 17.000g for three minutes and subsequently aliquoted and stored at -80°C.

147 *RNA extraction and nanopore sequencing*

148 RNA was extracted from 100 µl of virus stock using a KingFisher Flex (Thermo Fisher Scientific) in
149 combination with the MagMax Viral Pathogen kit II (Thermo Fisher Scientific), according to the
150 manufacturer's instructions. RNA was converted to cDNA and amplified by Sequence-Independent
151 Single Primer Amplification as described by Greninger et al. [18]. The resulting cDNA was prepared for
152 nanopore sequencing using the SQK-LSK110 kit (Oxford Nanopore Technologies (ONT), Oxford, UK)
153 with the EXP-NBD114 barcoding expansion (ONT). The resulting library was loaded on a R9.4.1 flow
154 cell and run on a GridION. Basecalling and barcode demultiplexing was done using the ont-guppy-for-
155 gridion v4.2.3. The resulting reads were mapped against the plasmid design used for generation of the
156 antigenome construct using Minimap2 v2.17-r941, followed by Medaka v1.0.1 for consensus polishing
157 and variant calling [19].

158 *Virus titration*

159 Vero E6-EBOV-VP30 cells were seeded in 6-well plates. Once confluent, cell medium was removed and
160 200 µl virus dilution was added to each well. A ten-fold dilution series, covering ten dilutions (1x10^-1
161 - 1x10^-10) was used, with duplicate repeats for each concentration. Plates were kept in an incubator

162 (37°C, 5% CO₂), gently swirling the plates every 15 minutes. After one hour, 3 ml freshly prepared
163 agarose-medium was added to each well. Agarose-medium was made by autoclaving a 17.6 µg/ml
164 SeaKem ME agarose (Lonza, Basel, Switzerland) dilution and heating it to 65°C. Once heated, the
165 agarose was added to preheated (37°C) 2X Basal Medium Eagle without Earle's salts (Thermo Fisher
166 Scientific), supplemented with 10% FBS (Biowest), 200 mM L-glutamine, 1% NEAA, 1% Penicillin-
167 Streptomycin, 1% Gentamicin and 0.2% Fungizone (all Thermo Fisher Scientific), in a 1:2 ratio. After
168 cooling down to room temperature, plates were moved to an incubator for five days. Read-out was
169 performed by counting the amount of eGFP+-cell clusters.

170 *Antiviral screening assay*

171 Compounds, spotted in 96-well plates at 2 or 10 mM, were gifted to us by MMV and CD3. Intermediary
172 compound dilutions were made in complete cell medium directly before adding the compound to 96-
173 well plates (CELLSTAR, Greiner-Bio, Vilvoorde, Belgium) in which Vero E6-EBOV-VP30 cells had been
174 seeded one day prior at 20,000 cells/well. For the MMV compound set, a dilution series of four
175 concentrations was tested for each compound, starting at 50 µM and diluting four-fold each time,
176 allowing twenty-two compounds to be tested per plate. For the CD3 set, two concentrations (1 and 10
177 µM) were tested for each compound on separate plates. Following compound addition, 200 plaque
178 forming units (PFU) virus dilution was added to each well. Medium without virus was added to the
179 negative controls. Six days post-infection, cell medium was replaced by fresh medium supplemented
180 with 5 µM Hoechst 33342 nucleic acid stain (Thermo Fisher Scientific) as a background stain for high-
181 content imaging analysis. Imaging and image analysis was done using an Arrayscan XTI (Thermo Fisher
182 Scientific) and a custom Cellomics SpotDetector BioApplication protocol, as described previously [20].
183 Further data analysis was done using Genedata Screener V17.05-Standard. GraphPad Prism v8.2.0 was
184 used for graph plotting.

185 *Hit confirmation*

186 To confirm compound activity observed in the initial screening assays, additional compound was
187 acquired. For the MMV compounds, fresh DMSO stocks were prepared from powder provided by
188 Evotec (Hamburg, Germany), while the CD3 compounds were provided as DMSO solutions. Hit
189 confirmation using these fresh stocks was done by testing each compound in triplicate in Vero E6-
190 EBOV-VP30 cells over a two-fold dilution series of nine dilutions, starting at 100 μ M. Cell and virus
191 quantities were identical to the ones used in the screening assay and plate handling procedures and
192 data read-out were performed as described above. In addition to Vero E6-EBOV-VP30 cells, a subset
193 of compounds was also tested in Huh-7-EBOV-VP30 cells. In this cell line, a two-fold dilution series of
194 eight dilutions, starting at 50 μ M, was used. To allow adequate high-content imaging, Huh-7-EBOV-
195 VP30 cells were seeded at 10,000 cells/well and infected with 0.2 PFU EBOV- Δ VP30-eGFP per cell.
196 Assay read-out was performed four days post-infection. Other plate handling and data processing
197 procedures were performed as described above.

198 **Results**

199 *Rescue and characterization of biologically contained EBOV*

200 To set up a screening platform for EBOV inhibitors using infectious virus without requiring access to a
201 BSL-4 facility, we created a biologically contained EBOV system similar to the one described by
202 Halfmann et al. [15]. EBOV VP30-expressing cell lines were generated by lentiviral transduction of Vero
203 E6 and Huh-7 cells with a lentiviral vector in which the VP30 gene was coupled to a blasticidin
204 resistance marker by means of an IRES. Rescue of biologically contained EBOV was then attempted by
205 transfecting the selected Huh-7-EBOV-VP30 cells with a VP30-deficient EBOV antigenome containing
206 an eGFP gene, under the control of a T7 polymerase promoter. Six days post-transfection with the
207 antigenome construct and the necessary support plasmids, extensive cell death was observed in all
208 wells. Only in one of the Huh-7-EBOV-VP30 wells, one cluster (\sim 30 cells) of green cells could be
209 observed. These cells were collected and mixed with fresh Huh-7-EBOV-VP30 cells. After 72 hours, the
210 medium of these cells was collected and used to infect Vero E6-EBOV-VP30 cells, resulting in

211 widespread eGFP-expression six days post-infection. Supernatant from these cells was used to infect
212 additional flasks of Vero E6-EBOV-VP30 cells, to generate a large stock of EBOV-ΔVP30-eGFP virus.
213 Nanopore sequencing of this stock revealed five acquired mutations compared to the construct from
214 which it was derived: two non-synonymous mutations in the NP gene (T928C -> S524F, G2551A ->
215 F648L) and three mutations in the L gene (G14038A -> A820T, G14187A (silent), G18138A -> M2186I).

216 To assess the usability of EBOV-ΔVP30-eGFP for compound screening, we determined the minimum
217 infectious dose needed to obtain widespread eGFP expression in Vero E6-EBOV-VP30 cells seeded in
218 96-well plates. A loading dose of 200 PFU/well, corresponding to 0.01 PFU/cell, was found to yield
219 >85% eGFP-positive cells six days post-infection in all replicates, while lower doses failed to uniformly
220 infect all cells or replicates (Figure 1A). To evaluate the growth kinetics of all virus isolates in greater
221 detail, virus growth was observed daily over a period of six days, using the minimal titer required for
222 optimal growth (0.01 PFU/cell), as well as a 10-fold higher dose (0.1 PFU/cell). In both conditions, initial
223 eGFP expression could be observed already after one day, increasing rapidly until day 4-6, with higher
224 titers yielding faster virus propagation, as evidenced by uniform eGFP expression of the infected cells
225 (Figure 1B). When using non-transduced Vero E6 cells, no eGFP expression was observed, regardless
226 of the used loading dose, confirming the confinement of EBOV-ΔVP30-eGFP to the VP30-transduced
227 Vero E6 cells. To further validate this confinement, the virus was passaged an additional six times on
228 Vero E6-EBOV-VP30 cells. Supernatants from each passage was used to infect fresh transduced and
229 untransduced Vero E6 cells. For each passage, >95% eGFP expression could be observed in all
230 replicates of the transduced cells six days post-infection, while no eGFP expression was ever observed
231 in untransduced cells.

232 *Compound screening*

233 Once validated for safety, our EBOV-ΔVP30-eGFP assay was subsequently used to screen >4,000
234 compounds for their potential as EBOV inhibitors. 560 compounds were obtained from MMV as part
235 of the Pandemic Response Box and the Covid Box, while an additional 3,681 compounds were provided

236 by CD3. High-content imaging was used to simultaneously assess antiviral activity and toxicity. For
237 practical reasons, the initial screens of the MMV and CD3 libraries were performed separately, using
238 two different plate layouts (Figure 2). Both the Pandemic Response Box (400 compounds) and the
239 COVID Box (160 compounds) were initially screened over a 1:4 dilution range of four concentrations,
240 starting at 50 μ M, or 10 μ M if the compounds were delivered at a lower starting concentration. This
241 initial screen had an average Z'-factor of 0.89, calculated by comparing the means and deviations of
242 the negative and positive controls of each plate using the following formula: $Z' = 1 - [(3\sigma_{C_+} + 3\sigma_{C_-}) / (\mu_{C_+} - \mu_{C_-})]$ [21]. Sixteen compounds (2.9%) showed a decrease in relative virus growth of >40% whilst
243 maintaining >40% cell viability in at least one concentration tested. These compounds were retested
244 in duplicate over a wider concentration range to rule out false positives. In this confirmation assay,
245 two compounds failed to show significant virus inhibition and three compounds were insufficiently
246 selective (estimated selectivity index (SI) <3). These five compounds were excluded from further
247 analysis. The CD3 compound library consisted of 3,681 compounds selected from
248 marketed/withdrawn drugs, compounds currently in clinical trials and annotated bioactive molecules.
249 All compounds were pre-spotted in 96-well plates at a stock concentration of 10 mM. Initial screening
250 of these compounds was performed at working concentrations of 1 and 10 μ M. The global Z'-factor
251 for this screen was 0.87. Sixty-one compounds (1.7%) that showed more than 80% inhibition of eGFP-
252 expression compared to the control while simultaneously showing less than 20% reduction in cell
253 number were selected as preliminary hits (Figure 3). Comparably to the preliminary hits of the MMV
254 screen, these 61 compounds were retested in duplicate over a wider concentration range to rule out
255 false positives. Twenty-one compounds that showed an SI >5 and an IC₅₀ <15 μ M, in this confirmation
256 assay, were retained for further analysis.

258 *Hit validation*

259 New aliquots of the antivirals in the form of compound powder (MMV) or DMSO solution (CD3) were
260 acquired to confirm the activity and selectivity of the eleven MMV and twenty-one CD3 compounds

261 that had demonstrated selective inhibition of EBOV replication. Triplicate testing of the new compound
262 stocks over a range of nine concentrations was used to accurately determine IC₅₀, CC₅₀ and SI values
263 for each compound (Table 1). Twenty-seven of the thirty-two preliminary hits were confirmed to
264 inhibit EBOV-ΔVP30-eGFP replication, although several compounds seemed to be only moderately
265 selective. The confirmed hits include two duplicates, itraconazole and retapamulin, which were
266 present in both the MMV and CD3 compound libraries. Four of the five MMV compounds that failed
267 to be confirmed (pimozide, apremilast, dabrafenib and fluconazole) were also present in the CD3
268 compound library but had not been picked up as hits in the CD3 screen, confirming their lack of
269 potency. Comparably, one of the weaker hits of the CD3 compounds (benztropine) was also present in
270 the MMV library but had failed to meet the criteria for initial hit selection. The fourteen compounds
271 that showed the highest SI (all >7) in Vero E6 cells, including the duplicates of itraconazole and
272 retapamulin, were retested using Huh-7-EBOV-VP30 cells (Table 1; Figure 4). The selective inhibition
273 (SI >3) of EBOV-ΔVP30-eGFP replication was confirmed in Huh-7 cells for most compounds, with the
274 exception of itraconazole, MMV1782214 and doramapimod. Interestingly, dalbavancin and
275 benzyloxycarbonyl-phenylalanine-alanine-fluoromethylketone (z-FA-FMK) were notably more potent
276 in Huh-7 cells, without apparent toxicity. The selective activity of apilimod and diphyllin in Huh-7 cells
277 could not be accurately assessed because both their IC₅₀ and CC₅₀ values fell (almost) outside the tested
278 concentration range.

279 **Discussion**

280 Despite recent advancements in the search for EBOV therapeutics, no small-molecule compounds are
281 licensed to treat EBOV infections [9]. However, small-molecule compounds are generally easy and
282 cheap to produce, transport and store, making them interesting candidates for the treatment of
283 patients, especially in remote locations [22,23]. Additionally, because many small-compound libraries
284 have already been developed for a variety of applications, the repurposing of existing compounds
285 forms an interesting research avenue for the rapid identification and implementation of potential

286 antivirals. In this study, we optimized a biologically contained EBOV assay and used it to screen the
287 MMV Pandemic Response box and COVID Box, two such libraries of small-molecule compounds with
288 drug-like characteristics that have been independently developed for the antimicrobial treatment of
289 various infections [16,17]. Additionally, we screened a large in-house repurposing collection, provided
290 by CD3. In total, 4,241 compounds from these three libraries were tested for their anti-EBOV potential.
291 Thirty unique compounds were retained after the initial screens, twelve of which were ultimately
292 found to profoundly inhibit EBOV- Δ VP30-eGFP replication with an SI >7 in at least one of the cell lines
293 tested.

294 Four of the most active compounds, remdesivir, apilimod, diphyltin and dalbavancin, were previously
295 identified as EBOV inhibitors [24,25]. Remdesivir is an adenosine analogue monophosphoramidate
296 prodrug that is known to inhibit the polymerase activity of many mononegaviruses, including members
297 of the families *Pneumoviridae*, *Paramyxoviridae* and *Filoviridae* [11]. It is also a known inhibitor of
298 coronaviruses, including severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) [26,27]. In
299 addition to showing excellent *in vitro* activity against filoviruses, remdesivir has been reported to be
300 an effective post-exposure treatment for EBOV infection *in vivo*, as it was found to ameliorate disease
301 symptoms and improve survival rates in a non-human primate model [12]. However, as mentioned
302 above, despite showing excellent *in vitro* and *in vivo* anti-EBOV potential, remdesivir failed to improve
303 the survival rates of EVD patients during a clinical trial carried out during the 2018-2020 EBOV outbreak
304 in the Democratic Republic of the Congo [8]. Furthermore, also for the treatment of COVID-19, caused
305 by SARS-CoV-2, the benefit of remdesivir is heavily contested [28-31]. Unlike remdesivir, the potential
306 of apilimod as an EBOV inhibitor has not yet been evaluated *in vivo*. Conversely, *in vitro*, apilimod has
307 been shown to potently inhibit EBOV replication in Vero E6, Huh-7 and primary human macrophage
308 cells [24]. Apilimod was first identified as an inhibitor of Toll-like receptor-mediated interleukin-12/-23
309 signaling and has been evaluated as a potential anti-inflammatory drug for the treatment of Crohn's
310 disease, rheumatoid arthritis and psoriasis, albeit without significant clinical success [32-34]. Later
311 research showed that apilimod works by inhibiting phosphatidylinositol-3-phosphate 5-kinase

312 (PIKfyve), a lipid kinase involved in maintaining endosome morphology and ensuring endosome
313 maturation [35]. By inhibiting PIKfyve and preventing endosome maturation, apilimod is believed to
314 block EBOV entry, as endosome maturation is a crucial process needed to allow the EBOV GP to be
315 cleaved by cathepsins L and B, exposing the GP receptor-binding domain and enabling binding of the
316 EBOV entry receptor NPC1 [36,37]. Because it is well tolerated in humans and targets a rather unique
317 part of the virus life cycle, apilimod is an interesting candidate to be part of combination therapies for
318 the treatment of EBOV, but future research will first need to confirm its *in vivo* efficacy and clinical
319 benefit. Comparable to apilimod, diphyllyn and its derivatives interfere with EBOV entry by preventing
320 endosome maturation [38]. Diphyllyn is an inhibitor of vacuolar-type ATPase (V-ATPase), which
321 hydrolyses adenosine triphosphate and simultaneously transports protons across cellular membranes,
322 resulting in endosome acidification [39]. Lastly, dalbavancin, a glycopeptide antibiotic primarily used
323 for the treatment of skin and soft tissue infections, is known to inhibit cellular entry of many different
324 viruses, including echovirus 1, severe acute respiratory syndrome coronavirus, Middle East respiratory
325 syndrome-related coronavirus and EBOV [40-42]. Unlike apilimod and diphyllyn, which target
326 endosome maturation, dalbavancin prevents virus entry by direct inhibition of cathepsin L [42]. In the
327 case of EBOV, this results in the GP being kept in its pre-cleaved state, rendering it unable to bind NPC1
328 [43].

329 In the MMV compound library, three additional compounds, itraconazole, retapamulin and the yet-
330 unnamed MMV1782214 (ChEMBL93139), were found to selectively inhibit EBOV- Δ VP30-eGFP
331 replication. The former two compounds were also present and identified as hits in the CD3 library.
332 Itraconazole, the top hit in both compound libraries, is a triazole derivative that works as a broad-
333 spectrum antifungal agent [44]. Although it can cause mild gastrointestinal disturbances, cardiotoxicity
334 and hepatotoxicity, itraconazole is generally well tolerated and it is used for the treatment of systemic
335 (histoplasmosis, aspergillosis, blastomycosis) and superficial (onychomycosis) fungal infections [45]. In
336 Vero E6 cells, itraconazole shows anti-EBOV activity in the sub-micromolar range without apparent
337 toxicity. Conversely, in a hepatocyte cell line (Huh-7), itraconazole shows significant toxicity and no

338 selective inhibition of EBOV replication. In addition to its antifungal properties, recent research has
339 identified itraconazole as a potential cancer treatment and as an inhibitor of several viruses, including
340 influenza virus, enteroviruses and coronaviruses [46-50]. The mechanisms for these newly discovered
341 functions appear unrelated to its antifungal properties. Although not fully understood yet, itraconazole
342 affects angiogenesis through indirect inhibition of the mechanistic Target of Rapamycin (mTOR), an
343 important oncogene that regulates cell growth and proliferation [51]. One of the mechanisms behind
344 the inhibition of mTOR activity by itraconazole appears to be dysregulation of cholesterol trafficking,
345 which results in endosomal cholesterol accumulation [51,52]. This disturbance of cellular cholesterol
346 homeostasis in itself is believed to contribute to the antiviral properties of itraconazole, by preventing
347 virus escape from the endosome and simultaneously interfering with virus egress [49]. Interestingly,
348 the mechanism behind impaired cholesterol trafficking has been shown to be a direct interaction
349 between the cholesterol transporter NPC1 and itraconazole [51,53]. NPC1 is known to be an
350 indispensable entry receptor for EBOV and the interaction between NPC1 and the EBOV GP in mature
351 endolysosomes is necessary for the release of the virion contents into the cellular cytoplasm [54,55].
352 Possibly, the interaction between itraconazole and the EBOV entry receptor NPC1 further potentiates
353 the antiviral activity of this compound in filovirus infections, although further research is necessary to
354 fully elucidate the interaction of itraconazole with both host and viral factors. The second hit
355 compound that was present in both libraries is retapamulin, a derivative of pleuromutilin approved for
356 use in humans [56]. This compound showed comparable selectivity in both Vero E6 and Huh-7 cells,
357 although it was roughly one order of magnitude more potent in the latter. Unlike the aforementioned
358 compounds, retapamulin has not yet been reported to possess antiviral activity and its sole known
359 function is the inhibition of the bacterial ribosome complex [57]. While retapamulin is only used for
360 topical application, other pleuromutilins can be used systemically and might be of use for EVD
361 treatment, although their antiviral mechanism of action would first need to be elucidated [58]. Lastly,
362 MMV1782214 (ChEMBL93139) showed excellent selectivity in Vero E6 cells but less so in Huh-7 cells.
363 This compound is a 1,3,4-trisubstituted pyrrolidine derivative that was developed as a C-C chemokine

364 receptor type 5 (CCR5) antagonist to be used for the treatment of human immunodeficiency virus
365 infections [59]. Other pyrrolidine derivatives have recently been shown to inhibit EBOV replication,
366 although the mechanism through which this inhibition is achieved remains to be determined [60].

367 In the CD3 library, more than twenty compounds displayed selective anti-EBOV activity, although for
368 most compounds this selectivity was modest (SI 3-7). Aside from the aforementioned known EBOV
369 inhibitors and compounds also present in the MMV library, five compounds were found to show strong
370 selectivity towards virus inhibition: z-FA-FMK, Evans blue, UNC1999, benproperine and doramapimod.
371 Z-FA-FMK is a potent inhibitor of cysteine proteases, including cathepsin B and L [61]. As mentioned
372 above, these cathepsins are needed to cleave the EBOV GP before it can interact with NPC1. In both
373 Vero E6 and Huh-7 cells, z-FA-FMK showed only limited toxicity while inhibiting EBOV- Δ VP30-eGFP in
374 the low-micromolar or even sub-micromolar range, presumably by preventing virus entry, making it
375 an interesting putative EBOV therapeutic. However, because of z-FA-FMK's broad and potent
376 inhibitory effect on cysteine proteases and its known function as an immunosuppressant that can
377 interfere with T-cell proliferation, detailed *in vivo* validation of its safety and clinical benefit would be
378 needed before it could be considered for use in humans [62]. For Evans blue, UNC1999 and
379 benproperine, the mechanism through which they might inhibit EBOV replication is less clear. Evans
380 blue or T-1824 is an azo dye that is known for its dark blue color and high affinity for albumin, and it is
381 primarily used to stain cells or tissues in a laboratory setting [63]. However, it is also known to bind
382 several glutamate receptors and transporters, and has been shown to inhibit hepatitis B virus
383 replication [64,65]. This latter effect is in part achieved by stimulation of Ca^{2+} channels by Evans blue,
384 resulting in reduced cytosolic levels of Ca^{2+} . A similar mechanism might contribute to the anti-EBOV
385 effect of Evans blue, as several processes in the EBOV life cycle, including fusion and budding, are
386 affected by cytosolic Ca^{2+} concentrations [66-68]. UNC1999 is an inhibitor of the lysine
387 methyltransferases enhancer of zeste homolog 1/2 (EZH1/2) [69]. It has primarily been studied as a
388 potential anti-cancer drug because of its potential to alter the differential expression of host genes
389 through epigenetic regulation [70]. Likewise, the mechanism through which UNC1999 inhibits EBOV

390 replication might be that it counteracts the pro-viral manipulation of host factor pathways during EBOV
391 infection [71]. Like UNC1999, benproperine, a clinically used antitussive drug, has also been evaluated
392 as a potential anti-cancer drug. It has been shown to inhibit Actin-related protein 2/3 complex subunit
393 2, which plays a role in actin polymerization [72]. The transport of EBOV nucleocapsids to the cellular
394 membrane prior to virion formation is dependent on actin polymerization, providing a potential
395 explanation for the anti-EBOV mechanism of benproperine [73]. A final compound that showed highly
396 selective inhibition of EBOV replication ($SI > 9$), albeit with slightly lower potency ($IC_{50} = 10.83$), was
397 doramapimod. This pyrazole-urea compound, originally developed for the treatment of inflammatory
398 diseases, is a direct inhibitor of p38 mitogen activated protein (MAP) kinase [74]. This kinase is involved
399 in the host cellular interferon type I response pathway and is indirectly inhibited by EBOV VP24 in
400 certain cell types [75]. Furthermore, inhibitors of p38 MAP kinase have previously been shown to
401 impair EBOV entry [76].

402 By screening >4,200 drug or drug-like compounds for their potential to inhibit EBOV, we identified
403 several new *in vitro* inhibitors of EBOV replication. Although further validation of these compounds is
404 needed, the use of a replication-competent virus-based assay ensures the direct biological relevance
405 of the results shown here. Most compounds are active in the low micromolar range and display only
406 limited cytotoxicity, making them good compounds to study EBOV replication and to potentially serve
407 as a basis for the development of new therapeutics. Many top hits are also known or presumed to
408 target different aspects of the viral life cycle, opening up the possibility for combination studies.
409 Moreover, several of these compounds have favorable pharmacokinetic properties or have already
410 been used as human therapeutics for other applications, making them valuable candidates for *in vivo*
411 validation and potential further applications in the fight against EBOV.

412

413 **References**

- 414 1. Languon S, Quaye O. Filovirus Disease Outbreaks: A Chronological Overview. *Virology* :
415 research and treatment. 2019;10:1178122X19849927.
- 416 2. World Health Organization. Ebola haemorrhagic fever in Zaire, 1976. *Bulletin of the World*
417 *Health Organization*. 1978;56(2):271-93.
- 418 3. Feldmann H, Sprecher A, Geisbert TW. Ebola. *The New England journal of medicine*. 2020 May
419 7;382(19):1832-1842.
- 420 4. Malvy D, McElroy AK, de Clerck H, et al. Ebola virus disease. *Lancet*. 2019 Mar
421 2;393(10174):936-948.
- 422 5. Nyakarahuka L, Kankya C, Krontveit R, et al. How severe and prevalent are Ebola and Marburg
423 viruses? A systematic review and meta-analysis of the case fatality rates and seroprevalence. *BMC*
424 *infectious diseases*. 2016 Nov 25;16(1):708.
- 425 6. World Health Organization. Preliminary results on the efficacy of rVSV-ZEBOV-GP Ebola vaccine
426 using the ring vaccination strategy in the control of an Ebola outbreak in the Democratic Republic of
427 the Congo: an example of integration of research into epidemic response. 2019.
- 428 7. Henao-Restrepo AM, Camacho A, Longini IM, et al. Efficacy and effectiveness of an rVSV-
429 vectored vaccine in preventing Ebola virus disease: final results from the Guinea ring vaccination, open-
430 label, cluster-randomised trial (Ebola Ca Suffit!). *Lancet*. 2017 Feb 4;389(10068):505-518.
- 431 8. Mulangu S, Dodd LE, Davey RT, Jr., et al. A Randomized, Controlled Trial of Ebola Virus Disease
432 Therapeutics. *The New England journal of medicine*. 2019 Dec 12;381(24):2293-2303.
- 433 9. Edwards MR, Basler CF. Current status of small molecule drug development for Ebola virus and
434 other filoviruses. *Current opinion in virology*. 2019 Apr;35:42-56.
- 435 10. Sissoko D, Laouenan C, Folkesson E, et al. Experimental Treatment with Favipiravir for Ebola
436 Virus Disease (the JIKI Trial): A Historically Controlled, Single-Arm Proof-of-Concept Trial in Guinea.
437 *PLoS medicine*. 2016 Mar;13(3):e1001967.
- 438 11. Lo MK, Jordan R, Arvey A, et al. GS-5734 and its parent nucleoside analog inhibit Filo-, Pneumo-,
439 and Paramyxoviruses. *Scientific reports*. 2017 Mar 6;7:43395.
- 440 12. Warren TK, Jordan R, Lo MK, et al. Therapeutic efficacy of the small molecule GS-5734 against
441 Ebola virus in rhesus monkeys. *Nature*. 2016 Mar 17;531(7594):381-5.
- 442 13. Chosewood LC, Wilson DE, Centers for Disease Control and Prevention (U.S.), et al. Biosafety
443 in microbiological and biomedical laboratories. 5th ed. Washington, D.C.: U.S. Dept. of Health and
444 Human Services, Public Health Service, Centers for Disease Control and Prevention, National Institutes
445 of Health; 2009. (HHS publication; no (CDC) 21-1112).
- 446 14. Hoenen T, Groseth A, de Kok-Mercado F, et al. Minigenomes, transcription and replication
447 competent virus-like particles and beyond: reverse genetics systems for filoviruses and other negative
448 stranded hemorrhagic fever viruses. *Antiviral research*. 2011 Aug;91(2):195-208.
- 449 15. Halfmann P, Kim JH, Ebihara H, et al. Generation of biologically contained Ebola viruses.
450 *Proceedings of the National Academy of Sciences of the United States of America*. 2008 Jan
451 29;105(4):1129-33.
- 452 16. Medicines for Malaria Venture. The COVID Box 2021 [June 16th, 2021]. Available from:
453 <https://www.mmv.org/mmv-open/covid-box>
- 454 17. Medicines for Malaria Venture. The Pandemic Response Box 2021 [June 16th, 2021]. Available
455 from: <https://www.mmv.org/mmv-open/pandemic-response-box>
- 456 18. Greninger AL, Naccache SN, Federman S, et al. Rapid metagenomic identification of viral
457 pathogens in clinical samples by real-time nanopore sequencing analysis. *Genome medicine*. 2015 Sep
458 29;7:99.
- 459 19. Li H. Minimap2: pairwise alignment for nucleotide sequences. *Bioinformatics*. 2018 Sep
460 15;34(18):3094-3100.

- 461 20. Vanmechelen B, Stroobants J, Vermeire K, et al. Advancing Marburg virus antiviral screening:
462 Optimization of a novel T7 polymerase-independent minigenome system. *Antiviral research*. 2021
463 Jan;185:104977.
- 464 21. Zhang J-H, Chung TD, Oldenburg KR. A simple statistical parameter for use in evaluation and
465 validation of high throughput screening assays. *Journal of biomolecular screening*. 1999;4(2):67-73.
- 466 22. Gurevich EV, Gurevich VV. Therapeutic potential of small molecules and engineered proteins.
467 *Handbook of experimental pharmacology*. 2014;219:1-12.
- 468 23. Cho MJ, Juliano R. Macromolecular versus small-molecule therapeutics: drug discovery,
469 development and clinical considerations. *Trends in biotechnology*. 1996 May;14(5):153-8.
- 470 24. Nelson EA, Dyall J, Hoenen T, et al. The phosphatidylinositol-3-phosphate 5-kinase inhibitor
471 apilimod blocks filoviral entry and infection. *PLoS neglected tropical diseases*. 2017
472 Apr;11(4):e0005540.
- 473 25. Siegel D, Hui HC, Doerffler E, et al. Discovery and Synthesis of a Phosphoramidate Prodrug of a
474 Pyrrolo[2,1-f][triazin-4-amino] Adenine C-Nucleoside (GS-5734) for the Treatment of Ebola and
475 Emerging Viruses. *Journal of medicinal chemistry*. 2017 Mar 9;60(5):1648-1661.
- 476 26. Wang M, Cao R, Zhang L, et al. Remdesivir and chloroquine effectively inhibit the recently
477 emerged novel coronavirus (2019-nCoV) in vitro. *Cell research*. 2020 Mar;30(3):269-271.
- 478 27. Sheahan TP, Sims AC, Graham RL, et al. Broad-spectrum antiviral GS-5734 inhibits both
479 epidemic and zoonotic coronaviruses. *Science translational medicine*. 2017 Jun 28;9(396).
- 480 28. Apaydin CB, Cinar G, Cihan-Ustundag G. Small-molecule antiviral agents in ongoing clinical
481 trials for COVID-19. *Current drug targets*. 2021 Feb 14.
- 482 29. Mozaffari E, Chandak A, Zhang Z, et al. Remdesivir treatment in hospitalized patients with
483 COVID-19: a comparative analysis of in-hospital all-cause mortality in a large multi-center
484 observational cohort. *Clinical infectious diseases : an official publication of the Infectious Diseases
485 Society of America*. 2021 Oct 1.
- 486 30. Consortium WHOST, Pan H, Peto R, et al. Repurposed Antiviral Drugs for Covid-19 - Interim
487 WHO Solidarity Trial Results. *The New England journal of medicine*. 2021 Feb 11;384(6):497-511.
- 488 31. Beigel JH, Tomashek KM, Dodd LE, et al. Remdesivir for the Treatment of Covid-19 - Final
489 Report. *The New England journal of medicine*. 2020 Nov 5;383(19):1813-1826.
- 490 32. Wada Y, Cardinale I, Khatcherian A, et al. Apilimod inhibits the production of IL-12 and IL-23
491 and reduces dendritic cell infiltration in psoriasis. *PloS one*. 2012;7(4):e35069.
- 492 33. Wada Y, Lu R, Zhou D, et al. Selective abrogation of Th1 response by STA-5326, a potent IL-
493 12/IL-23 inhibitor. *Blood*. 2007 Feb 1;109(3):1156-64.
- 494 34. Billich A. Drug evaluation: apilimod, an oral IL-12/IL-23 inhibitor for the treatment of
495 autoimmune diseases and common variable immunodeficiency. *IDrugs: the investigational drugs
496 journal*. 2007;10(1):53-59.
- 497 35. Cai X, Xu Y, Cheung AK, et al. PIKfyve, a class III PI kinase, is the target of the small molecular
498 IL-12/IL-23 inhibitor apilimod and a player in Toll-like receptor signaling. *Chemistry & biology*. 2013 Jul
499 25;20(7):912-21.
- 500 36. Mingo RM, Simmons JA, Shoemaker CJ, et al. Ebola virus and severe acute respiratory
501 syndrome coronavirus display late cell entry kinetics: evidence that transport to NPC1+ endolysosomes
502 is a rate-defining step. *Journal of virology*. 2015 Mar;89(5):2931-43.
- 503 37. Hunt CL, Lennemann NJ, Maury W. Filovirus entry: a novelty in the viral fusion world. *Viruses*.
504 2012 Feb;4(2):258-75.
- 505 38. Lindstrom A, Anantpadma M, Baker L, et al. Phenotypic Prioritization of Diphyltin Derivatives
506 That Block Filoviral Cell Entry by Vacuolar (H⁺)-ATPase Inhibition. *ChemMedChem*. 2018 Dec
507 20;13(24):2664-2676.
- 508 39. Cotter K, Stransky L, McGuire C, et al. Recent Insights into the Structure, Regulation, and
509 Function of the V-ATPases. *Trends in biochemical sciences*. 2015 Oct;40(10):611-622.
- 510 40. Ianevski A, Zusinaite E, Kuivanen S, et al. Novel activities of safe-in-human broad-spectrum
511 antiviral agents. *Antiviral research*. 2018 Jun;154:174-182.

- 512 41. Bassetti M, Peghin M, Carnelutti A, et al. The role of dalbavancin in skin and soft tissue
513 infections. *Current opinion in infectious diseases*. 2018 Apr;31(2):141-147.
- 514 42. Zhou N, Pan T, Zhang J, et al. Glycopeptide Antibiotics Potently Inhibit Cathepsin L in the Late
515 Endosome/Lysosome and Block the Entry of Ebola Virus, Middle East Respiratory Syndrome
516 Coronavirus (MERS-CoV), and Severe Acute Respiratory Syndrome Coronavirus (SARS-CoV). *The
517 Journal of biological chemistry*. 2016 Apr 22;291(17):9218-32.
- 518 43. Hood CL, Abraham J, Boyington JC, et al. Biochemical and structural characterization of
519 cathepsin L-processed Ebola virus glycoprotein: implications for viral entry and immunogenicity.
520 *Journal of virology*. 2010 Mar;84(6):2972-82.
- 521 44. Pierard GE, Arrese JE, Pierard-Franchimont C. Itraconazole. Expert opinion on
522 pharmacotherapy. 2000 Jan;1(2):287-304.
- 523 45. Kurn H, Wadhwa R. Itraconazole. *StatPearls*. Treasure Island (FL)2021.
- 524 46. Wei X, Liu W, Wang JQ, et al. "Hedgehog pathway": a potential target of itraconazole in the
525 treatment of cancer. *Journal of cancer research and clinical oncology*. 2020 Feb;146(2):297-304.
- 526 47. Takano T, Akiyama M, Doki T, et al. Antiviral activity of itraconazole against type I feline
527 coronavirus infection. *Veterinary research*. 2019 Jan 18;50(1):5.
- 528 48. Schloer S, Goretzko J, Kuhn A, et al. The clinically licensed antifungal drug itraconazole inhibits
529 influenza virus in vitro and in vivo. *Emerging microbes & infections*. 2019;8(1):80-93.
- 530 49. Kuhn A, Musiol A, Heitzig N, et al. Late Endosomal/Lysosomal Cholesterol Accumulation Is a
531 Host Cell-Protective Mechanism Inhibiting Endosomal Escape of Influenza A Virus. *mBio*. 2018 Jul
532 24;9(4).
- 533 50. Lee JS, Choi HJ, Song JH, et al. Antiviral Activity of Itraconazole against Echo virus 30 Infection
534 In Vitro. *Osong public health and research perspectives*. 2017 Oct;8(5):318-324.
- 535 51. Head SA, Shi WQ, Yang EJ, et al. Simultaneous Targeting of NPC1 and VDAC1 by Itraconazole
536 Leads to Synergistic Inhibition of mTOR Signaling and Angiogenesis. *ACS chemical biology*. 2017 Jan
537 20;12(1):174-182.
- 538 52. Xu J, Dang Y, Ren YR, et al. Cholesterol trafficking is required for mTOR activation in endothelial
539 cells. *Proceedings of the National Academy of Sciences of the United States of America*. 2010 Mar
540 9;107(10):4764-9.
- 541 53. Long T, Qi X, Hassan A, et al. Structural basis for itraconazole-mediated NPC1 inhibition. *Nature
542 communications*. 2020 Jan 9;11(1):152.
- 543 54. Gong X, Qian H, Zhou X, et al. Structural Insights into the Niemann-Pick C1 (NPC1)-Mediated
544 Cholesterol Transfer and Ebola Infection. *Cell*. 2016 Jun 2;165(6):1467-1478.
- 545 55. Carette JE, Raaben M, Wong AC, et al. Ebola virus entry requires the cholesterol transporter
546 Niemann-Pick C1. *Nature*. 2011 Aug 24;477(7364):340-3.
- 547 56. Parish LC, Parish JL. Retapamulin: a new topical antibiotic for the treatment of uncomplicated
548 skin infections. *Drugs of today*. 2008 Feb;44(2):91-102.
- 549 57. Dubois EA, Cohen AF. Retapamulin. *British journal of clinical pharmacology*. 2010 Jan;69(1):2-
550 3.
- 551 58. Novak R, Shlaes DM. The pleuromutilin antibiotics: a new class for human use. *Current opinion
552 in investigational drugs*. 2010 Feb;11(2):182-91.
- 553 59. Hale JJ, Budhu RJ, Holson EB, et al. 1,3,4-Trisubstituted pyrrolidine CCR5 receptor antagonists.
554 Part 2: lead optimization affording selective, orally bioavailable compounds with potent anti-HIV
555 activity. *Bioorganic & medicinal chemistry letters*. 2001 Oct 22;11(20):2741-5.
- 556 60. Sokolova AS, Putilova VP, Yarovaya OI, et al. Synthesis and Antiviral Activity of Camphene
557 Derivatives against Different Types of Viruses. *Molecules*. 2021 Apr 13;26(8).
- 558 61. Ahmed NK, Martin LA, Watts LM, et al. Peptidyl fluoromethyl ketones as inhibitors of cathepsin
559 B. Implication for treatment of rheumatoid arthritis. *Biochemical pharmacology*. 1992 Sep
560 25;44(6):1201-7.
- 561 62. Lawrence CP, Kadioglu A, Yang AL, et al. The cathepsin B inhibitor, z-FA-FMK, inhibits human T
562 cell proliferation in vitro and modulates host response to pneumococcal infection in vivo. *Journal of
563 immunology*. 2006 Sep 15;177(6):3827-36.

- 564 63. Yao L, Xue X, Yu P, et al. Evans Blue Dye: A Revisit of Its Applications in Biomedicine. *Contrast*
565 media & molecular imaging. 2018;2018:7628037.
- 566 64. Xiao Y, Liu C, Tang W, et al. Evans Blue Inhibits HBV Replication Through a Dual Antiviral
567 Mechanism by Targeting Virus Binding and Capsid Assembly. *Frontiers in microbiology*. 2019;10:2638.
- 568 65. Price CJ, Raymond LA. Evans blue antagonizes both alpha-amino-3-hydroxy-5-methyl-4-
569 isoxazolepropionate and kainate receptors and modulates receptor desensitization. *Molecular*
570 *pharmacology*. 1996 Dec;50(6):1665-71.
- 571 66. Das DK, Bulow U, Diehl WE, et al. Conformational changes in the Ebola virus membrane fusion
572 machine induced by pH, Ca²⁺, and receptor binding. *PLoS biology*. 2020 Feb;18(2):e3000626.
- 573 67. Fan H, Du X, Zhang J, et al. Selective inhibition of Ebola entry with selective estrogen receptor
574 modulators by disrupting the endolysosomal calcium. *Scientific reports*. 2017 Jan 24;7:41226.
- 575 68. Han Z, Harty RN. Influence of calcium/calmodulin on budding of Ebola VLPs: implications for
576 the involvement of the Ras/Raf/MEK/ERK pathway. *Virus genes*. 2007 Dec;35(3):511-20.
- 577 69. Konze KD, Ma A, Li F, et al. An orally bioavailable chemical probe of the Lysine
578 Methyltransferases EZH2 and EZH1. *ACS chemical biology*. 2013;8(6):1324-34.
- 579 70. Alzrigat M, Parraga AA, Agarwal P, et al. EZH2 inhibition in multiple myeloma downregulates
580 myeloma associated oncogenes and upregulates microRNAs with potential tumor suppressor
581 functions. *Oncotarget*. 2017 Feb 7;8(6):10213-10224.
- 582 71. Kotliar D, Lin AE, Logue J, et al. Single-Cell Profiling of Ebola Virus Disease In Vivo Reveals Viral
583 and Host Dynamics. *Cell*. 2020 Nov 25;183(5):1383-1401 e19.
- 584 72. Yoon YJ, Han YM, Choi J, et al. Benproperine, an ARPC2 inhibitor, suppresses cancer cell
585 migration and tumor metastasis. *Biochemical pharmacology*. 2019 May;163:46-59.
- 586 73. Takamatsu Y, Kolesnikova L, Becker S. Ebola virus proteins NP, VP35, and VP24 are essential
587 and sufficient to mediate nucleocapsid transport. *Proceedings of the National Academy of Sciences of*
588 *the United States of America*. 2018 Jan 30;115(5):1075-1080.
- 589 74. Regan J, Breitfelder S, Cirillo P, et al. Pyrazole urea-based inhibitors of p38 MAP kinase: from
590 lead compound to clinical candidate. *Journal of medicinal chemistry*. 2002 Jul 4;45(14):2994-3008.
- 591 75. Halfmann P, Neumann G, Kawaoka Y. The Ebolavirus VP24 protein blocks phosphorylation of
592 p38 mitogen-activated protein kinase. *The Journal of infectious diseases*. 2011 Nov;204 Suppl 3:S953-
593 6.
- 594 76. Johnson JC, Martinez O, Honko AN, et al. Pyridinyl imidazole inhibitors of p38 MAP kinase
595 impair viral entry and reduce cytokine induction by Zaire ebolavirus in human dendritic cells. *Antiviral*
596 *research*. 2014 Jul;107:102-9.
- 597

598 **Acknowledgments**

599 The authors wish to thank the Medicines for Malaria Venture and CD3 for providing compounds and
600 Prof. S. Becker, Philipps-Universität, Marburg, Germany for providing the T7-3M-Luc-5M minigenome
601 and EBOV support plasmids. B.V. was supported by a FWO SB grant for strategic basic research of the
602 "Fonds Wetenschappelijk Onderzoek"/Research foundation Flanders (1S28617N). Part of this research
603 work was performed using the 'Caps-It' research infrastructure (project ZW13-02) that was financially
604 supported by the Hercules Foundation (FWO) and Rega Foundation, KU Leuven.

605 **Conflict of interest statement**

606 The authors declare no competing interests.

607 **Author contributions**

608 This study was conceived by BV and PM. Experimental work was performed by BV and JSt. High-content
609 imaging was performed by WC and JSc. Data analysis was performed by BV. AM, PC, PM and KV
610 supplied reagents and materials. BV and PM drafted the manuscript. All authors read and approved
611 the final version of the manuscript.

612

613 **Figure Legends**

614 **Figure 1: EBOV-ΔVP30-eGFP characterization. (A)** Minimal virus titer required for homogenous
615 infection in 96-well plates. Vero E6-EBOV-VP30 cells were infected with EBOV-ΔVP30-eGFP and the
616 fraction of eGFP-positive cells was determined by high-content imaging six days post-infection.
617 Different viral titers tested are expressed in plaque forming units (PFU)/well. Eight replicates across
618 two separate plates were performed per condition. Error bars denote standard deviation. **(B)** Growth
619 kinetics of EBOV-ΔVP30-eGFP in Vero E6-EBOV-VP30 and regular Vero E6 cells. The left graph shows
620 the fraction of eGFP-positive cells, measured by high-content imaging. The right column shows a
621 representative image of a well infected with 0.1 PFU/well, five days post-infection. Green cells express
622 eGFP and all cells are background stained with Hoechst 33342 (blue). PI = post-infection, PFU = plaque
623 forming units. At least three replicates are included for each condition. Error bars denote standard
624 deviation.

625 **Figure 2: Screening assays layout. (A)** Schematic representation of the assay layout used for the two
626 different compound libraries. A single 1:4 dilution series was tested for each of the MMV compounds,
627 while each CD3 compound was assayed twice, once at 1 μ M and once at 10 μ M. + = positive control
628 (virus, no compound), - = negative control (no virus, no compound). **(B)** Schematic overview of the
629 different assays performed. Numbers next to the arrows indicate the compounds continuing to the
630 next step.

631 **Figure 3: CD3 library preliminary hit selection.** Overview of the initial screening results for all 3,681
632 CD3 compounds. Each compound was tested at 1 and 10 μ M. Only compounds that showed less than
633 20% reduction in cell survival are shown. Shown on the Y-axis is the relative inhibition of eGFP-
634 expression compared to the non-compound control. Compounds that reduced eGFP-expression by
635 >80% in either concentration were selected as preliminary hits.

636 **Figure 4: Activity and toxicity profiles of the twelve compounds that showed the highest selectivity**
637 **index in Vero E6 cells.** All graphs indicate relative cell survival (red triangles) and relative eGFP
638 expression (black circles) compared to the positive control (no compound). Left graphs indicate the
639 results obtained using Vero E6-EBOV-VP30 cells, while right graphs represent the results from Huh-7-
640 EBOV-VP30 cells. For itraconazole (MMV637528) and retapamulin (MMV1633674), only the values
641 obtained using the most recent stocks are shown. *The increase in eGFP expression at higher
642 concentrations for these compounds is not caused by virus growth but by excess compound causing
643 light scattering within the eGFP spectrum. Error bars indicate standard deviation. Data from three
644 (Vero E6) or six (Huh-7) replicates.

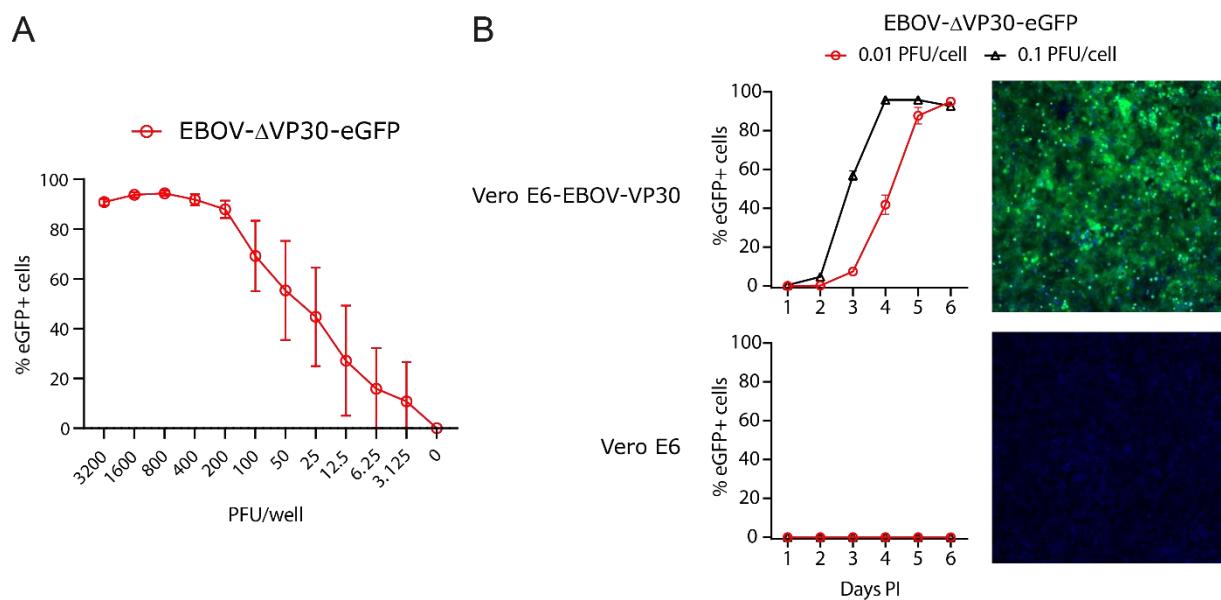
645

646

Table 1: Activity and toxicity of hit compounds

Compound ID	Compound name	Vero E6			HuH-7		
		IC ₅₀ (μM)	CC ₅₀ (μM)	SI	IC ₅₀ (μM)	CC ₅₀ (μM)	SI
MMV637528 [¶]	Itraconazole	0.51	>100	>196	1.26	1.72	1.40
MMV1804187	Apilimod	<0.08	10.0	>129	<0.39	<0.39	-
MMV1803859	Remdesivir	0.67	55.9	83.1	<0.39	2.00	>5.12
CD1260 [¶]	Itraconazole	1.51	>100	>66.4	2.58	2.49	0.96
CD3051	Z-FA-FMK	2.30	>100	>43.5	<0.39	>50	>128
CD2833	Evans blue	3.07	>100	>32.6	9.92	>50	>5.04
MMV1782214	CHEMBL93139*	1.30	36.4	27.9	3.61	9.15	2.54
MMV1633674 [¶]	Retapamulin	3.72	65.0	17.5	0.48	8.16	16.9
CD2986	UNC1999	5.90	96.0	16.3	3.58	24.7	6.91
CD2794 [¶]	Retapamulin	7.27	83.9	11.5	0.79	11.1	14.1
CD2842	Dalbavancin	8.03	91.2	11.4	2.12	>50	>23.6
CD3372	Benproperine	7.04	70.5	10.0	1.56	13.0	8.31
CD2035	Doramapimod	10.8	>100	>9.23	8.84	10.8	1.22
MMV102270	Diphyllin	0.42	3.09	7.44	<0.39	0.43	>1.10
CD1581	Oxelaidin	12.8	85.8	6.71	-	-	-
CD1056	Chlorophyllin	7.47	50.0	6.70	-	-	-
CD3648	Buclizine	6.09	40.5	6.65	-	-	-
CD3561	Micafungin	16.9	>100	>5.91	-	-	-
CD2486	GW-5074	4.95	23.0	4.64	-	-	-
CD2111	Pitavastatin	0.88	4.07	4.61	-	-	-
CD0329	Tamoxifen	4.11	18.7	4.56	-	-	-
CD2889	Propiverine	10.1	43.8	4.36	-	-	-
CD0888	Benztropine	7.90	32.9	4.16	-	-	-
CD0842	Carvedilol	7.41	29.9	4.04	-	-	-
CD3124	Pilaralisib	6.58	24.2	3.68	-	-	-
CD1724	Hydroquinidine	27.0	82.1	3.04	-	-	-
CD2145	Fluvastatin	1.83	5.56	3.03	-	-	-
MMV002137	Pimozide	2.77	7.83	2.82	-	-	-
MMV1804411	(RS)-PPCC	58.3	>100	>1.71	-	-	-
MMV1804482	Apremilast	82.3	>100	>1.22	-	-	-
MMV1803334	Dabrafenib	33.6	27.4	0.81	-	-	-
MMV002337	Fluconazole	>100	>100	-	-	-	-

647 [¶]Duplicate compound present in both the MMV and CD3 libraries

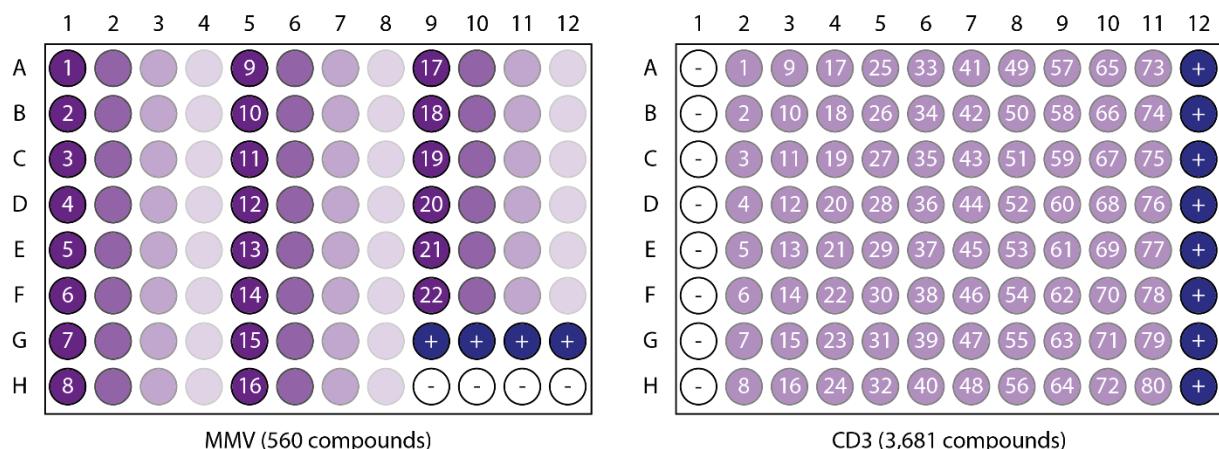

648 *ChEMBL identifier

649

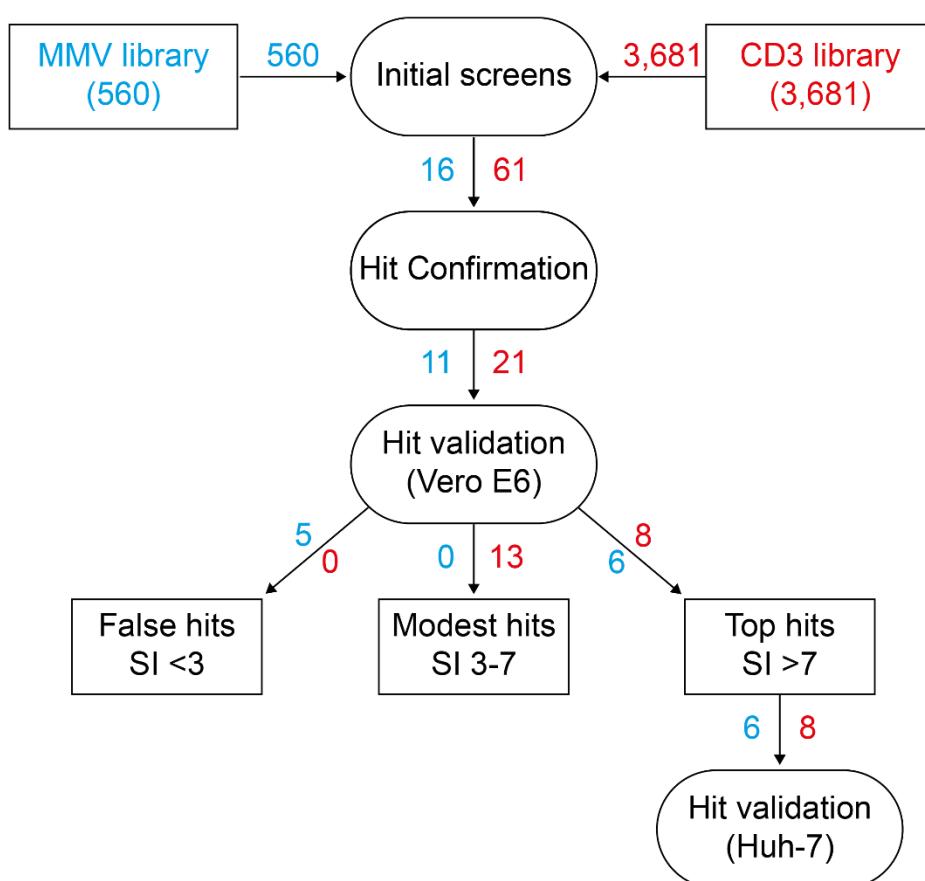
650

651

652 **Figure 1**

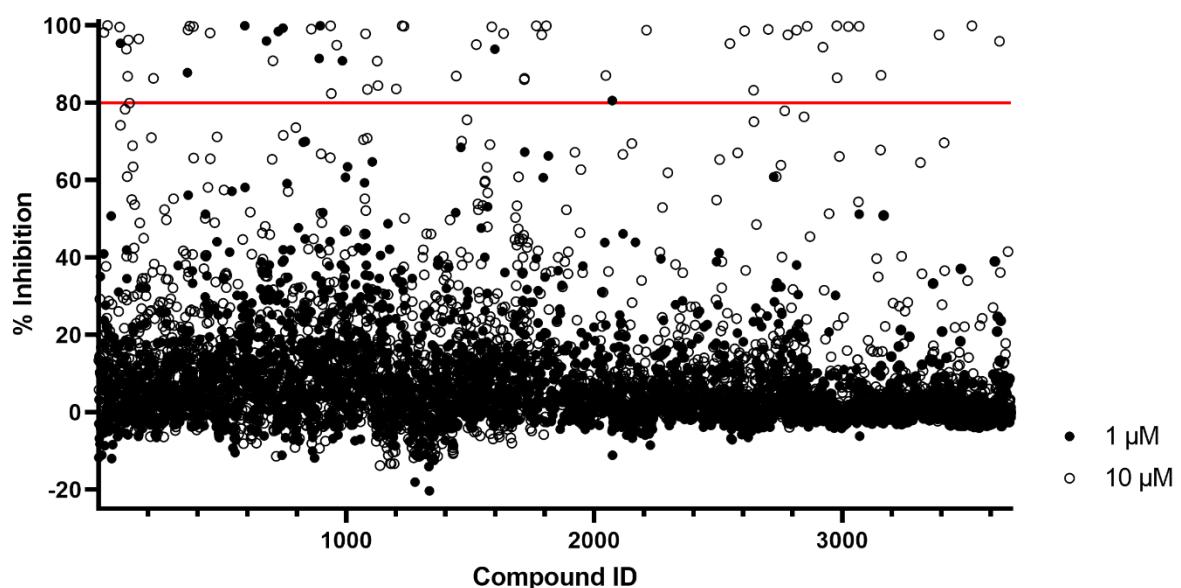


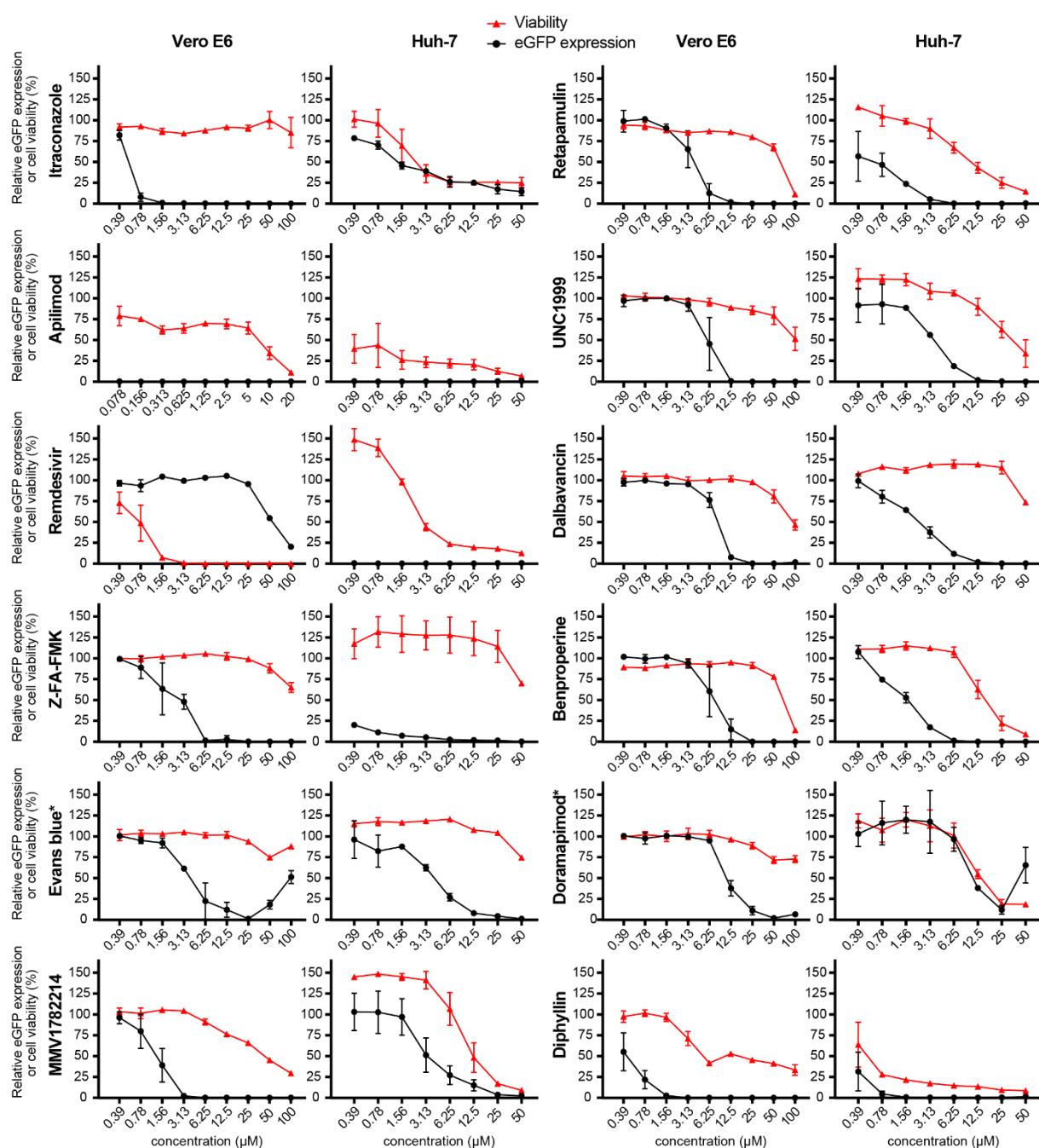
653


654

655 **Figure 2**

A


B


656

657

658 **Figure 3**

661 **Figure 4**

662