

1 Drosulfakinin signaling modulates female sexual receptivity in *Drosophila*

2
3 Tao Wang^{1,2,7}, Biyang Jing^{4,7}, Bowen Deng⁵, Kai Shi², Jing Li⁶, Baoxu Ma², Fengming
4 Wu^{2*}, Chuan Zhou^{2,3,6,8*}

5
6 ¹School of Life Sciences, University of Science and Technology of China, Hefei, China

7 ²State Key Laboratory of Integrated Management of Pest Insects and Rodents Institute of
8 Zoology, Chinese Academy of Sciences, Beijing, China

9 ³University of Chinese Academy of Sciences, Beijing, China

10 ⁴State Key Laboratory of Membrane Biology, College of Life Sciences, IDG/McGovern
11 Institute for Brain Research, Peking-Tsinghua Center for Life Sciences, Academy for
12 Advanced Interdisciplinary Studies, Center for Quantitative Biology, Academy for
13 Advanced Interdisciplinary Studies, Peking University, Beijing, China;

14 ⁵Chinese Institute for Brain Research, Peking-Tsinghua Center for Life Sciences,
15 Zhongguangchun Life Sciences Park, Beijing, China

16 ⁶Institute of Molecular Physiology, Shenzhen Bay Laboratory, Shenzhen, China

17 ⁷These authors contributed equally

18 ⁸Lead contact

19 *Correspondence: wufengming@ioz.ac.cn(F.W.), zhouchuan@ioz.ac.cn(C.Z.)

20
21 **Abstract**

22 Female sexual behavior as an innate behavior is of prominent biological importance for
23 survival and reproduction. However, molecular and circuit mechanisms underlying female
24 sexual behavior is not well understood. Here, we identify the Cholecystokinin-like peptide
25 Drosulfakinin (DSK) promotes female sexual behavior in *Drosophila*. Manipulation both
26 *Dsk* and DSK neuronal activity impact female sexual receptivity. In addition, we reveal that
27 *Dsk*-expressing neurons receive input signal from *R71G01GAL4* neurons to promote
28 female sexual receptivity. Based on intersectional technique, we further found the
29 regulation of female sexual behavior relies mainly on medial DSK neurons rather than
30 lateral DSK neurons, and medial DSK neurons modulate female sexual behavior by acting
31 on its receptor CCKLR-17D3. Thus, we characterized DSK/CCKLR-17D3 as
32 *R71G01GAL4* neurons downstream signaling to regulate female sexual behavior.

33
34 **Introduction**

35 In *Drosophila melanogaster*, innate sexual behavior is critical for reproduction and can
36 induce several physiological and behavioral changes such as receptivity (Connolly and
37 Cook, 1973), egg production (Bloch Qazi et al., 2003; Chen et al., 1988; Wang et al.,
38 2020), female longevity (Chapman et al., 1995) and dietary preferences (Ribeiro and
39 Dickson, 2010; Vargas et al., 2010). Thus, it is essential to understand and identify genetic
40 and neural circuits that modulate innate sexual behavior. For male sexual behavior, a
41 number of genes (Billeter et al., 2002; Emmons and Lipton, 2003) controlling male
42 courtship have been identified and corresponding neural circuits have been dissected
43 (Broughton et al., 2004; Clowney et al., 2015; Demir and Dickson, 2005; Kimura et al.,
44 2008; Kohatsu et al., 2011; Pan and Baker, 2014; Ryner et al., 1996; Stockinger et al.,

45 2005; Tanaka et al., 2017; Yamamoto and Koganezawa, 2013; Yu et al., 2010), whereas
46 molecular and circuit mechanisms underlying female sexual behavior is less clear.

47 In recent years, genetic studies have shown that several genes play a critical role in
48 regulating female sexual behavior. For example, mutant female of *spinster*, *icebox* and
49 *chaste* show lower mating success rates while mutant female of *pain* show higher mating
50 success rates than wild-type female (Carhan et al., 2005; Juni and Yamamoto, 2009; Kerr
51 et al., 1997; Sakai et al., 2009; Suzuki et al., 1997). Moreover, specific subsets of neurons
52 are required, both in the brain and ventral nerve cord, for modulating female sexual
53 behavior. A significant decline of female sexual receptivity is observed when silencing
54 specific neuron clusters in the central brain, such as two subsets of *doublesex*-expressing
55 neurons (pCd and pC1) and two interneuron clusters (Spin-A and Spin-D) (Sakurai et al.,
56 2013; Zhou et al., 2014). Female-specific vpoDNs in the brain integrate mating status and
57 song to control both vaginal plate opening and female receptivity (Wang et al., 2021).
58 Silencing either Abd-B neurons or SAG neurons located in the abdominal ganglion reduce
59 female sexual receptivity (Bussell et al., 2014; Feng et al., 2014). In addition, female
60 sexual behavior is also modulated by monoamines. In particular, dopamine not only plays
61 a key role in regulating female sexual receptivity (Neckameyer, 1998), but also controls
62 behavioral switching from rejection to acceptance in virgin females (Ishimoto and
63 Kamikouchi, 2020); and octopamine is pivotal to female sexual behavior (Rezaval et al.,
64 2014). The neuropeptides including SIFamide and Mip neuropeptide are responsible for
65 female sexual receptivity (Jang et al., 2017; Terhzaz et al., 2007). Still, we know very little
66 on how peptidergic neurons to control female sexual receptivity.

67 Drosulfakinin (DSK) is a neuropeptide, which is ortholog of Cholecystokinin (CCK) in
68 mammals and its two receptors (CCKLR-17D1 and CCKLR-17D3) have been identified in
69 *Drosophila* (Chen and Ganetzky, 2012; Kubiak et al., 2002; Nichols et al., 1988;
70 Staljanssens et al., 2011), and previous studies have revealed that DSK peptide is
71 involved in multifarious regulatory functions including satiety/food ingestion (Nassel and
72 Williams, 2014; Williams et al., 2014), male courtship (Wu et al., 2019), aggression (Wu et
73 al., 2020). However, it is not known whether DSK is crucial for female sexual behavior,
74 and which specific neuron clusters that interact with DSK neurons to control female sexual
75 behavior have not been identified.

76 In this study, 1) we reveal that DSK peptide act on its receptor CCKLR-17D3 to
77 regulate female sexual behavior, 2) We found that *Dsk*-expressing neurons receive input
78 from *R71G01GAL4* neurons and are required for female sexual behavior. Our results
79 identify a neural subset of DSK neurons which function downstream of *R71G01GAL4*
80 neurons and act through DSK receptor (CCKLR-17D3) neurons to control female sexual
81 behavior.

82

83 **Results**

84 ***Dsk* Gene Is Crucial for Female Receptivity in Virgin Female.**

85 To investigate the potential function of DSK peptide in modulating female sexual
86 behavior, we first constructed knock out line for *Dsk* (Figure 1A-D) (Wu et al., 2020), and
87 monitored the effect of *Dsk* mutant on female receptivity. Two parameters that copulation
88 rate and latency were used to characterize receptivity (Ferveur, 2010). Interestingly, *Dsk*

89 null mutant displayed reduced copulation rate and prolonged copulation latency compared
90 with wild-type (*Figure 1E*) and heterozygous virgin females (*Figure 1F*). Moreover, RNAi
91 knockdown of *Dsk* under the control of a pan-neuronal *elav*^{GAL4} driver also reduced female
92 receptivity (*Figure 1-Figure supplement 1A*). No significant change of locomotion activity
93 was detected in *Dsk* mutant or RNAi-mediated females (*Figure 1-Figure supplement*
94 *2A-B*), and no significant difference was observed in courtship level in wild-type males
95 paired with females of *Dsk* mutant and control (*Figure 1-Figure supplement 3A-B*). We
96 note that manipulation of *Dsk* did not trigger egg-laying in virgin female and we also did
97 not notice mating-induced TRIC signal changes (*Figure 1-Figure supplement 4A-B*).

98 Next, we further investigated the importance of *Dsk* in controlling female sexual
99 behavior. Conditional overexpression of *Dsk* under the control of *elav*-GeneSwitch
100 (*elav*-GS), a RU486-dependent pan-neuronal driver (Osterwalder et al., 2001), induced
101 copulation more quickly than control (*Figure 1G-H*, *Figure 1-Figure supplement 5A-B*). In
102 addition, overexpression of *Dsk* in DSK neurons using *Dsk*^{GAL4} to drive *UAS-Dsk* also
103 increased copulation rate and shortened copulation latency compared with genetic
104 controls (*Figure 2I*). Furthermore, we also carried out genetic rescue experiments to
105 further confirm the importance of *Dsk* in modulating female sexual receptivity. To address
106 this question, we used *elav*^{GAL4}, a pan-neuronal driver, to drive *UAS-Dsk* expression in
107 *Dsk* mutant background, and found that neuron-specific rescue with *UAS-Dsk* could
108 restore the decreased receptivity level to normal level (*Figure 2J*). Taken together, these
109 results indicated the function of *Dsk* is crucial for female sexual receptivity.

110

111 **DSK Neurons Are Important for Modulating Female Receptivity.**

112 To further evaluate whether DSK neurons were involved in modulating female sexual
113 behavior, we first activated DSK neurons by expressing the heat-activated *Drosophila*
114 transient receptor potential channel (*dTrpA*) using a knock-in *Dsk*^{GAL4} line (Hamada et al.,
115 2008). Activation of DSK neurons increased female receptivity at 29°C relative to 21°C
116 (*Figure 2A*). Whereas the female receptivity was not changed between 29°C and 21°C in
117 controls with either *UAS-dTrpA1* alone or *Dsk*^{GAL4} alone (*Figure 2B and 2C*). Activation of
118 DSK neurons did not alter female receptivity in very young virgins and mated females
119 (*Table S1*). Next, we use two strategies to inactivate DSK neurons by using *Dsk*^{GAL4} to
120 express either tetanus toxin light chain (TNT) which blocks synaptic vesicle exocytosis
121 (Sweeney et al., 1995) or an inwardly rectifier potassium channel (Kir2.1) which
122 hyperpolarizes neurons and suppress neural activity (Baines et al., 2001; Thum et al.,
123 2006). Female receptivity was decreased when silencing DSK neurons either using TNT
124 (*Figure 2D*) or using Kir2.1 (*Figure 2-Figure supplement 1A*). Thus, our results suggest
125 that DSK neurons are important for modulating female sexual behavior.

126

127 **Anatomical and Functional Dissection of the Connection Between DSK Neurons 128 and *R71G01GAL4* Neurons.**

129 Recent studies revealed that DSK neurons not only function downstream of a subset of
130 P1 neurons to regulate aggressive behavior (Wu et al., 2020), but also function
131 antagonistically with P1 neurons to regulate male courtship (Wu et al., 2019) in males. It
132 was known that *R71G01GAL4* neurons also expressed in female brains (Hoopfer et al.,

133 2015), and activation of *R71G01GAL4* neurons promoted female receptivity (*Figure 3-supplement 1A*). Given that, we hypothesized whether DSK neurons are functional
134 targets of *R71G01GAL4* neurons in controlling female receptivity. Thus, we first sought to
135 detect whether *Dsk*-expressing neurons had potential synaptic connection with
136 *R71G01GAL4* neurons via GRASP method (GFP reconstitution across synaptic partners)
137 (Feinberg et al., 2008; Gordon and Scott, 2009). Interestingly, we detected significant
138 recombinant GFP signals (GRASP) between *R71G01GAL4* neurons and DSK neurons
139 (*Figure 3-supplement 2A-C*), suggesting that these neurons form a direct synaptic
140 connection. Next, we used *trans*-Tango (Talay et al., 2017) approach to further confirm
141 whether *Dsk*-expressing neurons are immediate downstream of *R71G01GAL4* neurons.
142 Interestingly, *trans*-Tango signal was observed in DSK neurons by co-staining the
143 *trans*-Tango flies with DSK antibodies (*Figure 3A-B*, *Figure 3-supplement 3A*). Moreover,
144 we registered *R71G01GAL4* neurons and DSK neurons, and found that *R71G01GAL4*
145 neurons axons overlap with DSK neurons dendrites (*Figure 3C*).
146

147 In addition, we performed behavioral epistasis experiment to confirm functional
148 interactions between DSK neurons and *R71G01GAL4* neurons. We activated
149 *R71G01GAL4* neurons by *R71G01-GAL4* driving *UAS-dTRPA1* in the *Dsk* mutant
150 background, and found that increased levels of female receptivity caused by activation of
151 *R71G01GAL4* neurons were suppressed by the mutation in *Dsk* (*Figure 3D-G*). Taken
152 together, these results further demonstrate that DSK neurons are the functional targets of
153 *R71G01GAL4* neurons in controlling female sexual behavior.
154

155 **Medial DSK Neurons (DSK-M) Rather Than Lateral DSK Neurons (DSK-L) Are 156 Critical for Regulating Female Receptivity.**

157 Previous study has implicated that eight DSK neurons were classified two types
158 (DSK-M and DSK-L) based on the location of the cell bodies in female and male brains
159 (Wu et al., 2020). However, functional difference between those two types was not
160 characterized in female flies.

161 We first performed patch-clamp recordings on DSK-M and DSK-L neurons, respectively,
162 to confirm the functional connectivity between *R71G01GAL4* neurons and *Dsk*-expressing
163 neurons. We activated *R71G01GAL4* neurons through ATP activation of ATP gating of
164 P2X₂ transgenic receptors (Brake et al., 1994; Macara et al., 2012) and recorded the
165 electrical responses in DSK-M neurons and DSK-L neurons. In perforate patch recordings,
166 ATP/P2X₂ activation of *R71G01GAL4* neurons induced strong electrical responses from
167 DSK-M neurons and relatively weak responses from DSK-L neurons in female (*Figure 4A-C*).
168

169 To further distinguish if both types are or only one type of DSK neurons was involved in
170 regulating female sexual behavior, we used intersectional strategy to subdivide DSK
171 neurons and manipulated DSK-M and DSK-L separately. We first screened about 100
172 knock-in lines containing GAL4 of *Drosophila* chemoconnectome (CCT) (Deng et al., 2019)
173 combined with *DskFlp* line to drive *UAS>stop>myr::GFP* (a Gal4/Flp-responsive
174 membrane reporter) expression, and further identified the GFP signal using anti-DSK
175 antibodies. Interestingly, we found intersection of *DskFlp* and *GluRIA^{GAL4}* specifically
176 labels DSK-M neurons (*Figure 5A*), and intersection of *DskFlp* and *T β H^{GAL4}* specifically

177 labels DSK-L neurons (*Figure 5B*). Next, we confirmed the behavioral relevance of
178 specific subtypes of DSK neurons. Activation of DSK-M neurons significantly increased
179 female receptivity (*Figure 5C, Figure 5-supplement 1A-C*) while inactivation of DSK-M
180 neurons significantly reduced female receptivity, neither of these effects was observed in
181 genetic controls (*Figure 5D*). Thus, DSK-M neurons are responsible for regulating female
182 sexual receptivity. Conversely, neither activation nor inactivation of DSK-L neurons altered
183 the female receptivity level in virgin females (*Figure 5E-F, Figure 5-supplement 1C-E*).
184 Taken together, these findings indicate that DSK-M neurons, rather than DSK-L neurons,
185 play an essential role in regulating female sexual behavior.

186

187 ***Dsk* Regulates Female Receptivity via Its Receptor CCKLR-17D3.**

188 Next, we want to explore the downstream target of DSK neurons. Two *Dsk* receptors
189 were identified: *CCKLR-17D1* and *CCKLR-17D3* (Chen and Ganetzky, 2012; Kubiak et al.,
190 2002), and it would be essential to distinguish which receptor is or both of receptors are
191 critical for modulating female sexual behavior. We constructed knock out lines for these
192 two receptors (*Figure 6A-C*) (Wu et al., 2020). Knock out of *CCKLR-17D3* rather than
193 *CCKLR-17D1* reduced mating success rate in virgin females compared with control flies
194 (*Figure 6D, Figure 6-supplement 1A*). Moreover, RNAi knockdown of *CCKLR-17D3* under
195 the control of a pan-neuronal *elav*^{GAL4} driver or *CCKLR-17D3*^{GAL4} also significantly
196 reduced female receptivity (*Figure 6E, Figure 6-supplement 2A*). Conditional silencing of
197 *CCKLR-17D3* using the *elav*-GeneSwitch (*elav*-GS) system to avert the effect of the
198 genetic background also significantly decreased female receptivity (*Figure 6-supplement*
199 *2B-D*). In addition, no significant change of locomotion activity was detected in
200 *CCKLR-17D3* mutant or silencing of *CCKLR-17D3* (*Figure 6-supplement 3A-B*). The
201 reduced female receptivity phenotypes of Δ *CCKLR-17D3*/ Δ *CCKLR-17D3* could be
202 rescued by expression of *UAS-CCKLR-17D3* driven by *elav*-GS (*Figure 6F-H*). These
203 results demonstrate that *CCKLR-17D3* is critical for modulating female sexual receptivity.

204 To ask whether the enhanced receptivity level of DSK neuronal activation in females
205 relied on downstream *CCKLR-17D3* or not, we studied the female receptivity of
206 *CCKLR-17D3* mutant flies with DSK neurons activated by *TrpA1* using *Dsk*^{GAL4} to drive
207 *UAS-dTrpA1*. We found that knock-out of *CCKLR-17D3* could block the increased levels
208 of female receptivity caused by activating of DSK neurons (*Figure 6I-K*). These data
209 support that DSK neurons rely on its receptor *CCKLR-17D3* to regulate female sexual
210 receptivity.

211

212 **Discussion**

213 In this study, we systematically investigated *Dsk*-mediated neuromodulation of female
214 sexual receptivity. At the neuronal circuit level, we identified that DSK neurons are the
215 immediate downstream targets of *R71G01GAL4* neurons in controlling female sexual
216 receptivity. Moreover, we employ intersectional tool to subdivide DSK neurons into medial
217 DSK neurons (DSK-M) and lateral DSK neurons (DSK-L) and uncover that DSK-M
218 neurons rather than DSK-L neurons play essential roles in modulating female sexual
219 receptivity. At the molecular level, we reveal that DSK neuropeptide and its receptor
220 *CCKLR-17D3* are critical for modulating female sexual receptivity. Collectively, our

221 findings illuminate that *R71G01GAL4-DSK-M-CCKLR-17D3* signal forms a crucial
222 pathway in regulating female sexual behaviors

223 The female sexual behavior is a complex innate behavior. Virgin female receives
224 multiple sensory cues to decide whether or not to accept a courting male. pC1 neurons
225 are required for modulating female sexual receptivity and this neural cluster integrates
226 pheromone and song cues (Zhou et al., 2015; Zhou et al., 2014) and *R71G01GAL4*
227 neurons may contain part of pC1 neurons. Our results not only demonstrate *Dsk* plays a
228 key role in the regulation of female sexual receptivity, but also uncover DSK neurons are
229 functional targets of *R71G01GAL4* neurons in regulating female sexual behavior. Thus,
230 we would venture to speculate that DSK neurons could also integrate sensory stimuli like
231 song or pheromone cues. If this speculation is true, it would be interesting to further
232 investigate whether DSK neurons function downstream of pC1 neurons to control female
233 receptivity, and how pC1 neurons and DSK neurons coordinate to integrate sensory
234 stimuli to modulate female sexual behavior.

235 Whether or not a male is successful in courting to a female depends on female's sexual
236 maturity or mating status. Very young virgins display low receptivity level to courting males,
237 mature virgin females show high receptivity level and are willing to accept courting males,
238 and mated females become temporarily sexually unreceptive to courting males (Dickson,
239 2008; Kubli, 2003; Rezaval et al., 2012). In this study, we found that both *Dsk* and DSK
240 neurons are involved in regulating virgin female sexual receptivity, so we asked whether
241 manipulating DSK neurons could also affect female sexual receptivity in very young
242 virgins or mated females. Activation of DSK neurons did not alter female receptivity in both
243 very young virgins and mated females (TableS1). Thus, *Dsk* only plays a pivotal role in
244 virgin females.

245 In the process of sexual behavior, if the female is willing to accept the male's courtship,
246 the female slow down their movement to allow the male to engage in copulation (Bussell
247 et al., 2014; Tompkins et al., 1982). Hence, it is quite possible that decreased copulation
248 rate of *Dsk*-ablated virgin females is due to the defect of locomotion activity. Conversely,
249 the locomotion of *Dsk*-ablated female using Ctrax software (Branson et al., 2009) shows
250 no difference compared with control females (Figure 1-supplement 2A), suggesting that
251 less receptivity of *Dsk*-ablated virgin females is not caused by the change of locomotion
252 activity. Reducing copulation rate in *Dsk*-ablated females may also be due to the
253 abatement of female sexual appeal or the changes of male ardor to courtship.
254 Nevertheless, no matter the object of virgin female targets be $\Delta Dsk/\Delta Dsk$, $\Delta Dsk/+$, $+/+$,
255 the courting male display normal courtship level (Figure 1-supplement 3A-B). Taken
256 together, the slow copulation in *Dsk*-ablated virgin female is attributed to decreased
257 sexual receptivity.

258 Previous study has revealed that eight DSK neurons are classified two types (DSK-M
259 and DSK-L) based on the location of the cell bodies, and DSK-M neurons extend
260 descending fibers to ventral nerve cord (Wu et al., 2020). In this study, we also found that
261 activating DSK-M neurons enhance female receptivity whereas inactivating DSK-M
262 neurons reduce female receptivity. Silencing adult Abd-B neurons and SAG neurons
263 located in the abdominal ganglion inhibits female sexual receptivity (Bussell et al., 2014;
264 Feng et al., 2014). However, whether *Dsk* system connects with SAG neurons or Abd-B

265 neurons in regulating female sexual behavior remain unknown and it's interesting to
266 further investigate this possibility. In addition, Wu and colleagues have reported that eight
267 DSK neurons could be further classified into three neural types (Type I, II and III) based on
268 the morphology of the neuritis, and Type I and II neurons correspond to DSK-M while Type
269 III neurons correspond to DSK-L (Wu et al., 2020). DSK neurons modulate not only male
270 courtship (Wu et al., 2019) but also male aggression (Wu et al., 2020). In this study, DSK
271 neurons also modulate female sexual behavior. Thus, it is necessary to label neuronal
272 type more specifically and identify whether different subtype involves in different
273 behaviors, such as male courtship, aggression and female sexual behavior.

274

275

276 EXPERIMENTAL PROCEDURES

277 Fly stocks

278 Flies were reared on standard cornmeal-yeast medium under a 12 hr:12 hr dark:light cycle
279 at 25°C and 60% humidity. Flies carrying a *dTrpA* transgene were raised at 21°C.
280 *UAS-TNT* and *UAS-impTNT* were kindly provided by Dr. Cahir O'Kane (University of
281 Cambridge). *UAS-dTRPA1* was a gift from Dr. Paul Garrity (Brandeis University).
282 *trans-Tango* line and *elav-GS* line were provided by Dr. Yi Zhong (Tsinghua University),
283 *DskFlp* was provided by Dr. Yufeng Pan. *UAS>stop>myr::GFP* (pJFRC41 in attP5) was a
284 gift from Gerald Rubin, *UAS>stop>kir^{eGFP}* was provided by Dr. Yi Rao. The following lines
285 were obtained from the Bloomington *Drosophila* Stock Center: *R71G01-GAL4*
286 (BL#39599), *R71G01-LexA* (BL#54733), *TBH-GAL4* (BL#45904), *TRIC* line (BL#61679),
287 *UAS-Kir2.1* (BL#6595 and BL#6596), *UAS-mCD8::GFP* (BL#5137), *UAS>stop>dTrpA^{myrc}*
288 (BL#66871). *Lexo-CD4-spGFP11/CyO*; *UAS-CD4-spGFP1-10/Tb* was previously
289 described (Gordon and Scott, 2009).

290

291 Method detail

292 Behavioral Assays

293 Flies were reared at 25°C. Virgin females and wild-type males were collected upon
294 eclosion, placed in groups of 12 flies each and aged for 5-7d at 25°C and 60% humidity
295 before carrying out behavior assay except the thermogenetic experiments.

296 In female sexual behavior experiment in virgin female, mating behavior assays were
297 carried out in the courtship chamber. A virgin female of defined genotype and a wild-type
298 male were gently cold anaesthetized and respectively introduced into two layers of the
299 round courtship chambers in which separated by a removable transparent film. The flies
300 were allowed to recover for at least 1h before the film was removed to allow the pair of a
301 test female and a wild-type male to contact. The mating behavior was recorded using a
302 camera (Canon VIXIA HF R500) for 30 min at 30 fps for further analysis.

303 For female sexual behavior experiment in very young virgin female, we collected flies
304 with 0-3h post-eclosion and measures receptivity at 12-16h post-eclosion using same
305 method as mentioned above.

306 For female sexual behavior experiment in mated female, we first collected virgin female
307 upon eclosion and generate mated females by pairing females aged 5-7d with wild-type
308 males. Mated females were isolated 18-24h and then assayed for receptivity with a new

309 wild-type male using same method as mentioned above.

310 For *dTrpA* activation experiment, flies were reared at 21°C. Flies were loaded into
311 courtship chamber and recovered at least 30min, then were placed at 21°C (control group)
312 or 29°C (experimental group) for 30min before removing the film and videotaping.

313 For egg laying experiment, virgin females were collected upon eclosion and 5 flies were
314 housed on standard medium in single vials. The flies were transferred into new food tubes
315 every 24h, and we manually counted the number of eggs in each food tube.

316

317 **Immunohistochemistry**

318 Whole brains of flies aged for 5-7d were dissected in 1X PBS and fixed in 2%
319 paraformaldehyde for 55 min at room temperature. The samples were blocked in 5%
320 normal goat serum for 1 hr at room temperature after washing the samples with PBT (1X
321 PBS containing 0.3% Triton-X100) for four times for 15 min. Then the samples were
322 incubated in primary antibodies (diluted in blocking solution) for 18-24hr at 4°C. Samples
323 were washed four times with 0.3% PBT for 15 min, then were incubated in secondary
324 antibodies (diluted in blocking solution) for 18-24hr at 4°C. Samples were washed four
325 times with 0.3% PBT for 15 min, then were fixed in 4% paraformaldehyde for 4hr at room
326 temperature. Finally, brains were mounted on poly-L-lysine (PLL)-coated coverslip in 1X
327 PBS. The coverslip were dipped for 5min with ethanol of 30%->50%->70%->95%->100%
328 sequentially at room temperature, and then dipped three times for 5min with Xylene. The
329 brains were mounted with DPX and allowed DPX to dry for 2 days before imaging.
330 Confocal images were obtained with Carl Zeiss (LSM710) confocal microscopes and Fiji
331 software was used to process images. Primary antibodies used were: chicken anti-GFP
332 (1:1000; life technologies), rabbit anti-DSK antibody (1:1000), mouse anti-nc82 (1:50;
333 DSHB), Rat anti-HA (1:100; Roche), mouse anti-GFP-20 (1:100; sigma). Secondary
334 antibodies used were: Alexa Fluor goat anti-chicken 488 (1:500; life technologies), Alexa
335 Fluor goat anti-rabbit 546 (1:500; life technologies), Alexa Fluor goat anti-mouse 647
336 (1:500; life technologies), Alexa Fluor goat anti-rat 546 (1:500; Invitrogen) and Alexa Fluor
337 goat anti-mouse 488 (1:500; life technologies).

338

339 **Generation of *UAS-CCKLR-17D3***

340 The method of generation of *UAS-CCKLR-17D3* was same as described previously (Wu
341 et al., 2020). Primer sequences for cloning the cDNA of *UAS-CCKLR-17D3* are as follows:
342 *UAS-CCKLR-17D3*:

343 Forward:

344 ATTCTTATCCTTACTTCAGGCGGCCGAAATGTTCAACTACGAGGAGGG

345 Reverse:

346 GTTATTTAAAAACGATTCTAGATTAGAGCTGAGGACTGTTGACG

347

348 **Genomic DNA extraction and RT-PCR**

349 Genomic DNA was extracted from whole fly body using MightyPrep reagent for DNA
350 (Takara). Whole head RNA was extracted from 50 fly heads using TRIzol (Ambion
351 #15596018). cDNA was generated from total RNA using the Prime Script reagent kit
352 (Takara).

353

354 **Validation of Δ CCKLR-17D3 in female**

355 Candidates of Δ CCKLR-17D3 were characterized by the loss of DNA band in the deleted
356 areas by PCR on the genomic DNA, as shown in Figure 6A. Primer sequences used for
357 regions 1–4 in Figure 6B are as follows:

358 Region (1): Forward 5'- CAGTAGAGGATTCCGCCTCCAAG-3'
359 Reverse 5'- GACATACAGCGAGAGTGC-3'
360 Region (2): Forward 5'- CATGAACGCCAGCTTCCG-3'
361 Reverse 5'- GCACTATTGGTGGTCACCAC-3'
362 Region (3): Forward 5'- GGAAATCATCTAACAGGCTTAC-3'
363 Reverse 5'- GCCGTGTCAAATCGCTTTC-3'
364 Region (4): Forward 5'- GCATACATACAAGCAAATTATGC-3'
365 Reverse 5'- CTCATATTCTTTGGGCTACCAC-3'

366 Primer sequences used for amplifying *CCKLR-17D3* or *CG6891* cDNA in Figure 6C are as
367 follows:

368 *CCKLR-17D3* cDNA: Forward 5'- GCCCATAGCGGTCTTAGTC-3'
369 Reverse 5'- GTGATGAGGATGTAGGCCAC 3
370 *CG6891* cDNA: Forward 5'-GCTGTGTTCTGGATGTGGATG-3'
371 Reverse 5'- CTGGAACTGTGCTGGTTCTG-3'

372

373 **Drug Feeding**

374 Virgin females of defined genotype were collected upon eclosion and reared on standard
375 cornmeal-yeast medium as a group of 12 for 4 days. Then we transferred the female flies
376 to new standard cornmeal-yeast food tube containing 500 μ M RU486 (RU486+) or control
377 solution (RU486-) for 2 days before behavior assay. RU486 (mifepristone; Sigma) was
378 dissolved in ethanol.

379

380 **TRIC analysis**

381 *Dsk*^{GAL4} flies were crossed with a TRIC line to detect the changes of intracellular Ca²⁺
382 levels between virgin and mated females. The brain of virgin and mated female (2 days
383 after copulation) were dissected and fixed with 8% paraformaldehyde for 2hr, and then
384 mounted with DPX. All of the confocal images were obtained with Carl Zeiss (LSM710)
385 confocal microscopes with the same settings.

386 Fiji software was used to process images. We first generated a Z stack of the sum of
387 fluorescence signals, and then quantified the fluorescence intensity of DSK cell bodies
388 between virgin and mated female brain, respectively. We calculated the signal intensity of
389 each cell by setting the average of the cell in each group from virgin females as 100%

390

391 **Electrophysiological recordings**

392 Young adult flies (1–2 days after eclosion) were anesthetized on ice and brain were
393 dissected in saline solution. And the brain was continuously perfused with saline bubbled
394 with 95% O₂/5% CO₂ (~pH 7.3) at room temperature. The saline composed the following
395 (in mM): 103 NaCl, 3 KCl, 4 MgCl₂, 1.5 CaCl₂, 26 NaHCO₃, 1 NaH₂PO₄, 5
396 N-tri-(hydroxymethyl)-methyl-2-aminoethane-sulfonic acid (TES), 20 D-glucose, 17

397 sucrose, and 5 trehalose.

398 Electrophysiological recordings were performed using a Nikon microscope with a 60
399 water immersion objective to locate target neurons. Then we used Nikon A1R+ confocal
400 microscope with infrared-differential interference contrast (IR-DIC) optics to visual for
401 patch-clamp recordings and the image was shown on monitor by IR-CCD (DAGE-MTI).
402 The recording pipette (~10–15 MΩ) was filled with internal solution containing 150 mg/ml
403 amphotericin B. The internal solution consists of (in mM): 140 K-gluconate, 6 NaCl, 2
404 MgCl₂, 0.1 CaCl₂, 1 EGTA, 10 HEPES (pH 7.3). Current and voltage signals were
405 amplified with MultiClamp 700B, digitized with Digidata 1440A, recorded with Clampex
406 10.6 (all from Molecular Devices), filtered at 2 kHz, and sampled at 5 kHz. The recorded
407 neuron was voltage clamped at 70 mV. Measured voltages were corrected for a liquid
408 junction potential.

409

410 **Chemogenetic stimulation**

411 ATP-gated ion channel P2X₂ was driven by 71G01-GAL4. ATP-Na (Sigma-Aldrich) of 2.5
412 mM was delivered through a three-barrel tube, controlled by stepper (SF77B, Warner
413 Instruments) driven by Axon Digidata 1440A analog voltage output. The aim of these
414 equipments was for fast solution change between perfusion saline and ATP stimulation.

415

416 **Brain image registration**

417 A standard brain was generated using CMTK software as described previously (Rohlfing
418 and Maurer, 2003; Zhou et al., 2014). Confocal stacks were then registered into the
419 common standard brain with a Fiji graphical user interface (GUI) as described previously
420 (Jefferis et al., 2007).

421

422 **Quantification and statistical analysis of female mating behavior**

423 Two parameters that copulation rate and latency were used to characterize receptivity.
424 The time from removing the film to copulation was measured for each female. The number
425 of females that had engaged in copulation by the end of each 1-min interval were summed
426 within 30min and plotted as a percentage of total females for each time point. The time
427 from removing the film to successful copulation for each female was used to characterize
428 latency to copulation. And all the time point that female successfully copulated were
429 analyzed by manual method and unhealthy flies were discarded. Three scorers with
430 blinding to the genotypes and condition of the experiment were assigned for independent
431 scoring.

432

433 **Statistical analysis**

434 Statistical analyses were carried about using R software version 3.4.3 or GraphPad
435 software. Chi-square tests were used for comparing different groups in the female
436 receptivity assay. For locomotion or male courtship experiments, Kruskal-Wallis ANOVA
437 test followed by post-hoc Mann-Whitney U test was used for comparison among multiple
438 groups. The Mann-Whitney U test was applied for analyzing the significance of two
439 columns.

440

441 **Acknowledgements**

442 We thank Yi Rao (Peking University), Yi Zhong (Tsinghua University), Yufeng Pan
443 (Southeast University), Cahir O'Kane (University of Cambridge) and Paul Garrity
444 (Brandeis University) for providing fly lines. We thank Pengxiang Wu (Chinese Academy
445 of Sciences) and Yu Mu (Institute of neuroscience) for comments on the manuscript; Yihui
446 Chen for the maintenance of fly stocks; other members of the Zhou laboratory for helpful
447 discussion. This work is supported by grants to Chuan Zhou from National Natural
448 Science Foundation of China (NO.Y711241133) and Strategic Priority Research Program
449 of the Chinese Academy of Science (NO.Y929731103) and State Key Laboratory of
450 Integrated Management of Pest Insects and Rodents, IOZ, CAS (NO.Y652751E03).

451

452 **AUTHOR CONTRIBUTIONS**

453 Tao Wang, Resources, Data curation, Writing-original draft; Fengming Wu, Bowen Deng,
454 Methodology; Kai Shi, Biyang Jing, Software; Baoxu Ma, Jing Li, Data curation; Chuan
455 Zhou, Conceptualization, Funding acquisition, Writing-review and editing.

456

457

458

459

460

461

462

463

464

465

466

467

468

469

470

471

472

473

474

475

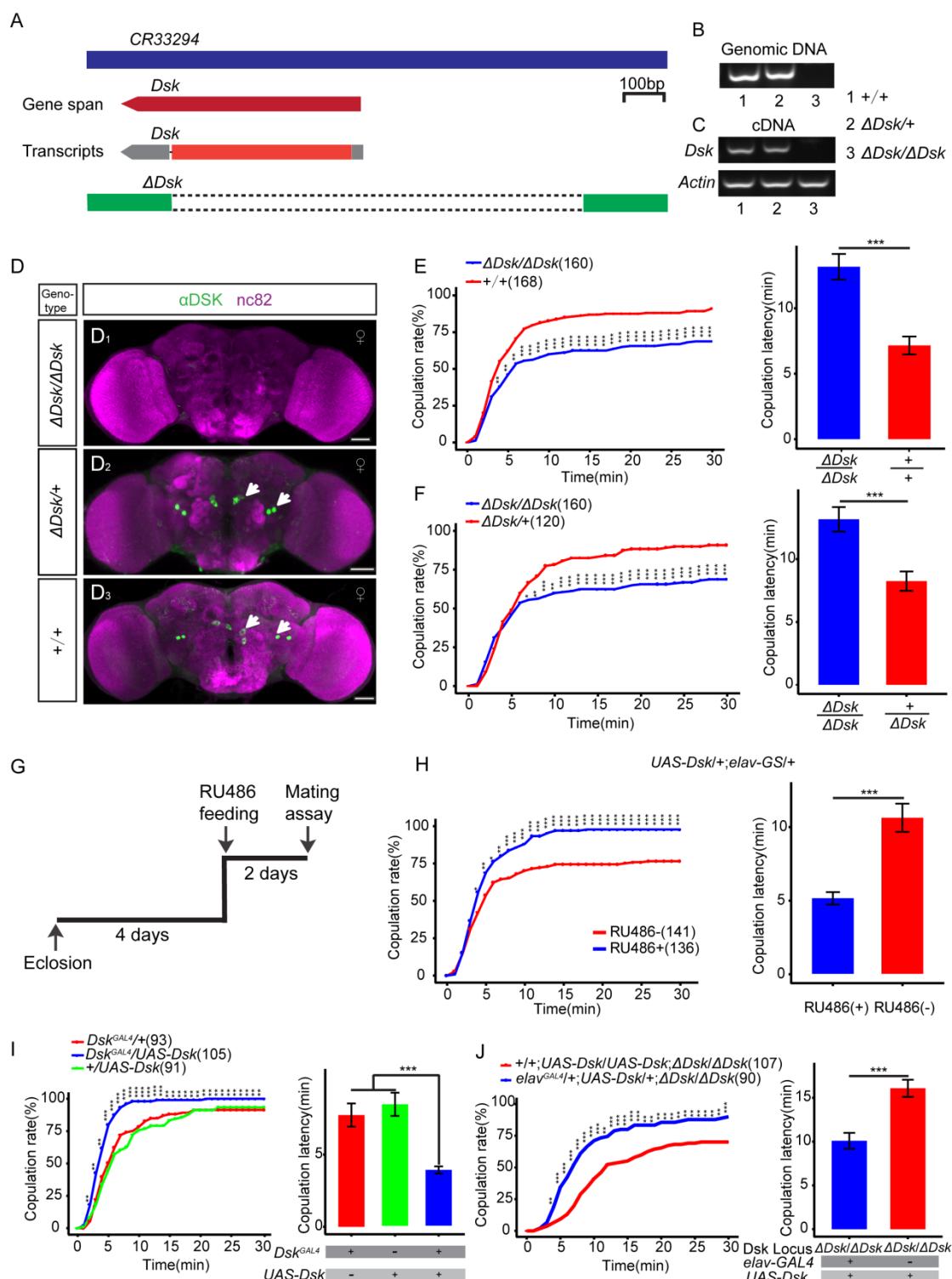
476

477

478

479

480

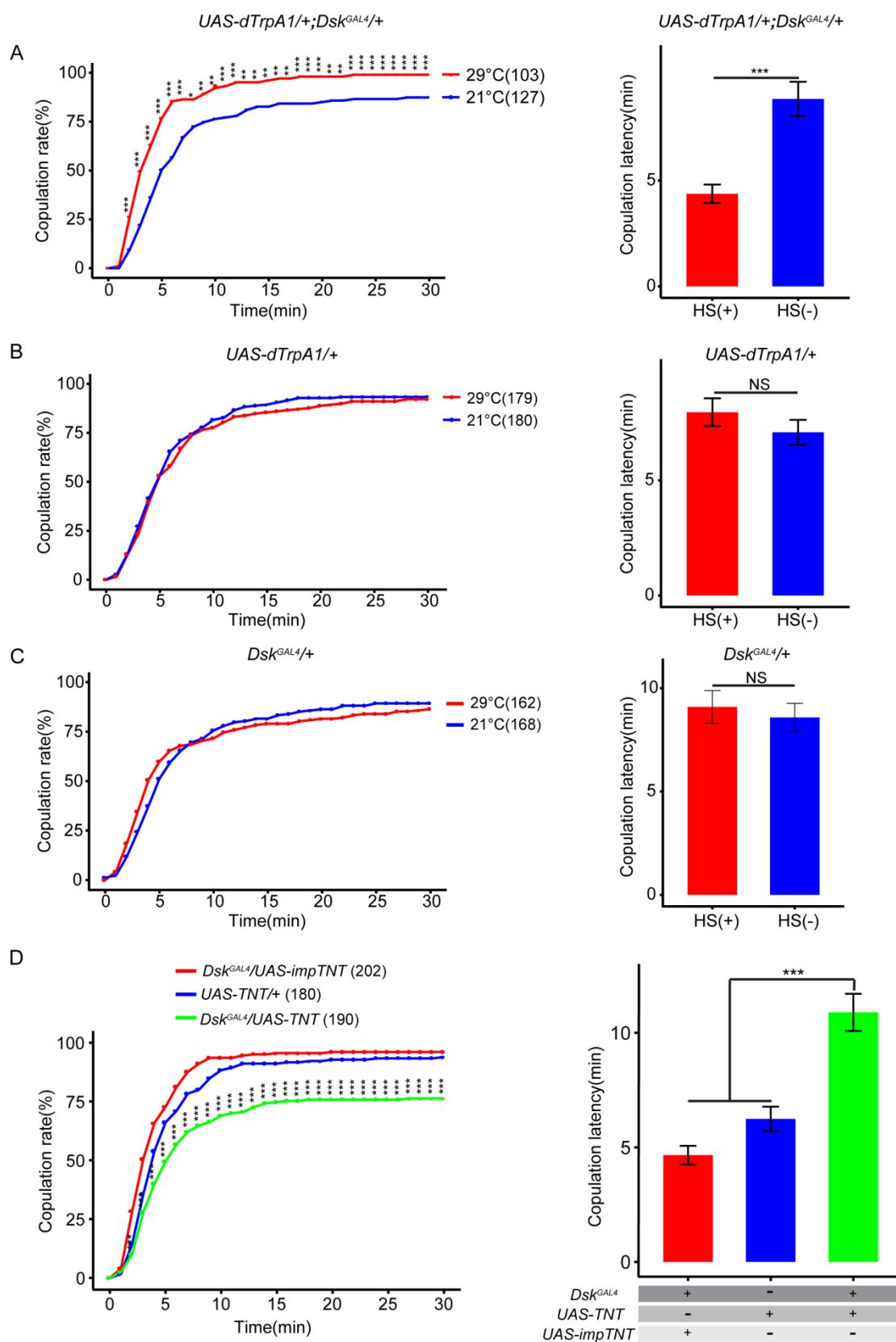

481

482

483

484

485 **Figure Legends**

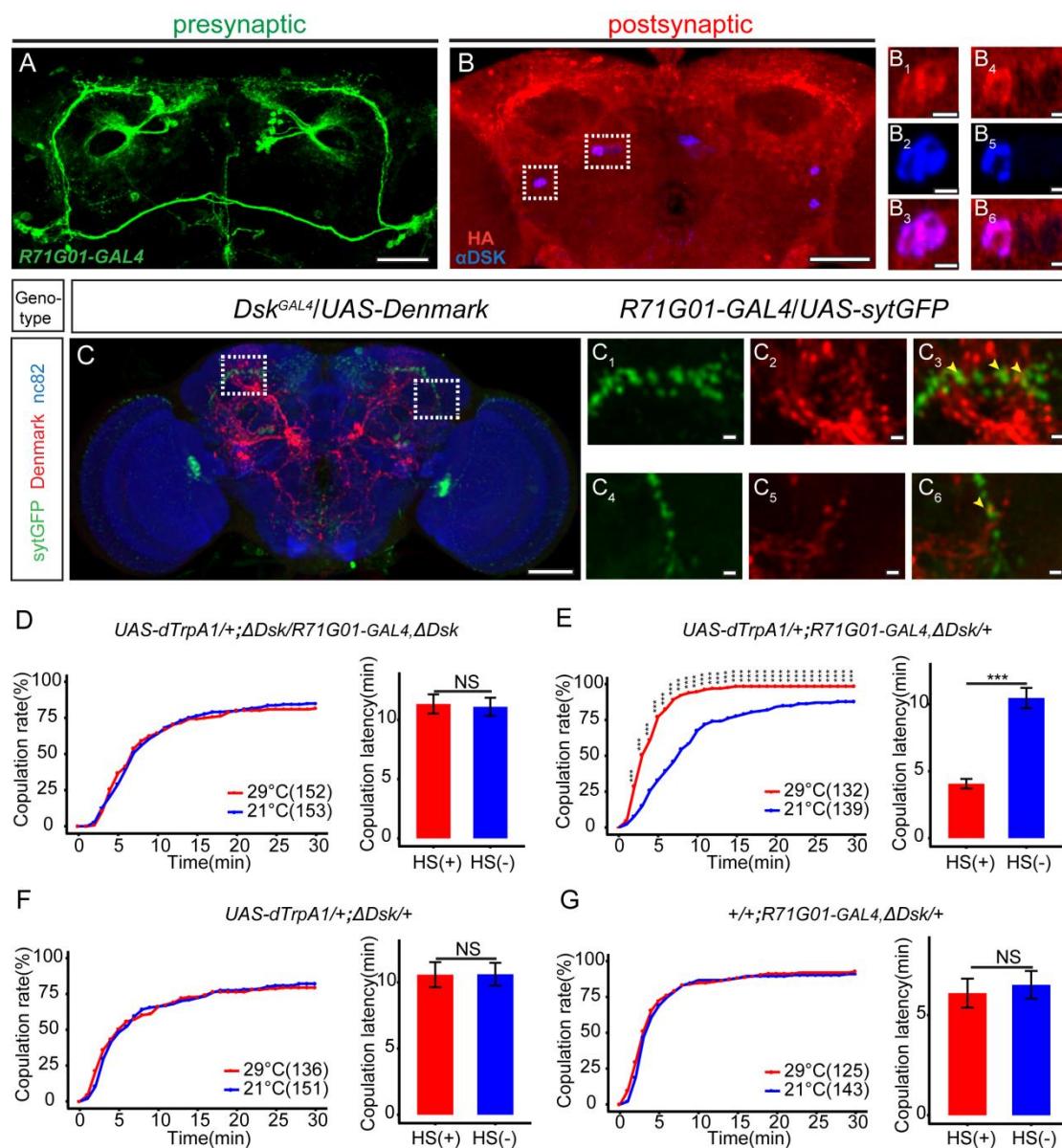


486

487 **Figure 1. *Dsk* gene is important for female receptivity.**

488 (A) Organization of *Dsk* gene and generation of ΔDsk . (B-C) Validation of ΔDsk . RCR
 489 analysis from genomic DNA samples of $\Delta Dsk/\Delta Dsk$, $+/+Dsk$, $+/+$ (B), RT-PCR analysis
 490 from cDNA samples of $\Delta Dsk/\Delta Dsk$, $+/+Dsk$, $+/+$ (C). (D) Brain of indicated genotype,
 491 immunostained with anti-DSK antibody (green) and counterstained with nc82 (magenta).
 492 Arrow show cell bodies (green) stained with anti-DSK antibody. Scale bars: 50 μ m. (E-F)

493 Receptivity of virgin females within 30min. *Dsk* mutant show reduced copulation rate and
494 prolonged copulation latency compared with wild-type (E) and heterozygous females (F).
495 (G) Schematic of experimental design. (H) Conditional overexpression of *Dsk* under the
496 control of elav-GeneSwitch (*elav-GS*) significantly increased copulation rate and
497 shortened copulation latency after feeding RU486 compared without feeding RU486. (I)
498 Overexpression of *Dsk* in DSK neurons significantly increased copulation rate and
499 shortened copulation latency compared with genetic controls. (J) Decreased female
500 sexual behavior phenotypes of $\Delta Dsk/\Delta Dsk$ were rescued by *elav*^{GAL4} driving *UAS-Dsk*.
501 The number of female flies paired with wild-type males analyzed is displayed in
502 parentheses. And there are same numbers in two parameters. *p<0.05, **p<0.01,
503 ***p<0.001, NS indicates no significant difference (chi-square test).
504

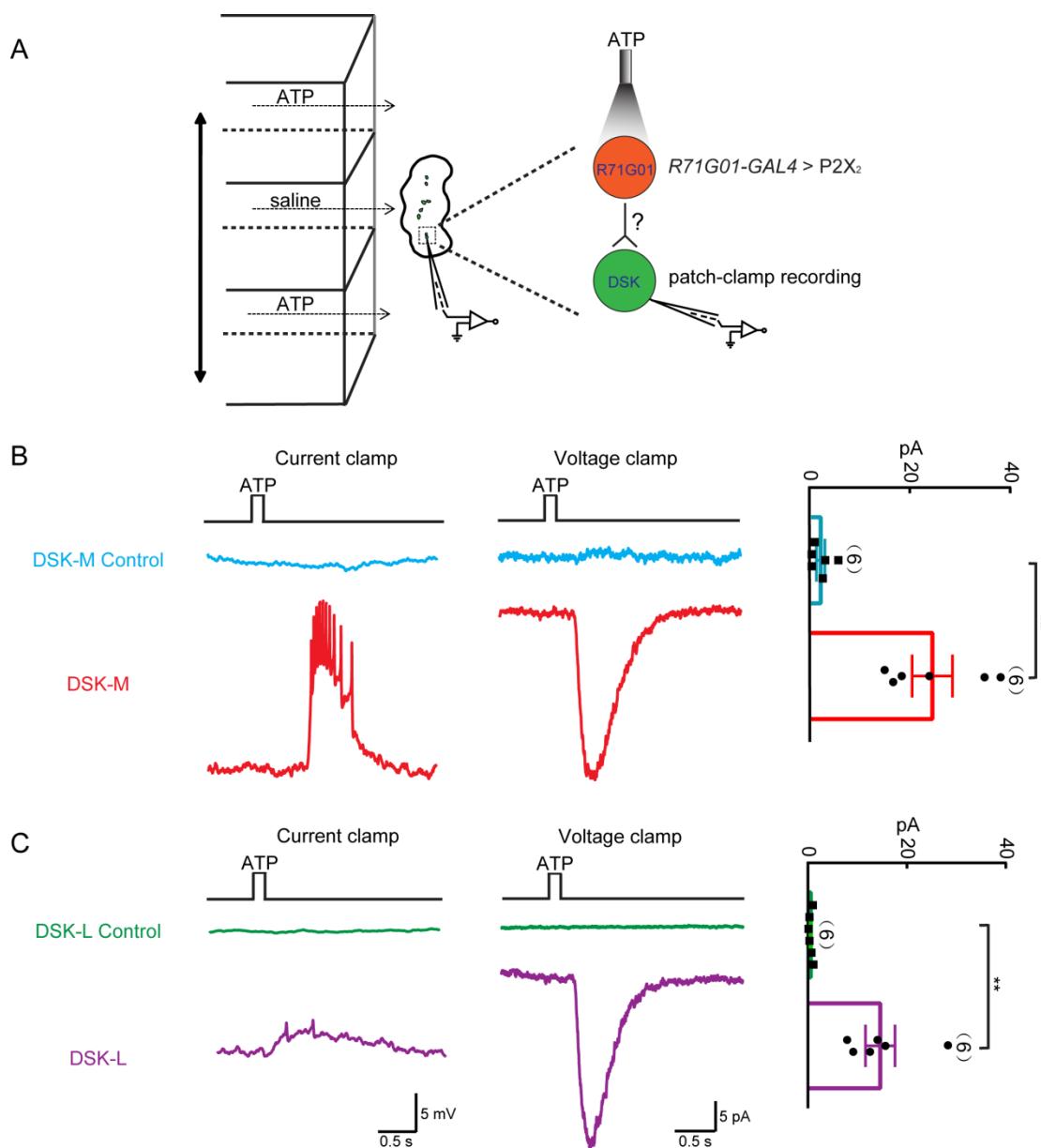

Figure 2. Effect of DSK neurons on female receptivity.

505
506 (A) Activation of DSK neurons significantly increased copulation rate and shortened
507 copulation latency at 29°C relative to 21°C. *Dsk^{GAL4}* driving *UAS-dTrpA1* activated DSK
508 neurons at 29°C. (B-C) The controls with either *UAS-dTrpA1* alone or *Dsk^{GAL4}* alone did
509

510 not alter the copulation rate and copulation latency at 29°C relative to 21°C. Activation of
 511 neuron is represented by (HS+) and control is represented by (HS-). (D) Inactivation of
 512 DSK neurons significantly decreased copulation rate and prolonged copulation latency
 513 compared with controls. *Dsk*^{GAL4} driving *UAS-TNT* inactivated DSK neurons. The number
 514 of female flies paired with wild-type males analyzed is displayed in parentheses. And
 515 there are same numbers in two parameters. *p<0.05, **p<0.01, ***p<0.001, NS indicates
 516 no significant difference (chi-square test).

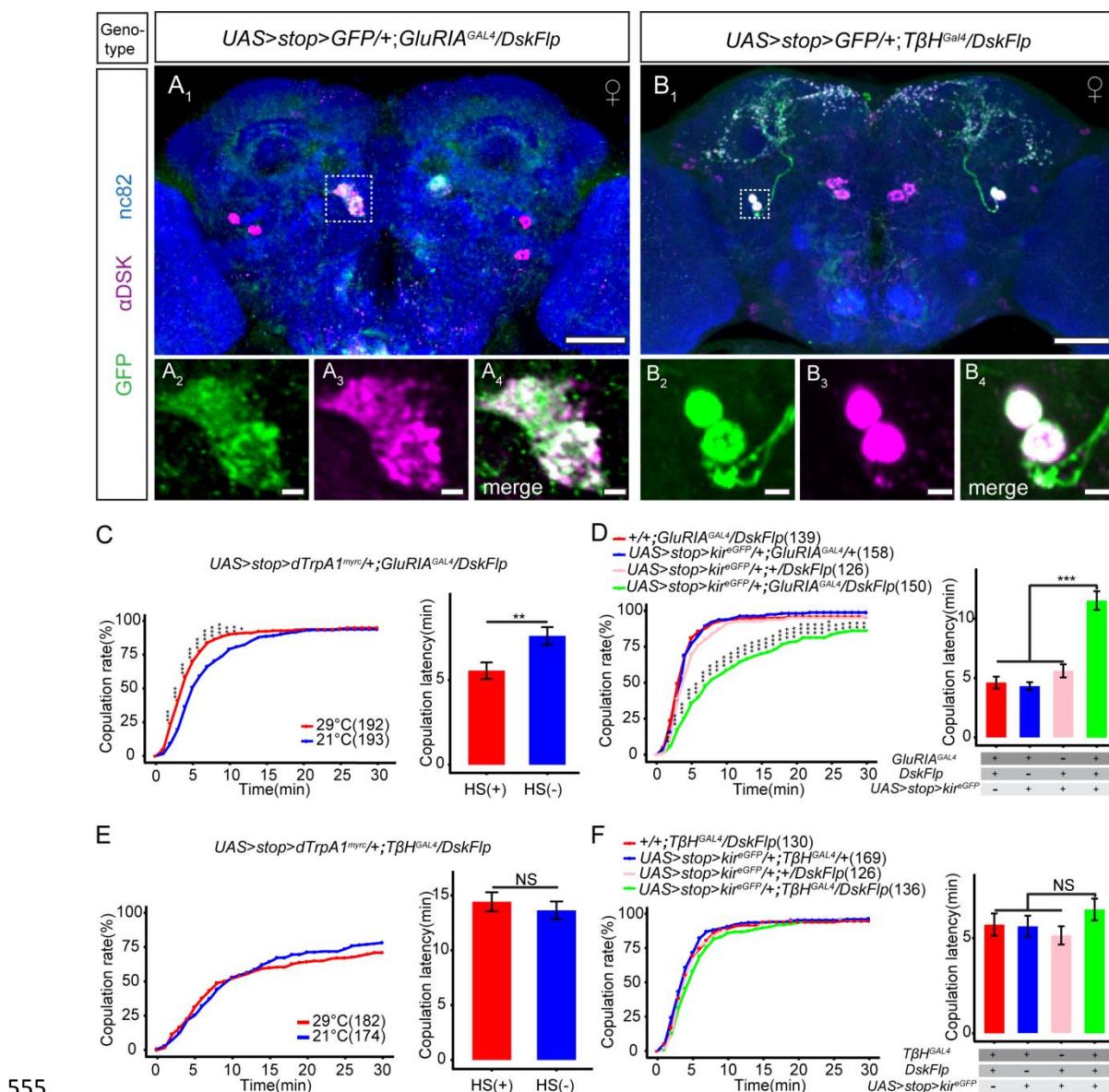
517

518

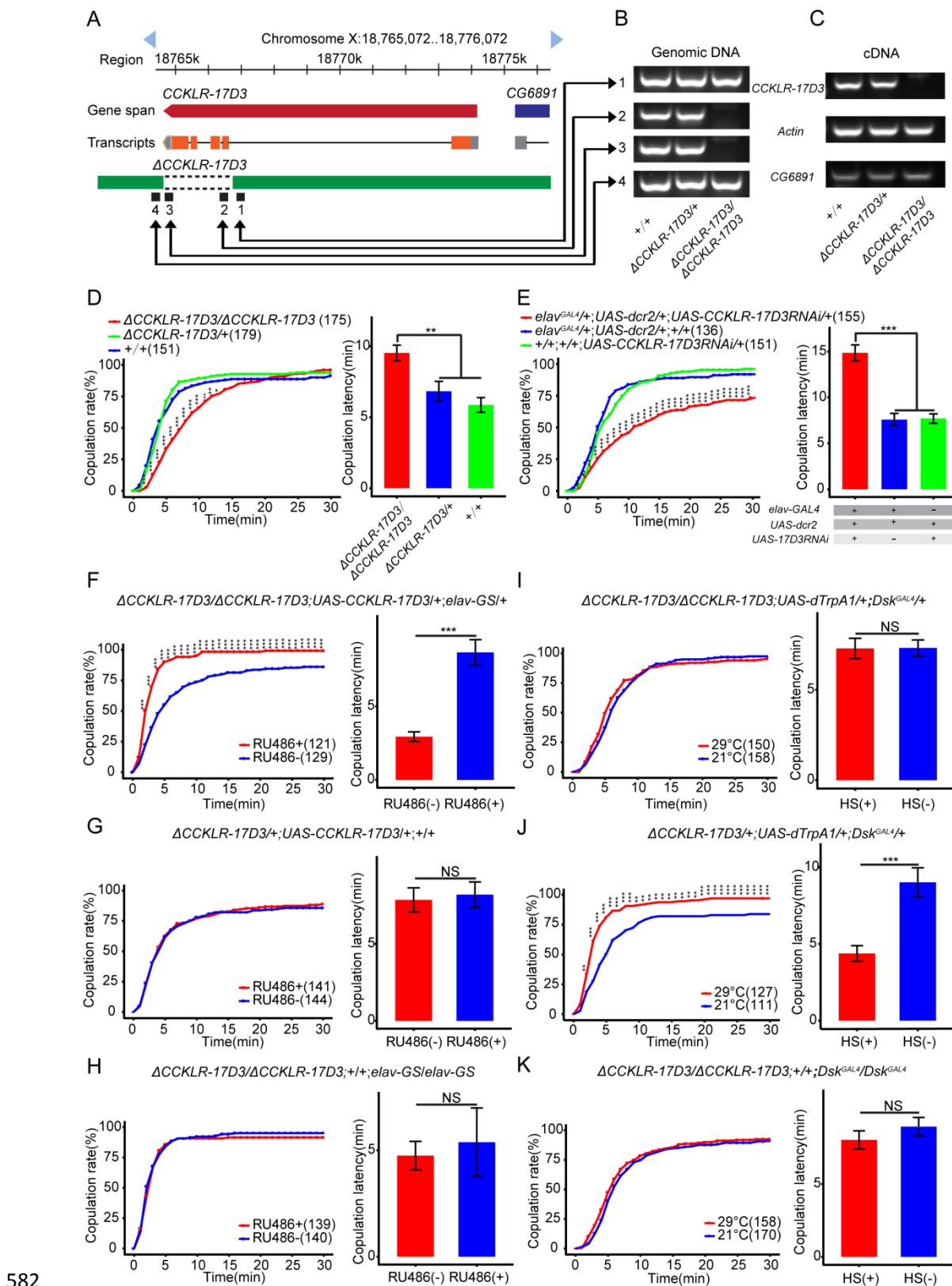

519 **Figure 3. DSK neurons are functional targets of *R71G01GAL4* neurons in regulating**
 520 **mating behavior.**

521 mating behavior.
522 (A-B) Transsynaptic circuit analysis using *trans*-Tango confirms that *Dsk*-expressing
523 neurons are postsynaptic neurons of *R71G01GAL4* neurons. In the central brain,
524 expression of the Tango ligand in *R71G01GAL4* neurons (green) (A) induced postsynaptic
525 mtdTomato signals (anti-HA, red) (B). Cell bodies of *Dsk* were stained with anti-DSK (blue)

526 (B). Magnification of white boxed region in (B) is shown in (B₁-B₃) and (B₄-B₆). Scale bars
527 are 50 μ m in (A-B), 5 μ m in (B₁-B₃) and (B₄-B₆). (C) *R71G01GAL4* neurons axons
528 overlapped with DSK neurons dendrites by anatomical registration. Magnification of white
529 boxed region in (C) is shown in (C₁-C₃) and (C₄-C₆). Yellow arrowheads indicated the
530 region of overlaps between *R71G01GAL4* neurons axons with DSK neurons dendrites.
531 *R71G01-GAL4* driven *UAS-sytGFP* expression (green), *Dsk*^{GAL4} driven *UAS-Denmark*
532 expression (red). Scale bars are 50 μ m in (C), 5 μ m in (C₁-C₃) and (C₄-C₆). (D) The
533 copulation rate and copulation latency had no difference at 29°C relative to 21°C in the
534 case of activation of *R71G01GAL4* neurons in the ΔDsk mutant background. (E) The
535 positive control significantly increased copulation rate and shortened copulation latency at
536 29°C relative to 21°C. (F-G) The negative controls did not alter the copulation rate and
537 copulation latency by heating. Activation of neuron is represented by (HS+) and control is
538 represented by (HS-). The number of female flies paired with wild-type males analyzed is
539 displayed in parentheses. And there are same numbers in two parameters. *p<0.05,
540 **p<0.01, ***p<0.001, NS indicates no significant difference (chi-square test).


541

542


Figure 4. Functional connectivity between *R71G01GAL4* neurons and DSK neurons

(A) Schematic illustration of activation of *R71G01GAL4* neurons by ATP and patch-clamp recording of DSK neurons. *R71G01GAL4* neurons were activated by ATP from $+/+;R71G01\text{-LexA}+/+;Dsk^{GAL4}/\text{LexAop-P2X}_2, \text{UAS-GCaMP6m}$ flies. (B-C) The electrical responses of medial DSK neurons (DSK-M) and lateral DSK neurons (DSK-L) to the ATP activation of P2X₂-expressing *R71G01GAL4* neurons. ATP: 2.5 mM. Left: ATP-induced spiking firing (current clamp). Middle: current responses (voltage clamp). Right: quantification of absolute current responses. n=6 for DSK-M, DSK-M control, DSK-L, DSK-L control. Genotype: $+/+;+/+;Dsk^{GAL4}/\text{LexAop-P2X}_2, \text{UAS-GCaMP6m}$ for DSK-M control and DSK-L control. **p<0.01 (Mann-Whitney U tests).

555
556 **Figure 5. DSK-M neurons play a critical role in female receptivity.**
557 (A) Intersectional expression of *Dsk* neurons and *GluRIA* neurons were detected by
558 immunostained with anti-GFP (green) and anti-DSK (magenta) antibodies in female brain
559 and were counterstained with anti-nc82 (blue). Magnification of white boxed region in (A)
560 is shown in (A₂-A₄). Genotype: *UAS>stop>myr::GFP/+;GluRIA^{GAL4}/DskFlp*. (B)
561 Intersectional expression of *Dsk* neurons and *TβH* neurons were detected by
562 immunostained with anti-GFP (green) and anti-DSK (magenta) antibodies in female brain
563 and were counterstained with anti-nc82 (blue). Magnification of white boxed region in (B)
564 is shown in (B₂-B₄). Genotype: *UAS>stop>myr::GFP/+;TβH^{GAL4}/DskFlp*. Scale bars are
565 50μm in (A and B), 5μm in (A₁-A₃) and (B₁-B₃). (C) Activation of co-expression neurons of
566 *Dsk* and *GluRIA* significantly increased copulation rate and shortened copulation latency
567 at 29°C relative to 21°C. Genotype: *UAS>stop>dTrpA1^{myrc}/+;GluRIA^{GAL4}/DskFlp*. (D)
568 Inactivation of co-expression neurons of *Dsk* and *GluRIA* significantly decreased the
569 copulation rate and prolonged copulation latency compared with controls. Genotype:
570 *UAS>stop>kir^{eGFP}/+;GluRIA^{GAL4}/DskFlp*, *+/+;GluRIA^{GAL4}/DskFlp*, *UAS>stop>kir^{eGFP}/+*,

571 $GluRIA^{GAL4}/+$, $UAS>stop>kir^{eGFP}/+;DskF1p$. (E) Activation of co-expression neurons of
572 Dsk and $T\beta H$ did not alter the copulation rate and copulation latency at 29°C relative to
573 21°C. Genotype: $UAS>stop>dTrpA^{myrc}/+;T\beta H^{GAL4}/DskF1p$. (F) Inactivation of co-expression
574 neurons of Dsk and $T\beta H$ did not alter the copulation rate and copulation latency compared
575 with controls. Genotype: $UAS>stop>kir^{eGFP}/+;T\beta H^{GAL4}/DskF1p$,
576 $UAS>stop>kir^{eGFP}/+;DskF1p$, $UAS>stop>kir^{eGFP}/+;T\beta H^{GAL4}/+$, $+;/T\beta H^{GAL4}/DskF1p$.
577 Activation of neuron is represented by (HS+) and control is represented by (HS-). The
578 number of female flies paired with wild-type males analyzed is displayed in parentheses.
579 And there are same numbers in two parameters. * $p<0.05$, ** $p<0.01$, *** $p<0.001$, NS
580 indicates no significant difference (chi-square test).
581

582

583

Figure 6. Dsk regulate female receptivity via CCKLR-17D3 Receptor.

584 (A) Organization of CCKLR-17D3 and generation of $\Delta CCKLR-17D3$. (B-C) Validation of
585 $\Delta CCKLR-17D3$. RCR analysis from genomic DNA samples of
586 $\Delta CCKLR-17D3/\Delta CCKLR-17D3$, $+/+/\Delta CCKLR-17D3$, $+/+$. (B) RT-PCR analysis from cDNA
587 samples of $\Delta CCKLR-17D3/\Delta CCKLR-17D3$, $+/+/\Delta CCKLR-17D3$, $+/+$ (C). (D) CCKLR-17D3

588 mutant females significantly decreased copulation rate and prolonged copulation latency
589 compared with wild-type and heterozygous. (E) Knockdown of *CCKLR-17D3* showed
590 significantly reduced copulation rate and prolonged copulation latency compared with
591 controls. *CCKLR-17D3*RNAi was driven by *elav-Ga4;UAS-dcr2*. (F) Conditional
592 expression of *UAS-CCKLR-17D3* in the Δ *CCKLR-17D3* mutant background after feeding
593 RU486 significantly increased copulation rate and shortened copulation latency compared
594 without feeding RU486. (G-H) The controls with either *UAS-CCKLR-17D3* alone or
595 *elav-GS* alone did not rescue the phenotypes of Δ *CCKLR-17D3*/ Δ *CCKLR-17D3* at feeding
596 RU486 relative to without feeding RU486. (I) The copulation rate and copulation latency
597 have no difference at 29°C relative to 21°C in the case of activating DSK neurons in the
598 Δ *CCKLR-17D3* mutant background. (J) The positive control significantly increased
599 copulation rate and shortened copulation latency at 29°C relative to 21°C. (K) The
600 negative control did not alter the copulation rate and copulation latency by heating.
601 Activation of neuron is represented by (HS+) and control is represented by (HS-). The
602 number of female flies paired with wild-type males analyzed is displayed in parentheses.
603 And there are same numbers in two parameters. *p<0.05, **p<0.01, ***p<0.001, NS
604 indicates no significant difference (chi-square test).

605

606

607

608

609

610

611

612

613

614

615

616

617

618

619

620

621

622

623

624

625

626

627

628

629

630

631

632 Reference

633 Baines, R. A., Uhler, J. P., Thompson, A., Sweeney, S. T., & Bate, M. (2001). Altered electrical
634 properties in *Drosophila* neurons developing without synaptic transmission. *Journal of*
635 *Neuroscience*, 21(5), 1523-1531.

636 Billeter, J. C., Goodwin, S. F., & O'Dell, K. M. C. (2002). Genes mediating sex-specific
637 behaviors in *Drosophila*. *Advances in Genetics*, Vol 47, 47, 87-116. doi:
638 10.1016/S0065-2660(02)47003-4

639 Bloch Qazi, M. C., Heifetz, Y., & Wolfner, M. F. (2003). The developments between
640 gametogenesis and fertilization: ovulation and female sperm storage in *Drosophila*
641 *melanogaster*. *Dev Biol*, 256(2), 195-211. doi:10.1016/s0012-1606(02)00125-2

642 Brake, A. J., Wagenbach, M. J., & Julius, D. (1994). New Structural Motif for Ligand-Gated Ion
643 Channels Defined by an Ionotropic Atp Receptor. *Nature*, 371(6497), 519-523. doi:
644 10.1038/371519a0

645 Branson, K., Robie, A. A., Bender, J., Perona, P., & Dickinson, M. H. (2009). High-throughput
646 ethomics in large groups of *Drosophila*. *Nat Methods*, 6(6), 451-457.
647 doi:10.1038/nmeth.1328

648 Broughton, S. J., Kitamoto, T., & Greenspan, R. J. (2004). Excitatory and inhibitory switches
649 for courtship in the brain of *Drosophila melanogaster*. *Curr Biol*, 14(7), 538-547.
650 doi:10.1016/j.cub.2004.03.037

651 Bussell, J. J., Yapici, N., Zhang, S. X., Dickson, B. J., & Vosshall, L. B. (2014). Abdominal-B
652 Neurons Control *Drosophila* Virgin Female Receptivity. *Current Biology*, 24(14),
653 1584-1595. doi:10.1016/j.cub.2014.06.011

654 Carhan, A., Allen, F., Armstrong, J. D., Goodwin, S. F., & O'Dell, K. M. C. (2005). Female
655 receptivity phenotype of *icebox* mutants caused by a mutation in the L1-type cell
656 adhesion molecule neuroglian. *Genes Brain and Behavior*, 4(8), 449-465.
657 doi:10.1111/j.1601-183X.2004.00117.x

658 Chapman, T., Liddle, L. F., Kalb, J. M., Wolfner, M. F., & Partridge, L. (1995). Cost of mating in
659 *Drosophila melanogaster* females is mediated by male accessory gland products.
660 *Nature*, 373(6511), 241-244. doi:10.1038/373241a0

661 Chen, P. S., Stumm-Zollinger, E., Aigaki, T., Balmer, J., Bienz, M., & Bohlen, P. (1988). A male
662 accessory gland peptide that regulates reproductive behavior of female *D.*
663 *melanogaster*. *Cell*, 54(3), 291-298. doi:10.1016/0092-8674(88)90192-4

664 Chen, X., & Ganetzky, B. (2012). A neuropeptide signaling pathway regulates synaptic growth
665 in *Drosophila*. *Journal of Cell Biology*, 196(4), 529-543. doi:10.1083/jcb.201109044

666 Clowney, E. J., Iguchi, S., Bussell, J. J., Scheer, E., & Ruta, V. (2015). Multimodal
667 Chemosensory Circuits Controlling Male Courtship in *Drosophila*. *Neuron*, 87(5),
668 1036-1049. doi:10.1016/j.neuron.2015.07.025

669 Connolly, K., & Cook, R. (1973). Rejection Responses by Female *Drosophila-Melanogaster* -
670 Their Ontogeny, Causality and Effects Upon Behavior of Courting Male. *Behaviour*,
671 44(1-2), 142-166. doi: 10.1163/156853973x00364

672 Demir, E., & Dickson, B. J. (2005). *fruitless* splicing specifies male courtship behavior in
673 *Drosophila*. *Cell*, 121(5), 785-794. doi:10.1016/j.cell.2005.04.027

674 Deng, B., Li, Q., Liu, X., Cao, Y., Li, B., Qian, Y., Xu, R., Mao, R., Zhou, E., Zhang, W., Huang,
675 J., & Rao, Y. (2019). Chemoconnectomics: Mapping Chemical Transmission in

676 *Drosophila. Neuron*, 101(5), 876-893 e874. doi:10.1016/j.neuron.2019.01.045

677 678 Dickson, B. J. (2008). Wired for sex: the neurobiology of *Drosophila* mating decisions. *Science*,
322(5903), 904-909. doi:10.1126/science.1159276

679 680 Emmons, S. W., & Lipton, J. (2003). Genetic basis of male sexual behavior. *J Neurobiol*, 54(1),
93-110. doi:10.1002/neu.10163

681 682 Feinberg, E. H., Vanhoven, M. K., Bendesky, A., Wang, G., Fetter, R. D., Shen, K., &
Bargmann, C. I. (2008). GFP Reconstitution Across Synaptic Partners (GRASP)
683 defines cell contacts and synapses in living nervous systems. *Neuron*, 57(3), 353-363.
684 doi:10.1016/j.neuron.2007.11.030

685 686 Feng, K., Palfreyman, M. T., Hasemeyer, M., Talsma, A., & Dickson, B. J. (2014). Ascending
SAG Neurons Control Sexual Receptivity of *Drosophila* Females. *Neuron*, 83(1),
687 135-148. doi:10.1016/j.neuron.2014.05.017

688 689 Ferveur, J. F. (2010). *Drosophila* female courtship and mating behaviors: sensory signals,
genes, neural structures and evolution. *Curr Opin Neurobiol*, 20(6), 764-769.
690 doi:10.1016/j.conb.2010.09.007

691 692 Gordon, M. D., & Scott, K. (2009). Motor control in a *Drosophila* taste circuit. *Neuron*, 61(3),
373-384. doi:10.1016/j.neuron.2008.12.033

693 694 Hamada, F. N., Rosenzweig, M., Kang, K., Pulver, S. R., Ghezzi, A., Jegla, T. J., & Garrity, P. A.
695 (2008). An internal thermal sensor controlling temperature preference in *Drosophila*.
Nature, 454(7201), 217-U255. doi:10.1038/nature07001

696 697 Hoopfer, E. D., Jung, Y., Inagaki, H. K., Rubin, G. M., & Anderson, D. J. (2015). P1
interneurons promote a persistent internal state that enhances inter-male aggression
698 in *Drosophila*. *eLife*, 4: e11346. doi: 10.7554/eLife.11346

699 700 Ishimoto, H., & Kamikouchi, A. (2020). A Feedforward Circuit Regulates Action Selection of
Pre-mating Courtship Behavior in Female *Drosophila*. *Current Biology*, 30(3), 396-+.
701 doi:10.1016/j.cub.2019.11.065

702 703 Jang, Y. H., Chae, H. S., & Kim, Y. J. (2017). Female-specific myoinhibitory peptide neurons
regulate mating receptivity in *Drosophila melanogaster*. *Nature Communications*, 8(1),
704 1630. doi:10.1038/s41467-017-01794-9

705 706 Jefferis, G. S. X. E., Potter, C. J., Chan, A. I., Marin, E. C., Rohlfing, T., Maurer, C. R., & Luo, L.
707 Q. (2007). Comprehensive maps of *Drosophila* higher olfactory centers: Spatially
708 segregated fruit and pheromone representation. *Cell*, 128(6), 1187-1203.
doi:10.1016/j.cell.2007.01.040

709 710 Juni, N., & Yamamoto, D. (2009). Genetic Analysis of *chaste*, a New Mutation of *Drosophila*
melanogaster Characterized by Extremely Low Female Sexual Receptivity. *Journal of*
711 *Neurogenetics*, 23(3), 329-340. doi: 10.1080/01677060802471601

712 713 Kerr, C., Ringo, J., Dowse, H., & Johnson, E. (1997). *Icebox*, a recessive X-linked mutation in
Drosophila causing low sexual receptivity. *Journal of Neurogenetics*, 11(3-4), 213-229.
714 doi: 10.3109/01677069709115097

715 716 Kimura, K., Hachiya, T., Koganezawa, M., Tazawa, T., & Yamamoto, D. (2008). *Fruitless* and
doublesex coordinate to generate male-specific neurons that can initiate courtship.
717 *Neuron*, 59(5), 759-769. doi:10.1016/j.neuron.2008.06.007

718 719 Kohatsu, S., Koganezawa, M., & Yamamoto, D. (2011). Female contact activates male-specific
interneurons that trigger stereotypic courtship behavior in *Drosophila*. *Neuron*, 69(3),

720 498-508. doi:10.1016/j.neuron.2010.12.017

721 Kubiak, T. M., Larsen, M. J., Burton, K. J., Bannow, C. A., Martin, R. A., Zantello, M. R., &
722 Lowery, D. E. (2002). Cloning and functional expression of the first *Drosophila*
723 *melanogaster* sulfakinin receptor DSK-R1. *Biochem Biophys Res Commun*, 291(2),
724 313-320. doi:10.1006/bbrc.2002.6459

725 Kubli, E. (2003). Sex-peptides: seminal peptides of the *Drosophila* male. *Cell Mol Life Sci*,
726 60(8), 1689-1704. doi:10.1007/s00018-003-3052

727 Nassel, D. R., & Williams, M. J. (2014). Cholecystokinin-like peptide (DSK) in *Drosophila*, not
728 only for satiety signaling. *Frontiers in Endocrinology*, 5: 219 doi:
729 10.3389/fendo.2014.00219

730 Neckameyer, W. S. (1998). Dopamine modulates female sexual receptivity in *Drosophila*
731 *melanogaster*. *Journal of Neurogenetics*, 12(2), 101-114. doi:
732 10.3109/01677069809167259

733 Nichols, R., Schneuwly, S. A., & Dixon, J. E. (1988). Identification and Characterization of a
734 *Drosophila* Homolog to the Vertebrate Neuropeptide Cholecystokinin. *Journal of*
735 *Biological Chemistry*, 263(25), 12167-12170

736 Osterwalder, T., Yoon, K. S., White, B. H., & Keshishian, H. (2001). A conditional
737 tissue-specific transgene expression system using inducible GAL4. *Proceedings of*
738 *the National Academy of Sciences of the United States of America*, 98(22),
739 12596-12601. doi: 10.1073/pnas.221303298

740 Pan, Y. F., & Baker, B. S. (2014). Genetic Identification and Separation of Innate and
741 Experience-Dependent Courtship Behaviors in *Drosophila*. *Cell*, 156(1-2), 236-248.
742 doi:10.1016/j.cell.2013.11.041

743 Rezaval, C., Nojima, T., Neville, M. C., Lin, A. C., & Goodwin, S. F. (2014). Sexually Dimorphic
744 Octopaminergic Neurons Modulate Female Postmating Behaviors in *Drosophila*.
745 *Current Biology*, 24(7), 725-730. doi:10.1016/j.cub.2013.12.051

746 Rezaval, C., Pavlou, H. J., Dornan, A. J., Chan, Y. B., Kravitz, E. A., & Goodwin, S. F. (2012).
747 Neural circuitry underlying *Drosophila* female postmating behavioral responses. *Curr*
748 *Biol*, 22(13), 1155-1165. doi:10.1016/j.cub.2012.04.062

749 Ribeiro, C., & Dickson, B. J. (2010). Sex peptide receptor and neuronal TOR/S6K signaling
750 modulate nutrient balancing in *Drosophila*. *Curr Biol*, 20(11), 1000-1005.
751 doi:10.1016/j.cub.2010.03.061

752 Rohlfing, T., & Maurer, C. R., Jr. (2003). Nonrigid image registration in shared-memory
753 multiprocessor environments with application to brains, breasts, and bees. *IEEE Trans*
754 *Inf Technol Biomed*, 7(1), 16-25. doi:10.1109/titb.2003.808506

755 Ryner, L. C., Goodwin, S. F., Castrillon, D. H., Anand, A., Villella, A., Baker, B. S., . . .
756 Wasserman, S. A. (1996). Control of male sexual behavior and sexual orientation in
757 *Drosophila* by the *fruitless* gene. *Cell*, 87(6), 1079-1089.
758 doi:10.1016/s0092-8674(00)81802-4

759 Sakai, T., Kasuya, J., Kitamoto, T., & Aigaki, T. (2009). The *Drosophila* TRPA channel, *Painless*,
760 regulates sexual receptivity in virgin females. *Genes Brain and Behavior*, 8(5),
761 546-557. doi:10.1111/j.1601-183X.2009.00503.x

762 Sakurai, A., Koganezawa, M., Yasunaga, K., Emoto, K., & Yamamoto, D. (2013). Select
763 interneuron clusters determine female sexual receptivity in *Drosophila*. *Nature*

764 *Communications*, 4:1825. doi:10.1038/ncomms2837

765 Staljanssens, D., Azari, E. K., Christiaens, O., Beaufays, J., Lins, L., Van Camp, J., &
766 Smagghe, G. (2011). The CCK(-like) receptor in the animal kingdom: functions,
767 evolution and structures. *Peptides*, 32(3), 607-619.
768 doi:10.1016/j.peptides.2010.11.025

769 Stockinger, P., Kvitsiani, D., Rotkopf, S., Tirian, L., & Dickson, B. J. (2005). Neural circuitry that
770 governs *Drosophila* male courtship behavior. *Cell*, 121(5), 795-807.
771 doi:10.1016/j.cell.2005.04.026

772 Suzuki, K., Juni, N., & Yamamoto, D. (1997). Enhanced mate refusal in female *Drosophila*
773 induced by a mutation in the *spinster* locus. *Applied Entomology and Zoology*, 32(1),
774 235-243. doi: 10.1303/aez.32.235

775 Sweeney, S. T., Broadie, K., Keane, J., Niemann, H., & Okane, C. J. (1995). Targeted
776 Expression of Tetanus Toxin Light-Chain in *Drosophila* Specifically Eliminates
777 Synaptic Transmission and Causes Behavioral Defects. *Neuron*, 14(2), 341-351. doi:
778 10.1016/0896-6273(95)90290-2

779 Talay, M., Richman, E. B., Snell, N. J., Hartmann, G. G., Fisher, J. D., Sorkac, A., Santoyo, J.F.,
780 Chou-Freed, C., Nair, N., Johnson, M., Szymanski, J. R., & Barnea, G. (2017).
781 Transsynaptic Mapping of Second-Order Taste Neurons in Flies by trans-Tango.
782 *Neuron*, 96(4), 783-795 e784. doi:10.1016/j.neuron.2017.10.011

783 Tanaka, R., Higuchi, T., Kohatsu, S., Sato, K., & Yamamoto, D. (2017). Optogenetic Activation
784 of the *fruitless*-Labeled Circuitry in *Drosophila* subobscura Males Induces Mating
785 Motor Acts. *J Neurosci*, 37(48), 11662-11674. doi:10.1523/JNEUROSCI.1943-17.2017

786 Terhzaz, S., Rosay, P., Goodwin, S. F., & Veenstra, J. A. (2007). The neuropeptide SIFamide
787 modulates sexual behavior in *Drosophila*. *Biochemical and Biophysical Research
788 Communications*, 352(2), 305-310. doi:10.1016/j.bbrc.2006.11.030

789 Thum, A. S., Knapik, S., Rister, J., Dierichs-Schmitt, E., Heisenberg, M., & Tanimoto, H.
790 (2006). Differential potencies of effector genes in adult *Drosophila*. *J Comp Neurol*,
791 498(2), 194-203. doi:10.1002/cne.21022

792 Tompkins, L., Gross, A. C., Hall, J. C., Gailey, D. A., & Siegel, R. W. (1982). The role of female
793 movement in the sexual behavior of *Drosophila melanogaster*. *Behav Genet*, 12(3),
794 295-307. doi:10.1007/BF01067849

795 Vargas, M. A., Luo, N., Yamaguchi, A., & Kapahi, P. (2010). A role for S6 kinase and serotonin
796 in postmating dietary switch and balance of nutrients in *D. melanogaster*. *Curr Biol*,
797 20(11), 1006-1011. doi:10.1016/j.cub.2010.04.009

798 Wang, F., Wang, K., Forknall, N., Patrick, C., Yang, T., Parekh, R., Bock, D., & Dickson, B. J.
799 (2020). Neural circuitry linking mating and egg laying in *Drosophila* females. *Nature*,
800 579(7797), 101-105. doi:10.1038/s41586-020-2055-9

801 Wang, K., Wang, F., Forknall, N., Yang, T., Patrick, C., Parekh, R., & Dickson, B. J. (2021).
802 Neural circuit mechanisms of sexual receptivity in *Drosophila* females. *Nature*,
803 589(7843), 577-581. doi:10.1038/s41586-020-2972-7

804 Williams, M. J., Goergen, P., Rajendran, J., Zheleznyakova, G., Hagglund, M. G., Perland, E.,
805 Bagchi, S., Kalogeropoulou, A., Khan, Z., Fredriksson, R., & Schiøth, H. B. (2014).
806 Obesity-Linked Homologues TfAP-2 and Twz Establish Meal Frequency in *Drosophila*
807 *melanogaster*. *Plos Genetics*, 10:e1004499. doi: 10.1371/journal.pgen.1004499

808 Wu, F., Deng, B., Xiao, N., Wang, T., Li, Y., Wang, R., Shi, K., Luo, D. G., Rao, Y., & Zhou, C.
809 (2020). A neuropeptide regulates fighting behavior in *Drosophila melanogaster*. *eLife*,
810 9. doi:10.7554/eLife.54229

811 Wu, S., Guo, C., Zhao, H., Sun, M., Chen, J., Han, C., Peng, Q., Qiao, H., Peng, P., Liu, Y., Luo,
812 S. D., & Pan, Y. (2019). Drosulfakinin signaling in fruitless circuitry antagonizes P1
813 neurons to regulate sexual arousal in *Drosophila*. *Nature Communications*, 10(1),
814 4770. doi:10.1038/s41467-019-12758-6

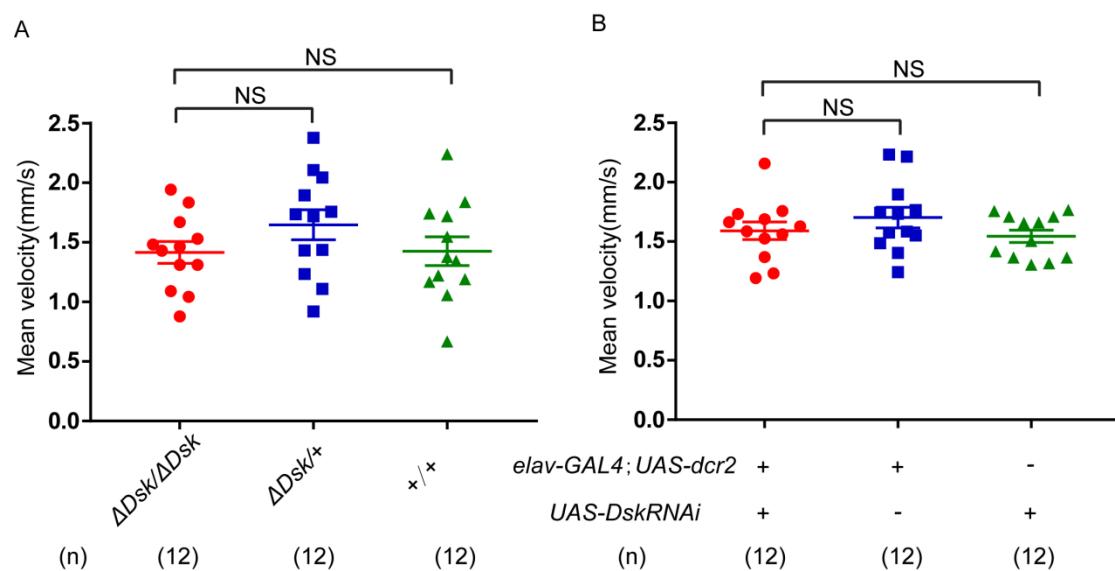
815 Yamamoto, D., & Koganezawa, M. (2013). Genes and circuits of courtship behaviour in
816 *Drosophila* males. *Nat Rev Neurosci*, 14(10), 681-692. doi:10.1038/nrn3567

817 Yao, Z., Macara, A. M., Lelito, K. R., Minosyan, T. Y., & Shafer, O. T. (2012). Analysis of
818 functional neuronal connectivity in the *Drosophila* brain. *J Neurophysiol*, 108(2),
819 684-696. doi:10.1152/jn.00110.2012

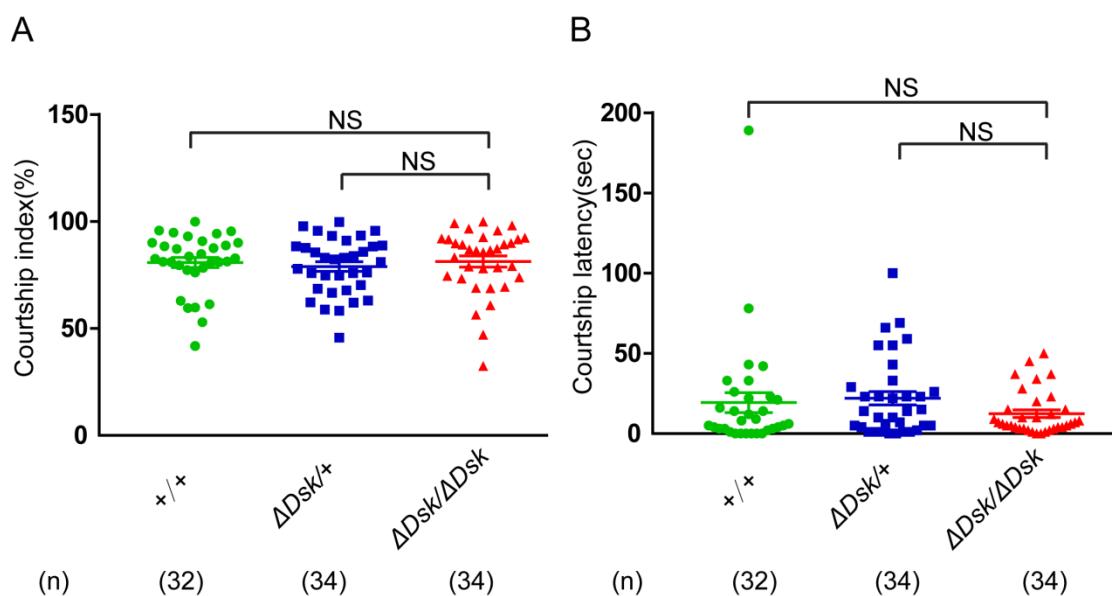
820 Yu, J. Y., Kanai, M. I., Demir, E., Jefferis, G. S. X. E., & Dickson, B. J. (2010). Cellular
821 Organization of the Neural Circuit that Drives *Drosophila* Courtship Behavior. *Current
822 Biology*, 20(18), 1602-1614. doi:10.1016/j.cub.2010.08.025

823 Zhou, C., Franconville, R., Vaughan, A. G., Robinett, C. C., Jayaraman, V., & Baker, B. S.
824 (2015). Central neural circuitry mediating courtship song perception in male
825 *Drosophila*. *eLife*, 4:e08477. doi:10.7554/eLife.08477

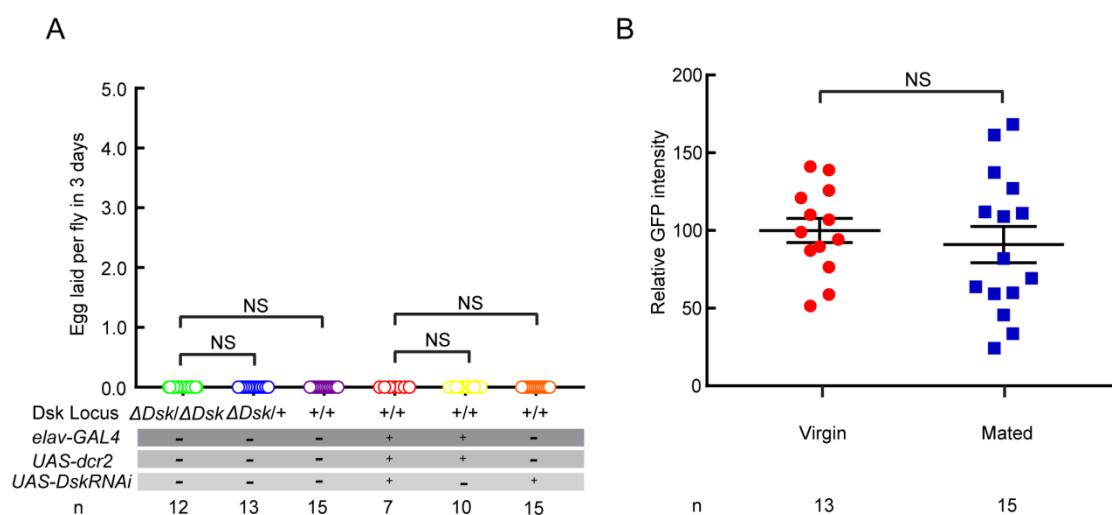
826 Zhou, C., Pan, Y. F., Robinett, C. C., Meissner, G. W., & Baker, B. S. (2014). Central Brain
827 Neurons Expressing doublesex Regulate Female Receptivity in *Drosophila*. *Neuron*,
828 83(1), 149-163. doi:10.1016/j.neuron.2014.05.038


829

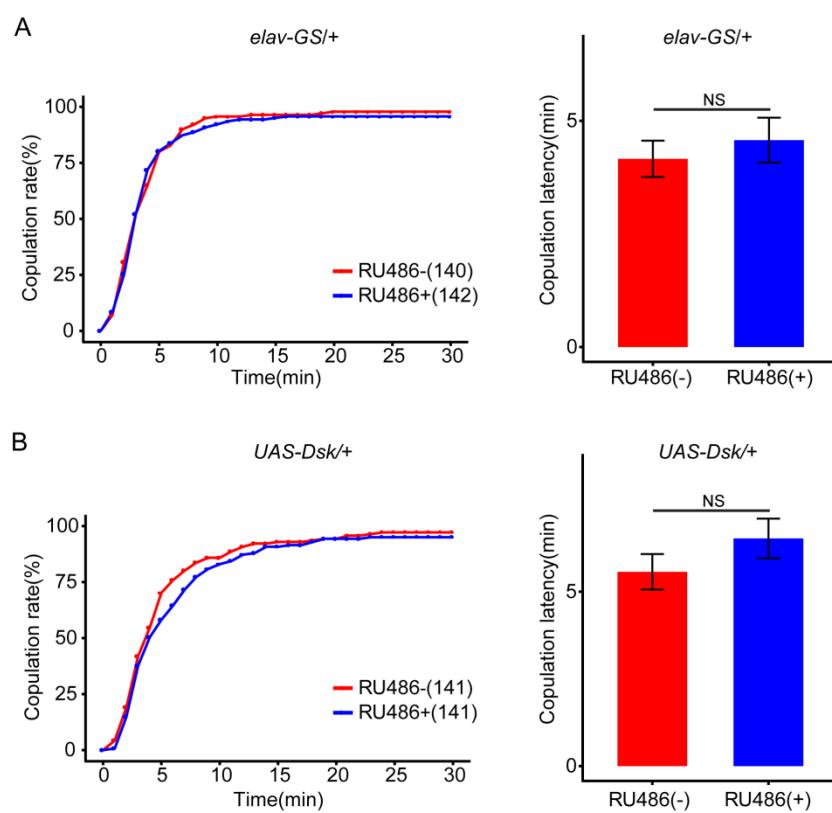
830


Figure 1-figure supplement 1. Knockdown of *Dsk* reduce female receptivity.

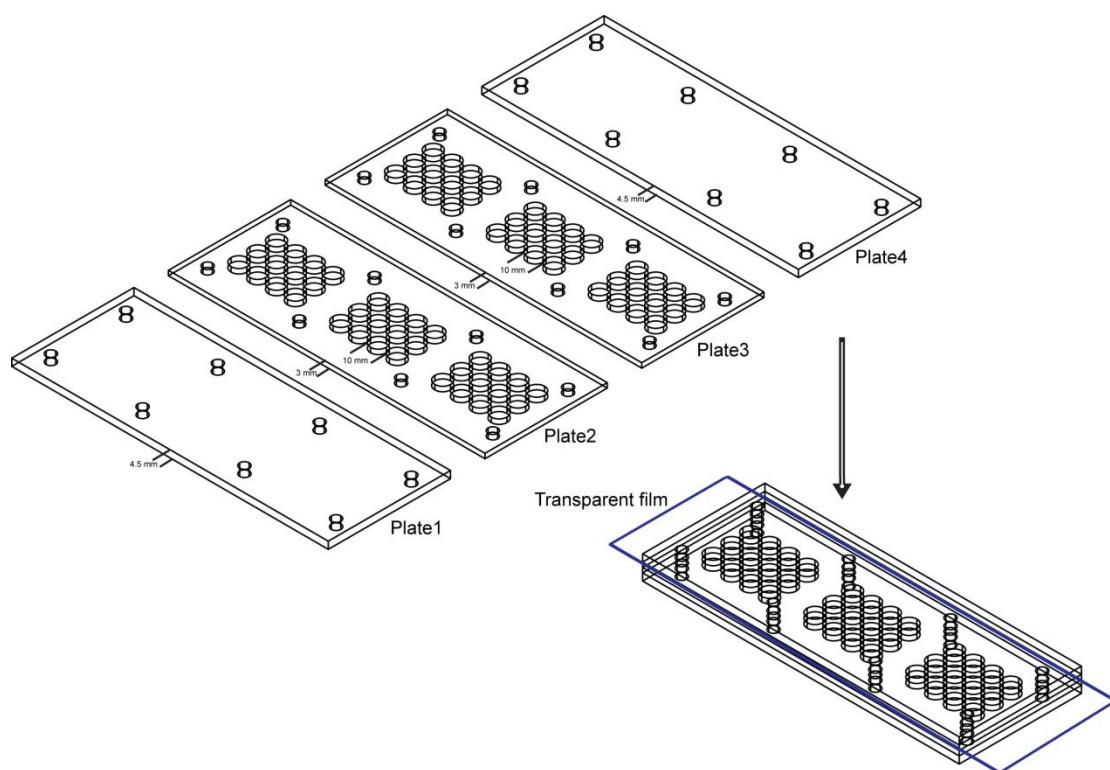
(A) Knockdown of *Dsk* significantly decreased copulation rate and prolonged copulation latency compared with controls. *UAS-DskRNAi* was driven by *elav^{GAL4}*; *UAS-dcr2*. The number of female flies paired with wild-type males analyzed is displayed in parentheses. And there are same numbers in two parameters. NS indicates no significant difference (chi-square test).


Figure 1-figure supplement 2. Locomotion behavior of *Dsk* mutant and *Dsk* RNAi in female.

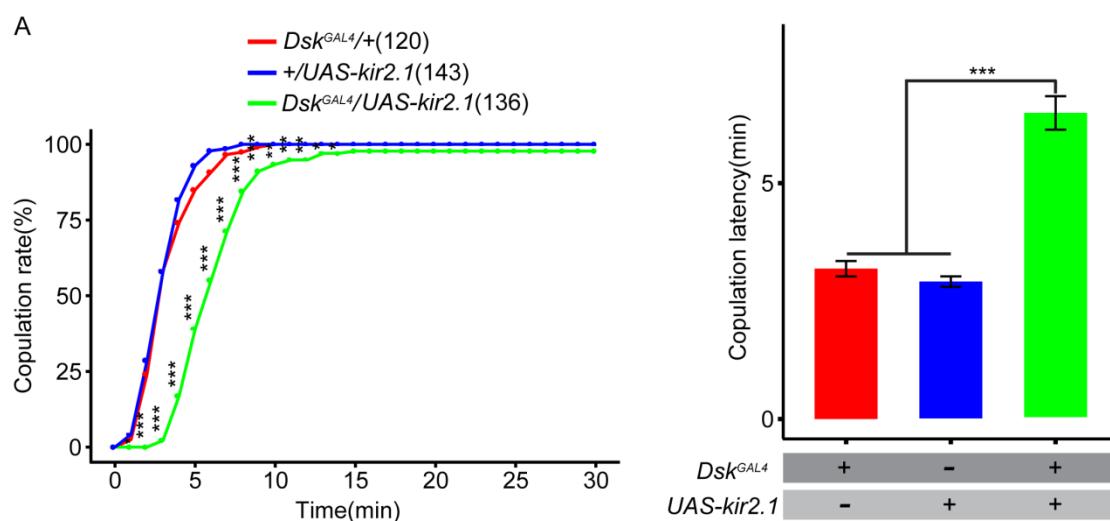
(A-B) Mean velocity had no significant change in *Dsk* mutant females (A) and *Dsk* RNAi females (B). Error bars indicate SEM. NS indicates no significant difference (Kruskal-Wallis and post-hoc Mann-Whitney U tests or post-hoc Student's T-test).


Figure 1-figure supplement 3. Courtship behavior of wild-type males paired with females of indicated genotypes.

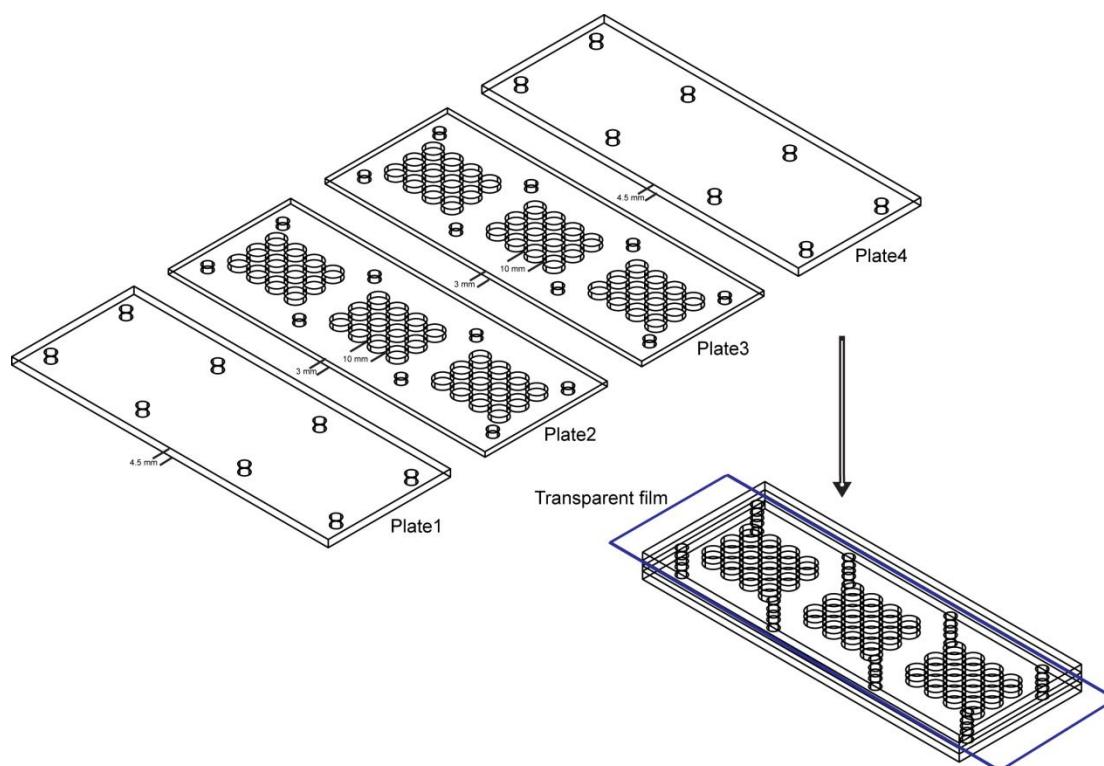
(A-B) Courtship index (%) and courtship latency (sec) in wild-type males paired with tested genotypes. Females for $\Delta Dsk/\Delta Dsk$, $+/+Dsk$, $+/+$ were used. Error bars indicate SEM. NS indicates no significant difference (Kruskal-Wallis and post-hoc Mann-Whitney U tests or post-hoc Student's T-test).


Figure 1-figure supplement 4. *Dsk* is not required for egg laying.

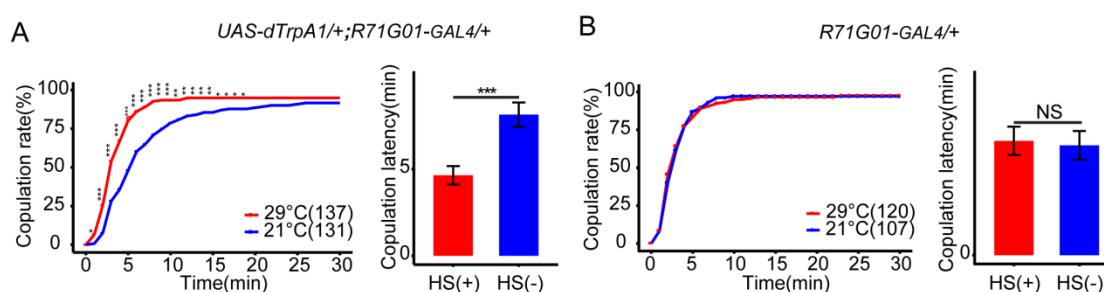
(A) The number of eggs laid by virgin females within 3 days after mutation or RNAi of *Dsk*. (B) Ca^+ activity of DSK neurons in virgin (red) and mated female (blue) brains detected by TRIC approach. Genotype: *UAS-IVS-mCD8::RFP*, *LexAop2-mCD8::GFP*+/+, *nSyb-MKII::nlsLexADBDo*+/+, *Dsk*^{GAL4}/, *UAS-p65AD::CaM*. NS indicates no significant difference (Kruskal-Wallis and post-hoc Mann-Whitney U tests).


Figure 1-figure supplement 5. Control for overexpression of *Dsk*.

(A-B) The controls with either *elav-GS* alone or *UAS-Dsk* alone did not alter the copulation rate and copulation latency at feeding RU486 relative to without feeding RU486. The number of female flies paired with wild-type males analyzed is displayed in parentheses. And there are same numbers in two parameters. NS indicates no significant difference (chi-square test).


Figure 1-figure supplement 6. Behavior arena used in mating behavior assay.

The mating arena contains four acrylic plates. The top (Plate1) and bottom (Plate4) are made up of acrylic plates of a thickness of 4.5mm. And the middle two layers (Plate2 and Plate3) are made up of acrylic plates with 36 cylindrical arenas (diameter: 10mm; height of each plates: 3mm). A removable transparent film was placed between Plate2 and Plate3 to separate the two flies and the film was removed to allow the pair of a test female and a wild-type male to contact.


Figure 2-figure supplement 1. Effect of inactivation of DSK neurons on female receptivity.

(A) Inactivation of DSK neurons significantly decreased copulation rate and prolonged copulation latency compared with controls. *Dsk*^{GAL4} driving *UAS-kir2.1* inactivates DSK neurons. The number of female flies paired with wild-type males analyzed is displayed in parentheses. And there are same numbers in two parameters. *p<0.05, **p<0.01, ***p<0.001, NS indicates no significant difference (chi-square test).

Figure 2-figure supplement 2. Behavior arena used in mating behavior assay.

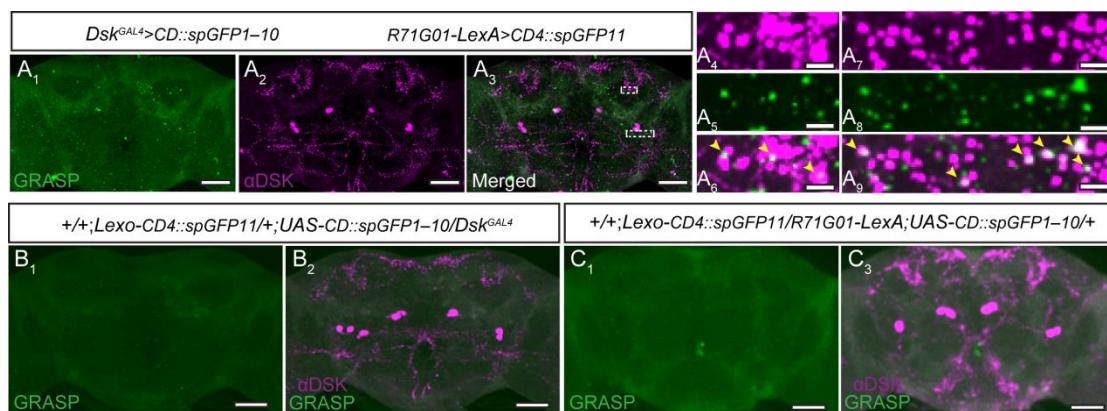
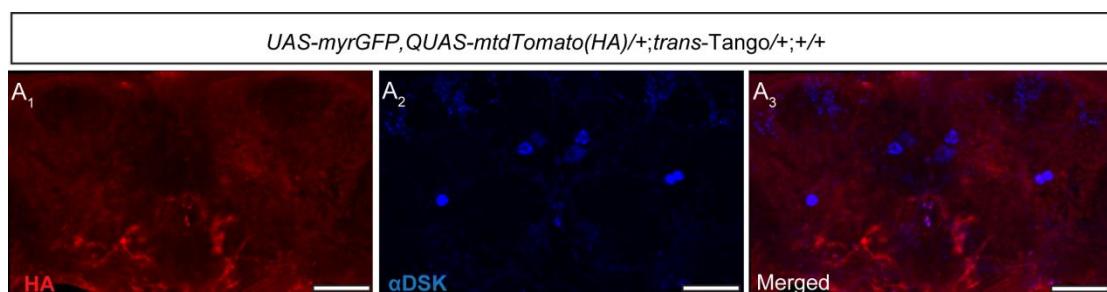
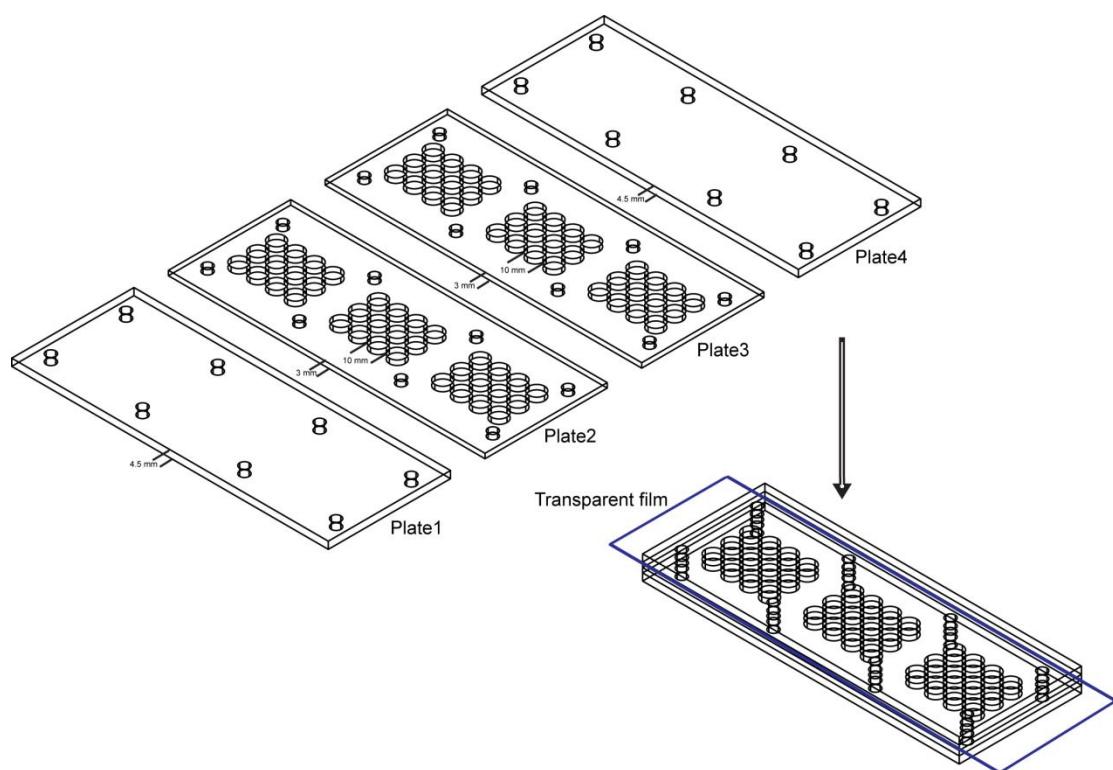

The mating arena contains four acrylic plates. The top (Plate1) and bottom (Plate4) are made up of acrylic plates of a thickness of 4.5mm. And the middle two layers (Plate2 and Plate3) are made up of acrylic plates with 36 cylindrical arenas (diameter: 10mm; height of each plates: 3mm). A removable transparent film was placed between Plate2 and Plate3 to separate the two flies and the film was removed to allow the pair of a test female and a wild-type male to contact.

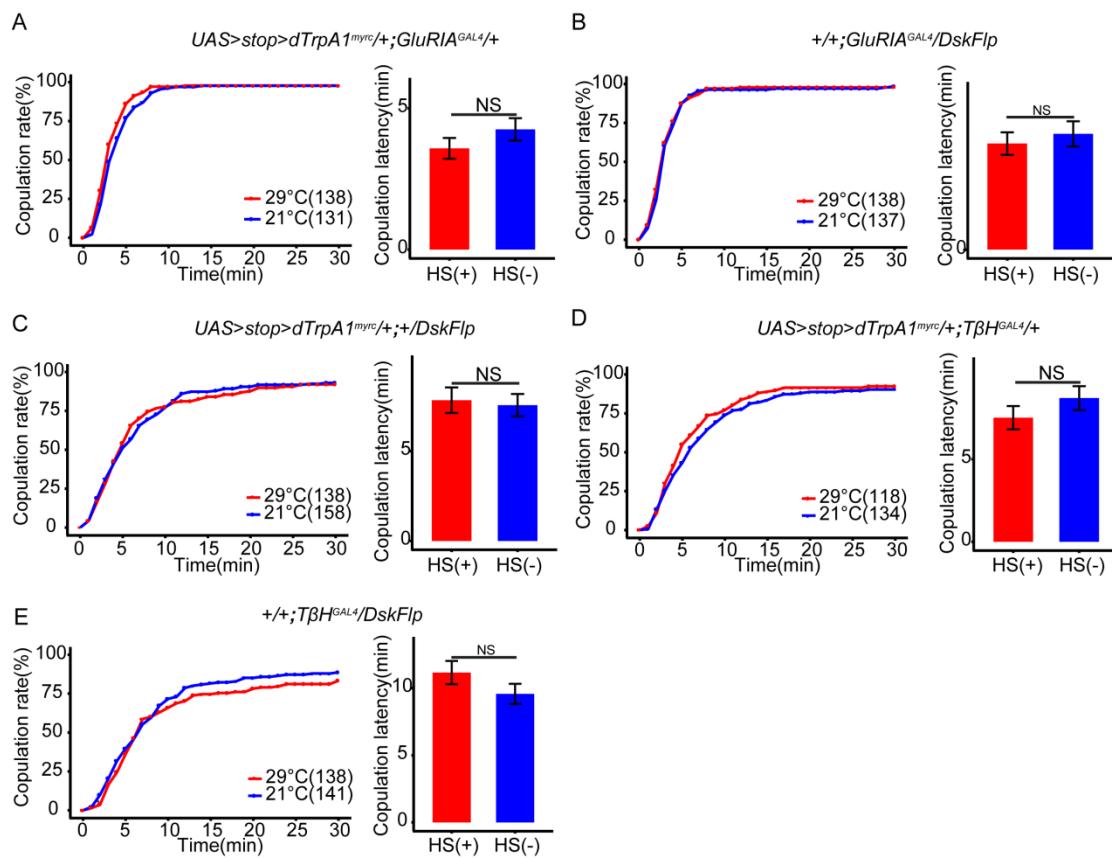
Figure 3-supplement 1. Effect of *R71G01GAL4* neurons on female receptivity.


(A) Activation of *R71G01GAL4* neurons significantly increased copulation rate and shortened copulation latency at 29°C relative to 21°C. *R71G01GAL4* driving *UAS-dTrpA1*

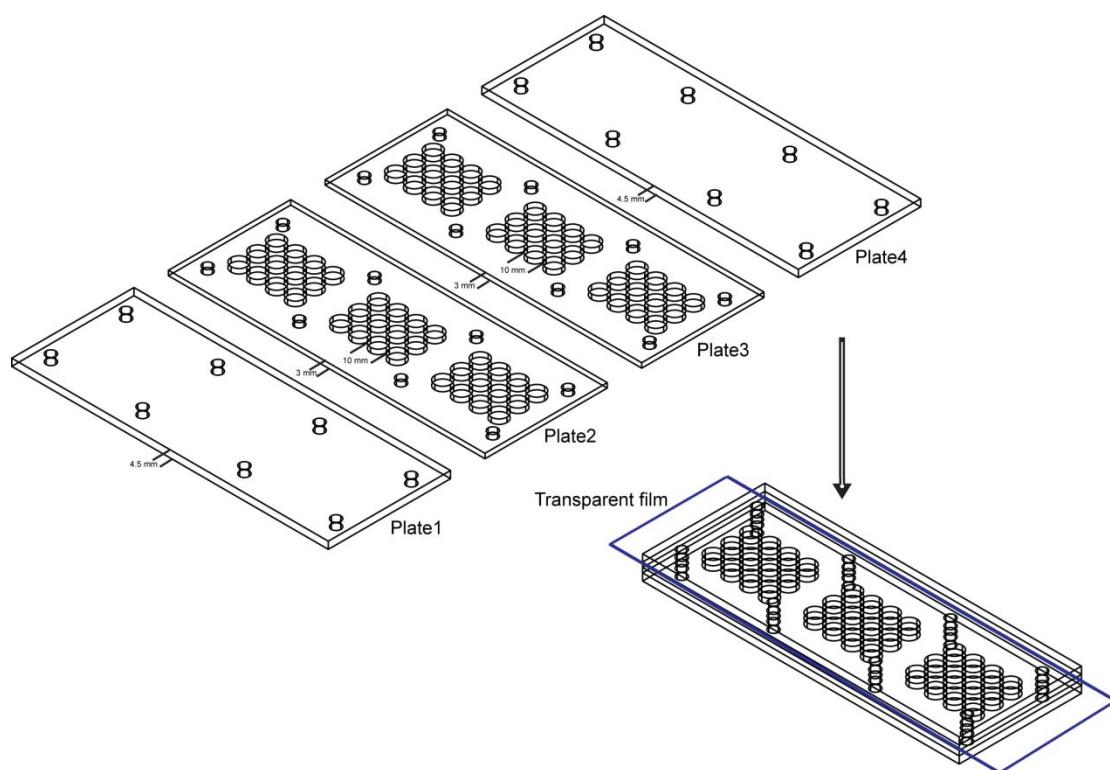
activated *R71G01GAL4* neurons at 29°C. (B) The controls with *R71G01GAL4* alone did not alter the copulation rate and copulation latency at 29°C relative to 21°C. Activation of neuron is represented by (HS+) and control is represented by (HS-). The number of female flies paired with wild-type males analyzed is displayed in parentheses. And there are same numbers in two parameters. *p<0.05, **p<0.01, ***p<0.001, NS indicates no significant difference (chi-square test).


Figure 3-supplement 2. Potential connection between *R70G01GAL4* neurons and DSK neurons was detected by GRASP method.

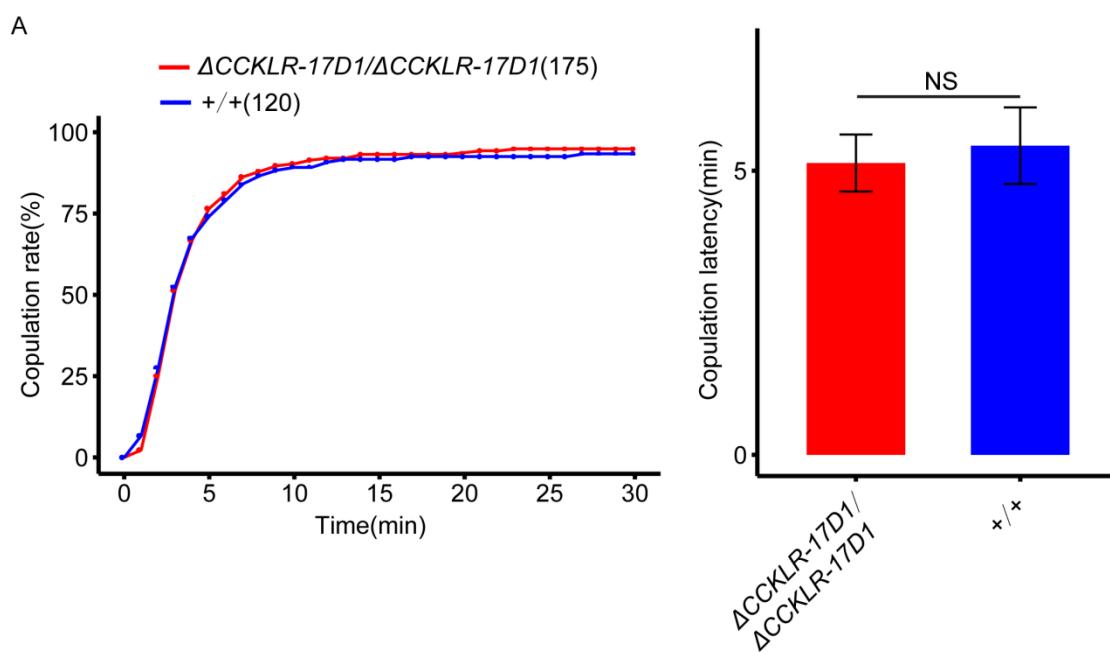
(A) The recombinant GFP signals (GRASP) (A₁) revealed synaptic contacts between *R70G01GAL4* neurons and DSK neurons. *Dsk*^{GAL4} expresses *CD4::spGFP11*, *R71G01-LexA* expresses *CD4::spGFP1-10*. (A₂) anti-DSK antibody staining. (A₃) Merge. Magnification of white boxed region in (A₃) is shown in (A₄-A₆) and (A₇-A₉). Yellow arrowheads indicated GRASP signal co-localized with synaptic boutons revealed by anti-DSK antibody staining. (B-C) No recombinant GFP signals (GRASP) were observed in flies with either *Dsk*^{GAL4} alone (B₁) or *R71G01-LexA* alone (C₁). Scale bars are 50μm in (A-C), 5μm in (A₃- A₉).


Figure 3-supplement 3. Control for the trans-Tango experiment.

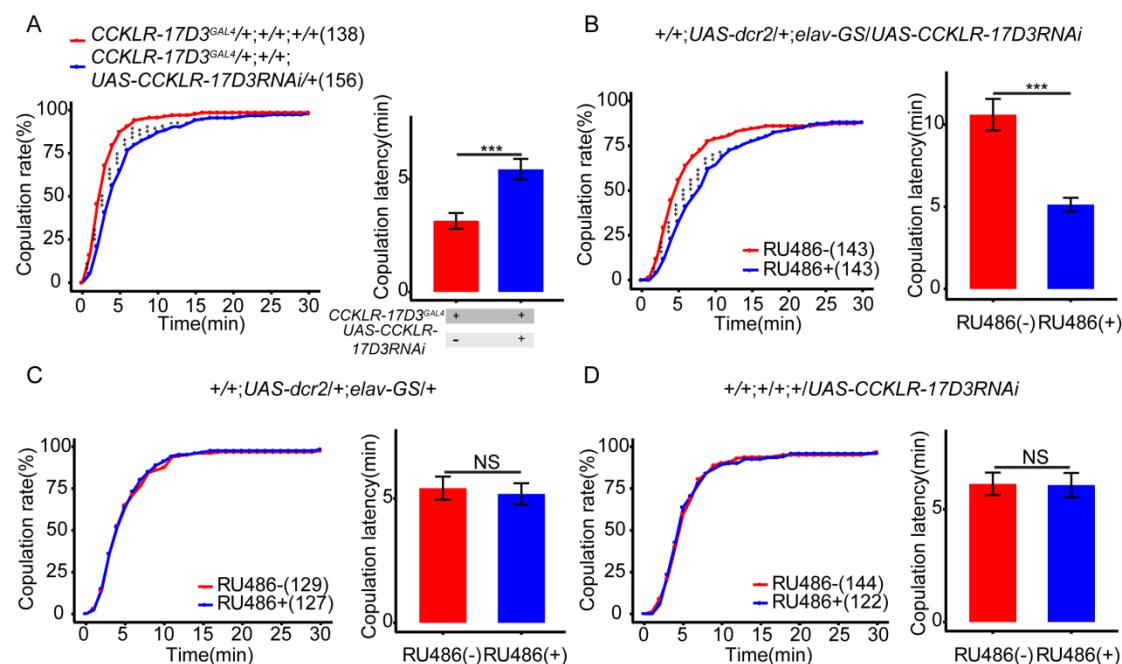
(A) No postsynaptic signals (anti-HA, red) (A₁) were detected in the central brain without a Gal4 driver. Cell bodies of Dsk were stained with anti-DSK (blue) (A₂). Merge (A₃) Scale bars: 50μm.


Figure 3-figure supplement 4. Behavior arena used in mating behavior assay.

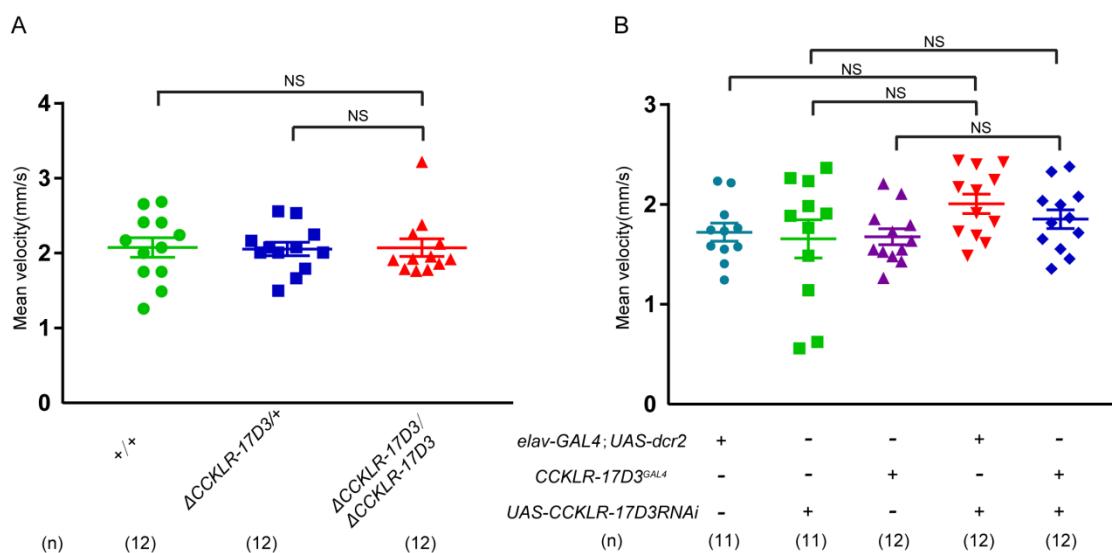
The mating arena contains four acrylic plates. The top (Plate1) and bottom (Plate4) are made up of acrylic plates of a thickness of 4.5mm. And the middle two layers (Plate2 and Plate3) are made up of acrylic plates with 36 cylindrical arenas (diameter: 10mm; height of each plates: 3mm). A removable transparent film was placed between Plate2 and Plate3 to separate the two flies and the film was removed to allow the pair of a test female and a wild-type male to contact.


Figure 5-figure supplement 1. Control for activation of intersectional expression neurons (DSK-M and DSK-L).

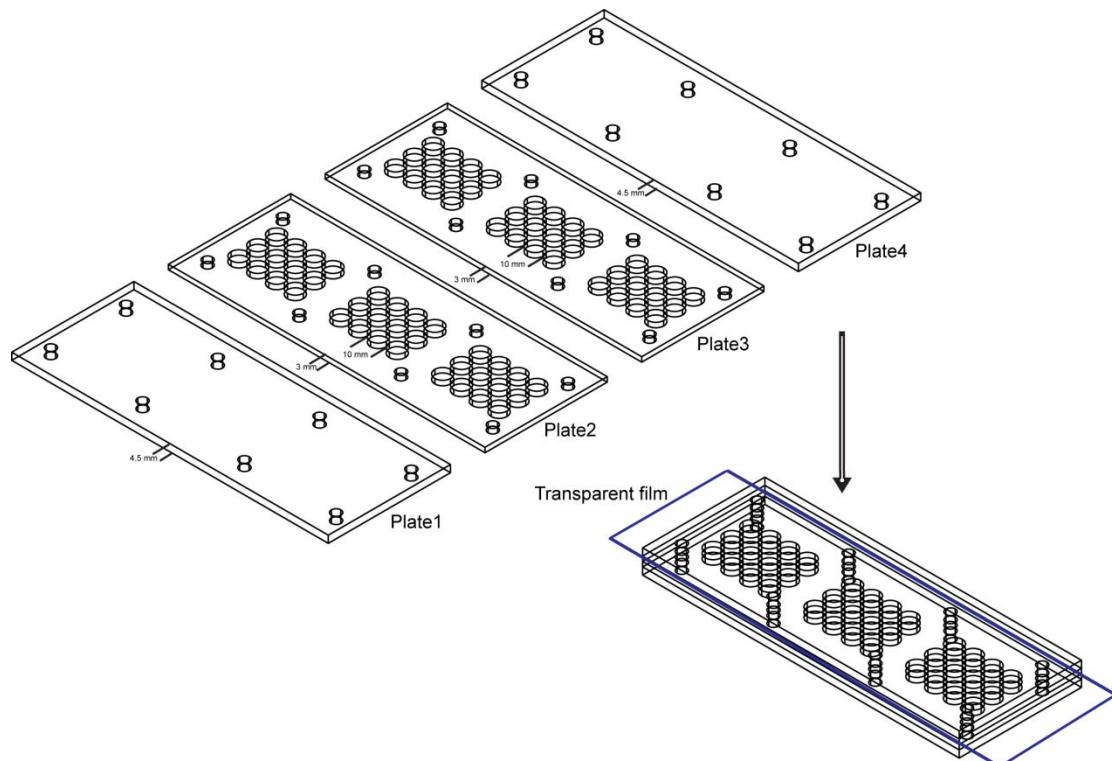
(A-C) The controls of activation of DSK-M neurons did not alter the copulation rate and shortened copulation latency at 29°C relative to 21°C in the absence of *DskFlp* (A), *UAS>stop>dTrpA1^{myrc}* (B) and *GluRIA^{GAL4}* (C). (D-E) The controls of activation of DSK-L neurons also did not alter the copulation rate and shortened copulation latency at 29°C relative to 21°C in the absence of *T β H^{GAL4}* (C), *DskFlp* (D), *UAS>stop>dTrpA1^{myrc}* (E). The number of female flies paired with wild-type males analyzed is displayed in parentheses. And there are same numbers in two parameters. NS indicates no significant difference (chi-square test).


Figure 5-figure supplement 2. Behavior arena used in mating behavior assay.

The mating arena contains four acrylic plates. The top (Plate1) and bottom (Plate4) are made up of acrylic plates of a thickness of 4.5mm. And the middle two layers (Plate2 and Plate3) are made up of acrylic plates with 36 cylindrical arenas (diameter: 10mm; height of each plates: 3mm). A removable transparent film was placed between Plate2 and Plate3 to separate the two flies and the film was removed to allow the pair of a test female and a wild-type male to contact.


Figure 6-figure supplement 1 Effect of CCKLR-17D1 mutant on female receptivity.

(A) *CCKLR-17D1* mutant did not alter the copulation rate and copulation latency compared with wild-type females. The number of female flies paired with wild-type males analyzed is displayed in parentheses. And there are same numbers in two parameters. NS indicates no significant difference (chi-square test).


Figure 6-figure supplement 2. Effect of *CCKLR-17D3* RNAi on female receptivity.

(A) Knockdown of *CCKLR-17D3* significantly decreased copulation rate and prolonged copulation latency compared with controls. *UAS-CCKLR-17D3* RNAi was driven by *CCKLR-17D3*^{GAL4}. (B) Conditional knockdown of *CCKLR-17D3* after feeding RU486 significantly decreased copulation rate and prolonged copulation latency compared without feeding RU486. *UAS-CCKLR-17D3* RNAi was driven by *UAS-dcr2;elav-GS*. (C-D) The controls with either *UAS-dcr2;elav-GS* alone or *UAS-CCKLR-17D3* RNAi alone did not alter the copulation rate and copulation latency at feeding RU486 relative to without feeding RU486. The number of female flies paired with wild-type males analyzed is displayed in parentheses. And there are same numbers in two parameters. *p<0.05, **p<0.01, ***p<0.001, NS indicates no significant difference (chi-square test).

Figure 6-figure supplement 3. Locomotion behavior of Δ CCKLR-17D3 mutant and CCKLR-17D3 RNAi in female.

(A-B) Mean velocity had no significant changes in CCKLR-17D3 mutant females (A) and CCKLR-17D3 RNAi females (B). Error bars indicate SEM. NS indicates no significant difference (Kruskal-Wallis and post-hoc Mann-Whitney U tests or post-hoc Student's T-test).

Figure 6-figure supplement 4 Behavior arena used in mating behavior assay.

The mating arena contains four acrylic plates. The top (Plate1) and bottom (Plate4) are made up of acrylic plates of a thickness of 4.5mm. And the middle two layers (Plate2 and Plate3) are made up of acrylic plates with 36 cylindrical arenas (diameter: 10mm; height of

each plates: 3mm). A removable transparent film was placed between Plate2 and Plate3 to separate the two flies and the film was removed to allow the pair of a test female and a wild-type male to contact.