

Nanoscale architecture and coordination of actin cores within the sealing zone of human osteoclasts

Marion Portes, Thomas Mangeat, Natacha Escallier, Brigitte Raynaud-Messina, Christophe Thibault*,
Isabelle Maridonneau-Parini, Christel Vérollet*, Renaud Poincloux^{1,*}

M. Portes, N. Escalier, B. Raynaud-Messina, I. Maridonneau-Parini, C. Vérollet, R. Poincloux :

Institut de Pharmacologie et de Biologie Structurale, Université de Toulouse, CNRS, UPS, France;

T. Mangeat :

LBCMCP, Centre de Biologie Intégrative, Université de Toulouse, CNRS, UPS, France ;

C. Thibault :

LAAS-CNRS,

*Correspondence to: christophe.thibault@laas.fr, christel.verollet@laas.fr

renaud poin

For more information, contact the Office of the Vice President for Research and Economic Development at 319-273-2500 or research@uiowa.edu.

Abstract

Osteoclasts are unique in their capacity to degrade bone tissue. To achieve this process, osteoclasts form a specific structure called the sealing zone, which creates a close contact with bone and confines the release of protons and hydrolases for bone degradation. The sealing zone is composed of actin structures called podosomes nested in a dense actin network. The organization of these actin structures inside the sealing zone at the nano scale is still unknown. Here, we combine cutting-edge microscopy methods to reveal the nanoscale architecture and dynamics of the sealing zone formed by human osteoclasts on bone surface. Random illumination microscopy allowed the identification and live imaging of densely packed actin cores within the sealing zone. A cross-correlation analysis of the fluctuations of actin content at these cores indicates that they are locally synchronized. Further examination shows that the sealing zone is composed of groups of synchronized cores linked by α -actinin1 positive filaments, and encircled by adhesion complexes. Thus, we propose that the confinement of bone degradation mediators is achieved through the coordination of islets of actin cores and not by the global coordination of all podosomal subunits forming the sealing zone.

Key words

Human osteoclasts - Nanoscale architecture - Actin - Sealing zone - Super-resolution microscopy

32

33

34 Introduction

35 Osteoclasts are giant multinucleated cells of the hematopoietic lineage, specialized in the
36 degradation of bone matrix. To do so, protons accumulate into the resorption lacuna thanks to the
37 vacuolar H⁺-ATPase (v-ATPase), thus lowering the local pH and facilitating the solubilization of
38 apatite, the main mineral component of bone. This acidic environment is also prone to enhance the
39 digestion of bone organic matrix by proteases secreted by osteoclasts such as cathepsin K^{1, 2}. The
40 efficiency of this process relies on the ability of the cell to create an enclosed resorption
41 compartments, *via* the formation of a unique cytoskeletal structure, the sealing zone^{3, 4}.

42 First described as a subcellular entity made of electron dense material and apparently deprived of
43 any organelle, thus resulting in first denomination as the “clear zone”, the sealing zone was then
44 revealed to consist in a dense accumulation of actin filaments forming a circular shape surrounding
45 the resorption lacuna⁵⁻⁷. Examination with scanning electron microscopy (SEM) of cells removed of
46 their basal membrane brought to light the peculiar arrangement of actin filaments within this
47 structure, and particularly unveiled the existence of a dense network of podosomes composing this
48 structure⁸⁻¹⁰. Podosomes are adhesion structures that are generally scattered in macrophages and
49 dendritic cells. Podosome typical components, such as vinculin, paxillin, talin or cortactin, are also
50 localized in the sealing zone¹¹⁻¹⁹. In a distinct way compared to single podosomes, vinculin, paxillin
51 and talin were reported to form a “double circle” flanking the sealing zone on each side, while
52 cortactin mainly colocalized with actin in between^{3, 13, 15, 20-22}. Noteworthy, most of the studies on the
53 bone degradation machinery were carried out based on observations of osteoclasts on glass
54 substrates instead of bone, due to the lack of optical transparency and high auto-fluorescence of the
55 mineralized matrix. As a result, only poor knowledge has been collected about the architecture and
56 dynamics of the functional sealing zone. Indeed, it has been suggested that actin structures on bone
57 differ from the ones formed on glass, mainly in their total width, and the interconnectivity and
58 density of actin cores within⁸. Therefore, only structures formed on bone or bone-mimicking
59 materials are called sealing zone, structures on glass being denominated as “sealing zone like” or
60 podosome belts^{3, 23}.

61 How podosomes are organized and coordinated to allow efficient sealing and bone degradation is
62 therefore still unknown. Hence, it appears paramount to develop higher-resolution microscopy
63 techniques compatible with observation on bone substrates. This could yield valuable information
64 concerning the spatial distribution of major actin-binding proteins within the sealing zone, otherwise
65 only arduously accessible *via* electron microscopy and correlative microscopy^{8-10, 24, 25}. Additionally,
66 observation of the sealing zone internal dynamics would provide substantial hints to understand the
67 sealing ability of such a structure. This exploration would require both a spatial and temporal high-
68 resolution microscopy technique.

69 In this work, we use cutting-edge super-resolution microscopy methods to reveal the architecture
70 and dynamics of the bone degradation machinery formed by human osteoclasts. First, we examined
71 the three-dimensional nanoscale organization within the podosome belt thanks to a single molecule
72 localization method. Then, random illumination microscopy (RIM) acquisitions of human osteoclasts
73 plated on bone allowed to resolve single actin cores composing the sealing zone. RIM technique also
74 proved to be efficient in deciphering this nanoscale organization in living samples. Hence, cross-
75 correlation analysis of the fluctuation of the sealing zone actin content could show that cores are
76 locally synchronized. Further analysis of the organization of adhesion components and actin
77 crosslinkers revealed that the sealing zone is composed of coordinated groups formed by α -actinin1-
78 linked podosomal cores and encircled by adhesion complexes. Therefore, confinement of bone

79 degradation enzymes may be achieved through the alternating contact of functional islets of actin
80 cores.

81

82 **Results**

83 **Three-dimensional nanoscale organization of the podosome belt in human osteoclasts**

84 The sealing zone formed by bone-degrading osteoclasts is described as a dense network of actin
85 cores that appear fused under conventional microscopy, surrounded by two lines of adhesion sites^{3, 13, 15, 20-22}. The precise architectural and dynamics of this structure are almost uncharacterized. To
86 address the organization of osteoclast podosomes, a 3D super-resolution method called DONALD
87 was used. DONALD is a single molecule localization method combining direct stochastic optical
88 reconstruction microscopy for the in-plane detection of proteins, and SAF analysis to gain access to
89 the absolute axial position of fluorophores relative to the glass coverslip. This nanoscopy technique
90 thus benefits from approximately 15 nm localization precision in the three dimensions (3D)²⁶.
91 Human osteoclasts derived from blood monocytes were differentiated for 10 days, plated on glass
92 and observed with this 3D super-resolution technique. On glass, osteoclasts form structures called
93 podosome belts, sharing certain characteristics with sealing zones. In particular, podosome belts also
94 exhibit areas where podosome cores appear fused, *i.e.* when sets of several cores are brought
95 together inside a single and large ring of adhesion sites, similar to the described structure of the
96 sealing zone. Indeed, this fusion of podosome cores was observed in 9.4+/-3.5% of multinucleated
97 human osteoclasts. We therefore focused on these fusion zones.

98 Spatial distributions of key structural components of podosomes, namely cortactin, α -actinin1,
99 filamin A, vinculin, paxillin and the C-terminal extremity of talin (talin-C), whose height was
100 previously correlated with podosome protrusion forces²⁷, were thus explored using DONALD. Image
101 analysis consisted in localizing the various target proteins with respect to the actin cores composing
102 the podosome belts (Figure S1). Cortactin in-plane distribution was characterized by an accumulation
103 in the first 250 nm surrounding the actin cores, and kept at a rather constant height of approximately
104 164 nm (Figure S2A-A''). α -actinin1 was preferentially localized in the vicinity of the actin cores, up
105 to 500 nm in distance. Similarly to cortactin, its height stayed approximately constant throughout the
106 distance profile, at approximately 126 nm (Figure S2B-B'').

107 Vinculin, paxillin, talin and filamin A were mostly absent from the regions of dense actin staining, and
108 encircled multiple actin cores (Figure 1A-D', Figure S2C-C'' and D-D''). Vinculin and paxillin displayed
109 rather similar in-plane distributions, they are 350 nm and 510 nm from actin cores on the external
110 side of the podosome belt, and 570 nm and 510 nm from the core on the internal side, respectively
111 (measurements not shown). In contrast, talin and filamin A displayed large ranges of preferential
112 localization, they are situated at 630 nm for both proteins on the external side, and at 610 nm and
113 710 nm towards the inner part of the belt, respectively. Talin-C and vinculin heights declined by
114 nearly 20 nm towards the inner part of the cell (Figure 1E-I). In contrast, paxillin and filamin A, which
115 average heights were 45 nm and 139 nm, respectively, exhibited almost no change in height when
116 away from the belt center (Figure S2C-D'').

118

119 **Nanoscale organization of actin cores in the sealing zone**

120 To further explore the architecture of the sealing zone, we then investigated the organization of
121 podosomes in mature human osteoclasts plated on bovine bone slices. After 3 days, osteoclasts

122 efficiently degraded bone, as shown by scanning electron microscopy (SEM) observations (Figure 2A).
123 SEM acquisitions of unroofed cells confirmed that the sealing zones formed by human osteoclasts are
124 composed of individual F-actin cores (Figure 2B-B'), similarly to what was shown in osteoclasts
125 differentiated from the mouse cell line RAW 264.7 or harvested from rabbit long bones ^{8, 10}. These
126 cores were nested in a dense network of actin filaments, and appeared connected to their neighbors
127 by filaments running parallel to the substrate (Figure 2B'', arrowheads). The morphometric
128 characteristics of the network were assessed by manually encircling each core and estimating their
129 radius from the selected area. Analysis of 457 cores in 9 different cells yielded a median radius of 114
130 nm (Figure 2D). Furthermore, applying Delaunay's tessellation to each dataset allowed for the
131 characterization of the average inter-core distances within the same cell. Direct neighbor pairs were
132 705 nm apart (Figure 2E), and first neighbors were 443 nm apart (Figure 2F), similarly to what was
133 described previously ²⁸.

134 F-actin distribution in human osteoclasts unroofed on bone was then observed by a new super-
135 resolution method called random illumination microscopy (RIM). RIM consists in illuminating a
136 sample with a series of random speckles and processing the stack of images using signal processing
137 and statistical tools, to gather a lateral and axial resolution of 100 and 300 nm, respectively. This
138 method benefits from similar resolution as with traditional structured illumination microscopy (SIM),
139 while not requiring any initial calibration step. In addition, its super-resolution capability allows for
140 characterization of events within thick samples, until 30 μ m in unknown optical medium ²⁹. RIM thus
141 enabled super-resolution imaging of the functional sealing zone. Actin staining showed a dense
142 though discontinuous pattern within the sealing zone (Figure 2C,C''', Figure S3, Movie1). Signal
143 analysis localized local intensity maxima, the geometric features of which were assessed by
144 extracting both the coordinates of the local maxima, and the signal intensity values along 8
145 directions, evenly distributed from the center. Signal variations were quantified along these 1 μ m-
146 long segments, the half-width of the peak in each direction was computed after spatial derivation,
147 and the peak radii were computed by averaging the 8 values (Figure S4). The radius distribution
148 yielded an average value of 97 nm (Figure 2D). Delaunay's tessellation was applied to the peak
149 coordinates to characterize their spatial arrangement. Direct neighbors were in a 694 nm distance
150 range (Figure 2E), with first neighbors being 399 nm apart (Figure 2F).

151 As the distribution of radii and neighbor distances were similar with SEM and RIM, we concluded that
152 RIM efficiently allows for the observation of single actin cores within the sealing zones of human
153 osteoclasts.

154

155 **Local synchrony of sealing zone actin cores**

156 We then used RIM to image living human osteoclasts adhering on bone to address the dynamics of
157 actin cores within the sealing zone. Human osteoclasts transduced with GFP-tagged LifeAct
158 lentiviruses and actively degrading bone slices were first observed by wide field fluorescence
159 microscopy over 30 min. Subsequent deconvolution of the images and color-coding for time using a
160 rainbow scale revealed that cores appeared stable over at least 30 min (Figure 3A-A'', Movie2).
161 Furthermore, analysis of kymographs along the sealing zone revealed actin intensity oscillations
162 during the entire duration of the acquisitions. To further characterize this dynamic process at a
163 higher spatial and temporal resolution, small regions of the sealing zone were observed with RIM.
164 Variations of the actin content in podosome cores were measured and appeared to fluctuate
165 synchronously between neighbors (Figure 3B-B', Movie3, left).

166 To quantify to what extent podosome actin content varied concomitantly between neighbors, 2840
167 cores distributed in 10 different sealing zones were localized, and their associated actin intensity
168 signal was extracted for further analysis. The distance between every possible core pair was
169 estimated and their respective signals were compared using Pearson cross-correlation analysis. A
170 high positive Pearson coefficient corresponded to acute temporal synchrony for the analyzed pair of
171 actin signals. Highest Pearson coefficient values (over 0.37) were obtained for cores within a 700 nm
172 radius distance (corresponding to half of the maximum value). They slowly decreased to
173 approximately 0.10 at longer distances (Figure 3C). This result hinted at the existence of a spatial
174 synchrony between neighbors within the sealing zone, comparable to observations for podosomes in
175 human macrophages ³⁰. Moreover, analysis of the Fourier spectra corresponding to live acquisitions
176 yielded three specific frequencies that seem to prevail: 0.01 Hz, 0.04 Hz and 0.15 Hz, corresponding
177 to actin content fluctuation periods of approximately 100 s, 25 s and 7 s, respectively. In
178 macrophages, similar oscillation periods had previously been identified by examining the stiffness
179 variations of single podosomes ³¹. In order to obtain a graphical representation of podosome
180 synchrony, differential films were assembled by subtracting 2 sequential time points, therefore
181 representing local actin intensity gradients. Orange stands for a positive gradient, *i.e.* local
182 polymerization, and blue represents a negative gradient, *i.e.* local depolymerization. Strikingly,
183 polymerization and depolymerization regions appeared as clusters with slowly varying areas,
184 containing a few actin cores (Figure 3D-D''', Movie3). Actin polymerization and depolymerization
185 processes thus appeared to be synchronous within actin core clusters.

186 In conclusion, we show a local synchrony of F-actin oscillations between cores of the same
187 superstructure. This suggests the organization of actin cores into functional clusters within the
188 sealing zone.

189

190 **Sealing zone actin cores are organized into islets surrounded by adhesion complexes**

191 Although no partitioning of podosome cores was evident solely on the basis of the actin staining, we
192 then reasoned that, since groups of actin cores display local synchrony, a specific organization of
193 these cores could be revealed by localizing adhesion components of the sealing zone. Spatial
194 distributions of the same components of the sealing zone that were imaged with the DONALD
195 technique (Figure 1) were thus explored by RIM, and we developed a quantitative image workflow to
196 analyze the localization of these proteins with respect to the actin cores in human osteoclasts
197 adhering on bone. Protein localizations were evaluated along 1.5 μ m long and 100 nm wide lines, in
198 longitudinal and transverse directions relative to the local sealing zone orientation. Then, normalizing
199 the actin core width allowed for the localization of the target proteins with respect to the core
200 domain (see vinculin, Figure S5). Cortactin was localized within the core domain, as had been
201 previously reported, and displayed a wider distribution compared to the average core diameter
202 (Figure 4A-A'',E). α -actinin1 mostly colocalized with actin at the close periphery of the core, and
203 appeared less present in the most central part of the core (Figure 4B-B'',E). Filamin A, vinculin,
204 paxillin and talin were preferentially encircling multiple actin cores, with little staining in between
205 cores in the inner part of the sealing zone (Figure 4C-C'',E, Figure S6 and Figure S7). These
206 observations show a strong divergence with the “double circle” distribution described before ^{13, 21},
207 and the sealing zone appears to be composed of islets of actin cores that are bordered by a network
208 of adhesion complexes.

209 In scattered podosomes formed by macrophages or dendritic cells, there is a local co-regulation
210 between polymerization of actin in the core and formation of surrounding adhesion sites ^{27, 32}. To

211 determine whether such a local co-regulation takes place inside the islets of podosomes in the
212 sealing zone, we first measured local intensities of cortactin, α -actinin1, filamin A, vinculin, paxillin
213 and talin, relatively to the intensity of F-actin staining of each podosome core. These analyses
214 revealed a positive correlation between the actin content and each of the podosome components
215 (Figure 5A). Time-lapse RIM imaging of both F-actin and paxillin further confirmed that paxillin
216 intensity fluctuations are locally correlated with F-actin intensity (Figure 5B-C, Movie4). These results
217 suggest that, in addition to the local core coordination, there is also a local regulation between
218 polymerization of actin in the core and accumulation of adhesion complex proteins.

219 Finally, we explored whether actin cores observed in the same cluster surrounded by adhesion
220 complexes were synchronous. For this purpose, we analyzed how F-actin content within cores
221 fluctuates relatively to each other inside the same clusters. The superposition of the fluorescence
222 image and the segmentation of clusters of synchronized areas revealed that there is a synchrony
223 within zones corresponding to multiple cores (Figure 5D-F, Movie5).

224 Altogether, these data demonstrate that the actin cores which are localized within the same islets
225 are synchronized with each other and with the surrounding adhesion complexes.

226

227 **Discussion**

228 This study provides a nanoscale picture of the architecture, spatial organization and dynamics of
229 podosomes in the sealing zone of human osteoclasts adhering on bone. First, we give a detailed
230 insight into the inner organization of the sealing zone with the 3D localization of major actin
231 crosslinkers inside the podosome belt, and examination of their axial localization hinted at the
232 possible existence of tension within the integrin adhesion sites. Second, using RIM, we show that
233 podosome cores were within the submicron range from their direct neighbors. Third, by monitoring
234 podosomes in the sealing zone by time-lapse super-resolution microscopy, we characterized the
235 long-term spatial stability of actin cores during bone resorption and we revealed a synchronous
236 behavior for actin cores within a distance of 1 μ m. Finally, we find that synchronous neighbors were
237 grouped within clusters, which corresponded to islets surrounded by adhesion complexes composed
238 of vinculin, talin, paxillin and filamin A. Overall these results allow for a new model of the internal
239 architecture, dynamics and functioning of the sealing zone (Figure 6).

240 The evaluation of the 3D distributions of vinculin, paxillin, talin, filamin A, cortactin and α -actinin1
241 was carried out in the podosome belts of human osteoclasts on glass. Acquisitions were performed
242 with the DONALD imaging technique, which combines dSTORM and SAF analysis for the efficient 3D
243 detection of single fluorophores with a precision of 15 nm²⁶. This 3D nanoscopy technique has
244 recently been applied in the context of human macrophage podosomes. It allowed for the
245 identification of a close relationship between paxillin, vinculin and talin, and its requirement for
246 efficient protrusion force generation²⁷. In osteoclast podosome belts, vinculin, paxillin and talin-C
247 were localized in the close vicinity of the ventral membrane. Moreover, vinculin and talin-C appeared
248 to rise when situated closer to the actin cores. This interesting finding could be the first insight into
249 the identification of possible tension within the podosome belt. In fact, in podosome rings of
250 macrophages, it was observed that when talin is stretched, vinculin height is higher, probably
251 because vinculin binding sites are appearing when talin acquires an extended conformation²⁷. Our
252 results with this 3D super-resolution technique were obtained for podosomes belts of osteoclasts
253 plated on glass. While only structures formed on bone or bone-mimicking substrate are called sealing
254 zone^{3, 23}, podosome belts share some characteristics with sealing zones such as the local fusion of
255 podosome cores. The use of RIM allows for the identification of single actin cores within the sealing

256 zones of human osteoclasts adhering on bone and resorbing. Podosome cores were within the
257 submicron range from their direct neighbors, as already assessed²⁸. Additionally, we show that the
258 sealing zone are composed of islets composed of grouped podosomes within clusters and bordered
259 by a network of adhesion sites. These observations greatly contrasted with the “double circle”
260 distribution (*i.e.* a dense network of actin cores that appear fused surrounded by two lines of
261 adhesion sites) described in earlier works using conventional or confocal microscopy^{13, 21}.

262 Importantly, benefitting from RIM low toxicity and high temporal resolution, we could picture the
263 sealing zone using time-lapse super-resolution microscopy. The actin dynamics was monitored within
264 the sealing zone of osteoclasts plated on bone slices. Preliminary deconvoluted movies had revealed
265 the apparent spatial stability of actin cores for long time periods. Actin signal processing yielded a
266 time periodicity for these oscillations of approximately 100 seconds, which is much slower than the
267 actin oscillations observed in scattered macrophage podosomes²⁷. Here, local oscillations associated
268 with actin remodeling within the cores were revealed and characterized for the first time in the
269 sealing zone. Furthermore, cross-correlation analysis between signals associated with two cores in
270 the same cell brought to light the existence of a spatial synchrony between neighbors up to an
271 approximate 2 μm distance scale. Interestingly, this distance coincides with the mean neighbor-to-
272 neighbor distance measured by SEM and RIM. Similar observations in human macrophage
273 podosomes have been reported, showing that under a distance of 1.8 μm , podosome neighbors
274 oscillate synchronously³⁰. A role of connecting actin filaments was suggested to be involved in
275 controlling the synchrony between podosomes^{30, 31}. In sealing zones, the spectacularly dense actin
276 meshwork observed between actin cores could be involved in connecting subunits and thus
277 conducting synchronized oscillations of actin within the superstructure. In addition, our previous
278 observations in macrophages revealed that actin oscillations corresponded to oscillations of the
279 protrusion force generated by podosomes³⁰. Based on these observations in macrophages, we
280 propose that in osteoclasts, synchrony of actin oscillations in actin core islets could reflect the
281 involvement of oscillating protrusion forces in the sealing process. Actually, we also revealed the
282 existence of intertwined islets of podosomes: some could be involved in sealing, while neighboring
283 islets are concomitantly relaxing. A local co-regulation between actin polymerization in the core and
284 formation of surrounding adhesion proteins was observed, as described in scattered podosomes of
285 macrophages or dendritic cells^{27, 32}. Thus, intermittent protrusive and relaxing capacity of podosome
286 islets could enable efficient sealing of the osteoclast plasma membrane to the bone surface and
287 maintaining the resorption lacuna and the diffusion barrier.

288
289 This study consists in the first extensive and quantitative study of the nanoscale organization and
290 dynamics of the sealing zone in human osteoclasts. It proposes precise localization of six major
291 components of the sealing zone: vinculin, paxillin, talin, cortactin, filamin A and α -actinin1.
292 Furthermore, it provides the geometric characterization of the actin core network within this unique
293 and functional superstructure. It also allows identification of dynamic processes related to
294 podosomes during active bone resorption. This work therefore aimed at paving the way for future
295 studies to decipher both the ultrastructural and dynamic properties of this unique osteoclast
296 structure dedicated to bone resorption.

297

298 **Materials and methods**

299 **Differentiation and culture of primary monocyte-derived osteoclasts**

300 Human monocytes were isolated from blood of healthy donors as previously described ³⁵. Cells were
301 re-suspended in cold PBS supplemented with 2 mM EDTA, 0.5% heat-inactivated fetal calf serum
302 (FCS) at pH 7.4 and magnetically sorted with using magnetic microbeads coated with antibodies
303 directed against CD14 (Miltenyi Biotec). Monocytes were then seeded on plastic at 2×10^6 cells/well in
304 six-well plates in RPMI 1640 (Invitrogen) without FCS. After 2 h at 37°C in humidified 5% CO₂
305 atmosphere, the medium was replaced by RPMI containing 10% FCS, 100 ng/mL of macrophage
306 colony-stimulating factor (M-CSF, Peprotech) and 60 ng/mL of human receptor activator of NF-κB-
307 ligand (RANK-L, Miltenyi Biotec). The medium was then changed every third day by RPMI containing
308 10% FCS, 100 ng/mL of RANK-L and 25 ng/mL of M-CSF. For experiments, cells were harvested at day
309 10 using Accutase solution (Sigma-Aldrich) and centrifugation (1100 rpm, 10 min), and were then
310 plated either on clean 1.5H precision glass coverslips (Marienfeld 0117640) or on bovine bone slices
311 (Immuno Diagnostic Systems DT-1BON1000-96). Cells were left to adhere in cytokine-supplemented
312 medium for 3 days before fixation.

313 **Cleaning of precision glass coverslips**

314 Before letting cells adhere on them, 1.5H precision glass coverslips (Marienfeld) were cleaned as
315 follows: they were placed on staining racks (Thermo Scientific 12627706) and immersed in a RBS 35
316 solution (Carl Roth 9238, 1/500 diluted in milliQ water) heated up to 80°C while stirred with a
317 magnetic bar. After 15 min, coverslips were rinsed three times with milliQ water and patted dry.
318 They were put in a dry oven set at 175°C for 120 min to sterilize. These clean coverslips were used
319 within two weeks after RBS treatment.

320 **Primary antibodies**

321 The following antibodies were used: goat anti-talin C-20 (Santa Cruz sc-7534, IF 1/50), mouse anti-
322 vinculin clone hvin-1 (Sigma-Aldrich V9131, IF 1/50), mouse anti-paxillin (BD Biosciences 61005, IF
323 1/50), mouse anti-cortactin clone 4F11 (p80/85) (Sigma-Aldrich 05-180, IF 1/50), mouse anti-filamin
324 A clone PM6/317 (Sigma-Aldrich MAB1678, IF 1/50), and mouse anti-α-actinin1 clone BM-75.2
325 (Sigma-Aldrich A5044, IF 1/50).

326 **Immunofluorescence**

327 Osteoclasts plated on glass coverslips and bone slices for 3 days were fixed for 10 min in a 3.7%
328 (wt/vol) paraformaldehyde (Sigma Aldrich 158127) solution containing 0.25% glutaraldehyde
329 (Electron Microscopy Sciences 16220) in Phosphate Buffer Saline (PBS) (Fisher Scientific) at room
330 temperature. When indicated, before fixation, cells were mechanically unroofed at 37°C using
331 distilled water containing protease inhibitors (Roche) and 10 µg/mL phalloidin (Sigma-Aldrich P2141)
332 at 37°C: cells were left still in this solution for 10 s, then a flow was created by flushing a dozen times
333 so that cell dorsal membranes were ripped off. After fixation, quenching of free aldehyde groups was
334 performed by treatment with PBS/50 mM ammonium chloride and PBS/1 mg/mL sodium
335 borohydride. Non-unroofed cells were permeabilized for 10 min with PBS/0.3% Triton and all cells
336 were blocked with PBS/1% BSA for 30 min. Samples were incubated with the primary antibodies for
337 90 min and then during 60 min with fluorescent dye conjugated-phalloidin and secondary antibodies
338 for F-actin and proteins, respectively.

339 **DONALD 3D super-resolution imaging**

340 Osteoclasts plated on cleaned glass coverslips of accurate thickness (0.170 +/-0.005 mm, Marienfeld
341 0117640) were unroofed and fixed as described above. Vinculin, paxillin, talin, cortactin, filamin A or
342 α -actinin1 were stained with the corresponding primary antibody and an Alexa Fluor 647-coupled
343 secondary antibody (Molecular Probes A21237, 1/1000) for dSTORM and podosome cores were
344 labelled with Alexa Fluor 488-phalloidin (Molecular Probes A12379, 1/500) for epifluorescence. All
345 dSTORM experiments were performed with the Smart-kit buffer (Abbelight, France).

346 3D super-localization images were acquired using an inverted IX83 microscope (Olympus) combined
347 with SAFe module (Abbelight, France), and a TIRF module (Abbelight, France). Samples were excited
348 with 405 nm (200mW, ERROL Laser), 488 nm (150 mW, ERROL Laser), and 640 nm (400mW, ERROL
349 Laser) lasers in a HILO illumination (Highly Inclined and Laminated Optical sheet), and controlled *via*
350 NEO Software (Abbelight, France). GFP / Alexa 532 / mCherry / Alexa 647 fluorescence filters
351 (Semrock, LF-405/488/532/635-B-OFF) were used, and the objective was a 100x/1.49 N.A oil
352 immersion objective (Olympus). All images were acquired using a sCMOS ORCA FLASH4.0 v3 (100 fps,
353 cable camera link, Hamamatsu) camera, split on two regions of 300x300 pixels area and positioned
354 on the focal plane of the SAFe module (2.7x magnification, optical pixel size of 108 nm). The two
355 imaging paths are calibrated in terms of transmission efficiency to define a permanent correction
356 factor that compensates the imperfect beam splitter. Images were collected once the density of
357 fluorescent dye was sufficient (typically, under 1 molecule. μm^{-2}). About 5000 frames were recorded
358 to compute one image of protein, and 500000 frames were acquired to obtain one image of actin.
359 For all recorded images, the integration time was set to 50 ms and the EMCCD gain to 150. Laser
360 power was adapted depending on the fluorophore density.

361 **Analysis of DONALD 3D super-resolution images**

362 The super-localization of molecules and drift correction were performed on raw images *via* NEO
363 Software (Abbelight, France) to achieve a final pixel size of 15 nm. Images were grouped in batches
364 accounting for 5% of the total frames, and were submitted to drift correction by comparison batch
365 per batch and according to a sliding window. Eventually, z correction was performed thanks to a
366 dedicated Python script, to account for the calibration value of the SAFe module.

367 The spatial organization of proteins within the sealing zone like was characterized following an
368 adapted version of the algorithm described previously ²⁷. Briefly, actin cores in-plane coordinates
369 ($x_{\text{core}}, y_{\text{core}}$) were determined from actin epifluorescence images from the 488 nm channel after
370 Gaussian-filtering. The angle between the podosome belt portion and the horizontal was measured
371 by the user. Then, centered on each core, a rectangle bounding box of length 10 μm and width 200
372 nm was drawn and the 3D coordinates (x_i, y_i, z_i) of the molecules inside this box were converted to a
373 local r-z space (r_i, z_i). This operation was repeated twice for each core: once along the structure
374 direction, and once in the transversal direction. This analysis was performed for all cores of a given
375 cell.

376 To further the analysis of the spatial organization of molecules within the podosome belt, a
377 dedicated Python script was written to extract statistical information. Each cross-section direction for
378 each cell was treated independently, except for distributions along r-axis and along z-axis for which
379 all molecules detected for all cells were considered. Points were sorted in classes of varying lengths,
380 depending on their distance to the corresponding actin core and whether they were located towards
381 the exterior or the internal part of the cell. For each r-class, median height of the distribution was
382 estimated cell by cell. Also, the symmetry between internal and external distribution of proteins in
383 terms of quantity was assessed by comparing the total amount of molecules on the exterior side to

384 the total amount of points on the interior side, normalized by the total amount of points detected for
385 each cell considered (Figure S1).

386 **Scanning Electron Microscopy imaging**

387 Osteoclasts plated on bone slices for 3 days were unroofed as described above and fixed for 10 min
388 in a 0.2M sodium cacodylate buffer (pH 7.4) containing 2% paraformaldehyde (Electron Microscopy
389 Sciences 15710) and 2.5% glutaraldehyde (Electron Microscopy Sciences 16220), then washed with
390 distilled water. The samples were then prepared for observation following the protocol: they were
391 dehydrated through a graded series (25–100%) of ethanol, transferred in acetone and subjected to
392 critical point drying with CO₂ in a Leica EM CPD300, then sputter-coated with 3 nm platinum with a
393 Leica EM MED020 evaporator, and were examined and photographed with an FEI Quanta FEG250.

394 **Analysis of SEM images**

395 Actin cores were manually encircled using ImageJ oval selection tool, then the area and its center
396 coordinates of these selected regions were extracted. A dedicated Python script was written to
397 extract statistical information. The inter-core distances were computed using Delaunay tessellation
398 on each image, using SciPy spatial algorithm “Delaunay” in order to create the interconnection
399 matrix, then the distance between each pair of connected vertices was computed and stored in a
400 matrix. In order to avoid plausible errors, the edges of the Delaunay tessellated space were excluded
401 of the distance computations. To identify them, the SciPy spatial algorithm “ConvexHull” was applied
402 to the coordinates, and whenever two points were identified as pertaining to the convex envelope,
403 the distance between them was not computed. Finally, for each vertex the minimum distance to all
404 neighbors was kept for the nearest neighbor analysis.

405 **RIM 2D super-resolution imaging**

406 For live imaging, osteoclasts were transduced with GFP- or mCherry-tagged LifeAct and GFP-paxillin
407 lentiviruses (BiVic facility, Toulouse, France) 3 days as previously described³⁰, before being harvested
408 and plated on bovine bone slices, and were observed the day after being plated on bone slices. Bone
409 slices were placed on a FluoroDish (WPI FD35-100) with cells facing down and immersed with RPMI
410 without phenol red, supplemented with 10% FCS (Thermo Fisher 32404-014). During observations,
411 samples were maintained at 37°C in humidified 5% CO₂ atmosphere. Images were acquired every 12
412 ms for a total of 211 seconds (streams) using an inverted microscope (TEi Nikon). A fiber laser
413 combiner with 4 fast diode lasers (Oxxius) with respective wavelengths 405 nm (LBX-405-180-CSB,)
414 454 nm (LBX-445-100-CSB), 488 nm (LBX-488-200-CSB), and 561 nm (LMX-561L-200-COL) are used to
415 excite fluorophores. A corrected fiber collimator (RGBV Fiber Collimators 60FC Sukhamburg) is used
416 to produce collimated TEM₀₀ 2.2 mm diameter output beam for all wavelengths. The polarization
417 beam is rotated with an angle of 5 degrees before hitting a X4 Beam Expander beam (GBE04-A) and
418 produces 8.8 mm beam TEM₀₀ beam. A fast spatial light phase binary modulator (QXGA fourth
419 dimensions) is conjugated to the image plane to make speckle random illumination. The objective
420 lens used in experiments is a 100x magnification with 1.49 numerical aperture (CFI SR APO 100XH ON
421 1.49 DT 0;12 NIKON). A band pass filter was used for Green Fluorescence Protein (GFP) emission
422 (Semrock FF01-514/30-25). A motorized high speed wheel filter is used to sequentially turn the two
423 band pass filters in 30 ms after each 200 speckle frames. A piezoelectric Z stage (Z INZERT
424 PIEZOCONCEPT) is used for fast z stack acquisition. For triggering, the camera sCMOS is used as
425 master, and a rolling shutter output is used to trigger binary phase sequence to the SLM. The SLM
426 output triggers the laser when binary phase mask is stable. A script from micromanager software was
427 written to select the number of speckles used, the temporal resolution for each frame, the depth of z
428 stack, the step of each z stack and the number of colors used for the acquisition. For stream

429 recording, speckle frames were acquired continuously over the whole duration of the movie.
430 Widefield time-lapse acquisitions were also carried out with the same microscope, but using a 60x
431 objective (CFI PLAN APO LBDA 60XH 1.4/0.13 NIKON). Images were captured every 2 seconds, and
432 were restored with Huygens Software (classical maximum likelihood estimation with 30
433 iterations and theoretical PSF). For imaging of fixed samples, osteoclasts were unroofed and fixed as
434 described above and stained for vinculin, cortactin, filamin A, or α -actinin1 with the corresponding
435 primary antibody and an Alexa Fluor 488-coupled secondary antibody (Cell Signaling Technology
436 #4408, 1/500) or an Alexa Fluor 546-coupled secondary antibody (Molecular Probes A11056, 1/500).
437 Actin cores were labelled with Texas Red-phalloidin (Molecular Probes T7471, 1/200) or Alexa Fluor
438 488-phalloidin (Molecular Probes A12379, 1/200) respectively. Bone slices were placed in a
439 FluoroDish, upside down on a droplet of Vectashield mounting medium (Vector Laboratories H-
440 1000). Samples were excited with 488 nm and 561 nm laser diodes with the same setup as for time-
441 lapse imaging. 200 speckle images for each channel were acquired sequentially to yield z stacks of
442 various depths.

443 **Analysis of RIM images of fixed samples**

444 Reconstruction of raw images was carried out as described in ²⁹.
445 Briefly, the method is based on decreasing the computational cost of the inversion method described
446 in ³⁶. This new method uses a variance matching process, instead of the marginal minimization
447 methods based on the full covariance matrix of the data ²⁹. The only input for the super-resolution
448 reconstruction process is the knowledge of spatial statistics of speckle patterns limited by the OTF of
449 the imaging system (Fourier transform of the PSF). Contrary to SIM, the exact knowledge of the
450 illumination function is not necessary, and the protocol of the reconstruction is therefore drastically
451 reduced. The inversion code is implemented on Matlab. The input are the excitation and collection
452 PSF, generated with Gibson and Lanny 3D optical model implemented in the plugin PSF generator ³⁷.
453 The PSF dimension is equal to the final size reconstruction with a pixel size equal to 32.25 nm for
454 100x magnification. The position of the fluorophores is defined from the cover slide in each sample.
455 The number of iterations during the variance matching process is defined by the user, mainly
456 depending on the signal to noise ratio of the raw data.

457 Drift correction was performed on z stacks with ImageJ plugin Linear Stack Alignment with SIFT.
458 To create images on which to perform further analyses, 3 to 5 z slices per acquisition stack were
459 selected on their sharpness, depending on the quality of the original signal, and summed with ImageJ
460 Z Project tool.

461 In order to characterize the actin network, actin cores were detected as local maxima using ImageJ
462 Find Maxima tool with the threshold set as half of background intensity. The coordinates of these
463 maxima were weighted considering all pixel intensity in a 200 nm radius, and exported in a text file.
464 These points were positioned both on RIM reconstructed image and on its spatial derivative version
465 created thanks to ImageJ Find Edges tool. From these locations, 8 radius profile were traced with
466 length 1 μ m and width 100 nm on both images, and intensity values along this line were extracted
467 and stored in a text file. A dedicated Python script was then written to extract statistical data. Core
468 radii were computed by detecting the first intensity maximum along the Find Edges profile. Inter-
469 core distances were computed thanks to weighted coordinates following the same Delaunay
470 algorithm already described in the SEM analysis section (Figure S4).

471 For the analysis of two-color acquisitions, actin cores were detected following the same procedure as
472 described for the analysis of the actin network. Then, both signals were extracted along 1.5 μ m long

473 and 100 nm wide lines drawn so that each core coordinates were placed at the middle of the line,
474 and its orientation either followed the local curvature of the sealing zone, or was transverse. This
475 process was repeated on the reconstructed actin image, the actin image after spatial derivation with
476 ImageJ Find Edges tool and the protein image. All data were extracted and stored in a text file to be
477 read by a dedicated Python script. This script computed the median core size for all data thanks to
478 Find Edges signals, in order to establish a normalized profile length. Then, both actin- and protein-
479 associated signals were interpolated along this new axis to yield comparable intensity profiles.
480 Median profiles were eventually computed (Figure S5).

481 **Analysis of RIM live acquisitions**

482 Reconstruction of raw images was carried out as described previously. To combine robust statistical
483 estimation of object and temporal resolution, an interleaved reconstruction method has been made
484 as previously proposed for SIM ³⁸. 800 speckles were grouped to reconstruct one time slice, and the
485 time step between two images corresponds to 200 speckles. Drift correction was performed on
486 stacks with ImageJ plugin Linear Stack Alignment with SIFT, with the same parameters as for fixed
487 samples. Actin intensity levels were normalized throughout the stack by using ImageJ Bleach
488 Correction tool, with the correction method set to histogram matching.

489 To detect the single actin cores, all the time slices were summed with ImageJ Z project tool and the
490 coordinates were extracted according to the same procedure as for fixed samples. The dynamic
491 characteristics of actin were assessed by extracting the time-dependent signals in a circular selection
492 or radius 100 nm around each core, and storing them in a text file. A dedicated Python script was
493 developed to compute the distance between all core pairs in the same cell from, the Fourier
494 spectrum associated with each signal and the Pearson cross-correlation between two signals in the
495 same cell. Natural frequencies were identified as the frequencies associated with Fourier coefficients
496 greater than a threshold value proportional to the median value for Fourier coefficients over the
497 spectrum. Pearson coefficients were eventually sorted according to the distance between the core
498 pair coordinates.

499 In order to obtain graphical representations of the local evolution of fluorescence over time, as
500 shown in Figure 3, 5 and Movies3, 5, the films were processed using ImageJ as follows. First, the films
501 were registered using the StackReg ImageJ plugin. Then, 2 sequential time points were subtracted to
502 obtain a new film representing the rate of change of fluorescence. Finally, a Gaussian filter (2 pixel
503 radius, i.e. 64.5 nm) and a time average on three consecutive images were applied to this film to help
504 reduce local noise and visually highlight local variations in intensity changes.

505 **Statistical analysis**

506 All box-and-whisker plots show the median, lower and upper quartiles (box) and the 10th and 90th
507 percentiles (whiskers).

508

509 **Resource availability**

510 All data and codes used in the analysis are available upon request to the corresponding authors.

511

512 **Acknowledgements**

513 The authors are grateful to Myriam Ben Neji for isolation of human blood monocytes and Isabelle
514 Fourquaux from TRI imaging facility for SEM preparation. The authors also acknowledge Anne Blangy,
515 Alessandra Cambi, Amsha Proag and Olivier Destaing for helpful discussions. This work has been
516 supported in part by l'Agence Nationale de la Recherche (ANR16-CE13-MechanOCs), l'Université de
517 Toulouse, la Région Occitanie, la Fondation pour la Recherche Médicale (FRM DEQ2016 0334894),
518 INSERM Plan Cancer and Human Frontier Science Program (RGP0035/2016).

519

520 **Contributions**

521 MP performed and analyzed all experiments. TM and RP participated in RIM experiments. NE
522 participated in DONALD experiments. BRM and CV participated in differentiating osteoclasts. RP and
523 CT supervised the project. CV, CT and IMP obtained funding. MP and RP wrote the manuscript with
524 input from the others.

525

526 **Competing financial interests**

527 The authors declare no competing financial interests.

528

529

530 **Figure legends**

531 **Figure 1. 3D nanoscopy of vinculin and talin-C in the osteoclast podosome belt.**

532 (A) Representative dSTORM images of vinculin (blue) merged with the corresponding epifluorescence
533 images of the F-actin cores (ochre). (A') Enlarged view of (A). The black crosses indicate the
534 localization of actin cores.

535 (B) DONALD images corresponding to (A) where the height is represented in false color (scale shown
536 in (B')). (B') Enlarged view of (B). The white crosses indicate the localization of actin cores.

537 (C) Representative dSTORM images of talin-C (blue) merged with the corresponding epifluorescence
538 images of the F-actin cores (ochre). (C') Enlarged view of (C).

539 (D) DONALD images corresponding to (A) where the height is represented in false color (scale shown
540 in (D')). (D') Enlarged view of (D).

541 (E-F) Height profiles for vinculin (E) and talin-C (F) with respect to the distance to the center of the
542 podosome belt.

543 (G-H) Radial (G) and vertical (H) distributions of cortactin, α -actinin1, filamin A, paxillin, vinculin and
544 talin-C in podosome belts.

545 (I) Median axial positions of F-actin, cortactin, α -actinin1, filamin A, paxillin, vinculin and talin-C in
546 podosome belts.

547 Scale bars: 5 μ m (B, D), 1 μ m (B', D').

548

549 **Figure 2. Nanoscale organization of actin cores in the sealing zones formed by human osteoclasts**

550 (A) Pseudo-colored scanning electron micrograph of a human monocyte-derived osteoclast degrading
551 bone.

552 (B) Scanning electron microscopy image of an unroofed osteoclast.

553 (B') Enlarged view of (B).

554 (B'') Localization of actin cores (circles). Arrowheads point to lateral actin filaments linking actin cores
555 together.

556 (B''') Delaunay triangulation from the cores in (B'').

557 (C) RIM image of a sealing zone stained for F-actin. Color-coded for height using a rainbow scale.

558 (C') Enlarged view of (C).

559 (C'') Localization of actin cores (circles).

560 (C''') Delaunay triangulation from the cores in (C'').

561 (C''') Orthogonal projection along the line marked in (C) The same color code for height was used.

562 (D) Histogram of the core radii, as measured by SEM (black) and RIM (grey).

563 (E) Histogram of the average distances to direct neighbors measured as Delaunay edges, as
564 measured by SEM (black) and RIM (grey).

565 (F) Histogram of the average distances to first neighbors, as measured by SEM (black) and RIM
566 (grey). In (D-F), 457 and 2781 cores were quantified for SEM and RIM, respectively.

567 Scale bars: 20 μ m (A), 5 μ m (B, C, C'''), 1 μ m (B', B'', B''', C', C'').

568

569 **Figure 3. Nanoscale analysis of the dynamics of the sealing zone.**

570 (A) Temporal projection of deconvolution images of a sealing zone acquired over 30 min, color-coded
571 for time using a rainbow scale. Thus, the structures that remain at the same spot tend to appear
572 whiter, whereas short-lived or mobile podosomes remain colored.

573 (A') Enlarged view of (A).

574 (A'') Kymograph along the line marked in (A).

575 (B) RIM image of a sealing zone stained for F-actin with Lifeact-GFP.

576 (B') Measurements of Lifeact-GFP intensity variations of actin cores marked in (B).

577 (C) Pearson coefficients of actin intensity fluctuations of podosome pairs as a function of distance
578 between pairs (2839 cores).
579 (D) Image of the rate of fluorescence change corresponding to the cell shown in (B).
580 (D') Kymograph along the line marked in (D).
581 (D'') Segmentation of the growing and decreasing clusters of actin cores.
582 (D''') Superimposition of the RIM image with the segmented regions of coordinated actin clusters
583 shown in (D'').
584 Scale bars: 10 μm (A), 5 μm (A'-D').
585

586 **Figure 4. Localization in the sealing zone of actin core and ring proteins.**

587 (A) Representative immunofluorescence images of sealing zones co-stained for F-actin (red) and
588 cortactin (green). (A') Enlarged view of (A) where white crosses indicate the localization of actin
589 cores. (A'') Intensity profiles along the dotted lines marked in (A').
590 (B) Representative immunofluorescence images of sealing zones co-stained for F-actin (red) and α -
591 actinin1 (green). (B') Enlarged view of (B) where white crosses indicate the localization of actin cores.
592 (B'') Intensity profiles along the dotted lines marked in (B').
593 (C) Representative immunofluorescence images of sealing zones co-stained for F-actin (red) and
594 filamin A (green). (C') Enlarged view of (C) where white crosses indicate the localization of actin
595 cores. (C'') Intensity profiles along the dotted lines marked in (C').
596 (D) Representative immunofluorescence images of sealing zones co-stained for F-actin (red) and
597 vinculin (green). (D') Enlarged view of (D) where white crosses indicate the localization of actin cores.
598 (D'') Intensity profiles along the dotted lines marked in (D').
599 (E) Normalized intensity profiles of F-actin, cortactin, α -actinin1, filamin A, vinculin, paxillin and talin
600 (medians of at least 200 cores for each staining).
601 Scale bars: 5 μm (A, B, C, D), 1 μm (A', B', C', D').
602

603 **Figure 5. Quantification of the dynamics of the sealing zone.**

604 (A) Osteoclasts adhering to bone were stained for both F-actin and cortactin, α -actinin1, filamin A,
605 vinculin, talin or vinculin, respectively. The intensity of each fluorescent marker in 1 μm radius circles
606 around F-actin cores were quantified for at least 1000 cores (in five cells from different donors), and
607 correlated to the fluorescence intensity of F-actin. Data were normalized with respect to the
608 maximum intensity.

609 (B-C) Time-lapse RIM imaging of F-actin and paxillin in a living osteoclast expressing Lifeact-mCh and
610 paxillin-GFP and adhering to bone. The intensity variations of Lifeact-mCh and paxillin-GFP from two
611 cores are shown. Note that the variations of the two podosome markers are correlated locally, but
612 that the two cores, which are 5 μm apart, are not synchronized (C).

613 (D) Time-lapse RIM imaging of F-actin and paxillin in a living osteoclast expressing Lifeact-mCh and
614 paxillin-GFP and adhering to bone. A single RIM image of paxillin was acquired, followed by a stream
615 acquisition of Lifeact-GFP, for a higher temporal resolution.

616 (E) Image of the rate of fluorescence change corresponding to the cell shown in (D).

617 (F) The superposition of the fluorescence image and the segmentation of clusters of synchronized
618 areas in the sealing zone shows that there is a synchrony within zones corresponding to multiple
619 cores encircled by paxillin. The arrowheads in (E-F) indicate a large cluster of actin cores. Note that all
620 the different cores in this group are synchronized (E).

621 Scale bars: 5 μ m.

622

623 **Figure 6. Model of the organization of the sealing zone into islets.**

624 (A-A') Osteoclast form an actin rich superstructure called the sealing zone, in order to confine bone
625 degradation.

626 (A') Zooming inside the sealing zone reveals the 3D organization into islets of coordinated actin
627 cores. Moreover, actin cores that are localized within the same cluster tend to display synchronized
628 actin fluctuations, whereas there does not seem to be much correlation between clusters.

629

630

631 References

632 1 Teitelbaum SL. Osteoclasts: what do they do and how do they do it? *Am J Pathol* 2007; **170**:427-
633 435.

634 2 Soysa NS, Alles N. Osteoclast function and bone-resorbing activity: An overview. *Biochemical and*
635 *biophysical research communications* 2016; **476**:115-120.

636 3 Jurdic P, Saltel F, Chabadel A, Destaing O. Podosome and sealing zone: specificity of the osteoclast
637 model. *European journal of cell biology* 2006; **85**:195-202.

638 4 Delaisse JM, Soe K, Andersen TL, Rojek AM, Marcussen N. The Mechanism Switching the Osteoclast
639 From Short to Long Duration Bone Resorption. *Front Cell Dev Biol* 2021; **9**:644503.

640 5 Zambonin-Zallone A, Teti A, Carano A, Marchisio PC. The distribution of podosomes in osteoclasts
641 cultured on bone laminae: effect of retinol. *Journal of bone and mineral research : the official journal*
642 *of the American Society for Bone and Mineral Research* 1988; **3**:517-523.

643 6 Kanehisa J, Yamanaka T, Doi S *et al.* A band of F-actin containing podosomes is involved in bone
644 resorption by osteoclasts. *Bone* 1990; **11**:287-293.

645 7 Teti A, Marchisio PC, Zallone AZ. Clear zone in osteoclast function: role of podosomes in regulation
646 of bone-resorbing activity. *The American journal of physiology* 1991; **261**:C1-7.

647 8 Luxenburg C, Geblinger D, Klein E *et al.* The architecture of the adhesive apparatus of cultured
648 osteoclasts: from podosome formation to sealing zone assembly. *PLoS one* 2007; **2**:e179.

649 9 Akisaka T, Yoshida A. Visualization of structural organization of ventral membranes of sheared-
650 open resorbing osteoclasts attached to apatite pellets. *Cell and tissue research* 2015; **360**:347-362.

651 10 Akisaka T, Yoshida A. Scattered podosomes and podosomes associated with the sealing zone
652 architecture in cultured osteoclasts revealed by cell shearing, quick freezing, and platinum-replica
653 electron microscopy. *Cytoskeleton (Hoboken)* 2019; **76**:303-321.

654 11 Chabadel A, Banon-Rodriguez I, Cluet D *et al.* CD44 and beta3 integrin organize two functionally
655 distinct actin-based domains in osteoclasts. *Molecular biology of the cell* 2007; **18**:4899-4910.

656 12 Saltel F, Chabadel A, Bonnelye E, Jurdic P. Actin cytoskeletal organisation in osteoclasts: a model
657 to decipher transmigration and matrix degradation. *European journal of cell biology* 2008; **87**:459-
658 468.

659 13 Lakkakorpi PT, Helfrich MH, Horton MA, Vaananen HK. Spatial organization of microfilaments and
660 vitronectin receptor, alpha v beta 3, in osteoclasts. A study using confocal laser scanning microscopy.
661 *Journal of cell science* 1993; **104 (Pt 3)**:663-670.

662 14 Lakkakorpi PT, Nakamura I, Young M, Lipfert L, Rodan GA, Duong LT. Abnormal localisation and
663 hyperclustering of (alpha)(V)(beta)(3) integrins and associated proteins in Src-deficient or tyrphostin
664 A9-treated osteoclasts. *Journal of cell science* 2001; **114**:149-160.

665 15 Pfaff M, Jurdic P. Podosomes in osteoclast-like cells: structural analysis and cooperative roles of
666 paxillin, proline-rich tyrosine kinase 2 (Pyk2) and integrin alphaVbeta3. *Journal of cell science* 2001;
667 **114**:2775-2786.

668 16 Hurst IR, Zuo J, Jiang J, Holliday LS. Actin-related protein 2/3 complex is required for actin ring
669 formation. *Journal of bone and mineral research : the official journal of the American Society for Bone*
670 *and Mineral Research* 2004; **19**:499-506.

671 17 Gil-Henn H, Destaing O, Sims NA *et al.* Defective microtubule-dependent podosome organization
672 in osteoclasts leads to increased bone density in Pyk2(-/-) mice. *The Journal of cell biology* 2007;
673 **178**:1053-1064.

674 18 Ory S, Brazier H, Pawlak G, Blangy A. Rho GTPases in osteoclasts: orchestrators of podosome
675 arrangement. *European journal of cell biology* 2008; **87**:469-477.

676 19 Ma T, Sadashivaiah K, Madayiputhiya N, Chellaiah MA. Regulation of sealing ring formation by L-
677 plastin and cortactin in osteoclasts. *The Journal of biological chemistry* 2010; **285**:29911-29924.

678 20 Lakkakorpi PT, Nakamura I, Nagy RM, Parsons JT, Rodan GA, Duong LT. Stable association of PYK2
679 and p130(Cas) in osteoclasts and their co-localization in the sealing zone. *The Journal of biological*
680 *chemistry* 1999; **274**:4900-4907.

681 21 Lakkakorpi PT, Vaananen HK. Cytoskeletal changes in osteoclasts during the resorption cycle.
682 *Microscopy research and technique* 1996; **33**:171-181.

683 22 Tehrani S, Faccio R, Chandrasekar I, Ross FP, Cooper JA. Cortactin has an essential and specific role
684 in osteoclast actin assembly. *Molecular biology of the cell* 2006; **17**:2882-2895.

685 23 Saltel F, Destaing O, Bard F, Eichert D, Jurdic P. Apatite-mediated actin dynamics in resorbing
686 osteoclasts. *Mol Biol Cell* 2004; **15**:5231-5241.

687 24 Akisaka T, Yoshida A. Ultrastructural analysis of apatite-degrading capability of extended invasive
688 podosomes in resorbing osteoclasts. *Micron* 2016; **88**:37-47.

689 25 Geblinger D, Geiger B, Addadi L. Surface-induced regulation of podosome organization and
690 dynamics in cultured osteoclasts. *Chembiochem : a European journal of chemical biology* 2009;
691 **10**:158-165.

692 26 Bourg N, Mayet C, Dupuis G *et al.* Direct Optical Nanoscopy with Axially Localized Detection.
693 *Nature Photonics* 2015; **9**:587.

694 27 Bouissou A, Proag A, Bourg N *et al.* Podosome Force Generation Machinery: A Local Balance
695 between Protrusion at the Core and Traction at the Ring. *ACS nano* 2017; **11**:4028-4040.

696 28 Deguchi T, Fazeli E, Koho S *et al.* Density and function of actin-microdomains in healthy and NF1
697 deficient osteoclasts revealed by the combined use of atomic force and stimulated emission
698 depletion microscopy. *J Phys D Appl Phys* 2020; **53**.

699 29 Mangeat TL, S.; Allain, M.; Martin, E.; Poincloux, R.; Bouissou, A.; Cantaloube, S.; Courtaux, E.;
700 Vega, E.; Li, T.; Guénolé, A.; Rouvière, C.; Allard, S.; Campo, N.; Suzanne, M.; Wang, X.; Michaux, G.;
701 Pinot, M.; Le Borgne, R.; Tournier, S.; Idier, J.; Sentenac, A. Super-resolved live-cell imaging using
702 Random Illumination Microscopy. *bioRxiv* 2020; **2020.01.27.905083**.

703 30 Proag A, Bouissou A, Mangeat T *et al.* Working together: spatial synchrony in the force and actin
704 dynamics of podosome first neighbors. *ACS nano* 2015; **9**:3800-3813.

705 31 Labernadie A, Bouissou A, Delobelle P *et al.* Protrusion force microscopy reveals oscillatory force
706 generation and mechanosensing activity of human macrophage podosomes. *Nat Commun* 2014;
707 **5**:5343.

708 32 van den Dries K, Meddens MB, de Keijzer S *et al.* Interplay between myosin IIA-mediated
709 contractility and actin network integrity orchestrates podosome composition and oscillations. *Nat
710 Commun* 2013; **4**:1412.

711 33 van den Dries K, Nahidazar L, Slotman JA *et al.* Modular actin nano-architecture enables
712 podosome protrusion and mechanosensing. *bioRxiv* 2019:583492.

713 34 Cabriel C, Bourg N, Jouchet P *et al.* Combining 3D single molecule localization strategies for
714 reproducible bioimaging. *Nature communications* 2019; **10**:1980.

715 35 Van Goethem E, Poincloux R, Gauffre F, Maridonneau-Parini I, Le Cabec V. Matrix Architecture
716 Dictates Three-Dimensional Migration Modes of Human Macrophages: Differential Involvement of
717 Proteases and Podosome-Like Structures. *Journal of immunology* 2010; **184**:1049-1061.

718 36 Idier JL, S.; Allain, M.; Liu, P.; Bourguignon, S; Sentenac, A. On the Superresolution Capacity of
719 Imagers Using Unknown Speckle Illuminations. *IEEE Transactions on Computational Imaging* 2018;
720 **4**:87-98.

721 37 Kirshner H, Aguet F, Sage D, Unser M. 3-D PSF fitting for fluorescence microscopy: implementation
722 and localization application. *Journal of microscopy* 2013; **249**:13-25.

723 38 Ma Y, Li D, Smith ZJ, Chu K. Structured illumination microscopy with interleaved reconstruction
724 (SIMILR). *Journal of biophotonics* 2018; **11**.

725

726

727

728

729 **Supplementary figure legends**

730 **Supplementary Figure 1. Analysis workflow for the 3D localization of proteins relative to actin
731 cores with DONALD.**

732 When zooming in on a region of the belt, each of the actin cores (crosses) in the different clusters
733 were located by the user. Then, the general orientation of the cluster was evaluated, and a
734 rectangular region was delimited and centered on an actin core, transverse to the direction of the
735 cluster. Within these cross-sections, molecules were automatically localized depending on their
736 distance to the central axis of the cross-section and their height. Importantly, all molecules situated
737 towards the cell edge were represented on the left, while those towards the interior of the cell are
738 on the right in the associated charts.

739

740 **Supplementary Figure 2. 3D nanoscopy of F-actin, cortactin, α -actinin1, filamin A and paxillin in the
741 osteoclast podosome belt.**

742 (A) Representative dSTORM images of cortactin (blue) merged with the corresponding
743 epifluorescence images of the F-actin cores (ochre).

744 (A') DONALD images corresponding to (A) where the height is represented in false color (scale shown
745 in (A'')). (A'') Enlarged view of (A'). (A''') Height profiles of cortactin with respect to the distance to the
746 center of the sealing zone.

747 (B) Representative dSTORM images of α -actinin1 (blue) merged with the corresponding
748 epifluorescence images of the F-actin cores (ochre).

749 (B') DONALD images corresponding to (B) where the height is represented in false color (scale shown
750 in (B'')). (B'') Enlarged view of (B'). (B''') Height profiles of α -actinin1 with respect to the distance to
751 the center of the sealing zone.

752 (C) Representative dSTORM images of filamin A (blue) merged with the corresponding
753 epifluorescence images of the F-actin cores (ochre).

754 (C') DONALD images corresponding to (C) where the height is represented in false color (scale shown
755 in (C'')). (C'') Enlarged view of (C'). (C''') Height profiles of filamin A with respect to the distance to the
756 center of the sealing zone.

757 (D) Representative dSTORM images of paxillin (blue) merged with the corresponding epifluorescence
758 images of the F-actin cores (ochre).

759 (D') DONALD images corresponding to (D) where the height is represented in false color (scale shown
760 in (D'')). (D'') Enlarged view of (D'). (D''') Height profiles of paxillin with respect to the distance to the
761 center of the sealing zone.

762 Scale bars: 5 μ m (A', B', C', D'), 1 μ m (A'', B'', C'', D'').

763

764 **Supplementary Figure 3. Comparison between epi-fluorescence and RIM super-resolution
765 microscopy.**

766 (A) Widefield image of the sealing zone stained for F-actin already shown in Figure 1C.

767 (B) RIM image of the sealing zone shown in Figure 1C.

768 (C) Widefield image of the sealing zone stained for F-actin already shown in Figure 2B.

769 (D) RIM image of the sealing zone shown in Figure 2B.

770

771 **Supplementary Figure 4. Analysis workflow for the geometric characterization of actin cores with
772 RIM technique.**

773 When zooming in on a region of a sealing zone, it is observed that actin signal displays numerous
774 local maxima that were localized. The corresponding coordinates were used to estimate the distance
775 between two neighboring maxima, based on Delaunay's tessellation. Then, in order to assess the size

776 of the actin dots, a spatial derivation of the signal was applied and the derived signal was extracted
777 along 8 radii from the center of each dot. On these curves, the first local maximum corresponded to
778 the edge of the actin spot and helped me compute the mean radius for all of them.
779

780 **Supplementary Figure 5. Analysis workflow for the 2D localization of proteins relative to actin**
781 **cores with RIM technique.**

782
783 Similarly to the evaluation of the size of actin cores, the first step was to extract the coordinates of
784 the cores thanks to the actin staining image. And in the same way, data was also extracted in order
785 to assess the diameter of each core. Then, the local orientation of the sealing zone was evaluated by
786 the user, in order to extract both actin and protein associated signals in the transverse direction. But
787 these curves are not comparable as such, so thanks to the size-related data a normalization protocol
788 was performed on the signals so that they were ready for statistical analysis.
789

790 **Supplementary Figure 6. Localization in the sealing zone of cortactin, α -actinin 1, filamin A and**
791 **vinculin.**

792 Gallery of immunofluorescence images of sealing zones co-stained for F-actin (red) and cortactin, α -
793 actinin 1, filamin A or vinculin (green).

794 Scale bar: 5 μ m.
795

796 **Supplementary Figure 7. Localization in the sealing zone of paxillin and talin.**

797 (A) Representative immunofluorescence images of sealing zones co-stained for F-actin (red) and
798 paxillin (green). (A') Enlarged view of (A). (A'') Intensity profiles along the dotted lines marked in (A').

799 (B) Gallery of immunofluorescence images of sealing zones co-stained for F-actin (red) and paxillin
800 (green).

801 (C) Representative immunofluorescence images of sealing zones co-stained for F-actin (red) and talin
802 (green). (A') Enlarged view of (A). (A'') Intensity profiles along the dotted lines marked in (A').

803 (D) Gallery of immunofluorescence images of sealing zones co-stained for F-actin (red) and talin
804 (green).
805 Scale bars: 5 μ m (A, B, C, D), 1 μ m (A', C').
806

807 **Movie 1. Z-stack by RIM of a human osteoclast adhering on bone and stained for F-actin.**

808 The movie shows a stack of optical sections acquired by RIM microscopy at 200-nm intervals. Color-
809 coded for height using a rainbow scale.
810

811 **Movie 2. Deconvolution time-series of a sealing zone over 30 min.**

812 Time-series movie of a human osteoclast expressing Lifeact-GFP and adhering on bone. The video
813 was acquired by wide-field fluorescence microscopy at 2-s intervals during 30 min and deconvoluted.
814

815 **Movie 3. RIM time-series and rate of fluorescent change of the F-actin content of a sealing zone.**

816 Reconstruction at 2.4-s intervals during 160 s of a time-series acquired by RIM microscopy. Left
817 panel: RIM images of a sealing zone stained for F-actin with Lifeact-GFP. Right panel: images of the
818 rate of fluorescence change. Orange stands for a positive gradient, *i.e.* local actin polymerization, and
819 blue represents a negative gradient, *i.e.* local actin depolymerization.
820

821 **Movie 4. Dynamics of F-actin and Paxillin in a sealing zone.**

822 Time-series movie by RIM microscopy of an osteoclast on bone expressing Lifeact-mCh and Paxillin-
823 GFP, reconstructed at 9-s intervals during 160 s.

824

825 **Movie 5. RIM time-series and rate of fluorescent change of the F-actin content of a sealing zone,**
826 **relative to the location of Paxillin.**

827 Left panel: time-series movie by RIM microscopy of an osteoclast on bone expressing Lifeact-mCh
828 and Paxillin-GFP. A single RIM image of Paxillin-GFP at the starting point of the movie was
829 reconstructed and superimposed on a time series of Lifeact-GFP reconstructed at 2.4-s intervals
830 during 88 s. Right panel: images of the rate of fluorescence change of Lifeact-GFP.

831

Marion Perthes et al.
Figure 1

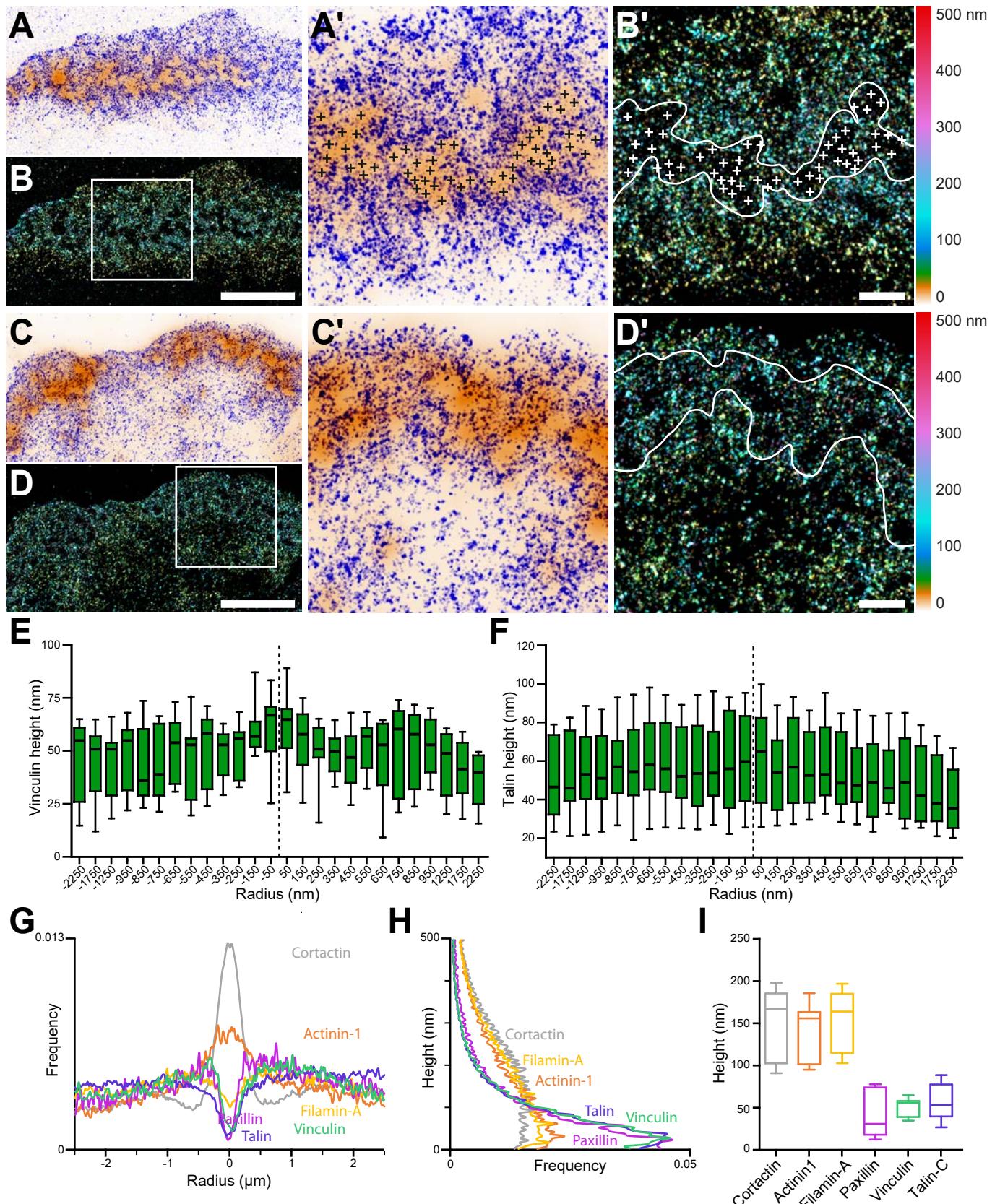


Figure 2

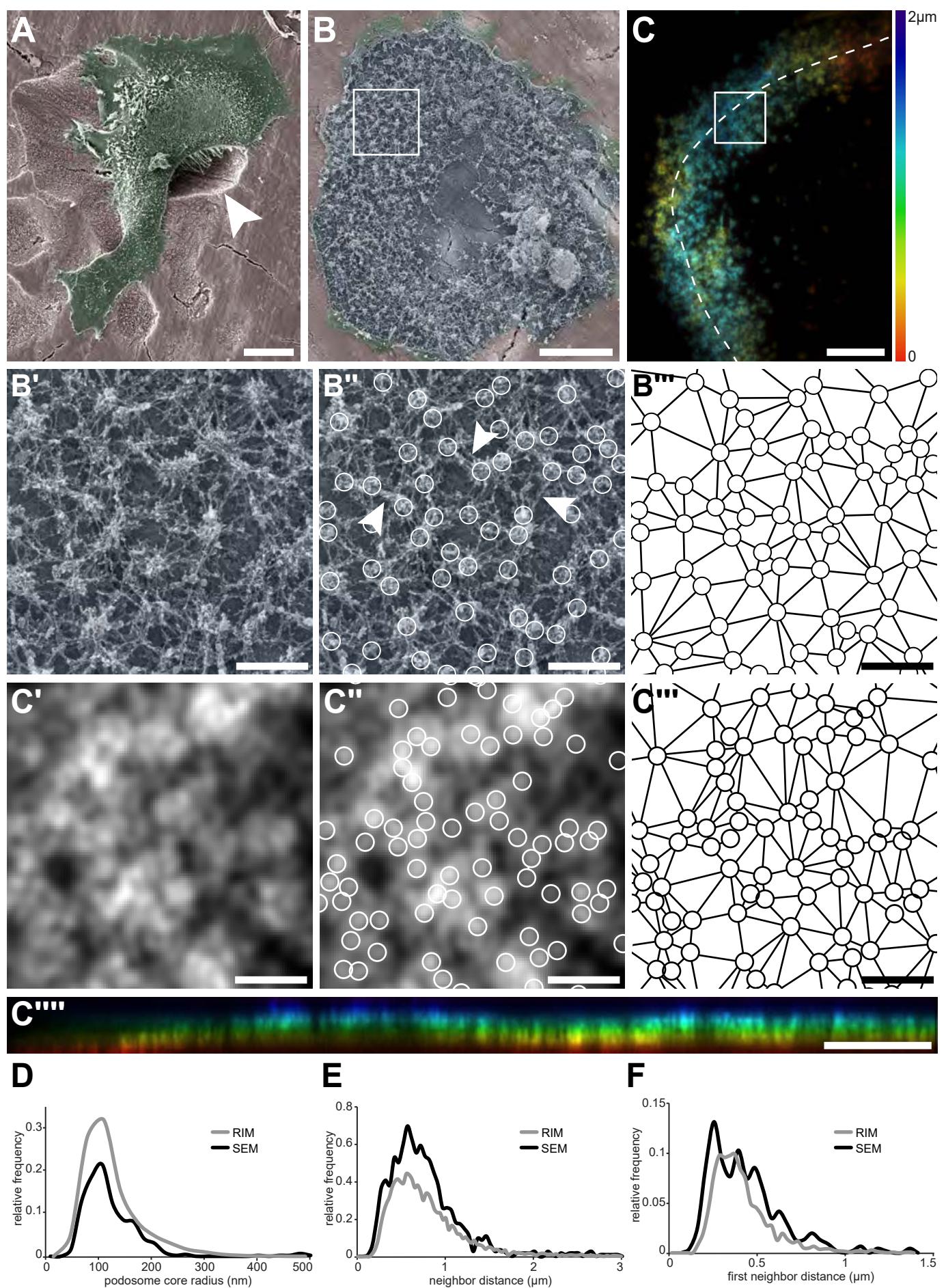


Figure 3

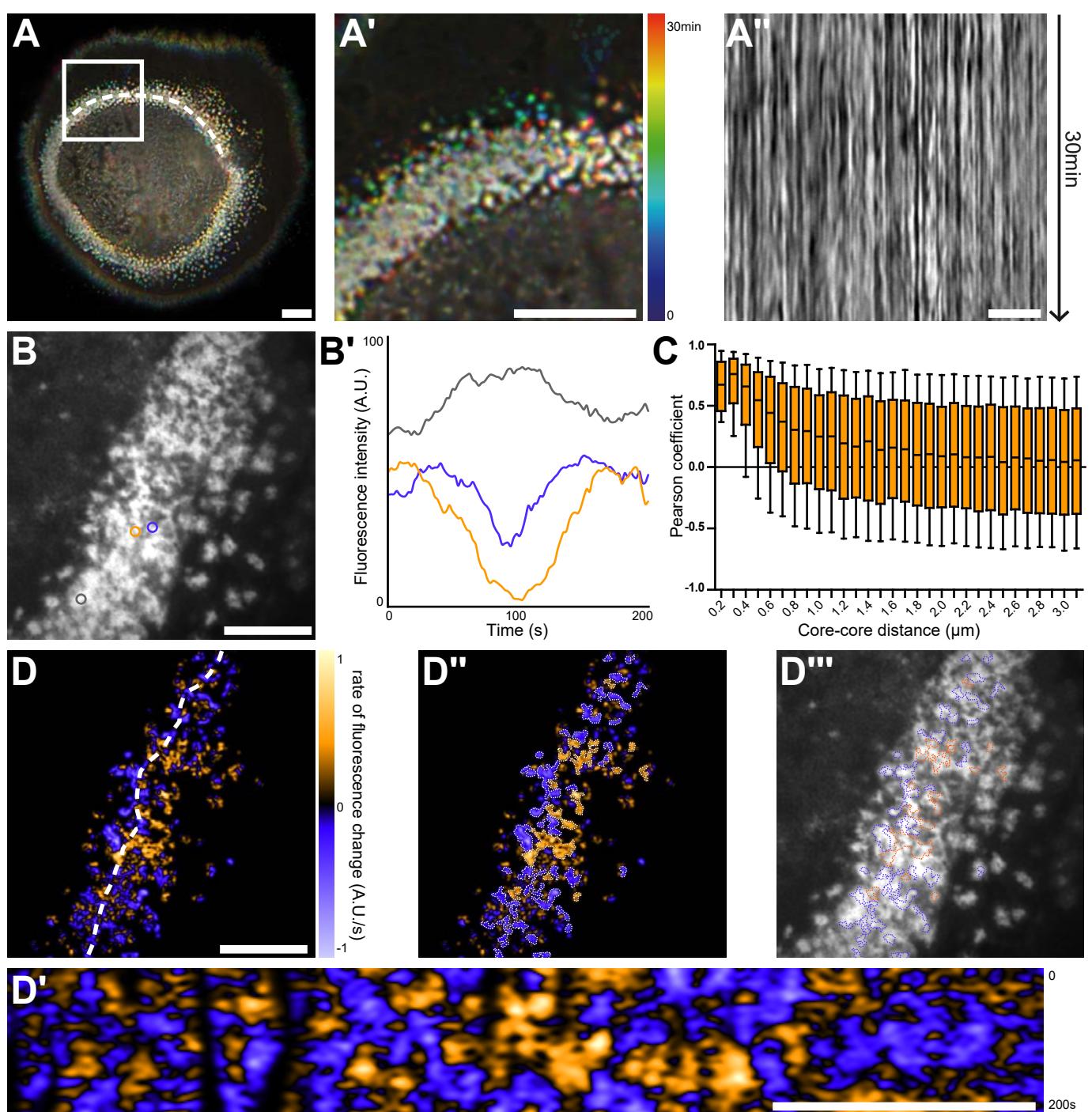


Figure 4

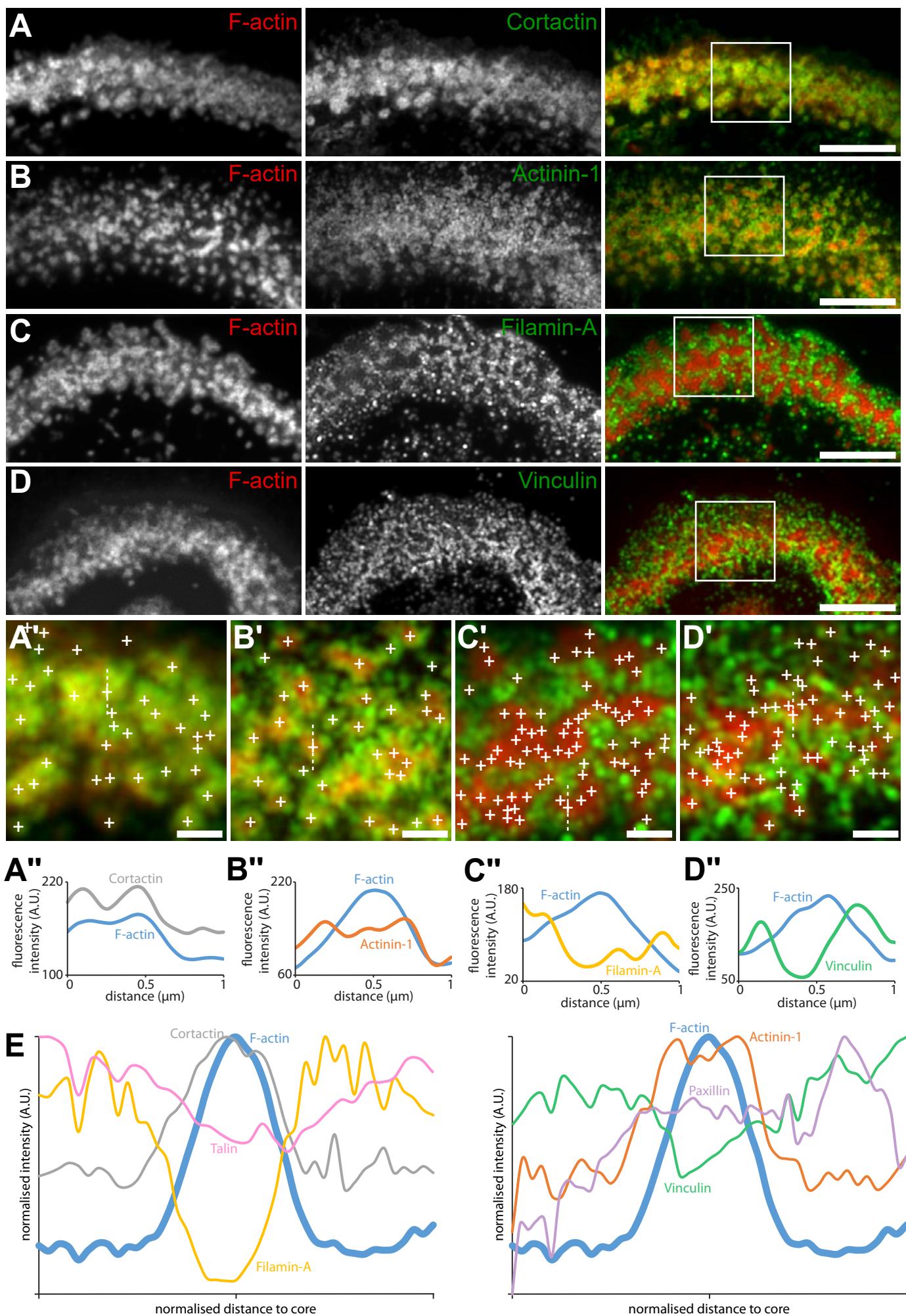
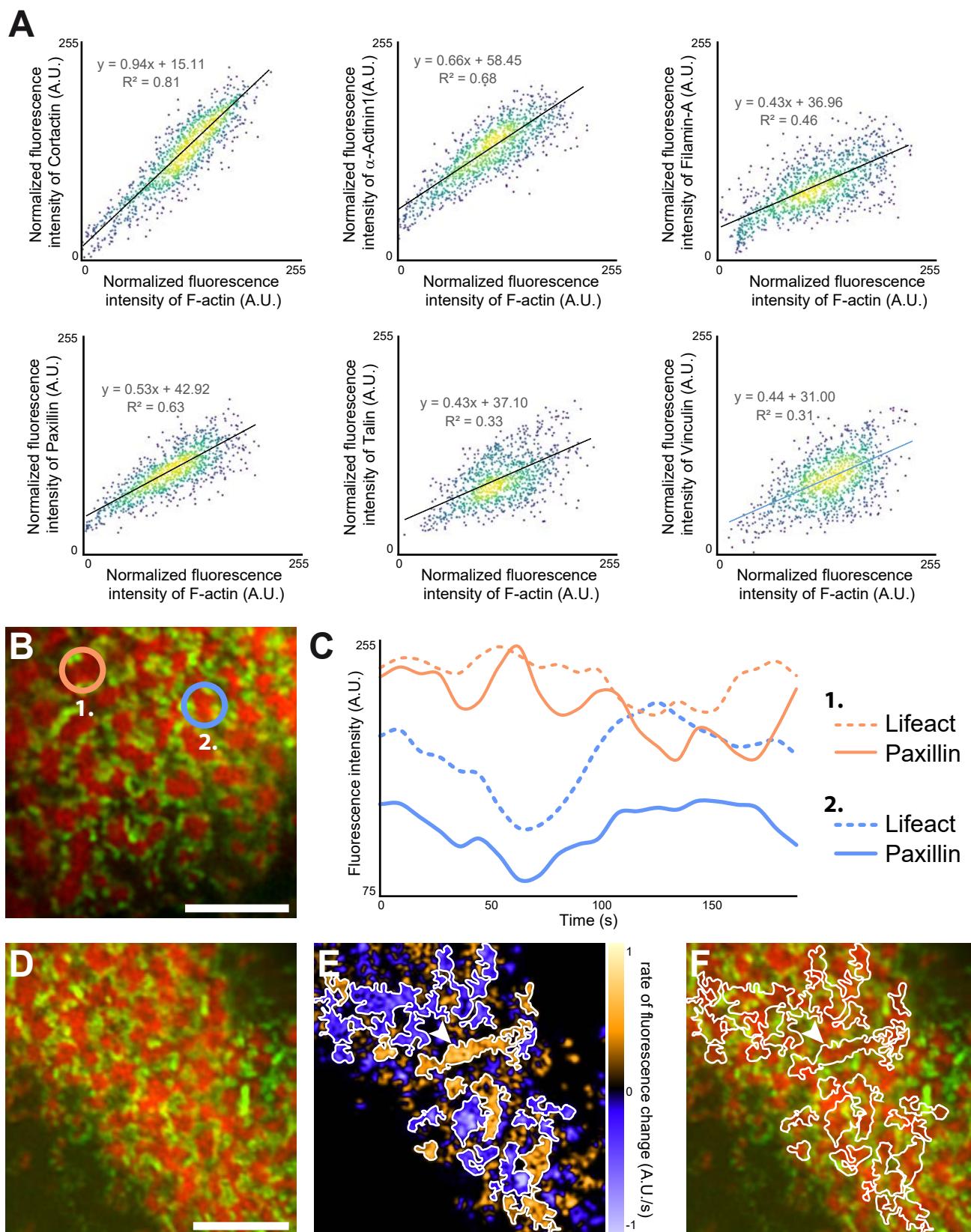
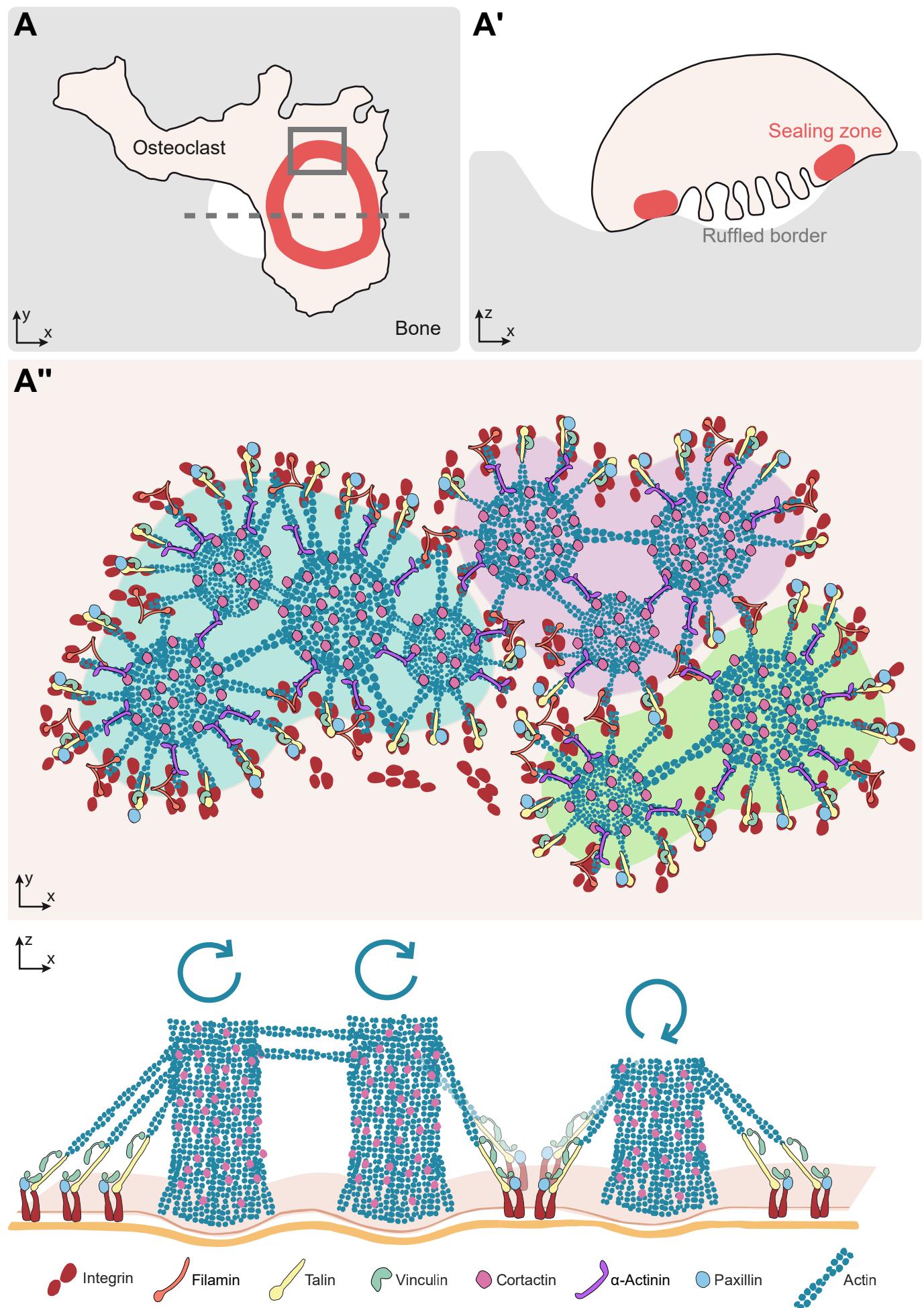
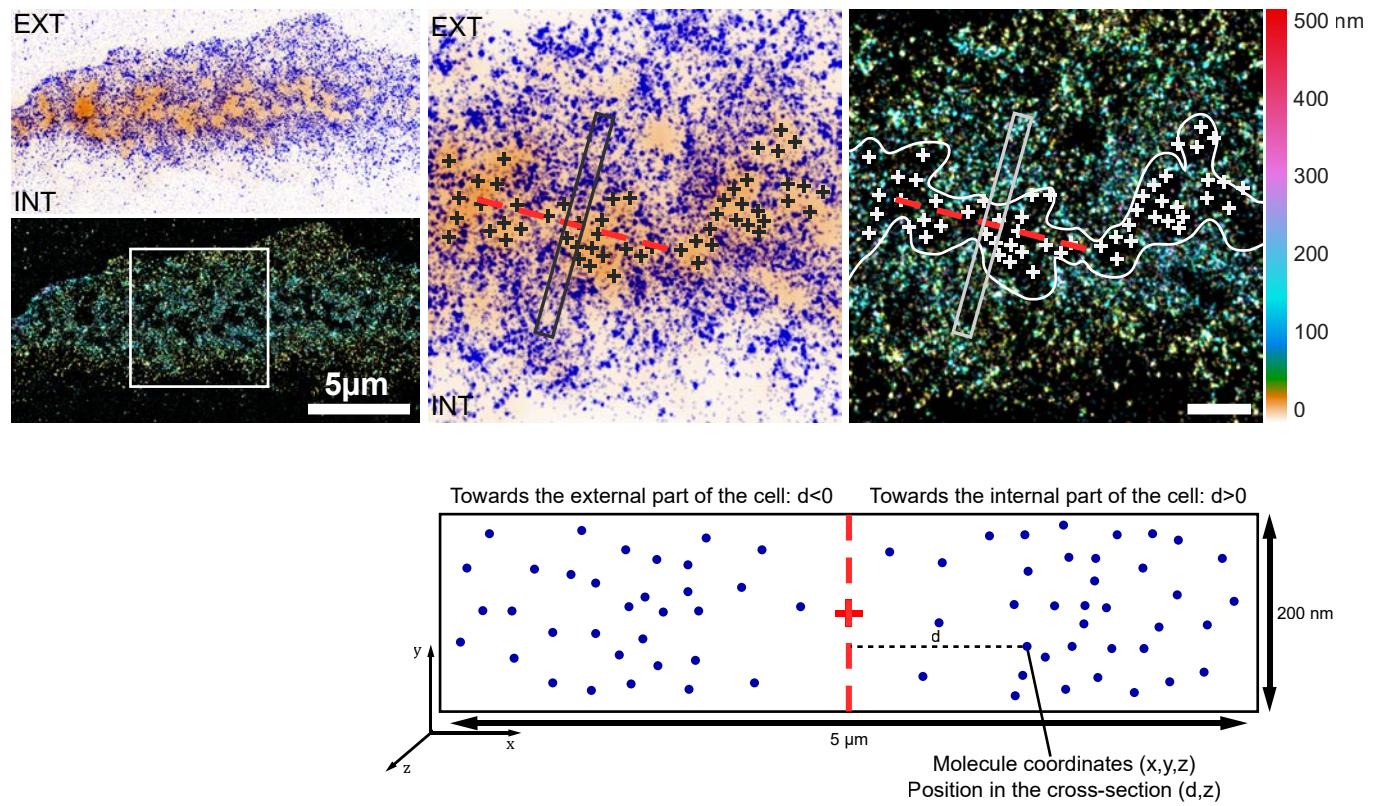
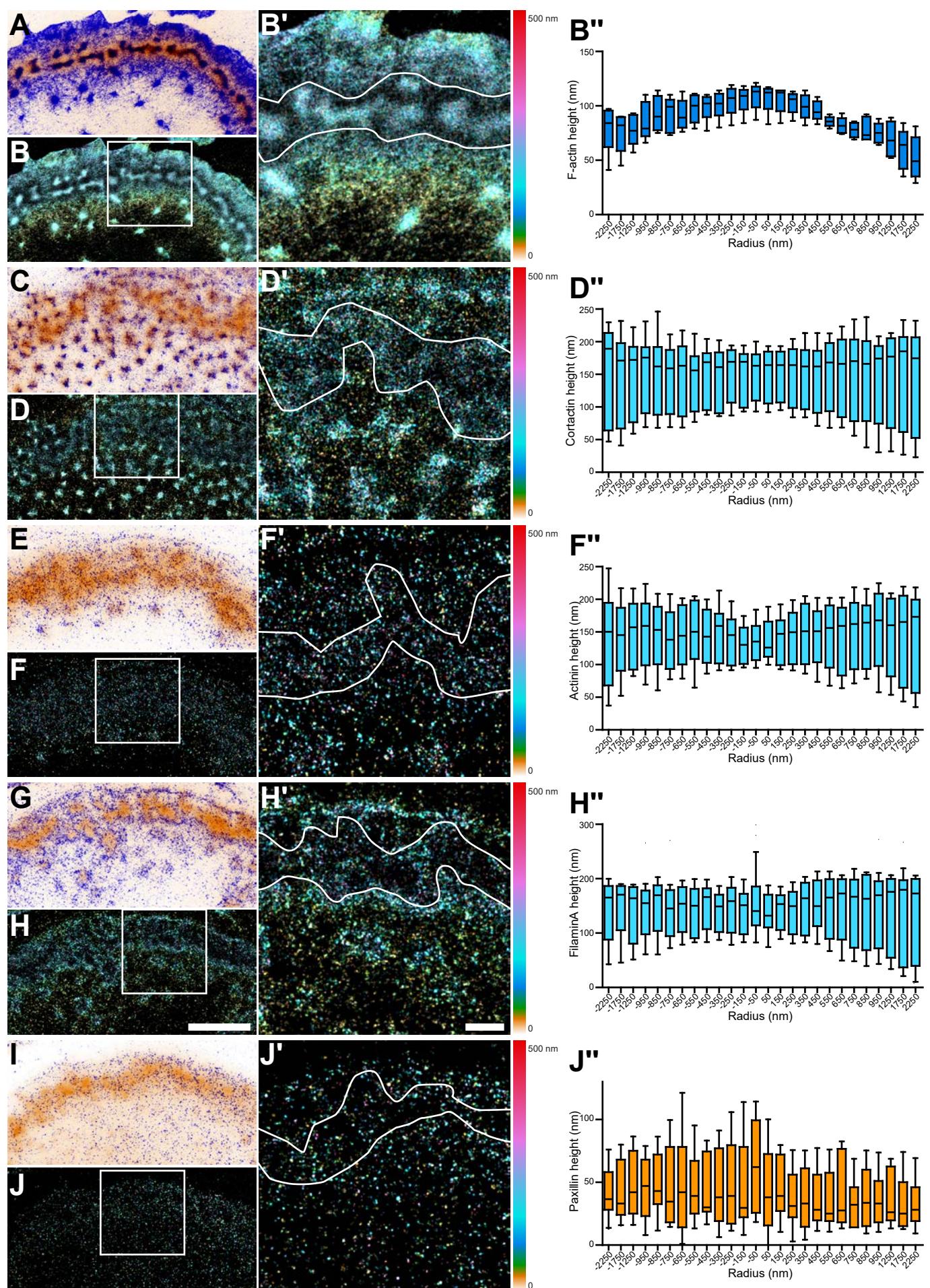
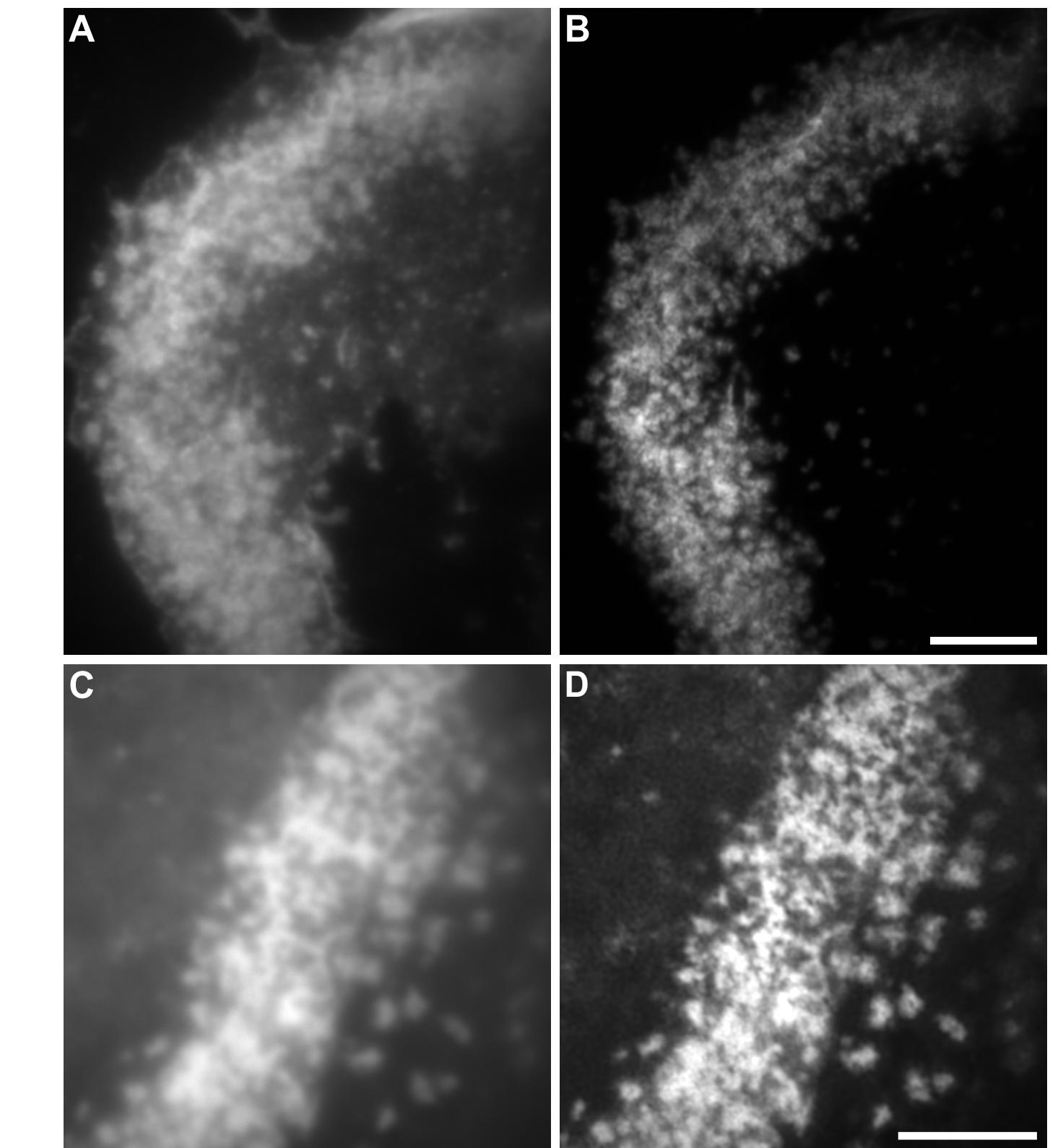


Figure 5


Figure 6



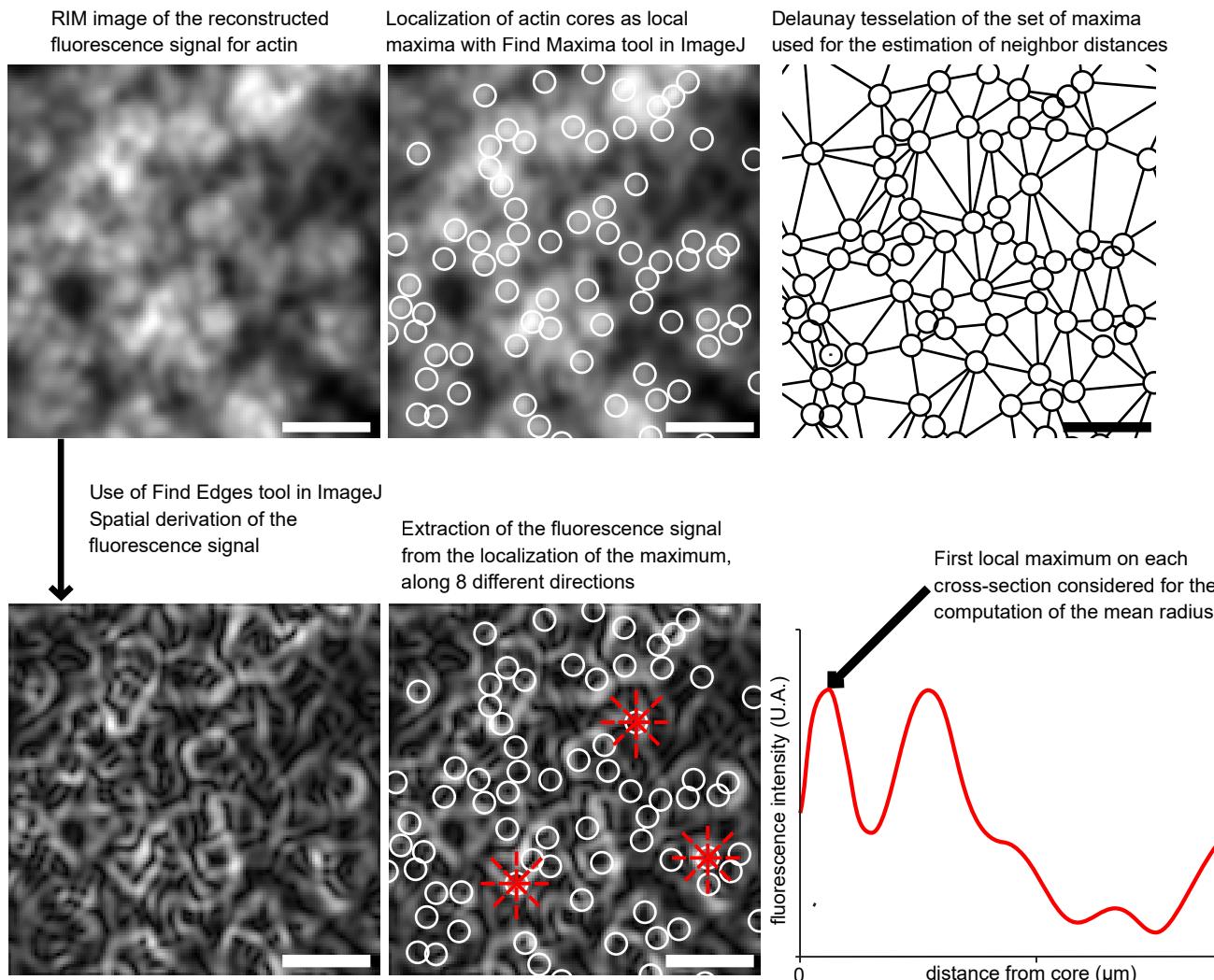

Marion Portes et al.

Figure S1

Marion Portes et al.
Figure S5

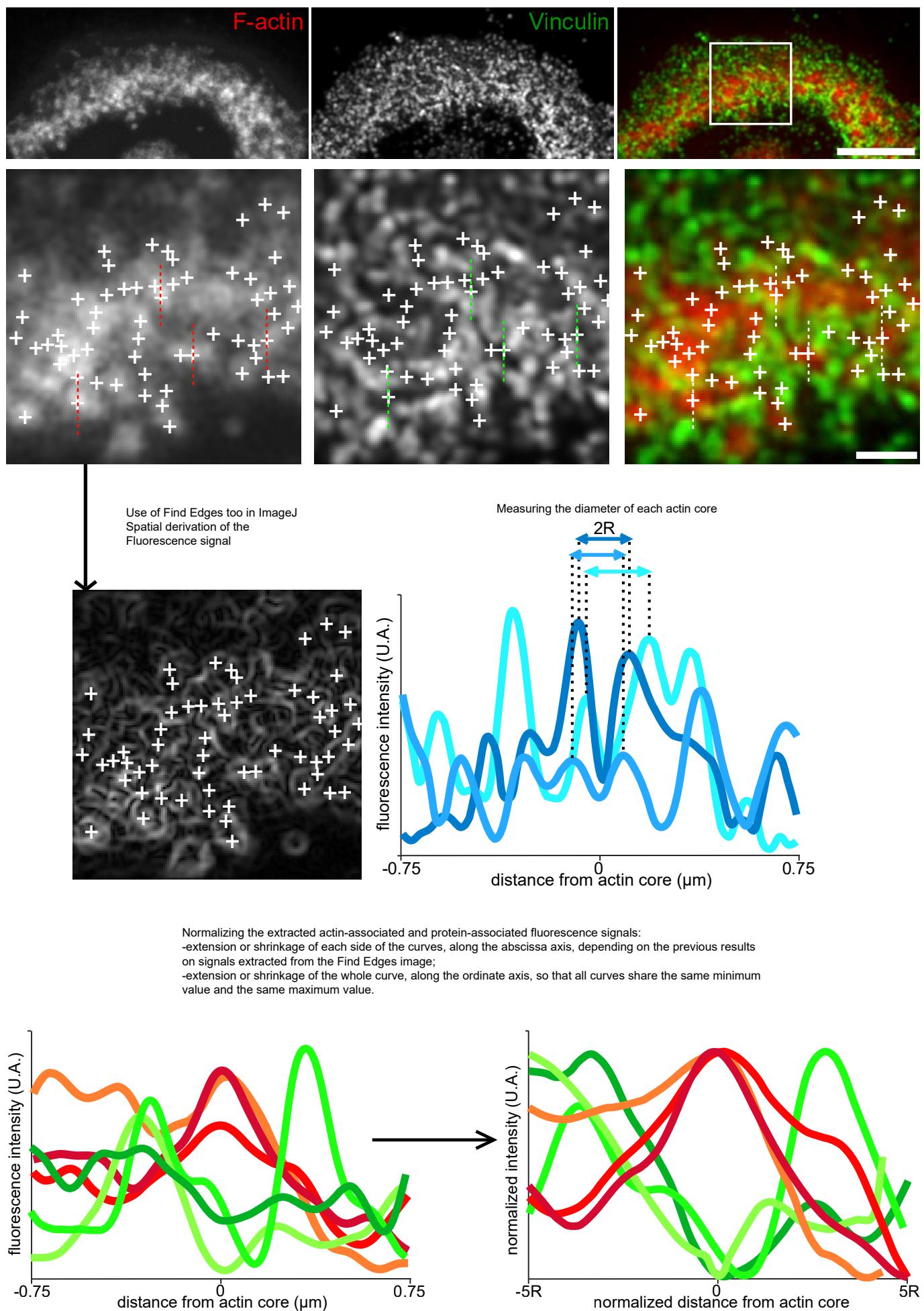
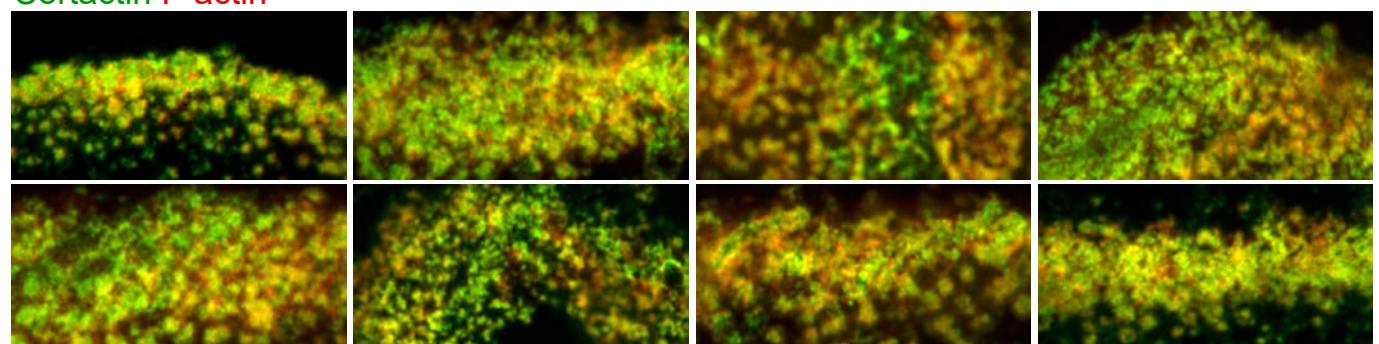
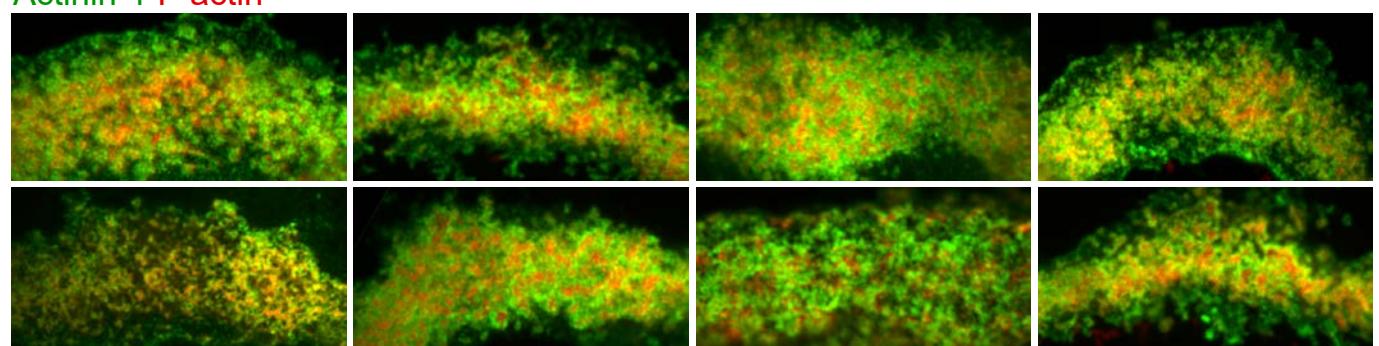
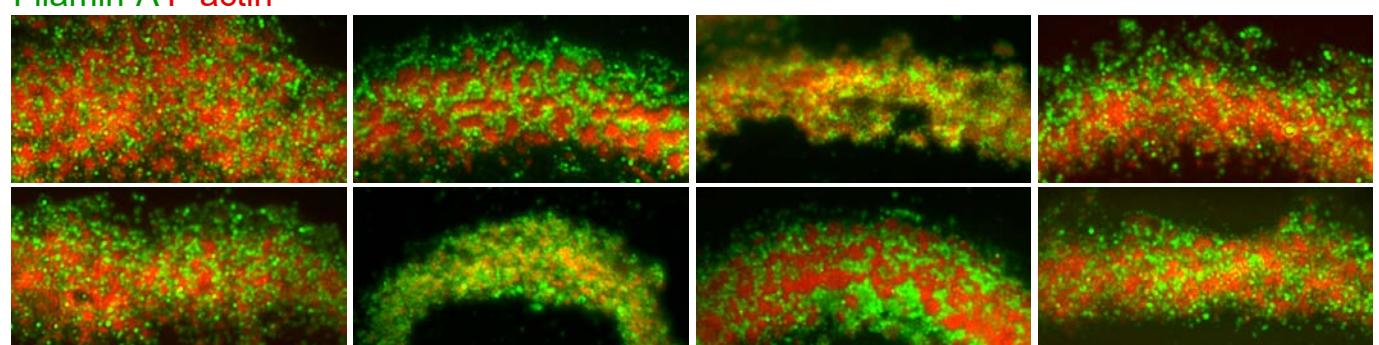




Figure S6


Cortactin F-actin

Actinin-1 F-actin

Filamin-A F-actin

Vinculin F-actin

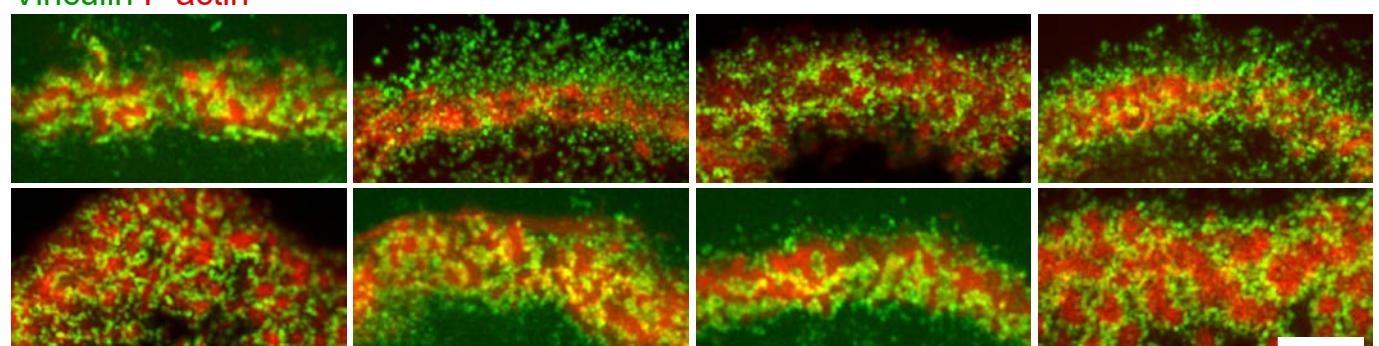
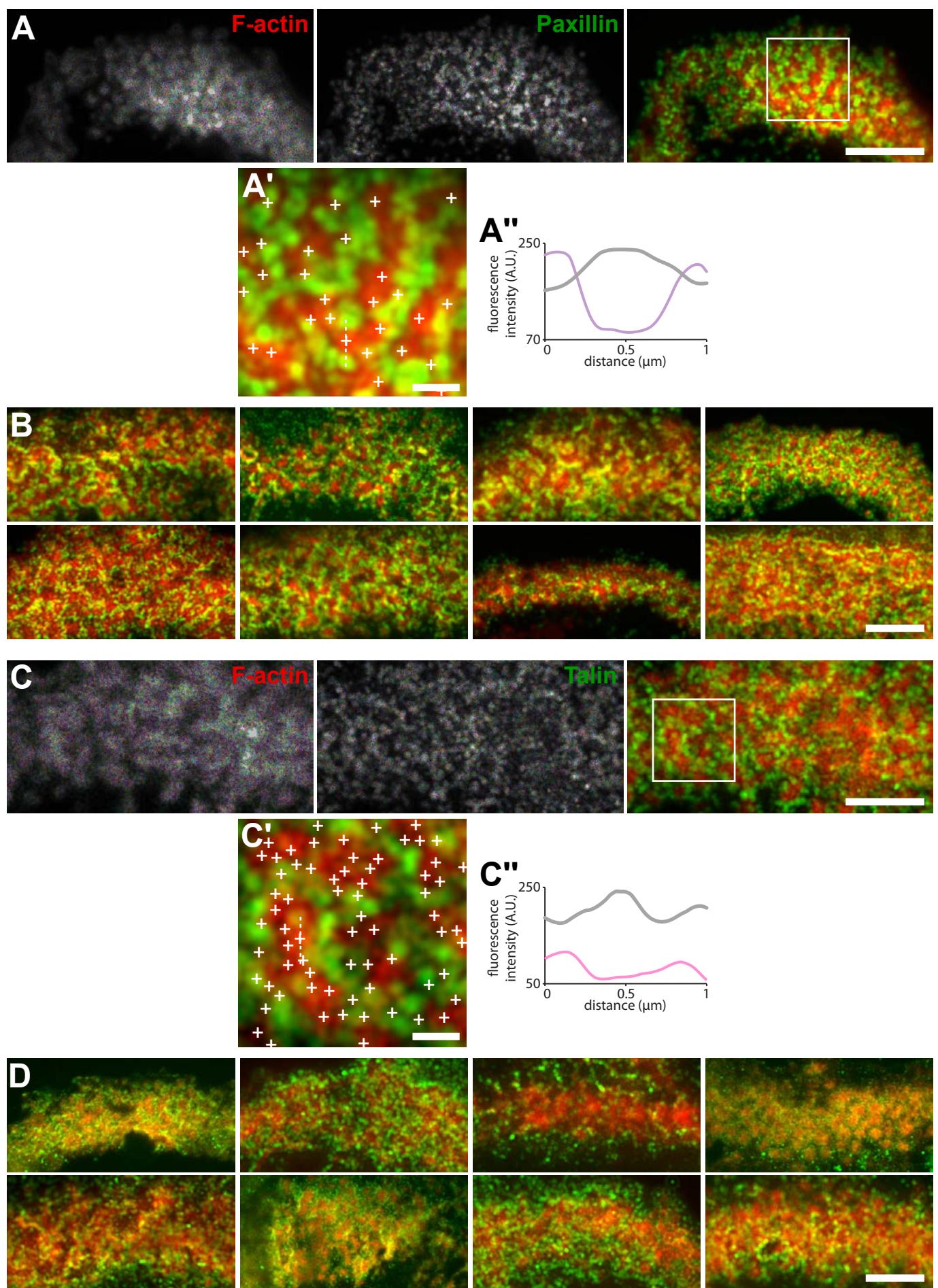



Figure S7

