

1 **Shared mechanisms of auditory and non-auditory vocal learning in the songbird brain**
2

3 James N. McGregor^{1*}, Abigail Grassler^{2**}, Paul Jaffe³, Amanda Jacob², Michael S. Brainard^{3,4},
4 Samuel J. Sober²

5

6 1. Neuroscience Graduate Program, Graduate Division of Biological and Biomedical
7 Sciences, Laney Graduate School, Emory University, Atlanta, GA 30322
8 2. Department of Biology, Emory University, Atlanta, GA 30322
9 3. Center for Integrative Neuroscience, University of California, San Francisco, San
10 Francisco, United States.
11 4. Howard Hughes Medical Institute, University of California, San Francisco, San Francisco,
12 United States.

13 *co-first author, corresponding author

14 **co-first author

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

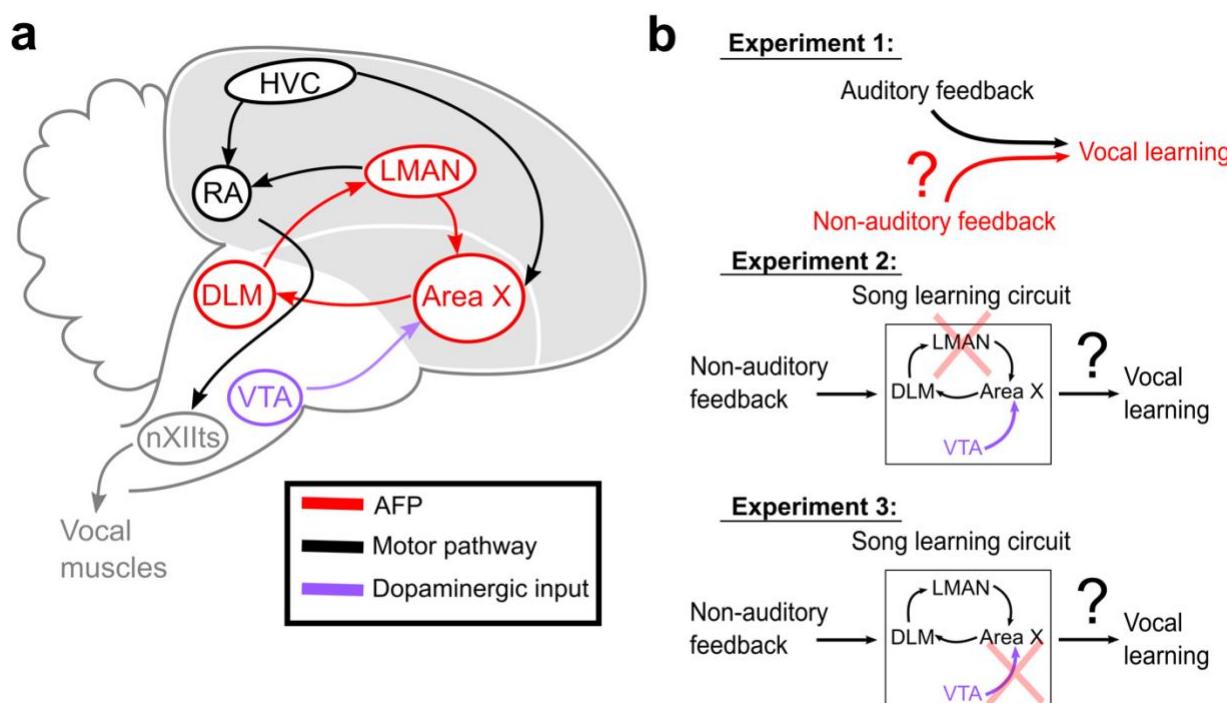
44

45

46

47

48


49 **Abstract:**
50 Songbirds and humans share the ability to adaptively modify their vocalizations based on sensory
51 feedback. Prior studies have focused primarily on the role that auditory feedback plays in shaping
52 vocal output throughout life. In contrast, it is unclear whether and how non-auditory information
53 drives vocal plasticity. Here, we first used a reinforcement learning paradigm to establish that
54 non-auditory feedback can drive vocal learning in adult songbirds. We then assessed the role of
55 a songbird basal ganglia-thalamocortical pathway critical to auditory vocal learning in this novel
56 form of vocal plasticity. We found that both this circuit and its dopaminergic inputs are necessary
57 for non-auditory vocal learning, demonstrating that this pathway is not specialized exclusively for
58 auditory-driven vocal learning. The ability of this circuit to use both auditory and non-auditory
59 information to guide vocal learning may reflect a general principle for the neural systems that
60 support vocal plasticity across species.

61
62 **Introduction:**
63 A fundamental goal of neuroscience is to understand how the brain uses sensory feedback to
64 drive adaptive changes in motor output^{1,2}. Human speech is a prime example of a sensory-guided
65 behavior, and humans are among the few species that use auditory feedback from their own
66 vocalizations to shape vocal output³. This reliance on sensory feedback for speech production is
67 lifelong: loss of hearing impairs both speech development and vocal production in adulthood, and
68 adult speakers rely heavily on auditory signals to calibrate their vocal acoustics^{4–7}. Accordingly,
69 studies of the neurobiology of speech have focused on the specialized neural pathways that
70 process auditory feedback⁸. In contrast, it is unclear whether the brain uses non-auditory sensory
71 input to regulate vocal production, although studies demonstrating that humans use non-auditory
72 (somatosensory) signals to calibrate jaw movements suggest that this might be the case^{9,10}.

73
74 We address how the brain processes different sources of sensory feedback to guide vocal
75 behavior by using a model system ideally suited for the study of vocal learning, the Bengalese
76 finch. Like humans, songbirds rely on auditory signals to precisely calibrate their vocal output
77 throughout life^{11–14}. Also similar to humans, songbirds have evolved specialized neural pathways
78 for vocal learning, allowing the precise interrogation of the brain mechanisms of song plasticity^{8,15}.
79 However, prior research on this brain network has focused almost exclusively on the role of
80 auditory feedback. These studies have revealed that songbird brains have a basal ganglia-
81 thalamocortical circuit, the Anterior Forebrain Pathway (AFP), that is required for auditory-guided
82 vocal learning but not vocal production (Fig. 1a)^{16–19}. For example, lesions of LMAN (the output
83 nucleus of the AFP) prevent adult vocal plasticity in response to perturbations of auditory
84 feedback^{16,20,21}. Also, lesions or manipulations of dopaminergic input into Area X (the basal
85 ganglia nucleus of the AFP) impair adult vocal learning in response to the pitch-contingent delivery
86 of aversive auditory stimuli (white noise bursts)^{22–24}. Although recent work has demonstrated that
87 the songbird AFP receives anatomical projections from brain regions that process non-auditory
88 sensory information²⁵, it remains unknown whether non-auditory information is processed by this
89 circuit to drive vocal learning.

90
91 We performed a series of three experiments (Fig. 1b) to investigate whether and how the
92 brain uses non-auditory sensory feedback to guide vocal learning. We first tested whether adult
93 songbirds can adaptively modify specific elements of their song structure in response to non-
94 auditory feedback (Fig. 1b, Experiment 1). We used non-auditory stimuli (mild cutaneous electrical
95 stimulation), which we delivered during ongoing song performance, to differentially reinforce the
96 acoustics (fundamental frequency, or “pitch”) of specific song elements, or “syllables”. In separate
97 experiments, we tested birds using auditory stimuli consisting brief playbacks of white noise, a
98 well-established paradigm for driving changes in pitch in adult songbirds^{22,26,27}. Delivering non-
99 auditory and auditory stimuli on the same schedule therefore allowed us to directly compare how

100 different sensory modalities affect vocal behavior. We next assessed the neural circuit
101 mechanisms underlying non-auditory vocal learning by determining the necessity of LMAN (the
102 output nucleus of the AFP) for non-auditory learning (Fig. 1b, Experiment 2). Finally, we assessed
103 the role of dopaminergic neural circuitry in non-auditory vocal learning by performing selective
104 lesions of dopaminergic input to Area X (Fig. 1b, Experiment 3).
105

106
107
108 **Figure 1.** (a) Songbird brain circuitry. Brain nuclei of the motor pathway – the neural circuit for vocal production – are
109 black. Brain nuclei of the Anterior Forebrain Pathway (AFP) – the neural circuit for vocal learning – are red. VTA
110 (purple) provides dopaminergic input into Area X, the basal ganglia nucleus of the AFP. (b) The three primary
111 hypotheses tested in this paper. In the first set of experiments, we tested whether non-auditory input can drive adaptive
112 changes to adult song (Experiment 1). In the second set of experiments, we assessed the necessity of LMAN for non-
113 auditory vocal learning (Experiment 2). In the third set of experiments, we tested the necessity of dopaminergic
114 projections to Area X for non-auditory vocal learning (Experiment 3).

115

116 Results:

117

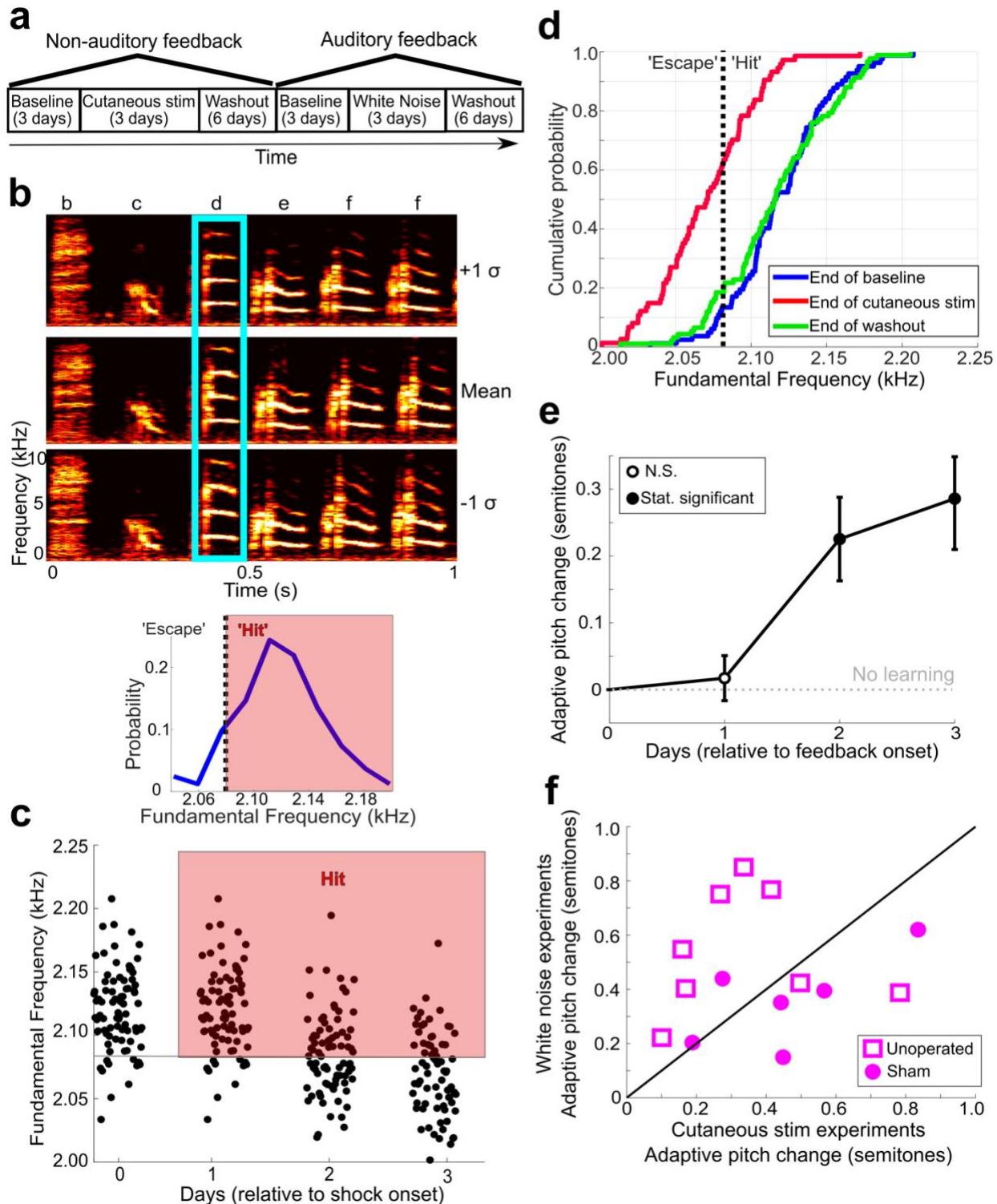
118 **Non-auditory feedback can drive adult songbird vocal learning**

119

120 We tested whether non-auditory feedback can drive vocal learning (Fig. 1b, Experiment 1) by
121 providing mild, pitch-contingent cutaneous stimulation through a set of wire electrodes on the
122 scalps of adult songbirds. Before initiating cutaneous stimulation training, we continuously
123 recorded song without providing any feedback for three days (baseline) (Fig. 2a). Every day,
124 songbirds naturally produce many renditions of song, which consist of repeated patterns of unique
125 vocal gestures, called syllables (Fig. 2b, top). For one “target” syllable in each experimental
126 subject, we quantified rendition-to-rendition variability in the fundamental frequency of each
127 occurrence of this syllable on the final baseline day (Fig. 2b, top). To differentially reinforce the
128 pitch of a target syllable, we determined a range of pitches within this baseline distribution (either
129 all pitches above the 20th percentile or all pitches below the 80th percentile), and then triggered
130 the delivery of cutaneous stimulation in real time (within 40 ms of syllable onset) when the pitch

131 of the target syllable fell within this range (Fig. 2b, bottom). We performed this pitch-contingent
132 cutaneous stimulation training continuously for three days. Note that the birds could choose not
133 to sing in order to avoid triggering any cutaneous stimulation, and we carefully monitored animal
134 subjects for any signs of distress (see Methods).

135
136 For example, in one experiment (shown in Fig. 2a-d), cutaneous stimulation was triggered
137 on every rendition of the target syllable that had a pitch above 2.13 kHz (the 20th percentile of
138 the baseline distribution) for three days. In this example experiment, the bird gradually changed
139 the pitch of the targeted syllable downwards (the adaptive direction), such that cutaneous
140 stimulation was triggered less frequently (Fig. 2c). In other experiments where the adaptive
141 direction of pitch change is upwards, we triggered cutaneous stimulation whenever the target
142 syllable pitch was below the 80th percentile of this distribution. In the example experiment, at the
143 start of the first day of cutaneous stimulation training, 80% of syllable renditions resulted in
144 cutaneous stimulation and 20% of syllable renditions resulted in escapes. On the third (final) day
145 of cutaneous stimulation training, escapes occurred on over 60% of target syllable renditions and
146 the entire distribution of pitches had changed significantly in the adaptive direction, indicating that
147 a significant amount of vocal learning occurred in this example experiment (Fig. 2d; 2-sample KS
148 test to assess the difference between baseline and end of cutaneous stimulation training, $p =$
149 1.1776e-12). We then stopped triggering cutaneous stimulation and continued to record
150 unperturbed song for six additional days (washout). After six days of washout, there was no
151 significant difference between the distribution of target syllable pitches at the end of washout
152 compared to baseline (Fig. 2d; 2-sample KS test, $p = 0.606$). For analysis of washout across all
153 experiments, see Figure 2- Figure Supplement 1.


154
155 In order to assess whether non-auditory feedback is sufficient to drive vocal learning
156 across multiple songbirds, we first measured the adaptive pitch change (in semitones) for each
157 individual experiment. Semitones provide a normalized measure of pitch change such that a one
158 semitone change corresponds to a roughly 6% change in the absolute frequency of an acoustic
159 signal (see Equation 1 in Methods). We employed a hierarchical bootstrap approach to measure
160 SEM and assess significance (see Methods)^{28,29} since this method more accurately quantifies the
161 error in hierarchical data (e.g., many renditions of a target syllable collected across multiple birds).
162 We found that the mean pitch (in semitones) of the target syllables showed a significant, adaptive
163 change from baseline on days two and three of cutaneous stimulation training (Fig. 2e; probability
164 of resampled mean pitch on cutaneous stimulation training days 2 and 3 lesser than or equal to
165 zero was $P_{boot} < 0.0010$, limit due to resampling 10^4 times). This demonstrates that non-auditory
166 feedback is sufficient to drive vocal learning in adult songbirds. In all individual experiments where
167 an upwards pitch change resulted in less frequent triggering of cutaneous stimulation, the birds
168 changed their pitch in the adaptive (upward) direction, and in all experiments where a downwards
169 pitch change resulted in less frequent triggering of cutaneous stimulation, the birds changed their
170 pitch in the adaptive (downward) direction (Figure 2- Figure Supplement 2a).

171
172 To compare vocal learning in response to different sources of sensory feedback (auditory
173 and non-auditory), we performed multiple learning experiments - one cutaneous stimulation and
174 one white noise - in 8 out of the 12 individual birds from this data set (Fig. 2a). We randomized
175 the order of white noise training and cutaneous stimulation training for the birds who underwent
176 both training paradigms. We also included 6 sham operated birds from a later set of experiments
177 in this particular analysis. We did so because the sham operated birds had intact song systems
178 and underwent both cutaneous stimulation and white noise training.

179

180 Consistent with prior studies^{20,22,27}, by the end of white noise training, the adaptive pitch
181 change (in semitones) across all white noise experiments performed in unoperated birds (birds
182 who had wire electrodes surgically implanted but received no invasive brain procedures like sham
183 operations) was significantly greater than baseline (zero) (Figure 2- Figure Supplement 3a;
184 probability of resampled mean pitch on all three cutaneous stimulation training days lesser than
185 or equal to zero was $P_{boot} < 0.0010$). In the separate experimental group of birds that underwent
186 sham operations, we also observed significant adaptive pitch changes in response to white noise
187 bursts, as expected (Figure 2- Figure Supplement 3b, probability of resampled mean pitch on all
188 three cutaneous stimulation training days lesser than or equal to zero was $P_{boot} < 0.0010$). There
189 was individual variability in learning magnitudes (adaptive pitch change at the end of training)
190 during cutaneous stimulation and white noise experiments (Fig. 2f). However, we found no
191 systematic differences between learning magnitude during cutaneous stimulation training and the
192 learning magnitude during white noise training (Fig. 2f; paired t-test, $p = 0.313$). These results
193 suggest that non-auditory stimuli can drive vocal learning as effectively as auditory stimuli.
194

195 To confirm that cutaneous stimulation was truly non-auditory and did not produce any
196 acute changes to vocal output, we measured the pitch of interleaved “catch” trials, where
197 cutaneous stimulation was randomly withheld (see Methods), on each day of cutaneous
198 stimulation training. For each experiment described in this paper, we normalized the pitch of each
199 catch trial from each day of training to the mean pitch of all trials where cutaneous stimulation
200 was provided. We excluded any experiments where the total number of catch trials was less than
201 10. In every case, the normalized catch trials did not differ significantly from 1, indicating that the
202 pitch of catch trials were highly similar to trials where cutaneous stimulation was provided (Figure
203 2- Figure Supplement 4a; t-test, $0.071 < p < 0.997$ for each experiment). For comparison, we also
204 performed the same analysis on randomly selected trials from a day of baseline recording, where
205 cutaneous stimulation was not provided on any trials (Figure 2- Figure Supplement 4b). There
206 was no significant difference between this data set and the normalized catch trials (paired t-test,
207 $p = 0.339$).
208

209

210

211

212

213

214

215

216

Figure 2. Non-auditory feedback drives vocal learning. **(a)** Timeline of vocal learning experiments in individual birds. The order of the auditory vs non-auditory experiments was randomized across birds. **(b)** (Top) Spectrograms and song syllables (labeled b-f) including target syllable ("d"). (Bottom) baseline pitch distribution and pitch threshold. Cutaneous stimulation was provided during renditions of the target syllable above a chosen pitch threshold ("hit"). **(c)** Each dot represents the pitch of one rendition of the target syllable. Renditions in the "hit" range rapidly triggered a cutaneous stimulation (within 40 ms of syllable onset). **(d)** CDF plot showing the probability a value of pitch from a distribution falls

217 at or below the value on the x-axis. The pitch distribution at the end of cutaneous stimulation training was significantly
218 greater than baseline (2-sample KS test, $p=1.178e-12$). End of washout distribution was not significantly different from
219 baseline (2-sample KS test, $p=0.606$). Panels B-D show data from the same experiment. (e) Adaptive pitch change (in
220 semitones) of the target syllables during cutaneous stimulation training, grouped across 13 experiments. The mean
221 change during training was significantly greater than baseline (probability of resampled mean pitch on all three training
222 days 2 and 3 lesser than or equal to zero was $P_{boot}<0.0010$, indicated by filled circles). (f) Learning magnitudes (adaptive
223 pitch change by end of training) in individual birds that underwent both white noise and cutaneous stimulation training
224 ($n=14$). No significant difference in learning magnitudes during cutaneous stimulation training vs during white noise
225 training (paired t-test, $p=0.313$).

226

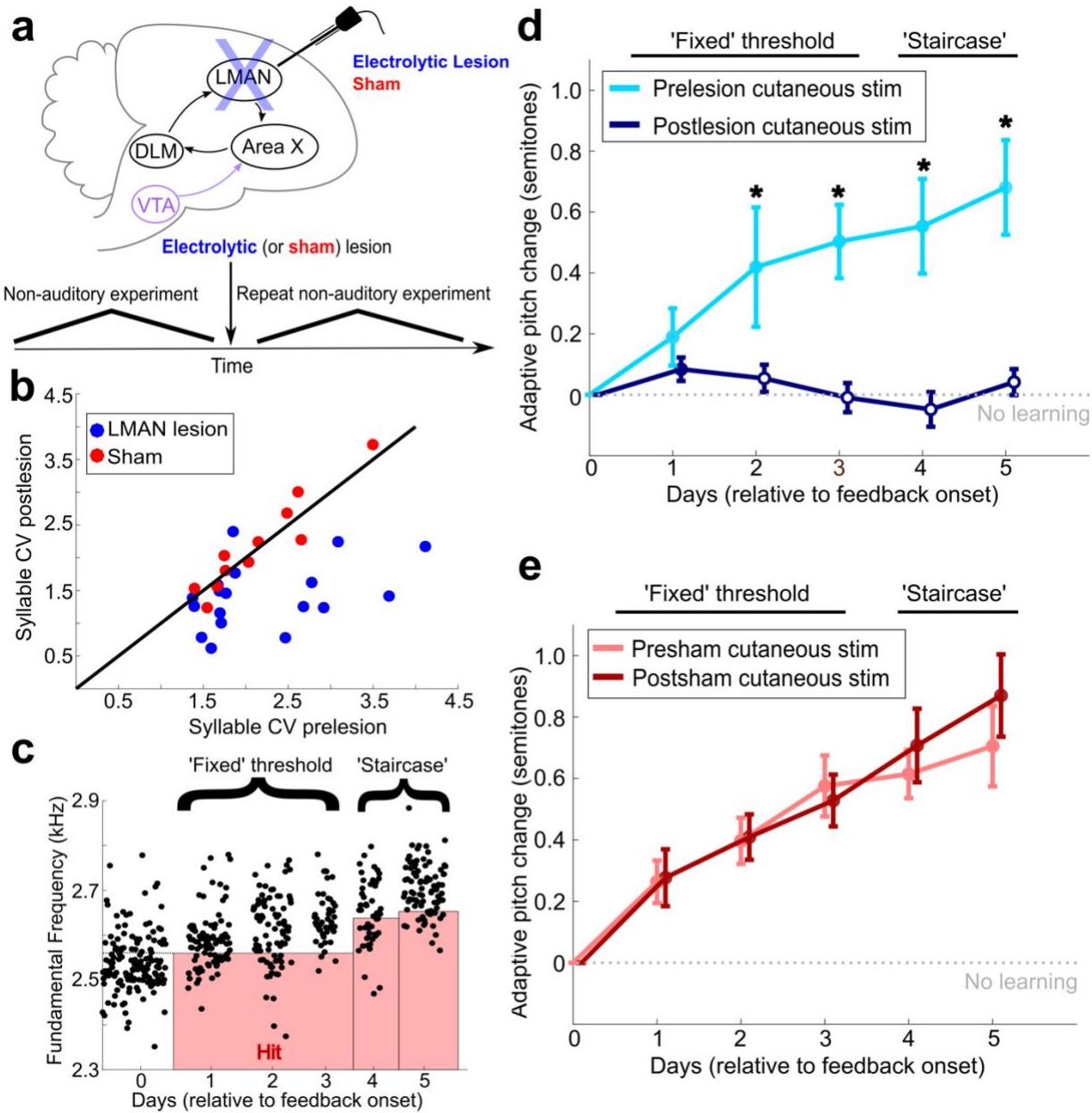
227 **LMAN is required for non-auditory vocal learning**

228

229 We next investigated the neural circuitry that processes non-auditory feedback to drive vocal
230 learning. To assess whether the AFP is required for non-auditory vocal learning, we measured
231 the effect of lesions of LMAN, the output nucleus of the AFP, on learning magnitude in response
232 to non-auditory feedback (Fig. 1b, Experiment 2). We performed cutaneous stimulation training
233 experiments in the same individual birds before and after bilateral, electrolytic LMAN lesions or
234 sham operations (Fig. 3a, $n = 5$ birds). To perform cutaneous stimulation training in this group of
235 experiments, we used the same protocol described previously, except we extended the period of
236 cutaneous stimulation training by 1-5 days. During this extended training period, we set a new
237 pitch threshold each morning to drive even greater amounts of learning ("staircase" training, see
238 Methods). In adult songbirds with intact song systems (prelesion), such staircase training drove
239 significant amounts of learning (Fig. 3c).

240

241 We then lesioned LMAN and performed postlesion white noise training across conditions
242 (LMAN lesion and sham) (Figure 2- Figure Supplement 3b). The efficacy of LMAN lesions was
243 confirmed both by the presence of a characteristic reduction in the trial-to-trial variability of syllable
244 pitch (Fig. 3b and Figure 3- Figure Supplement 1a, LMAN lesions $p = 0.002$, sham lesions $p =$
245 0.911 , paired t-tests)³⁰⁻³² and by post-hoc histological measurements (see Methods and Figure 3-
246 Figure Supplement 2). Following LMAN lesions, songbirds did not significantly change the pitch
247 of the target syllable from baseline (zero) (probability of resampled mean pitch on the final four
248 days of cutaneous stimulation training lesser than or equal to zero was $P_{boot} > 0.223$). In contrast,
249 following sham lesions, birds significantly changed the pitch of the target syllable in the adaptive
250 direction (probability of resampled mean pitch on the final four days of cutaneous stimulation
251 training days lesser than or equal to zero was $P_{boot} < 0.0010$). This indicates that LMAN lesions
252 induced significant deficits in auditory vocal learning, consistent with previous work that
253 demonstrated that electrolytic LMAN lesions inhibit auditory vocal learning²⁵.


254

255 LMAN lesions also significantly impaired non-auditory vocal learning. Prelesion, songbirds
256 adaptively changed the pitch of the target syllable away from baseline in response to non-auditory
257 feedback (probability of resampled mean pitch on each day of cutaneous stimulation training
258 lesser than or equal to zero was $P_{boot} < 0.0010$) (Fig. 3d). Postlesion, non-auditory vocal learning
259 was abolished in those same birds (probability of resampled mean pitch on each of the final four
260 days of training lesser than or equal to zero was $0.297 < P_{boot} < 0.660$, where $0.025 < P_{boot} < 0.975$
261 indicates no significant difference, $n = 5$ birds) (Fig. 3d). Learning magnitude prelesion was
262 significantly greater compared to learning magnitude postlesion ($P_{boot} < 0.007$ on each of the final
263 four days of training). We observed significant amounts of learning during cutaneous stimulation
264 training in both pre- and post- sham-lesioned datasets (Fig. 3e, for both presham and postsham
265 datasets, the probability of resampled mean pitch on each day of cutaneous stimulation training
266 lesser than or equal to zero was $P_{boot} < 0.0010$, $n = 6$ birds). Also, the learning magnitudes during
267 cutaneous stimulation training did not significantly differ in pre- vs postsham datasets (probability
268 of resampled mean pitch of presham data on each day of training lesser than or equal to

269 resampled mean pitch of postlesion data was $0.120 < P_{boot} < 0.524$). The amount of pitch change
270 during cutaneous stimulation training for each individual experiment is shown in Supplemental
271 Fig. 2b, c.

272
273 We also directly compared the lesion-induced change in learning magnitudes between
274 conditions (LMAN lesion vs sham) (Figure 3- Figure Supplement 1b, c). First, we calculated
275 learning magnitude at the end of the fixed threshold training period across conditions. The lesion-
276 induced change in learning magnitude (post – pre) for LMAN lesioned birds was significantly
277 greater than for sham operated birds (Figure 3- Figure Supplement 1b; 2 sample KS test, $p =$
278 0.036). Next, we calculated learning magnitude at the end of the extended “staircase” portion of
279 cutaneous stimulation training across conditions. The lesion-induced change in learning
280 magnitude (post – pre) for LMAN lesioned birds calculated at this time point was also significantly
281 greater than for sham lesioned birds (Figure 3- Figure Supplement 1c; 2 sample KS test, $p =$
282 0.004). These results indicate that LMAN is required for non-auditory vocal learning in adult
283 songbirds, indicating that both auditory and non-auditory sensory feedback engage the AFP to
284 drive adaptive changes to song.

285
286

287

288

289 **Figure 3. LMAN is required for non-auditory vocal learning.** (a) Timeline for electrolytic lesions of LMAN and sham
 290 operations. (b) CV of syllable pitch pre- vs postlesion and pre- vs postsham. LMAN lesions induced a significant
 291 reduction in pitch CV, sham operations did not (paired t-tests, $p=0.002$, $p=0.911$, respectively) (c) Prelesion experiment.
 292 Training consisted of three days using a fixed pitch threshold, then additional days where the threshold was changed
 293 each morning ("staircase"). Each dot represents the pitch of a rendition of the target syllable. (d) Adaptive pitch change
 294 (in semitones) during cutaneous stimulation training ($n=6$ LMAN lesioned birds). Prelesion learning magnitude was
 295 significantly greater than baseline (probability of resampled mean pitch on each day of training lesser than or equal to
 296 zero was $P_{boot}<0.0010$, indicated by filled circles). Postlesion learning magnitude did not significantly differ from baseline
 297 ($0.297 < P_{boot} < 0.660$ on each of the final four days of training). Prelesion learning magnitude was significantly greater
 298 than postlesion learning magnitude (probability of resampled mean pitch of prelesion data on the final 4 days of training
 299 lesser than or equal to resampled mean pitch of postlesion data was $P_{boot}<0.0070$, indicated by asterisks). (e) Adaptive
 300 pitch change during cutaneous stimulation training ($n=5$ sham operated birds). Learning magnitudes were significantly
 301 greater than baseline both pre- and postsham (probability of resampled mean pitch on each day of training lesser than
 302 or equal to zero was $P_{boot}<0.0010$, indicated by filled circles). Learning magnitudes pre- vs postsham did not significantly
 303 differ ($0.120 < P_{boot} < 0.524$ on all days of training).

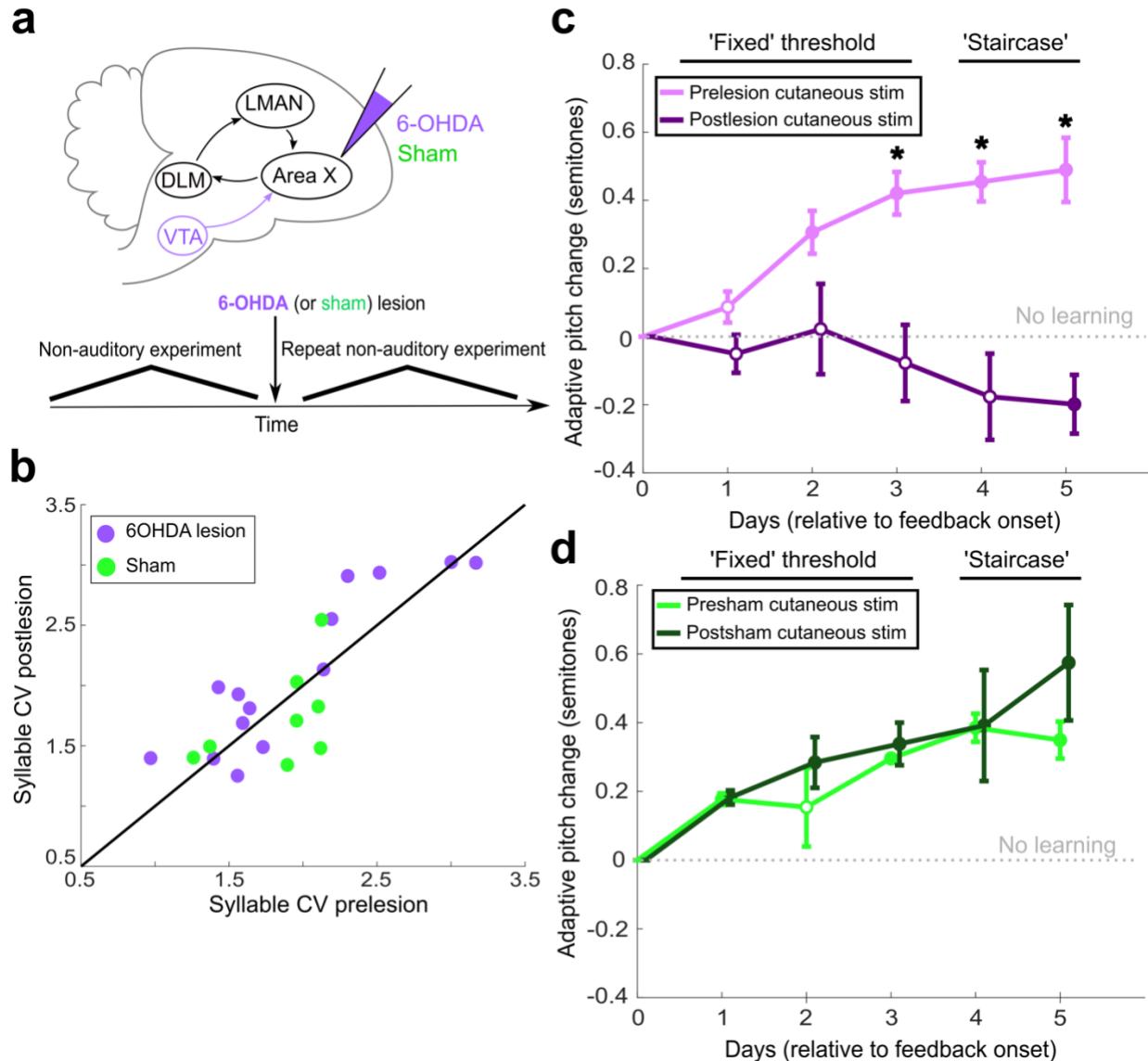
304

305 **Dopaminergic input to Area X is required for non-auditory vocal learning**

306

307 We next assessed dopaminergic contributions to non-auditory vocal learning (Fig. 1b, Experiment
308 3). Learning magnitude during cutaneous stimulation training was assessed before and after
309 bilaterally lesioning dopaminergic projections in Area X, the basal ganglia nucleus of the AFP, in
310 individual songbirds (Fig. 4a, n = 5 birds). Selective lesions of dopaminergic projections in Area
311 X were performed via bilateral 6-OHDA injections in Area X (see Methods), and the effectiveness
312 of the 6-OHDA injections at lesioning dopaminergic innervation in Area X was quantified (Figure
313 4- Figure Supplement 1). This approach has previously been shown to selectively lesion
314 dopaminergic inputs to Area X without damaging non-dopaminergic cells^{22,29}.

315


316 We again measured the variability of syllable pitch pre- and postlesion by calculating
317 syllable CV. Dopaminergic lesions in Area X did not induce a significant change in syllable CV
318 (Fig. 4b; paired t-test, p = 0.397). Sham operations also did not induce a significant change in
319 syllable CV (Fig. 4b; paired t-test, p = 0.531). The lesion-induced changes in syllable CV (post -
320 pre) were not significantly different for 6-OHDA lesioned birds than for sham lesioned birds (Figure
321 3- Figure Supplement 1d; 2 sample KS test, p = 0.054). This finding is consistent with prior work
322 using similar 6-OHDA injections to lesion dopaminergic input to Area X²². Prior work has
323 suggested a link between dopamine in songbird AFP and the generation of variability in syllable
324 pitch in adult songbirds³³⁻³⁵. It is likely that the dopamine lesion methodology we used, which
325 spares about 50% of the dopaminergic input to Area X²², is insufficient to impair dopamine-
326 mediated generation of syllable variability. The result that these dopamine lesions do not alter
327 vocal variability suggests that any learning deficits observed following lesions of AFP circuits are
328 not simply due to decreased pitch variability.

329

330 Depletion of dopaminergic input to Area X significantly impaired non-auditory vocal
331 learning. Prelesion, songbirds adaptively changed the pitch of the target syllable during cutaneous
332 stimulation training (probability of resampled mean pitch on each of the final four days of
333 cutaneous stimulation training lesser than or equal to zero was $P_{boot} < 0.010$) (Fig. 4c). Postlesion,
334 these same birds were not able to adaptively change the pitch of the target syllable during
335 cutaneous stimulation training (probability of resampled mean pitch on each of the first four days
336 of training lesser than or equal to zero was $0.067 < P_{boot} < 0.553$. Probability of resampled mean
337 pitch on the final day of training greater than or equal to zero was $P_{boot} < 0.0010$, n = 5 birds).
338 Learning magnitude prelesion was significantly greater compared to learning magnitude
339 postlesion (probability of resampled mean pitch from prelesion dataset on each of the final 3 days
340 of cutaneous stimulation training lesser than or equal to resampled mean pitch from postlesion
341 dataset was $P_{boot} < 0.0010$). Both pre- and postsham, songbirds displayed significant amounts of
342 learning during cutaneous stimulation training (Fig. 4d, probability of resampled mean pitch from
343 the presham dataset on each day other than day 2 of cutaneous stimulation training lesser than
344 or equal to zero was $P_{boot} < 0.0010$. Probability of resampled mean pitch from the postsham
345 dataset on each day of cutaneous stimulation training lesser than or equal to zero was $P_{boot} <$
346 0.0010 , n = 3 birds). Also, the learning magnitudes during cutaneous stimulation training did not
347 significantly differ pre- vs postsham (probability of resampled mean pitch of presham data on each
348 day of training lesser than or equal to resampled mean pitch of postlesion data was $0.653 < P_{boot}$
349 < 0.931). These results demonstrate that dopaminergic input to Area X is required for non-auditory
350 vocal learning. The amount of pitch change during cutaneous stimulation training for each
351 individual experiment is shown in Figure 2- Figure Supplement 2d, e.

352

353

354
355

356 **Figure 4.** Dopaminergic input to Area X is required for non-auditory vocal learning. (a) Timeline for 6-OHDA and saline
357 (sham) injections into Area X. (b) CV of syllable pitch pre- vs postlesion and pre- vs postsham. Neither dopamine
358 lesions nor shams induced significant changes in pitch CV (paired t-tests, $p=0.397$ and $p=0.531$, respectively). (c)
359 Adaptive pitch change (in semitones) during cutaneous stimulation training ($n=5$ lesioned birds). Prelesion learning
360 magnitude was significantly greater than baseline (probability of resampled mean pitch on each of the final 4 days of
361 training lesser than or equal to zero was $P_{boot}<0.010$, indicated by filled circles). Postlesion learning magnitude did not
362 significantly differ from baseline except for on the final day, when the mean changed in the anti-adaptive direction
363 ($P_{boot}>0.067$ on training days 1-4, $P_{boot}<0.0010$ on training day 5). Prelesion learning magnitude was significantly
364 greater than postlesion learning magnitude (probability of resampled mean pitch from prelesion dataset on each of the
365 final 3 days of training lesser than or equal to resampled mean pitch from postlesion dataset was $P_{boot}<0.0010$, indicated
366 by asterisks). (d) Adaptive pitch change (in semitones) during cutaneous stimulation training ($n=3$ sham birds). Learning
367 magnitudes were significantly greater than baseline both pre- and postsham (probability of resampled mean pitch from
368 presham and postsham datasets on each day other than day 2 of training lesser than or equal to zero was $P_{boot}<0.0010$,
369 indicated by filled circles). Learning magnitudes pre- vs postsham did not significantly differ ($0.653<P_{boot}<0.931$ on all
370 days of training).

371

372 **Discussion:**

373

374 Our results demonstrate that non-auditory feedback can drive vocal learning in adult songbirds
375 and that the AFP and its dopaminergic inputs are required for non-auditory vocal learning. We
376 first demonstrated that adult songbirds learn to adaptively change the pitch of their song syllables
377 in response to cutaneous stimulation (Fig. 1b, Experiment 1). We next demonstrated that LMAN,
378 the output nucleus of the AFP, is necessary for the expression of this non-auditory vocal learning
379 (Fig. 1b, Experiment 2). Finally, we showed that dopaminergic input to Area X, the basal ganglia
380 nucleus of the AFP, is necessary for non-auditory vocal learning (Fig. 1b, Experiment 3). These
381 results show that adult vocal learning is not solely dependent on auditory feedback, and that the
382 songbird AFP is not specialized just for processing auditory feedback for vocal learning, as has
383 previously been hypothesized³⁶. Instead, these results indicate that the AFP processes auditory
384 feedback as well as non-auditory feedback to drive vocal learning. Prior work has shown that
385 songbird vocal muscles use somatosensory feedback to compensate for experimentally-induced
386 changes in respiratory pressure during song performance³⁷. The result that the AFP underlies
387 vocal learning driven by somatosensory signals (cutaneous stimulation) suggests that it could
388 play a role in processing somatosensory information from vocal muscles to guide song
389 performance. Also, the fact that mild cutaneous stimulation is different than the direct
390 proprioceptive feedback from vocal muscles or vocal effectors, yet the AFP still underlies vocal
391 learning in response to cutaneous stimulation, suggests that the AFP can integrate sensory
392 information from a wide variety of sources of sensory feedback, even those not directly produced
393 by vocalizations.

394
395 Our findings suggest the importance of neural pathways that convey non-auditory sensory
396 signals to the song system. The neuroanatomical pathways for auditory feedback to enter the
397 AFP are well-characterized. For example, recent work has demonstrated that songbird ventral
398 pallidum (VP) receives input from auditory cortical areas, encodes auditory feedback information,
399 and projects to VTA³⁸. This represents a likely pathway by which sensory information from white
400 noise bursts could influence neural activity in VTA, which could then drive changes in the AFP
401 that promote song learning. Comparatively less is known about pathways in the songbird brain
402 that might carry sensory information from cutaneous stimulation to the AFP. The results showing
403 that dopaminergic input to Area X (which originates in the VTA) is necessary for non-auditory
404 vocal learning suggests that pathways for non-auditory information ultimately project to the VTA,
405 where this information could be encoded and transmitted to the AFP to drive learning.

406
407 Prior studies have hinted that non-auditory feedback may play an important role in shaping
408 vocalizations in ethological contexts, particularly during development. For example, juvenile
409 songbirds that receive both auditory and visual feedback from live tutors display more accurate
410 copying of tutor songs relative to juvenile songbirds who only receive auditory feedback from their
411 tutors³⁹. Also, visual displays from adult song tutors positively reinforce the acquisition of specific
412 song elements in juvenile songbirds⁴⁰, further suggesting an important role for visual signals in
413 social interactions during song learning. Our results that cutaneous stimulation can drive adaptive
414 vocal changes in adult songbirds demonstrates that non-auditory signals, even in the absence of
415 any social cues or other reinforcing sensory signals, can drive vocal learning just as strongly as
416 auditory feedback. Further, our work suggests that the AFP might play a role in processing non-
417 auditory sensory information important to other social behaviors that involve vocal
418 communication, such as courtship, territorial displays, and pair bonding.

419
420 It has been hypothesized that a key function of the songbird AFP circuitry is to encode
421 auditory performance error: the evaluation of the match between the auditory feedback the
422 songbirds receive and their internal goal for what their song should sound like (based on their
423 stored memory of the tutor song template)^{11,29,41,42}. Some have speculated that white noise bursts
424 are interpreted by the bird as an auditory performance error: an adult songbird expects to hear

425 the auditory feedback from a well-performed song syllable, but instead hears a loud burst of white
426 noise, which it interprets as a poorly-performed song syllable^{38,42}. Some evidence supports this
427 hypothesis. For example, pitch-contingent white noise bursts provided during song performance
428 drive adaptive vocal changes^{22,27}, but when white noise bursts are provided in non-vocal contexts,
429 such as when a songbird stands on a particular perch (not during song performance), they can
430 positively reinforce place preference³⁶. This suggests that white noise is not a generally aversive
431 reinforcement stimulus. In contrast, other reports have suggested that white noise bursts are
432 aversive since white noise bursts are loud and jarring, sound very different than birdsong, and
433 songbirds will adaptively change their vocalizations to avoid triggering white noise bursts as
434 frequently^{22,27,43,44}. Although the results of the experiments described here do not prove whether
435 white noise bursts drive learning because the white noise is registered by the birds as a
436 performance error or because the white noise is generally aversive, cutaneous stimulation is an
437 explicit, external sensory stimulus that can drive vocal learning. That the AFP underlies non-
438 auditory learning suggests that the AFP does not solely encode auditory performance error.
439 Instead, the AFP may encode more general information about whether vocal performance
440 resulted in a “good” or “bad” outcome, and it may use this information to drive changes to future
441 motor output.

442
443 The numerous analogies between the specialized vocal learning neural circuits that have
444 evolved in songbirds and in humans suggest that our findings may be relevant to understanding
445 the neural circuit mechanisms underlying human speech^{3,8,15,45}. Human speech depends on both
446 auditory and non-auditory sensory information to guide learning, yet very little is known about the
447 neural mechanisms for non-auditory vocal learning^{46–48}. Our findings show that specialized vocal
448 learning circuitry in songbirds processes non-auditory information to drive vocal learning. We
449 suggest that the analogous vocal circuitry in humans may also underlie non-auditory vocal
450 learning. This neural circuitry in humans may underlie the processing of multimodal sensory
451 signals during social interactions that modulate speech learning^{46–48}, or the non-auditory,
452 somatosensory feedback from vocal effectors during speech production¹⁰.

453
454 **Materials and Methods:**

455
456 All subjects were adult (>100 days old) male Bengalese finches (*Lonchura striata* var. *domestica*).
457 All procedures were approved by Emory University’s Institutional Animal Care and Use
458 Committee. All singing was undirected (in the absence of a female bird) throughout all
459 experiments.

460
461 **Delivery of non-auditory sensory feedback**

462
463 To deliver non-auditory feedback signals to freely-behaving songbirds during ongoing song
464 performance, we first performed a surgery prior to any experimentation. Stainless steel wires were
465 uninsulated at the tip (2-4 mm) and implanted subcutaneously on the bird’s scalp. In 7 out of all
466 28 birds used across all experiments performed, wires were implanted intramuscularly in the birds’
467 necks instead of on their scalps. The wires were soldered onto a custom-made circuit board that,
468 during surgery, was placed on the bird’s skull using dental cement. The circuit was connected to
469 an electric stimulator (A-M Systems Isolated Pulse Stimulator), which produced pitch-contingent
470 electrical currents through the wires implanted on the bird. We set the duration of cutaneous
471 stimulation to 50 ms, which was a long enough duration to overlap with a large portion of the
472 targeted syllable, yet a short enough duration to avoid interfering with following song syllables.
473 We typically set the magnitude of electric current used for producing the shocks to 100-350 μ A,
474 which is behaviorally salient (the first few instances of cutaneous stimulation interrupt song), yet
475 subtle enough as to not produce any body movements or signs of distress. Stimulations typically

476 occurred within 20-30 ms of target syllable onset. Acute effects of electrical shock on song
477 structure, such as pitch, amplitude, entropy, or syllable sequence, were assessed to ensure these
478 non-auditory stimuli produced no immediate, systematic, acoustic effects. This ensures that any
479 observed gradual changes to song structure in response to cutaneous stimulation are due to non-
480 auditory learning.

481

482 **Vocal learning paradigm and song analysis**

483

484 Experimental testing of vocal learning was performed by driving adaptive changes in the
485 fundamental frequency (pitch) of song syllables. To do so, we delivered pitch-contingent, non-
486 auditory feedback (mild cutaneous electrical stimulation) to freely-behaving songbirds in real time
487 during song performance. We followed the same experimental protocols as experiments using
488 white noise feedback to drive vocal learning^{22,27}, except we used cutaneous stimulation instead
489 of white noise bursts. After surgically implanting the fine-wire electrodes, we recorded song
490 continuously for three days without providing any experimental feedback (cutaneous stimulation
491 or white noise bursts). We refer to this period as "baseline" (Fig. 2a).

492

493 On the last (third) day of baseline, we measured the pitch of every rendition of the target
494 syllable sung between 10 a.m. and 12 p.m. We set a fixed pitch threshold based on the distribution
495 of these pitches, such that we would provide sensory feedback only when the pitch of a rendition
496 of the target syllable was above the 20th percentile of the baseline distribution ("hit"), and all
497 renditions outside of this range did not trigger any feedback ("escape"). In this case, an adaptive
498 vocal change would therefore be to change the pitch of the target syllable down, thereby
499 decreasing the frequency of triggering cutaneous stimulation. In other experiments, we triggered
500 feedback on all renditions below the 80th percentile of the baseline pitch distribution. In this case,
501 an adaptive vocal change would be to change the pitch of the target syllable up. For each
502 experiment, we randomly selected which of these two contingencies we employed so we could
503 assess bidirectional adaptations in vocal motor output. In a subset of experiments, we used the
504 90th percentile and 10th percentile pitch values to set the pitch threshold. Importantly, we also
505 randomly withheld triggering feedback on 10% of syllable renditions, regardless of syllable pitch
506 or the experimental pitch-contingency. This allows us to compare syllable renditions that did or
507 did not result in cutaneous stimulation to assess any acute effects of this form of feedback on
508 syllable structure.

509

510 At 10 a.m. on the fourth day of continuous song recording, we began providing pitch-
511 contingent cutaneous stimulation in real time, targeted to specific song syllables sung within a
512 specified range of pitches. We refer to this time period as "cutaneous stimulation training" (Fig. 2
513 a). We used custom LabVIEW software to continuously record song, monitor song for specific
514 elements indicative of the performance of the target syllable, perform online, rapid pitch
515 calculation, and trigger feedback in real time. The computers running this software were
516 connected to an electric stimulator. When the electric stimulator received input from the LabVIEW
517 software, it would then trigger a 50 ms burst of electric current through the implanted wire
518 electrodes. During cutaneous stimulation training, we continuously recorded song and provided
519 pitch-contingent cutaneous stimulation at the set fixed pitch threshold for three days. During these
520 three days, every time the bird sang within the "hit" range, a mild cutaneous stimulation was
521 immediately triggered.

522

523 After three days of cutaneous stimulation training, we stopped providing cutaneous
524 stimulation but continued recording unperturbed song for six additional days. We refer to this
525 period as "washout" (Fig. 2a). During washout, we consistently observed spontaneous pitch
526 restoration back to baseline across all experiments, which is in congruence with results from

527 numerous white noise learning experiments^{22,26,27}. This allows for multiple experiments to be
528 performed from similar baseline conditions in the same individual songbird.
529

530 In 14 out of all 28 birds used throughout this study, we performed both white noise training
531 and cutaneous stimulation training in the same individual birds (Fig. 2a). After the end of
532 cutaneous stimulation training and six days of washout (when the pitch of the target syllable had
533 restored to baseline levels), we performed the exact same experimental protocol, but we used
534 white noise feedback instead of cutaneous stimulation. We could then compare learning in
535 response to two different sources of sensory feedback in the same individual subject. We also
536 sometimes reversed the order of experimentation by performing white noise experiments first and
537 cutaneous stimulation experiments second. The order of experimentation was randomly decided
538 for each songbird before beginning any white noise or cutaneous stimulation training.
539

540 For all LMAN lesion (Fig. 3a) and 6-OHDA lesion experiments (Fig. 4a), we performed a
541 cutaneous stimulation training experiment prelesion. After six days of washout, we then performed
542 surgery to lesion the neural circuit of interest. We then performed another cutaneous stimulation
543 experiment in the same individual bird using the exact same protocol we used prelesion. For all
544 of these lesion cutaneous stimulation experiments, we used the aforementioned cutaneous
545 stimulation training paradigm, but with one slight alteration: we extended the number of days of
546 cutaneous stimulation training and introduced a new methodology for setting the pitch threshold
547 on these extended days of training. We still set a fixed pitch threshold based on analysis of the
548 pitch distribution from the final day of baseline and performed three days of cutaneous stimulation
549 training using this fixed pitch threshold. We refer to this portion of the lesion experiments as “fixed”
550 because the pitch threshold for determining whether a cutaneous stimulation was provided
551 remained the same for all 3 days. Rather than stopping cutaneous stimulation training at this
552 point, we instead continued providing pitch-contingent cutaneous stimulation for an additional 1-
553 5 days. In the morning (at 10 a.m.) on each of these extended days of cutaneous stimulation
554 training, we changed the pitch threshold to the 20th or 80th percentile (consistent with the initial
555 contingency) of the pitch distribution of all renditions of the target syllable sung between 8 A.M.
556 to 9:30 A.M. on that same day. As the bird changed the pitch of the target syllable in the adaptive
557 direction, the new pitch thresholds continued to be set further and further in the adaptive direction
558 to drive greater amounts of learning. We refer to these additional days as “staircase”. After 1-5
559 days of staircase training, we stopped providing cutaneous stimulation and began the washout
560 portion of the experiment. We used this experimental approach for both prelesion and postlesion
561 experiments in our LMAN, 6-OHDA, and Sham data sets. Importantly, although the number of
562 days of staircase varied between individual birds, for each individual bird we matched the same
563 number of prelesion days of staircase and postlesion days of staircase to ensure that, in both
564 experimental conditions, the bird had an equivalent amount of time and opportunity to learn.
565

566 Custom-written MATLAB software (The MathWorks) was used for song analysis. On each
567 day of every experiment, we quantified important song features, such as the pitch, amplitude, and
568 spectral entropy, of all renditions of the targeted syllable produced between 10 A.M. and 12 P.M.
569 We did so to account for potential circadian effects on song production. To ensure a level of
570 consistency in number of target syllable renditions measured on each day of an experiment, and
571 to have a minimum number of syllable renditions necessary to get an accurate measure of
572 average syllable pitch, we checked that at least 30 renditions of the target syllable were sung
573 within the 10 A.M. to 12 P.M. window. If there were less than 30 renditions of the target syllable,
574 we extended the time window for song analysis by 1 hour in both directions (9 A.M. to 1 P.M.)
575 and then reassessed to see if there were at least 30 syllable renditions. If not, we continued this
576 process of extending the time window by 1 hour until 30 song renditions were in that day’s data
577 set. Daily targeting sensitivity (hit rate) and precision (1 - false-positive rate) were measured in all

578 experiments to ensure accurate targeting of the specific target syllable (and not accidentally
579 targeting different song syllables). During the pitch-contingent feedback portion of the experiment,
580 a subset (10%) of randomly selected target syllables did not trigger feedback, regardless of
581 syllable pitch. These “catch trials” allowed for the quantification and comparison of syllable
582 features, such as pitch, amplitude, and entropy between trials when feedback was provided and
583 trials when feedback was not provided. Pitch changes were quantified in units of semitones as
584 follows:

585

$$s = 12 * \log_2 (h / b) \quad [1]$$

586 where s is the pitch change (in semitones) of the syllable, h is the average pitch (in Hertz) of the
587 syllable, and b is the average baseline pitch (in Hertz) of the syllable.

588

591 Analysis of Variability in Syllable Pitch

592 We compared pitch variability pre- and postlesion using methods described in prior literature^{30–32}.
593 We analyzed all song renditions (within the 10 A.M. - 12 P.M. time window) performed on the final
594 day of baseline prelesion and on the final day of baseline postlesion. We did so in our LMAN
595 lesion experimental group as well as our 6-OHDA lesion experimental group. To measure the
596 variability in pitch of the song syllables, we calculated the coefficient of variation (CV) for the pitch
597 of each syllable using the following formula: $CV = (\text{Standard Deviation} / \text{Mean}) * 100$.

598

600 LMAN Lesions

601 Birds were anesthetized under ketamine and midazolam and were mounted in a stereotax. The
602 beak angle was set to 20° relative to the surface level of the surgery table. For stereotactic
603 targeting of specific brain regions (in this case, LMAN), anterior-posterior (AP) and medial-lateral
604 (ML) coordinates were found relative to Y_0 , a visible anatomical landmark located at the posterior
605 boundary of the central venous sinus in songbirds. Dorsal-ventral (DV) coordinates were
606 measured relative to the surface of the brain. Bilateral craniotomies were made at the approximate
607 AP coordinates 4.9 mm to 5.7mm and ML coordinates 1.5 mm to 2.5 mm. A lesioning electrode
608 was then inserted 1.9 mm to 2.1 mm below the brain surface. These stereotactic coordinates
609 targeted locations within LMAN. We then passed 100 μ A of current for 60-90 seconds at 5-6
610 locations in LMAN in both hemispheres in order to electrolytically lesion the areas. This
611 methodology was based on prior work involving LMAN lesions and LMAN inactivations^{20,26,30–32,49}
612 . In sham operated birds, we instead performed small lesions in brain areas dorsal to LMAN.
613 Again, this was consistent with methodology from prior studies^{20,30,31}.

614

615 Birds recovered within two hours of surgery and began singing normally (at least 30
616 renditions of target syllable within 2 hours) typically 3 to 8 days after surgery.

617

618 Behavioral measures indicated that LMAN was effectively lesioned in the birds in the
619 LMAN lesion data set. LMAN lesions in adult songbirds produce a significant decrease in the trial-
620 to-trial variability of song syllable pitch^{30–32}. To assess lesion-induced changes in the variability of
621 syllable pitch between conditions (LMAN lesion and sham), we calculated the CV of syllable pitch
622 pre- and postlesion. We found that LMAN lesions induced a significant decrease in pitch CV (Fig.
623 3b; paired t-test,). Sham operations did not induce a significant change in syllable CV (Fig. 3b;
624 paired t-test, $p = 0.911$). The lesion-induced changes in syllable CV (post - pre) were significantly
625 greater than changes to CV in sham lesioned controls (Figure 3- Figure Supplement 1a; 2 sample
626 KS test, $p = 0.003$).]

627

629 Lesions were confirmed histologically using cresyl violet staining after completion of
630 behavioral experimentation. In tissue from sham operated birds, we identified Area X and LMAN
631 based on regions of denser staining as well as well-characterized anatomical landmarks⁵⁰. The
632 histology methodology we employed followed previous literature involving LMAN lesions^{20,30}. We
633 performed Nissl stains to stain for neuronal cell bodies in brain slices after experiments were
634 complete (Figure 3- Figure Supplement 2a). We then calculated the optical density ratio of the
635 region containing LMAN compared to background (a pallial region outside of LMAN) (Figure 3-
636 Figure Supplement 2b)^{22,29}. The distribution of OD ratios from LMAN lesioned tissue was
637 significantly less than the OD ratios from sham lesioned tissue (Figure 3- Figure Supplement 2c;
638 2 sample KS test, $p < 0.0010$). This suggests that the density of neuronal cell bodies within LMAN
639 was reduced following electrolytic lesions compared to following sham. Similar to a prior study,
640 we also qualitatively assessed each slice of brain tissue to measure the percentage of intact
641 LMAN remaining in the tissue²⁰. We found that all of the LMAN lesioned birds had 80-100% of
642 LMAN lesioned in both hemispheres.
643

644 **6-OHDA Lesions**

645 Birds were anesthetized using ketamine and midazolam and were mounted in a stereotax, where
646 the beak angle was set to 20° relative to the surface level of the surgery table. Isoflurane was
647 used in later hours of the surgery to maintain an anesthetized state. Bilateral craniotomies were
648 made above Area X from the approximate AP coordinates 4.5 mm to 6.5mm and ML coordinates
649 0.75 mm to 2.3 mm relative to Y_0 .
650

651 In each hemisphere, we inserted a glass pipette containing a 6-OHDA solution (see below)
652 and made 12 pressure-injections in a 3 mm x 4 mm grid between AP coordinates 5.1 mm and 6.3
653 mm, ML coordinates 0.9 mm and 2.2 mm and the DV coordinate 3.18 mm relative to Y_0 . Additional
654 bilateral 6-OHDA injections were made at the AP coordinate 4.8 mm, ML coordinate +/- 0.8 mm,
655 and DV coordinate 2.6 mm from the brain surface to lesion the most medial portion of Area X.
656 Each injection consisted of 13.8 nL of 6-OHDA solution, injected at a rate of 23 nL/s at each site.
657 The pipette was kept in place for 30 seconds after each injection and was then slowly removed.
658 In sham operated birds, we performed the same surgical operations, except saline was injected
659 into Area X instead of 6-OHDA. Again, this was consistent with methodology from prior
660 studies^{22,29}.
661

662 Birds recovered within two hours of surgery and began singing normally (at least 30
663 renditions of target syllable within 2 hours) typically 3 to 8 days after surgery. 6-OHDA solution
664 was prepared using 11.76 mg 6-OHDA-HBr and 2 mg ascorbic acid in 1 mL of 0.9% normal saline
665 solution. The solution was light-protected after preparation to prevent oxidation.
666

667 In order to confirm the effectiveness of 6-OHDA injections at lesioning dopaminergic input
668 to Area X, we quantified the extent of the reduction of catecholaminergic fiber innervation within
669 Area X after completing the behavioral experimentation in each bird^{22,29}. To visualize
670 dopaminergic innervation, we labeled tissue with a common biomarker for catecholaminergic cells
671 (Figure 4- Figure Supplement 1a). To determine whether the concentration of dopaminergic fibers
672 in Area X had decreased, we measured the optical density ratio (OD): the ratio of the stain density
673 of Area X to the stain density of the surrounding striatum. OD ratios from individual 6-OHDA
674 lesioned brains decreased compared to control (Figure 4- Figure Supplement 1b). The distribution
675 of all OD ratios from all of the 6-OHDA lesioned tissue was significantly lower than that of the
676 brain tissue from sham operated birds (Figure 4- Figure Supplement 1c; 2 sample KS test, $p <$
677 0.001). These results are similar to previous reports that used 6-OHDA injections to lesion
678

679 dopaminergic input to Area X^{22,29}, and they indicate that the 6-OHDA injections successfully
680 lesioned dopaminergic input to Area X.

681
682 Lesion size was quantified by determining the proportion of 6-OHDA lesioned tissue that
683 had an OD ratio of Area X to non-X striatum that was less than the fifth percentile of OD ratios in
684 sham tissue. There was not a significant correlation between lesion size and the lesion-induced
685 change in learning magnitude (post-pre) (Figure 4- Figure Supplement 2a, b; $R^2 = 0.019$, $p =$
686 0.137).

687
688 **Histology**
689

690 Between 14 and 54 days after surgery, birds were injected with a lethal dose of ketamine and
691 midazolam and were perfused. Tissue was post-fixed in 4% paraformaldehyde at room
692 temperature for 4-16 hours and then moved to a solution of 30% sucrose for at least one day at
693 4°C for cryoprotection. Then, brain tissue was sliced in 40 μ m sections. A chromogenic tyrosine
694 hydroxylase (TH) stain was used to quantify the depletion of catecholaminergic fiber innervations
695 in tissue collected from 6-OHDA lesioned birds, and Nissl and fluorescent NeuN staining was
696 used to assess the density of cell bodies in tissue from LMAN lesioned and sham operated birds.
697 For one bird in the 6-OHDA lesioned group, a Nissl stain was performed on alternate tissue
698 sections to ensure no cell death occurred as a result of the lesion.

699
700 For TH immunohistochemistry, tissue was incubated overnight in a primary anti-TH
701 antibody solution. The tissue was next incubated in biotinylated horse anti-mouse secondary
702 antibody solution for 1 hour. Then, the tissue was submerged in a diaminobenzidine (DAB)
703 solution (2 DAB tablets, Amresco E733 containing 5 mg DAB per tablet, 20 mL Barnstead H₂O, 3
704 μ L H₂O₂) for less than 5 minutes for visualization. The DAB solution was prepared 1h prior to use.
705 Tissue was washed, mounted and coverslipped using Permount mounting medium.

706
707 **Tyrosine Hydroxylase Stain**
708

709 Between each incubation tissue was washed with 0.1 M phosphate buffer (PBS) (23 g dibasic
710 sodium phosphate, 5.25 g monobasic sodium phosphate, and 1 L deionized H₂O) 3 times for 10
711 min each. Tissue was first washed and then incubated in 0.3% H₂O₂ for 30 min and then 1%
712 NaBH₄ for 20 min, followed by overnight incubation in a primary anti-tyrosine hydroxylase antibody
713 solution. The tissue was next incubated in biotinylated horse anti-mouse secondary antibody
714 solution for 1 h, then incubated in avidin-biotin-complex (ABC) solution for 1 h that had been
715 prepared 30 min prior to use. The tissue was then submerged in a diaminobenzidine (DAB)
716 solution for less than 5 minutes. Tissue was then washed, mounted and coverslipped using
717 Permount mounting medium. These TH stains mark neurons expressing TH, which are
718 catecholaminergic.

719
720 **Nissl Stain**
721

722 Tissue was washed in 0.1 M PBS three times for 10 minutes and was then mounted. The slides
723 were incubated in Citrisolv twice for 5 min each, then delipidized in the following ethanol
724 concentrations for two minutes each: 100%, 100%, 95%, 95%, and 70%. The tissue was briefly
725 (less than 15 s) rinsed in deionized water, then was incubated in cresyl violet (665 μ L glacial
726 acetic acid, 1 g cresyl violet acetate, and 200 mL deionized water) for 30 min. The tissue was
727 rinsed in deionized water, then briefly (less than 15 seconds) submerged in the following ethanol
728 concentrations for 2 min each: 70%, 95%, 95%, 100%, and 100%. The tissue was then incubated

729 in citrisolv twice for 5 min. The tissue was coverslipped using Permount mounting medium. These
730 Nissl stains mark neuronal cell bodies.

731

732 **NeuN Antibody Stain**

733

734 Between each incubation, tissue was washed with 0.1 M PBS 3 times for 10 min each. Tissue
735 was incubated in primary antibody solution (4 mL EMD Millipore guinea pig anti-NeuN Alexa Fluor
736 488 antibody, 6 mL Triton X-100, 20 mL normal donkey serum (NDS) and 1.95 mL 0.1 M PBS)
737 overnight. The tissue was then washed and incubated in a secondary antibody solution (10 mL
738 Jackson Labs donkey anti-guinea pig (DAG), 6 mL Triton X-100, and 1.975 mL 0.1 PBS)
739 overnight. Tissue was then washed, mounted and coverslipped with Flurogel mounting medium.
740 Slides were sealed with lacquer. Images were taken under a widefield microscope (BioTek
741 Lionheart FX, Sony ICX285 CCD camera, Gen5 acquisition software, 1.25x magnification, 16-bit
742 grayscale).

743

744 **Lesion Analysis**

745

746 Analysis of lesions was based on previously published methodology^{22,29}. Images of stained tissue
747 sections were obtained using a slide scanner and were converted into 8-bit grayscale images in
748 ImageJ. In control (unoperated) birds, Area X stains darker than surrounding striatum in TH-DAB-
749 stained tissue due to a higher density of catecholaminergic inputs in Area X^{22,29}. The baseline
750 level of stain darkness can vary from bird to bird. Therefore, rather than directly comparing the
751 stain density of lesioned and sham tissue, the ratio of the stain density of Area X to that of the
752 surrounding striatum (OD ratio) was calculated to determine whether the concentration of
753 catecholaminergic fibers was decreased. Prior work demonstrated that the vast majority of
754 catecholaminergic input to Area X is dopaminergic²².

755

756 For each section of tissue containing Area X, a customized ImageJ macro was used to
757 select regions of interest (ROIs) within Area X and within a portion of striatum outside Area X by
758 manually outlining Area X and selecting a circular 0.5 mm-diameter region of striatum anterior to
759 Area X. Pixel count and optical density (OD) of each ROI were measured, and the density of TH-
760 positive fibers was calculated using the ratio of the OD of Area X to the OD of non-X-striatum.

761

762 The cumulative distribution of OD ratios for sham operated birds was used to construct a
763 95% confidence interval and determine the threshold for lesioned tissue. 6-OHDA-lesioned tissue
764 in which the OD ratio fell below the 5th percentile of control tissue had a significantly reduced TH-
765 positive fiber density.

766

767 **Statistical Testing**

768

769 All error bars presented in the main text represent SEM. When assessing whether a significant
770 amount of vocal learning occurred in one experiment, we used one-sample t-tests to compare the
771 mean pitch on the final day of training vs zero. To assess whether a significant difference in
772 amount of learning occurred within an individual bird pre- vs postlesion, we used paired t-tests.
773 To assess significance between distributions of target syllable pitches on various days of the
774 experiment (Baseline, shock, washout), we used a 2-sample KS test.

775

776 Each experimental group had at least five birds, and for each bird, the target syllable was
777 typically repeated well over 30 times a day. Therefore, the structure of our data is hierarchical, so
778 error accumulates at different levels (birds and syllable iterations). Simply grouping all the data

779 together ignores the non-independence between samples and underestimates the error. To
780 address this issue, we employed a hierarchical bootstrap method to measure SEM and calculate
781 p-values²⁸. For each experimental day we calculated normalized pitch values (in semitones)
782 (normalized to the mean pitch on the final baseline day during that particular experiment). We
783 then generated a population of 10000 bootstrapped means according to the following sampling
784 procedure: to generate each individual subsample, we resampled across each level of hierarchy
785 in our data (first resampled among the birds, then for each selected bird, we resampled among
786 syllable iterations). The standard deviation of this population of bootstrapped means provides an
787 accurate estimate of the uncertainty of the original data^{28,29}. Thus, the SEM values (which are
788 used for error bars) we report when employing the hierarchical bootstrap method are equal to this
789 standard deviation.

790
791 To calculate p-values and determine significance for comparing our data to zero using the
792 hierarchical bootstrap method, we calculated P_{boot} : the proportion of bootstrapped means greater
793 than zero compared to the total number of bootstrapped means. Using an acceptable type-1 error
794 rate of .05, any value of this P_{boot} ratio greater than .975 indicates the mean was significantly
795 greater than zero and any value less than .025 indicates the mean was significantly less than
796 zero. P_{boot} values between .025 and .975 indicate no significant difference between the data set
797 and zero. Because we measure adaptive pitch changes in semitones, which are a normalized
798 measure of pitch change where baseline is set to zero, this method of calculating P_{boot} was
799 employed in all instances where it was necessary to assess whether there was a significant
800 change in pitch at the end of training compared to baseline (zero).

801
802 We also sometimes sought to determine significance for the comparison of two means
803 rather than what was previously described (where we assess significance between one mean
804 compared to baseline (zero)). We used a similar hierarchical bootstrap statistical methodology and
805 calculated P_{boot} . The key difference is that, rather than measuring the proportion of resampled
806 means greater than or less than zero, we instead calculate a joint probability distribution for the
807 means of the two resampled data sets. We measured the percentage of this joint probability
808 distribution that was above one side of the unity line. This percentage is the P_{boot} values we report
809 in these instances. If the proportion of this joint probability distribution that falls above the unity
810 line is greater than .975, it indicated a significantly greater mean of data set 1 over data set 2. If
811 the percentage of the joint probability distribution that was above the unity line was less than .025,
812 it indicated a significantly lower mean of data set 1 compared to data set 2. P_{boot} values between
813 .025 and .975 indicate no significant difference between the two data sets. This method was
814 employed in all instances where it was necessary to assess whether the learning magnitudes
815 (adaptive pitch changes by the end of training) were significantly different pre- vs postlesion (or
816 pre- vs postsham) or across experimental conditions (e.g., postsham vs postlesion or post LMAN
817 lesion vs post 6-OHDA lesion).

818
819 In both forms of P_{boot} calculation, the lowest statistical limit for P_{boot} is $P_{boot} < 0.0010$, due
820 to resampling 10^4 times to create bootstrapped means. The highest possible limit for P_{boot} is $P_{boot} > 0.9999$, for the same reason.

821
822 Sample sizes were not predetermined using a power analysis. Sample sizes of all sets of
823 experiments were comparable to relevant prior literature^{22,27,29}. If at any point during cutaneous
824 stimulation training or white noise training a bird's rate of singing dropped below 10 songs per day
825 for over one day, that experiment was stopped and the data were excluded from further analysis.

826
827
828 **Competing interests:** No competing interests declared by any authors.

830 **References:**

831

832

833 1. Graybiel, A. M., Aosaki, T., Flaherty, A. W. & Kimura, M. The basal ganglia and adaptive
834 motor control. *Science* (80-). (1994) doi:10.1126/science.8091209.

835 2. Hikosaka, O., Nakamura, K., Sakai, K. & Nakahara, H. Central mechanisms of motor skill
836 learning. *Current Opinion in Neurobiology* (2002) doi:10.1016/S0959-4388(02)00307-0.

837 3. Doupe, A. J. & Kuhl, P. K. Birdsong and human speech: Common themes and
838 mechanisms. *Annual Review of Neuroscience* (1999)
839 doi:10.1146/annurev.neuro.22.1.567.

840 4. Oller, D. K. & Eilers, R. E. The Role of Audition in Infant Babbling. *Child Dev.* (1988)
841 doi:10.2307/1130323.

842 5. Cowie, R. I. D. & Douglas-Cowie, E. Speech Production in Profound Postlingual
843 Deafness. in *Hearing Science and Hearing Disorders* (1983). doi:10.1016/b978-0-12-
844 460440-7.50011-9.

845 6. Stoel-Gammon, C. & Otomo, K. Babbling development of hearing-impaired and normally
846 hearing subjects. *J. Speech Hear. Disord.* (1986) doi:10.1044/jshd.5101.33.

847 7. Houde, J. F. & Jordan, M. I. Sensorimotor adaptation in speech production. *Science* (80-).
848 (1998) doi:10.1126/science.279.5354.1213.

849 8. Jarvis, E. D. Evolution of vocal learning and spoken language. *Science* (2019)
850 doi:10.1126/science.aax0287.

851 9. Nasir, S. M. & Ostry, D. J. Speech motor learning in profoundly deaf adults. *Nat. Neurosci.* (2008)
852 doi:10.1038/nn.2193.

853 10. Tremblay, S., Shiller, D. M. & Ostry, D. J. Somatosensory basis of speech production.
854 *Nature* (2003) doi:10.1038/nature01710.

855 11. Sober, S. J. & Brainard, M. S. Adult birdsong is actively maintained by error correction.
856 *Nat. Neurosci.* (2009) doi:10.1038/nn.2336.

857 12. Kuebrich, B. D. & Sober, S. J. Variations on a theme: Songbirds, variability, and
858 sensorimotor error correction. *Neuroscience* (2015)
859 doi:10.1016/j.neuroscience.2014.09.068.

860 13. Konishi, M. The Role of Auditory Feedback in the Control of Vocalization in the White-
861 Crowned Sparrow. *Z. Tierpsychol.* (1965) doi:10.1111/j.1439-0310.1965.tb01688.x.

862 14. Nordeen, K. W. & Nordeen, E. J. Auditory feedback is necessary for the maintenance of
863 stereotyped song in adult zebra finches. *Behav. Neural Biol.* (1992) doi:10.1016/0163-
864 1047(92)90757-U.

865 15. Brainard, M. S. & Doupe, A. J. What songbirds teach us about learning. *Nature* (2002)
866 doi:10.1038/417351a.

867 16. Brainard, M. S. & Doupe, A. J. Interruption of a basal ganglia-forebrain circuit prevents
868 plasticity of learned vocalizations. *Nature* (2000) doi:10.1038/35008083.

869 17. Nordeen, K. W. & Nordeen, E. J. Long-term maintenance of song in adult zebra finches is
870 not affected by lesions of a forebrain region involved in song learning. *Behav. Neural Biol.*
871 (1993) doi:10.1016/0163-1047(93)91215-9.

872 18. Mooney, R. Neural mechanisms for learned birdsong. *Learning and Memory* (2009)
873 doi:10.1101/lm.1065209.

874 19. Bottjer, S. W., Miesner, E. A. & Arnold, A. P. Forebrain lesions disrupt development but
875 not maintenance of song in passerine birds. *Science* (80-). (1984)
876 doi:10.1126/science.6719123.

877 20. Ali, F. et al. The Basal Ganglia Is Necessary for Learning Spectral, but Not Temporal,
878 Features of Birdsong. *Neuron* (2013) doi:10.1016/j.neuron.2013.07.049.

879 21. Morrison, R. G. & Nottebohm, F. Role of a telencephalic nucleus in the delayed song
880 learning of socially isolated zebra finches. *J. Neurobiol.* (1993)

881 22. doi:10.1002/neu.480240805.

882 22. Hoffmann, L. A., Saravanan, V., Wood, A. N., He, L. & Sober, S. J. Dopaminergic
883 contributions to vocal learning. *J. Neurosci.* (2016) doi:10.1523/JNEUROSCI.3883-
884 15.2016.

885 23. Hisey, E., Kearney, M. G. & Mooney, R. A common neural circuit mechanism for
886 internally guided and externally reinforced forms of motor learning. *Nat. Neurosci.* (2018)
887 doi:10.1038/s41593-018-0092-6.

888 24. Xiao, L. *et al.* A Basal Ganglia Circuit Sufficient to Guide Birdsong Learning. *Neuron*
889 (2018) doi:10.1016/j.neuron.2018.02.020.

890 25. Paterson, A. K. & Bottjer, S. W. Cortical inter-hemispheric circuits for multimodal vocal
891 learning in songbirds. *J. Comp. Neurol.* (2017) doi:10.1002/cne.24280.

892 26. Andalman, A. S. & Fee, M. S. A basal ganglia-forebrain circuit in the songbird biases
893 motor output to avoid vocal errors. *Proc. Natl. Acad. Sci. U. S. A.* (2009)
894 doi:10.1073/pnas.0903214106.

895 27. Tumer, E. C. & Brainard, M. S. Performance variability enables adaptive plasticity of
896 'crystallized' adult birdsong. *Nature* (2007) doi:10.1038/nature06390.

897 28. Saravanan, V., Berman, G. J. & Sober, S. J. Application of the hierarchical bootstrap to
898 multi-level data in neuroscience. *Neurons, Behavior, Data Analysis and Theory* (2019)
899 doi:10.1101/819334.

900 29. Saravanan, V., Hoffmann, L. A., Jacob, A. L., Berman, G. J. & Sober, S. J. Dopamine
901 depletion affects vocal acoustics and disrupts sensorimotor adaptation in songbirds.
902 *eNeuro* (2019) doi:10.1523/ENEURO.0190-19.2019.

903 30. Kao, M. H., Doupe, A. J. & Brainard, M. S. Contribution of an avian basal ganglia-
904 forebrain circuit to real-time modulation of song. *Nature* (2005) doi:10.1038/nature03127.

905 31. Kao, M. H. & Brainard, M. S. Lesions of an avian basal ganglia circuit prevent context-
906 dependent changes to song variability. *J. Neurophysiol.* (2006)
907 doi:10.1152/jn.01138.2005.

908 32. Hampton, C. M., Sakata, J. T. & Brainard, M. S. An avian basal ganglia-forebrain circuit
909 contributes differentially to syllable versus sequence variability of adult Bengalese finch
910 song. *J. Neurophysiol.* (2009) doi:10.1152/jn.91089.2008.

911 33. Murugan, M., Harward, S., Scharff, C. & Mooney, R. Diminished FoxP2 levels affect
912 dopaminergic modulation of corticostriatal signaling important to song variability. *Neuron*
913 (2013) doi:10.1016/j.neuron.2013.09.021.

914 34. Sasaki, A., Sotnikova, T. D., Gainetdinov, R. R. & Jarvis, E. D. Social context-dependent
915 singing-regulated dopamine. *J. Neurosci.* (2006) doi:10.1523/JNEUROSCI.1335-06.2006.

916 35. Leblois, A., Wendel, B. J. & Perkel, D. J. Striatal dopamine modulates basal ganglia
917 output and regulates social context-dependent behavioral variability through D1
918 receptors. *J. Neurosci.* (2010) doi:10.1523/JNEUROSCI.5974-09.2010.

919 36. Murdoch, D., Chen, R. & Goldberg, J. H. Place preference and vocal learning rely on
920 distinct reinforcers in songbirds. *Sci. Rep.* (2018) doi:10.1038/s41598-018-25112-5.

921 37. Suthers, R. A., Goller, F. & Martin Wild, J. Somatosensory feedback modulates the
922 respiratory motor program of crystallized birdsong. *Proc. Natl. Acad. Sci. U. S. A.* (2002)
923 doi:10.1073/pnas.042103199.

924 38. Chen, R. *et al.* Songbird Ventral Pallidum Sends Diverse Performance Error Signals to
925 Dopaminergic Midbrain. *Neuron* (2019) doi:10.1016/j.neuron.2019.04.038.

926 39. Chen, Y., Matheson, L. E. & Sakata, J. T. Mechanisms underlying the social
927 enhancement of vocal learning in songbirds. *Proc. Natl. Acad. Sci. U. S. A.* (2016)
928 doi:10.1073/pnas.1522306113.

929 40. West, M. J. & King, A. P. Female visual displays affect the development of male song in
930 the cowbird. *Nature* (1988) doi:10.1038/334244a0.

931 41. Fee, M. S. & Goldberg, J. H. A hypothesis for basal ganglia-dependent reinforcement

932 learning in the songbird. *Neuroscience* (2011) doi:10.1016/j.neuroscience.2011.09.069.

933 42. Gadagkar, V. *et al.* Dopamine neurons encode performance error in singing birds.
Science (80-.). (2016) doi:10.1126/science.aah6837.

934 43. Charlesworth, J. D., Warren, T. L. & Brainard, M. S. Covert skill learning in a cortical-
935 basal ganglia circuit. *Nature* (2012) doi:10.1038/nature11078.

936 44. Charlesworth, J. D., Turner, E. C., Warren, T. L. & Brainard, M. S. Learning the
937 microstructure of successful behavior. *Nat. Neurosci.* (2011) doi:10.1038/nn.2748.

938 45. Brainard, M. S. & Doupe, A. J. Translating birdsong: Songbirds as a model for basic and
939 applied medical research. *Annual Review of Neuroscience* (2013) doi:10.1146/annurev-
940 neuro-060909-152826.

941 46. Goldstein, M. H., King, A. P. & West, M. J. Social interaction shapes babbling: Testing
942 parallels between birdsong and speech. *Proc. Natl. Acad. Sci. U. S. A.* (2003)
943 doi:10.1073/pnas.1332441100.

944 47. Locke, J. L. & Snow, C. Social influences on vocal learning in human and nonhuman
945 primates. in *Social Influences on Vocal Development* (2010).
946 doi:10.1017/cbo9780511758843.014.

947 48. Kuhl, P. K. Is speech learning 'gated' by the social brain? *Developmental Science* (2007)
948 doi:10.1111/j.1467-7687.2007.00572.x.

949 49. Warren, T. L., Turner, E. C., Charlesworth, J. D. & Brainard, M. S. Mechanisms and time
950 course of vocal learning and consolidation in the adult songbird. *J. Neurophysiol.* (2011)
951 doi:10.1152/jn.00311.2011.

952 50. Karté, H. J. *et al.* Digital atlas of the zebra finch (*Taeniopygia guttata*) brain: A high-
953 resolution photo atlas. *J. Comp. Neurol.* (2013) doi:10.1002/cne.23443.

954

955

956

957

958

959

960

961

962

963

964

965

966

967

968

969

970

971

972

973

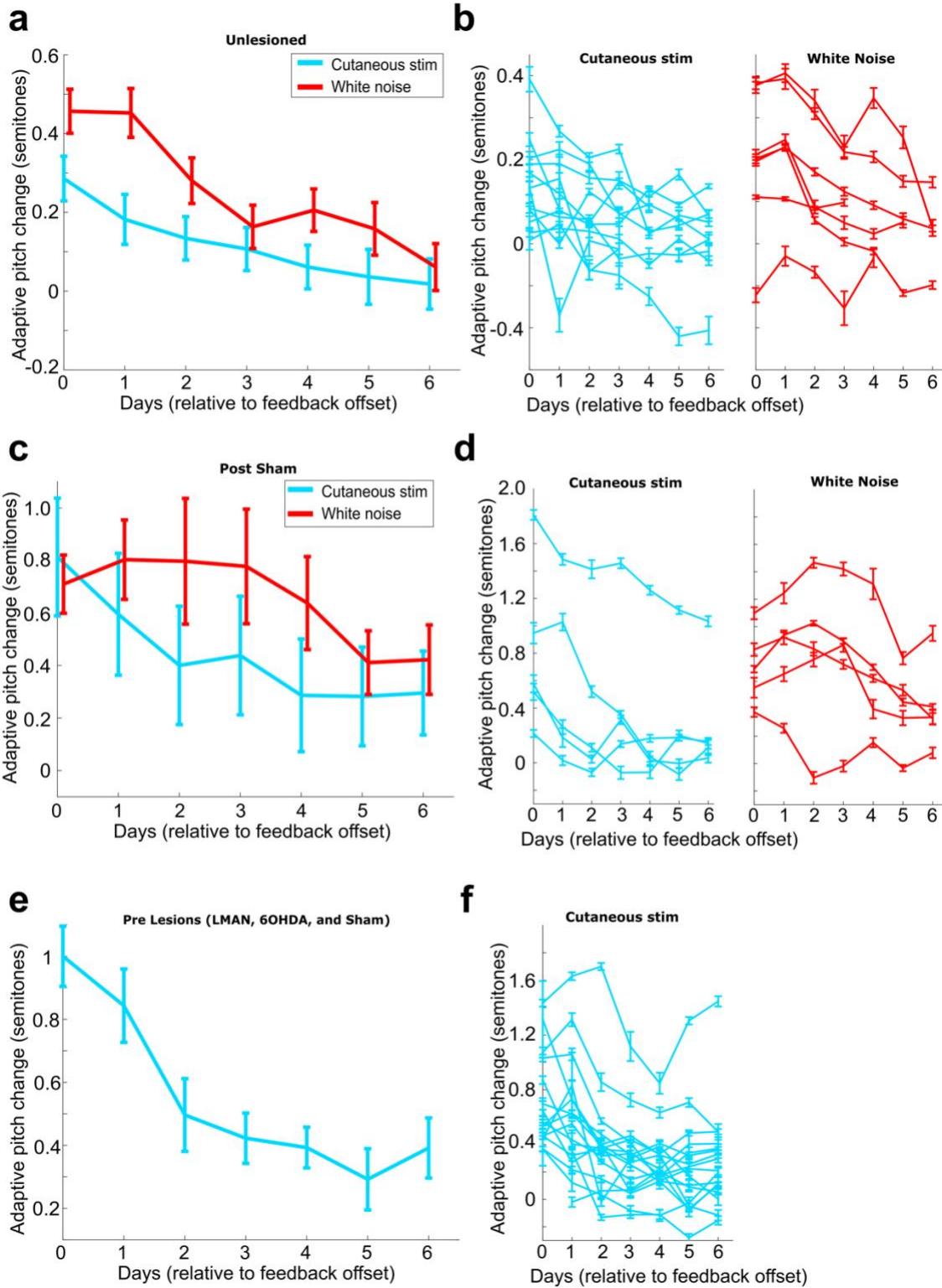
974

975

976

977

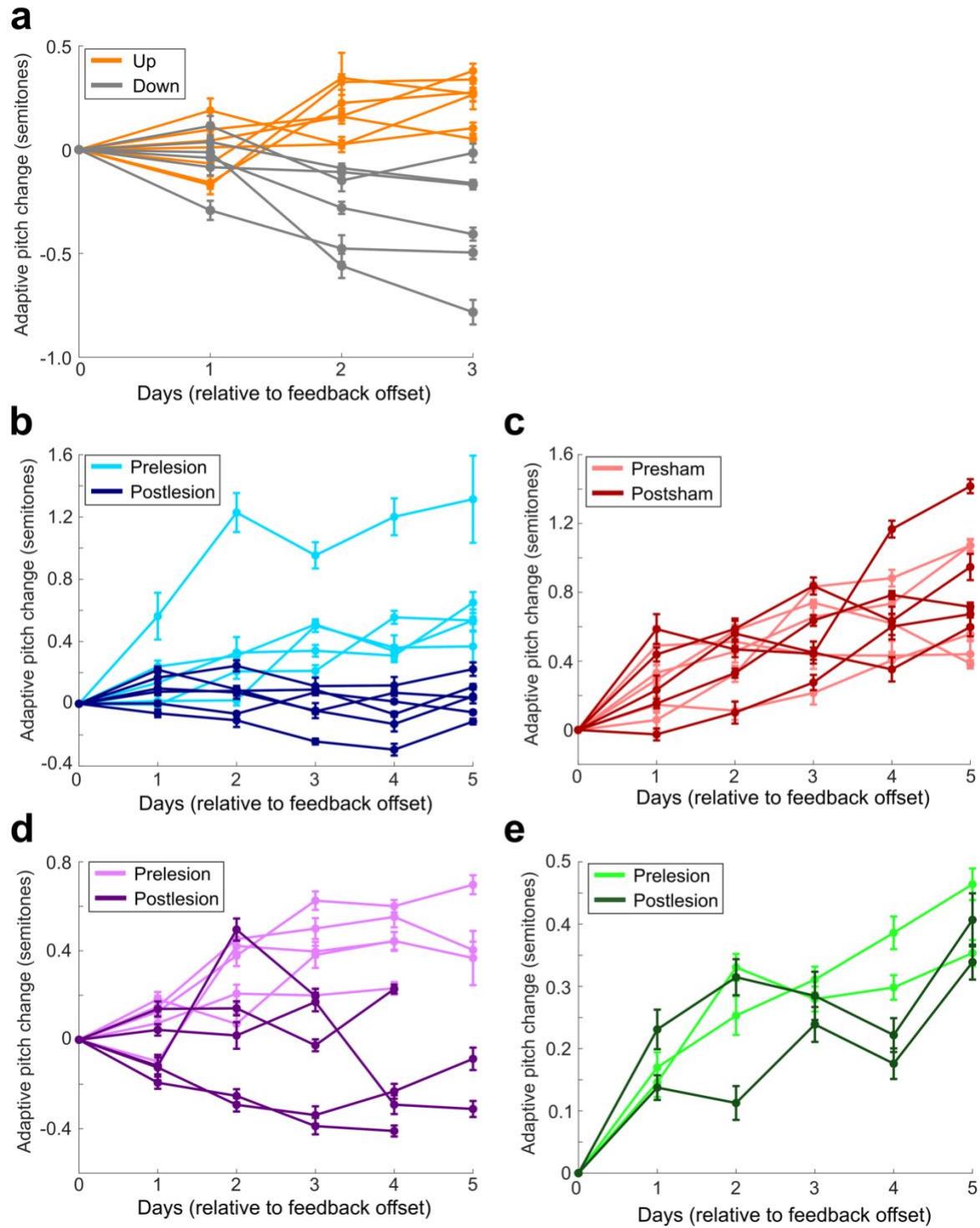
978


979

980

981

982

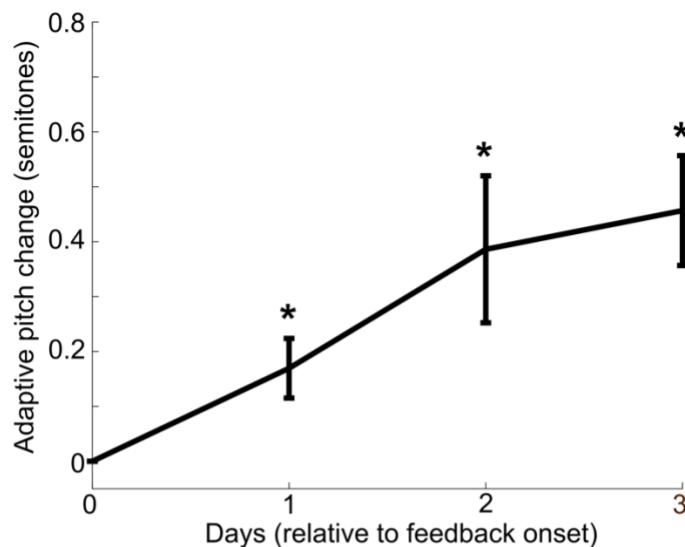

983 **Supplementary Figures:**
984

985
986
987

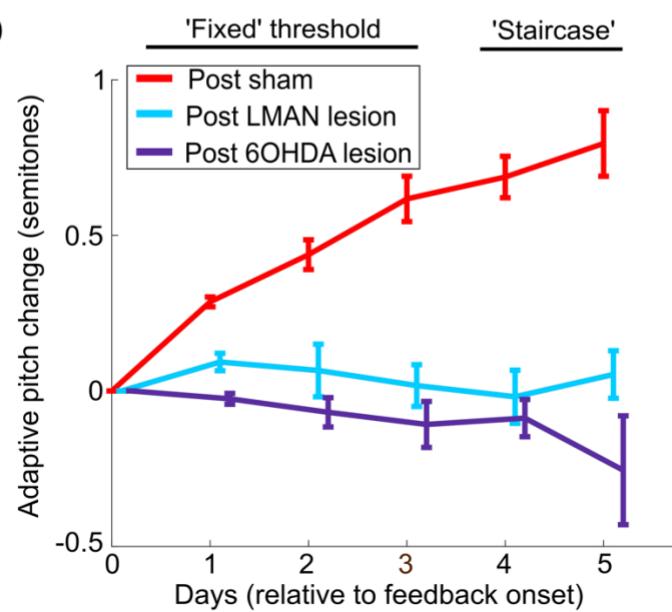
Figure 2- Figure Supplement 1. Rates of washout across different experimental conditions. (a)

988 Adaptive pitch change (measured relative to baseline) during washout from the group of birds
989 who received no invasive brain operations (n=13 experiments). Adaptive pitch change did not
990 significantly differ between white noise and cutaneous stimulation training experiments on any of
991 the days of washout ($0.487 < P_{boot} < 0.541$ on each day of washout, where $0.025 < P_{boot} < 0.975$
992 indicates no significant difference between means). **(b)** The same washout data from (a), except
993 each trace is the data from an individual experiment. **(c)** Adaptive pitch change (measured relative
994 to baseline) during washout from the sham lesioned data set (n=6 experiments). Adaptive pitch
995 change did not significantly differ between white noise and cutaneous stimulation training
996 experiments on any of the days of washout ($0.370 < P_{boot} < 0.900$) **(d)** The same washout data
997 from (c), except each trace is the data from an individual experiment. **(e)** Adaptive pitch change
998 (measured relative to baseline) during washout from all prelesion experiments in birds who
999 received invasive brain operations (presham, pre LMAN lesion, and pre 6-OHDA lesion), n = 16.
1000 **(f)** The same washout data from (e), except each trace is the data from an individual experiment.
1001
1002

1003


1004 **Figure 2- Figure Supplement 2.** Amount of pitch change on each day of cutaneous stimulation
 1005 training for each individual experiment. **(a)** All experiments performed in birds who did not
 1006 undergo any invasive brain operations (LMAN lesions, 6-OHDA dopamine lesions, sham
 1007 operations). Orange are experiments where upwards pitch change resulted in less frequent
 1008 triggering of cutaneous stimulations. Gray are experiments where downwards pitch change

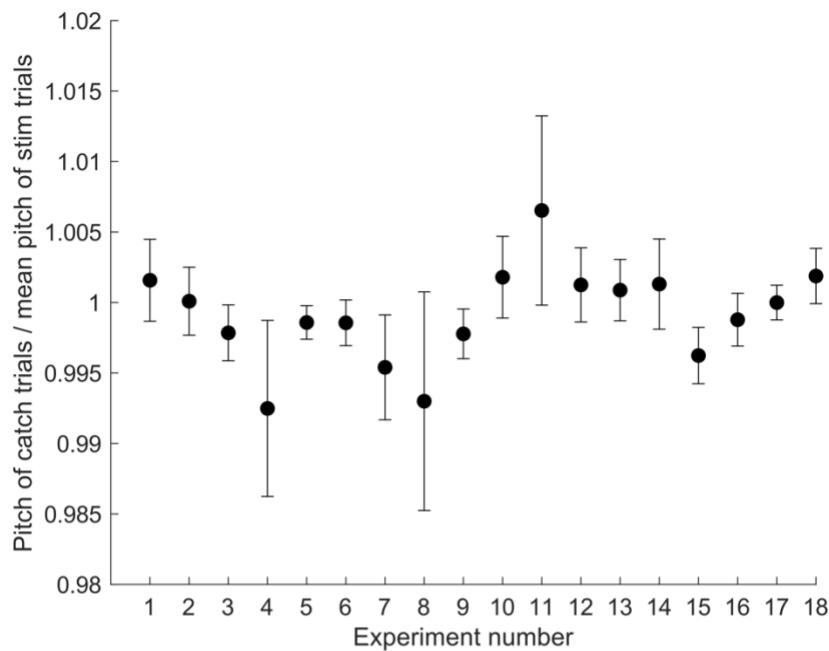
1009 resulted in less frequent triggering of cutaneous stimulations. (b) Results from all experiments
1010 performed in birds who underwent LMAN lesions. (c) Results from all experiments performed in
1011 birds who underwent LMAN sham operations. (d) Results from all experiments performed in
1012 birds who underwent 6-OHDA lesions. (e) Results from all experiments performed in birds who
1013 underwent 6-OHDA sham operations.


1014

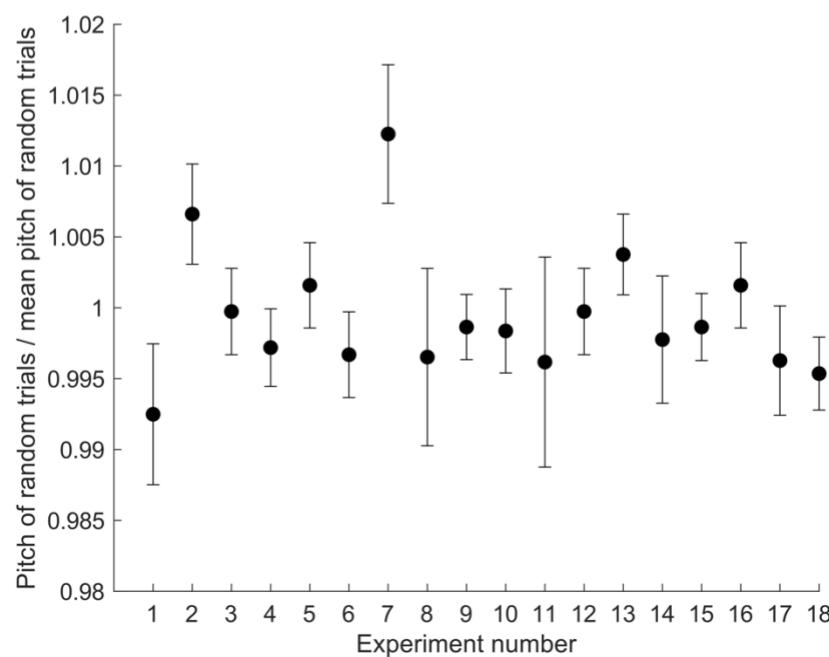
1015

a

b


1016

1017


1018 **Figure 2- Figure Supplement 3.** (a) Adaptive change in target syllable pitch (in semitones)
1019 during three days of white noise training in 8 birds who did not undergo any lesions or sham
1020 operations. Probability of resampled mean pitch on each day of training lesser than or equal to
1021 zero was $P_{boot} < 0.0010$. (b) Learning magnitudes (adaptive change in target syllable pitch in

1022 semitones) during five days of white noise training in birds who underwent sham operations,
1023 LMAN lesions, and 6-OHDA lesions. Only postsham learning magnitude was significantly
1024 greater than baseline (probability of resampled mean pitch on each of the final four days of
1025 training lesser than or equal to zero was $P_{boot}<0.0010$). Post LMAN lesion learning magnitudes
1026 were significantly less than postsham (probability of resampled mean pitch of post LMAN lesion
1027 data on the final four days of training lesser than or equal to resampled mean pitch of postsham
1028 data was $P_{boot}<0.0010$).
1029
1030

a

b

1031

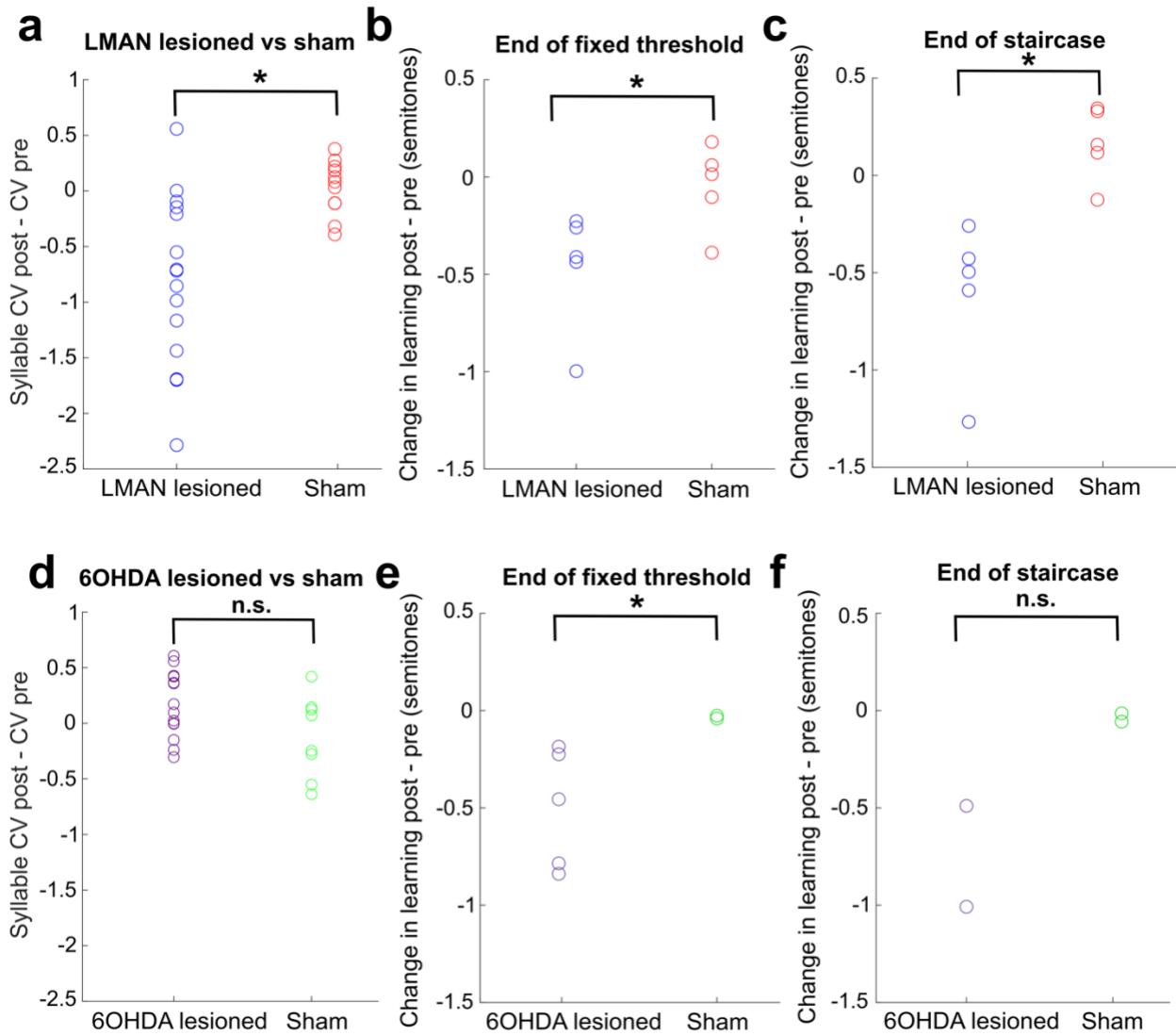
1032

1033

1034

1035

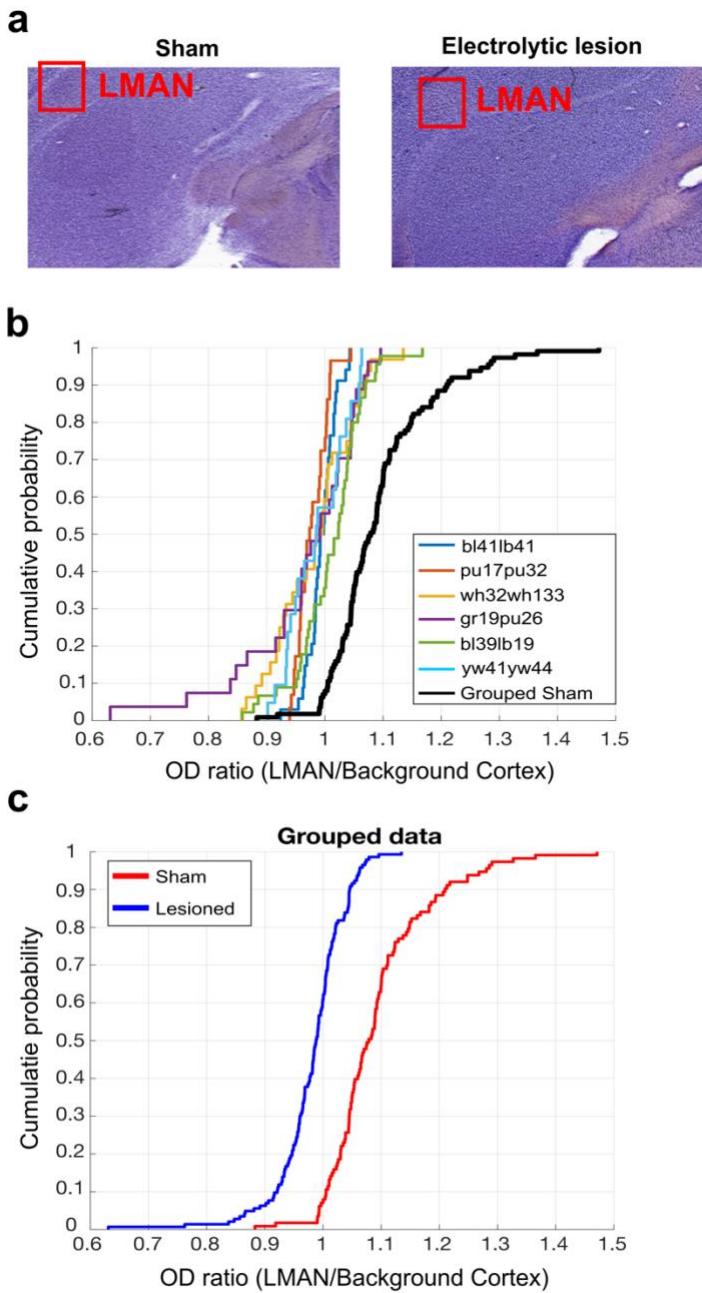
1036


1037

1038

1039

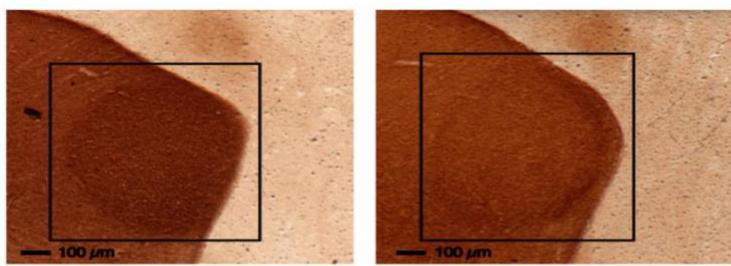
Figure 2- Figure Supplement 4. Analysis of acute effects of cutaneous stimulation on target syllable pitch (a) For each experiment throughout all data sets described in this paper, we calculated the pitch of every catch trial that occurred during each day of cutaneous stimulation training, normalized to the mean pitch of all trials that triggered cutaneous stimulations. We excluded all experiments with less than 10 catch trials. Error bars are S.E.M. No individual experiment differed significantly from 1 (t-test, $0.071 < p < 0.997$). (b) Same as in (a), but we analyzed randomly selected trials from a baseline recording day for each experiment. For each


1040 experiment, we selected the same number of trials as in (a). There was no significant difference
1041 between this data set and the normalized catch trials (paired t-test, $p = 0.339$).
1042
1043
1044

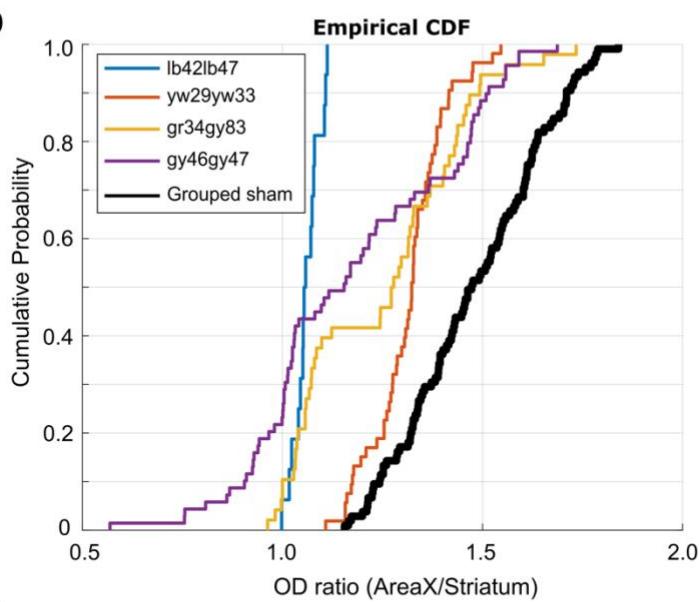
1045
1046
1047 **Figure 3- Figure Supplement 1.** (a) Change in syllable CV in LMAN lesioned and sham
1048 operated birds. Each data point represents the CV postlesion - CV prelesion of one individual
1049 song syllable. LMAN lesions induced a significant reduction in syllable CV compared to sham
1050 operations (2 sample KS test, $p=0.003$). (b) Lesion-induced change in learning magnitude
1051 (measured at the end of three days of cutaneous stimulation training) in LMAN lesioned and
1052 sham operated birds. The lesion-induced change in learning magnitude (post–pre) for LMAN
1053 lesioned birds was significantly greater than sham (2 sample KS test: $p=0.036$). (c) Same as
1054 (b), except learning magnitude was measured at the end the extended staircase portion of
1055 training. The lesion-induced change in learning magnitude (post – pre) in LMAN lesioned birds
1056 was significantly greater than in sham operated birds (2 sample KS test, $p=0.004$) (d) Change in
1057 syllable CV in 6OHDA lesioned and sham operated birds. Each data point represents the CV
1058 postlesion - CV prelesion of one individual song syllable. 6OHDA lesions did not induce a

1059 significant reduction in syllable CV compared to sham operations (2 sample KS test, $p=0.209$).
1060 (e) Lesion-induced change in learning magnitude (measured at the end of three days of training)
1061 in 6OHDA lesioned and sham operated birds. The lesion-induced change in learning magnitude
1062 (post-pre) in 6OHDA lesioned birds was significantly greater than in sham operated birds (2
1063 sample KS test: $p=0.036$). (f) Same as (e), except learning magnitude was measured at the end
1064 the staircase portion of training.

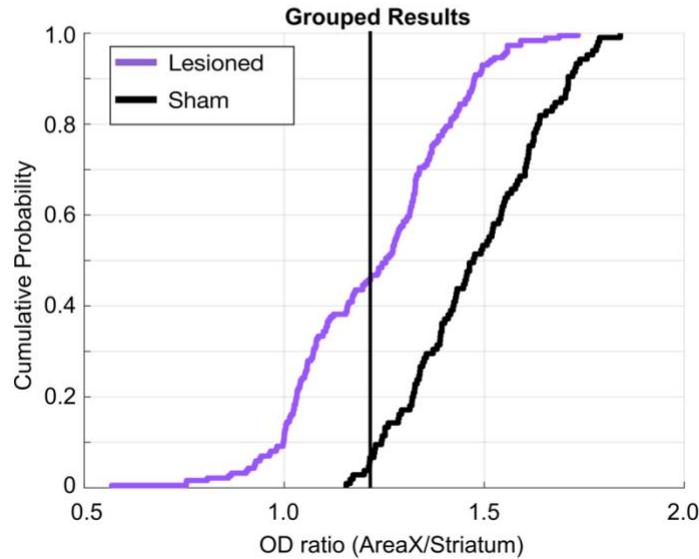
1065
1066



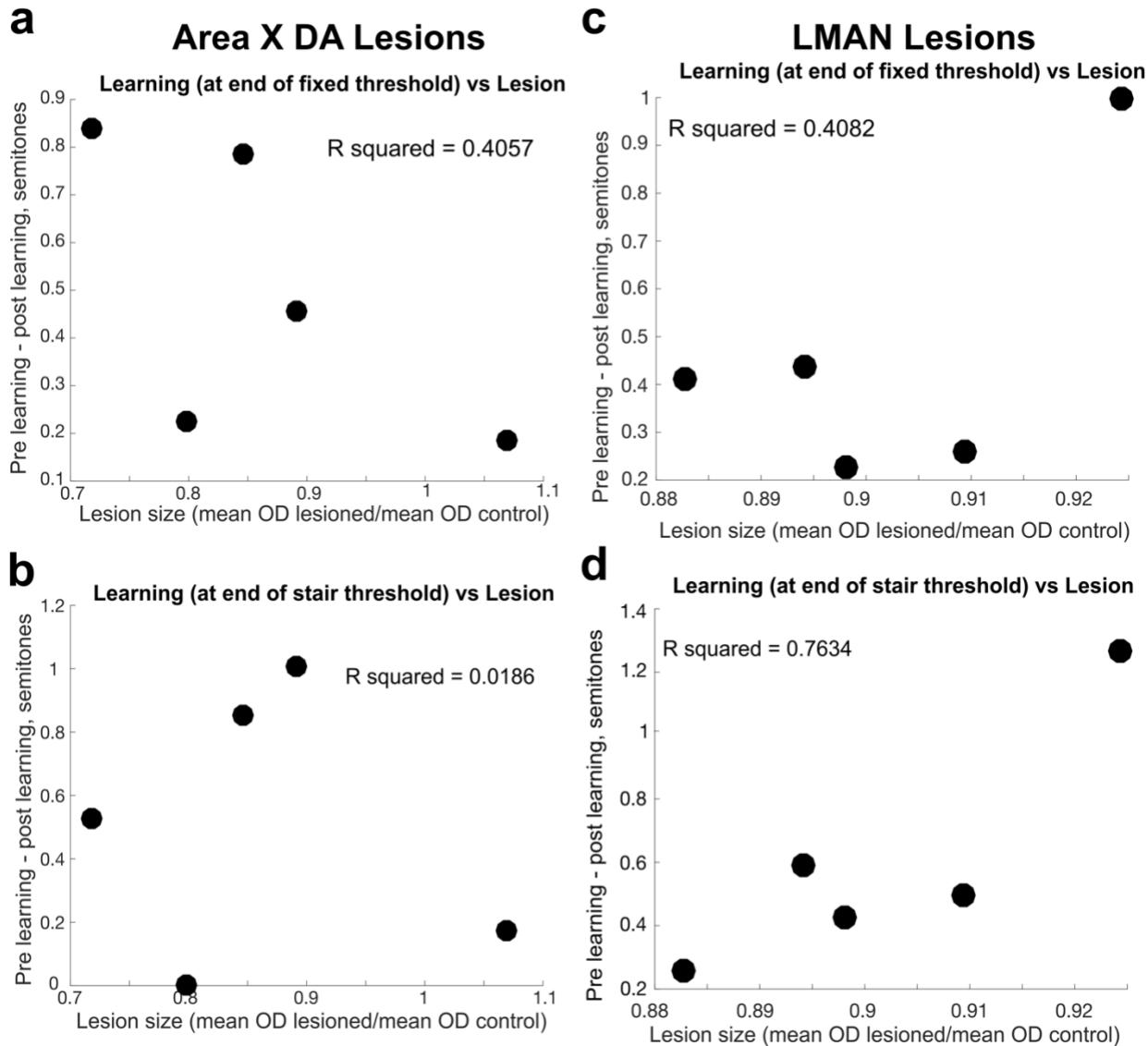
1067
1068


Figure 3- Figure Supplement 2. LMAN lesion histological analysis. (a) Example images of Nissl-stained brain tissue. Tissue from sham operated bird on the left and tissue from LMAN lesioned bird on the right. Red boxes highlight the locations of LMAN. (b) CDF plot of optical

1072 density (OD) ratios (OD of LMAN / OD of non-LMAN-pallium) in lesioned and sham operated
1073 birds. Each line shows the OD ratios from each individual LMAN lesioned bird, and the black
1074 line shows the OD ratios from the grouped sham data set. (c) CDF plot of OD ratios in lesioned
1075 and sham operated birds. Blue line shows the OD ratios from the grouped LMAN lesion data set
1076 and the red line shows the OD ratios from the grouped sham data set (2 sample KS test, $p <$
1077 0.001).
1078


a

b


c

1079
1080
1081

1082 **Figure 4- Figure Supplement 1.** 6-OHDA lesion histological analysis. (a) Example images of
1083 TH-stained brain tissue. Tissue from sham operated bird on the left and tissue from 6-OHDA
1084 lesioned bird on the right. Black boxes highlight the locations of Area X. (b) Cumulative

1085 probability plot of optical density (OD) ratios (OD of Area X / OD of non-X-striatum) in 6-OHDA
1086 lesioned and sham operated birds. Each line shows the OD ratios from each individual 6-OHDA
1087 lesioned bird, and the black line shows the OD ratios from the grouped sham data set. (c) CDF
1088 plot of OD ratios in lesioned and control birds. Purple line shows the OD ratios from the grouped
1089 6-OHDA lesioned dataset, and the black line shows the OD ratios from the grouped sham
1090 dataset (2 sample KS test, $p < 0.001$).
1091
1092

1093
1094
1095 **Figure 4- Figure Supplement 2.** Comparison of lesion magnitude and learning deficit. (a) For
1096 each bird, the difference between the magnitude of learning, calculated at the end of three days
1097 of cutaneous stimulation training, prelesion vs postlesion, compared to the magnitude of the
1098 Area X dopamine lesion in 6-OHDA injected birds, measured by the ratio of the mean OD of the
1099 lesioned tissue to the mean OD of control tissue. Each dot represents the results from each
1100 individual bird. (b) Same as in (a), but the magnitude of learning was assessed at the end of the
1101 additional days of staircase training. (c) For each bird, the difference between the magnitude of
1102 learning prelesion and the magnitude of learning postlesion (in both cases, the magnitude of

1103 learning is measured at the end of the three days of fixed threshold training, compared to the
1104 size of the LMAN lesion in electrolytically lesioned birds, measured by the ratio of the mean OD
1105 of the lesioned tissue to the mean OD of control tissue. Each dot represents the results from
1106 each individual bird. (d) Same as in (c), but the magnitude of learning was assessed at the end
1107 of the additional days of staircase training.

1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125