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Studies of protein fitness landscapes reveal biophysical constraints guiding protein evolution and
empower prediction of functional proteins. However, generalisation of these findings is limited
due to scarceness of systematic data on fitness landscapes of proteins with a defined evolutionary
relationship. We characterized the fitness peaks of four orthologous fluorescent proteins with a
broad range of sequence divergence. While two of the four studied fitness peaks were sharp, the
other two were considerably flatter, being almost entirely free of epistatic interactions.
Counterintuitively, mutationally robust proteins, characterized by a flat fitness peak, were not
optimal templates for machine-learning-driven protein design – instead, predictions were more
accurate for fragile proteins with epistatic landscapes. Our work paves insights for practical
application of fitness landscape heterogeneity in protein engineering.

Introduction
Understanding the relationship between genotype and phenotype, the fitness landscape,
elucidates the fundamental laws of heredity (Canale et al., 2018; de Visser and Krug, 2014;
Ferretti et al., 2018; Fragata et al., 2019; Wright, 1932) and may ultimately create novel
methods of protein design (Alley et al., 2019; Bryant et al., 2021a; Hirabayashi and Arai, 2019;
Wrenbeck et al., 2017; Wu et al., 2019). The fitness landscape is often conceptualised as a
multidimensional surface (de Visser and Krug, 2014; Ferretti et al., 2018; Kondrashov and
Kondrashov, 2015; Wright, 1932) with one dimension representing fitness, or another
phenotype, and the other dimensions each representing a genotype’s locus. Originally, the
fitness landscape was introduced to describe the relationship between fitness and the
entire genome (de Visser and Krug, 2014; Wright, 1932). Over time, the usefulness of the
concept of the fitness landscape led to the adaptation of this term to describe the
relationship between protein function and its protein-coding gene sequence (Biswas et al.,
2021; Ogden et al., 2019; Romero and Arnold, 2009; Wittmann et al., 2021; Zheng et al.,
2020). Absolute knowledge of the fitness landscape would reveal the phenotypes conferred
by any arbitrary genotype (de Visser and Krug, 2014; Ferretti et al., 2018; Fragata et al.,
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2019), with immense and obvious practical implications (Alley et al., 2019; Bryant et al.,
2021a; Hirabayashi and Arai, 2019; Kemble et al., 2019; Wrenbeck et al., 2017; Wu et al., 2019).
However, sparse experimental data, even for specific genes, and the concomitant lack of
understanding of the rules by which fitness landscapes are formed, limit the accuracy of
phenotype predictions based on sequence alone (Lässig et al., 2017) [but see (Bryant et al.,
2021a; Rocklin et al., 2017; Senior et al., 2020; Wu et al., 2019)].

While several experimentally characterized fitness landscapes for specific proteins have
been reported (Hartman and Tullman-Ercek, 2019; Jacquier et al., 2013; Kuo et al., 2020;
Melamed et al., 2013; Olson et al., 2014; Sarkisyan et al., 2016), such surveys of large proteins
are still hindered by the enormity of the genotype space (de Visser and Krug, 2014; Wright,
1932). Even for the Green Fluorescent Protein (GFP), which is only ~250 amino acids long,
there are 20250 possible genotypes. Without complex epistatic interactions between amino
acid sites the fitness landscape could be deduced from the independent contribution of
each amino acid at each site (Kondrashov and Kondrashov, 2015), requiring just 5000
(20*250) measurements of the effects of all single mutations in GFP. However, epistatic
interactions between amino acid sites are common (Russ et al., 2020) and many of them are
too complex to predict with available data (Pokusaeva et al., 2019). Despite some advances
in the development of data-driven approaches to protein design (Biswas et al., 2020, 2018;
Bryant et al., 2021a; Kemble et al., 2019), it is still not clear what fraction of the 20250

sequences of the GFP, or any other gene, must be characterized to approach the coveted
absolute knowledge of the fitness landscape (Kemble et al., 2019; Sailer et al., 2020; Zhou
and McCandlish, 2020).

Despite lack of data, experiments and theory provide some insights on the global fitness
landscape (Fragata et al., 2019; Kemble et al., 2019). Each extant genotype, one that is found
in an extant species, is a point of high fitness, or a fitness peak, on the highly dimensional
and extraordinarily large genotype space (de Visser and Krug, 2014; Fragata et al., 2019;
Maynard Smith, 1970; Wright, 1932). These extant genotypes had a common ancestor, so
they must be connected by ridges of high fitness (Gong et al., 2013; Maynard Smith, 1970;
Povolotskaya and Kondrashov, 2010). Nevertheless, only an infinitesimally small fraction of
all genotypes are functional (fewer than 10-11), those that correspond to fitness peaks and
ridges, the rest confer low fitness (Keefe and Szostak, 2001). The fitness peaks are sharp
(Bank et al., 2015; Melamed et al., 2013; Sarkisyan et al., 2016) and the ridges are narrow
(Gong et al., 2013; Kumar et al., 2017; Pokusaeva et al., 2019; Sailer et al., 2020) and, on
average, only a few random mutations in a wildtype sequence reduce its fitness to zero
(Hartman and Tullman-Ercek, 2019; Kemble et al., 2019). The sharpness of the peaks is
enhanced by negative epistasis, such that a genotype with several random mutations has a
lower fitness than expected if mutations acted independently (Haddox et al., 2018;
Sarkisyan et al., 2016). Thus, a random walk from a fitness peak eventually leads to an area
of the genotype space where only an infinitesimally small fraction of sequences are
functional, likely explaining why accurate prediction of functional genotypes at a
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substantial distance away from a functional genotype remains a challenge (Alley et al., 2019;
Hirabayashi and Arai, 2019; Russ et al., 2020; Wu et al., 2019).

Figure 1. Comparison of four GFP fitness peaks. a, A conceptual representation of the GFP
fitness landscape following the visualization proposed by Sewal Wright (Wright, 1932). The
black dotted lines represent the unknown regions of the fitness landscape and the green
lines the surveyed local fitness peak. Wildtype GFPs (black +) and predicted functional GFPs
(green +) are shown at an approximate scale of sequence divergence from each other. b,
Amino acid sequence identity between different orthologs, displayed in percent. c,
Distribution of fluorescence of mutant libraries (colour), control wildtype protein
sequences (white), and protein sequences containing loss-of-function mutations in the
chromophore (black).

The shape of fitness peaks and ridges, and their distribution in genotype space has
implications for fundamental questions in evolution (de Visser and Krug, 2014) and practical
applications (Sardanyés et al., 2008). Evolution starting at a sharp fitness peak is expected
to proceed at a different pace than evolution on a flat one (Bershtein et al., 2006; Codoñer
et al., 2006; de Visser et al., 2003; Draghi et al., 2010; Wagner, 2008). Furthermore, it has
been suggested that flat fitness peaks, representing robust genotypes, may be
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evolutionarily preferable to sharp peaks, which represent fragile genotypes (Bershtein et
al., 2006; de Visser et al., 2003; Draghi et al., 2010; Klug et al., 2019; Zheng et al., 2020).
However, how different shapes of fitness peaks may be distributed in genotype space has
not been explored (Chan et al., 2017; Kemble et al., 2019). Furthermore, the exploration of
the fitness landscape of specific proteins is one of the approaches in protein engineering
(Bryant et al., 2021b; Romero and Arnold, 2009; Russ et al., 2020; Wittmann et al., 2021).
Such studies explore the fitness landscape of the protein of interest through deep
mutational scan of a known protein sequence. Then this information is used to predict
novel functional protein sequences that are designed by introducing mutations into the
original sequence. Here, we explored the interplay of the heterogeneity of fitness peaks of
orthologous sequences and prediction of novel functional protein sequences (Figure 1a). To
this end, we compared the fitness peaks of four GFPs that had different levels of sequence
divergence from each other. We then used this information to accurately predict novel
functional GFPs at considerable sequence divergence to any known GFP sequence.

Results
To complement the available data on the avGFP fitness peak (Sarkisyan et al., 2016) (GFP
from Aequorea victoria, Hydrozoa) we experimentally characterized three additional GFP
sequences, each with a different degree of sequence divergence from avGFP: amacGFP
(Aequorea macrodactyla, Hydrozoa), cgreGFP (Clytia gregaria, Hydrozoa), and ppluGPF2
(Pontellina plumata, Copepoda), with 18%, 59% and 82% sequence divergence, respectively
(Figure 1b; Table 1). For simplicity, we refer to all of these sequences as “wildtype”, even
though only cgreGFP and ppluGPF2 were identical to the true wildtype sequences, while
avGFP and amacGFP contain one and three amino acid substitutions, respectively.
amacGFP, ppluGFP2 and cgreGFP were subject to a similar experimental pipeline (Figure
S1) as avGFP (Sarkisyan et al., 2016). For each sequence a library of genotypes containing
random mutations in the respective GFP sequence was generated by error-prone PCR, in
which each GFP gene variant was labelled downstream of its stop codon by a primary
barcode, a random combination of nucleotides. This mutant library was expressed as a
fusion protein with the red fluorescent protein mKate2 in E. coli cells, which were then
sorted based on green fluorescence intensity within a narrow red fluorescence gate, to
control for gene expression level and other errors (Figure S2). The DNA barcodes of the
sorted cells were sequenced and these data were used to perform a statistical analysis
estimating the level of fluorescence of tens of thousands of GFP genotypes. Three notable
improvements to the original experimental pipeline were implemented: gene
sequence-agnostic library sequencing, genome integration of the construct, and use of
secondary barcodes that introduced internal replicas in the experiment (see Methods).
These changes resulted in more physiologically relevant expression levels, made the
pipeline more scalable, and reduced the variance of fluorescent genotype measurements by
a factor of 7 (Figure 1c; Table 1). The new dataset contained 25,000-35,000 genotypes per
each of the three additional fitness peaks, with each mutant genotype harboring on average
3-4 mutations relative to its respective wildtype sequence (Table 1). These data, together
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with data from avGFP, were then used in our comparative study of the GFP fitness peaks
(Figure 1a).

Figure S1. Flowthrough of the experimental methodology.
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Table 1. The dataset in numbers. The avGFP data is from (Sarkisyan et al., 2016).

Gene amacGFP cgreGFP ppluGFP2 avGFP

Number of protein genotypes
surveyed

35500 26165 32260 51715

Average (median) number of AA
substitutions per genotype

4.37 (3) 4.23 (3) 3.7 (2) 3.93 (4)

Average (median) number of
barcode replicates per protein
genotype

8.7 (5) 6.8 (5) 12 (7) 1.2 (1)

Amino acid identity avGFP: 82%
cgreGFP: 43%
ppluGFP2: 17%

avGFP: 41%
amacGFP: 43%
ppluGFP2: 19%

avGFP: 18%
amacGFP: 17%
cgreGFP: 19%

amacGFP: 82%
cgreGFP: 41%
ppluGFP2: 18%

False positive rate* 0.55% (9 of 1635) 0.75% (14 of 1860) 0.49% (11 of 2242) 0.24% (2 of 839)

False negative rate* 0% (0 of 1084) 0% (0 of 1583) 0% (0 of 2744) 0.08% (2 of 2444)

Mean wildtype log10 fluorescence
level ± standard deviation

3.97 ± 0.031
(3.96 ± 0.030 for
amacGFP:V14L)

4.50 ± 0.028 4.23 ± 0.027 3.72 ± 0.082

Fraction of genotypes in which
epistasis cannot be ascertained**

7.4% 15.9% 4.5% 16.5%

Fraction of genotypes displaying
|epistasis| > 0.3 (> 1)***

5.3% (0.2%) 14.4% (5.6%) 6.8% (0.9%) 21.4% (11.6%)

Mutational LD50, loss of
function****

5.8
(5.7 for
amacGFP:V14L)

3.2 6.2 4.1

Mutational LD50, loss of
wildtype-level fluorescence
level****

1.7
(1.8 for
amacGFP:V14L)

0.9 1.7 2.2

Proportion of machine-learning
predicted genotypes displaying
epistasis < -0.3 (<-1)

78% (46%) 57% (21%) 81% (64%) NA

* False positive rates refer to the fraction of genotypes which are expected to be dark or dim due to
chromophore mutations but which were assigned a bright fitness; false negative rates refer to genotypes
encoding wildtype protein which were assigned dim or dark fitnesses.
** Calculation of epistasis requires knowledge of a genotype’s expected fluorescence, i.e. the sum of
contributions of individual mutations. For genotypes with multiple mutations, all individual mutations
comprising the genotype must have been measured in isolation.
*** An absolute epistasis value of 0.3 or 1 implies a two-fold or ten-fold difference between the observed and
expected fluorescence levels, respectively.
**** “Mutational LD50, loss of function” refers to the number of mutations at which 50% of genotypes are
rendered non-functional (i.e. assigned to the darkest FACS gate), obtained by fitting a logistic curve to the
fraction of non-functional genotypes at each mutational step (see values in Table S1) and solving for f(x)=0.5;
“Mutational LD50, loss of wildtype fluorescence level” refers instead to the number of mutations at which 50%
of genotypes maintain a fluorescence level within two standard deviations of the WT level.
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The four fitness peaks shared substantial similarities (also see (Biswas et al., 2018) for
sfGFP). In all cases synonymous variants had no measurable effect on fitness, which may be
a consequence of the experimental design aimed to be insensitive to expression levels and,
thus, they were pooled for all subsequent analyses (Figure S3a). Mutations in the
chromophore eliminated fluorescence (Figure S4a) and mutations of buried amino acid
residues had a stronger effect than mutations of residues on the protein surface (Figure 2b;
Figure S4b). In all four fitness peaks a threshold effect of accumulating multiple random
mutations was found, such that the median level of fluorescence dropped sharply once a
certain number of mutations was reached (Figure 2a; Figure S3b; Table S1). The fitness
peak shape differed substantially among different GFP sequences. Only 3-4 mutations were
necessary for avGFP and cgreGFP, so the corresponding fitness peaks were sharp (Table 1).
By contrast, the fitness peaks of amacGFP and ppluGFP2 were substantially flatter, with
each tolerating twice as many mutations (Figure 2a; Figure S3b). Furthermore, we
characterized the sharpness of the fitness peaks associated with many neighboring
sequences, those harbouring a single mutation relative to the wildtype sequence. Fitness
peaks of most single-mutation neighbours with high levels of fluorescence were sharper
than the respective wildtype fitness peaks (Figure 2c), suggesting a local optimization of
robustness of each wildtype sequence (Draghi et al., 2010). Notably, the shape of the
wildtype fitness peak showed no straightforward relationship with its respective level of
fluorescence (Table 1), as may have been expected (Johnson et al., 2019).
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Figure 2. Sequence divergence and epistasis within and between genes. a, The sharpness
of different GFP fitness peaks, showing the median relative fluorescence level of genotypes
with the corresponding number of mutations away from the wildtype. Fluorescence values
are normalized so that the wildtype level equals 1. b, Distribution of fluorescence of
genotypes with a single amino acid mutation at exposed (colour) versus buried (white) sites.
c, The sharpness of fitness peaks of the genotypes that harbor one mutation relative to the
wildtype sequence. Each curve shows the median fluorescence level at various distances
away from such genotypes, calculated for points with at least 15 available genotypes. The
black lines show the fluorescence level at varying distances from the wildtype sequence. d,
The ratio of the number of observed functional genotypes and the number of genotypes
expected to be functional under the assumption of no epistatic interactions between amino
acid sites; in the absence of epistasis, the expectation is a constant value of 100%.
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Figure S2. Distribution of cells during FACS sorting. Entire mutant libraries are shown in
grey, non-fluorescent negative controls are shown in black. Sorted cells, falling within the
selected gate in the mKate2 channel and corresponding to around 10% of all bacterial cells,
are shown in red. Vertical dashed lines in the upper histogram indicate the eight gates in
the green channel that cells were recovered from. The histograms indicate the distribution
of cells in a single channel.
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Figure S3. Distributions of libraries and control genotypes. a, Fluorescence level
distributions of individual barcodes linked to wild-type nucleotide sequences (colour)
versus sequences containing only synonymous mutations (dotted line). The minimum
number of observations per barcode was 50. The differences between barcoded wildtypes
and synonymous variants in all four libraries was not significant (p-value > 0.17, two-tailed
Mann Whitney U-test). b, Fluorescence level distributions of genotypes at varying distances
from the wildtype and the logistic curves fitted to the median fluorescence for each
category (black line).
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Figure S4. Effects of mutations across the GFP sequences. a, Median effects of single
mutations according to sequence position. Amino acid residues on one single strand of the
beta barrel of GFP monomers. The chromophore sites are hatched (positions 67-69) and
sites with buried amino acid side chains are labeled with tick marks. The overlaid protein
secondary structure was obtained with Pymol from the respective crystal structures. b,
Median effects of single mutations visualized on protein 3D structures, left-to-right: avGFP
(2WUR), amacGFP (7LG4), cgreGFP (2HPW), and ppluGFP2 (2G3O). In each case, a single
example beta sheet is represented as spheres in order to better illustrate the difference in
mutational effects on residues with internally- versus externally-oriented side chains.

We compared the fluorescence of each genotype to the expected level under an
assumption that each mutation influences fluorescence level independently, i.e. without
any epistasis (eq. 1):

epistasis  = (eq. 1)𝐸𝑓𝑓𝑒𝑐𝑡
𝑜𝑏𝑠𝑒𝑟𝑣𝑒𝑑

 −  𝐸𝑓𝑓𝑒𝑐𝑡
𝑒𝑥𝑝𝑒𝑐𝑡𝑒𝑑

 =  (𝐹
𝑚

 −  𝐹
𝑤𝑡

) −  
𝑖

∑ (𝐹
𝑖
 −  𝐹

𝑤𝑡
) · 𝑥

𝑖

Where Fi, Fm Fwt are measured levels of fluorescence of a genotype with a single mutation i,
of genotype m, or of the wildtype sequence, respectively, and xi = 1 when mutation i is
contained within the genotype m and xi = 0 when it is not. We then calculated the fraction
of genotypes that do not require epistatic interactions to predict their fluorescence. On all
four fitness peaks, genotypes with two mutations away from the wildtype sequence rarely
exhibited any epistatic interactions. However, a striking difference between the fitness
peaks was observed when considering genotypes with multiple mutations. The level of
fluorescence for a vast majority of genotypes with >5 mutations cannot be explained
without epistasis in sharp fitness peaks, avGFP and cgreGFP. By contrast, few genotypes
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with >5 mutations in flat fitness peaks required epistasis to explain their fluorescence level,
with amacGFP requiring almost no epistasis at all (Figure 2d, Figure S5). Interestingly, the
sharpness of the fitness peaks and the concomitant extent of epistatic interactions did not
correlate with the sequence divergence between the fitness peaks. Indeed, the two closest
sequences (82% identity), derived from the same genus, are the sharp, epistatic avGFP peak
and the flat, non-epistatic amacGFP peak (Figure 2d).

Figure S5. Epistatic interactions of mutations in GFP. a, Epistasis in genotypes with two
mutations, highlighting negative epistatic interactions between individually neutral or
slightly deleterious mutations. b, Fraction of genotypes that display strong epistasis at
different distances from the wildtype.

Flat fitness peaks correspond to mutationally robust proteins, those that are capable of
withstanding multiple mutations without losing function, while sharp fitness peaks
correspond to mutationally fragile ones. The observed differences in mutational robustness
of different proteins may be explained by thermodynamic stability (Bershtein et al., 2006;
Echave and Wilke, 2017; Gong et al., 2013; Kurahashi et al., 2018; Poelwijk et al., 2019;
Sarkisyan et al., 2016). Therefore, we performed an array of assays aimed at the biophysical
characterisation of the four wildtype proteins and an additional genotype, amacGFP:V12L,
which differed from amacGFP by the V12L mutation that was extremely common in the
amacGFP mutant library. We have assayed the thermal stability of the proteins, using
Differential Scanning Fluorimetry (DSF), Differential Scanning Calorimetry (DSC), Circular
dichroism (CD), as well as simple measurements of fluorescence in a qPCR machine at
different temperatures. We also assayed refolding kinetics of urea-denatured
proteins(Pédelacq et al., 2006). Finally, we have assessed oligomeric states of each of the
proteins using multi-angle light scattering with size-exclusion chromatography
(SEC-MALS).
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The different methods yielded complementary results (Figure S6; Table 2). Specifically, we
observed that the most mutationally fragile protein, cgreGFP is also the most kinetically
unstable protein and the most mutationally robust protein, ppluGFP2, was also the most
kinetically stable (Table 2; Figure S6; Figure S7d-e). These data tentatively suggest that the
shape of the GFP fitness peaks, as characterized by mutational robustness, may be shaped
by the underlying protein stability. This relationship does not appear to be perfect, as the
mutationally fragile avGFP is stable, while amacGFP has mutational robustness comparable
to ppluGFP2 (Table 1), but a substantially lower stability (Table 2). Indeed, there may be
other factors that influence this relationship, such as the oligomeric protein state and the
propensity of the mutant genotypes to aggregate. Indeed, avGFP is the only exclusive
monomer from among the four wildtype sequences (Table 2; Figure S8), ppluGFP2 is
exclusively tetrameric. The propensity for aggregation also appears variable between the
genotypes, with amacGFP showing the highest aggregation of non-fluorescent genotypes
(Figure S8).

Figure S6. Thermal sensitivity of GFP orthologs. a, Thermal unfolding measured by
differential scanning fluorimetry (DSF) showing the first derivative of the ratio of 350/330
nm emission. Shaded areas indicate standard deviation of triplicates. b, Melting curves of
green fluorescence emission (510 nm) as a function of temperature measured on a qPCR
machine. Shaded areas indicate standard deviations of eight technical replicates. c,
Thermal aggregation measured by DSF showing the first derivative of the light scattering.

13

.CC-BY 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted December 9, 2021. ; https://doi.org/10.1101/2021.12.08.471728doi: bioRxiv preprint 

https://doi.org/10.1101/2021.12.08.471728
http://creativecommons.org/licenses/by/4.0/


Shaded areas indicate standard deviation of triplicates. d, Specific heat capacities measured
by differential scanning calorimetry in duplicate. e, Circular dichroism (CD) spectra
measured before (30°C) and after (98°C) with the melting curves depicted in (f) where
vertical dotted lines indicate the monitored wavelength in (f). f, CD melting curves
monitored at 218 nm (and additionally 208 nm in the case of avGFP, where 218 nm did not
show a transition), fitted with a logistic curve. In (a), (b), (c), (d), (f), vertical dashed lines
indicate the melting temperature, except ppluGFP2 in (b). In (a), (b), (d), (f), temperature was
increased at a rate of 1°C per minute, in (c), at a rate of ~2°C per minute, the slowest allowed
by the LightCycler.
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Table 2. Biophysical and biochemical characterisation of wildtype GFPs.

amacGFP:V14L amacGFP cgreGFP ppluGFP avGFP

Unfolding Tm (DSF) 80.8 °C 82.6 °C 74.1 °C 91.8 °C 86.8 °C

Aggregation Tm (DSF) 79.5 °C 82.0 °C 73.9 °C 90.2 °C 86.6 °C

Tm (CD) 80.4 °C 82.6 °C 71.2 °C 86.4 °C 83.7 °C

Transition slope (CD) 0.86 0.72 1.27 0.63 0.67

Tm (DSC) 80.2 °C 82.4 °C 72.9 °C 90.3 °C 86.3 °C

Enthalpy of denaturation (DSC) 744 kJ/mol 768 kJ/mol 755 kJ/mol 515 kJ/mol 1012 kJ/mol

Fluorescence loss Tm (qPCR) 81.1 °C 82.6 °C 72.9 °C - 87.5 °C

Urea denaturation: initial rate* -0.87 -0.35 -0.18 -0.02 -0.009

Kinetic parameters for urea
denaturation curves*

a1 = 0.71
k1 = 0.96 h-1

a2 = 0.28
k2 = 0.25 h-1

a1 = 0.52
k1 = 0.54 h-1

a2 = 0.43
k2 = 0.12 h-1

- a1 = 0.92
k1 = 0.02 h-1

a1 = 0.92
k1 = 0.01 h-1

Refolding: initial rate** 0.01 0.01 0.000014 0.05 0.007

Kinetic parameters for refolding
curves*

a1 = -0.35
k1 = 0.025 s-1

a2 = -0.36
k2 =  0.005 s-1

a3 = -0.38
k3 = 0.001 s-1

a1 = -0.057
k1 = 0.057 s-1

a2 = -0.39
k2 =  0.013 s-1

a3 = -0.63
k3 = 0.002 s-1

a1 = 0.16
k1 = 0.036 s-1

a2 = -0.45
k2 =  0.01 s-1

a3 = -0.87
k3 = 0.001 s-1

a1 = -0.32
k1 = 0.14 s-1

a2 = -0.45
k2 =  0.02 s-1

a3 = -0.21
k3 = 0.003 s-1

a1 = -0.4
k1 = 0.016 s-1

a2 = -0.36
k2 =  0.001 s-1

a3 = -0.31
k3 = 0.001 s-1

Expected monomer size 28.1 kDa 28.1 kDa 27.4 kDa 25.7 kDa 27.9 kDa

Primary oligomeric state (SEC-MALS) Monomer (67%),
dimer (31%)

Monomer (51%),
dimer (46%)

Dimer (>99%) Tetramer (>97%) Monomer
(>99%)

* Curves monitoring loss of fluorescence in 9M urea were fitted with two exponential functions in the case of
amacGFP and amacGFP:V12L and one exponential function for avGFP and ppluGFP, while cgreGFP fluorescence
loss could not be well modeled using only exponential functions (see Figure S7c). Initial rates were estimated by
calculating the derivative at time t=0.
** Curves monitoring the recovery of fluorescence after urea denaturation over the course of 20 minutes were
fitted with three exponential functions (see Figure S7d). Initial rates were estimated by calculating the
derivative at time t=0.
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Figure S7. Urea denaturation and refolding of orthologues. a, Absorbance (grey) and
fluorescence (green) spectra of purified protein in 9M urea, or b, 1x PBS, measured at 42°C
every 30 minutes for 60 hours; darker lines correspond to later time points. Plotted values
are the means of eight technical replicates. c, Decrease in fluorescence over time during
exposure to 9M urea. avGFP and ppluGFP fluorescence loss curves are fitted with one
exponential function (f(x) = ), amacGFP and amacGFP:V12L curves are fitted𝑎

0
 +  𝑎

1
· 𝑒−𝑘1· 𝑥

with two exponential functions (black lines), while a good fit using only exponential
functions could not be achieved for cgreGFP. Data points from eight technical replicates
are shown. d,e, Fluorescence recovery curves of 9M-urea-denatured proteins upon dilution
with 20 volumes of 1x PBS. Fluorescence (excitation 485 nm, emission 520 nm) was
measured every second for twenty minutes in (d), and every 50 seconds for over 13 hours in
(e). Values are normalized to the end points. Recovery curves in (d) were fitted with three
exponential functions (black). Shaded areas in (e) represent standard deviations of six
technical replicates.
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Figure S8. Aggregation and oligomeric states in GFP orthologues. a, Coomassie-stained
gels (top) of full lysate, pellet, and supernatant of pooled functional (bright) or
non-functional (dark) genome-integrated library variants for amacGFP, cgreGFP, and
ppluGFP2. Western blot (bottom) of the same samples using an anti-His-tag antibody,
showing different aggregation tendency (i.e. pellet localization) for dark versus bright
variants. Expected molecular weight of the mKate2-GFP fusion is 53-56 kDa depending on
the GFP ortholog. Negative controls are cells of the same strain, but without integrated
GFP constructs. Lane identity in both gels is the same, and displayed on the right. b,
SEC-MALS analysis of wild-type proteins, showing protein peaks. Peak analysis is
consistent with the following oligomeric states for each gene: amacGFP: primarily mono-
and dimeric, with small fractions of tri- and/or tetramers; avGFP: primarily monomeric,
with a small dimeric fraction; cgreGFP: primarily dimeric, with a small tetrameric fraction;
ppluGFP2: primarily tetrameric, with a small fraction forming large aggregates or
oligomers. Mw/Mn ratios for all peaks were between 1 and 1.002, with the exception of the
large ppluGFP2 aggregates (Mw/Mn = 1.147).

We then used a computational approach to further explore the relationship between
protein stability and the shape of the fitness landscapes. We solved the crystal structure of
amacGFP and analysed it along with structures already available for other proteins. We
found that mutations causing a substantial reduction of fluorescence tended to have a
higher effect on protein stability (Figure S9), estimated by predicted ΔΔG (Two-sided
Mann Whitney U test, p<10-6). Furthermore, we found a statistically significant correlation
between predicted ΔΔG and the effect of a mutation, which was stronger in sharp fitness
peaks, avGFP and cgreGFP, and weaker in the flat fitness peaks, amacGFP and ppluGFP2
(Figure S9; Spearman’s correlation r=0.6 and r=0.3, respectively). Interestingly, the V12L
mutation in amacGFP:V12L appears to have shifted the distribution of the mutation effects,
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substantially increasing the effect of mutations on the barrel lid in proximity to residue 12,
without impacting the overall mutational robustness (Figure S10). Across the whole
landscape, epistatically interacting amino acid residues were slightly more likely to be
spatially proximal (Melamed et al., 2013; Sarkisyan et al., 2016) and the effect was more
pronounced in the flatter fitness peaks (Figure S11). Taken together, these data suggest that
the heterogeneity in the shape of the orthologous GFP fitness peaks may be related to the
stability of the underlying protein sequences.

Figure S9. Correlation between fluorescence and ddG predicted by Rosetta. a,
Distribution of ddG predictions for single mutations observed to either maintain
wildtype-level fluorescence (white) or render a genotype non-functional (colour).
Differences between the two distributions were found to be significant for all genes
(Two-tailed Mann Whitney U test, p = 0.02 for amacGFP:V14L, and p < 0.00002 for all other
genes). ddG predictions for mutations to and from proline and glycine were not considered.
b, Correlation between ddG predictions and observed fluorescence of single mutations.
The indicated Spearman’s rank correlation coefficient (r) was significant for all genes (p < 7 ·
10-15).
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Figure S10. Effects of mutations in amacGFP and amacGFP:V12L. a, Correlation between
effects of specific mutations in amacGFP backgrounds with and without the V12L (position
14 in our alignment) mutation (Pearson's r = 0.96). b, Median (solid lines) and mean (dashed
lines) fluorescence values of genotypes as a function of the number of mutations relative to
amacGFP or amacGFP:V12L sequences. c, Fraction of observed fluorescent genotypes
versus expected to be fluorescent under the assumption of no epistasis as a function of the
number of mutations away from amacGFP and amacGFP:V12L. d, Median difference of the
effect of mutations in amacGFP:V12L relative to amacGFP, colored on the crystal structure
of amacGFP. Position 12 is colored black. Residues, mutations of which have a stronger
effect in amacGFP:V12L are red, those in which the effect of the mutation is stronger in
amacGFP are blue. Atoms of residues with a median difference <-0.1 are shown as spheres.
(e) Differences in mutation effect between amacGFP:V12L and amacGFP, at the twelve most
affected positions. The majority of mutations have a difference in effect between -0.07 and
0.07 (shaded region, for reference see position 1S).
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Figure S11. Spatial proximity of amino acid residues and detected pairwise epistasis.
Heatmaps show the minimal distance in Angstroms between two residues, with pairs
showing epistatic interactions >0.3 shown by white dots. Inset violin plots show the
distribution of distances between non-epistatic (green) and epistatic (blue) pairs; in all four
cases, the epistatic pairs tended to be physically closer (Two-sided Mann-Whitney U-test,
p < 10-13).

20

.CC-BY 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted December 9, 2021. ; https://doi.org/10.1101/2021.12.08.471728doi: bioRxiv preprint 

https://doi.org/10.1101/2021.12.08.471728
http://creativecommons.org/licenses/by/4.0/


The apparent lack of a relationship between sequence divergence and fitness peak shape
suggests that the shape changes on a scale that is smaller than the distances between the
four GFP proteins. Therefore, the difference of the impact of mutations on different fitness
peaks should be independent from the sequence divergence between them. We found that
the probability that a neutral mutation in one protein becomes deleterious in another one
was independent of the sequence divergence (Figure 3a). We then asked if there is a
difference in which pairs of sites are interacting epistatically. Interestingly, pairs of
epistatically interacting sites were different across all four fitness peaks regardless of the
sequence similarity of the proteins (Figure 3b). Taken together, these data indicate that
underlying rules that determine epistatic interactions and fitness peak shape change on a
scale smaller than 20% of sequence divergence.

Figure 3. Differences in mutational effects in GFP orthologues. a, The proportion of single
amino acid mutations which were observed to be neutral (maintaining fluorescence within
two standard deviations of the wildtype level) in one orthologue and deleterious (reducing
fluorescence by over five standard deviations) in another, out of all mutations surveyed in
both. b, The proportion of pairs of amino acid positions with absolute value of epistasis >
0.3 in both genes, out of all the pairs of positions with epistasis > 0.3 in at least one of the
genes. In (a) and (b), pairs of genes are arranged in order of increasing sequence divergence.
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The identification of two mutationally robust proteins presented an opportunity to predict
novel GFP sequences. Two lines of reasoning led us to hypothesize that it would be easier
to create functional genotypes by introducing mutations into mutationally robust, rather
than fragile, proteins. First, robust proteins had a higher fraction of fit genotypes with >5
mutations and, therefore, it should be easier to find other genotypes that are farther away.
Second, a robust protein should be more tolerant of mistakes in predictions.

Prediction of functional genotypes many mutations away from known functional sequence
is akin to looking for a needle in a haystack. There are or ~10110 genotypes that222!

48! 174!  ·  1948

are 48 mutations away from a 222 amino acid long ppluGFP. Out of all of these sequences,
only an infinitesimally small proportion is expected to be functional, perhaps as few as 10-11

[(Keefe and Szostak, 2001)] and finding any appreciable number of these sequences
requires extraordinary precision. Therefore, we used a machine learning approach, training
neural networks on the genotype-to-phenotype relationships revealed by our data (see
Methods, Figure 4a). We split this data into non-overlapping training and validation sets.
Models were trained on the training set and after training, model goodness was calculated
as the coefficient of determination between predicted and actual fluorescence values for all
genotypes in the validation set. We started with a linear model fitted to the one-hot
encoded protein sequences. The validation score of the resulting models indicated that
between 59% and 82% of the variance could be explained in all landscapes by the simple
linear contribution of mutations in the protein sequence (Figure S12a). This simple estimate
of the fluorescence, which is called fitness potential (Kimura and Crow, 1978; Milkman,
1978), is simply the summed contribution of weighted mutations and does not account for
possible interactions between them. We then trained models of increasing capacity and
aimed at maximising the validation score while reducing overfitting. In all landscapes, very
few intermediate genotypes between the near wildtype and no fluorescence suggests that
an abrupt threshold function transforms the fitness potential into the final fluorescence
level, as has been observed previously (Pokusaeva et al., 2019; Sarkisyan et al., 2016).
Therefore, we decided to train sigmoid models, resulting in the successful capture of an
additional 13%, 78%, 53% and 39% of the remaining unexplained variance for amacGFP,
avGFP, cgreGFP and ppluGFP2, respectively, compared to the results of the linear model
(Figure S12b). This minute transformation of the fitness potential noticeably improves the
models’ power, especially for the two genes that display the highest levels of epistatic
interactions, avGFP and cgreGFP. In order to capture the functions that transform the
fitness potential into the predicted fluorescence, we decided to train models with an
output subnetwork of several sigmoid nodes (Figure S12c). These functions are shown in
Figure S12d. Theorising that models accounting for interactions between residues would
push further the predictive power of the models, we optimised the architecture of
two-layered networks, one for each dataset using a grid search approach. This resulted in
models capturing 0.88, 0.95, 0.86 and 0.90 of variance for amacGFP, avGFP, cgreGFP and
ppluGFP respectively, as shown in Figure 4b. Using the trained model as the evaluation
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function of a genetic algorithm, we made fitness peak-specific predictions, using the data
of each fitness peak to predict fluorescent genotypes containing up to 48 mutations
relative to the wildtype sequence.

Figure 4. Neural network structure. a, 1. Each genotype in the dataset was denoted by the
mutations it contained relative to its parental wildtype sequence. 2. Genotypes were
one-hot encoded. For each position in the sequence a binary vector indicated present (red
= 1) and absent (white = 0) amino acid states. 3. One-hot encoded sequences were flattened
and provided to the neural network as input. 4. The first hidden layer contained linear
nodes followed by a dropout layer of the same size. 5. The second hidden layer contained
sigmoid nodes followed by a dropout layer of the same size. Grey arrows indicate layer
widths that were optimised by a random search. Greyed-out neurons without output
connections represent randomly inactivated neurons in dropout layers. During training,
randomly inactivated neurons prevented overfitting. At inference time, randomly
inactivated neurons allowed the model to provide different estimates of the fluorescence
each time a prediction was run on a genotype. 6. Linear node outputting predicted
fluorescence values. For each predicted genotype, the median of several fluorescence
estimates was used as the final fluorescence level. b, Correlations between observed and
predicted levels of fluorescence with an optimized architecture. Datapoint density is
represented in color.
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Figure S12. Correlations between observed and predicted levels of fluorescence. a, With a
linear model, b, with a linear model and a sigmoid output node, c, with an output
subnetwork, and d, non-trivial sigmoidal functions transform fitness potentials into
predicted fluorescence. Datapoint density is represented in color.

Amino acids observed in homologous sequences, or extant states, are more likely to be
neutral when introduced into a sequence of interest (Pokusaeva et al., 2019) (Figure S13).
Therefore, one approach to predict a novel functional sequence would be to prefer the
introduction of extant amino acid states. However, we wanted to push the envelope of our
predictions in exploring uncharted regions of the GFP fitness landscape, avoiding the
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genotype space between known GFP sequences (space between fitness peaks in Figure 1a).
Thus, we aimed to predict genotypes as distant as possible from any known GFP sequences,
corresponding to an area of GFP genotype space not known to be explored by evolution.
Therefore, for experimental verification from among the predictions made by the machine
learning algorithm we selected sequences with the maximum amino acid states not present
in any natural GFP.

Figure S13. Effect of extant and non-extant mutations. (a) fraction of wildtype states in
extant green fluorescent proteins which become deleterious in our data, as a function of
the sequence divergence (from 0 to 100) between the two proteins. (b) distribution of
fitnesses of mutant genotypes containing only known extant states, or containing no
known extant states, at increasing distances from the reference.

Surprisingly, experimental verification showed that the accuracy of our predictions was
substantially higher for genotypes predicted by using data from the sharp cgreGFP fitness
peak (Figure 5). For genotypes with 48 mutations (>20% sequence divergence of GFP) our
predictions had an 8% accuracy when using data for the mutationally robust ppluGFP2 and
a 50%-60% accuracy for the mutationally fragile cgreGFP (Figure 5). These results may be
relatively trivial, if the predictions were based on universally neutral mutations(Kondrashov
and Kondrashov, 2015), those that are neutral in any GFP sequence. However, three lines of
evidence show that our high rate of prediction cannot be explained by universally neutral
mutations (also see (Poelwijk et al., 2019)). First, 30% of these mutations in functional
cgreGFP-derived proteins were deleterious in some of the backgrounds we measured
(15-20% in amacGFP and ppluGFP2). Second, the mutations used in successful predictions
occur in evolution at a rate two times slower than neutral synonymous substitutions (0.057
dn rate vs 0.11 ds rate, respectively, two-sided Mann-Whitney U-test p < 0.00001),
demonstrating that they are under negative selection. Finally, successful identification of
universally neutral mutations would lead to a successful prediction of distant derivatives of
any GFP sequence, not just the mutationally fragile cgreGFP. Furthermore, the
ML-designed variants derived from the more robust amacGFP and ppluGFP2 proteins were
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rendered non-fluorescent by negative epistasis substantially more frequently than those
derived from the fragile and epistatic cgreGFP (Table 1). This suggests that the success of
the neural network was dependent on being able to learn epistatic interactions from the
data, which were abundant in cgreGFP but rare in amacGFP and ppluGFP2, and to avoid
non-favourable epistatic interactions, rather than relying on universally neutral mutations.

Figure 5. Predicting functional GFP mutants. Violin plots show the distribution of
fluorescence of all genotypes (dark grey) and combinations of only individually neutral
mutations (light grey). Experimental measurements of the level of fluorescence in
genotypes predicted by the neural network are shown in black (12 genotypes per distance).
Coloured dashed lines show the median fluorescent values for each group. Red dashed lines
indicate the cutoff of detectable fluorescence. Photos of agar plates with E. coli spots
expressing predicted GFP variants are shown on the right. Spots of bacteria expressing GFP
variants are arranged in circles around the wildtype gene at increasing distance with the
number of mutations (6, 12, 18, 24, 30, 36, 42, 48 mutations). For each group of genotypes,
the brightest ones were inoculated at the top, with fluorescence decreasing clockwise.

Discussion
Experimental survey of the fitness landscape of a protein of interest is increasingly used in
protein engineering to discover novel sequences with specific functions (Bryant et al.,
2021b; Romero and Arnold, 2009; Russ et al., 2020; Wittmann et al., 2021). While this
approach remains challenging for proteins with a function that cannot be easily
ascertained in a high-throughput manner (Romero and Arnold, 2009), it is likely to be more
widely used in the future due to technological advances of experimental (Romero and
Arnold, 2009) and analytical (Wittmann et al., 2021; Wu et al., 2019) tools. Our description of
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heterogeneity of fitness peaks of orthologous GFPs suggests some practical considerations
for such surveys of other proteins. Researchers applying such methods to their protein of
interest will inevitably have to choose a specific protein sequence to experimentally assay
(Romero and Arnold, 2009). When the goal is to discover as many distant functional
proteins as possible (i.e. (Bryant et al., 2021b; Romero and Arnold, 2009; Russ et al., 2020;
Wittmann et al., 2021)) it may seem natural to select a structurally or mutationally robust
protein. Indeed, a robust protein, one that is known to be able to maintain function upon
the introduction of many mutations, seems a good starting point to introduce even more
mutations. Our results counter this intuition, and our recommendation is to select a fragile
protein as the original template for a mutational scan. For the data of the fitness landscape
to be useful for a downstream model to predict distant sequences, it has to contain
information about epistatic interactions between mutations. Thus, a useful fitness
landscape should contain many genotypes that have been rendered non-functional through
negative epistatic interactions among a handful of mutations. Our results for cgreGFP
demonstrate this principle. Out of 188 genotypes six mutations away from cgreGFP that
were expected to be functional by an additive model only 61 (32%) were actually
fluorescent. The rest were non-fluorescent, revealing extensive negative epistasis among
those mutations. By contrast, our model correctly predicted 100% (12/12) of genotypes 6
mutations away from cgreGFP, learning to avoid combinations of individually neutral
mutations that combine to create a non-functional genotype. Without this information,
such as for amacGFP that shows almost no epistatic interactions within the surveyed
genotypes, the model cannot learn which genotypes to avoid (Figure 5). The reported ~20%
prediction accuracy at 40 mutations for sfGFP is also consistent with the sharpness of its
fitness peak (Biswas et al., 2018).

Without direct knowledge of mutational robustness of a protein sequence our data indicate
that researchers may rely on thermodynamic stability to choose the initial template
protein, although the relationship between mutational and thermodynamic robustness may
be more complex (Table 2). However, given that for many proteins it is likely to be easier to
measure stability than mutational robustness, choosing a structurally unstable protein
from several available candidates may prove to be an acceptable compromise.

Despite the success of achieving high accuracy of prediction with our model, there are still
substantial limits to the prediction of functional proteins. Indeed, the relatively accurate
prediction of functional GFP sequences up to 20% divergence from cgreGFP does not imply
an ability to predict all = 8.8x1053 possible functional sequences at this level235!

20! 215!  ·  1920

of divergence. The substantial heterogeneity between fitness peaks of the highly similar
avGFP and amacGFP (18% divergence) suggests that predictions based on a single fitness
peak may have lower accuracy of prediction of sequences not governed by the same set of
epistatic interactions (Alley et al., 2019; Lee et al., 2018). However, the understanding of the
heterogeneity of such predictions would require random sampling of all 8.8x1053 sequences,
which is not presently feasible.
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The heterogeneity of the shape of the fitness peaks and the associated mutational
robustness of similar orthologous proteins is remarkable and unexpected. Up to 17% of all
genotypes six random mutations away from the ppluGFP2 wildtype sequence have the
same level of fluorescence as the wildtype. By contrast, only 0.9% of such genotypes
derived from the fragile cgreGFP exhibited wildtype fluorescence (Table S1). However, it
remains unclear whether this heterogeneity influences protein evolution. It is tempting to
suggest that these data indicate that ppluGFP2 is a more “evolvable” protein compared to
cgreGFP. However, there are still 2x1016 ( /50) functional genotypes 6235!

6! 229!  ·  196

mutations away from cgreGFP, so even such a relatively fragile protein may not be
restricted in its long-term evolution (Povolotskaya and Kondrashov, 2010). What fraction of
all genotypes ~250 amino acids in length are functional GFPs, and what factors govern
differences in the shape of fitness peaks of orthologous proteins, remain unknown.

Data availability. All data and programs relevant to our methodology is available at:
https://github.com/aequorea238/Orthologous_GFP_Fitness_Peaks. Cell libraries are
available upon reasonable request and subject to a material transfer agreement.
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Methods

Selection of genes
Candidate fluorescent proteins were selected based on several criteria: fluorescence in the
green spectrum, ability to mature and fluoresce in E. coli under standard culture
conditions, and varying degrees of sequence divergence from each other. We also preferred
candidates with an available solved crystal structure. Eight genes from six species
(Aldersladia magnificus, Aequorea macrodactyla, Clytia gregaria, Clytia hemisphaerica,
Pontellina plumata, and Asymmetron lucayanum) were selected as initial candidates. The A.
macrodactyla protein contained three point mutations, as the wildtype was previously
reported to mature poorly in E. coli (Luo et al., 2006). After testing their expression in E.
coli, the three brightest proteins were chosen for further experiments: amacGFP, cgreGFP,
and ppluGFP2, respectively from A. macrodactyla, C. gregaria, and P. plumata. Protein
sequences of the chosen genes were aligned using the T-Coffee Expresso structural
alignment (Armougom et al., 2006).

Golden Gate cloning
Single-step digestion/ligation Golden Gate protocols were adapted from (Weber et al.,
2011). All MoClo reaction mixtures contained 50ng each of insert DNA and destination
vector, 10U of T4 DNA ligase (ThermoFisher), 20U of type IIS restriction enzyme (BsaI, BpiI,
or BsmBI; ThermoFisher), in T4 ligase buffer at a final concentration of 1X and volume of
20ul. Thermocycler conditions were as follows: 10min at 37℃, 25 cycles of 1.5 min at 16℃
and 3 min at 37℃, 5 min at 50℃, and 10min at 80℃.

Generation of mutant libraries
Selected genes were ordered as synthetic dsDNA (Twist Biosciences), codon-optimized for
bacteria and compatible with common modular cloning (MoClo) standards(Weber et al.,
2011). For positions occupied by the same amino acid in different genes, the same codon
was used in all genes. The same constant, 20-nucleotide region was included in each gene
after the stop codon, for future primer-annealing purposes. All genes were cloned into
non-expression storage vectors via MoClo. We generated mutant libraries of each gene via
random mutagenesis with the Mutazyme II kit (Agilent), using 200ng of DNA template and
eight cycles of mutagenic PCR, in order to achieve an average of ~4 mutations per clone.
Primers (Sigma) included type IIS restriction sites for later cloning, and 20N random
nucleotide barcodes to label each molecule with a unique identifier, hereafter referred to
as “primary barcode”. PCR product was gel-purified and cloned into a storage vector via
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MoClo, and transformed into high-efficiency chemically competent E. coli cells (Lucigen E.
cloni 10G); post-heat shock recovery time was limited to 15-20 minutes to avoid cell
division during recovery and ensure that each resulting colony was the result of an
independent transformation event. Up to 150 thousand colonies were recovered and
pooled; DNA was extracted following standard maxiprep plasmid extraction protocol
(ThermoFisher, GeneJet maxiprep kit) using 2-4 g of pooled colonies instead of liquid
culture. Mutation rates were confirmed by Sanger sequencing (Microsynth) for random 25
clones per library prior to colony pooling.

The mutagenesis kit for creating mutant libraries for amacGFP, cgreGFP and ppluGFP2 was
different than that used to create the avGFP mutant library, which led to a slightly different
mutational signature, which has not affected our results (Figure S14).

Figure S14. Mutational bias in datasets generated from different mutagenesis strategies.
a, Observed frequencies of nucleotide mutation types in the four landscapes. Libraries of
amacGFP, cgreGFP, and ppluGFP2 were generated with the Mutazyme II kit under the same
conditions while the avGFP library was generated by (Sarkisyan et al., 2016) employing
different dNTP ratios with an in-house error-prone polymerase. "Subsampled avGFP" refers
to subsets of 15,000 genotypes of the avGFP library, sampled to mimic the mutational
patterns of the Mutazyme-generated libraries. b, Median brightness of genotypes as a
function of the number of nucleotide mutations. Black X marks indicate the values for the
complete avGFP dataset, and the yellow line shows the values for the subsampled datasets
whose mutational patterns are shown in the hatched bars in (a). Error bars indicate
standard deviation for 100 simulations. The horizontal red line indicates the threshold used
in (Sarkisyan et al., 2016), under which genotypes were considered non-functional. c,
Fractions of non-synonymous mutations which result in a significant change in the
chemical properties (Creighton and Creighton, 1993) of the amino acid. With the exception
of histidine (aromatic and positively charged), we considered amino acids as belonging to
one of six categories: positively charged (Arg, Lys, His), negatively charged (Glu, Asp), polar
uncharged (Ser, Thr, Gln, Asn), aromatic (Tyr, Trp, Phe, His), aliphatic (Ala, Iso, Leu, Met,
Val), and other (Gly, Pro, Cys). A type change was considered to occur when a mutation
resulted in the new amino acid belonging to a different category from the original. The
difference in percentages between the avGFP ratios and the average
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amacGFP/cgreGFP/ppluGFP ratios were not statistically significant (Fisher's exact test, p =
0.3).

Generation of expression cassettes
We assembled an expression vector via MoClo from the following parts: a 5’ 600bp
homology arm to the E. coli genome; an mKate2-LacZ fusion under the T5 promoter,
followed by a placeholder sequence flanked by IIS restriction sites, and lambda T0
terminator; a zeocin resistance cassette; and a 3’ 600bp homology arm. The placeholder
was subsequently replaced by 10N random nucleotide barcodes, hereafter referred to as
“secondary barcodes”, in order to create a library of around 10 thousand expression vector
variants differing only by this barcode.

Mutant libraries were then shuttled from their storage vectors into the pooled expression
vectors, replacing LacZ with GFP in-frame with mKate2 and allowing for color-based
determination of cloning efficiency upon plating with X-Gal. Final constructs thus
expressed GFP mutants as a fusion protein with mKate2, ensuring the two proteins are
equimolar inside each cell and allowing mKate2’s red fluorescence to be used as a control
for GFP expression level (Figure S2). mKate2 was selected as previously (Sarkisyan et al.,
2016; Weber et al., 2011) due to its spectral properties (minimum overlap with GFP spectra,
and lack of green emission phase during maturation) and monomeric activity, and is
separated from GFP by a rigid alpha-helix linker to avoid any potential interactions
between the two proteins. An N-terminal 6-His-tag was also included in the mKate2-GFP
fusion design.

GFP mutant libraries were shuttled into the expression vector via modular cloning
protocols described above. MoClo reactions were transformed into high-efficiency
chemically competent E. coli cells (Lucigen E. cloni 10G). Around 800 thousand colonies
were recovered; each mutant genotype, identifiable by its primary barcode, is thus
expected to be associated with multiple secondary barcodes. This approach created
internal replicates for each genotype, with each primary/secondary barcode combination
having been the result of independent cloning and transformation events, allowing for
independent measurements of the same genotype during a single experimental set-up.

Genome integration
Genome integration is expected to produce less expression noise compared with
expression from a plasmid (Lee et al., 2015). Final expression-ready cassettes were excised
from the vector backbone via digestion at SpeI sites flanking the homology arms, and
gel-purified. Linear fragments were integrated into a safe harbor in the E. coli chromosome
via CRISPR-Cas9-mediated homologous recombination, using a protocol adapted from
[(Bassalo et al., 2016)]. In brief, we transformed cells with Court lab’s pSIM5, a
temperature-inducible plasmid containing genes necessary for homologous recombination,
and pX2-Cas9 (Addgene #85811), an arabinose-inducible Cas9 vector. Cells were grown to
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the exponential phase (OD600 = 0.6, measured via NanoDrop) at 30℃ in the presence of
0.2% arabinose and then heat-shocked at 42℃ for fifteen minutes to activate pSIM5. We
observed increased efficiency when cells were grown with arabinose from the start, rather
than only provided with it during the recovery phase. Cells were then placed on ice for 20
minutes, washed thrice with ice-cold distilled water, and electroporated with the linear
library DNA as well as the SS9_RNA (Addgene #71656) vector containing the guide RNA for
Cas9 to target the safe harbor. Cells were plated on 50mg/L zeocin plates after two hours
of recovery at 30℃ in 0.2% arabinose-supplemented LB, grown overnight at 30℃ and an
additional day at room temperature, then recovered from plates and resuspended in LB for
sorting. Approximately five million colonies were recovered in each case.

Fluorescence-activated cell sorting
Resuspended cells were sorted in parallel on two independent BD FACS Aria III cell sorters
(“machine A” and “machine B”) at a rate of around 20 thousand events per second. Each
library was processed independently, but a small amount of wild-type avGFP, amacGFP,
cgreGFP, and ppluGFP2 genotypes with known barcodes were added to each library as
positive controls and for the purposes of cross-library comparisons. A narrow gate in the
red channel was selected, corresponding to a fixed mKate2 expression level, and this was
subdivided into eight sub-gates based on green intensity (Figure S2) and these were sorted
into eight separate tubes. For each library, around 28 million cells were sorted in total,
leading to an estimated average of ~35 recovered cells for each colony in the pool.

After library sorting, we separately added 5000 cells each of four known barcodes to each
tube, to serve as controls for the number of cells sorted and determine how many reads are
generated per cell. “Count control” cells were generated separately from the mutant
libraries, so their barcodes are not expected to be present in any of the libraries.

The use of mKate2 controls for the influence of variability in gene expression, but also can
be used to control for the impact of mutations on mRNA structure, stability, or translation.
Such mutations could be either synonymous or non-synonymous. If mutations had a
substantial probability of impacting green fluorescence through mRNA structure, stability
or through their impact on translation, we would expect for our data to contain a
non-negligible amount of such synonymous mutations. However, since synonymous
mutations do not influence fluorescence (Figure S3a), these effects are not present on a
detectable level.

Circularization of mutant libraries
For each gene, approximately 5 μg of DNA (mutant libraries in storage vectors) was digested
with BsaI and the GFP fragment was recovered via gel purification, leaving known 5’
overhangs. A short dsDNA filler sequence with compatible overhangs was used to tie the N-
and C-terminal GFP ends together. The filler was obtained by annealing two
complementary primers (mixed together in equal amounts, heated to 95℃, and gradually
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cooled down to 20℃ at a rate of 0.1℃ per second using a thermocycler); compatible
overhangs with the GFP fragment were generated by BsaI digestion.

Circularization was performed at room temperature in a volume of 500 μl 1X T4 DNA ligase
buffer, with 100U BsaI and 60U T4 DNA ligase, and starting quantities of 50 ng each of
linear GFP library fragment and dsDNA filler. Another 50 ng of each were added every 30
minutes until reaching a combined total amount of 2 μg. DNA addition was performed
gradually in order to minimize the concentration of unligated linear DNA and thereby avoid
formation of tandem multimers; once ligated, circular products cannot be cut again due to
restriction site destruction. The circular monomer fraction was isolated by gel purification
of the appropriate band. Successful circularization was confirmed by PCR.

Preparation of mutant libraries for sequencing of coding region
Mutant GFP libraries were sequenced via MiSeq 300bp-paired-end Illumina sequencing,
performed by the Vienna Biocenter Core Facilities. In order not to exceed the maximum
total read length of 600 bp, N-terminal and C-terminal halves – each between 400 and 500
bp – were prepared separately.

C-terminal halves were PCR’d directly from the storage vectors containing the mutant
libraries. For N-terminal halves, libraries were first circularized in order to place the
barcode adjacent to the start codon. In each case, a first round of 10 PCR cycles was
performed, using three pairs of primers incorporating part of the constant region of
Illumina TrueSeq adapters; the three pairs differed only by the addition of 1-2N bases, in
order to create sequence shifts and increase complexity for NGS purposes. These products
were gel-purified and used as templates for a further 10 PCR cycles with primers
incorporating Illumina indices. Final PCR products were gel-purified, eluted in
nuclease-free water and sent for sequencing. Different indices were used for different
halves and for different genes, allowing pooling of samples to be sequenced in the same
MiSeq lane. A total of 4 lanes were used for MiSeq library sequencing.

MiSeq data processing
Sample de-multiplexing was performed by the sequencing facility. Raw Illumina sequencing
data was converted from .bam to .fastq format using Bamtools; all further processing was
performed with custom Python scripts. BioPython was used for pairwise alignments.

MiSeq reads were first checked for the presence of the constant region located in between
the stop codon and the barcode; reads lacking this motif were discarded. Barcodes were
extracted, corresponding to the 20 nucleotides adjacent to the constant region. Primer
sequences were trimmed from all reads. Reads with matching barcodes were pooled, and
consensus sequences of the GFP-coding region were obtained independently for the
C-terminal and N-terminal halves, as well as for the forward and reverse reads of each half.
Barcodes with fewer than 5 reads in one or both halves were discarded, as well as barcodes
with less than 80% agreement for any given position. Consensus sequences of forward and
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reverse reads were merged, then N- and C-terminal halves were merged to obtain the full
coding sequence; barcodes where the expected overlap was less than a 100% match
between sequences to be merged were discarded.

Final coding sequences for each barcode were then compared with the wild-type template
by global pairwise alignment and mutations were extracted. Coding nucleotide sequences
were translated to obtain amino acid sequences.

Preparation of samples for HiSeq barcode sequencing
Sorted cells were recovered periodically during sorting, and kept on ice to avoid cell
division. In order to increase the genetic material available for PCR, recovered cells were
plated on LB-zeocin agar and incubated overnight at 37℃. Colonies were pooled and mixed
and used as PCR template to amplify the barcode region, as we previously found PCRs
directly on the sorted cells to be inefficient.

As with MiSeq sample preparation, two rounds of PCR were performed. The first round
consisted of 15 cycles (Encyclo polymerase, Evrogen) and used N-shifted primers to
increase complexity, and was gel-purified and used as the template for the second round,
which consisted of 9 cycles and added full Illumina TrueSeq adapters. Final products were
gel-purified and sent for HiSeq SR100 sequencing. Different Illumina indices were used for
different samples, allowing pooling of multiple samples into the same sequencing lane.
Sample ratios in each lane corresponded approximately to the numbers of sorted cells. A
total of four HiSeq lanes were used, with twelve samples per lane.

HiSeq data processing
As with MiSeq data, HiSeq sample demultiplexing was performed by the sequencing facility,
raw data was converted from .bam to .fastq using Bamtools, and further processing was
done with custom Python scripts.

HiSeq reads encompassed the barcode region only: a 20N primary barcode and a 10N
secondary barcode, with a 10bp-length constant region in between. Reads lacking the
constant motif were discarded. Primary and secondary barcodes were extracted from each
read, and reads with matching primary barcodes were pooled. If a secondary barcode had
fewer than six reads, and differed from another secondary associated to the same primary
by two or fewer nucleotides, it was considered to be the product of sequencing errors and
its reads were merged together with the more abundant barcode. For each
primary-secondary barcode combination, the distribution of reads across the eight green
sorting gates was determined.

In order to estimate the actual number of sorted cells from the number of reads, we used
“count control” barcodes mentioned previously: cells of known barcode of which a fixed
amount was sorted into each tube. For each gate, the read counts of all barcodes were
normalized according to the average “count control” read count of that gate.
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Estimating fluorescence for each genotype from HiSeq sequencing of sorted populations
To determine the genotype distribution across brightness populations we used Illumina
HiSeq (single-end 100 bp reads). The fluorescence for each genotype was assessed by
fitting the calculated number of cells across the sorting gates to the cumulative density
function of normal distribution (provided by scipy.stats.norm Python module), taking into
account gate border values for every sorter run (Supplementary Data 1). The fitting was
performed with the scipy.optimize.curve_fit Python module, with the initial guess
corresponding to the gate with the highest cell count observed. The initial guess for the
sigma equaled the width of the gate with maximum cell count. In order to correct for
slightly different settings between two FACS machines, the brightness values were matched
by linear regression of fluorescence values of known wild-type genotypes.

Genotype data filtering
Our experimental setup allowed for various sources of replication for each mutant: cells
with the same genotype and primary barcode but different secondary barcodes; or the
same genotype but different primary barcodes; or the same genotype as well as primary
and secondary barcode but sorted on different machines. Such replicates were merged,
and assigned a fitness corresponding to the mean of the fitnesses of each individual
replicate, weighted by their cell counts (Supplementary Data 2).

Two sources of internal controls allowed us to check data quality: genotypes corresponding
to wild-type proteins, known to be bright, and genotypes corresponding to
chromophore-mutated variants known to be dark. Due to the physical limitations of FACS,
it is not unexpected for some number of cells to be mis-sorted into the wrong gate, but we
expect such events to be associated to low read counts, and for mis-sorted cells to be
associated to different fitnesses than correctly sorted cells of the same genotype.
Therefore, we discarded nucleotide genotypes with too few replicates, or with too low a
cell count, or whose replicates covered too wide a range of measured fitnesses (as
determined according to their index of dispersion). Due to differences in library diversity
and measurement range between libraries, the particular cutoffs for amacGFP, cgreGFP,
and ppluGFP2 differed slightly, and were selected such as to minimize the numbers of false
positives and false negatives, while maximizing the total number of retained genotypes. In
brief, amacGFP, cgreGFP, and ppluGFP2 genotypes were required to have, respectively: a
minimum of 2, 3, and 3 replicates; cell counts over 26, 14, and 23; and indices of dispersion
under 525, 575, and 1000. In each case, the final dataset showed no false negatives, i.e.
wild-type proteins measured as dark (based on data from over 1000 nucleotide genotypes
with synonymous mutations), while false positive rates, i.e. genotypes with chromophore
mutations measured as having non-zero fluorescence, ranged from 0.24% (ppluGFP2) to
0.47% (amacGFP) to 0.71% (cgreGFP).

Of the surviving nucleotide genotypes, those with synonymous mutations coding for the
same protein were merged, and assigned a fitness corresponding to the mean of the
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fitnesses of the different nucleotide genotypes, weighted by their cell count. The final
dataset (Supplementary Data 3) included 35500, 26165, and 32260 unique protein
sequences respectively for amacGFP, cgreGFP, and ppluGFP2.

Calculation of epistasis
Our mutant generation strategy created genotypes with an average of 3-4 mutations each.
This also led to >1100 single mutants in each gene (Table S1) for which we could directly
calculate their individual effects. This allowed us to determine the contribution of epistasis
to the fluorescence of genotypes with multiple mutants. Epistasis was calculated as the
difference between the measured fluorescence of a genotype and its expected
fluorescence under the assumption that the joint effect of multiple mutations is equal to
the sum of their individual effects, according to the following equality:

epistasis = 𝐸𝑓𝑓𝑒𝑐𝑡
𝑜𝑏𝑠𝑒𝑟𝑣𝑒𝑑

 −  𝐸𝑓𝑓𝑒𝑐𝑡
𝑒𝑥𝑝𝑒𝑐𝑡𝑒𝑑

 =  (𝐹
𝑚

 −  𝐹
𝑤𝑡

) −  
𝑖

∑ (𝐹
𝑖
 −  𝐹

𝑤𝑡
) · 𝑥

𝑖

(eq. 1)
Where Fi, Fm Fwt are measured levels of fluorescence of a genotype with mutation i, of a
genotype m containing one or more mutations, or of the wildtype sequence, respectively,
and xi = 1 when mutation i is contained within the genotype m and xi = 0 when it is not. In
order to avoid detecting false epistasis, expected values are capped and cannot be greater
than the dataset’s maximum observed measurement, nor less than the minimum observed
measurement. Instances of genotypes harbouring multiple mutations for which one or
more of the mutations has not been observed in isolation were not included in this analysis.

Protein purification
Wildtype sequences with N-terminal His-tags were cloned into T7 expression vectors via
MoClo. Chemically competent BL21-DE3 (New England Biolabs) were transformed and
plated on LB agar supplemented with antibiotic and 20uM IPTG, grown overnight at 30C
and left at room temperature an additional day to allow extensive time for fluorescent
protein maturation. Colonies from twenty 12x12cm plates were scraped and recovered in
40ml of binding buffer (500mM NaCl, 20mM Tris-HCl, 25mM imidazole, pH 8), lysed in a
Qsonica Q700 sonicator (20 kHz, amplitude 10, 1s on/4s off, 20 min of active sonication
time), and centrifuged for 30 minutes at 20,000 g. The supernatant was recovered and
incubated with rotation for one hour at 4C with 3ml of nickel-sepharose protein
purification resin (Cytiva). Before use, resin was washed with 5 volumes of binding buffer,
and 5 volumes of distilled water.

After incubation, the protein/resin solution was passed through an empty chromatography
column (BioRad Econo-Pac), washed thrice with 20ml of binding buffer, then protein was
recovered in 2-5ml of elution buffer (500mM NaCl, 20mM Tris-HCl, 500mM imidazole, pH
8).

Crystallization, Data Collection, and Structure Determination
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AmacGFP (12 mg/mL in 20 mM Tris-HCl buffer, pH 7.5) was crystallized at 21°C in 8% PEG
6K, 3% glycerol, 0.1 M sodium acetate, pH 5.0 supplemented with 5.0% Jeffamine® M-600®

pH 7.0 according to the Hampton Research Additive Screen protocol using the sitting drop
vapor diffusion technique. Crystals grew within 1 week and were flash frozen in liquid
nitrogen using mother liquor supplemented with 20% PEG 400 as cryoprotectant.

Diffraction data were collected using the D8 Venture (Bruker AXS, Madison, WI) system
that includes an Excillum D2+ MetalJet X-ray source with Helios MX optics providing Ga Kα
radiation at a wavelength of 1.3418 Å and a PHOTON III charge-integrating pixel array
detector. Data were reduced using Proteum3 software (Bruker AXS). The crystal structures
were solved by molecular replacement with MOLREP(Vagin and Teplyakov, 1997) using a
avGFP mutant as a search model (PDB ID 2AWK). Model building and iterative refinement
were performed with Coot(Emsley and Cowtan, 2004) and REFMAC(Murshudov et al., 1997),
respectively. The final statistics of the structure are shown in Table S2. The model has been
deposited into the Protein Data Bank (PDB ID 7LG4).

∆∆G prediction and residue distance measurements
Calculations were performed using the following structures: avGFP (PDB ID 2WUR),
ppluGFP2 (PDB ID 2G3O), cgreGFP (PDB ID 2HPW), and amacGFP (PDB ID 7LG4, this study).
For each structure, one (the first) chain was extracted and minimized using Rosetta Relax
application (Nivón et al., 2013) with constraints to starting coordinates. The total of 50
structures were generated for each protein and the model with the lowest total score was
chosen for further calculations. The GFP chromophores’ (GYG and SYG) geometries were
optimized in Gaussian using density functionals at the B3LYP/6-31++G(d,p) level of theory.
The chromophores were treated as non-canonical amino acids (Renfrew et al., 2012). ∆∆G
calculations (Supplementary Data 4) were performed for all single mutations except for
nonsense mutations, mutations in the chromophore triade, and positions that are not
present in the corresponding crystal structure using Rosetta ddg_monomer application
(Kellogg et al., 2011). All runs were performed with Rosetta version 3.10. Distances between
amino acid residue pairs are available in Supplementary Data 5.

Urea sensitivity assays
Absorbance and fluorescence spectra were measured on Biotek SynergyH1 plate readers.
For fluorescence, samples consisted of 200 μl of 0.15 μM purified protein in 1X PBS and
either 0M or 9M urea, and emission was measured in 5nm steps from 450 nm to 700 nm
upon excitation at 420 nm. For absorbance, samples were identical except for protein
concentration, here 18.5 μM, and absorbance was measured in 5 nm steps from 300 nm to
700 nm. In both cases, spectra were continuously measured for around sixty hours, at 42°C,
and a minimum of eight technical replicates were measured for each condition. All plates
used were 96-well clear- and flat-bottomed plates; for fluorescence measurements, plates
were also black-walled. Blanks containing elution buffer instead of protein (see: Protein
purification) were also measured, and their values subtracted from those of the protein
samples (Supplementary Data 6).
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To measure refolding kinetics, samples were first denatured by diluting in 9M urea to a final
protein concentration of 0.5 mg/ml and heating at 95°C for five minutes. 10 μl were then
transferred to a 96-well flat-bottomed plate and baseline fluorescence (excitation at 485
nm, emission at 520 nm) was measured on a Biotek SynergyH1 plate reader. 200 μl of 1X PBS
was added via injection and fluorescence was immediately measured for 20 minutes at
intervals of one second, or for 13.8 hours at intervals of 50 seconds.

Thermosensitivity assays
Thermal unfolding and/or aggregation of purified green fluorescent proteins was
monitored by differential scanning fluorimetry (DSF), circular dichroism (CD), and
differential scanning calorimetry (DSC), and fluorescence emission during heating was
monitored in a Roche Lightcycler 480. Protein samples were diluted in imidazole-free
elution buffer (see: Protein purification) from 20mg/ml stocks in 500mM imidazole elution
buffer. Raw data are available in Supplementary Data 7.

Differential scanning fluorimetry. Samples were run in triplicate on a Prometheus NT.48
(NanoTemper Technologies) machine set at 100% excitation power. Samples consisted of
10μl of 1mg/ml protein, heated from 20°C to 110°C at a ramp rate of 1°C per minute; melting
temperatures for unfolding and aggregation were determined from the peaks of the first
derivatives of either the 350/330 nm emission ratio or the light scattering, respectively.
Although all considered GFPs contained a low content of tryptophan, the primary signal
source in NanoDSF, all GFPs contained high enough tyrosine content to generate a good
signal (avGFP: 1 Trp, 11 Tyr; amacGFP: 1 Trp, 10 Tyr; cgreGFP: 3 Trp, 14 Tyr; ppluGFP2: 0 Trp,
12 Tyr).

Circular dichroism. Samples consisting of 200μl of 0.1mg/ml protein in a 1 mm thickness
cuvette were analyzed on a Jasco J-815 CD spectropolarimeter. Initial protein spectra were
measured at 30°C, from 260 nm to 200 nm, and the spectrum of protein-free buffer was
subtracted; protein spectra were not measured beyond 200 nm as the high tension voltage
in this region increased beyond 700V, making CD measurements unreliable. The following
settings were used for spectra measurements: scanning speed of 100 nm/min; data pitch of
1 nm; digital integration time of 2s with 1nm bandwidth; 10 accumulations. After measuring
the initial spectra, samples were heated to 98°C at a rate of 1°C per minute, and monitored
throughout at 218 nm (208 nm in the case of avGFP), a wavelength corresponding to a peak
in the spectra. The full spectra were then measured again at 98°C, under the same settings
described above. The single-wavelength melting curves were fitted with a logistic curve,

, using the Python module scipy.optimize.curve_fit, in order to obtain𝑓(𝑥) =  𝐿

1 + 𝑒−𝑘 (𝑥 − 𝑥0)

the melting temperature (x0) and the logistic growth rate (k).

Differential scanning calorimetry. 1mg/ml protein samples were run in duplicate on a
MicroCal PEAQ-DSC (Malvern Panalytical), and measured from 20°C to 110°C at a ramp rate
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of 1°C per minute. Melting temperatures (temperature corresponding to the peak in
specific heat capacity or Cp) and enthalpies of denaturation (area under the peak) were
determined automatically. DSC runs were performed by the BIC facility of CEITEC MU,
Brno.

Green fluorescence emission upon heating. Fluorescence emission of purified protein
samples (0.1mg/ml, final volume 20μl in white 96-well plates) during heating from 20°C to
99°C at a ramp rate of ~2°C/min was measured on a Roche LightCycler 480 monitoring the
SYBR-Green channel (excitation at 465 nm, collection at 510 nm). (Supplementary Data 7).
Melting temperatures were determined automatically from the melting curve peak.

SEC-MALS
Size exclusion chromatography/multiangle light scattering analysis was performed on an
OmniSEC system (Malvern Panalytical). Samples consisted of 0.2μm-filtered, 1mg/ml
purified proteins in 20mM Tris pH 8, 150mM NaCl, 25mM imidazole buffer. Injection
volumes were 50 μl. Samples were measured at 30°C with a flow rate of 0.7 mL/min.
SEC-MALS runs were performed by the BIC facility of CEITEC MU, Brno.

SDS-PAGE and Western blots
Genome-integrated mutant libraries were plated on LB-Zeocin agar plates, colonies were
recovered (pelled weight of 0.25g) and resuspended in 30mL of lysis buffer (1X PBS pH 7.4,
150mM NaCl, supplemented with 50 μl protease inhibitor cocktail (Sigma Aldrich, ref.
P8340)). Cells were sonicated on a QSonica Q700 (20 kHz, amplitude 10, 1s on/4s off, 10
minutes of active sonication). To separate soluble and insoluble fractions, 15 μl of lysate
were centrifuged for 10 minutes at 20000g, supernatant was collected and the pellet
resuspended in 15 μl of lysis buffer. 5 μl of 4X Laemmli loading dye (BioRad) was added to 15
μl of either total lysate, supernatant, or resuspended pellet. Samples were boiled at 95°C for
5 minutes, and run in 4-20% polyacrylamide Mini-Protean precast gels (BioRad) at 100V for
one hour. The Protein Precision Plus Standard (BioRad) was used as a molecular weight
marker. Gels were stained with a colloidal Coomassie dye, ReadyBlue (Sigma-Aldrich),
overnight at room temperature.

For Western blot, gels were transferred to PVDF membranes (BioRad) using a Trans-Blot
Turbo Transfer system (BioRad), blocked with EveryBlot blocking buffer (BioRad) for 15
minutes at room temperature, and incubated overnight at 4°C with a mouse monoclonal
anti-His-tag primary antibody (Abcam, ref. ab18184) diluted 1:1000. Membranes were
washed in 1X PBS/0.05% Tween-20 (five 5-minute washes), incubated for two hours at
room temperature with 1:1000 anti-mouse HRP secondary antibody (Cell Signal, ref. #7076),
washed, and incubated with SuperSignal West Pico-Plus ECL substrate and imaged on a
ChemiDoc MP system (BioRad).

Experimental testing of predictions
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Coding sequences for neural network-generated genotypes (Supplementary Data 8) were
ordered as dsDNA from Twist Biosciences, flanked by BsaI restriction sites for MoClo
insertion into destination vectors. GFP sequences were cloned into a medium/low-copy
vector conferring zeocin resistance, under a constitutive T5 promoter and lambda t0
terminator, and transformed into XL10-Gold chemically competent cells. Cells were plated
on LB-zeocin agar supplemented with ink (1%) to improve fluorescence visualization.
Colonies of each construct were picked and sent for Sanger sequence confirmation
(Microsynth). Photographs of plates were taken with a Canon EOS 600D SLR camera. For
comparison of fluorescence of different genotypes, photographs of plates containing
streaks of all wild-types and mutants were photographed under identical conditions
(aperture 2.8, ISO 100, 0.8 seconds exposure time), images were converted to 8 bit in FIJI
and median pixel values were determined for each streak. Brightness, contrast, or other
image parameters were not altered, and none of the images used contained any saturated
pixels.

Sequence and evolutionary analysis
A total of 68 GFP sequences with confirmed emission in the green spectrum were selected
using available information from the literature. These sequences (Supplementary Data 9)
were used in the analysis of the fraction of deleterious amino acids in one of the four
wildtype sequences that were neutral in another genotype (Figure 3) and in determining
extant amino acid states (Figure S12). To calculate the rate of evolution of mutations that
were used in successful predictions of distant functional GFPs we aligned these 68 amino
acid sequences with muscle (Edgar, 2004), trimmed the alignment and made a phylogenetic
reconstruction with MrBayes (Ronquist et al., 2012), reconstructed the ancestral state of a
non-trimmel codon alignments and calculated the ds per each branch of the tree by
codeml (Yang, 2007). Finally, we compared the rate of evolution between the two amino
acid states (the one found in the wildtype and the other corresponding to an amino acid
state used in at least one of the successful neural network predictions) to the rate of
synonymous evolution (ds) at the same branches (Supplementary Data 10).

Modelling the fitness landscape of GFPs with neural networks
For all 4 fitness landscapes, the log10-transformed fluorescence (fluorescence for short) is
a bimodal distribution of two normals with very little overlap. One mode corresponds to
non-functional genotypes while the other mode corresponds to functional genotypes of
near wild-type fluorescence levels. In each dataset, genotypes associated with negative
fluorescence have been excluded to ensure that the four distributions cover similar ranges.
The genotype-phenotype datasets were split randomly into training, validation and test
sets (60%, 20% 20%). To evaluate the complexity of the genotype-phenotype relationship
in the four landscapes, we trained neural networks of increasing complexity on one-hot
encoded protein sequences with the task of predicting fluorescence level. One-hot is a
binary encoding that represents which amino acid is present or absent for each position in
a sequence. All models were built using Keras (Chollet, 2015). Model goodness was
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measured as the coefficient of determination between known and predicted fluorescence
values associated with genotypes in the validation set.

For each dataset, a linear model defined as a neural network containing only an input layer
and one layer of a single neuron with linear activation was trained for a maximum of 30
epochs with the objective to minimise the loss as defined by the mean squared error (MSE)
between actual and predicted fluorescence levels. Overfitting was prevented by monitoring
the validation loss with a patience of 10 epochs. These baseline models output a simple
estimate of the fluorescence level, the fitness potential, associated with each genotype. It is
simply the summed contribution of mutations assigned individual weights. Models with a
sigmoid output node were obtained by adding a single neuron with sigmoid activation
function to these architectures and retraining on the training set.

In order to capture and visualise the non-trivial functions transforming the fitness
potential into the predicted fluorescence, we trained models containing an input layer, a
hidden layer with one linear node, computing the fitness potential, a second hidden layer of
10 sigmoid nodes and one linear output node outputting the fluorescence. The output
subnetwork of 10 sigmoids allows the models to approximate a wide variety of
sophisticated functions. For each genotype in the validation set, we computed the fitness
potential as the output of the first hidden layer, and the predicted fluorescence. The output
subnetworks were able to accurately capture the functions transforming the fitness
potential into fluorescence level, revealing non-trivial sigmoid functions (Figure S14d).

Optimisation of artificial neural nets was performed using a random grid search approach.
Tested architectures contained one input layer, one hidden layer with linear nodes, a
second hidden layer with sigmoid nodes, and one linear output node. The two hidden
layers were built with random numbers of neurons, picked from 1 to 10, 20, 50, 100, 200.
The models also contained one Monte Carlo dropout layer after each hidden layer (rate=0.1,
training=True), but not after the output node (Figure 4a). MC Dropout layers present the
double advantage of preventing overfitting and allowing the model to predict the
fluorescence of each genotype with uncertainty estimates(Hinton et al., 2012; Srivastava et
al., 2014). Each architecture was trained for 10 epochs and the architecture with the
smallest loss (MSE) on the validation set was selected for further training to a maximum of
30 epochs. To ensure fair training of the optimised models, the training set was filtered to
exclude genotypes containing mutations present in less than 10 distinct genotypes. Since
removing a genotype with a rare mutation also decreases the number of occurrences of the
other mutations this genotype may contain, the filtration process was repeated until all
mutations in the training set were present in at least 10 genotypes and therefore no further
genotype had to be removed. To ensure fair scoring of the optimised models, the validation
set was filtered to remove genotypes that contained mutations absent from the training
set. This ensures the neural networks are trained on enough examples for each mutation,
and the model’s final score is not underestimated due to poorly trained mutations present
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in the validation set. These models were then used as part of a genetic algorithm to predict
distant functional genotypes.

For each gene, an additional model with 10, 100 and 1 leaky ReLU nodes was trained and
validated independently on 90% and 10% of the dataset respectively for a maximum of 500
epochs, minimising MSE loss. Overfitting was prevented by monitoring the validation loss
with a patience of 10 epochs. Coefficients of determination were 0.710, 0.740, and 0.810 for
amacGFP, cgreGFP and ppluGFP2 respectively. These models were used to filter genetic
algorithm predictions a posteriori with an independent predictor.

Prediction of distant functional genotypes
Prediction of distant functional genotypes was performed using a genetic algorithm
approach. An initial population of 50 wild-type genotypes is initialised. At each generation
the genotypes were shuffled and half of the population was put aside to remain untouched.
The other half undergoes crossing-overs and mutations. Crossing-overs were performed
randomly along pairs of genotypes without gene conversion. Crossing-overs had a 0.7
probability of occuring in each couple of sequences and the number of crossing-overs was
chosen randomly in the range of 0 to 5. Resulting genotypes (some of which may not have
been crossed) underwent a mutagenesis step. Mutations were picked from a random pool
containing mutated states but also wild-type states to allow the algorithm a chance to
revert evolutionary dead-ends. If the targeted number of mutations defined by the user
was exceeded in a genotype, the algorithm removed one previously added mutation from
the genotype, allowing heavily mutated sequences to gradually bounce back to the target
value. Per amino-acid mutation probabilities were defined empirically in the range of
0.01-0.015. After crossing-overs and mutations, the new genotypes were added to the rest
of the population.

Mutations available to the genetic algorithm were selected using the following approach:
we excluded mutations that had been seen by the model in less than 10 distinct genotypes
during training of the optimised neural nets. From the remaining mutations, we kept those
for which we could find in the dataset both genotypes that had those mutations and
identical counterparts or “background” genotypes without these mutations. If at least 5
pairs of corresponding genotypes could be found, the impact of the mutation was
computed by subtracting the fluorescence levels of the genotypes without the mutation to
the fluorescence levels of the genotypes that contain the mutation and taking the median.
Last, only mutations with a median impact greater or equal to -0.1 log10 fluorescence units
were fed into the genetic algorithm. In short, this approach excludes severely deleterious
mutations from the genetic algorithm.

Finally, to ensure predicted genotypes did not converge to “known” functional genotypes,
the pool of usable mutations was enriched in mutations that do not lead to states observed
in natural GFP sequences. To do so, all sequences were scraped from FPbase (June 2020),
filtered to keep green natural ones and aligned on a profile obtained from the wild-type
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sequence of amacGFP, avGFP, cgreGFP and ppluGFP2. We then applied in the pool of
mutations available to the genetic algorithm, a ratio of 0.6 in favor of mutations that could
not be found in natural GFPs.

After the crossing-over and mutation steps, the genotypes were one-hot encoded and their
fluorescence level was updated by taking the median of 20 outcomes computed by the
optimised neural network. The genotypes were sorted by descending fluorescence and
only top genotypes were kept to maintain a constant population size. This process was
repeated for several generations. Crossing-over and mutation rates, number of
generations, and the ratio between mutated or wild-type available states were adjusted
empirically to allow most genotypes in the population to reach the desired number of
mutations while evolving to improved fluorescence levels. Notably, the algorithm was
stopped a few generations after the median of predicted fluorescence levels in the
population reached a plateau. This was to ensure the algorithm selects the best performing
genotypes at the desired number of mutations while maintaining sequence diversity in the
population. The entire algorithm was repeated until all unique mutations in the pool had
been sampled, with a minimum of 10 replicates.

The resulting predictions were filtered to keep unique genotypes that contained the
required number of mutations and whose fluorescence ± standard deviation as computed
by the optimised and the posteriori neural networks was greater than fluorescence level of
their wild-type counterpart. Finally we used cd-hit(Fu et al., 2012; Li and Godzik, 2006)
iteratively with a similarity threshold decreasing at each iteration until the remaining set of
candidate sequences could be separated into the desired number of clusters. One
representative sequence per cluster was picked for experimental validation.
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Table S1. Selected statistics of genotypes at different divergence from five GFP sequences

Number of mutations 1 2 3 4 5 6 7

amacGFP Number of genotypes
Median fluorescence
Fraction wildtype-like*
Fraction dark**

1214
3.94
63.7%
9.0%

10439
3.9
44.7%
11.7%

6389
3.85
31.2%
19.6%

3077
3.75
21.6%
27.9%

1269
3.44
15.2%
38.4%

511
2.82
8.6%
55.0%

188
2.74
8.5%
63.3%

amacGFP:
V14L

Number of genotypes
Median fluorescence
Fraction wildtype-like*
Fraction dark**

1068
3.93
65.0%
5.8%

5621
3.89
46.3%
10.7%

3010
3.85
33.0%
16.8%

1313
3.78
24.1%
27.3%

534
3.46
16.7%
42.1%

207
2.83
9.7%
52.3%

84
2.72
4.8%
67.9%

cgreGFP Number of genotypes
Median fluorescence
Fraction WT-like*
Fraction dark**

1188
4.43
44.4%
14.5%

10347
4.36
24.3%
23.7%

6567
3.62
11.4%
45.2%

3666
2.79
5.7%
65.5%

1959
2.77
2.0%
81.4%

1061
2.77
0.9%
87.6%

546
2.77
0.2%
92.3%

ppluGFP2 Number of genotypes
Median fluorescence
Fraction wildtype-like*
Fraction dark**

1163
4.2
66.1%
4.4%

16134
4.16
43.8%
10.2%

8920
4.1
29.7%
18.7%

3710
3.96
19.6%
29.8%

1370
3.67
16.0%
38.8%

456
3.32
17.1%
44.5%

186
2.86
11.3%
60.2%

avGFP Number of genotypes
Median fluorescence
Fraction wildtype-like*
Fraction dark**

1114
3.64
68.9%
9.4%

13010
3.59
55.5%
12.4%

12683
3.49
39.1%
27.0%

9759
3.14
23.3%
47.9%

7215
1.53
13.1%
68.4%

4643
1.43
6.6%
83.0%

2783
1.36
2.3%
92.0%

*Fraction wildtype-like refers to the fraction of genotypes displaying fluorescence levels
within two standard deviations of the wildtype, or brighter.

**Fraction dark refers to the fraction of fully non-functional genotypes (i.e. with
fluorescence values falling within the darkest FACS gate). Remaining genotypes not
accounted for in these two categories displayed a range of intermediate fluorescence
levels.
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Table S2. Data Collection and Refinement Statistics

amacGFP (PDB ID 7LG4)

Wavelength (Å) 1.3418

Space group P1 21 1

Unit cell dimensions a = 34.089,
b = 47.488,
c = 69.294,
𝛼 = 90°,
𝛽 = 102.01°,
𝛾 = 90°

Resolution range (Å) 22.59 - 1.81 (1.91 - 1.81)

Total no. of reflections 151,191

Unique reflections 19,894 (2,932)

Completeness (%) 99.8 (99.5)

Multiplicity 7.59 (4.69)

Mean I / σ(I) 9.36 (1.93)

CC1/2 0.996 (0.624)

Refinement Statistics

Rwork/Rfree(%) 18.17/22.75

Average B factor (Å2) 20.14

Total no. of atoms 2,051

Protein atoms 1,863

Water molecules 134

Protein residues 228

Bond angles (°) 1.91

Bond length (Å) 0.014

Ramachandran: favored/allowed (%) 98.65/1.35

Clashscore 5.77

Numbers in parentheses are for the highest-resolution shell.
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Table S3. Primers used for PCRs in sample preparation for NGS

Primer purpose Forward Reverse

#1 dsDNA oligo filler for
circularization

ATAAAGGTCTCAAGGTCGCCCTGAG
CCGCTACTACCAATGAGAGACCAAT

AT

ATATTGGTCTCTCATTGGTAGTAGCGGCTCA
GGGCGACCTTGAGACCTTTAT

#2 First PCR of N-terminal
amacGFP, for MiSeq

CCCTACACGACGCTCTTCCGATCTN
NNNGATGATGAGCGGCGCCTAGGAA

CA
or

CCCTACACGACGCTCTTCCGATCTN
NNGATGATGAGCGGCGCCTAGGAAC

A
or

CCCTACACGACGCTCTTCCGATCTN
NGATGATGAGCGGCGCCTAGGAACA

GTGACTGGAGTTCAGACGTGTGCTCTTCCGA
TCNNGTCCATGCCCTTCAGCTCGATGCG

or
GTGACTGGAGTTCAGACGTGTGCTCTTCCGA
TCNNNGTCCATGCCCTTCAGCTCGATGCG

or
GTGACTGGAGTTCAGACGTGTGCTCTTCCGA
TCNNNNGTCCATGCCCTTCAGCTCGATGCG

#3 First PCR of C-terminal
amacGFP, for MiSeq

CCCTACACGACGCTCTTCCGATCTN
NGTGAAGTTCGAGGGCGACACACTG

or
CCCTACACGACGCTCTTCCGATCTN
NNGTGAAGTTCGAGGGCGACACACT

G
or

CCCTACACGACGCTCTTCCGATCTN
NNNGTGAAGTTCGAGGGCGACACAC

TG

GTGACTGGAGTTCAGACGTGTGCTCTTCCGA
TCNNNNACCACAGAGTACTTCGTGGTCTCA

or
GTGACTGGAGTTCAGACGTGTGCTCTTCCGA
TCNNNACCACAGAGTACTTCGTGGTCTCA

or
GTGACTGGAGTTCAGACGTGTGCTCTTCCGA
TCNNACCACAGAGTACTTCGTGGTCTCA

#4 First PCR of N-terminal
cgreGFP, for MiSeq

See Forward #2 GTGACTGGAGTTCAGACGTGTGCTCTTCCGA
TCNNNNTCCCCAGGATGTTGCCGTTTGACT

or
GTGACTGGAGTTCAGACGTGTGCTCTTCCGA
TCNNNTCCCCAGGATGTTGCCGTTTGACT

or
GTGACTGGAGTTCAGACGTGTGCTCTTCCGA
TCNNTCCCCAGGATGTTGCCGTTTGACT

#5 First PCR of C-terminal
cgreGFP, for MiSeq

CCCTACACGACGCTCTTCCGATCTN
NGTTCGACAATGACGGCCAGTACGA

or
CCCTACACGACGCTCTTCCGATCTN
NNGTTCGACAATGACGGCCAGTACG

A
or

CCCTACACGACGCTCTTCCGATCTN
NNNGTTCGACAATGACGGCCAGTAC

GA

See Reverse #3

#6 First PCR of N-terminal
ppluGFP2, for MiSeq

See Forward #2 GTGACTGGAGTTCAGACGTGTGCTCTTCCGA
TCNNNNAGCCTGTGCCCACTACCTTGAAGTC

or
GTGACTGGAGTTCAGACGTGTGCTCTTCCGA
TCNNNAGCCTGTGCCCACTACCTTGAAGTC

or
GTGACTGGAGTTCAGACGTGTGCTCTTCCGA
TCNNAGCCTGTGCCCACTACCTTGAAGTC

#7 First PCR of C-terminal
ppluGFP2, for MiSeq

CCCTACACGACGCTCTTCCGATCTN
NGCATTGAAAAGTACGAGGACGGCG

or

See Reverse #3
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CCCTACACGACGCTCTTCCGATCTN
NNGCATTGAAAAGTACGAGGACGGC

G
or

CCCTACACGACGCTCTTCCGATCTN
NNNGCATTGAAAAGTACGAGGACGG

CG

#8 First PCR for HiSeq, all genes See Forward #2 GTGACTGGAGTTCAGACGTGTGCTCTTCCGA
TCNNAACCGCCGAGGTCAGTTTCGCC

#9 Second PCR, MiSeq and
Hiseq: adding full TruSeq

adapters, universal (forward)
and indexed (reverse)

AATGATACGGCGACCACCGAGATCT
ACACTCTTTCCCTACACGACGCTCT

TCCGATCT

CAAGCAGAAGACGGCATACGAGATACATCGG
TGACTGGAGTTCAGACGTGTGCTCTTCCGAT

C
or

CAAGCAGAAGACGGCATACGAGATTGGTCAG
TGACTGGAGTTCAGACGTGTGCTCTTCCGAT

C
or

CAAGCAGAAGACGGCATACGAGATCACTGTG
TGACTGGAGTTCAGACGTGTGCTCTTCCGAT

C
or

CAAGCAGAAGACGGCATACGAGATATTGGCG
TGACTGGAGTTCAGACGTGTGCTCTTCCGAT

C
or

CAAGCAGAAGACGGCATACGAGATGATCTGG
TGACTGGAGTTCAGACGTGTGCTCTTCCGAT

C
or

CAAGCAGAAGACGGCATACGAGATAAGCTAG
TGACTGGAGTTCAGACGTGTGCTCTTCCGAT

C
or

CAAGCAGAAGACGGCATACGAGATGTAGCCG
TGACTGGAGTTCAGACGTGTGCTCTTCCGAT

C
or

CAAGCAGAAGACGGCATACGAGATTACAAGG
TGACTGGAGTTCAGACGTGTGCTCTTCCGAT

C
or

CAAGCAGAAGACGGCATACGAGATCGTGATG
TGACTGGAGTTCAGACGTGTGCTCTTCCGAT

C
or

CAAGCAGAAGACGGCATACGAGATGCCTAAG
TGACTGGAGTTCAGACGTGTGCTCTTCCGAT

C
or

CAAGCAGAAGACGGCATACGAGATTCAAGTG
TGACTGGAGTTCAGACGTGTGCTCTTCCGAT

C
or

CAAGCAGAAGACGGCATACGAGATCTGATCG
TGACTGGAGTTCAGACGTGTGCTCTTCCGAT

C

Table S4. Benchling links to genome integration constructs.
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Name Link

amacGFP https://benchling.com/s/seq-AEhUmO6f9dWC2uxMNXxO

cgreGFP https://benchling.com/s/seq-t47EdbWNoBftyZYQtCQs

ppluGFP2 https://benchling.com/s/seq-CEgJq6FMBm5yzd5oDcKm
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Supplementary Data file descriptions

Supplementary Data 1
Absolute values for the borders between gates in the green channel during sorting, for all
genes and machines, and the corrections applied to match values between the machines.

Supplementary Data 2
Dataframes containing the distribution across gates of all primary-secondary barcode
combinations, along with their fitted fitness values (see Methods). Data are not filtered
according to cell count, number of replicates, etc. One dataframe per gene and machine.

Supplementary Data 3
Dataframes linking nucleotide or protein genotypes to their measured fluorescence level
(see Methods). Mutations in genotypes are labeled in the format AiB, where A is the original
wildtype state, B is the mutated state, and i is the position (counting starts from Methionine
= 0). In the nucleotide dataset, 'n_replicates' refers to the combined number of distinct
barcodes representing a genotype and machines it was measured on. In the amino acid
dataset, 'n_replicates' refers to the number of synonymous nucleotide sequences
measured for each protein sequence. Nucleotide genotypes and amino acid genotypes are
on separate tabs in the file.

Supplementary Data 4
Table containing ddG predictions for single mutations in avGFP, amacGFP, amacGFP:V12L,
cgreGFP, and ppluGFP2. Residue positions are labeled starting from 0 (methionine).

Supplementary Data 5
Dataframes containing the minimum physical distance between pairs of residues inside the
3D GFP structures, in Angstroms. Row and column indices represent the residue position
within the protein, starting from 0 for the initial methionine. Matrices for different proteins
are included in different tabs in the file.

Supplementary Data 6
Table containing absorbance values (from 300 to 700nm) and fluorescence emission values
(from 450nm to 700nm, upon 420nm excitation) for all genes, in 9M urea and PBS,
measured on a plate reader at multiple consecutive time points. Blank control values are
already subtracted. Absorbance and fluorescence data are listed on separate tabs.

Supplementary Data 7
Raw data from differential scanning fluorimetry and calorimetry, circular dichroism, and
qPCR melting curves.
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Supplementary Data 8
Coding sequences for neural network-generated genotypes, and their predicted and
observed levels of fluorescence.

Supplementary Data 9
Table of over 70 documented natural fluorescent proteins used during analyses, including
name, species, sequence, original reference and, where possible, accession numbers and
measured excitation/emission peaks.

Supplementary Data 10
Estimated rates of evolution of amino acid states used in prediction of novel GFP sequences
on each branch of the phylogeny of extant GFPs.

50

.CC-BY 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted December 9, 2021. ; https://doi.org/10.1101/2021.12.08.471728doi: bioRxiv preprint 

https://doi.org/10.1101/2021.12.08.471728
http://creativecommons.org/licenses/by/4.0/


References

Alley EC, Khimulya G, Biswas S, AlQuraishi M, Church GM. 2019. Unified rational protein
engineering with sequence-based deep representation learning. Nat Methods
16:1315–1322.

Armougom F, Moretti S, Poirot O, Audic S, Dumas P, Schaeli B, Keduas V, Notredame C.
2006. Expresso: automatic incorporation of structural information in multiple
sequence alignments using 3D-Coffee. Nucleic Acids Res 34:W604–8.

Bank C, Hietpas RT, Jensen JD, Bolon DNA. 2015. A systematic survey of an intragenic
epistatic landscape. Mol Biol Evol 32:229–238.

Bassalo MC, Garst AD, Halweg-Edwards AL, Grau WC, Domaille DW, Mutalik VK, Arkin AP,
Gill RT. 2016. Rapid and Efficient One-Step Metabolic Pathway Integration inE. coli. ACS
Synthetic Biology. doi:10.1021/acssynbio.5b00187

Bershtein S, Segal M, Bekerman R, Tokuriki N, Tawfik DS. 2006. Robustness-epistasis link
shapes the fitness landscape of a randomly drifting protein. Nature 444:929–932.

Biswas S, Khimulya G, Alley EC, Esvelt KM, Church GM. 2021. Low-N protein engineering
with data-efficient deep learning. Nat Methods 18:389–396.

Biswas S, Khimulya G, Alley EC, Esvelt KM, Church GM. 2020. Low-N protein engineering
with data-efficient deep learning. Cold Spring Harbor Laboratory.
doi:10.1101/2020.01.23.917682

Biswas S, Kuznetsov G, Ogden PJ, Conway NJ. 2018. Toward machine-guided design of
proteins. bioRxiv.

Bryant DH, Bashir A, Sinai S, Jain NK, Ogden PJ, Riley PF, Church GM, Colwell LJ, Kelsic ED.
2021a. Deep diversification of an AAV capsid protein by machine learning. Nat
Biotechnol. doi:10.1038/s41587-020-00793-4

Bryant DH, Bashir A, Sinai S, Jain NK, Ogden PJ, Riley PF, Church GM, Colwell LJ, Kelsic ED.
2021b. Deep diversification of an AAV capsid protein by machine learning. Nat
Biotechnol 39:691–696.

Canale AS, Cote-Hammarlof PA, Flynn JM, Bolon DN. 2018. Evolutionary mechanisms
studied through protein fitness landscapes. Curr Opin Struct Biol 48:141–148.

Chan YH, Venev SV, Zeldovich KB, Matthews CR. 2017. Correlation of fitness landscapes
from three orthologous TIM barrels originates from sequence and structure
constraints. Nat Commun 8:14614.

Chollet F. 2015. Keras. GitHub repository.
Codoñer FM, Darós J-A, Solé RV, Elena SF. 2006. The fittest versus the flattest:

experimental confirmation of the quasispecies effect with subviral pathogens. PLoS
Pathog 2:e136.

Creighton TE, Creighton TE. 1993. Proteins: Structures and Molecular Properties.
de Visser JAGM, Hermisson J, Wagner GP, Ancel Meyers L, Bagheri-Chaichian H, Blanchard

JL, Chao L, Cheverud JM, Elena SF, Fontana W, Gibson G, Hansen TF, Krakauer D,
Lewontin RC, Ofria C, Rice SH, von Dassow G, Wagner A, Whitlock MC. 2003.
Perspective: Evolution and detection of genetic robustness. Evolution 57:1959–1972.

de Visser JAGM, Krug J. 2014. Empirical fitness landscapes and the predictability of
evolution. Nat Rev Genet 15:480–490.

Draghi JA, Parsons TL, Wagner GP, Plotkin JB. 2010. Mutational robustness can facilitate
adaptation. Nature 463:353–355.

Echave J, Wilke CO. 2017. Biophysical Models of Protein Evolution: Understanding the

51

.CC-BY 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted December 9, 2021. ; https://doi.org/10.1101/2021.12.08.471728doi: bioRxiv preprint 

https://doi.org/10.1101/2021.12.08.471728
http://creativecommons.org/licenses/by/4.0/


Patterns of Evolutionary Sequence Divergence. Annu Rev Biophys 46:85–103.
Edgar RC. 2004. MUSCLE: multiple sequence alignment with high accuracy and high

throughput. Nucleic Acids Res 32:1792–1797.
Emsley P, Cowtan K. 2004. Coot: model-building tools for molecular graphics. Acta

Crystallogr D Biol Crystallogr 60:2126–2132.
Ferretti L, Weinreich D, Tajima F, Achaz G. 2018. Evolutionary constraints in fitness

landscapes. Heredity 121:466–481.
Fragata I, Blanckaert A, Dias Louro MA, Liberles DA, Bank C. 2019. Evolution in the light of

fitness landscape theory. Trends Ecol Evol 34:69–82.
Fu L, Niu B, Zhu Z, Wu S, Li W. 2012. CD-HIT: accelerated for clustering the next-generation

sequencing data. Bioinformatics 28:3150–3152.
Gong LI, Suchard MA, Bloom JD. 2013. Stability-mediated epistasis constrains the evolution

of an influenza protein. Elife 2:e00631.
Haddox HK, Dingens AS, Hilton SK, Overbaugh J, Bloom JD. 2018. Mapping mutational

effects along the evolutionary landscape of HIV envelope. Elife 7.
doi:10.7554/eLife.34420

Hartman EC, Tullman-Ercek D. 2019. Learning from protein fitness landscapes: a review of
mutability, epistasis, and evolution. Current Opinion in Systems Biology 14:25–31.

Hinton GE, Srivastava N, Krizhevsky A, Sutskever I, Salakhutdinov RR. 2012. Improving
neural networks by preventing co-adaptation of feature detectors. arXiv [csNE].

Hirabayashi J, Arai R. 2019. Lectin engineering: the possible and the actual. Interface Focus
9:20180068.

Jacquier H, Birgy A, Le Nagard H, Mechulam Y, Schmitt E, Glodt J, Bercot B, Petit E, Poulain
J, Barnaud G, Gros P-A, Tenaillon O. 2013. Capturing the mutational landscape of the
beta-lactamase TEM-1. Proc Natl Acad Sci U S A 110:13067–13072.

Johnson MS, Martsul A, Kryazhimskiy S, Desai MM. 2019. Higher-fitness yeast genotypes
are less robust to deleterious mutations. Science 366:490–493.

Keefe AD, Szostak JW. 2001. Functional proteins from a random-sequence library. Nature
410:715–718.

Kellogg EH, Leaver-Fay A, Baker D. 2011. Role of conformational sampling in computing
mutation-induced changes in protein structure and stability. Proteins: Struct Funct
Bioinf 79:830–838.

Kemble H, Nghe P, Tenaillon O. 2019. Recent insights into the genotype-phenotype
relationship from massively parallel genetic assays. Evol Appl 12:1721–1742.

Kimura M, Crow JF. 1978. Effect of overall phenotypic selection on genetic change at
individual loci. Proc Natl Acad Sci U S A 75:6168–6171.

Klug A, Park S-C, Krug J. 2019. Recombination and mutational robustness in neutral fitness
landscapes. PLoS Comput Biol 15:e1006884.

Kondrashov DA, Kondrashov FA. 2015. Topological features of rugged fitness landscapes in
sequence space. Trends Genet 31:24–33.

Kumar A, Natarajan C, Moriyama H, Witt CC, Weber RE, Fago A, Storz JF. 2017.
Stability-Mediated Epistasis Restricts Accessible Mutational Pathways in the Functional
Evolution of Avian Hemoglobin. Mol Biol Evol 34:1240–1251.

Kuo S-T, Jahn R-L, Cheng Y-J, Chen Y-L, Lee Y-J, Hollfelder F, Wen J-D, Chou H-HD. 2020.
Global fitness landscapes of the Shine-Dalgarno sequence. Genome Res 30:711–723.

Kurahashi R, Sano S, Takano K. 2018. Protein Evolution is Potentially Governed by Protein
Stability: Directed Evolution of an Esterase from the Hyperthermophilic Archaeon
Sulfolobus tokodaii. J Mol Evol 86:283–292.

52

.CC-BY 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted December 9, 2021. ; https://doi.org/10.1101/2021.12.08.471728doi: bioRxiv preprint 

https://doi.org/10.1101/2021.12.08.471728
http://creativecommons.org/licenses/by/4.0/


Lässig M, Mustonen V, Walczak AM. 2017. Predicting evolution. Nat Ecol Evol 1:77.
Lee JM, Huddleston J, Doud MB, Hooper KA, Wu NC, Bedford T, Bloom JD. 2018. Deep

mutational scanning of hemagglutinin helps predict evolutionary fates of human H3N2
influenza variants. Proc Natl Acad Sci U S A 115:E8276–E8285.

Lee ME, DeLoache WC, Cervantes B, Dueber JE. 2015. A Highly Characterized Yeast Toolkit
for Modular, Multipart Assembly. ACS Synthetic Biology. doi:10.1021/sb500366v

Li W, Godzik A. 2006. Cd-hit: a fast program for clustering and comparing large sets of
protein or nucleotide sequences. Bioinformatics 22:1658–1659.

Luo W-X, Cheng T, Guan B-Q, Li S-W, Miao J, Zhang J, Xia N-S. 2006. Variants of green
fluorescent protein GFPxm. Mar Biotechnol 8:560–566.

Maynard Smith J. 1970. Natural selection and the concept of a protein space. Nature
225:563–564.

Melamed D, Young DL, Gamble CE, Miller CR, Fields S. 2013. Deep mutational scanning of
an RRM domain of the Saccharomyces cerevisiae poly(A)-binding protein. RNA
19:1537–1551.

Milkman R. 1978. Selection differentials and selection coefficients. Genetics 88:391–403.
Murshudov GN, Vagin AA, Dodson EJ. 1997. Refinement of macromolecular structures by

the maximum-likelihood method. Acta Crystallogr D Biol Crystallogr 53:240–255.
Nivón LG, Moretti R, Baker D. 2013. A Pareto-optimal refinement method for protein design

scaffolds. PLoS One 8:e59004.
Ogden PJ, Kelsic ED, Sinai S, Church GM. 2019. Comprehensive AAV capsid fitness

landscape reveals a viral gene and enables machine-guided design. Science
366:1139–1143.

Olson CA, Wu NC, Sun R. 2014. A comprehensive biophysical description of pairwise
epistasis throughout an entire protein domain. Curr Biol 24:2643–2651.

Pédelacq J-D, Cabantous S, Tran T, Terwilliger TC, Waldo GS. 2006. Engineering and
characterization of a superfolder green fluorescent protein. Nat Biotechnol 24:79–88.

Poelwijk FJ, Socolich M, Ranganathan R. 2019. Learning the pattern of epistasis linking
genotype and phenotype in a protein. Nature Communications.
doi:10.1038/s41467-019-12130-8

Pokusaeva VO, Usmanova DR, Putintseva EV, Espinar L, Sarkisyan KS, Mishin AS, Bogatyreva
NS, Ivankov DN, Akopyan AV, Avvakumov SY, Povolotskaya IS, Filion GJ, Carey LB,
Kondrashov FA. 2019. An experimental assay of the interactions of amino acids from
orthologous sequences shaping a complex fitness landscape. PLoS Genet 15:e1008079.

Povolotskaya IS, Kondrashov FA. 2010. Sequence space and the ongoing expansion of the
protein universe. Nature 465:922–926.

Renfrew PD, Choi EJ, Bonneau R, Kuhlman B. 2012. Incorporation of noncanonical amino
acids into Rosetta and use in computational protein-peptide interface design. PLoS
One 7:e32637.

Rocklin GJ, Chidyausiku TM, Goreshnik I, Ford A, Houliston S, Lemak A, Carter L,
Ravichandran R, Mulligan VK, Chevalier A, Arrowsmith CH, Baker D. 2017. Global
analysis of protein folding using massively parallel design, synthesis, and testing.
Science 357:168–175.

Romero PA, Arnold FH. 2009. Exploring protein fitness landscapes by directed evolution.
Nat Rev Mol Cell Biol 10:866–876.

Ronquist F, Teslenko M, van der Mark P, Ayres DL, Darling A, Höhna S, Larget B, Liu L,
Suchard MA, Huelsenbeck JP. 2012. MrBayes 3.2: efficient Bayesian phylogenetic
inference and model choice across a large model space. Syst Biol 61:539–542.

53

.CC-BY 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted December 9, 2021. ; https://doi.org/10.1101/2021.12.08.471728doi: bioRxiv preprint 

https://doi.org/10.1101/2021.12.08.471728
http://creativecommons.org/licenses/by/4.0/


Russ WP, Figliuzzi M, Stocker C, Barrat-Charlaix P, Socolich M, Kast P, Hilvert D, Monasson
R, Cocco S, Weigt M, Ranganathan R. 2020. An evolution-based model for designing
chorismate mutase enzymes. Science 369:440–445.

Sailer ZR, Shafik SH, Summers RL, Joule A, Patterson-Robert A, Martin RE, Harms MJ. 2020.
Inferring a complete genotype-phenotype map from a small number of measured
phenotypes. PLoS Comput Biol 16:e1008243.

Sardanyés J, Elena SF, Solé RV. 2008. Simple quasispecies models for the
survival-of-the-flattest effect: The role of space. J Theor Biol 250:560–568.

Sarkisyan KS, Bolotin DA, Meer MV, Usmanova DR, Mishin AS, Sharonov GV, Ivankov DN,
Bozhanova NG, Baranov MS, Soylemez O, Bogatyreva NS, Vlasov PK, Egorov ES,
Logacheva MD, Kondrashov AS, Chudakov DM, Putintseva EV, Mamedov IZ, Tawfik DS,
Lukyanov KA, Kondrashov FA. 2016. Local fitness landscape of the green fluorescent
protein. Nature 533:397–401.

Senior AW, Evans R, Jumper J, Kirkpatrick J, Sifre L, Green T, Qin C, Žídek A, Nelson AWR,
Bridgland A, Penedones H, Petersen S, Simonyan K, Crossan S, Kohli P, Jones DT, Silver
D, Kavukcuoglu K, Hassabis D. 2020. Improved protein structure prediction using
potentials from deep learning. Nature 577:706–710.

Srivastava N, Hinton G, Krizhevsky A, Sutskever I, Salakhutdinov R. 2014. Dropout: a simple
way to prevent neural networks from overfitting. J Mach Learn Res 15:1929–1958.

Vagin A, Teplyakov A. 1997. MOLREP: an Automated Program for Molecular Replacement. J
Appl Crystallogr 30:1022–1025.

Wagner A. 2008. Robustness and evolvability: a paradox resolved. Proc Biol Sci 275:91–100.
Weber E, Engler C, Gruetzner R, Werner S, Marillonnet S. 2011. A modular cloning system

for standardized assembly of multigene constructs. PLoS One 6:e16765.
Wittmann BJ, Yue Y, Arnold FH. 2021. Informed training set design enables efficient

machine learning-assisted directed protein evolution. Cell Syst.
doi:10.1016/j.cels.2021.07.008

Wrenbeck EE, Faber MS, Whitehead TA. 2017. Deep sequencing methods for protein
engineering and design. Current Opinion in Structural Biology.
doi:10.1016/j.sbi.2016.11.001

Wright S. 1932. The roles of mutation, inbreeding, crossbreeding and selection in evolution.
Proc Sixth Int Congr Genet 1:356–366.

Wu Z, Kan SBJ, Lewis RD, Wittmann BJ, Arnold FH. 2019. Machine learning-assisted directed
protein evolution with combinatorial libraries. Proc Natl Acad Sci U S A 116:8852–8858.

Yang Z. 2007. PAML 4: phylogenetic analysis by maximum likelihood. Mol Biol Evol
24:1586–1591.

Zheng J, Guo N, Wagner A. 2020. Selection enhances protein evolvability by increasing
mutational robustness and foldability. Science 370. doi:10.1126/science.abb5962

Zhou J, McCandlish DM. 2020. Minimum epistasis interpolation for sequence-function
relationships. Nat Commun 11:1782.

54

.CC-BY 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted December 9, 2021. ; https://doi.org/10.1101/2021.12.08.471728doi: bioRxiv preprint 

https://doi.org/10.1101/2021.12.08.471728
http://creativecommons.org/licenses/by/4.0/

