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Abstract:

Metabarcoding of environmental DNA is based on primers that are specific to the target taxa
(e.g. bacteria, zooplankton, fishes). However, due to the nature of the commonly used protocols,
regardless of the chosen primers, several sequences of non-target species will inevitably be
generated, but are usually discarded in commonly used bioinformatics pipelines. These non-
target sequences might contain important biological information about the presence of other
species in the studied habitats and its potential for ecological studies is still poorly understood.
Here, we analyzed the presence of mammal and bird species in aquatic environmental samples
that were originally amplified targeting teleost fish species. After all cleaning and checking
steps, we kept 21 amplicon sequence variants (ASVs) belonging to mammals and ten to birds.
Most ASVs were taxonomic assigned to farm/domestic animals, such as cats, cows, and ducks.
Yet, we were able to identify a native semi-aquatic mammal, the capybara, in the samples. Four
native bird species and a non-native potentially invasive bird (Corvus sp.) were also detected.
Although the data derived from these samples for mammals and birds are of limited use for
diversity analyses, our results demonstrate the potential of aquatic samples to characterize non-
aquatic birds and highlight the presence of a potentially invasive species that had not been
recorded before in the region.

Key-words: Amplicon sequence variants, Birds, Fishes, High throughput sequencing, Mammals,
Neotropics, Vertebrata.
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1. Introduction:

In recent decades, environmental DNA (eDNA) metabarcoding revolutionized our ability
to efficiently sample and monitor a wide range of taxa (Seymour et al., 2020; Yang et al., 2021).
Although eDNA metabarcoding is a cost-effective technique when compared with traditional
surveys (Shokralla et al., 2015) or other molecular techniques such as shotgun sequencing (Stat
et al., 2017), the cost of amplification and sequencing can pose an important limitation for
countries in the Global South. In this context, optimizing the results obtained from eDNA

metabarcoding sequencing is highly desirable.

A crucial step of eDNA metabarcoding studies is the choice of genetic marker and
primers. The chosen genetic marker should be variable enough to distinguish between target
species, whereas the used primers should be specific enough to avoid amplifying non-target taxa
(Collins et al., 2019; Leese et al., 2020). However, as any given environmental sample contains a
myriad of DNA from entire communities, amplification of non-target taxa is inevitable. Usually,
the bioinformatics of taxonomic assignment discards sequences that do not belong to the target
taxa (Andujar et al., 2018; Burgess, 2001). Yet, these non-target sequences can provide valuable
information about important organisms present in the sample, such as threatened or invasive
species, or even seasonal variation in the composition of non-target communities (Mariani et al.,

2021).

Aguatic environments have been extensively studied for a wide range of taxa, from
viruses to eukaryotic metazoans (Alberti et al., 2017), including many vertebrate taxa (Stat et al.,
2017). The most abundant and diverse vertebrates on Earth—the teleost fishes (Osteichthyes)
that dominate the aquatic realm — have been widely studied through eDNA metabarcoding in
marine and freshwater systems (McEIlroy et al., 2020), both locally (Sales et al., 2021) and

3


https://doi.org/10.1101/2021.12.08.471726
http://creativecommons.org/licenses/by/4.0/

64

65

66

67

68

69

70

71

72

73

74

75

76

77

78

79

80

81

82

83

84

85

bioRxiv preprint doi: https://doi.org/10.1101/2021.12.08.471726; this version posted December 9, 2021. The copyright holder for this preprint
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made

available under aCC-BY 4.0 International license.

globally (Miya et al., 2020). However, aquatic samples are also able to successfully record other
vertebrate classes, such as mammals (Harper et al., 2019; José et al., 2021; Sales et al., 2020).
Although most studies that detected mammals and birds used more general primers for
vertebrates (Andruszkiewicz et al., 2017; Closek et al., 2019), a recent study identified such

organisms from primers originally designed to amplify teleost fishes (Mariani et al., 2021).

Here we explore, for the first time in the Neotropical region, the potential of
metabarcoding-derived sequences to identify non-target vertebrates from aquatic environmental
samples. We used data from fish monitoring of the Itaipu dam and associated fish pass system in
the Parana River, in South Brazil (Dal Pont et al., 2021). We also discuss some potential caveats

and limitations of this approach.

2. Material and Methods:

Our sampling design is described in Dal Pont et al. (2021). In brief, six sites were
sampled in the Piracema fish pass, including a site on the reservoir dam, four in the fish pass and
one in the Parana River in 2019 and three sites that were re-sampled in 2020. The sites were
sampled in sextuplicate, each including one liter of water filtered using nitrocellulose membranes
(0.45-um pore). Filters were kept in 100% ethanol under refrigerated conditions. Total DNA
from samples and three negative controls were extracted using magnetic beads. We amplified the
12S rRNA gene using the MiFish primers designed by Miya et al. (2015) to yield 163-185 bp
fragments targeting teleost fish. The samples and the three negative controls were sequenced
with [llumina MiSeq (lllumina, USA). The raw sequences are deposited in GenBank under

Bioproject PRINA750895 (biosamples SAMN20500524 — SAMN20500577).
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86 To determine amplicon sequence variants (ASVs), we first removed primers with the
87  Cutadapt package (Martin, 2011) in Python v.3.3 (Van Rossum and Drake, 2009), and then used
88  the DADAZ2 package (Callahan et al., 2016) in R v. 4.0.2 (R Core Team, 2021) to quality filter
89  reads, merge sequences, remove chimeras, and to infer ASVs. ASVs present with a proportion >

90  0.01% of reads across all three negative controls were discarded.

91 For taxonomic inference, we build a reference dataset of 12S mitochondrial DNA
92  sequences for fish, mammal, and bird taxa that have been historically recorded in the Itaipu area
93  using the available data in GenBank (Benson et al., 2018). A total of 75 bird, 126 fish, and 78
94 mammal species had sequences available and were used. For fishes, we added an in-house
95 database which included sequences for 42 additional species (Dal Pont et al., 2021). Finally, we
96 blasted the obtained ASVs sequences with our reference database to verify the taxonomic
97  composition using the “Blastn” function of the program Blast+ (Camacho et al., 2009) for the 10
98  best hits and an e-value of < 0.001. We kept ASVs that matched a species from our reference at
99  minimum level of 75% similarity. Inconsistent results were checked manually. ASVs blasted >
100  98% similarity was considered the matched species. All other ASVs were blasted in GenBank as
101 an additional check and then replaced if there was a match with a superior e-value. ASVs with
102  similarity between 96 to 98% were considered in the same genus, 90 to 96 the same family. For
103  similarities between 75 to 90 the ASVs were just considered for the class. We used the
104  metagMisc v. 0.0.4 (Mikryukov, 2019), phyloseq v. 1.36.0 (McMurdie and Holmes, 2013), and
105  tidyverse v. 1.3.0 (Wickham, 2017) packages for data curation and ggplot2 v. 3.3.2 (Wickham,
106  2016), plotly v. 4.10.0 (Sievert, 2020), and patchwork v.1.1.1 (Pedersen, 2019), for data

107  visualization in R v. 4.1.1 (R Core Team, 2021). The script is available as Appendix 1.

108
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109 3. Reaults:

110 We obtained a total of 17,616,032 reads of raw sequence. After all cleaning steps, we
111 retained a total of 2,280,447 reads belonging to 7,096 ASVs. After we removed ASVs with a
112 proportion of > 0.1% of reads present in the sum of three negative controls and taxonomically
113 assigned the ASVs, we kept 994,251 (44% of total) sequences belonging to 220 ASVs with at
114  least 75% similarity of one species in our reference database. As expected, most ASVs (189
115 ASVs in a total of 966,610 reads) belong to fishes, followed by mammals (26,127 reads

116  Dbelonging to 21 ASVs), and only 10 ASVs (1,514 reads) assigned as birds (Fig. 1).

117 From the 21 ASVs assigned as mammal, 12 ASVs were assigned at species level (five
118  species including dog, cat, mouse, and cow), one at genus level, seven at family level, and one
119  only as a mammal. From the ten ASVs assigned as birds, seven were assigned at species level
120  (six species, including a Corvus $p.), one at genus level, and two at family level (Table S1). Most
121 non-fish ASV were recorded in 2019, with higher abundance in the Parana River and the higher

122 number of ASVs in the Brasilia stream locality (Fig. 2).

123
124 4. Discussion:
125 Our results demonstrate that environmental DNA metabarcoding by-catch is a viable source

126  of genetic information for non-target species. Indeed, this is the second study to explore this
127  possibility (Mariani et al., 2021), and the first in the Neotropics. Interestingly, contrary to that
128  study, our data recorded mostly farm/urban animals, such as cat, dog, rat, cow, and duck. It is
129  interesting to note that these records were detected in samples from 2019, whereas in 2020

130  almost no sequences of non-target organisms were found. In 2020 there was an extreme drought
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131 in southeastern Brazil (de Oliveira Bueno et al., 2020), which potentially impacted fish
132 assemblages (Dal Pont et al., 2021) and probably other organisms present in the region as well.
133 Another relevant result is the lower number ASVs recorded in the reservoir site, probably
134  associated with the high water volume near the Itaipu Hydroelectric Power Plant dam and, then

135  low eDNA density.

136 A unique native non-farm / urban mammal species recorded was the capybara Hydrochoerus
137  hydrochaeris. Capybara is the largest living rodent of the world (Nowak and Walker, 1999) with
138 a semi-aquatic habit (Corriale and Herrera, 2014) and occurring throughout most of South
139  America (Moreira et al., 2013), being common in the region (Corriale and Herrera, 2014; Dias et
140  al., 2020). Other mammals were only assigned at the family level, including other rodents
141 (Cricetidae and Hydrocharidae), one bat (Phyllostomidae), and one carnivore (Procyonidae), that
142 is a New World family (Duszynski et al., 2018). Although two species of Procyonidae, Nasua
143  nasua and Procyon crancrivorous, are common in the region (Brocardo et al., 2019), these
144  species were present in our reference database matching with a low similarity. These sequences
145  may have low similarity due to the lack of publicly available representative sequences of the

146  species which them belong, highlighting the need of further studies in the Neotropical region.

147 For birds, beyond the very common non-native species house sparrow (Passer
148  domesticus) and duck (Cairina moschata), we recorded four additional species. From these, three
149  are native and common species, demonstrating the potential of eDNA of aquatic samples to
150  record non-aquatic bird species. One species we found was a crow (Corvus sp.) that is non-native
151  of South America (Burton and Burton, 2002). The corvid species occurring in the region is
152  Cyanocharax chrysops (http://www.aultimaarcadenoe.com.br/aves-do-pg-nacional-do-iguacu/),

153  and although no sequence for this species is available other species of the genera had it and
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154  match with very low similarity, being the Corvus sp. the most probable species. To the best of
155  our knowledge, only one species of crow is known to occur in Brazil, Corvus albus, which was
156  reported for the first time in 2004 (Silva e Silva and Olmos, 2007), followed by additional
157  records (Adelino et al., 2017; Lima and Kamada, 2009). This species is considered a native
158  invader in its home range that has benefited from human infrastructure (Cunningham et al.,
159  2016) and is a potentially invasive species in Brazil (Adelino et al., 2017). It is alarming, since
160  invasive species are detrimental to both biodiversity, ecosystem process, human welfare, and
161  economy (Blackburn et al., 2014). In particular, C. albus has established populations outside
162  their native range in several countries, where they are responsible for ecological impacts (Ryall,
163 1992), economic loss (Kamel, 2014), and human health problems (Yap and Sodhi, 2004).
164  Although the record derived from metabarcoding data targeting fishes should be considered
165  carefully, it indicates a possible occurrence of a potentially invasive species that deserves to be

166  further investigated.

167
168 5. Conclusons:
169 Metabarcoding studies generate hundreds to thousands of non-target sequences. Although

170  this data is severing biased, it can contain important biological information. It is important to
171 note that it is unlikely that environmental DNA metabarcoding by-catch will provide sufficient
172 information for comprehensive surveys and diversity estimates of non-target species. However,
173 we envision two particularly useful applications of this approach. First, it might provide valuable
174  information on population fluctuations of the most common species that live close or associated
175  to bodies of water, such as the capybara. Second, it might show general trends in the anthropic

176  influence in the region, as evidence of native species might be slowly replaced by domestic ones.
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177  In addition, we provide evidence for the potential presence on an invasive species that may be
178  controlled before it becomes a major problem. Also, we showed that aquatic samples are suitable
179  to detect Neotropical bird species. The use of primers specific for birds in aquatic samples can

180  optimize sampling in highly diverse and remote areas.
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Figure 1. Taxonomic composition by order and class in Piracema fish pass. Inset panel show the
point location from left to right as the bars order sampled in 2019. Point in yellow were re-
sampled in 2020 (last three bars).
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Figure 2. Taxonomic composition order abundance (A) and ASVs number (B) for birds and mammals registered in the Piracema fish
pass. Inset panel show the point location from left to right as the bars order sampled in 2019. Point in yelow were re-sampled in 2020
(last three bars). One ASV in Bela Vista River 2 point assigned as mammal could not been assigned by any order by the low similarity
(79.6%) and was kept as “mammal”.
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