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Abstract 33 

Background:  34 

Carbapenem-resistant Enterobacterales (CRE) are an urgent global health threat.  Inferring the 35 

dynamics of local CRE dissemination is currently limited by our inability to confidently trace the 36 

spread of resistance determinants to unrelated bacterial hosts. Whole genome sequence 37 

comparison is useful for identifying CRE clonal transmission and outbreaks, but high-frequency 38 

horizontal gene transfer (HGT) of carbapenem resistance genes and subsequent genome 39 

rearrangement complicate tracing the local persistence and mobilization of these genes across 40 

organisms. 41 

Methods: 42 

To overcome this limitation, we developed a new approach to identify recent HGT of large, near-43 

identical plasmid segments across species boundaries, which also allowed us to overcome 44 

technical challenges with genome assembly.  We applied this to complete and near-complete 45 

genome assemblies to examine the local spread of CRE in a systematic, prospective collection 46 

of all CRE, as well as time- and species-matched carbapenem susceptible Enterobacterales, 47 

isolated from patients from four U.S. hospitals over nearly five years. 48 

Results: 49 

Our CRE collection comprised a diverse range of species, lineages and carbapenem resistance 50 

mechanisms, many of which were encoded on a variety of promiscuous plasmid types. We 51 

found and quantified rearrangement, persistence, and repeated transfer of plasmid segments, 52 

including those harboring carbapenemases, between organisms over multiple years. Some 53 

plasmid segments were found to be strongly associated with specific locales, thus representing 54 

geographic signatures that make it possible to trace recent and localized HGT events.  55 

Functional analysis of these signatures revealed genes commonly found in plasmids of 56 
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nosocomial pathogens, such as functions required for plasmid retention and spread, as well 57 

survival against a variety of antibiotic and antiseptics common to the hospital environment.  58 

Conclusions: 59 

Collectively, the framework we developed provides a clearer, high resolution picture of the 60 

epidemiology of antibiotic resistance importation, spread, and persistence in patients and 61 

healthcare networks. 62 

 63 

Background 64 

Carbapenem-resistant Enterobacterales (CRE) cause difficult-to-treat infections [1–5] 65 

with high mortality rates [6–8], largely because antibiotic options for treating them are limited 66 

[9,10]. CRE are also highly transmissible through contact [11–16], leading to nosocomial 67 

outbreaks that are costly to contain with significant patient morbidity and mortality [17–19], 68 

making CRE a leading healthcare problem [20–25]. Despite the adoption of extensive infection 69 

control measures [11,12] that have begun to curb the incidence of CRE infection in some 70 

countries, the global incidence of CRE infections continues to rise [20,23,24,26–28]. 71 

Genomic studies are providing new insights into the emergence and spread of CRE 72 

within healthcare institutions [29–31]. Comprising many species, most commonly Klebsiella 73 

pneumoniae, Escherichia coli, and Enterobacter cloacae complex, CRE can be found in diverse 74 

environments within hospitals [32–35], ranging from the gastrointestinal tract of asymptomatic 75 

carriers [36,37] to contaminated hospital sinks and drains [38–42]. CRE are readily acquired 76 

and spread from these reservoirs [13,40], including hospital-adapted high-risk lineages (e.g. K. 77 

pneumoniae sequence type (ST)-258) [43] that are associated with both intra- and inter-facility 78 

clonal transmission [13,29,44,45].  Known reservoirs tend to be polymicrobial and thus can act 79 
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as sites for CRE diversification and are believed to have played important roles in horizontal 80 

gene transfer (HGT) of carbapenemases [40,42].   81 

Though bioinformatic approaches targeting the sequences surrounding 82 

carbapenemases have been used to predict the movement of carbapenemases across some 83 

CRE populations [46], tracing the movement and persistence of these genes within facilities is 84 

complicated. CRE reservoirs can be large and diverse, and comparatively few have been 85 

studied  [39,40,42,47,48].  Furthermore, HGT rates are predicted to be high [49–51], and 86 

carbapenemase containing plasmids frequently recombine at sites of repetitive sequence, 87 

leading to mosaic plasmid structures [31,52]. Given this, carbapenemase-containing plasmid 88 

sequences are challenging to accurately assemble. Long-read sequencing technologies have 89 

provided the strongest evidence for HGT of plasmids containing carbapenemases between 90 

Enterobacterales within individual hospitals, as well as for transmission between patients and 91 

hospital reservoirs [40,42]. However, it remains challenging to trace carbapenemase movement 92 

within and between different plasmid backgrounds and organisms even when using high quality 93 

assemblies generated using long-read sequencing data.   94 

We previously published results from a surveillance study conducted in 2012-2013 [30] 95 

that highlighted the shortcomings of existing methods for tracking CRE movement. Here, we 96 

expanded this initial study to capture all patient-derived CRE, regardless of infection site or 97 

resistance mechanism, from across the same four hospitals over an additional three-year period 98 

from December 2013 through 2016. Our sequencing methodology, which combined short 99 

paired-end and long-insert mate pair Illumina sequencing libraries, enabled high quality whole 100 

genome and plasmid assemblies for over 600 isolates. We developed a novel computational 101 

methodology to holistically screen for conserved segments within mosaic plasmids that allowed 102 

us to trace the movement and persistence of genes, including carbapenemases, within facilities. 103 

This approach revealed near-identical plasmid segments, including carbapenemase encoding 104 

segments, that crossed plasmid and species boundaries. Many of these were specific to and 105 
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recurrent within a single hospital site, revealing extensive linkages between patient isolates that 106 

would have been missed otherwise. From long-read sequencing of select isolates, we also 107 

observed rapid plasmid mosaicism, including the shuffling of segments into new genomic 108 

locations, occurring on the same timescale as single nucleotide variation. 109 

 110 

Results 111 

Comprehensive collection of clinical specimen CREs from microbiology labs over 112 

a nearly five year period reveals striking diversity and clusters  113 

As part of our continued surveillance of CRE at four large tertiary hospitals located in 114 

Boston, MA and Orange, CA, we collected and sequenced the genomes of all carbapenem-115 

resistant Enterobacterales (CRE; defined here as meropenem MIC ≥ 2μg/ml; Materials and 116 

Methods) cultured from clinical specimens between December 2013 and December 2016, 117 

regardless of species or resistance mechanism. These 146 CRE were added to our earlier 118 

published dataset [30] of 74 CRE prospectively collected between August 2012 and November 119 

2013, and 47 historical CRE isolates from the same hospitals, including 12 sets of related same-120 

patient isolates (Figure 1; Table 1; Tables S1-S3). For each CRE, we also collected and 121 

sequenced at least one species- and time-matched carbapenem susceptible Enterobacterales 122 

(CSE; defined here as meropenem MIC < 2μg/ml). This collection strategy gave us access to 123 

isolates representing a wide range of carbapenem resistance mechanisms, as well as a 124 

snapshot of the sympatric susceptible population at each hospital [30] (Table S1). Consistent 125 

with our previous findings, CRE were most often cultured from urine specimens (40%), followed 126 

by respiratory tract (18%), blood (9%), and bile (8%) specimens (Table S1).  127 

For each isolate, we generated highly contiguous de novo genome assemblies (average 128 

scaffold N50 of 3.8 Mb; Table S4) using a combination of Illumina short paired-end and long-129 
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insert mate pair libraries [53]. Echoing our previous work [30], and consistent with previous 130 

studies [29–31,54], whole genome average nucleotide identity (ANI) comparisons revealed a 131 

vast taxonomic diversity among patient CRE isolates: 16 different species were observed 132 

among this collection, though K. pneumoniae sensu stricto (52%), E. coli (18%) and 133 

Enterobacter hormaechei (13%; a member of E. cloacae complex) were most prevalent (Figure 134 

1; Table S1). As expected by the study design, CSE isolates were similarly distributed by 135 

taxonomy (Table S1). To further classify and explore the diversity of isolates, we generated 136 

single copy core phylogenetic trees for each species, computationally defined lineages using 137 

phylogenetic distances as previously described [31], and mapped these lineages to existing 138 

STs, including those previously defined as high-risk [43] due to their ability to cause severe 139 

and/or recurrent drug-resistant infections and rapidly spread (Materials and Methods). This 140 

revealed a striking intra-species diversity of organisms within our dataset (Figure 2; Figure S1; 141 

Table S1), though we also observed closely related clusters of isolates. Twenty percent of 142 

isolates were separated from another isolate by two or fewer single nucleotide variants (SNVs), 143 

based on core genome comparisons, which was the range of SNVs observed for related same-144 

patient isolates (Table S3). Another 14% were separated from another isolate by a maximum of 145 

10 core SNVs, a number previously used to suggest recent common ancestry [55,56].   146 

 147 

Heterogeneous phylogenetic distribution of resistance determinants, and 148 

evidence for nosocomial spread of non-CP-CRE      149 

Our analysis of the mechanisms of carbapenem resistance revealed that the majority of 150 

resistance was mediated by carbapenemases (CP-CRE), though extended-spectrum beta 151 

lactamases coinciding with porin disruptions also contributed (Figure 2; Figure S1-S3; Table 2; 152 

Table S1, S5-S7; Supplementary Results). Pointing to the known role of HGT in the spread of 153 

carbapenem resistance in the Enterobacterales [30,42,52], species phylogenies revealed both 154 
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carriage of identical carbapenemase alleles (and their transposon Tn4401 variants; Table S8) 155 

among distantly related isolates and heterogeneity in the carriage of resistance genes among 156 

closely related isolates (Figure 2). Importantly, despite capturing a very small fraction of patient 157 

CSE from these hospitals, we observed CP-CRE and susceptible isolates separated by as few 158 

as 4 core SNVs, connections that would be missed by phenotyping alone (Table S9), and 159 

pointing to transfer of carbapenemase-containing plasmids within locally circulating populations.  160 

While the majority of closely related clusters (< 10 SNPs) comprised CP-CRE, we also 161 

found evidence for the nosocomial spread of non-CP-CRE. A cluster of 12  K. pneumoniae ST-162 

15 isolates (separated by 0-2 SNVs) that all harbored the ESBL blaCTX-M-15 were isolated from 12 163 

unique patients from a single hospital across four years.  Eleven of 12 members also carried 164 

inactivating mutations in both major porins, OmpK35 and OmpK36 (Table S10).  Though similar 165 

to an earlier report from hospitals in Greece [57], where 19 clonally-related isolates carried blaCTX-M-166 

15, together with consistent disruptions (ompK35) or mutations (ompK36) in porins, we observed 167 

that, while each isolate carried the same, presumably vertically transmitted, frame-shifted copy 168 

of ompK35, all but one carried a distinct inactivated form of ompK36 with non-identical IS 169 

element insertions [58–60]. 170 

 171 

Geographically widespread, rapidly rearranging plasmid groups prevented 172 

accurate tracing of carbapenemase exchange between unrelated organisms 173 

Because our assemblies were generated using data from both short paired-end and 174 

long-insert mate pair Illumina libraries, they were highly contiguous (i.e., >20% of >2 kb plasmid 175 

scaffolds were predicted to represent complete, circular plasmids (Table S11)), which allowed 176 

us to examine the distribution of plasmids across isolates, genera, and geographic locations. 177 

The vast majority of plasmids (83%) were assigned to one of 215 plasmid groups by MOB-suite 178 

(Figure S4; Table S12), of which nearly 20% contained instances of plasmids encoding 179 
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carbapenemases. However, most (80%) of these carbapenemase-containing plasmid groups 180 

also contained plasmids lacking a carbapenemase (Figure S5, panel B), showcasing the known 181 

genetic flexibility of plasmids [31,54,61]. Furthermore, plasmid groups were also remarkably 182 

geographically widespread [62], with nearly all (92%) of the most prevalent plasmid groups 183 

found in isolates from multiple hospitals, including all of those containing carbapenemases 184 

(Figure S5, panel C), with a majority (70%) found in isolates from both cities. 185 

The widespread geographic distribution of plasmids, and the ample opportunity they 186 

have to interact with and rearrange genetic content with other plasmids (Supplementary 187 

Results), complicates the tracing of clinically important resistance genes contained within 188 

plasmids. Specific genetic markers have previously been used to trace the local spread of 189 

blaKPC [46]. However, when applied to our dataset, these markers, including specific plasmid 190 

groups, Tn4401 isoforms and their 5 base pair (bp) or longer flanks, were also mostly 191 

geographically widespread (Figure S6). 192 

 193 

Identification of geographic signatures allows for local tracing of HGT and inter-194 

molecular movement of genes     195 

Inspired by analyses investigating larger flanking regions surrounding resistance 196 

determinants [63], we developed ConSequences, a broader, gene-agnostic approach to identify 197 

highly conserved and contiguous segments on plasmids that may serve as markers of local 198 

HGT of clinically important genes, such as those encoding carbapenemases and other hospital 199 

adaptive traits (https://github.com/broadinstitute/ConSequences). We first searched predicted 200 

plasmids from across our entire dataset of >600 isolates for 10 kb or larger segments that were 201 

conserved in gene order and nucleotide identity (≥ 99% per 10kb block) across two or more 202 

plasmid scaffolds (Figure 3, Figure S7-S8). Of the 4,605 unique segments meeting these 203 

criteria, 95% exhibited some amount of overlap or nesting with other segments, and 58% were 204 
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identified in multiple plasmid groups, highlighting the frequent recombination between plasmids 205 

and complex nesting among mobile genetic elements in Enterobacterales [31,64]. The size of 206 

conserved segments ranged from 10 kb to 310 kb, with longer segments typically observed in 207 

fewer isolates.  208 

We focused our analysis on segments that were likely horizontally transferred and 209 

present in more than one species, as interspecies transfers would be least suspected as 210 

nosocomially linked. To filter out segments likely to have been repeatedly imported into the 211 

hospital from elsewhere, we removed those present in isolates from both states represented in 212 

our study, as well as those appearing in publicly available genomes represented in the NCBI’s 213 

Nucleotide Collection database. We elected to group the Boston-based hospitals together to 214 

account for known fluidity between some hospital staff and patient populations who could 215 

interact with and share organisms from a common reservoir.  Although our assemblies were 216 

highly contiguous, we took further steps to ensure that these segments represented only high-217 

confidence regions of our assemblies and were not missed by improper assembly or scaffold 218 

breaks (Materials and Methods). Finally, we stringently screened these for uniqueness by 219 

searching against the ENA/SRA database using BIGSI [65]. 220 

This analytical framework revealed 44 geographic signatures, which we define as 221 

plasmid segments found in two or more species and associated exclusively with either Boston, 222 

MA or Orange, CA (Figure S9; Table S13; Supplementary Data File). These signatures 223 

represented only 2% of all segments found in multiple species, and more than half (52%) were 224 

specific to a single hospital. We found that signature prevalence was higher among CRE (23%) 225 

than CSE (6%) in our sample set, likely owing to our sampling strategy that included all CRE 226 

from hospital microbiology labs, but only a small fraction of CSE. As observed for the full set of 227 

conserved segments, many signatures exhibited substantial overlap with one another. Ten were 228 

fully nested within larger signatures, representing different conservation profiles, with each 229 

shorter signature found in more isolates than the larger signature. Signatures had a mean 230 

.CC-BY-NC 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted December 9, 2021. ; https://doi.org/10.1101/2021.12.08.471225doi: bioRxiv preprint 

https://paperpile.com/c/vi6I5b/AnK4e+fVlk0
https://paperpile.com/c/vi6I5b/LJnuz
https://doi.org/10.1101/2021.12.08.471225
http://creativecommons.org/licenses/by-nc/4.0/


 
9 

length of 31 kb (range 10 kb to 311 kb), and were observed, on average, 5 times (range 2 to 231 

19), across 2 plasmid groups (range 1 to 4; 28 total), 2 species (range 2 to 4; 15 total), and 3 232 

sequence types (range 2 to 6; 39 total).   233 

 234 

Geographic signatures carry important cargo for hospital survival and 235 

dissemination 236 

We hypothesized that the 44 geographic signatures would encode functions that enable 237 

their movement and persistence within patients (i.e. colonization) and the built environment, 238 

similar to other widely conserved plasmid sequences from nosocomial bacteria. Of the 1,494 239 

individual genes predicted within signatures, we could assign some putative function to nearly 240 

two-thirds (Figure S10-S11; Tables S14-S15). All but one of the signatures were predicted to 241 

encode functions for maintenance or dissemination of DNA into new genomic contexts or hosts, 242 

including IS elements [66], integrases or other recombinases [67], conjugation machinery [68], 243 

and plasmid uptake and maintenance apparatuses [69,70]. The prevalence of conjugation and 244 

plasmid uptake genes expectedly pointed to the carriage of signatures on conjugative plasmids; 245 

however, one signature (Sig20) also overlapped with a predicted prophage that was situated on 246 

a circularized scaffold containing a plasmid replicon but no conjugative relaxase. Also, given 247 

their demonstrated ability to cross species boundaries, it was unsurprising that half of the 248 

signatures featured genes which were also found at high nucleotide identity (≥99%) in bacteria 249 

outside the order of Enterobacterales (Table S14).  250 

As we also hypothesized, the majority (66%) of signatures featured genes predicted to 251 

encode for survival strategies against antimicrobials, including quaternary ammonium 252 

compounds used in standard disinfectants in healthcare settings [71](Figure S10-S11). Eight 253 

signatures encoded enzymatic antibiotic resistance, including examples with blaKPC, likely 254 

reflecting both our sampling strategy focused on CRE and that antibiotic resistance genes are 255 
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often co-located on plasmids [72–74]. Genes coding for metal resistance were also prevalent, 256 

occurring in more than a third of signatures, and often co-occurring with genes for antibiotic 257 

resistance, including in half of signatures containing blaKPC, highlighting recent findings that 258 

metal resistance and antibiotic resistance are frequently co-selected [75,76].  259 

 260 

Additional instances of localized carbapenemase spread were identified through 261 

tracing of geographic signatures. 262 

 Six of the 44 geographic signatures encoded blaKPC. These blaKPC signatures ranged in 263 

size from 18kb - 147kb (the smallest of these signatures, Sig 5.1-CP, was nested inside the 264 

largest signature, Sig 5.6-CP), and were found in 21% of all blaKPC-carrying CRE in our 265 

collection (Figure 4; Figure S9). As expected from the filters we applied to identify geographic 266 

signatures, blaKPC signatures were distributed across multiple species (2 to 4) and sequence 267 

types (2 to 7), associated with multiple plasmid groups (1 to 3) and sometimes the chromosome, 268 

and observed across variable time spans of at least 4 years and up to 10 years (Figure 4; Table 269 

S16). Furthermore, some isolates carried more than one signature (e.g., Sig1-CP and Sig4-CP), 270 

sometimes on the same plasmid.   271 

Though our inclusion criteria would have allowed for as many as 100 SNVs in a 10 kb 272 

signature, we observed much greater identity, with most blaKPC signatures varying by only two or 273 

fewer SNV differences between instances (Figure S12).  This striking degree of similarity, 274 

extending well beyond the edges of the Tn4401 elements, likely indicates a recent common 275 

ancestral source for these signatures, as well as their persistence and movement across 276 

species boundaries within a local environment. These instances of suspected local spread of 277 

carbapenemases between distantly related isolates would not have been picked up by 278 

traditional epidemiology or even standard whole genome sequence analysis in most cases. 279 

Furthermore, many blaKPC signature instances were harbored by isolates that were very closely 280 
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related (0-10 core SNVs), indicating the ability of these signatures to spread within the hospital 281 

along with their bacterial hosts (Figure 4), in addition to their ability to move between bacterial 282 

sequence types and species.  283 

 284 

A multi-genus blaKPC-containing geographic signature is highly conserved 285 

despite rapid rearrangements of its plasmid backgrounds. 286 

Although our analysis was based on highly contiguous assemblies that combined data 287 

from short- and long-insert Illumina libraries, we sought to improve the assemblies further in 288 

order to follow the details of signature evolution and spread across plasmids and taxonomic 289 

boundaries. To do this, we re-sequenced all isolates carrying Sig5.1-CP using Oxford Nanopore 290 

Technology to generate long read sequences for hybrid assembly, followed by manual curation. 291 

Sig5.1-CP, a blaKPC-3-carrying signature, was present in the largest number of different genera 292 

and species in our prospective collection and was also found in historical isolates dating back to 293 

2008 (Figure 5; Suppl. Table S17). In addition, Sig5.1-CP was almost exclusively found in a 294 

single Boston hospital, including within four isolates collected over a five-week period in 2017. 295 

These four isolates were initially sequenced because they were suspected to be part of a short-296 

lived C. freundii complex (later revealed to be Citrobacter portucalensis) clonal case cluster that 297 

differed from one another by less than four SNVs. We found that this 2017 cluster of isolates all 298 

differed by the same 12 SNVs from a 2014 isolate carrying Sig5.1-CP from the same hospital 299 

that was already part of our collection.  300 

The complete assembly of each individual replicon unambiguously revealed the 301 

relocation of Sig5.1-CP into the chromosome and its association with three different plasmid 302 

groups (Figure 5). One of these plasmids encoded both IncP and IncH replicons, which are 303 

known for their broad host range [77,78], likely contributing to this signature’s ability to transfer 304 

to diverse hosts and persist. Although our draft assemblies were adequate to identify the 305 
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signature using our methodology, manual inspection of Sig5.1-CP boundaries in the completed 306 

assemblies revealed that this signature could be expanded to include approximately an 307 

additional 1 kb of sequence encoding a blaTEM-1A beta lactamase. Manual inspection also 308 

revealed an even longer, 26kb conserved region in the 9 isolates occurring since 2012 (Figure 309 

S13). This extended signature included additional cargo that could be involved in adaptation to 310 

the healthcare environment, including genes predicted to encode mercury resistance, a Na+/H+ 311 

antiporter (possibly influencing cell viability at high pH [79]), and a multidrug efflux pump. 312 

Despite Sig5.1-CP’s distinct genomic contexts, it was highly conserved, maintaining perfect 313 

base-level identity, with the exception of one isolate (K. pneumoniae MGH39 from 2012) that 314 

harbored a variant of the signature with two non-synonymous SNVs, both within the same 315 

predicted transposon.  316 

Though possessing nearly identical chromosomes (≤3 SNVs), isolates from the C. 317 

portucalensis clonal case cluster had a striking variety of plasmid and chromosomal 318 

arrangements (Figure S14). While two chromosomally identical 2017 isolates also had identical 319 

plasmid profiles and Sig5.1-CP location, one of the other 2017 isolates carried the signature on 320 

a different plasmid, while the remaining 2017 isolate carried it on a co-integrate of both 321 

plasmids. Many of the rearrangements were likely mediated by IS26 sequences (Figure S14), 322 

previously shown to drive the reorganization of plasmids through replicative transposition [80]. 323 

Although we could not precisely trace the divergence of the cluster of 2017 isolates from the 324 

2014 isolate, multiple plasmid gains, losses, and rearrangements in the 2017 isolates appear to 325 

have occurred on the same timescale as the accumulation of SNVs. 326 

 327 
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Discussion 328 

Using a systematic, prospective isolate collection strategy, along with a sequencing 329 

approach that enabled highly contiguous assemblies, we found diverse mechanisms for the 330 

spread of carbapenem resistance and examples of clonal spread of both carbapenemase-331 

carrying and porin-based CRE.  We also found geographic signatures that allowed us to trace 332 

the local spread of carbapenemases across genetic backgrounds, even in cases where 333 

standard genomic epidemiology might not identify a link.  334 

Our collection was agnostic to species and carbapenem-resistance mechanism, giving 335 

us a more complete view of patient CRE organismal and resistance mechanism diversity. As we 336 

and others observed previously [29,30], the majority of carbapenem resistance was mediated by 337 

the presence of a carbapenemase, with the most prevalent being blaKPC, consistent with their 338 

known prevalence in the U.S. [22]. We saw that another approximately quarter of resistance 339 

could be associated with ESBL or AmpC beta-lactamases, together with at least one disrupted 340 

major porin - a resistance genotype that can be difficult to detect using targeted molecular or 341 

even whole genome sequencing analytical approaches.  342 

Though there have been many examples of clonal spread of CP-CRE, few studies have 343 

pointed out the contribution of porin-based CRE in nosocomial CRE spread [57,81]. Although 344 

strains with porin mutations are thought to be less successful in spreading to other patients, we 345 

observed a large clonal cluster of K. pneumoniae isolates with inactivating mutations in both 346 

major porins appearing in patients across a four-year period. Interestingly, the mutation in 347 

ompK35 was the same across the isolates, whereas the mutations in ompK36 varied. This 348 

suggested that i) the transmitted form had a single porin inactivation and, thus, may have been 349 

less impaired for long-term persistence and spread; ii) selective pressure for inactivation of both 350 

porins was able to override any fitness defect; and/or iii) the potential for yet to be identified 351 

compensatory mutations which could attenuate the fitness defect associated with mutations of 352 
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these porins in this strain [82,83]. The presence of porin-based CRE clonal clusters indicate that 353 

fitness phenotypes in such strains should be examined more closely, and that porin-based 354 

mutants should not be overlooked as contributors to clonal case clusters.   355 

Plasmids are key to understanding the ongoing carbapenem resistance epidemic but 356 

pose challenges for tracing resistance evolution and local spread because of their diversity, 357 

widespread nature, and tendency to rearrange [31,52,54,61,84,85]. These processes are 358 

accelerated by the frequent co-occurrence of carbapenemase plasmids with other diverse 359 

plasmids within a single isolate [42]; in our dataset, three-quarters of all plasmid groups were 360 

observed to co-occur with a carbapenemase plasmid group. Furthermore, as observed here and 361 

by others [40,42], carbapenemases are often carried by plasmids that can conjugate across 362 

species and genera [40,42]. Our results showcase an extensive network of possible exchange 363 

points that carbapenemases (and the signatures that contain them) can use to transfer to new 364 

plasmid backgrounds and onward to new hosts. We also observed striking plasticity of 365 

plasmids. For instance, plasmid groups were rarely composed purely of carbapenemase-366 

containing plasmids and were also widespread and not strongly associated with specific 367 

geographic locales. This flexibility is exemplified in the C. portucalensis clonal case cluster, in 368 

which plasmid rearrangements and carbapenemase transfer between different plasmid 369 

backgrounds was repeatedly documented for isolates that were likely to have diverged very 370 

recently and isolated only a few weeks apart.  371 

While approaches for systematically tracing carbapenemases across species include 372 

analyzing transposons and their immediate flanking sequences [46], these regions in our 373 

collection were common and widespread, preventing us from confidently tracing 374 

carbapenemase movement. Additionally, the recently published alignment-based, pairwise 375 

screen of Evans et al. [64] shows promise for tracing carbapenemases; however, their 376 

clustering approach applied in this case would likely group together different Tn4401 isoforms, 377 

and does not assess whether segments are geographically associated.  378 
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In order to overcome the limitations of these approaches and to achieve a higher level of 379 

resolution for tracing the localized spread of carbapenemases as well as other hospital adaptive 380 

traits, we developed a novel, broadly applicable, and gene-agnostic framework to identify highly 381 

conserved plasmid segments found in multiple species or lineages with strong geographic 382 

associations. Though strict filters for identifying signatures were used in the work presented 383 

here, our approach can be tuned with regard to these filters, including the ability to incorporate 384 

different levels of geographic specificity (i.e. hospital, city, etc.), phylogenetic specificity (i.e. 385 

lineage, species, etc.), and different signature lengths, up to the size of an entire plasmid.  386 

Loosening these requirements - along with use of even more contiguous assemblies - could 387 

yield a more comprehensive profile of HGT signals, including an understanding of the possible 388 

differences in HGT occurring within versus between different species.  Although we only 389 

searched for inter-species signatures in this study, we also identified intra-species instances in 8 390 

of the 44 signatures.   391 

While long-read technologies are typically needed to achieve the high level of contiguity 392 

necessary to examine plasmids in detail, our strategy, involving both long and short insert 393 

Illumina libraries, together with our novel approach for identifying signatures, was able to 394 

successfully identify many highly conserved signatures involved in the predicted local 395 

movement of carbapenemases across species boundaries. Although having high quality 396 

assemblies was key to identifying signatures, our method also includes searches against raw 397 

sequence reads to identify additional instances of motifs, which would make it possible to 398 

include read sets from lower quality assemblies in analysis. Improved genomic assemblies, 399 

including more long read sequencing, would likely assist in identifying and tracing signatures 400 

more completely. Furthermore, given our method’s dependence upon public databases, growth 401 

in the number of deposited sequences will provide additional resolution to discern true 402 

geographic signatures from segments that are more broadly geographically represented. 403 
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The links between unrelated isolates uncovered by geographic signatures adds to the 404 

growing recognition that there are likely to be reservoirs of Enterobacterales within healthcare 405 

networks that are involved in reshuffling plasmids and their signatures across organisms, and 406 

aiding in their long-term local persistence. Remarkably, over 20% of CP-CRE isolates carried at 407 

least one blaKPC geographic signature, suggesting that a substantial fraction of patient CRE may 408 

have originated from HGT within the hospital (or hospital-proximal environments, including 409 

ambulatory and nursing facilities). Although we expected that selective pressure for maintaining 410 

carbapenem resistance would be mainly present within patients treated with carbapenems, our 411 

blaKPC-containing signatures were long-lived, each being observed in patient isolates spanning 412 

periods of four to ten years. This is likely because these signatures also carried other genes key 413 

to adaptation in hospital reservoirs. Genes co-localized with blaKPC within our signatures that 414 

could provide functions related to persistence in the hospital environment included: i) additional 415 

antibiotic resistance genes, which could lead to their joint long-term conservation through co-416 

selection; ii) genes conferring resistance to hospital disinfectants and metals, increasingly used 417 

in hospital touch surfaces [75,76] and iii) conjugation and plasmid uptake machinery, both of 418 

which can amplify blaKPC and assist its persistence and spread across isolates and species 419 

[86,87]. In addition, the association of these signatures with plasmids from different 420 

incompatibility groups, particularly those adapted to different conditions such as temperature 421 

[88–90], appear adaptive for reservoir switching, e.g. from the human body to the hospital 422 

environment and back. Our views of the taxonomic distributions of signature genes suggest that 423 

some of these hospital-adaptive traits may have been recently acquired from distantly related 424 

organisms in shared reservoirs. 425 

Our study had several limitations. Sampling of suspected hospital reservoirs, including 426 

environmental samples and those from asymptomatic carriers, would likely allow us to create a 427 

more complete view of signatures and their exchange across organisms and demonstrate the 428 

role of these reservoirs in seeding infections. Other studies, including our previous work [30], 429 
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point to high levels of asymptomatic colonization, including a study that suggests that clinical 430 

testing detects only one out of nine carriers [91].  We also lacked epidemiological data about 431 

patients, which further limited our ability to quantify the extent of clonal spread. Despite the lack 432 

of epidemiological data and non-patient samples, our analysis suggested that there is 433 

persistence of resistance genes within hospital networks for years.    434 

One additional limitation of our approach is our inability to distinguish convergent 435 

evolution or re-introductions from the community from local spread. However, due to the high 436 

degree of similarity over long stretches (10- 310kb), convergent evolution for all of these 437 

signatures is unlikely. In the case of two signatures (Sig1-CP and Sig4-CP), instances that were 438 

otherwise nearly identical differed in which blaKPC allele or Tn4401 isoform they carried. Possible 439 

explanations other than de novo formation of a similar signature include mutation within a 440 

signature, or recombination taking place within the signature. The propensity for some 441 

signatures, like Sig5.1-CP, to persist for so long within a single hospital, yet to not be found 442 

more generally, including among patients treated at other nearby hospitals, strongly hints at a 443 

local reservoir, rather than re-introduction.  444 

In conclusion, using a long-term systematic collection of isolates - including both CRE 445 

and CSE - together with high quality sequencing and a novel analysis methodology, we 446 

achieved high resolution views of mechanisms accounting for carbapenem resistance and a 447 

greater understanding of their spread across four U.S. hospitals. In addition to examples of 448 

clonal spread of CP-CRE and porin-based CRE, we observed the sharing of plasmid segments 449 

containing hospital adaptive traits - including carbapenemases - circulating among local diverse 450 

bacterial populations over long timeframes. Within these segments and the plasmids harboring 451 

them, we observed intermolecular rearrangements over short timeframes, underscoring the 452 

complexity entailed in tracing the movement of plasmids and their component parts. However, 453 

our long-term surveillance strategy, high quality assemblies, and novel methodology for 454 

identifying geographic signatures revealed previously unsuspected links between CP-CRE (as 455 
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well as other organisms across these hospitals) that helped to clarify the epidemiology of 456 

antibiotic resistance spread and persistence in these healthcare networks.  457 

 458 

Materials and Methods 459 

Isolate collection and drug susceptibility testing 460 

Our sample collection represented a continuation of our previous prospective study, 461 

conducted in 2012-2013 [30]. Between December 2013 and November 2016, we collected 462 

additional samples from symptomatic patients at Beth Israel Deaconess Medical Center 463 

(BIDMC), Brigham and Women's Hospital (BWH), and Massachusetts General Hospital (MGH) 464 

in Boston, MA, and the University of California Irvine (UCI) Medical Center in Orange, CA. We 465 

collected all isolates from clinical samples sent to these hospitals’ clinical microbiology 466 

laboratories that, using the laboratories’ standard operating procedures [30], were identified as 467 

Enterobacterales with a meropenem minimum inhibitory concentration (MIC) ≥ 2 µg/mL, the 468 

threshold that we used to define resistance throughout our analysis. We thus included samples 469 

categorized as both intermediate (2 µg/mL) and resistant (≥ 4 µg/mL) by the Clinical and 470 

Laboratory Standards Institute interpretative criteria [92]. For each resistant isolate, we also 471 

collected date- and species-matched meropenem susceptible isolates. UCI submitted two 472 

carbapenem susceptible isolates per resistant isolate; the other three hospitals submitted a 473 

single susceptible isolate per resistant isolate. In total, we collected 347 new isolates (146 474 

resistant and 201 susceptible isolates; one isolate per patient). Isolates whose meropenem 475 

resistance phenotype was discordant with the genotype were retested using a previously 476 

validated automated digital dispensing method [93] adapted from standard broth microdilution 477 

procedures [92]. Meropenem was tested against bacterial isolates at doubling dilution 478 
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concentrations from 0.016 to 32 µg/mL. All isolate cultures are available from the corresponding 479 

author upon reasonable request. 480 

Combining our newly collected samples from December 2013 - November 2016  with the 481 

261 Enterobacterales isolates that we previously sequenced in 2012-2013 from these four 482 

hospitals [30] resulted in a total of 608 isolates (of which 274 were meropenem-resistant). The 483 

261 previously reported isolates consisted of the retrospective Boston Historical Collection, 484 

consisting of 49 isolates collected between September 2007 and July 2012, including 17 485 

isolates grouped into six sets of same-patient isolates, and 74 CRE and 138 carbapenem 486 

susceptible Enterobacterales (CSE) isolates collected prospectively (including 11 isolates from 487 

3 sets of same-patient isolates). In total, our prospective collection included 559 isolates 488 

collected between 2012 and 2016. 489 

Institutional review board (IRB) approval was granted by the Massachusetts Institute 490 

of Technology Committee on the Use of Humans as Experimental Subjects. Samples were 491 

collected under study approvals of the IRB committees of the participating institutions: Mass 492 

General Brigham (covering both MGH and BWH); Beth Israel Deaconess Medical Center, 493 

Boston; and University of California, Irvine. 494 

 495 

Genome sequencing, assembly, and annotation 496 

Illumina sequencing and assembly. We prepared whole-genome paired-end and mate-497 

pair libraries for 347 isolates and paired-end sequenced them as previously described [30] on 498 

Illumina HiSeq 2500 or HiSeq X sequencers. Genome assembly and annotation were carried 499 

out as previously described, using the Broad Institute’s prokaryotic annotation pipeline [30]. 500 

Sequencing reads and assemblies were submitted to GenBank under bioproject PRJNA271899. 501 

Long-read sequencing and assembly.   We selected a subset of 19 isolates for further 502 

sequencing using Oxford Nanopore Technology (ONT). For the 12 isolates containing 503 
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signatures Sig5.1-CP or Sig5.6-CP, we used the Oxford Nanopore Rapid Barcoding kit (SQK-504 

RBK004) and ran the samples on a Minion (Oxford Nanopore Technologies Ltd, Science 505 

Park,UK). For an additional 7 isolates, 600 nanograms of DNA from each sample were used as 506 

input into the Oxford Nanopore 1D ligation library construction protocol (SQK-LSK109) following 507 

the manufacturer’s recommendation. Samples were barcoded using the Native Barcoding 508 

Expansion 1-12 kit to run in batches of between 1-4 samples per flow cell on a GridIon (Oxford 509 

Nanopore Technologies Ltd, Science Park, UK).  510 

Oxford Nanopore (ONT) reads were demultiplexed using Deepbinner (v0.2.0)[94], 511 

trimmed of any remaining adapter using Porechop (v0.2.3), and subsampled to approximately 512 

50x depth of genome coverage. Illumina reads were trimmed of adapter using Trim Galore 513 

(v0.5.0) and subsampled to approximately 100x depth of genome coverage. Two Unicycler 514 

(v0.4.3 or v0.4.4, with default settings)  [95] hybrid assemblies were generated for each sample, 515 

one assembly combining the Illumina 100x data set with the 50x subsampled ONT data set and 516 

another assembly combining the Illumina 100x data set with the full set of ONT reads (if &gt; 517 

50x).  518 

ONT reads were aligned to Unicycler contigs using minimap2 (v2.15) [96]. Illumina reads 519 

were aligned to Unicycler contigs using bwa mem (v0.7.17) [97], and the resulting alignments 520 

were input to Pilon (v1.23) [98] for assembly polishing. Contigs were screened for adapter 521 

sequence and then input to GAEMR (https://github.com/broadinstitute/GAEMR) which produced 522 

chart and metric tables for use in manual assembly analysis process. Hybrid assemblies were 523 

annotated as above. Reads were submitted to SRA under bioproject PRJNA271899. 524 

Annotation of resistance genes. We annotated our assemblies for the presence of 525 

resistance genes as done previously [30], but we queried predicted genes with an updated set 526 

of antimicrobial resistance databases using BLASTn in megablast mode [99]: i) our database of 527 

carbapenem-hydrolyzing beta-lactamases [30]; ii) ResFinder [100], downloaded January 22, 528 

2018; and iii) the antimicrobial resistance database of the National Database of Antibiotic 529 
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Resistant Organisms (https://www.ncbi.nlm.nih.gov/pathogens/antimicrobial-resistance/, 530 

downloaded January 22, 2018). Genes with hits to any of these databases (E-value < 10-10; 531 

query coverage ≥ 80%) were annotated with the name of the antibiotic resistance gene with the 532 

highest BLAST bit score; matches to multiple databases were resolved with the same order of 533 

precedence with which the databases are listed above (Tables S7 and S18).  A subset of beta 534 

lactamases were designated as ESBLs by our pipeline for identifying resistance genes (Table 535 

S5), together with additional evidence from the literature [101].   536 

In order to identify defects in porin sequences contributing to carbapenem resistance, we 537 

first identified all porin genes by sequence similarity search [99]. We queried our set of predicted 538 

genes against a database of ompC and ompF reference sequences [30], retaining the best hit 539 

with E-value < 10-10 and ≥ 80% coverage of the reference sequence. We also searched for 540 

matches in the full sequences of the assemblies, in order to identify genes or gene fragments 541 

that were not part of the predicted gene set. Within the resulting set of predicted porin genes, 542 

we then identified mutations by comparing them to the best matching reference sequence with 543 

MUMmer [102]. Additionally, we pinpointed porins disrupted by insertion sequences by 544 

submitting porin sequences and their promoter regions (500 bp upstream) to the ISfinder [103] 545 

BLAST facility, retaining hits with E-value < 10-10. We regarded a porin gene as disrupted if i) no 546 

BLAST hit for the gene was produced; ii) the best matching predicted gene contained < 90% of 547 

the reference sequence; iii) a frameshift mutation affected 30 codons of the gene or more; or iv) 548 

an insertion sequence was found disrupting the porin gene or up to 300 bp upstream. 549 

In order to search for evidence of genotypic resistance that may not have been captured 550 

in our assemblies, we applied ARIBA [104], a read-based gene search tool leveraging local 551 

targeted assembly, with a database comprising carbapenemases and common ESBL genes.   552 

We considered ARIBA calls with one non-synonymous mutation or less, and a coverage of 553 

100% (Table S19). 554 
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Plasmid Annotations. We used MOB-suite (database version from January 2, 2019) 555 

[105] to identify plasmid scaffolds, plasmid replicon types, and relaxase types. MOB-suite is a 556 

bioinformatic tool that predicts and categorizes plasmid scaffolds into discrete “plasmid groups” 557 

by clustering input scaffolds with reference plasmids if their estimated ANI [106] is at least 95%.  558 

To supplement MOB-suite’s plasmid replicon database, we added 111 additional replicons from 559 

the PlasmidFinder database [107]. The tool either assigned a reference plasmid group to each 560 

plasmid scaffold or called it "novel" if there was no match. In each assembly, plasmid scaffolds 561 

with the same plasmid group were predicted to be part of the same plasmid and grouped (but 562 

"novel" scaffolds were not grouped). While the largest scaffold to be assigned a plasmid group 563 

was 481 kb in size, longer (500 kb to 5.6 Mb) scaffolds marked as "novel" were inspected and 564 

frequently found to be chromosomal and to contain plasmid replicon and relaxase genes, 565 

suggesting that they contained integrative plasmids or similar elements [108]. For this reason, 566 

162 "novel" scaffolds with length > 500 kb were not assumed to be part of plasmids. 567 

 568 

Comparative genomics 569 

Orthogroup clustering and construction of multi-species phylogeny. In order to identify 570 

genes shared between isolates, we performed orthogroup clustering for our entire set of 608 571 

genomes using Synerclust [109], a tool which provided the high level of scalability needed for 572 

this large set of genomes, and also leveraged the syntenic organization of genes to help in 573 

defining orthogroups. We generated a final set of orthogroups using an iterative, two-step 574 

process. First, we ran Synerclust with an approximate, k-mer based input dendrogram 575 

generated by i) k-merizing our set of genomes with a k-mer size of 15; ii) computing a similarity 576 

matrix using the Jaccard index [106] to compare each pair of genomes in our dataset; and iii) 577 

computing a dendrogram with the neighbor joining tree algorithm [110] contained in the ape 578 

[111] package (v5.0) of R [112] (v3.4.0). We then ran SynerClust with default parameters in 579 
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order to identify ortholog clusters. We produced a codon-based multiple sequence alignment for 580 

each single-copy core gene using Muscle [113] and produced a concatenated alignment of all 581 

genes by extracting alignment columns without gaps. We then computed a phylogenetic tree 582 

using Fasttree [114] with default parameters, which we then used as input for a second iteration 583 

of Synerclust. The orthogroup output from the second iteration of Synerclust was used to 584 

establish the final single copy core gene set to be used for downstream analysis, including 585 

construction of a single copy core alignment (as in the first iteration). This final alignment 586 

spanned 676,371 nucleotide sites, of which 348,152 were variable, and was used to generate a 587 

phylogenetic tree using RAxML [115] (v7.3.3), using rapid analysis of 1,000 bootstrap replicates. 588 

To generate phylogenetic trees containing only subsets of isolates, we used PareTree 589 

(http://emmahodcroft.com/PareTree.html). 590 

Species identification. We used average nucleotide identity (ANI) to obtain species 591 

designations for each isolate. For each pair of isolates, we used alignments of all shared genes 592 

(using orthogroup clusters) to compute ANI [116]. We compared to reference assemblies 593 

obtained from the NCBI taxonomy browser (https://www.ncbi.nlm.nih.gov/taxonomy) to obtain 594 

species designations. 595 

Construction of species-specific multiple sequence alignments of the core genome. In 596 

order to construct more detailed, species-specific SNV-based phylogenies, for each species we 597 

selected the assembly with the smallest number of contigs as a reference. Then, we produced 598 

alignments for both the short paired-end and long-insert mate pair sequencing reads of each 599 

isolate using bwa mem [97] and sorted the alignments with Picard SortSam (v2.20.6; 600 

http://broadinstitute.github.io/picard). Finally, we used Pilon (v1.23) [98] in order to call variants. 601 

We produced multiple sequence alignments based on the variant calls for all isolates of each 602 

species, excluding alignment positions with insertions or deletions. The number of nucleotide 603 

sites in these alignments ranged from 2,931,929 sites for E. coli to 5,048,275 for K. oxytoca ( 604 

Table S20). 605 
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Computing phylogenetic trees after removing effects of recombination. To construct 606 

more accurate species-specific phylogenies using our SNV-based alignments, we used 607 

ClonalFrameML (v1.11) [117] to identify and remove alignment regions with evidence for 608 

recombination. We ran ClonalFrameML with default parameters and 100 bootstrap replicates, 609 

using an input phylogenetic tree generated with FastTree (v2.1.3) [114], and 100 bootstrap 610 

replicates. We produced a recombination-removed multiple sequence alignment by removing 611 

any site from the species-specific alignment in which recombination was detected in at least one 612 

isolate. The number of nucleotide sites in the resulting alignments ranged from 593,538 for E. 613 

coli to 4,978,737 for K. oxytoca (Table S20). Using these alignments, we used RAxML [115] 614 

(v7.3.3) with 1,000 rapid bootstrap replicates to generate final phylogenies.  We also used these 615 

alignments to calculate core SNV distances between each pair of isolates. 616 

Determination of Lineages and Sequence Types. We computationally determined 617 

lineages in each species using the recombination-removed phylogenetic trees. We assigned 618 

isolates to the same lineage if they were connected by a path consisting entirely of branches 619 

with a length of 10-4 substitutions per nucleotide site or less. Sequence types were 620 

computationally determined as before [30].  In brief, sequence types were determined using our 621 

Broad pipeline for determining sequence types.  In brief, this script uses BLAST to compare the 622 

assembly against a database of sequences from pubMLST [118] using a 95% threshold in order 623 

to predict the sequence type.  For the isolates belonging to each sequence type, we identified 624 

the lineage most commonly assigned to the members of this sequence type; this mapping 625 

produced the correct lineage in 87% of isolates. Conversely, for the isolates belonging to each 626 

lineage, we identified the sequence type most commonly assigned to members of this lineage; 627 

this mapping was correct for 98% of isolates. Lineages corresponding to the following sequence 628 

types were considered high-risk [43]: E. coli ST38, ST69, ST131, ST155, ST393, ST405, and 629 

ST648 and K. pneumoniae ST14, ST37, ST147, and ST258. 630 

.CC-BY-NC 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted December 9, 2021. ; https://doi.org/10.1101/2021.12.08.471225doi: bioRxiv preprint 

https://paperpile.com/c/vi6I5b/OgCyO
https://paperpile.com/c/vi6I5b/Qh7Xb
https://paperpile.com/c/vi6I5b/Pt4ho
https://paperpile.com/c/vi6I5b/MfPyI
https://paperpile.com/c/vi6I5b/GSSGo
https://paperpile.com/c/vi6I5b/QKznE
https://doi.org/10.1101/2021.12.08.471225
http://creativecommons.org/licenses/by-nc/4.0/


 
25 

Assessment of established genetic markers to trace local movement of  blaKPC. We 631 

characterized Tn4401 structural variants and isoforms, as well as target site duplication (TSD) 632 

flanking sequences of Tn4401 using TETyper [46] for the 608 samples included in our study. 633 

We analyzed 5 bp surrounding the three most common Tn4401 isoforms (Tn4401a, Tn4401b, 634 

and Tn4401d) in our assemblies. 635 

 636 

Identification of geographic signatures 637 

We developed the ConSequences software suite to identify nearly identical ≥ 10 kb 638 

segments conserved between two or more plasmids (Figure S7-S8). Along with the open-639 

source code, a test dataset for running the three primary programs in ConSequences can be 640 

found on its GitHub repository (https://github.com/broadinstitute/ConSequences), consisting of 641 

the twelve hybrid assemblies constructed using Illumina and ONT sequencing for isolates found 642 

to harbor the geographic signature Sig5.1-CP. 643 

 Selection of plasmid sequences. To construct the database of plasmid sequences that 644 

we searched for geographic signatures, we included all scaffolds between 10 kb and 500 kb that 645 

were not classified as chromosomal by MOB-suite [105]. We excluded scaffolds classified as 646 

plasmidic and longer than 500 kb, since we found these to be often misclassified (Plasmid 647 

annotations). Circular and complete representations of plasmids [119,120] were determined 648 

when a plasmid scaffold showed both significant overlap between its ends (e-value < 10-5) and 649 

had at least five mate pair sequencing reads bridging scaffold ends. 650 

Identification of highly conserved 10 kb windows shared across pairs of plasmid 651 

backbones. All plasmid-predicted scaffolds were aligned in a pairwise manner using BLASTn in 652 

megablast mode. In order to account for circularity of complete plasmids [119,120], we 653 

duplicated 10 kb from the beginning of the scaffold and appended it to its end. For each 654 

scaffold, a sliding window approach, with a window size of 10 kb and a step size of 100 bp, was 655 
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applied to identify highly conserved and contiguous windows shared with at least one other 656 

scaffold, where matches were required to exhibit ≥ 99% identity and coverage through single 657 

high scoring pairs (HSPs). A 10 kb window size was selected for the analysis because i) the 658 

vast majority (98.7%) of HSPs with identity ≥ 99% were shorter; thus, 10 kb and longer 659 

sequences were outliers and hypothesized to share a recent ancestral origin; and ii) it allowed 660 

us to capture whole operons or large transposable elements and their surrounding contexts. For 661 

example, isoforms of Tn4401 typically span around 10 kb, are well conserved, and are often 662 

found on different plasmid backbones [30,46] . 663 

Delineating boundaries of shared segments between plasmids. We developed a novel 664 

algorithm to identify the boundaries of shared segments spanning multiple adjacent windows 665 

along a reference plasmid scaffold by first traversing blocks of adjacent windows in the forward 666 

direction, and then repeating the process in the reverse direction. For each 10 kb window in the 667 

series, the focal window, we checked whether downstream windows showed conservation in the 668 

same set of scaffolds as the focal window, tracking how far the segment could potentially be 669 

expanded. This procedure was then repeated in the reverse direction for the same series of 670 

windows. After potential segments were identified from both forward and reverse traversals, 671 

they were merged if they exhibited overlap in coordinates and shared conservation in a common 672 

set of scaffolds (Figure S7). As identical segments were often obtained by using different 673 

reference scaffolds, we used CD-HIT to cluster sequences with ≥ 99% global identity and ≥ 95% 674 

coverage of both sequences. Representative segments were selected from each cluster by 675 

maximizing for the number of samples segments were found in. 676 

Filtering shared segments to identify geographic signatures. In order to identify 677 

signatures, we filtered for segments which had broad host range and exhibited geographic 678 

association. Starting with the set of segments conserved across multiple species, we identified 679 

those which were found exclusively in isolates from a single city (Boston, MA or Orange, CA). 680 

These segments were then screened for uniqueness against NCBI’s Nucleotide Collection 681 
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database (nt; downloaded in December 2019), using thresholds of 98% identity and 95% query 682 

coverage. Hits matching samples in NCBI sourced from the same city were retained as potential 683 

geographic signatures. 684 

The presence of assembly errors, including incorrect copy counts for tandem repeats, 685 

could lead to the incorrect association of segments with geographies. Thus, we checked 686 

whether any of the potential geographic signatures contained such tandem repeats using Pilon 687 

[98]. Paired-end library sequencing reads from each isolate found to harbor a signature were 688 

aligned to the signature’s reference sequence using bwa mem (v0.7.17 with default settings) 689 

[97]. Then Pilon (v1.23) [98] was run with the options: “--vcf --fix all,breaks --mindepth 5.” 690 

Instances which triggered a fix break report with the flag“TandemRepeat”, indicating the 691 

segment likely contained a tandem repeat motif, were identified and removed to ensure 692 

geographic association was not driven by faulty estimation of the tandem repeat motif’s copy 693 

count. 694 

We next performed a more comprehensive assessment of uniqueness for each of the 695 

signatures using BIGSI [65], searching against all raw sequencing read sets in a snapshot of the 696 

ENA/SRA database taken on December 2016, contemporaneous with the most recent isolation 697 

dates for the 608 samples in this study. The SRA/ENA snapshot provided a broader database 698 

(455,632 read sets) compared to our original screening against the nt database, which included 699 

only a subset of assemblies available in the nt database and did not account for bacterial 700 

samples with sequencing data but no assembly. To perform this search, we used a sliding 701 

window (2 kb window; 1 kb step) across each signature to identify read sets containing at least 702 

99% of all k-mers for each window. Matching read sets were downloaded from EBI’s ENA 703 

database and further searched using a k-mer based methodology (described below) to more 704 

stringently assess whether they harbored any of the geographic signature sequences. 705 

Searching for additional instances of geographic signatures directly in raw Illumina 706 

sequencing read sets. It is possible that instances of geographic signatures were missed in our 707 
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dataset of predicted plasmid segments since i) not all assemblies contained finished, circular 708 

representations of plasmids and ii) chromosomal scaffolds were not accounted for in our original 709 

search for signatures. 710 

In order to recover missing signature instances, we searched the raw sequencing read 711 

sets against each multi-species geographic signature (Suppl Figure S8). First, we created 712 

reference guided multiple-sequence alignments for each geographic signature from all 713 

assemblies that contained that sequence. For each isolate, raw sequencing reads from both 714 

paired-end and mate-pair libraries were then downsampled to ~100x. All 31-mers that were 715 

observed at least five times in each read set were next compared to each signature multiple-716 

sequence alignment. A signature was considered present when all 31-mer windows along the 717 

multiple-sequence alignment had a corresponding match in the sample’s set of 31-mers. As 718 

slight variations can exist between instances of a signature in the multiple sequence alignment, 719 

a sample only needed to possess one of the possible 31-mers. Windows encompassing small 720 

deletions, insertions, or missing characters were ignored. 721 

To further validate additional signature instances identified by the k-mer-based 722 

approach, we aligned a representative sequence for each signature to the draft assembly of the 723 

sample the sequence was extracted from using BLASTn. Hits that achieved identity > 98%, 724 

signature coverage > 95% were retained for downstream analysis and were often captured from 725 

chromosomal scaffolds that were not part of the plasmid fraction that was originally analyzed or 726 

were missed due to assembly fragmentation. To prevent incorporating false positives into our 727 

analysis, we excluded instances where the assembly included only part of the respective 728 

signature that was embedded fully within a scaffold or had no significant alignment to a 729 

sample’s assembly. To further refine the list of geographic signatures, we also checked whether 730 

smaller signatures nested within larger signatures were found in the same set of isolates (had 731 

identical conservation profiles). For such cases, we excluded the smaller nested signature from 732 

consideration.  733 
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Functional annotation of signature gene content. In order to characterize the diversity of 734 

functions encoded by plasmids and signatures, we clustered predicted protein sequences from 735 

all plasmid scaffolds larger than 10 kb using CD-HIT [121] with the parameters c=0.95, aS=0.9, 736 

and aL=0.9 (95% identity and 90% subject and query coverage). For each cluster, a 737 

representative protein was annotated by: i) using the Broad Institute’s prokaryotic annotation 738 

pipeline [30]; ii) transferring annotations from BLAST matches (≥ 90% identity and ≥ 80% 739 

coverage) to NCBI RefSeq’s non-redundant database of bacterial proteins (BacNR); and iii) 740 

transferring protein-domain annotations from Pfam [122]. Phages were identified using ProphET 741 

[123]. To further refine our annotations of the subset of the genes found in signatures, we used 742 

keyword searches on these combined annotations, together with other gene-family-specific 743 

tools to identify genes within six broad functional categories of interest (Tables S14 and S15 ). 744 

Antibiotic resistance genes were predicted using methods described above (Annotation 745 

of resistance genes). Chemical and heavy metal resistance operons, providing resistance to 746 

mercury, arsenic, tellurium, nickel, and copper, were identified by keyword searches within our 747 

combined annotations. Operons were considered when they were composed of three or more 748 

functionally relevant genes located in close physical proximity to each other. Genes involved in 749 

efflux or response to stressors, including stressor efflux and transport (e.g. silE, crcB, fieF, 750 

sugE) and response genes (e.g. dnaJ, usmG, frmR) were identified by searching for keywords 751 

within our combined annotations. BLAST alignment [124] of proteins to representative 752 

transporter proteins in TCDB [125] (e-value < 10-10) was also used to flag additional proteins 753 

which might be involved in efflux, and such proteins were further examined through alignment to 754 

NCBI’s comprehensive NR database. Conjugation machinery, notoriously difficult to identify and 755 

differentiate from other type IV secretion systems [126], was flagged using MacSyFinder tool 756 

[127] with CONJscan HMMs [68,128]. To improve sensitivity, we also classified additional genes 757 

as likely related to conjugation machinery based on keywords found in our combined 758 

annotations. Plasmid uptake machinery included type I and II toxin-antitoxin systems [69] and 759 
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anti-restriction proteins [129,130]. Toxin and antitoxin genes were predicted using HMMer v3 760 

[131] with HMMs from the TAsmania database [70] (e-value <10-5) and filtered for the likelihood 761 

of representing a true toxin/antitoxin system through manual assessment of annotations. Anti-762 

restriction proteins were identified by using keyword searches. Genes associated with mobile 763 

genetic elements included transposases, integrases or other recombinases, and homing 764 

endonucleases. Insertion elements and transposon genes were identified using ISFinder [103], 765 

as described above (Annotation of resistance genes). We found additional instances by 766 

searching for the keywords ‘transposases’ and ‘IS’ in general annotations together with manual 767 

inspection. Genes corresponding to integrases or alternate recombinases as well as homing 768 

endonucleases were also identified using keyword searches and manual validation. 769 

To assess whether any genes found in signatures originated from sources outside the 770 

order of Enterobacterales, we aligned the nucleotide sequences of each gene to NCBI’s 771 

Nucleotide Collection database (nt; July 2020) using BLASTn [124]. For each gene, the top 100 772 

hits in nt were selected based on bitscore and then filtered to ensure they matched the query 773 

gene at 99% identity and 90% coverage. Next, the taxonomic information of each target 774 

sequence was extracted from the Entrez database using Biopython to enable the calculation of 775 

what percentage belonged to bacteria from outside Enterobacterales. 776 

 777 

Statistical analysis 778 

For assessments of statistical significance, a p-value threshold of 0.05 was used. Statistical 779 

significance of the differences in genome sizes and plasmid counts for CRE vs. CSE, as well as 780 

for the co-occurrence of plasmids groups, was assessed using a two-sided Wilcoxon rank sum 781 

test. The statistical significance of the differences in relaxase carriage in plasmids carrying 782 

carbapenemases vs. other plasmids were assessed using a two-sided Fisher’s exact test.  The 783 
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statistical significance for the increase in proportion of ESBLs over time was calculated using a 784 

regression slope test. 785 

Code availability 786 

Computer code used for the analysis of our data can be downloaded from 787 

https://github.com/broadinstitute/ConSequences. A yaml file is provided for installation of the 788 

software and its dependencies through creation of a Conda virtual environment. ConSequences 789 

is written in Python3 and made available under the open-source license BSD3. 790 
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Tables 826 

Table 1: Number of isolates in the three different collections of our dataset, stratified by 827 

resistance status 828 

   Same Patient isolates 

 
Total 
CRE 

Total 
CSE Unique patients 

Total same-
patient CRE 

isolates 

Total same-
patient CSE 

isolates 
Boston historical collection 
(Cerqueira et al., 2017) 47 2 7 17 1 

Initial prospective 
Collection (Cerqueira et al., 
2017) 

74 138 5 7 3 

Newly sequenced 
prospective collection 146 201 0 0 0 

Total 267 341 12 24 4 
 829 
 830 

Table 2: Resistome categories for carbapenem-resistant isolates in our prospective 831 

collection 832 

Resistance Mechanism # of CRE 
isolates 

# of CSE 
isolates 

% of total 
isolates in 
this category 
that are CRE 

% of CRE 
isolates 
with this 
mechanism 

i. Carbapenemases 145 3 98.0% 65.9% 

 All blaKPC 124 2 98.4% 56.4% 

  blaKPC-3 60 1 98.4% 27.3% 

  blaKPC-2 50 1 98.0% 22.7% 

  blaKPC-4 11 0 100.0% 5.0% 

  blaKPC (read based)a 3 0 100.0% 1.4% 

 All blaNDM 14 0 100.0% 6.4% 

  blaNDM-1 11 0 100.0% 5.0% 

  blaNDM-5 3 0 100.0% 1.4% 

 All blaSME 5 1 83.3% 2.3% 

  blaSME-1 2 1 66.7% 0.9% 
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  blaSME-2 3 0 100.0% 1.4% 

 Other carbapenemases 2 0 100.0% 0.9% 

  blaIMP-84 and blaKPC-4 1 0 100.0% 0.5% 

  blaIMP-4 1 0 100.0% 0.5% 

ii. ESBL/AmpC + porin defect(s)b 61 32 65.6% 27.7% 

 Includes any ESBL 46 11 80.7% 20.9% 

  Includes blaCTX-M-15  34 2 94.4% 15.5% 

  Includes blaSHV-12  11 5 68.8% 5.0% 

  Includes other ESBLs 13 5 72.2% 5.9% 

 Includes any AmpC 31 23 57.4% 14.1% 

  Includes blaEC 19 8 70.4% 8.6% 

  Includes blaCMY-2  12 4 75.0% 5.5% 

  Includes other AmpCs 5 12 29.4% 2.3% 

iii. ESBL/AmpC without porin defect 6 168 3.4% 2.7% 

iv. Porin defect(s) without ESBL/AmpC 8 23 25.8% 3.6% 

  Defect in both major porins 5 5 50.0% 2.3% 

v. No known resistant determinants 0 113 0.0% 0.0% 

aThe blaKPC was not present in the whole genome assembly, but we were able to detect its presence by 833 

examining the read data (see Materials and Methods). 834 

bStrains may have multiple predicted AmpC and/or ESBL genes. See Tables S17 and S18 for specific 835 

resistance determinants predicted for each isolate. 836 

 837 

Figure Legends 838 

Figure 1: High species diversity across CRE isolates. The number of isolates collected and 839 

sequenced by year and species is shown. The black box indicates the isolates newly 840 
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sequenced as part of this study, together with an additional 15 isolates from 2013 (*). All others 841 

were previously described [30]. 842 

Figure 2. Resistance mechanisms were phylogenetically dispersed but their carriage 843 

varied among closely related isolates. For E. hormaechei, E. coli, and K. pneumoniae, 844 

lineages are indicated in the inner ring with alternating shades of grey. Resistance mechanisms 845 

for each isolate are shown in the outer ring.  The high risk lineages K. pneumoniae ST-258 and 846 

E. coli ST-131 are marked.  K. pneumoniae ST-15, which contained an example of likely 847 

nosocomial spread of porin-based CRE, is also marked with an asterisk.   848 

Figure 3. Methodology to identify highly conserved and contiguous plasmid-borne 849 

geographic signatures.  a, Five bacterial isolates (colored by species) with conserved plasmid 850 

segments highlighted in different colors.  The geographic location (city of isolation) is indicated 851 

for each.  b, Depiction of algorithm to identify geographic signatures.  Conserved segments are 852 

colored.  Species and hospital of isolation are indicated for each segment. 853 

Figure 4.  Carbapenemase-carrying signatures are found in diverse species, lineages, 854 

and plasmid backgrounds.  a, Species phylogenies for all geographic signature-containing 855 

isolates from each species, showing sequence type (STs).   b, Within each ST, core SNV 856 

distances are shown (heatmap).  c, For each isolate, columns indicate plasmid content, and 857 

colored icons indicate signatures present on these plasmids.  For the nested signatures 5.1-CP 858 

and 5.6-CP, a solid yellow circle indicates the presence of 5.1-CP only, whereas the yellow 859 

circle with a darker ring indicates the presence of both 5.1-CP and 5.6-CP.  d, Year of isolation 860 

is marked for each, colored by signature content as in c.    861 

Figure 5: Hybrid assemblies with Oxford Nanopore long-read and Illumina short-read 862 

sequencing data for isolates harboring Sig5.1-CP. Each colored oval represents an isolate 863 

harboring signature Sig5.1-CP. Specimen IDs and the years of isolation are indicated above 864 

each oval. The DNA molecules harbored by each of the isolates are represented by circles (or 865 

lines, since a linear DNA molecule was found in four isolates) with molecule sizes indicated in 866 

.CC-BY-NC 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted December 9, 2021. ; https://doi.org/10.1101/2021.12.08.471225doi: bioRxiv preprint 

https://paperpile.com/c/vi6I5b/MfPyI
https://doi.org/10.1101/2021.12.08.471225
http://creativecommons.org/licenses/by-nc/4.0/


 
36 

kb. The location of Sig5.1-CP is shown with yellow segments; a hallmark of this signature is the 867 

truncation of transposon Tn4401 by insertion sequence Tn5403. A schematic of the full 19 kb 868 

Sig5.1-CP is shown at the bottom of the figure. In this schematic, gene color corresponds to 869 

functional categorization: mobile genetic element (MGE) [yellow], carbapenem resistance [red], 870 

beta-lactam resistance [dark brown], and aminoglycoside resistance [light brown]. 871 

 872 

Supplemental Figures 873 

Provided as two separate multi-page PDF files: 874 

2021_CRE_GenomeMed_SupFigures_S1.pdf and 875 

2021_CRE_GenomeMed_SupFigures_S2-S13.pdf. 876 

 877 

Figure S1. Phylogenetic tree for each of the 15 species in our collection with at least five 878 

representatives. Below the phylogenies, colored strips indicate resistance mechanisms and 879 

hospital of isolation for each isolate. MGH: Massachusetts General Hospital, Boston, MA; UCI: 880 

University of California, Irvine, CA; BIDMC: Beth Israel Deaconess Medical Center, Boston, MA; 881 

BWH: Brigham and Women’s Hospital, Boston, MA. 882 

Figure S2. Resistance mechanisms were diverse, with many shared across species. The 883 

numbers of resistant isolates by resistance mechanism (different colors) are depicted by 884 

species. 885 

Figure S3. Carbapenemase-carrying isolates tended to have a higher minimum inhibitory 886 

concentration than those with other resistance mechanisms. Minimum inhibitory 887 

concentrations (MICs) of the isolates in our collection are depicted, stratified by mechanism of 888 

resistance (different colors). 889 

Figure S4. High level of diversity and phylogenetic range among predicted plasmids. This 890 

plot displays the 215 plasmid groups (rows) contained in all 506 isolates (columns) for which 891 
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plasmids were predicted. Plasmids with carbapenemases are indicated in red, and plasmids 892 

without carbapenemases are indicated in white. Isolates are ordered phylogenetically, while the 893 

plasmid groups are ordered by the number of genera in which they occurred and clustered. 894 

Figure S5: Plasmids of diverse groups carried carbapenemases and were found in 895 

different species, and hospitals. The number of plasmids from groups for which we found at 896 

least four instances is shown. Groups with plasmids that carry carbapenemases (CPs) are 897 

depicted on a grey background, while those not observed to carry carbapenemases are shown 898 

on a white background. a, Plasmid instances colored by carbapenemase carriage. b, Plasmid 899 

instances colored by genus. c, Plasmid groups colored by hospital of origin.  900 

Figure S6: Limited tracing of carbapenemase localized spread using Tn4401 isoforms 901 

and their immediate flanking sequences. a, Number of instances for Tn4401 isoforms; and b, 902 

combinations of the three most common Tn4401 isoforms with their 5 bp flanking sequences 903 

which were found in multiple isolates from our study. Colors indicate the proportion of instances 904 

found in each of the four hospitals. The asterisk indicates forms that were found in multiple 905 

species. 906 

Figure S7: Method for the delineation of segments shared between plasmids. 907 

ConSequences identifies the boundaries of conserved segments spanning multiple 10 kb 908 

windows which can be found across multiple (> 2) isolates through assessment of conservation 909 

profiles across adjacent windows along reference scaffolds. a, Each bar depicts a 10 kb window 910 

highlighted by sliding window analysis as being conserved in multiple scaffolds. These bars are 911 

ordered along the reference scaffold positionally (x-axis) and the height of bars corresponds to 912 

the number of scaffolds in our isolate assemblies that have a highly similar match (≥ 99%) to the 913 

10 kb sequence on the reference (colored by genus). b, Using a custom algorithm (Materials 914 

and Methods), segments ≥ 10 kb were delineated along the reference scaffold based on 915 

conservation profiles across multiple adjacent windows. 916 
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Figure S8: Workflow to identify geographic signatures. The number of plasmid segments 917 

that were retained after sequentially applying different filters to identify 44 geographic signatures 918 

is shown (Materials and Methods). The number of plasmid segments carrying carbapenemases 919 

(CPs) is provided in red. 920 

Figure S9.  Signatures were present across diverse sequence types. In this heatmap, each 921 

row corresponds to a unique signature, and each column corresponds to a sequence type (ST). 922 

The shading represents the percentage of signature instances belonging to different taxonomic 923 

lineages, species or ST. The bar plot to the left of the heatmap depicts the number of isolates 924 

containing each signature, highlighting their prevalence across different hospitals. 925 

Figure S10. Signatures carried genes important for hospital adaptation and signature 926 

mobility. a, Each row in the heatmap corresponds to one of the 44 geographic signatures. 927 

Groups of signatures that nest into each other are separated by horizontal dashed lines. The 928 

predicted functions of 1,494 genes within our 44 signatures were categorized into five major 929 

functional categories, unless they fell outside of these categories (other) or no gene function 930 

could be predicted (hypothetical). The coloring of the heatmap indicates the percentage of 931 

genes of each signature that are assigned to a particular category. The identifiers of 932 

carbapenemase-carrying signatures are shown in red type and suffixed with -CP. b. Number of 933 

genes in each signature. 934 

Figure S11: Details of signature content. Schematics are shown for the gene content of each 935 

signature, including the five with blaKPC. Genes are colored according to broad functional 936 

categorizations (Materials and Methods). 937 

Figure S12: Signatures were highly conserved and likely derived from a common 938 

ancestral sequence. The number of confident, unambiguous single nucleotide variants (SNVs) 939 

differentiating signature instances was calculated for each of the 44 geographic signatures, 940 

through comparison of each instance to the signature’s representative sequence using Pilon 941 

[98]. a, Number of isolates carrying each signature. b, Box plot of SNV frequencies. SNV 942 
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frequencies were calculated by normalizing the count of SNVs between each signature instance 943 

and the reference sequence (c) with the signature’s length.  944 

 945 

Figure 13. Geographic signatures with blaKPC can occur in multiple configurations across 946 

several species and plasmid groups. The heatmap on the left indicates the presence of 947 

signatures Sig5.6-CP and Sig5.1-CP, and the alternate boundaries of the latter, across the 948 

twelve isolates found to harbor the signature(s). The gene content of each signature is shown 949 

on the right. 950 

Figure S14. Geographic signatures with blaKPC occurred in multiple configurations across 951 

several species and plasmid groups. a, The core genome single-nucleotide variants (SNVs) 952 

and plasmid and geographic signature carriage of five nearly identical Citrobacter portucalensis 953 

isolates is shown. b, Alignment of the MS-621 plasmids carried by all isolates a. Two of these 954 

plasmids carry Sig5.1-CP, indicated with the bright yellow bars and triangles. The locations of 955 

the blaKPC and of insertion sequence IS26 are indicated with red and grey rectangles, 956 

respectively. Inversions in the alignment are indicated with orange connector lines; matching 957 

regions are indicated with green connector lines. In one isolate, plasmids MS-840 and MS-621 958 

cointegrated, which is indicated by blue alignment flanks. 959 

Supplementary Tables 960 

Provided as a single Excel spreadsheet, where each supplementary table corresponds to 961 

a different tab: 2021_CRE_GenomeMed_Supplementary_Tables.xlsx 962 

 963 

Supplementary Table S1: Isolates in our dataset 964 

Supplementary Table S2: Accessions for Illumina-ONT hybrid assemblies 965 

Supplementary Table S3. Differences in the core genome between same-species isolates 966 

from the same patient 967 
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Supplementary Table S4.  Genome assembly statistics 968 

Supplementary Table S5: List of genes identified as ESBL or AmpC 969 

Supplementary Table S6. Disruptions in ompC/OmpK36 porin gene  970 

Supplementary Table S7. Disruptions in ompF/OmpK35 porin gene  971 

Supplementary Table S8: Carbapenemase carrying isolates. 972 

Supplementary Table S9:  Pairs of closely-related CSE and CRE isolates, where the CRE 973 

carried a carbapenemase not found in the CSE 974 

Supplementary Table S10: Cluster of related Klebsiella pneumoniae isolates with double-975 

porin mutations 976 

Supplementary Table S11.  Identification of circular plasmids (>2 kb) 977 

Supplementary Table S12. MOB-suite plasmid group predictions 978 

Supplementary Table S13.  44 multi-species geographic signatures specific to a single 979 

city. 980 

Supplementary Table S14.  Functional annotation of genes present in 44 signatures. 981 

Supplementary Table S15.  Prevalence of functional categories across the 44 signatures. 982 

Supplementary Table S16: Isolates which carry a blaKPC -containing signature. 983 

Supplementary Table S17: Genomic background of instances of Sig5.1-CP and Sig5.6-CP 984 

Supplementary Table S18: Genomic location of the resistance genes 985 

Supplementary Table S19: Read-based identification of carbapenemases in resistant 986 

isolates for which no resistance mechanism was found in the assemblies 987 

Supplementary Table S20: Size of species-specific core-genome alignments 988 

Additional Supplementary Documents 989 

Supplementary Results: Supplementary Results.   990 
 991 
Supplementary Data File: Representative sequences of 44 geographic signatures . 992 
 993 
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