

1 **Title:** Linker histone H1FOO is required for bovine preimplantation development by
2 regulating lineage specification and nucleosome assembly

3 **Running title:** Role of H1FOO in bovine embryos

4 **Authors:** Shuang Li[#], Yan Shi[#], Yanna Dang, Bingjie Hu, Lieying Xiao, Panpan Zhao,
5 Shaohua Wang, and Kun Zhang¹

6 **Author Affiliation:** Laboratory of Mammalian Molecular Embryology, College of
7 Animal Sciences, Zhejiang University, Hangzhou, Zhejiang 310058, China

8 **Footnotes:** [#]equal contribution; ¹To whom correspondence may be addressed. Email:
9 kzhang@zju.edu.cn

10 **Corresponding Author:** Kun Zhang, Room 301 E Building, 866 Yuhangtang Rd,
11 Hangzhou, Zhejiang 310058, China; Email: kzhang@zju.edu.cn

12 **Keywords:** Cow; Embryo; Preimplantation; Linker histone; H1FOO; Lineage
13 specification

14 **ABSTRACT**

15 Linker histone H1 binds to the nucleosome and is implicated in the regulation of the
16 chromatin structure and function. The H1 variant H1FOO is heavily expressed in
17 oocytes and early embryos. However, given the poor homology of H1FOO among
18 mammals, the functional role of H1FOO during early embryonic development remains
19 largely unknown, especially in domestic animals. Here, we find that H1FOO is not only
20 expressed in oocytes and early embryos but granulosa cells and spermatids in cattle.
21 We then demonstrate that the interference of H1FOO results in early embryonic
22 developmental arrest in cattle using either RNA editing or Trim-Away approach.
23 H1FOO depletion leads to compromised expression of critical lineage-specific genes at
24 the morula stage and affects the establishment of cell polarity. Interestingly, H1FOO
25 depletion causes a significant increase in expression genes encoding other linker H1
26 and core histones. Concurrently, there is an increase of H3K9me3 and H3K27me3, two
27 markers of repressive chromatin and a decrease of H4K16ac, a marker of open
28 chromatin. Importantly, overexpression of bovine H1FOO results in severe embryonic
29 developmental defects. In sum, we propose that H1FOO controls the proper chromatin
30 structure that is crucial for the fidelity of cell polarization and lineage specification
31 during bovine early development.

32 **INTRODUCTION**

33 As the basic chromatin unit, the nucleosome consists of an octamer of core histones
34 (H2A, H2B, H3, and H4) that surrounded by 147 bp DNA and linker DNA with a
35 diverse length bound to the linker histone H1 (Simpson, 1978; Syed et al., 2010). Unlike
36 core histones, linker histones exhibit high diversity in amino acid sequence (Izzo et al.,
37 2008; Martire and Banaszynski, 2020; Prendergast and Reinberg, 2021). There are 11
38 H1 variants in mammals, including seven somatic variants (H1.1 to H1.5, H1.0 and
39 H1x), and four germline-specific variants (H1foo, H1t, H1fnt, and H1s1)(Happel and
40 Doenecke, 2009; Martianov et al., 2005; Tanaka et al., 2001; Yan et al., 2003). Since
41 the discovery of nucleosome, a great progress has been made as for the understanding
42 of core histones and how their variants and chemical modifications affect chromatin
43 structure and gene expression. However, less attention has been paid on the functional

44 role of linker H1.

45 It has been well established that linker histones are generally involved in the regulation
46 of chromatin condensation, heterochromatin formation, and gene expression (Fyodorov
47 et al., 2018; Zhou and Bai, 2019). For example, H1 interacts directly with H3K9me3
48 methyltransferases and promote chromatin compaction in mouse embryonic stem cells
49 (Bulut-Karslioglu et al., 2014; Healton et al., 2020). However, these traditional views
50 have been challenged by recent studies (Prendergast and Reinberg, 2021).

51 A substitution of linker H1 variants occurs during oogenesis and early embryogenesis
52 in a number of species. In *Drosophila*, histone BigH1, is switched to somatic H1 in
53 most cells by cellularization when the zygotic genome is activated (Perez-Montero et
54 al., 2013). Functional studies reveal an essential role of BigH1 in zygotic genome
55 activation (ZGA). In 2001, H1FOO (also known as H1.8, homolog to BigH1) is an
56 oocyte H1 variant that was discovered in mice. H1FOO is maternally deposited into the
57 oocyte is later replaced with somatic H1 at the time of ZGA (Funaya et al., 2018;
58 McGraw et al., 2006).

59 H1FOO plays a critical role independent of other H1 variants in early embryonic
60 development. Histone H1c/H1d/H1e triple-mutants die during embryonic development,
61 but individual depletion of H1c, H1d or H1e does not affect normal development in
62 mice (Fan et al., 2003; Fan et al., 2001). In contrast to the functional redundancy of
63 somatic H1, deletion of H1foo alone cause severe developmental defects in mouse early
64 embryos. Although BigH1 regulates ZGA in *Drosophila* (Perez-Montero et al., 2013),
65 it seems that H1Foo plays no such role in mice. It is not surprising since H1FOO are
66 highly divergent in amino sequence among species, suggesting species-specific role of
67 H1FOO. In cattle, we previously found that RNAi-mediated knockdown (KD) of
68 H1FOO results in developmental arrest at the morula stage (Li et al., 2021). However,
69 the specific functional role of H1FOO and its mechanism have yet to be determined.

70 Here, we explore the functional significance of H1FOO during bovine early embryonic
71 development. We determine that H1FOO is not only present in bovine eggs and early
72 embryos, but also exist to varying degrees in granulosa cells and testis. RNA editing
73 and Trim-Away experiments reveal H1FOO is functionally required for bovine early

74 development. RNA-seq analysis show the dysregulation of multiple genes involved in
75 lineage differentiation and overrepresentation of other linker and core histone variants.
76 In sum, our study establishes a mechanism by which the linker histone H1FOO controls
77 critical processes that essential for bovine preimplantation development.

78 **RESULTS**

79 **H1FOO is not exclusively expressed in oocytes and early cleaved embryos in cattle**
80 **and humans.**

81 To explore the function of H1FOO in bovine embryos, we first made an antibody that
82 targets the bovine H1FOO-specific sequence. RNAi-mediated silencing of H1FOO
83 validated the specificity of the antibody (Fig. 1 A). H1FOO exhibits a typical expression
84 pattern of a maternal protein at both mRNA and protein level (Fig. 1B and S1A).
85 Furthermore, the intensity of H1FOO is diminished in both the cytoplasm and the
86 nucleus (Fig. S1B and S1C). Interestingly, results of immunohistochemistry and
87 Western Blot reveal H1FOO was expressed, despite at low level, in granulosa cells (Fig
88 1C, 1D, 1E). Interestingly, H1FOO was also highly expressed in spermatids of bovine
89 testis, but not detected in sperm cells in both epididymis head and tail (Fig. 1C, S1D
90 and S1E), suggesting H1FOO is removed during spermiogenesis. These results indicate
91 that H1FOO is not oocyte-specific H1. Indeed, we also found H1FOO was also
92 detectable in human granulosa cells and the abundance of *H1FOO* mRNA is declining
93 during oogenesis (Fig S2A, S2B and S2C).

94 To further illustrate the chromatin identity of H1FOO target regions, we performed
95 ChIP-seq to examine the distribution of H1FOO on the chromatin at 8-16-cell stage.
96 Collectively, H1FOO was mainly enriched at the promoter regions (Fig. 1F).

97 **H1FOO depletion leads to developmental failure during morula to blastocyst**
98 **transition in cattle.**

99 In contrast with mice (Funaya et al., 2018), we previously demonstrated that RNAi-
100 mediated silencing of H1FOO results in a developmental arrest at morula stage in cattle
101 (Li et al., 2021). Given the concern on the efficiency and off-target effects of RNAi
102 approach, we further tested the functional role of H1FOO by using two other
103 independent approaches including CRISPR-Cas13d and Trim-Away.

104 CRISPR-Cas13d system is an RNA editing approach that can efficiently deplete
105 maternally-stored transcripts in early embryos (Kushawah et al., 2020). We designed
106 three single-guide RNAs (sgRNAs) and injected them together with Cas13d mRNA
107 into the zygote (Fig. 2A). These sgRNAs all display robust efficiency in knocking-down
108 exogenous H1FOO in early mouse embryos (Fig. S3A to S3B). Results of injection into
109 bovine zygotes showed that H1FOO protein abolished sharply at the 8-cell stage (Fig.
110 2B, Fig. S4A). Similarly, the developmental capability is greatly inhibited in Cas13d
111 KD groups with an arrest during the morula to blastocyst transition (Fig. 2C and D).
112 Trim-Away approach has been used to rapidly eliminate endogenous proteins without
113 prior modification (Clift et al., 2018). We first microinjected mCherry-TRIM21 mRNA
114 into the fertilized eggs, and then injected H1FOO or IgG antibodies into the embryo
115 (Fig. 2E and S4B). Remarkably, H1FOO was greatly degraded following
116 microinjection (Fig. 2F, S4C). The blastocyst rate was also significantly decreased in
117 the Trim-Away groups (Fig. 2G and 2H). In summary, these data indicate H1FOO is
118 required for bovine early embryonic development, especially for the morula to
119 blastocyst transition, and the role of H1FOO is species-specific.

120 **H1FOO depletion results in significant disruption of the transcriptomic profiles at
121 morula stage.**

122 Considering the significant decline of H1FOO during maternal-to-zygotic transition,
123 we sought to explore whether H1FOO plays a role in ZGA. To test this proposal, we
124 firstly assessed the effect of H1FOO KD on the transcriptional activity during ZGA
125 initiation. IF results showed that H1FOO KD caused phosphorylated Ser2 (Ser2P) of
126 RNA polymerase II (RNAP2), active marker of transcriptional activity (Zaborowska et
127 al., 2016), distinctly decreased at the 8-16 cell stage (Fig. 3A).

128 Histone H3 lysine 4 trimethylation (H3K4me3) is a hallmark of active genes and
129 decreased during ZGA (Dahl et al., 2016; Zhou et al., 2020). We observed the
130 significant disappearance of H3K4me3 at the 8-16 cell stage in NC not in KD embryos
131 (Fig. 3B). These data suggest H1FOO loss already leads to abnormal epigenetic
132 reprogramming at 8-16 cell stage.

133 However, RNA-seq result shows that only 83 differentially expressed genes (DEGs)

134 were found in KD compared with NC group (FC \geq 1.5 or \leq 0.6; Padj \leq 0.05),
135 including 54 up-regulated genes and 29 down-regulated genes (Fig. 3C, 3D and S5).
136 Since most embryos were arrested at the morula stage in KD group, we next examined
137 the molecular outcome of H1FOO loss at the morula stage (Fig. 4A). Samples were
138 collected when there is no significant difference in total cell number per embryo (Fig.
139 4B). Results showed 837 transcripts were altered, of which 338 were up-regulated and
140 449 were down-regulated (Fig. 4C). Association analysis of DEGs showed that only 14
141 transcripts commonly differed both in the 16-cell and morula stages (Fig. 4D).
142 GO analysis of down-regulated genes revealed overrepresentation of genes involved in
143 positive regulation of cell migration and apical plasma membrane (Fig. 4E and 4F). In
144 particular, we found genes related to impaired lineage differentiation, including *CDX2*,
145 *GATA3* and *KRT8*, which are trophectoderm (TE)-specific markers (Gerri et al., 2020;
146 Negron-Perez et al., 2017; Wei et al., 2017) and genes associated with cell polarity,
147 including *AMOT* (Hirate et al., 2013) and *EZR* (Louvet et al., 1996), were also
148 significantly reduced (Fig. 4E). Moreover, the most strikingly enriched GO terms of
149 up-regulated genes are involved in nucleosome assembly, in addition of apoptotic
150 process and negative regulation of cell proliferation (Fig. 4G). These results indicated
151 that H1FOO-deficient morulae had already deviated from NC morulae at the molecular
152 level even they were morphologically indistinguishable. It also suggests that H1FOO
153 acts not only as a linker histone but regulates early lineage specification during
154 preimplantation development.

155 **H1FOO KD results in compromised lineage specification in day 5.5 morulae.**

156 The first lineage specification takes place during the morula-to-blastocyst transition and
157 gives rise to ICM and TE (Rossant, 2018). Because we noted down-regulated
158 expression of key lineage-specific genes among DEGs from RNA-seq analyses (Fig.
159 3F), we next tested if the early differentiation program was abnormal in KD morulae.
160 IF assays revealed that the amounts of *CDX2* and *GATA3* were all reduced in KD
161 morulae (Fig. 5A). *HDAC8* is abundantly expressed in the ICM (Negron-Perez et al.,
162 2017). We detected a significant decrease in *HDAC8* protein of KD embryos (Fig. 5B),
163 which is consistent with RNA-seq results. These data suggest a failure of the first

164 lineage specification in H1FOO-deficient embryos.

165 Apical domain formation is an essential process for embryo polarization to induce the
166 segregation of the ICM and TE lineages (Korotkevich et al., 2017). In this process, the
167 ERM proteins (Ezr, Radixin, and Moesin) and Par protein complex surrounded by an
168 actomyosin ring migrate to the apical region of polar cells in mice (Plusa et al., 2005;
169 Zhu et al., 2020). Hippo pathway is involved in the regulation of the expression of
170 important polar proteins (Rossant, 2018). We found that Keratin8 (KRT8) became
171 enriched at the apical regions of the outer cells along with development (Fig. S6A), and
172 it decreased substantially in H1FOO KD nucleus (Fig. 5C). Meanwhile, EZR was
173 specifically expressed at the apical membrane of outer cells in the bovine (Fig. 5D).
174 However, the number of polarized cells (EZR⁺) is greatly reduced in KD embryos (Fig.
175 5D and 5E). However, we found YAP1 signal is normal in KD morula (Fig. S6B).
176 Altogether, these data suggest that H1FOO regulates the first lineage specification event
177 likely through regulation of apical domain establishment.

178 **Chromatin composition and structure are disturbed in H1FOO-deficient embryos.**

179 H1 plays an important role in maintaining chromatin configuration and stability
180 (Climent-Canto et al., 2020; Funaya et al., 2018; Henn et al., 2020). Surprisingly,
181 H1FOO depletion results in elevated expression of multiple genes encoding linker
182 histone and core histone variants (Fig. 6A and S7A). IF results confirmed H2A protein
183 was increased in KD morulae (Fig. 6B).

184 H3K9me3 and H3K27me3 signals markedly increased in the KD nucleus compared
185 with NC (Fig. 6C and 6D)(Fyodorov et al., 2018). Moreover, we found that the intensity
186 of H4K16ac decreased notably while H3K36me2 showed no significant difference (Fig.
187 6E and S7B). Collectively, these results indicate that disordered histone modifications
188 and increased nucleosome assembly may be responsible for the dysregulation of the
189 transcriptome in H1FOO KD embryos.

190 **Overexpression of bovine H1FOO impairs the developmental potential of early
191 embryonic embryos in cattle and mice.**

192 Next, we wondered if overexpression of H1FOO affects bovine early embryonic
193 development. Thus, we microinjected H1FOO mRNA tagged with FLAG into bovine

194 zygotes and found that the level of H1FOO was significantly increased (Fig. 7A and
195 7B). Surprisingly, the proportion of embryos to become 8-16-cell embryos is decreased
196 in OE groups ($P < 0.05$), while the blastocyst rate is slightly decreased ($p=0.22$; Fig.
197 7C). Meanwhile, both total cell number (DAPI⁺) and TE cell number (CDX2⁺) per
198 blastocyst were decreased significantly ($P < 0.05$) whereas the number of ICM (SOX2⁺)
199 did not change (Fig. 7D and 7E). To understand whether H1FOO OE promotes
200 heterochromatin formation as somatic H1 (Fyodorov et al., 2018), we detected the level
201 of H3K9me3 and found no difference between NC and OE group (Fig. 7F). This result
202 demonstrated the H1FOO behave in a different manner with somatic H1.
203 To compare the functional role of H1FOO between species, we overexpressed mouse
204 and bovine H1FOO in mouse preimplantation embryos. Results display a significant
205 OE efficiency (Fig. 8B and 8C). In vitro culture of embryos shows that OE of bovine
206 H1FOO (bH1FOO) in early mouse embryos resulted in severe developmental disorders,
207 but OE of mouse H1foo mRNA had no effect (Fig. 8D and 8E), suggesting H1FOO's
208 role is species-dependent. Thus, these results suggest that H1FOO OE is not conducive
209 to blastocyst development in both cattle and mice.

210 **DISCUSSION**

211 We report here that the linker histone variant H1FOO is necessary for bovine early
212 embryonic development using three independent approaches. H1FOO deficiency leads
213 to a significant disruption to the transcriptome. Importantly, H1FOO deficiency is
214 detrimental to the first lineage specification event. Moreover, H1FOO is required to
215 maintain the expression profiles of core and linker histones, and essential for fidelity of
216 histone modifications in bovine early embryos (Fig. 9).

217 Somatic linker histones mainly promote transcription silencing by regulating histone
218 acetylation or methylation (Herrera et al., 2000; Sun et al., 2015; Willcockson et al.,
219 2021; Yusufova et al., 2021). However, it appears that H1FOO plays an opposite
220 function to somatic H1 in chromatin remodeling, histone epigenetic modifications and
221 transcriptional regulation (Hayakawa and Tanaka, 2021). Our results indicated that
222 H1FOO prefers to bind the open chromatin region at 8-16-cell stage, and the deletion

223 of H1FOO increased histone modifications related to heterochromatin formation
224 (H3K9me3 and H3K27me3). Interestingly, H3K27me3 is preferentially occupying the
225 promoters of developmental genes, and early lineage specification is accompanied by
226 asymmetric H3K27me3 enrichment in TE and ICM cell (Schwartz and Pirrotta, 2007;
227 Xia et al., 2019). H3K9me3 also regulates cell fate transition between totipotency and
228 pluripotent state in mouse 2C-like cell (Wu et al., 2020). Abnormal elevation of these
229 two repressive histone marks may contribute to the impairment of the first lineage
230 differentiation in KD embryos (Fig. 9).

231 H1FOO (H1s) is found in oocytes and early embryos of various mammalian and non-
232 mammalian species (such as *Xenopus*, *Drosophila*, and sea urchin), and contributes to
233 the stability of chromatin structure among them. However, the functional role of H1Foo
234 varies among species. In *Drosophila*, BigH1 ensures transcriptional activation by
235 controlling the rapid nucleosome reassembly at the initial stage of embryogenesis
236 (Climent-Canto et al., 2020; Henn et al., 2020). H1foo in mice is required to form a
237 loose chromatin structure, and its depletion delays the timing of cleavage into the two-
238 cell stage and increases deposition of the histone H3 variant (H3.1/3.2) in one-cell stage
239 embryos (Funaya et al., 2018). However, we found that H1FOO depletion results in
240 embryonic arrest at the morula stage (Li et al., 2021). These results indicate that
241 H1FOO's role is species-dependent.

242 Linker histones possess the typical tripartite structure of variant proteins (Allan et al.,
243 1980), including a globular structure, N- and C-terminal regions. These three domains
244 have different affinities in nucleosome assembly, chromatin folding, and interaction
245 with histone modifying enzymes (Caterino and Hayes, 2011; Vyas and Brown, 2012;
246 Zhou et al., 2013). For example, C-terminal domain (CTD) of histone H1d is required
247 for its physical and functional interactions with DNA and histone methyltransferases to
248 DNA methylation and histone H3 methylation (Healton et al., 2020; Yang et al., 2013).
249 However, the sequence similarity of proteins is low between H1FOO and somatic H1
250 variants, especially CTD (Fyodorov et al., 2018), thus H1FOO's functional specificity
251 may be attributed to the C-terminal domain.

252 In summary, our study firstly established CRISP-Cas13d and Trim-Away systems to

253 explore the role of maternal H1FOO in early bovine embryo development. Our data
254 show that the developmental arrest upon H1FOO deletion could be mainly accounted
255 for by the impaired cell polarity and lineage differentiation. Moreover, H1FOO
256 participates in regulating the stability of nucleosome assembly and chromatin
257 modifications in early embryos.

258 **MATERIALS AND METHODS**

259 Unless otherwise stated, reagents and chemicals were commercially obtained from
260 Sigma-Aldrich (St. Louis, MO).

261 **Bovine oocyte and embryo production in vitro**

262 Bovine embryo production in vitro were performed according to procedures as
263 published previously (Li et al., 2021). Briefly, bovine ovaries were obtained at a local
264 slaughterhouse. Cumulus oocyte complexes (COCs) containing more than three layers
265 of cumulus cells were retrieved from 3–8-mm follicles at the surface of bovine ovaries.
266 COCs were matured in Medium-199 (M4530) supplemented with 10% FBS (Gibco-
267 BRL), 1 IU/ml FSH (Sansheng Biological Technology), 0.1 IU/ml LH (Solabio), 1 mM
268 Sodium Pyruvate (Thermo Fisher Scientific), 2.5 mM GlutaMAX™ (Thermo Fisher
269 Scientific), and 10 µg/ml Gentamicin at 38.5°C under 5% CO₂ in humidified air for 22-
270 24 h. Upon maturation, COCs (60~100 COCs per well in 4-well plates) were co-
271 incubated with spermatozoa (1~5×10⁶) that purified from frozen-thawed semen by a
272 Percoll gradient. IVF was performed at 38.5°C under 5% CO₂ for 9-12 h. Granulosa
273 cells (GCs) were removed from the oocytes by pipetting up and down with 1 mg/ml
274 hyaluronidase. Embryos were cultured in BO-IVC medium (IVF bioscience) for 8 days.
275 The embryos that cleaved to 8-16 cell and became blastocysts were assessed at
276 embryonic day 3 (E3.0) and day 8 (E8.0) after fertilization, respectively.

277 **Mouse H1foo mRNA synthesis in vitro**

278 The wild-type mouse *H1foo* mRNA tagged with FLAG was constructed as before (Li
279 et al., 2021). The coding sequence of wild-type mouse *H1foo* was amplified from cDNA
280 libraries constructed from mouse germinal vesicle oocytes with one copy FLAG added
281 to the 3' end. The primer sequences are shown in Supplemental Table 1. The amplicon
282 was subsequently cloned into a T3-driven vector. To produce complementary RNA

283 (cRNA) in vitro, the plasmid constructed above was linearized and transcribed in vitro,
284 capped, DNase-treated and poly(A)-tailed using mMessage mMachine T3 Ultra Kit
285 (Thermo Fisher Scientific). cRNAs were extracted and purified by using Mega-Clear
286 Kit (Thermo Fisher Scientific).

287 **Cas13d mRNA and single guide RNA synthesis.**

288 pET-28b-RfxCas13d-His (Addgene #141322) plasmid containing the T7 promoter was
289 linearized by using NotI restriction site. The linearized plasmid was transcribed in vitro
290 based on the procedures of mMessage mMachine T7 Ultra Kit (Thermo Fisher
291 Scientific). DNase-treated and poly(A)-tailed *Cas13d* mRNA was purified by using
292 Mega-Clear Kit (Thermo Fisher Scientific).

293 Single guide RNA (sgRNA) was designed as published previously (Kushawah et al.,
294 2020). DNA template to generate sgRNA was generated by fill-in PCR according to
295 procedures as published previously with slight modifications. A sgRNA universal
296 primer containing the T7 promoter and the Cas13d component was used in combination
297 with a sequence-specific oligo. All primer sequences are shown in Table S2. T7 in vitro
298 transcription reaction was performed using MEGAshortscriptTM T7 kit (Thermo Fisher
299 Scientific). sgRNAs were precipitated with Sodium Acetate/Ethanol.

300 **Trim-Away experiment**

301 pSMPP-mCherry-hTRIM21 vector was purchased from Addgene (#104972). mCherry-
302 hTRIM21 was amplified using primers T7-mCherry-F and TRIM21-R (Table S2), and
303 then product was cloned into pMD18T vector to produce in vitro-transcribed mCherry-
304 TRIM21 mRNA. mRNA was aliquoted at a concentration of 800 ng/ul and stored at -
305 80°C. Rabbit anti-H1FOO primary antibody (Homemade, HuaBio, Hangzhou, China)
306 was dissolved in 1×Phosphate Buffer Saline (PBS). Rabbit IgG primary antibody
307 (HA1002, HuaBio) was used as Trim-control. mCherry-hTRIM21 mRNA and
308 antibodies were microinjected separately into the embryos. mCherry fluorescence was
309 measured 48h and 5 day after injection to validate the efficacy.

310 **Microinjection**

311 H1FOO siRNA (25 μ M) or mRNA (800 ng/ μ l) was microinjected in a volume of 20 pL
312 into putative zygotes collected at 12-16h post insemination (hpi) with an inverted

313 microscope (Nikon) equipped with a micromanipulator (Narishige). For Cas13d and
314 sgRNAs injections, reagents were prepared and delivered on ice at the desired
315 concentrations. Final concentration of injection mRNA mixture was 50ng/ul Cas13d
316 and 100 ng/ul per sgRNA. For Trim-Away experiment, the fertilized eggs were first
317 injected with 400 ng/ul *mCherry-hTRIM21* mRNA, and about 1h later, the embryos
318 were further microinjected with 1012 ng/ul rabbit anti-H1FOO or IgG primary antibody
319 again. To specifically detect the endogenous depletion of H1FOO, we detected H1FOO
320 expression in the 8-cell (E2.5) and morula (E5.5) stages by immunofluorescence.

321 **Immunofluorescence (IF)**

322 Samples were briefly washed with 0.1% polyvinylpyrrolidone/PBS three times, fixed
323 with 4% paraformaldehyde/PBS for 30 minutes, and permeabilized with 0.5% Triton
324 X-100/PBS for 30 minutes at room temperature (RT). Blocking was performed for 1h
325 in the blocking buffer (PBS containing 10% FBS and 0.1% Triton X-100). Then,
326 samples were incubated with primary antibodies in blocking buffer under 4°C overnight
327 and secondary antibodies for 2h. Finally, samples were treated with 4,6-diamidino-2-
328 phenylindole (DAPI; Life Technologies) for 30 minutes. Images were captured with a
329 40× objective using an inverted epi-fluorescent microscope (Nikon, Chiyoda, Japan) or
330 a Zeiss LSM880 confocal microscope system (Zeiss, Oberkochen, Germany). For
331 confocal microscopy, Z-stacks were imaged with 5 μ m intervals between optical
332 sections. Stacks were projected by maximum intensity to show signals of all
333 blastomeres in one image. Information about all antibodies is presented in
334 Supplemental Table1

335 ImageJ was used to visualize images, count cell numbers, and measure signal intensity.
336 Every primary antibody was validated to be react with bovine cells and tested in three
337 replicates using the same microscope. Samples stained without primary antibodies was
338 used as negative controls to verify the specificity of the antibodies used here.
339 Depending on the experiment, the signal intensity was determined and the background
340 was subtracted to analyze the absolute intensity.

341 **RNA-seq library construction and bioinformatics**

342 Bovine embryos were harvested at 16-cell stage (E4.0; n=2; 30

343 embryos/group/replicate) and morula stage (E5.5; n=3; 15 embryos/group/replicate).
344 Total RNA was extracted with a PicoPure RNA Isolation Kit. mRNA separation was
345 achieved using oligo (dT)25 beads. Sequencing libraries were constructed with
346 NEBNext Ultra RNA Library Prep Kit for Illumina (New England Biolabs). The
347 libraries were sequenced with Illumina Novaseq by Novogene Co. Ltd. The raw data
348 were trimmed with Trimmomatic (v0.36) to remove adapter sequences and low quality
349 (q<20) bases. 15-20 million clean reads were obtained to map to UCD1.2. Then the raw
350 counts of genes were generated by FeatureCounts, and normalized to FPKM by
351 cufflinks. Differential expressed genes were identified by using DESeq2 package (padj
352 ≤ 0.05 and fold change (FC) ≥ 1.5 or ≤ 0.6). Heatmaps were generated by using the
353 pheatmap package in R. Gene ontology (GO) and Kyoto encyclopedia of genes and
354 genomes (KEGG) analyses of differentially expressed genes were carried out by the
355 Database for Annotation, Visualization and Integrated Discovery (DAVID).

356 **ULI-NChIP-seq library preparation and data processing**

357 Embryos at 8/16-cell (E3.0) were collected (N=2 replicates, 50 embryos per group) and
358 incubated in 0.5% pronase E for several minutes to remove the zona pellucida, and
359 washed 3 times in 0.5% bovine serum albumin (Millpore, Billerica, MA) in DPBS
360 (Gibco-BRL, Grand Island, NY) before flash freeze in liquid nitrogen. ULI-NChIP was
361 performed according to previous procedure (Brind'Amour et al., 2015). One microgram
362 of H1FOO antibody was used for each immunoprecipitation reaction. ULI-NChIP
363 libraries were generated using the NEB Ultra DNA Library Prep Kit (E7645). The
364 paired-end 150 bp sequencing was performed on a NovaSeq platform.

365 The raw sequencing reads were trimmed with Trimmomatic (version 0.39) to remove
366 residual adapter sequences and low-quality bases. Then the clean reads were aligned to
367 Bos Taurus UMD3.1.1 using Bowtie2 (version 2.3.5) (Langmead and Salzberg, 2012)
368 with the default parameters. Alignments with low quality were removed by SAMtools
369 (version 1.7)(Li et al., 2009), and PCR duplicates were removed with Picard (version
370 2.23). The signal of H1FOO was calculated with computeMatix from DeepTools
371 (Ramirez et al., 2014).

372 **Western blot**

373 Samples (100 oocytes, mature or immature GCs, testis) were treated with RIPA lysis
374 buffer (Beyotime) containing phenylmethylsulfonyl fluoride (1 mM; Beyotime) on ice.
375 Total protein in loading buffer was separated by 10% SDS-PAGE and then transferred
376 to polyvinylidene difluoride (PVDF) membranes. Membrane was blocked for 1h in
377 nonfat milk (5%), followed by incubation with primary antibodies overnight at 4°C and
378 secondary antibodies for 1.5 h at RT. Signals were detected and imaged with WESTAR
379 NOVA 2.0 (Cyanagen, Bologna, Italy). Antibody information is shown in Supplemental
380 Table 1.

381 **Immunohistochemistry (IHC)**

382 Fresh tissues (ovary, testis, head of epididymis, caudal epididymis) were excised and
383 fixed in 4% PFA and dehydrated overnight in 70% ethanol. The fixed specimens were
384 embedded in paraffin, cut into 5 μ m-thick sections and stained with hematoxylin using
385 a standard protocol. Briefly, Sections were labeled with rabbit anti-H1FOO in a humid
386 chamber overnight at 4°C before the use of corresponding secondary antibody (HRP)
387 at RT for 50 minutes. Then, sections were subsequently counterstained with
388 hematoxylin stain solution for 3 minutes at RT. Samples were observed by conventional
389 light microscopy. Negative controls were made by replacing the primary antibody with
390 PBS.

391 **Statistical analysis**

392 All experiments were replicated at least three times unless stated. Two-tailed unpaired
393 Student t-tests were used to compare differences between two groups with SPSS
394 statistics (IBM, USA). One-way analysis of variance (ANOVA) was employed to
395 determine significant differences between groups for the analysis of H1FOO protein
396 profiles and KD efficiency followed by the Tukey's multiple comparisons test. The
397 intensity of fluorescence was analyzed using Image J as described above, and the
398 intensity data were normalized to the relative channels in control groups. The graphs
399 were constructed by GraphPad Prism 7.0 (GraphPad Soft- ware, USA). P < 0.05
400 indicated the data are statistically significant. Numerical values are presented as means
401 \pm SEM.

402 **Acknowledgments**

403 We thank all members of the K. Zhang laboratories for their helpful discussions. This
404 work was funded by National Natural Science Foundation of China (No. 31872348, No.
405 31672416, and No. 32072731 to K.Z.; No.31941007 to S.W.), Zhejiang Provincial
406 Natural Science Foundation (LZ21C170001 to K.Z.).

407 **REFERENCES**

- 408 **Allan, J., Hartman, P. G., Crane-Robinson, C. and Aviles, F. X.** (1980). The structure of histone
409 H1 and its location in chromatin. *Nature* **288**, 675-679.
- 410 **Brind'Amour, J., Liu, S., Hudson, M., Chen, C., Karimi, M. M. and Lorincz, M. C.** (2015). An
411 ultra-low-input native ChIP-seq protocol for genome-wide profiling of rare cell
412 populations. *Nat Commun* **6**.
- 413 **Bulut-Karslioglu, A., De La Rosa-Velazquez, I. A., Ramirez, F., Barenboim, M., Onishi-
414 Seebacher, M., Arand, J., Galan, C., Winter, G. E., Engist, B., Gerle, B., et al.** (2014). Suv39h-Dependent H3K9me3 Marks Intact Retrotransposons and Silences LINE
415 Elements in Mouse Embryonic Stem Cells. *Mol Cell* **55**, 277-290.
- 416 **Caterino, T. L. and Hayes, J. J.** (2011). Structure of the H1 C-terminal domain and function in
417 chromatin condensation. *Biochem Cell Biol* **89**, 35-44.
- 418 **Clift, D., So, C., McEwan, W. A., Lames, L. C. and Schuh, M.** (2018). Acute and rapid
419 degradation of endogenous proteins by Trim-Away. *Nat Protoc* **13**, 2149-2175.
- 420 **Climent-Canto, P., Carbonell, A., Tatarski, M., Reina, O., Bujosa, P., Font-Mateu, J., Bernues,
421 J., Beato, M. and Azorin, F.** (2020). The embryonic linker histone dBigH1 alters the
422 functional state of active chromatin. *Nucleic Acids Res* **48**, 4147-4160.
- 423 **Dahl, J. A., Jung, I., Aanes, H., Greggains, G. D., Manaf, A., Lerdrup, M., Li, G. Q., Kuan, S., Li,
424 B., Lee, A. Y., et al.** (2016). Broad histone H3K4me3 domains in mouse oocytes
425 modulate maternal-to-zygotic transition. *Nature* **537**, 548-+.
- 426 **Fan, Y., Nikitina, T., Morin-Kensicki, E. M., Zhao, J., Magnuson, T. R., Woodcock, C. L. and
427 Skoultchi, A. I.** (2003). H1 linker histones are essential for mouse development and
428 affect nucleosome spacing in vivo. *Mol Cell Biol* **23**, 4559-4572.
- 429 **Fan, Y. H., Sirotnik, A., Russell, R. G., Ayala, J. and Skoultchi, A. I.** (2001). Individual somatic H1
430 subtypes are dispensable for mouse development even in mice lacking the H1 degrees
431 replacement subtype. *Molecular and Cellular Biology* **21**, 7933-7943.
- 432 **Funaya, S., Ooga, M., Suzuki, M. G. and Aoki, F.** (2018). Linker histone H1FOO regulates the
433 chromatin structure in mouse zygotes. *Febs Lett* **592**, 2414-2424.
- 434 **Fyodorov, D. V., Zhou, B. R., Skoultchi, A. I. and Bai, Y.** (2018). Emerging roles of linker
435 histones in regulating chromatin structure and function. *Nat Rev Mol Cell Biol* **19**, 192-
436 206.
- 437 **Gerri, C., McCarthy, A., Alanis-Lobato, G., Demtschenko, A., Bruneau, A., Loubersac, S.,
438 Fogarty, N. M. E., Hampshire, D., Elder, K., Snell, P., et al.** (2020). Initiation of a
439 conserved trophectoderm program in human, cow and mouse embryos. *Nature* **587**,
440 443-447.
- 441 **Happel, N. and Doenecke, D.** (2009). Histone H1 and its isoforms: Contribution to chromatin
442 structure and function. *Gene* **431**, 1-12.
- 443 **Hayakawa, K. and Tanaka, S.** (2021). Oocyte-specific linker histone H1foo interacts with Esrrb to

- 445 induce chromatin decondensation at specific gene loci. *Biochem Biophys Res Co* **561**,
446 165-171.
- 447 **Healton, S. E., Pinto, H. D., Mishra, L. N., Hamilton, G. A., Wheat, J. C., Swist-Rosowska, K.,**
448 **Shukeir, N., Dou, Y. L., Steidl, U., Jenuwein, T., et al.** (2020). H1 linker histones silence
449 repetitive elements by promoting both histone H3K9 methylation and chromatin
450 compaction. *P Natl Acad Sci USA* **117**, 14251-14258.
- 451 **Henn, L., Szabo, A., Imre, L., Roman, A., Abraham, A., Vedelek, B., Nanasi, P. and Boros, I. M.**
452 (2020). Alternative linker histone permits fast paced nuclear divisions in early Drosophila
453 embryo. *Nucleic Acids Res* **48**, 9007-9018.
- 454 **Herrera, J. E., West, K. L., Schiltz, R. L., Nakatani, Y. and Bustin, M.** (2000). Histone H1 is a
455 specific repressor of core histone acetylation in chromatin. *Molecular and Cellular*
456 *Biology* **20**, 523-529.
- 457 **Hirate, Y., Hirahara, S., Inoue, K., Suzuki, A., Alarcon, V. B., Akimoto, K., Hirai, T., Hara, T.,**
458 **Adachi, M., Chida, K., et al.** (2013). Polarity-Dependent Distribution of Angiomotin
459 Localizes Hippo Signaling in Preimplantation Embryos. *Curr Biol* **23**, 1181-1194.
- 460 **Izzo, A., Kamieniarz, K. and Schneider, R.** (2008). The histone H1 family: specific members,
461 specific functions? *Biol Chem* **389**, 333-343.
- 462 **Korotkevich, E., Niwayama, R., Courtois, A., Friese, S., Berger, N., Buchholz, F. and Hiiragi, T.**
463 (2017). The Apical Domain Is Required and Sufficient for the First Lineage Segregation in
464 the Mouse Embryo. *Dev Cell* **40**, 235-247.
- 465 **Kushawah, G., Hernandez-Huertas, L., del Prado, J. A. N., Martinez-Morales, J. R., DeVore,**
466 **M. L., Hassan, H., Moreno-Sanchez, I., Tomas-Gallardo, L., Diaz-Moscoso, A.,**
467 **Monges, D. E., et al.** (2020). CRISPR-Cas13d Induces Efficient mRNA Knockdown in
468 Animal Embryos. *Dev Cell* **54**, 805-+.
- 469 **Langmead, B. and Salzberg, S. L.** (2012). Fast gapped-read alignment with Bowtie 2. *Nat*
470 *Methods* **9**, 357-359.
- 471 **Li, H., Handsaker, B., Wysoker, A., Fennell, T., Ruan, J., Homer, N., Marth, G., Abecasis, G.,**
472 **Durbin, R. and Genome Project Data Processing, S.** (2009). The Sequence
473 Alignment/Map format and SAMtools. *Bioinformatics* **25**, 2078-2079.
- 474 **Li, S., Shi, Y., Dang, Y., Luo, L., Hu, B. J., Wang, S. H., Wang, H. A. and Zhang, K.** (2021).
475 NOTCH signaling pathway is required for bovine early embryonic development. *Biol*
476 *Reprod* **105**, 332-344.
- 477 **Louvet, S., Aghion, J., Santamaria, A., Mangeat, P. and Maro, B.** (1996). Ezrin becomes
478 restricted to outer cells following asymmetrical division in the preimplantation mouse
479 embryo. *Dev Biol* **177**, 568-579.
- 480 **Martianov, I., Brancorsini, S., Catena, R., Gansmuller, A., Kotaja, N., Parvinen, M., Sassone-**
481 **Corsi, P. and Davidson, I.** (2005). Polar nuclear localization of H1T2, a histone H1
482 variant, required for spermatid elongation and DNA condensation during
483 spermiogenesis. *Proc Natl Acad Sci U S A* **102**, 2808-2813.
- 484 **Martire, S. and Banaszynski, L. A.** (2020). The roles of histone variants in fine-tuning chromatin
485 organization and function. *Nat Rev Mol Cell Biol* **21**, 522-541.
- 486 **McGraw, S., Vigneault, C., Tremblay, K. and Sirard, M. A.** (2006). Characterization of linker
487 histone H1FOO during bovine in vitro embryo development. *Mol Reprod Dev* **73**, 692-
488 699.

- 489 **Negron-Perez, V. M., Zhang, Y. P. and Hansen, P. J.** (2017). Single-cell gene expression of the
490 bovine blastocyst. *Reproduction* **154**, 627-644.
- 491 **Perez-Montero, S., Carbonell, A., Moran, T., Vaquero, A. and Azorin, F.** (2013). The Embryonic
492 Linker Histone H1 Variant of Drosophila, dBigH1, Regulates Zygotic Genome Activation.
493 *Dev Cell* **26**, 578-590.
- 494 **Plusa, B., Frankenberg, S., Chalmers, A., Hadjantonakis, A. K., Moore, C. A., Papalopulu, N.,**
495 **Papaioannou, V. E., Glover, D. M. and Zernicka-Goetz, M.** (2005). Downregulation of
496 Par3 and aPKC function directs cells towards the ICM in the preimplantation mouse
497 embryo. *J Cell Sci* **118**, 505-515.
- 498 **Prendergast, L. and Reinberg, D.** (2021). The missing linker: emerging trends for H1 variant-
499 specific functions. *Genes Dev* **35**, 40-58.
- 500 **Ramirez, F., Dundar, F., Diehl, S., Gruning, B. A. and Manke, T.** (2014). deepTools: a flexible
501 platform for exploring deep-sequencing data. *Nucleic Acids Res* **42**, W187-191.
- 502 **Rossant, J.** (2018). Genetic Control of Early Cell Lineages in the Mammalian Embryo. *Annu Rev*
503 *Genet* **52**, 185-201.
- 504 **Schwartz, Y. B. and Pirrotta, V.** (2007). Polycomb silencing mechanisms and the management
505 of genomic programmes. *Nat Rev Genet* **8**, 9-22.
- 506 **Simpson, R. T.** (1978). Structure of the chromatosome, a chromatin particle containing 160 base
507 pairs of DNA and all the histones. *Biochemistry* **17**, 5524-5531.
- 508 **Sun, J., Wei, H. M., Xu, J., Chang, J. F., Yang, Z. H., Ren, X. J., Lv, W. W., Liu, L. P., Pan, L. X.,**
509 **Wang, X., et al.** (2015). Histone H1-mediated epigenetic regulation controls germline
510 stem cell self-renewal by modulating H4K16 acetylation. *Nat Commun* **6**.
- 511 **Syed, S. H., Goutte-Gattat, D., Becker, N., Meyer, S., Shukla, M. S., Hayes, J. J., Everaers, R.,**
512 **Angelov, D., Bednar, J. and Dimitrov, S.** (2010). Single-base resolution mapping of
513 H1-nucleosome interactions and 3D organization of the nucleosome. *Proc Natl Acad Sci*
514 *USA* **107**, 9620-9625.
- 515 **Tanaka, M., Hennebold, J. D., Macfarlane, J. and Adashi, E. Y.** (2001). A mammalian oocyte-
516 specific linker histone gene H100: homology with the genes for the oocyte-specific
517 cleavage stage histone (cs-H1) of sea urchin and the B4/H1M histone of the frog.
518 *Development* **128**, 655-664.
- 519 **Vyas, P. and Brown, D. T.** (2012). N- and C-terminal Domains Determine Differential
520 Nucleosomal Binding Geometry and Affinity of Linker Histone Isotypes H1(0) and H1c. *J*
521 *Biol Chem* **287**, 11778-11787.
- 522 **Wei, Q. Q., Zhong, L., Zhang, S. P., Mu, H. Y., Xiang, J. Z., Yue, L., Dai, Y. P. and Han, J. Y.**
523 (2017). Bovine lineage specification revealed by single-cell gene expression analysis
524 from zygote to blastocyst. *Biol Reprod* **97**, 5-17.
- 525 **Willcockson, M. A., Heaton, S. E., Weiss, C. N., Bartholdy, B. A., Botbol, Y., Mishra, L. N.,**
526 **Sidhwani, D. S., Wilson, T. J., Pinto, H. B., Maron, M. I., et al.** (2021). H1 histones
527 control the epigenetic landscape by local chromatin compaction. *Nature* **589**, 293-+.
- 528 **Wu, K. X., Liu, H., Wang, Y. F., He, J. P., Xu, S. Y., Chen, Y. P., Kuang, J. Q., Liu, J. D., Guo, L.,**
529 **Li, D. W., et al.** (2020). SETDB1-Mediated Cell Fate Transition between 2C-Like and
530 Pluripotent States. *Cell Rep* **30**, 25-+.
- 531 **Xia, W. K., Xu, J. W., Yu, G., Yao, G. D., Xu, K., Ma, X. S., Zhang, N., Liu, B. F., Li, T., Lin, Z. L., et**
532 **al.** (2019). Resetting histone modifications during human parental-to-zygotic transition.

570 in MII, granulosa cells (GCs), mature granulosa cells (M-GCs) and testis (200 oocytes,
571 60-80 ug tissue samples). (F) Distribution of bovine H1FOO around the transcriptional
572 start site (TSS) in 8-16-stage embryos (E3.0).

573 **Figure 2.** H1FOO depletion leads to developmental failure during morula to blastocyst
574 transition in cattle. (A) Schematic of CRISPR-Cas13d strategy to deplete H1FOO
575 mRNA. sgRNAs targeting different exon coding regions of H1FOO. (B)
576 Immunostaining validation for H1FOO KD efficiency at 8-cell stage by CRISPR-
577 Cas13d system. Scale bar = 50 μ M. Analysis of the relative intensity of H1FOO KD for
578 experiments shown in bar chart. n=2; 5-8 embryos were analyzed per group. ***P <
579 0 .001. (C) Representative images of bovine embryos in only Cas13d mRNA, mixture
580 of Cas 13d KD mRNA and sgRNAs injected groups at day 8. Scale bars = 100 μ m. (D)
581 Effects of CRISPR-Cas13d induced H1FOO KD on 8-16-cell (E3.0) and blastocyst
582 (E8.0) rates of bovine embryos. n=3 experiments; ***P < 0.001. (E) Schematic of Trim-
583 Away strategy to deplete H1FOO protein. (F) IF validation for H1FOO KD efficiency
584 at 8-cell stage by Trim-Away. Scale bar = 50 μ M. Analysis of the relative intensity of
585 H1FOO KD for experiments shown in bar chart. n=2 experiments, 8 embryos were
586 analyzed per group. ***P < 0 .001. (G) Representative images of bovine embryos in
587 Trim control and Trim-Away groups at day 8. Scale bars = 100 μ m. (H) Effects of Trim-
588 Away induced H1FOO depletion on 8-16-cell (E3.0) and blastocyst (E8.0) rates of
589 bovine embryos. n=3 experiments. ***P < 0.001.

590 **Figure 3.** H1FOO reduction influences H3K4me3 reprogramming at 8-16-cell-stage.
591 (A) IF analysis of phosphorylated RNA polymerase II (Ser2P) in NC and H1FOO KD
592 embryos (E3.0). Scale bar = 50 μ M. 23 embryos from three replicates were analyzed
593 per group. Analysis of the relative intensity of H1FOO KD for experiments is shown in
594 bar charts. ***P < 0 .001. (B) IF detection of H3K4me3 signal at 8-16-cell stage (E).
595 Scale bar = 50 μ M. Three independent experiments were performed and 18-22 embryos
596 were analyzed in total. **P < 0 .01. (C) Schematic overview of the samples collected
597 for RNA-seq analysis (E4.0). (D) Volcano plots of all genes detected at 16-cell stage in
598 NC and KD groups. Red dots represent upregulated genes (FC > 1.5, P adjusted < 0.05)
599 and blue dots downregulated genes (FC < 0.6, P adjusted < 0.05).

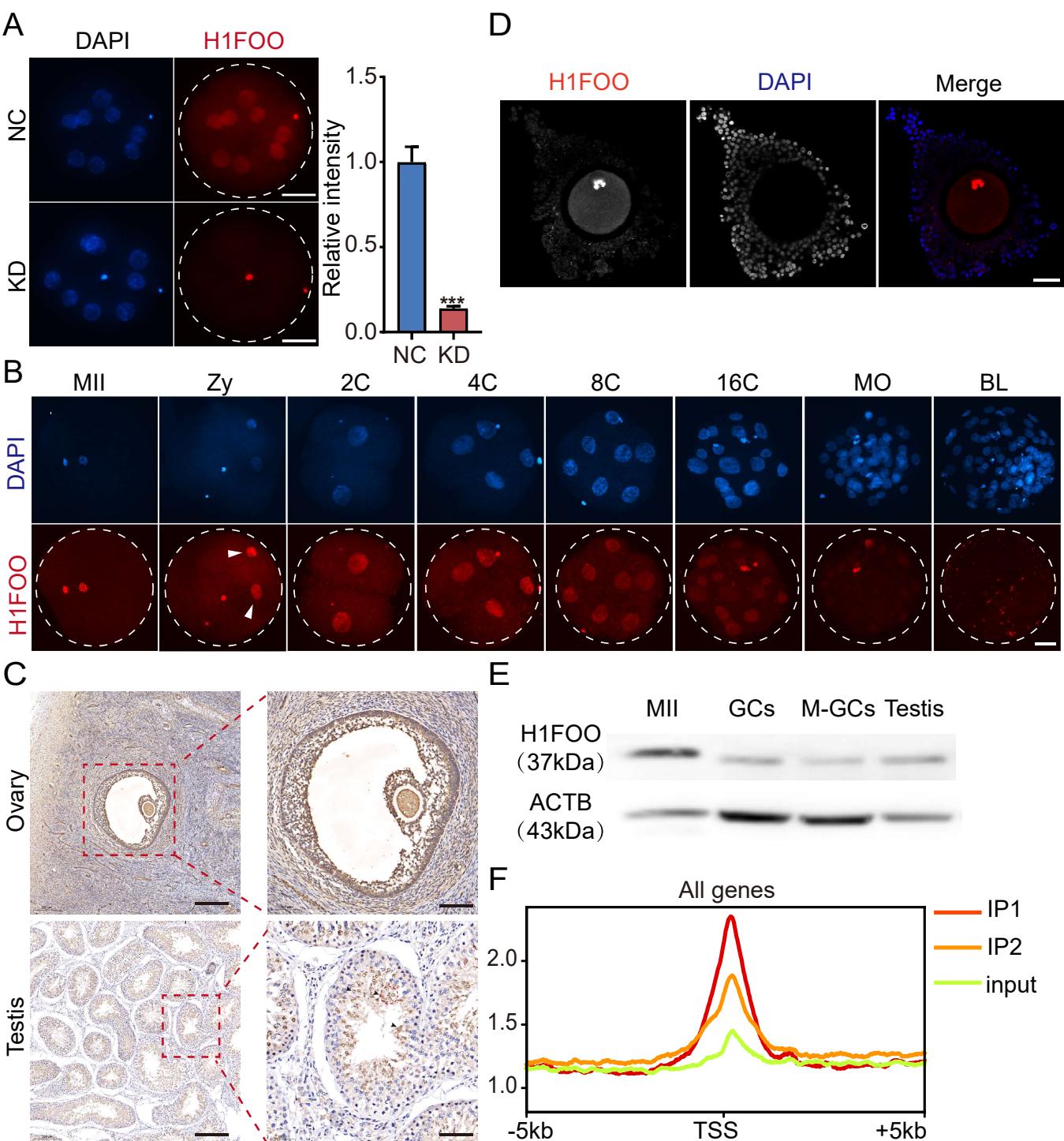
600 **Figure 4.** H1FOO deficiency causes a large-scale disruption of the transcriptome
601 profile in bovine morula. (A) Schematic overview of the samples at morula stage
602 collected for RNA-seq analysis. (B) Validation of total cell number per day 5.5 morula
603 in NC and KD groups. Three independent experiments were performed and each
604 embryo was stained with DAPI to confirm cell number. Each dot represents an embryo.
605 (C) Volcano plots of all genes detected at MO stage in NC and KD groups. Red dots
606 represent upregulated genes ($FC > 1.5$, P adjusted < 0.05) and blue dots downregulated
607 genes ($FC < 0.6$, P adjusted < 0.05). (D) Venn diagram illustrating the common
608 differentially expressed genes at 16-cell and MO stage identified in KD embryos
609 relative to NC groups. (E) Overrepresentation of genes related to lineage specification
610 among DEGs. (F) Gene ontology (GO) analysis of downregulated genes identified in
611 KD morulae relative to NC groups. (G) GO terms of upregulated genes identified in
612 KD morulae relative to NC groups.

613 **Figure 5.** H1FOO KD results in a compromised lineage specification at morula stage.
614 (A) IF analysis of GATA3 (red) and CDX2 (green) in NC and H1FOO KD morulae.
615 Scale bar = 50 μ M. Quantification of GATA3 and CDX2 staining in the IF images by
616 bar graphs. Three biological replicates with 6-8 embryos were analyzed per group each
617 time. $**P < 0.01$. $***P < 0.001$. (B) IF detection of HDAC8 in NC and H1FOO KD
618 morulae. Scale bar = 50 μ M. Three biological replicates with total 20-23 embryos
619 analyzed per group. $*P < 0.05$. (C) IF detection of KRT8 in NC and H1FOO KD
620 morulae. Scale bar = 50 μ M. Analysis of the relative intensity of KRT8 for experiments
621 shown in bar chart. $n=3$. 6-8 embryos were analyzed per group each time. $**P < 0.01$.
622 (D) IF detection of EZR in NC and H1FOO KD morulae. Scale bar = 50 μ M. (E)
623 Proportions of polarized cell (EZR^+) in morulae. Each dot represents an embryo. $***P$
624 < 0.001 . $n=4$. 7-10 embryos were analyzed per group each time.

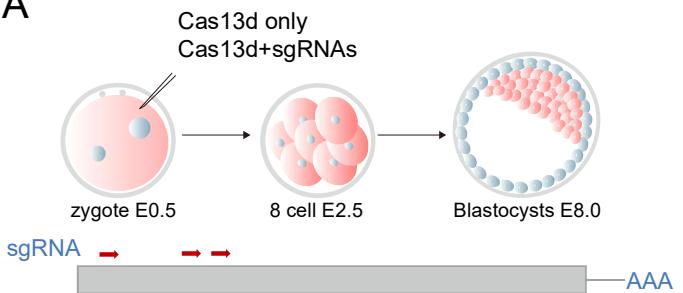
625 **Figure 6.** Histone methylation and acetylation were perturbed in H1FOO deficient
626 embryos with increased histone variants. (A) RNA-seq results related to the expression
627 levels of histone H1, H2A and H3.3 variants in day 5.5 morulae. $*P$ adjusted < 0.05 ,
628 $**P$ adjusted < 0.01 , $***P$ adjusted < 0.001 . (B) Immunostaining validation of core
629 histone H2A in morulae. Scale bar = 50 μ M. Quantification of H2A staining in the IF

630 images by bar graph. n=3. 5-8 embryos were analyzed per group each time. * $P < 0.05$.
631 (C and D) IF staining of repressive histone markers H3K27me3 (C) and H3K9me3(D)
632 in NC and KD morulae (E5.5). Scale bar = 50 μ M. Analysis of the relative intensity of
633 H3K27me3 and H3K9me3 for experiments shown in bar charts. ** $P < 0.01$, *** $P <$
634 0 .001. n=3. 6-8 embryos were analyzed per group each time. (E) IF validation of
635 H4K16ac in morulae. Scale bar = 50 μ M. Quantification of H4K16ac staining in the IF
636 images by bar graph. n=2 experiment. 8-10 embryos were analyzed per group each time.
637 * $P < 0.05$.

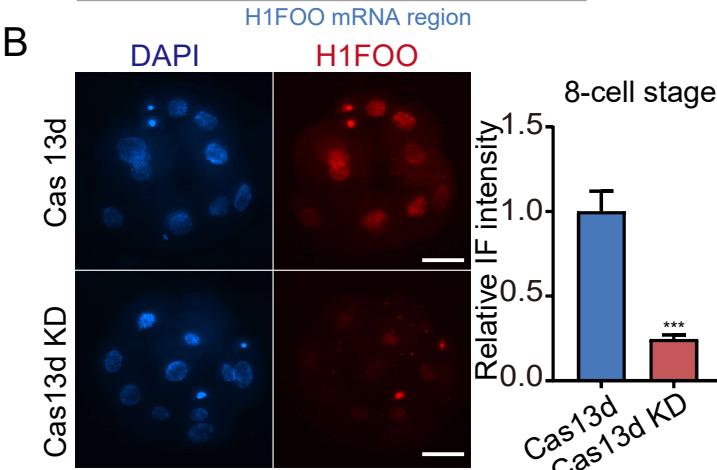
638 **Figure 7.** Overexpression of H1FOO impairs the developmental potential of bovine
639 early embryos. (A and B) IF staining was performed to analyze the level of
640 overexpressed H1FOO mRNA at 2-cell (A) and 16-cell (B) stages. Green: FLAG
641 protein represents exogenous H1FOO. Red: endogenous and exogenous H1FOO
642 protein. Scale bar = 50 μ M. Analysis of the relative intensity of H1FOO for experiments
643 shown in bar charts. n=2 experiments, 12-15 embryos were analyzed per group. * $P <$
644 0 .05. (C) Effects of bovine H1FOO OE on 8-16-cell (E3.0) and blastocyst (E8.0) rates
645 of bovine embryos. n=3 experiments. * $P < 0.05$. (D) Representative IF pictures of
646 SOX2 (red) and CDX2 (green) in NC and H1FOO OE groups at blastocyst stage (E8.0).
647 The nuclei were labeled by DAPI. The circle indicates the ICM. Scale bar = 50 μ M. (E)
648 The number of total cells (DAPI $^+$), TE cells (CDX2 $^+$), and ICM cells (SOX2 $^+$) per
649 blastocyst in NC and H1FOO OE groups(E8.0). n=3 replicates, 6-8 blastocysts per
650 group each time. * $P < 0 .05$.

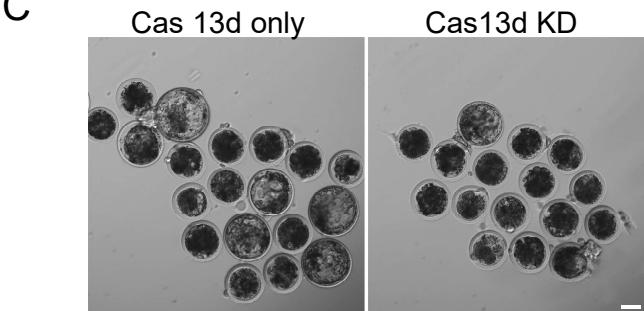

651 **Figure 8.** Overexpression of bovine H1FOO impairs the developmental potential of
652 mouse embryos. (A) Schematic of H1FOO mRNA overexpression (OE) strategy to
653 detect the development rates in mouse embryos. The fertilized eggs of the mice were
654 divided into three groups and injected with bovine H1FOO mRNA (bH1FOO), mouse
655 H1foo (mH1foo) mRNA and GFP mRNA respectively. (B) IF detection for OE level of
656 mH1foo tagged with FLAG (green) at mouse 2-cell stage (about 20 hours post-
657 injection). Scale bar = 50 μ M. (C) IF detection for OE level of bH1FOO (red) tagged
658 with FLAG (green) at mouse 2-cell stage (about 20 hours post-injection). Scale bar =
659 50 μ M. (D) Representative images of mouse embryos injected with different mRNA

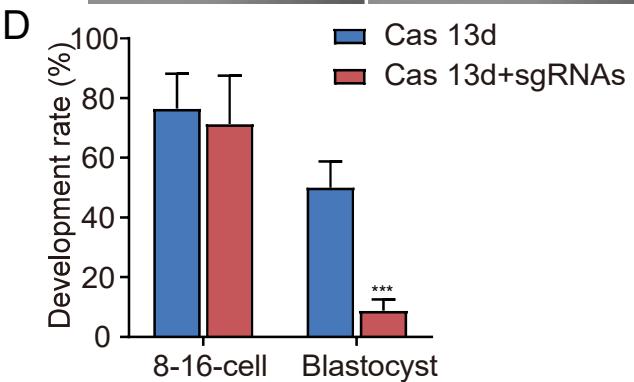
660 during preimplantation development. Scale bars = 100 μ m. (E) Effects of bH1FOO and
661 mH1foo OE on developmental rates of mouse embryos. n=2.

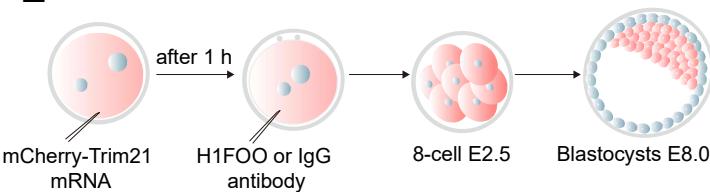

662 **Figure 9.** Working model of how H1FOO is proposed to facilitate lineage specification
663 and chromatin structure in bovine early embryos. In the wild-type embryos (top),
664 H1FOO acts to maintain normal nucleosome density, especially in the heterochromatin
665 region, to ensure correct TE and ICM associated gene expression. In the absence of
666 H1FOO (bottom), the nucleosomes are positioned more densely with an overall
667 increase in some heterochromatic markers, such as H3K9me3 and H3K27me3. The
668 expression of many differentiation-related marker genes (CDX2, GATA3, and KRT8
669 etc.) are impaired due to changes in chromatin status. Each large oval represents a
670 nucleus at morula stage.

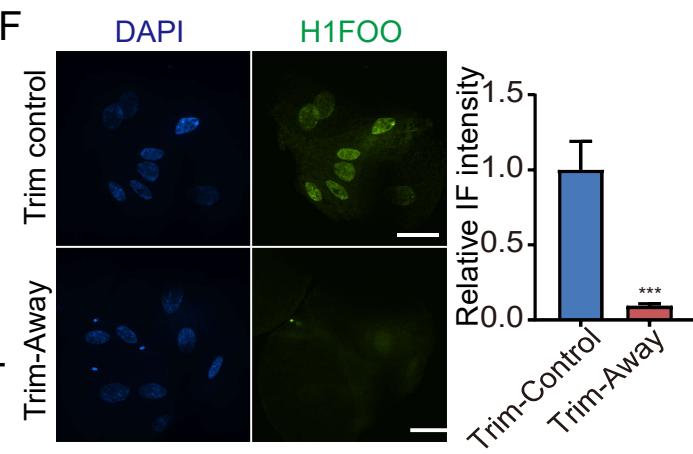
671

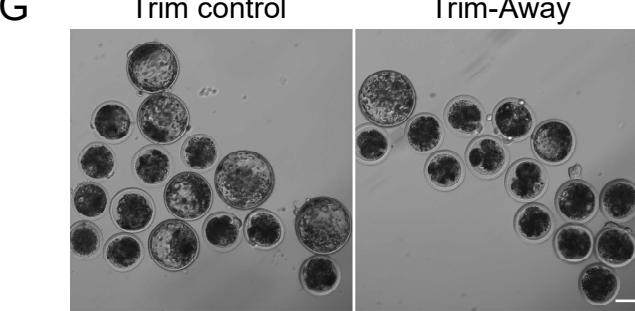

Figure 1 bioRxiv preprint doi: <https://doi.org/10.1101/2021.12.07.471683>; this version posted December 9, 2021. The copyright holder for preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under aCC-BY 4.0 International license.


A


B


C


D


E

F

G

H

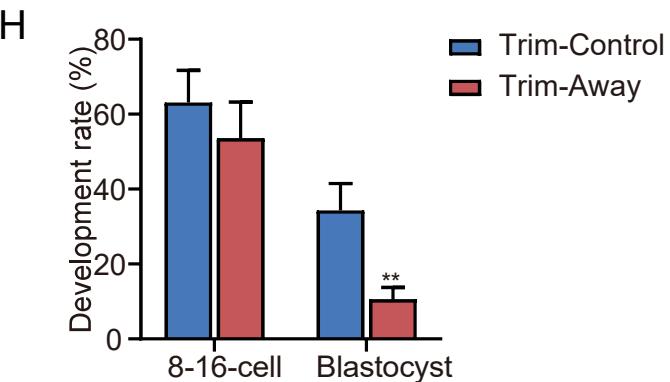
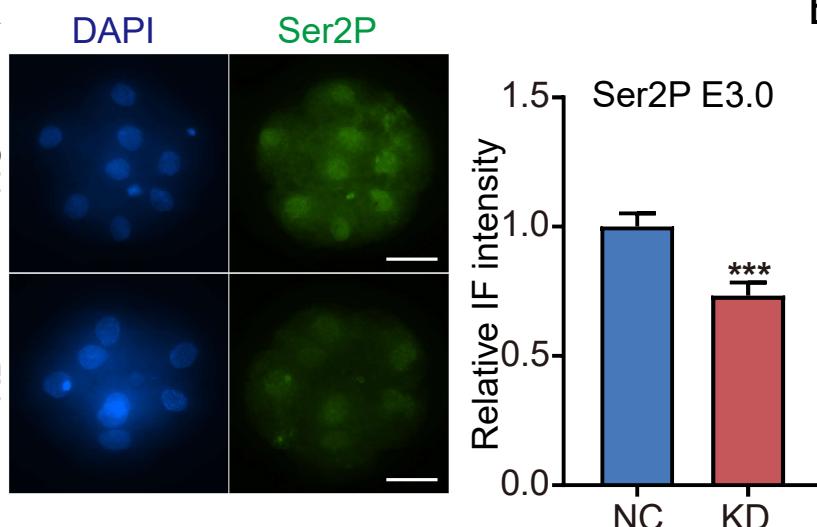
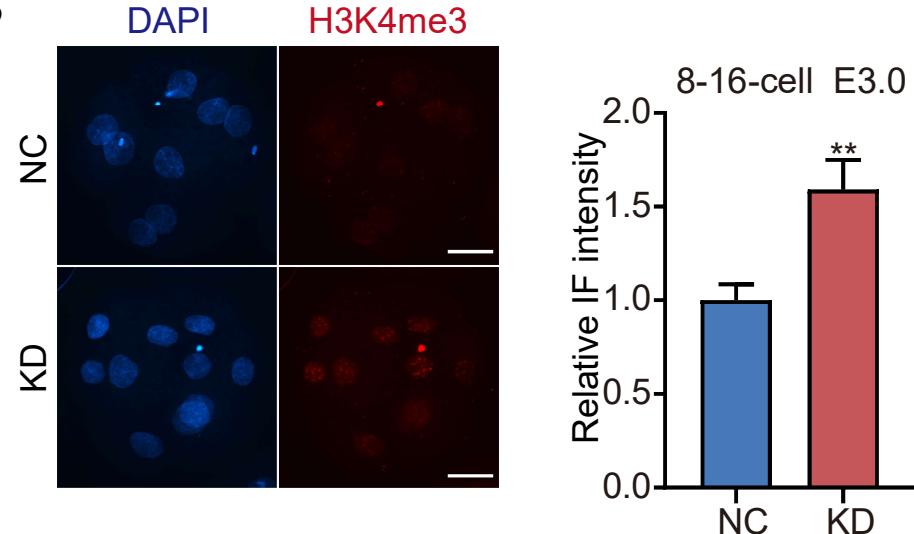
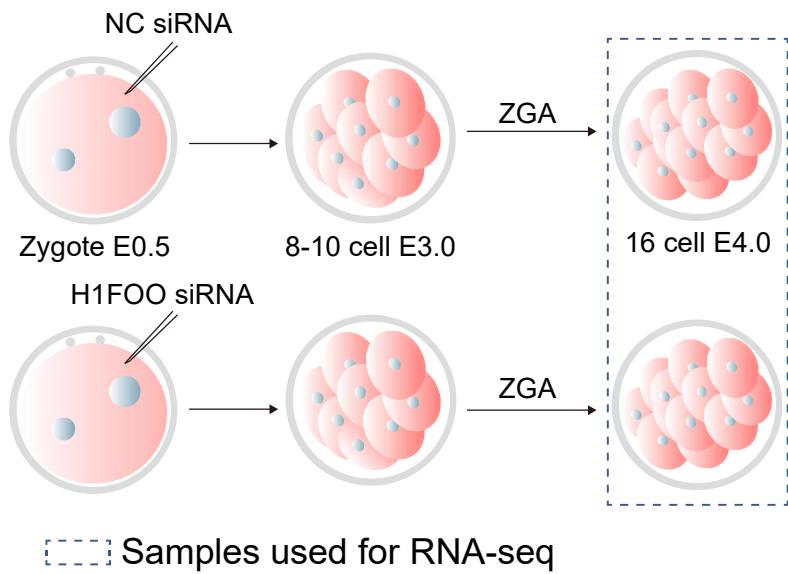
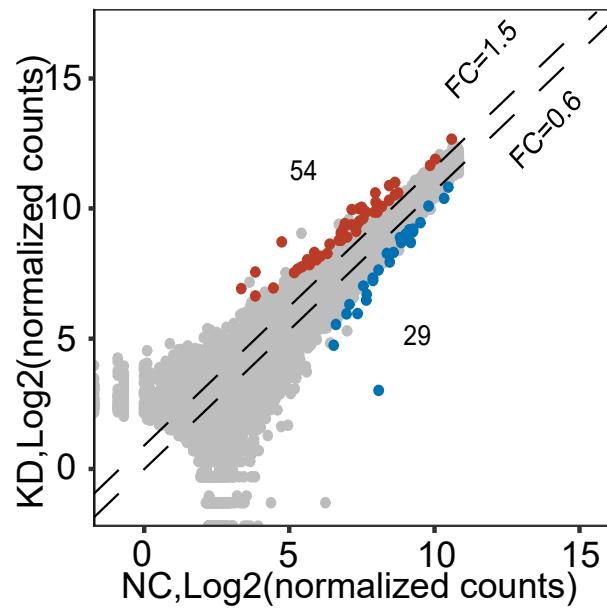
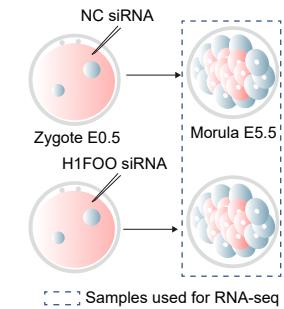
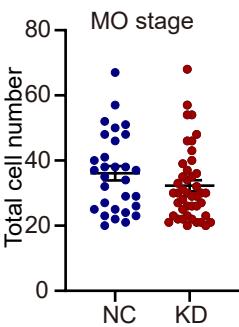
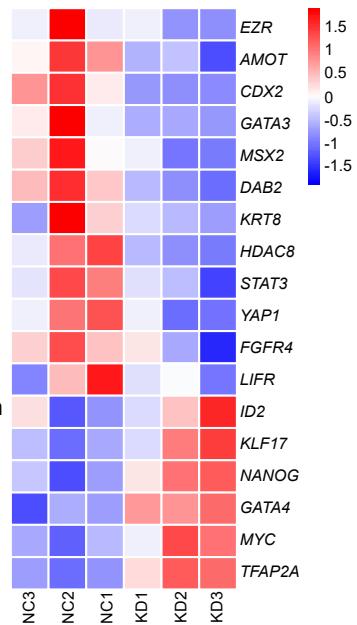
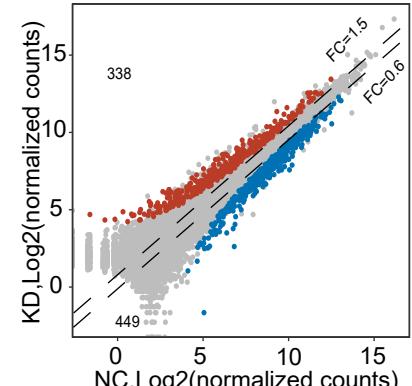
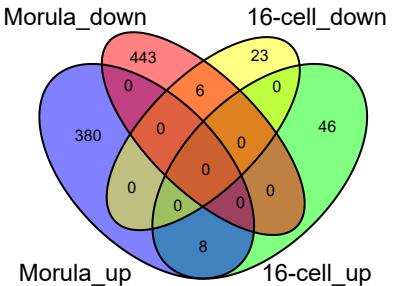
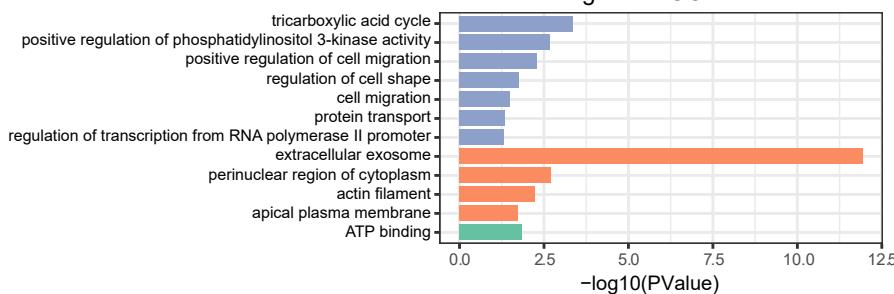
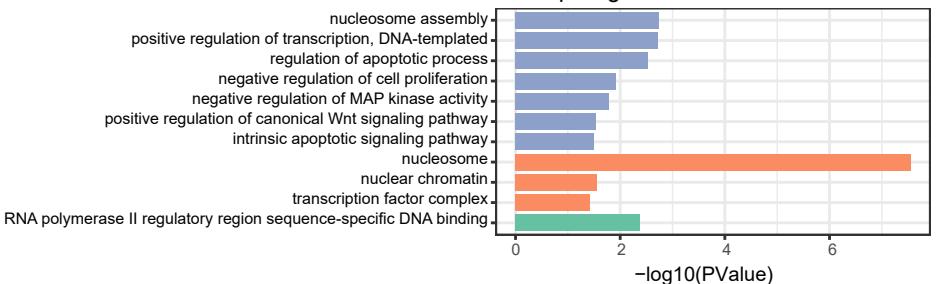




Figure 3

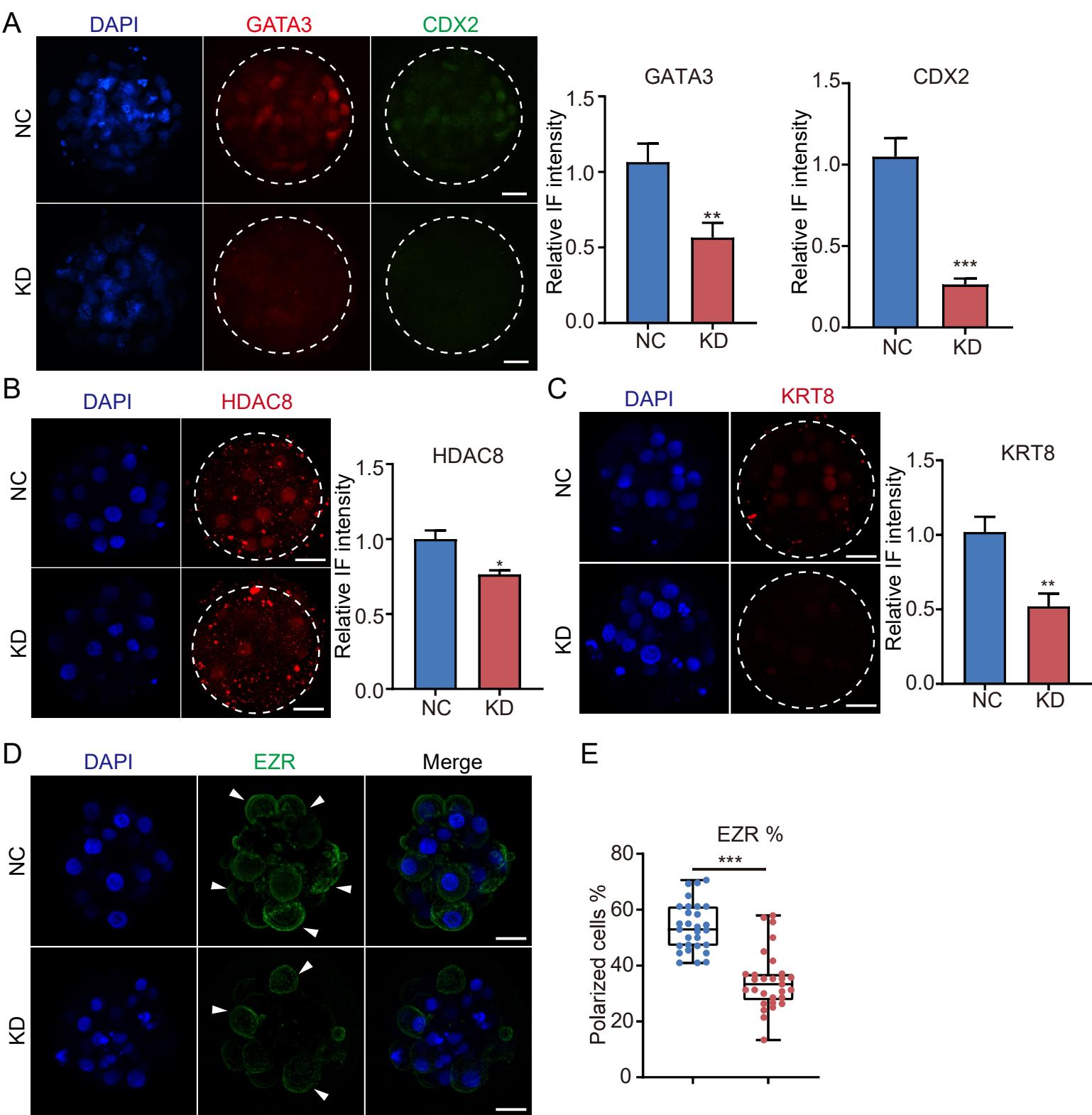

A


B

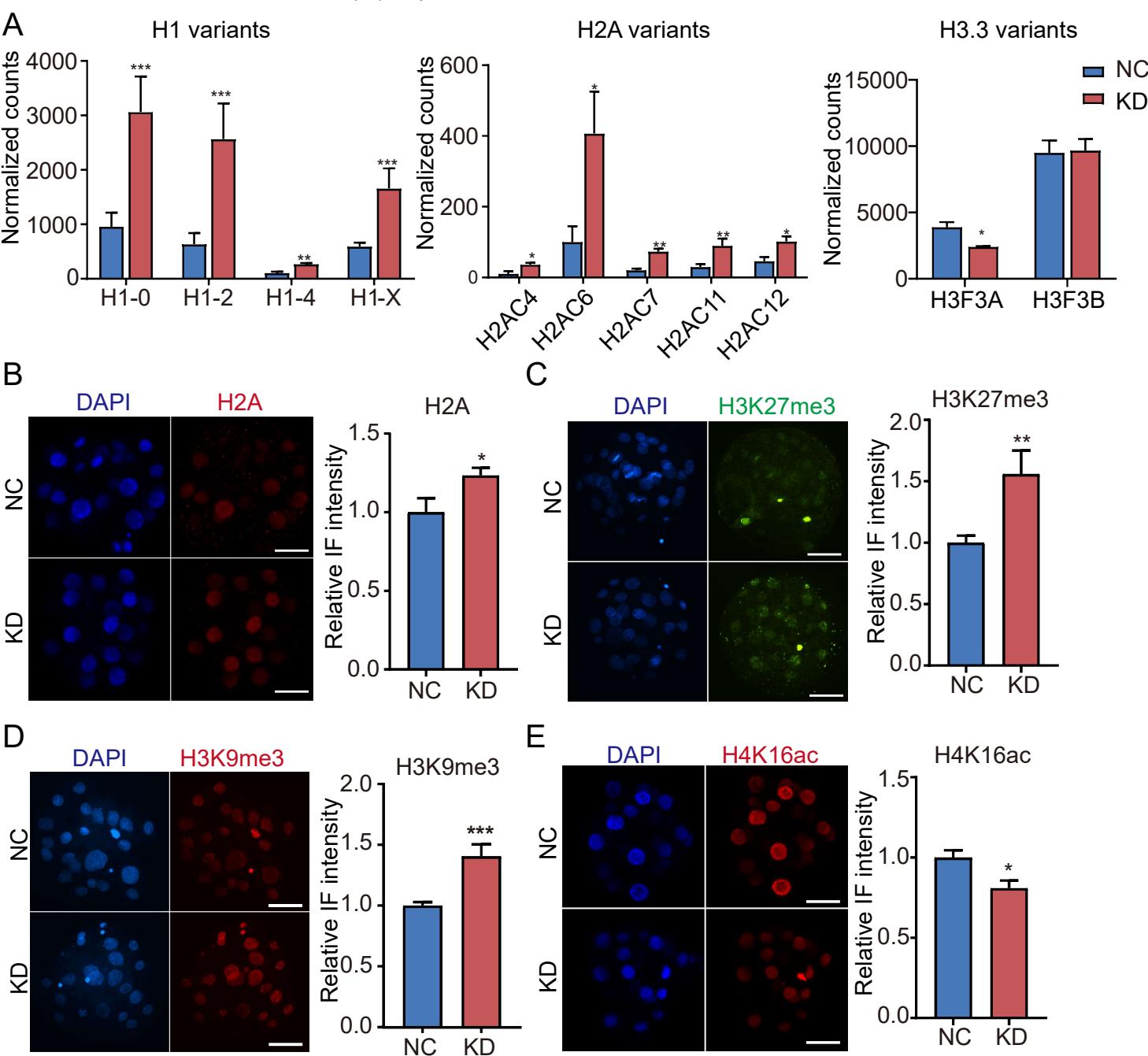








C

D


Figure 4**A****B****E****C****D****F****The down-regulated GO Terms****G****The up-regulated GO Terms****Category**

- GOTERM_BP_DIRECT
- GOTERM_CC_DIRECT
- GOTERM_MF_DIRECT


Category

- GOTERM_BP_DIRECT
- GOTERM_CC_DIRECT
- GOTERM_MF_DIRECT

Figure 5 bioRxiv preprint doi: <https://doi.org/10.1101/2021.12.07.471683>; this version posted December 9, 2021. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under aCC-BY 4.0 International license.

Figure 6 bioRxiv preprint doi: <https://doi.org/10.1101/2021.12.07.471683>; this version posted December 9, 2021. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under aCC-BY 4.0 International license.

Figure 7 bioRxiv preprint doi: <https://doi.org/10.1101/2021.12.07.471683>; this version posted December 9, 2021. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under aCC-BY 4.0 International license.

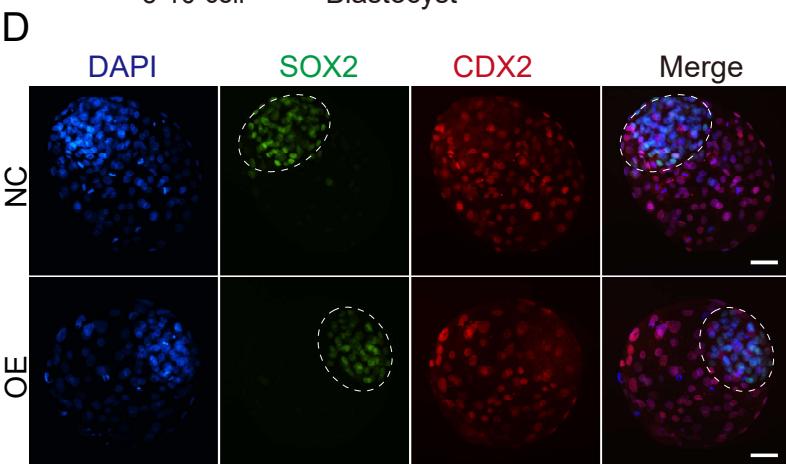
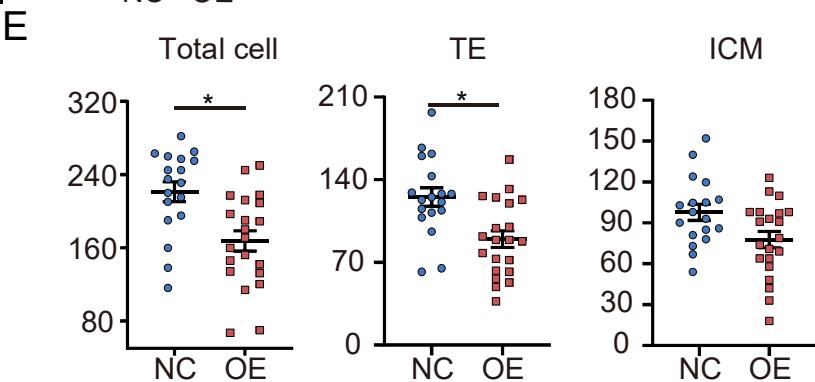
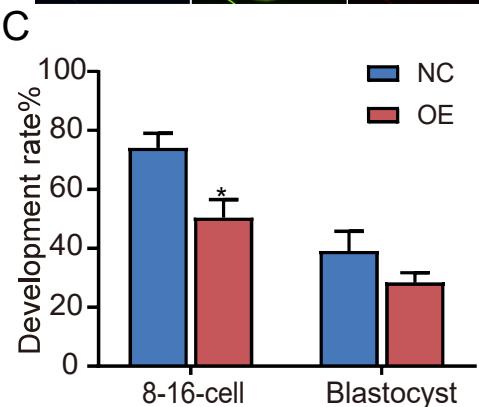
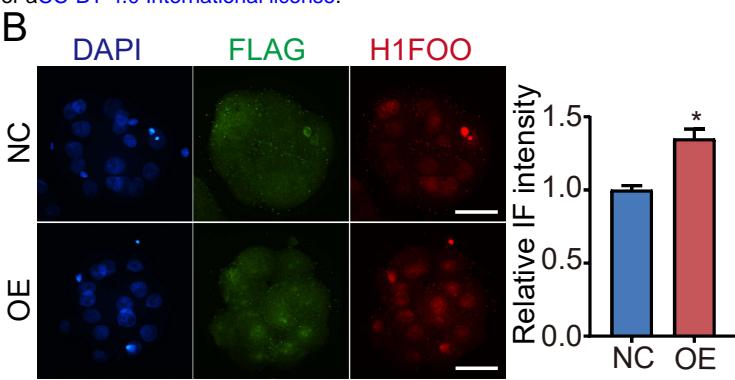
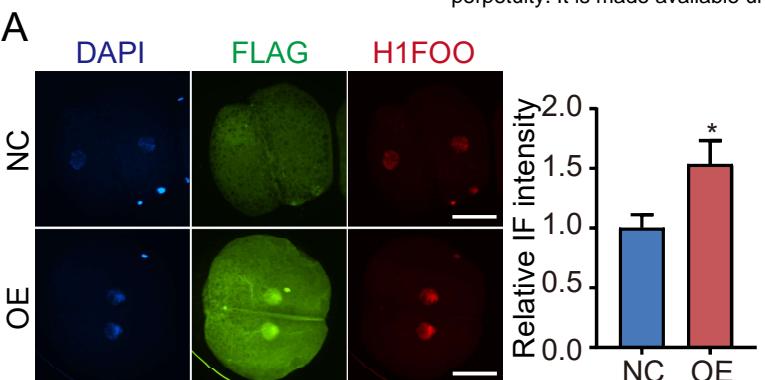
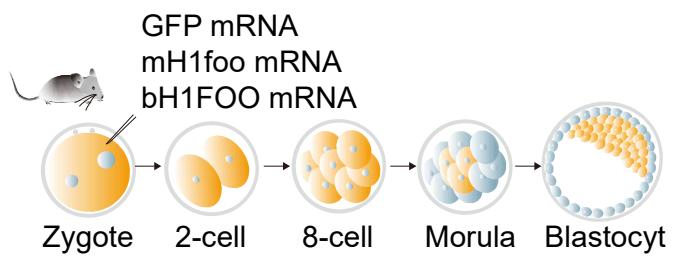
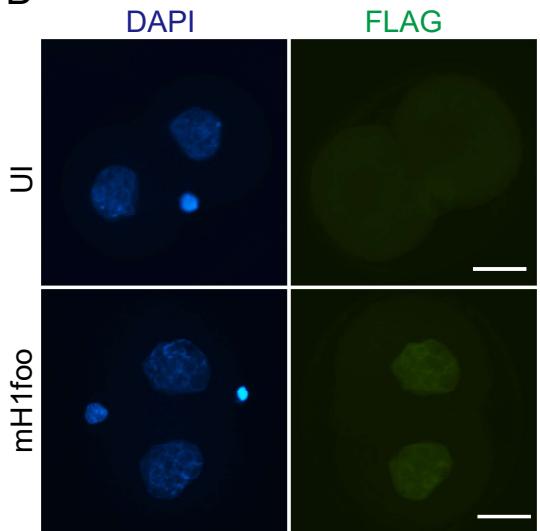
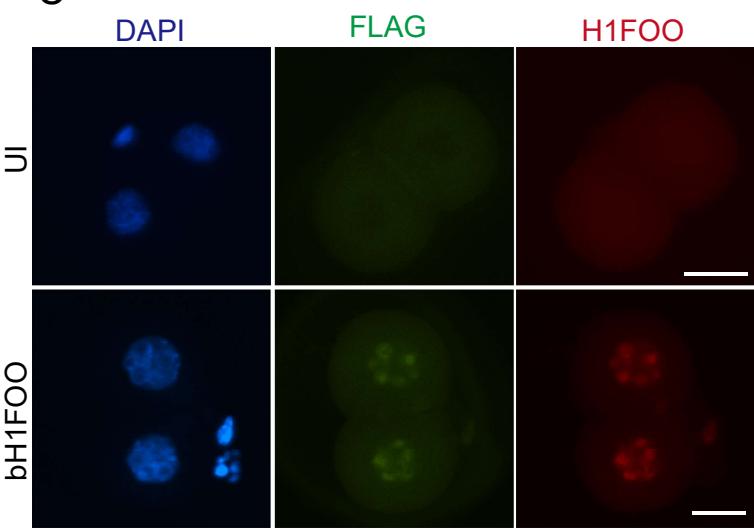
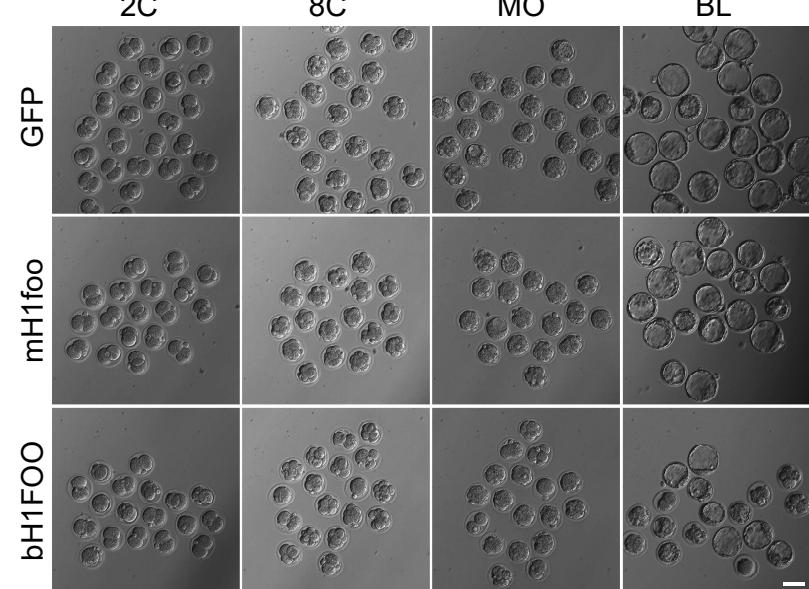








Figure 8 bioRxiv preprint doi: <https://doi.org/10.1101/2021.12.07.471683>; this version posted December 9, 2021. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under aCC-BY 4.0 International license.


A


B

C

D

E

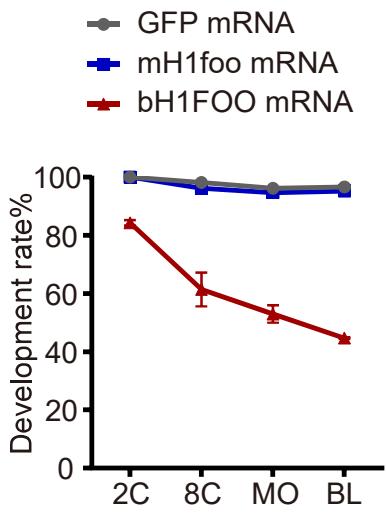
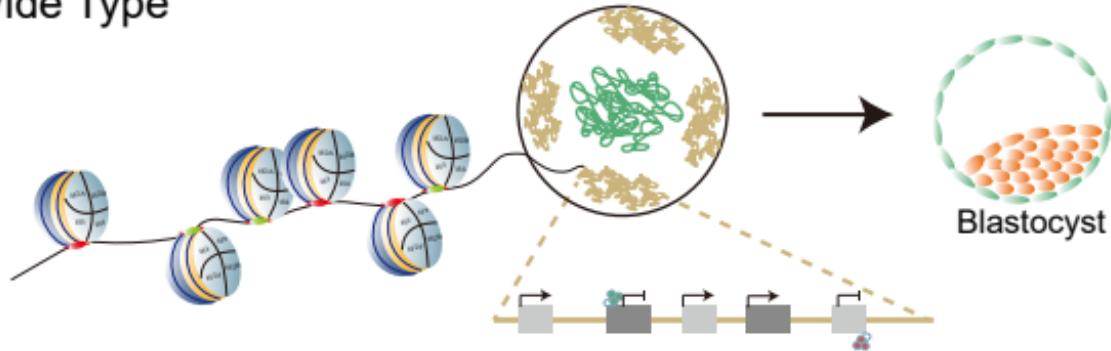
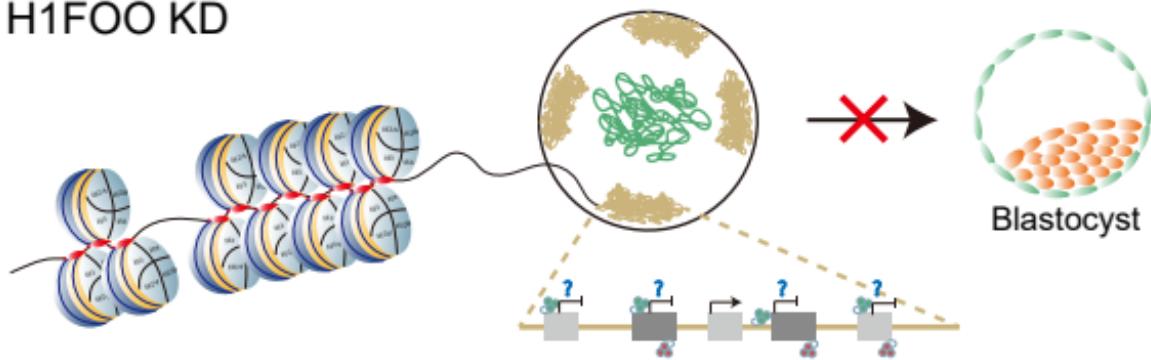




Figure 9

Wide Type

H1FOO KD

● H1FOO

● H3K27me3

■ TE associated genes

● euchromatin

● H1

● H3K9me3

■ ICM associated genes

● Heterochromatin