

1 ***mCherry* contains a fluorescent protein isoform that interferes
2 with its reporter function**

3

4

5

6 **Authors**

7 Maxime Fages-Lartaud¹, Lisa Tietze¹, Florence Elie¹, Rahmi Lale¹, Martin Frank Hohmann-
8 Marriott^{1,2}

9

10 **Affiliation**

11

12 ¹Department of Biotechnology, Norwegian University of Science and Technology,
13 Trondheim, N-7491, Norway.

14 ²United Scientists CORE (Limited), Dunedin 9016, Aotearoa - New Zealand.

15

16 **Contact (corresponding author)**

17 Email: martin.hohmann-marriott@ntnu.no

18

19

20 **Abstract.** Fluorescent proteins are essential reporters in cell biology and molecular biology. Here, we
21 reveal that red-fluorescent proteins possess an alternative translation initiation site that produces a short
22 functional protein isoform. The short isoform creates significant background fluorescence that biases
23 the outcome of expression studies. Our investigation identifies the short protein isoform, traces its
24 origin, and determines the extent of the issue within the family of red fluorescent protein. Our analysis
25 shows that the short isoform defect of the red fluorescent protein family may affect the interpretation
26 of many published studies. Finally, we provide a re-engineered mCherry variant that lacks background
27 expression as an improved tool for imaging and protein expression studies.

28

29

30 Introduction

31 The mathematician Gottlob Frege dedicated his life to demonstrate that mathematics were reducible to
32 logic. In June 1901, his ambitions were shattered by a letter from Bertrand Russell that pointed out a
33 contradiction in his fundamental assumption that became famously known as “Russell’s paradox” [1].
34 Russell’s paradox states the following: Consider R the set of all sets that do not contain themselves as
35 members; if R is not a member of itself, then by definition, it is a member of itself, and reciprocally.

36
$$R = \{x \mid x \notin x\}, \text{ then } R \notin R \Leftrightarrow R \in R$$

37 This contradiction left Frege in a state of epistemic paralysis [2], questioning the foundation of his
38 lifelong hypothesis. Interestingly, Russell wrote that Frege responded to the challenge of his main
39 hypothesis with intellectual pleasure and dedication to advance knowledge [1]. We encountered an
40 equivalent of Russell’s paradox in molecular biology, more specifically in relation with the expression
41 of the red fluorescent protein “mCherry”.

42 The discovery of fluorescent proteins has played a major role in unravelling details of cellular
43 functions [3,4]. Fluorescent proteins display structural similarities, such as a fully amino acid-encoded
44 chromophore present on an α -helix that is tightly packed into an eleven-stranded β -barrel [5,6]. The
45 chromophore is created by the autocatalytic cyclization of an amino acid triad [6–8]. The discovery of
46 DsRed expanded the color range of fluorescent proteins to include red wavelengths [9]. The natural
47 versions of fluorescent proteins have been subject to a multitude of modifications to obtain different
48 colors [6,10–12] and improve their properties such as solubility, maturation, stability, quantum yield,
49 monomeric state or the ability to uptake a fusion partner [13–17]. This diversity of engineered
50 fluorescent proteins have emerged as invaluable tools for molecular biology and cell biology, as they
51 are excellent reporters for gene expression and subcellular protein localization in various biological
52 systems [3,4,15].

53 In a previous study, we used mCherry as one of the reporters for the development of a universal gene
54 expression method that employs 200 random nucleotides as regulatory sequence to drive expression of
55 a coding sequence [18]. The efficiency of the method is gene- and context-dependent, but it yields

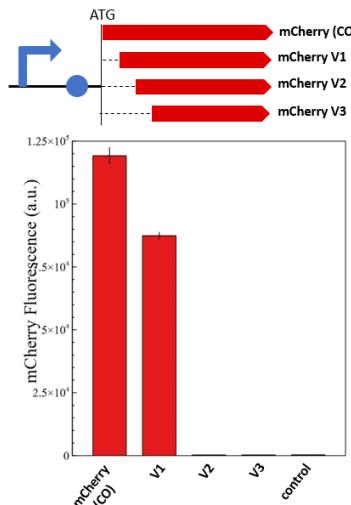
56 usually between 30% and 40% of successful protein expression in *E. coli* [18]. However, when *mCherry*
57 is used as a reporter, we observe fluorescence in about 65% of *E. coli* clones (*Supplemental Figure S1*).
58 Additionally, a large-scale analysis of the transcription start sites (TSS) of these clones showed a non-
59 negligible fraction of leaderless mRNA sequences [18]. Unsettled by these high proportions, our
60 suspicion turned to the reporter sequence itself. We hypothesized that internal Shine-Dalgarno (SD)
61 sequences within the reporter sequence followed by methionine codons just downstream the actual start
62 codon, could result in expression of a shorter yet still functional version of *mCherry*. This situation
63 reminded us of Russell's paradox: The fluorescent protein *mCherry* does not contain itself; however,
64 we suspected that it does (*Supplemental Figure S2*).

65 A fraction of eukaryotic and prokaryotic genes possess alternative translation initiation sites
66 (ATIS) that lead to the production of different isoforms of a functional protein from a unique mRNA
67 [19–22]. The N-terminal sequence variation between protein isoforms can be the target of post-
68 translational regulation [23], affect protein functionality [24,25] and even direct subcellular localization
69 [26]. The presence of an ATIS in *mCherry* greatly affects its function as a reporter and the outcome of
70 experiments. A shorter version of *mCherry* contained in itself creates a non-negligible background
71 fluorescence, disturbing the results of gene expression and protein localization studies. For example, a
72 genetic construct encoding a fusion protein composed of a C-terminal *mCherry* presents a risk of
73 producing an independent, fusion-less *mCherry* protein, which interferes with protein localization.
74 Likewise, studies using *mCherry* as reporter for gene expression would yield biased results because
75 translation of the short *mCherry* isoform is included in the reporter gene sequence. As *mCherry* is
76 widely used, the postulated interference may affect many studies, including our own work. However,
77 like Frege, we believe that the advancement of knowledge deserves our full dedication. Therefore, we
78 investigated *mCherry* expression in detail to uncover the source of the issue with the goal of providing
79 solutions that eliminate the defect.

80 **Results and Discussion.**

81 **Identification of the shorter protein isoform of mCherry.**

82 Our previous experiments with *mCherry* as a reporter gene [18] lead us to suspect the presence of a
83 shorter protein isoform of mCherry. We first analyzed the sequence of the codon-optimized version of
84 *mCherry* and noticed three methionine residues in a relatively close proximity from the annotated start
85 codon (*Figure 1*). In addition, we recognized an SD-like sequence ranging from -12 to -6 nucleotides
86 upstream of the first internal methionine residue (*Figure 1*). This led us to hypothesize that a short
87 functional isoform of mCherry is produced from one of the three downstream methionine and not from
88 an alternative start codon.


89 In order to assess which of these methionine residue functions as an ATIS that still renders a functional
90 mCherry protein, we designed three versions of mCherry (version V1, V2 and V3), with increasing N-
91 terminal truncations (*Figure 1*). Each version of *mCherry* was expressed in *E. coli* with a constitutive
92 promoter/5'-UTR. The fluorescence measurements of the different mCherry versions are presented in
93 Figure 2. The smallest truncation (version V1) retains 73% of the fluorescence intensity of the original
94 codon optimized version (*mCherry-CO*), while the other versions (V2 and V3) do not show any
95 fluorescence. Additionally, proteomics analysis of the red fluorescent protein mCherry V1 confirmed
96 that the first 10 amino acids were absent (*Supplemental Figure S3*), although the fragment between M10
97 and M17 could not be detected, due to the short length of the digested fragments. This is conclusive
98 evidence that the *mCherry* gene produces a short functional protein isoform starting at the methionine
99 in position 10 of the amino acid sequence.

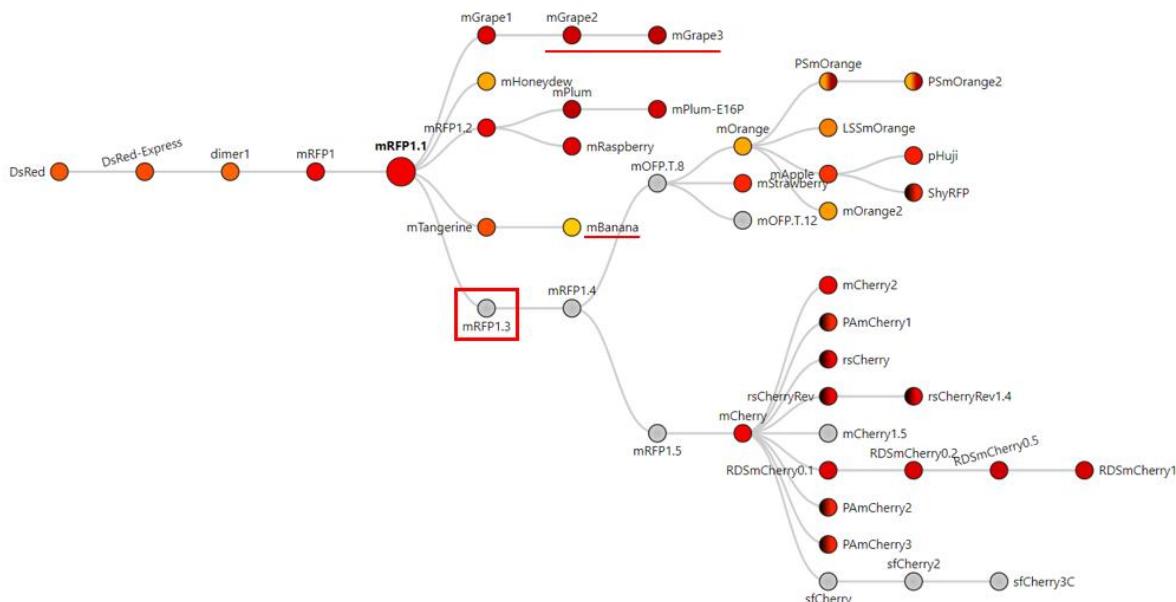
100

DsRed	atg cgc agc agc aaa aac gtg att aaa gaa ttt atg cgc ttt aaa gtg cgc atg gaa ggc acc gtg aac ggc cat gaa ttt gaa att gaa M R S S K N V I K E F M R F K V R M E G T V N G H E F E I E
mRFP 1.1	atg gcg agc agc gaa gat gtg att aaa gaa ttt atg cgc ttt aaa gtg cgc atg gaa ggc agc gtg aac ggc cat gaa ttt gaa att gaa M A S S E D V I K E F M R F K V R M E G S V N G H E F E I E
mRFP 1.3	atg gtg agc aaa ggc gaa aac aac atg gcg gtg att aaa gaa ttt atg cgc ttt aaa gtg cgc atg gaa ggc agc gtg aac ggc cat gaa ttt gaa M V S K G E E N N M A V I K E F M R F K V R M E G S V N G H E F E I E
mCherry CO	atg gtt tct aaa ggt gaa gaa gac aac atg gct atc atc aaa gaa ttt atg cgt ttc aaa gtt cac atg gaa ggt tct gtg aac ggt cac gaa ttt gaa atc gaa M V S K G E E D N M A I I K E F M R F K V H M E G S V N G H E F E I E
mCherry (SD-DeOpt)	atg gtt tct aaa gga gag gag gac aac atg gct atc atc aaa gaa ttt atg cgt ttc aaa gtt cac atg gaa ggt tct gtg aac ggt cac gaa ttt gaa atc gaa M V S K G E E D N M A I I K E F M R F K V H M E G S V N G H E F E I E
mCherry V1	M A I I K E F M R F K V H M E G S V N G H E F E I E
mCherry V2	M R F K V H M E G S V N G H E F E I E
mCherry V3	M E G S V N G H E F E I E

101

102 **Figure 1. Amino acid sequence alignment of key engineering steps of red fluorescent proteins**
103 **derived from DsRed.** The isoform-causing N-terminal extension occurred in the engineering step from
104 mRFP1.1 to mRFP1.3, due to of the addition of the eGFP fragment (in green) and the linker NNMA.
105 The sequences of the short mCherry versions (V1, V2 and V3) used to determine the shortest functional
106 isoform are also presented. The sequence of the “SD-de-optimized” version of mCherry is shown.
107 Methionine potentially serving as start codons are shown in red. SD-like sequences are colored in
108 yellow. Codon usage of each protein is indicated above each amino acid. Conserved amino acid
109 sequence is shadowed in gray.

110


111 **Figure 2. Fluorescence measurements of mCherry and its shorter isoforms (V1, V2 and V3).** The
112 genetic map of each constitutively expressed *mCherry* version is shown above the fluorescence
113 quantification graph. A plasmid without *mCherry* is used as negative control. Only *mCherry* V1
114 produces a functional protein isoform that retains 73% of the original fluorescence.

115 **Phylogenetic analysis reveals the origin and the extent of the problem.**

116 Since most red fluorescent proteins originate from modifications of DsRed [9], we imagined that the
117 dual-isoform issue of mCherry could affect other members of the red fluorescent protein family. We
118 performed protein sequence alignments to determine the extent of the issue across DsRed-derived
119 fluorescent proteins (Figure 1). We were able to trace back the apparition of the second isoform to the
120 engineering of mRFP1.3 (Figure 3).

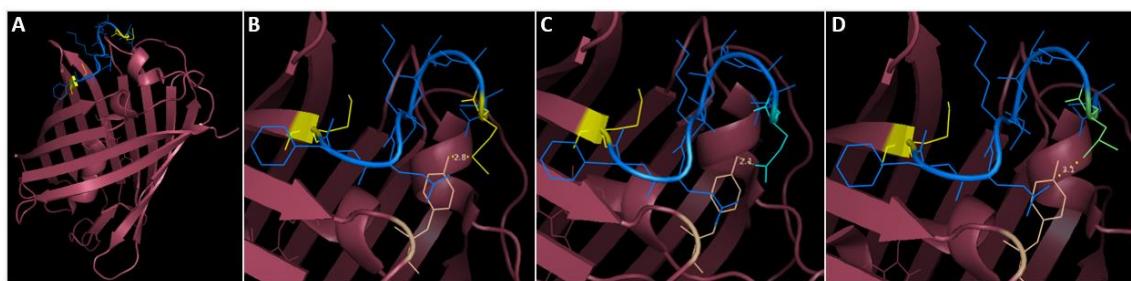
121 DsRed was modified into mRFP1 to overcome obligate tetramerization, improve protein maturation
122 and modify the excitation/emission wavelength couple [16]. Consequently, mRFP1 was further
123 modified into mRFP1.1 by the notable Q66M substitution in the chromophore to improve parameters
124 such as photostability, quantum yield and extinction coefficient [14]. During the same round of
125 modifications, in an attempt to improve the poor N-terminal fusion properties of mRFP1.1, the initial
126 residues of eGFP (MVKSGEE) followed by the linker (NNMA) were added to mRFP1.1 to yield
127 mRFP1.3 [14]. This manipulation is responsible for the apparition of the short mCherry isoform. Indeed,
128 the linker (NNMA) provides the alternative methionine start codon and the eGFP fragment offers an
129 SD-like sequence for ribosome entry (*Figure 1*).

130 The phylogenetic overview of red fluorescent proteins (*Figure 3*) shows all the proteins engineered from
131 mRFP1.3 that are affected by the dual-isoform issue. In addition to the mRFP1.3-derived proteins,
132 mBanana, mGrape2 and mGrape3 also received the N-terminal extension described above. The problem
133 becomes even more concerning, because it affects all commonly used variants in the red color spectrum.

134

135 **Figure 3. Phylogenetic tree of DsRed-derived fluorescent proteins.** Figure adapted from FPbase [27]
136 with their permission. The phylogenetic tree shows all the fluorescent proteins derived from mRFP1.3
137 that contain the problem-causing N-terminal extension. Underlined proteins are derived from mRFP1.1
138 and also contain the extension. Color in circles corresponds to the emission wavelength(s) of the protein.
139 Dark hemicycle represent an off state of the protein. If colored gray, the emission maximum was not
140 entered in the database.

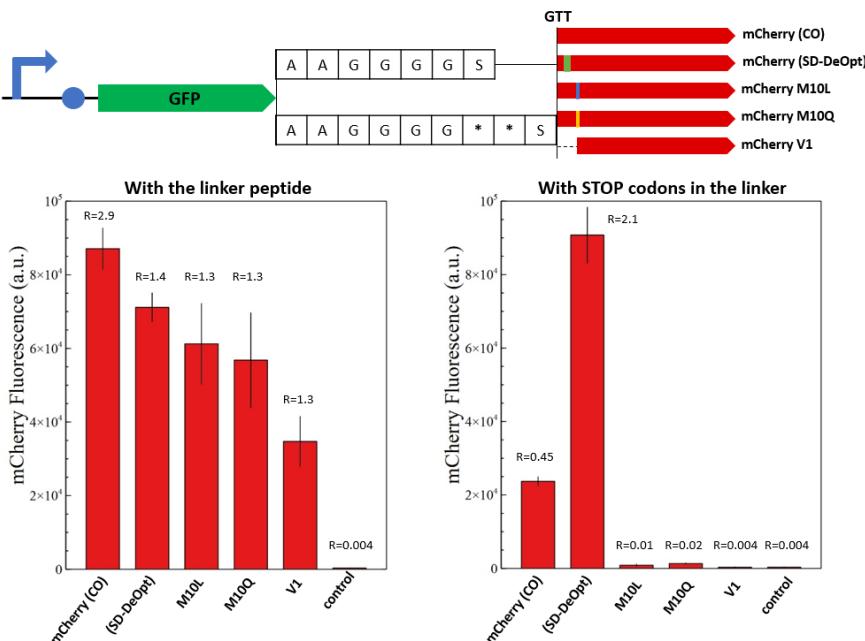
141 **The short mCherry isoform is also expressed in other prokaryotes.**


142 In bacteria, translation initiation shares quasi-universal principles [28,29], with some variations in the
143 SD sequences recruiting ribosomes. Since the short mCherry isoform is encoded in the *mCherry* gene
144 sequence, it is highly likely that other prokaryotes produce the short mCherry isoform as well. In
145 addition, depending on the codon usage of the N-terminal extension, the short *mCherry* expression may
146 be stronger or adapted to other organisms (as demonstrated by *mCherry* with De-optimized SD (*Figure*
147 5). We found that the short mCherry isoform (V1) was functional in *Vibrio natriegens*, *Pseudomonas*
148 *putida* (*Supplemental Figure S5* & *Supplemental Figure S6*), and another group had found the *mCherry*
149 ATIS occurring in *Mycoplasma* [30]. This demonstrates that the *mCherry* defect occurs across a wide
150 range of bacteria.

151 **Solutions deployed to circumvent the defect in *mCherry*.**

152 In order to provide a version of *mCherry* that is usable for gene expression and protein localization
153 without conferring background expression, we tested different solutions in a fusion protein context. The
154 first solutions consisted in a substitution of the problem-causing M10 to glutamine or leucine, which
155 could preserve structural properties of the protein (*Figure 5*). The second solution was simply to use
156 *mCherry VI* as a reporter, since it resembles *mRFP1.1*. Fusion proteins composed of sfGFP fused with
157 C-terminal engineered versions of mCherry were constructed to assess the performance of each
158 solution. First, sfGFP and mCherry versions were linked with an alanine/glycine linker to estimate the
159 C-terminal fusion properties of the engineered mCherry versions (*Figure 5*). The background expression
160 due to the short isoform was assessed by placing two stop codons in the linker peptide right upstream
161 the *mCherry* versions. The M10 substitutions prove successful in abolishing production of the short
162 mCherry isoform in a C-terminal fusion context. Likewise, the short mCherry version V1 did not show
163 any background fluorescence but appeared to be less efficient in C-terminal fusions, as reported for
164 *mRFP1.1* [14].

165


166

167

168 **Figure 4. 3D-structure visualization of mCherry and the substitutions provided to abolish the**
169 **short isoform.** (A) The segment between M10 and M17 (shown in blue, methionine in yellow) precedes
170 the first β -sheet but provides indispensable stabilization to the protein (as mCherry V2 is not functional).
171 The eGFP segment preceding M10 is not present on any PDB files of mCherry, potentially due to a low
172 resolution, due to mixed isoform population. (B) M10 (yellow) stabilizes mCherry by interacting with
173 Y43 (wheat color). (C) The M10Q substitution (in cyan) occupies a similar volume as methionine and
174 can produce an H-bond with Y43. (D) The M10L substitution (in lime green) also mimics the steric
175 occupancy of methionine and can interact weakly with Y43 through Van-Der-Walls interaction.

176

177

178 **Figure 5. Fluorescence measurements of mCherry and its modified versions in a C-terminal**
179 **fusion context.** The overview of the genetic constructs is presented (top). The versions of mCherry are
180 fused to the C-terminal end of sfGFP with a standard alanine/glycine linker or with the linker containing
181 two stop codons. The red fluorescence of the fusion proteins with the alanine/glycine linker is presented
182 on the left-hand side and with stop codons on the right-hand side. A plasmid expressing only sfGFP is
183 used as negative control. The ratio between sfGFP and mCherry fluorescence is indicated above the
184 corresponding histogram bar. Only mCherry (CO) and the “SD-deoptimized” version show background
185 fluorescence with the linker containing stop codons. The M10 substitutions prove successful to abolish
186 the short mCherry isoform in a C-terminal fusion context. Likewise, the short mCherry version V1 does
187 not show background fluorescence but appears to be less efficient in C-terminal fusions.

188 Conclusion

189 The unexpected performance of *mCherry* as a reporter in our gene expression experiments lead to the
190 discovery of a short functional isoform of mCherry. The expression of this short isoform affects the
191 outcome of gene expression and protein localization studies. The defect originates from a methionine
192 residue in position 10 that is preceded by an SD-like sequence. We showed that mutation of this residue
193 to leucine or glutamine abolishes the production of the short isoform while conserving N-terminal
194 fusion properties.

195 Our findings indicate that a large proportion of the DsRed-derived proteins are affected by the
196 production of the short isoform, due to the presence of a problem-causing linker sequence (MVSKGEE-
197 NNMA). In addition, we identified the presence of this linker in the bright green fluorescent protein
198 mNeonGreen [31]. We would like to alert to the distinct possibility that the production of short
199 functional isoforms may also affect other fluorescent proteins. Indeed, the presence of methionine
200 residues in the first 10-20 amino acids, which may act as an alternative translation start sites, is
201 widespread among fluorescent proteins. For example, mTFP1 [32], KillerRed [33], Dronpa [34],
202 mEosEM [35], mKelly2 [36], mGinger2 [36] and their derivatives could be affected by the production
203 of a short isoform as observed for mCherry.

204 In addition, we showed that the dual-isoform issue affects various prokaryotes, as they share similar
205 translation initiation mechanisms. Although these mechanisms differ in eukaryotes, the production of a
206 short mCherry isoform may also occur in this group of organisms.

207 We demonstrate that substitution of M10 abolishes the expression of the short protein isoform. This
208 solution should be investigated for all affected DsRed-derived proteins to ensure the accuracy and
209 reliability as reporters. Moreover, we suggest that similar actions might be necessary for other
210 fluorescent protein families. This work raises concerns about the outcome of studies that employed
211 fluorescent proteins that possess an inherent background expression.

212

213 Materials and methods

214 Materials

215 Experiments were performed in *Escherichia coli* DH5- α (NEB), grown in LB-Lennox (Oxoid) (10 g/L
216 casein peptone, 5 g/L yeast extract, 5 g/L NaCl with additional 15 g/L agar for plates) supplemented
217 with 100 μ g/mL ampicillin (Sigma-Aldrich). PCR amplifications were performed with Q5 polymerase
218 (NEB). All other necessary enzymes were also purchased from NEB. Primers were ordered from
219 Eurofins Genomics and Sigma-Aldrich. Plasmids and PCR products were purified with QIAprep
220 plasmid Miniprep kit and QiaQuick PCR purification kit respectively (Qiagen). Plasmid Sanger
221 sequencing was performed by Eurofins Genomics. The *E. coli* codon-optimized sequence of *mCherry*
222 was a gift from Yanina R. Sevastyanovich (University of Birmingham).

223 Cloning and strain engineering

224 A pUC19 backbone containing a constitutive promoter/5'-UTR expressing *sfGFP*, generated in a
225 previous study [18], was used as template for cloning the different versions of *mCherry*. The backbone
226 and the different versions of *mCherry* were amplified by PCR with the respective primers presented in
227 *Supplementary Table S1*. To test for short isoforms, *sfGFP* was replaced by the codon-optimized
228 *mCherry* gene or its shorter versions (V1, V2 and V3) by Golden gate assembly [37]. To build fusion
229 constructs, the different *mCherry* versions were fused downstream *sfGFP* using Golden Gate assembly.

230 The Golden Gate assembly mixture was chemically transformed into competent *E. coli* by heat shock
231 (45s at 42°C). Cells were plated on LB plates containing 100 μ g/mL ampicillin and grown overnight at
232 37°C. Positive clones were grown in 5 mL LB supplemented with 100 μ g/mL ampicillin and their
233 respective plasmids were purified. DNA sequences were confirmed by Sanger sequencing.

234 Fluorescence measurements

235 Each *E. coli* strain bearing a given plasmid was inoculated into LB supplemented with 100 μ g/mL
236 ampicillin on 96-well plates and incubated overnight at 37°C with 800 rpm agitation in a Multitron Pro
237 plate-shaking incubator (Infors HT). Fluorescence was measured on an Infinite M200 Pro TECAN

238 fluorimeter (Noax Lab AS). The excitation/emission wavelengths were 488/525 nm for GFP (gain 67)
239 and 576/610 nm for mCherry (gain 97). Fluorescence intensity was normalized by OD₆₀₀ of the
240 corresponding well.

241 *Bioinformatics analysis*

242 The amino acid sequence of mCherry-(CO) was used as template to perform preliminary protein t
243 BLAST searches (blast.ncbi.nlm.nih.gov/Blast.cgi). Phylogeny of red-fluorescent proteins was
244 consulted on FPbase [27] (fpbase.org).

245 *Proteomics analysis*

246 The strain carrying the constitutively expressed *mCherry VI* was grown overnight in 50 mL of LB
247 media supplemented with 100 µg/mL ampicillin at 37°C-225 rpm. Cells were harvested by
248 centrifugation (5000 rpm, 5 min) and resuspended in lysis buffer (50 mM Tris-HCl, 50 mM NaCl, 0.05
249 % Triton X-100, pH 8.0) supplemented with 1 tablet EDTA-free cOmplete ULTRA protease inhibitor
250 (Roche). Cell debris were eliminated by centrifugation (7500 rpm, 15 min) and the soluble fraction was
251 collected.

252 *Sample Preparation for LC-MS – Protein Digestion*

253 2 samples of 200 µl cell lysate each were separated for LC-MS analysis, one to be digested by Trypsin
254 the other by both Trypsin and Lys-C. Soluble proteins were precipitated by methanol/chloroform/water
255 precipitation. Briefly, 800 µl methanol was added to the sample, followed by the addition of 200µl
256 chloroform and vortexing. After addition of 600 µl ultra pure water (18 MΩ), samples were thoroughly
257 mixed by vortexing and centrifuged at 16000g for 2 minutes. The upper layer was discarded without
258 disturbing the protein layer and further 800 µl methanol was added, followed by vortexing and
259 centrifugation as above. After removing the supernatant, the protein pellet was air dried for 10 minutes,
260 it was then reconstituted in 150 µl of 50 mM ammonium bicarbonate (BioUltra; Sigma-Aldrich,
261 Germany). Next, proteins were reduced with 1.5 µmol of DTT (Sigma-Aldrich, Canada) for 20 minutes
262 at 70 degrees Celsius, then they were brought back to room temperature and then they were alkylated

263 using 6 μ moles of iodoacetamide (BioUltra; Sigma-Aldrich, USA) in the dark at room temperature for
264 30 minutes. Excess iodoacetamide was quenched by adding 3.5 μ moles of DTT (Sigma-Aldrich,
265 Canada) and incubating in the dark for 20 min at room temperature. Finally, proteins were digested by
266 endoproteinase at 37 °C overnight, one sample digested by 1.25 μ g trypsin and the other by 1.25 μ g
267 trypsin and 1.25 μ g of Lys-C. After overnight digestion, 5 μ l of formic acid was added to each sample
268 and then the peptides were dried in a vacuum concentrator at 60 degrees Celsius.

269 *Sample Preparation for LC-MS – Peptide Desalting*

270 Samples were resuspended in 100 μ l 0.1 % formic acid and desalted in C18 stage tip columns, unless
271 otherwise specified chemicals are Optima grade from Fisher Chemicals and centrifugations are at
272 2000g. Briefly, Stage tip columns consisting of three C18 plugs (Empore C18 47mm SPE Disks, 3M,
273 USA) were made and activated with 50 μ L methanol by centrifugation for 2 minutes, the methanol
274 activation was repeated. Then the Stage tip was equilibrated with 60 μ L of 0.1% formic acid in water
275 by centrifugation for 2 minutes, the equilibration was repeated. Peptide-samples were centrifuged
276 (16000g for 25 minutes), supernatants were loaded onto stage tip columns and centrifuged for 4 minutes,
277 flow-through solutions were reloaded to stage tip columns. Stage tip columns were washed with 60 μ L
278 0.1% formic acid by centrifugation for 2 minutes, the wash was repeated. Peptides were then eluted
279 from the stage tip column using 40 μ L 70% acetonitrile, 0.1% formic acid, centrifugation for 2 minutes,
280 the elution step was repeated. Finally, desalted peptides were dried in a vacuum concentrator at 60
281 degrees Celsius and stored at -20 degrees Celsius until LC-MS analysis.

282 *LC-MS analysis*

283 Dried peptides were reconstituted in 50 μ L 0.1% formic acid in water and shaken at 6 degrees Celsius
284 at 900 rpm for 1.5 hour. Samples were centrifuged at 16000g for 10 minutes and 40 μ L supernatants
285 were transferred to MS-vials for LC-MS analysis. LC-MS analysis was performed on an EASY-nLC
286 1200 UPLC system (Thermo Scientific) interfaced with an Q Exactive mass spectrometer (Thermo
287 Scientific) via a Nanospray Flex ion source (Thermo Scientific). Peptides were injected onto an Acclaim
288 PepMap100 C18 trap column (75 μ m i.d., 2 cm long, 3 μ m, 100 Å, Thermo Scientific) and further

289 separated on an Acclaim PepMap100 C18 analytical column (75 μ m i.d., 50 cm long, 2 μ m, 100 \AA ,
290 Thermo Scientific) using a 180-minute multi-step gradient (150 min 2%-40% B, 15 min 40%-100% B,
291 15 min at 100% B; where B is 0.1 % formic acid and 80% CH₃CN and A is 0.1 % formic acid) at 250
292 nl/min flow. Peptides were analyzed in positive ion mode under data dependent acquisition using the
293 following parameters: Electrospray voltage 1.9 kV, HCD fragmentation with normalized collision
294 energy 28. Each MS scan (200 to 2000 m/z, 2 m/z isolation width, profile) was acquired at a resolution
295 of 70,000 FWHM in the Orbitrap analyzer, followed by MS/MS scans at resolution 17,500 (2 m/z
296 isolation width, profile) triggered for the 12 most intense ions, with a 30 s dynamic exclusion and
297 analyzed in the Orbitrap analyzer. Charge exclusion was set to unassigned, 1, >4.

298 *Processing of LC-MS Data*

299 Proteins were identified by processing the LC-MS data using Thermo Scientific Proteome Discoverer
300 (Thermo Scientific) version 2.5. The following search parameters were used: enzyme specified as
301 trypsin with maximum two missed cleavages allowed; acetylation of protein N-terminus with
302 methionine loss, oxidation of methionine, and deamidation of asparagine/glutamine were considered as
303 dynamic and carbamidomethylation of cysteine as static post-translational modifications; precursor
304 mass tolerance of 10 parts per million with a fragment mass tolerance of 0.02 Da. Sequest HT node
305 queried the raw files against sequences for mCherry (original and short), E. coli (strain K-12) proteins
306 downloaded from Uniprot (<https://www.uniprot.org/proteomes/UP000000625>) in September 2020 and
307 a common LC-MS contaminants database. For downstream analysis of these peptide-spectrum matches
308 (PSMs), for protein and peptide identifications the PSM FDR was set to 1% and as high and 5% as
309 medium confidence, thus only unique peptides with these confidence thresholds were used for final
310 protein group identification and to label the level of confidence, respectively.

311

312

313

314

315 *Protein 3D structure modelling*

316 The 3D structure modelling of mCherry was done with the software Pymol and the PDB file 2H5Q. In
317 all mCherry PDB files (2H5Q, 6YLM, 6IR1&2, 6MZ3, 4ZIN), the first eight amino acids are
318 unmodeled, residue 9 and 10 are computationally added but M10 is mis-modeled. We corrected residue
319 10 to model methionine. Then we changed M10 into glutamine and leucine on the 3D structure with
320 Pymol. Rotamers with 2-3Å proximity with Y43 are shown to model their interactions.

321

322 References

323 [1] J. van Heijenoort, From Frege to Gödel: a source book in mathematical logic, 1879-1931, Harvard
324 University Press, 2002.

325 [2] D. Jaquette, Personal Tragedy and a Philosophical Hiatus (1904–1917), in: Frege A Philos. Biogr.,
326 Cambridge University Press, 2019. <https://doi.org/10.1017/9781139033725.015>.

327 [3] D.M. Chudakov, M. V. Matz, S. Lukyanov, K.A. Lukyanov, Fluorescent Proteins and Their Applications
328 in Imaging Living Cells and Tissues, Physiol. Rev. 90 (2010).
329 <https://doi.org/10.1152/physrev.00038.2009>.

330 [4] R.N. Day, M.W. Davidson, The fluorescent protein palette: tools for cellular imaging, Chem. Soc. Rev.
331 38 (2009). <https://doi.org/10.1039/b901966a>.

332 [5] R. Ranganathan, M.A. Wall, M. Socolich, The structural basis for red fluorescence in the tetrameric GFP
333 homolog DsRed, Nat. Struct. Biol. 7 (2000). <https://doi.org/10.1038/81992>.

334 [6] R.M. Wachter, J.L. Watkins, H. Kim, Mechanistic Diversity of Red Fluorescence Acquisition by GFP-
335 like Proteins, Biochemistry. 49 (2010). <https://doi.org/10.1021/bi100901h>.

336 [7] L.A. Gross, G.S. Baird, R.C. Hoffman, K.K. Baldridge, R.Y. Tsien, The structure of the chromophore
337 within DsRed, a red fluorescent protein from coral, Proc. Natl. Acad. Sci. 97 (2000) 11990–11995.
338 www.pnas.org.

339 [8] X. Shu, N.C. Shaner, C.A. Yarbrough, R.Y. Tsien, S.J. Remington, Novel Chromophores and Buried
340 Charges Control Color in mFruits, Biochemistry. 45 (2006). <https://doi.org/10.1021/bi0607731>.

341 [9] M. V. Matz, A.F. Fradkov, Y.A. Labas, A.P. Savitsky, A.G. Zaraisky, M.L. Markelov, S.A. Lukyanov,
342 Fluorescent proteins from nonbioluminescent Anthozoa species, Nat. Biotechnol. 17 (1999).
343 <https://doi.org/10.1038/13657>.

344 [10] F. V. Subach, V. V. Verkhusha, Chromophore Transformations in Red Fluorescent Proteins, Chem. Rev.
345 112 (2012). <https://doi.org/10.1021/cr2001965>.

346 [11] A.S. Mishin, F. V. Subach, I. V. Yampolsky, W. King, K.A. Lukyanov, V. V. Verkhusha, The first mutant
347 of the *Aequorea victoria* green fluorescent protein that forms a red chromophore, Biochemistry. 47 (2008)
348 4666–4673. <https://doi.org/10.1021/bi702130s>.

349 [12] Y.A. Labas, N.G. Gurskaya, Y.G. Yanushevich, A.F. Fradkov, K.A. Lukyanov, S.A. Lukyanov, M. V.
350 Matz, Diversity and evolution of the green fluorescent protein family, Proc. Natl. Acad. Sci. 99 (2002).
351 <https://doi.org/10.1073/pnas.062552299>.

352 [13] B.J. Bevis, B.S. Glick, Rapidly maturing variants of the *Discosoma* red fluorescent protein (DsRed),
353 (2002). <http://biotech.nature.com>.

354 [14] N.C. Shaner, R.E. Campbell, P.A. Steinbach, B.N.G. Giepmans, A.E. Palmer, R.Y. Tsien, Improved
355 monomeric red, orange and yellow fluorescent proteins derived from *Discosoma* sp. red fluorescent
356 protein, Nat. Biotechnol. 22 (2004) 1567–1572. <https://doi.org/10.1038/nbt1037>.

357 [15] E.A. Rodriguez, R.E. Campbell, J.Y. Lin, M.Z. Lin, A. Miyawaki, A.E. Palmer, X. Shu, J. Zhang, R.Y.
358 Tsien, The Growing and Glowing Toolbox of Fluorescent and Photoactive Proteins, Trends Biochem. Sci.
359 42 (2017) 111–129. <https://doi.org/10.1016/j.tibs.2016.09.010>.

360 [16] R.E. Campbell, O. Tour, A.E. Palmer, P.A. Steinbach, G.S. Baird, D.A. Zacharias, R.Y. Tsien, A
361 monomeric red fluorescent protein, Proc. Natl. Acad. Sci. 99 (2002).
362 <https://doi.org/10.1073/pnas.082243699>.

363 [17] M. Lauff, R. Hofer, Proteolytic enzymes in fish development and the importance of dietary enzymes,
364 Aquaculture. (1984). [https://doi.org/10.1016/0044-8486\(84\)90298-9](https://doi.org/10.1016/0044-8486(84)90298-9).

365 [18] R. Lale, L. Tietze, J. Nesje, I. Onsager, K. Engelhardt, C. Fai Alex, M. Akan, N. Hummel, J. Kalinowski,
366 C. Rückert, M. Frank, A universal method for gene expression engineering, (n.d.).
367 <https://doi.org/10.1101/644989>.

368 [19] C. Fritsch, A. Herrmann, M. Nothnagel, K. Szafranski, K. Huse, F. Schumann, S. Schreiber, M. Platzer,
369 M. Krawczak, J. Hampe, M. Brosch, Genome-wide search for novel human uORFs and N-terminal protein
370 extensions using ribosomal footprinting, *Genome Res.* 22 (2012). <https://doi.org/10.1101/gr.139568.112>.

371 [20] J. Wan, S.-B. Qian, TISdb: a database for alternative translation initiation in mammalian cells, *Nucleic
372 Acids Res.* 42 (2014). <https://doi.org/10.1093/nar/gkt1085>.

373 [21] J.L. Wegrzyn, T.M. Drudge, F. Valafar, V. Hook, Bioinformatic analyses of mammalian 5'-UTR
374 sequence properties of mRNAs predicts alternative translation initiation sites, *BMC Bioinformatics.* 9
375 (2008). <https://doi.org/10.1186/1471-2105-9-232>.

376 [22] K. Nakahigashi, Y. Takai, M. Kimura, N. Abe, T. Nakayashiki, Y. Shiwa, H. Yoshikawa, B.L. Wanner,
377 Y. Ishihama, H. Mori, Comprehensive identification of translation start sites by tetracycline-inhibited
378 ribosome profiling, *DNA Res.* 23 (2016) 193–201. <https://doi.org/10.1093/dnares/dsw008>.

379 [23] P. Trulley, G. Snieckute, D. Bekker-Jensen, M.B. Menon, R. Freund, A. Kotlyarov, J. V. Olsen, M.D.
380 Diaz-Muñoz, M. Turner, S. Bekker-Jensen, M. Gaestel, C. Tiedje, Alternative Translation Initiation
381 Generates a Functionally Distinct Isoform of the Stress-Activated Protein Kinase MK2, *Cell Rep.* 27
382 (2019) 2859–2870.e6. <https://doi.org/10.1016/j.celrep.2019.05.024>.

383 [24] A.J. Ozin, T. Costa, A.O. Henriques, J. Moran, Alternative translation initiation produces a short form of
384 a spore coat protein in *Bacillus subtilis*, *J. Bacteriol.* 183 (2001) 2032–2040.
385 <https://doi.org/10.1128/JB.183.6.2032-2040.2001>.

386 [25] S.C. Bernier, L.P. Morency, R. Najmanovich, C. Salesse, Identification of an alternative translation
387 initiation site in the sequence of the commonly used Glutathione S-Transferase tag, *J. Biotechnol.* 286
388 (2018) 14–16. <https://doi.org/10.1016/j.biote.2018.09.003>.

389 [26] S.M. Chabregas, D.D. Luche, M.A. Van Sluys, C.F.M. Menck, M.C. Silva-Filho, Differential usage of
390 two in-frame translational start codons regulates subcellular localization of *Arabidopsis thaliana* THI1, *J.
391 Cell Sci.* 116 (2003) 285–291. <https://doi.org/10.1242/jcs.00228>.

392 [27] T.J. Lambert, FPbase: a community-editable fluorescent protein database, *Nat. Methods.* 16 (2019) 277–
393 278. <https://doi.org/10.1038/s41592-019-0352-8>.

394 [28] M. V. Rodnina, Translation in prokaryotes, *Cold Spring Harb. Perspect. Biol.* 10 (2018).
395 <https://doi.org/10.1101/cshperspect.a032664>.

396 [29] S. Nakagawa, Y. Niimura, K.I. Miura, T. Gojobori, Dynamic evolution of translation initiation
397 mechanisms in prokaryotes, *Proc. Natl. Acad. Sci. U. S. A.* 107 (2010) 6382–6387.
398 <https://doi.org/10.1073/pnas.1002036107>.

399 [30] P. Carroll, J. Muwangazi-Karugaba, E. Melief, M. Files, T. Parish, Identification of the translational start
400 site of codon-optimized mCherry in *Mycobacterium tuberculosis*, *BMC Res. Notes.* 7 (2014).
401 <https://doi.org/10.1186/1756-0500-7-366>.

402 [31] N.C. Shaner, G.G. Lambert, A. Chammas, Y. Ni, P.J. Cranfill, M.A. Baird, B.R. Sell, J.R. Allen, R.N.
403 Day, M. Israelsson, M.W. Davidson, J. Wang, A bright monomeric green fluorescent protein derived from
404 *Branchiostoma lanceolatum*, *Nat. Methods.* 10 (2013). <https://doi.org/10.1038/nmeth.2413>.

405 [32] H. Ai, J.N. Henderson, S.J. Remington, R.E. Campbell, Directed evolution of a monomeric, bright and

406 photostable version of *Clavularia* cyan fluorescent protein: structural characterization and applications in
407 fluorescence imaging, *Biochem. J.* 400 (2006). <https://doi.org/10.1042/BJ20060874>.

408 [33] M.E. Bulina, D.M. Chudakov, O. V Britanova, Y.G. Yanushevich, D.B. Staroverov, T. V Chepurnykh,
409 E.M. Merzlyak, M.A. Shkrob, S. Lukyanov, K.A. Lukyanov, A genetically encoded photosensitizer, *Nat.*
410 *Biotechnol.* 24 (2006). <https://doi.org/10.1038/nbt1175>.

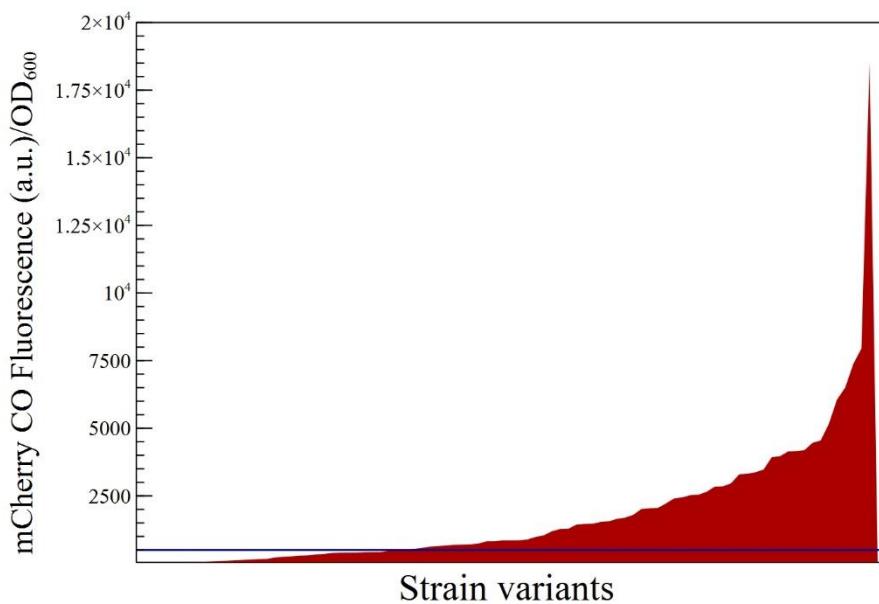
411 [34] R. Ando, Regulated Fast Nucleocytoplasmic Shuttling Observed by Reversible Protein Highlighting,
412 *Science* (80-.). 306 (2004). <https://doi.org/10.1126/science.1102506>.

413 [35] Z. Fu, D. Peng, M. Zhang, F. Xue, R. Zhang, W. He, T. Xu, P. Xu, mEosEM withstands osmium staining
414 and Epon embedding for super-resolution CLEM, *Nat. Methods.* 17 (2020).
415 <https://doi.org/10.1038/s41592-019-0613-6>.

416 [36] T.M. Wannier, S.K. Gillespie, N. Hutchins, R.S. McIsaac, S.-Y. Wu, Y. Shen, R.E. Campbell, K.S.
417 Brown, S.L. Mayo, Monomerization of far-red fluorescent proteins, *Proc. Natl. Acad. Sci.* 115 (2018).
418 <https://doi.org/10.1073/pnas.1807449115>.

419 [37] C. Engler, R. Kandzia, S. Marillonnet, A one pot, one step, precision cloning method with high
420 throughput capability, *PLoS One.* 3 (2008). <https://doi.org/10.1371/journal.pone.0003647>.

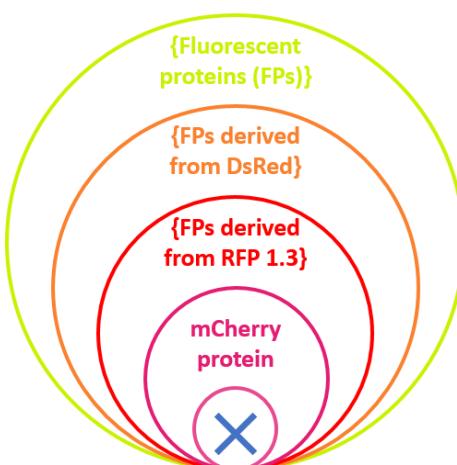
421


422 **Supplemental Figures and Tables.**

423 *Supplemental Table S1. Primer list*

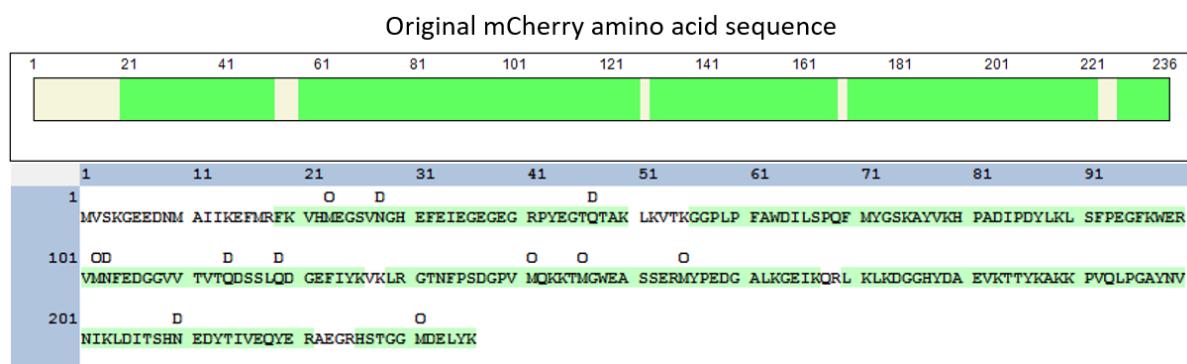
Name	sequence	comments
MFL 641	GATTCAAGGTCTCCATAAGCCCTTCTCCAGAGC	Backbone amplification including promoter/5'UTR for cloning of short <i>mCherry</i> versions
MFL 268	AGAGTAGGTCTCATCAACCGTCTCAAGCGAGAACGC	
MFL 501	AGAGTTGGTCTCATATGGTTCTAAAGGTGAAGAAGA	<i>mCherry</i> -(CO) forward
MFL 572	AGAGTTGGTCTCATATGGCTATCATCAAAGAATTATGCG	<i>mCherry</i> -(V1) forward
MFL 644	AGAGTTGGTCTCATATGCGTTCAAAGTTACATGGAAGG	<i>mCherry</i> -(V2) forward
MFL 573	AGAGTTGGTCTCATATGGAAGGTTGTGAACGG	<i>mCherry</i> -(V3) forward
MFL 574	CTAGTAGGTCTATTGATTATTTACAGTCGTCCATACCGC	<i>mCherry</i> reverse for all versions
MFL 690	AGAGTAGGTCTCAGCTTCCGCCCTCGCTGTTTACAGTCGCCATACCGTGG	Backbone amplification including the constitutively expressed sfGFP for fusion protein with <i>mCherry</i> with and without Stop codons (each coupled with MFL 268)
MFL 691	AGAGTAGGTCTCAGCTTATTATCCGCCCTCGCTGCTTACAGTCGCCATACCGTGG	
MFL 692	AGAGTAGGTCTCAAAGCGTTCTAAAGGTGAAGAAGATAACATGGCTATCATC	<i>mCherry</i> -(CO) forward for fusion construct
MFL 693	AGAGTAGGTCTCAAAGCGTTCTAAAGGAGAGGAGGATAACATGGCTATCATC	<i>mCherry</i> -(SD-DeOpt) forward for fusion construct
MFL 694	AGAGTAGGTCTCAAAGCGCTATCATCAAAGAATTATGCGTTTC	<i>mCherry</i> -(V1) forward for fusion construct
MFL 695	AGAGTAGGTCTCAAAGCGTTCTAAAGGAGAGGAGGATAACCTGGCTATCATC	<i>mCherry</i> -(M10L) forward for fusion construct
424 MFL 696	AGAGTAGGTCTCAAAGCGTTCTAAAGGAGAGGAGGATAACCAGGCTATCATC	<i>mCherry</i> -(M10G) forward for fusion construct

425


426

427

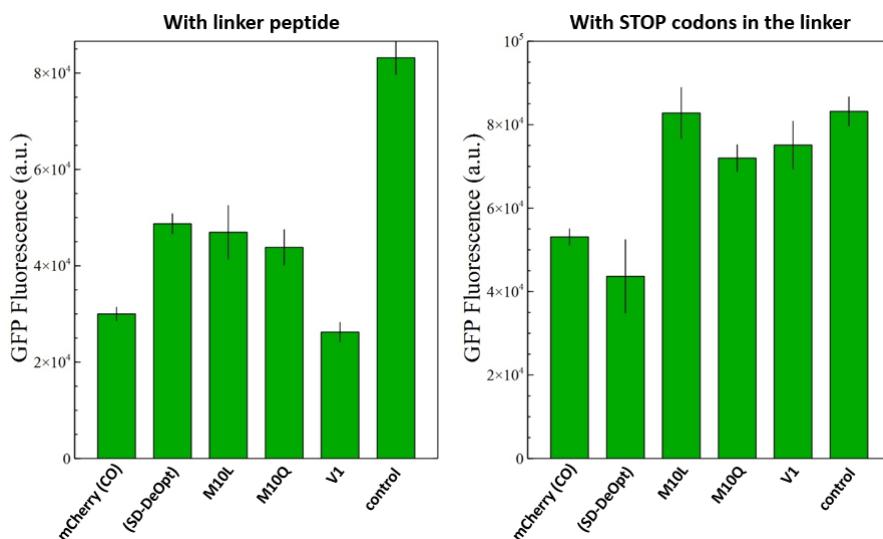
428 **Supplemental Figure S1. Quantification of fluorescent *E. coli* strains carrying the 200N random**
429 **library in front of the original *mCherry* gene.** The 200N library was cloned in front of the original
430 mCherry (CO) and random clones were grown for fluorescence measurement. The number of positives
431 clones obtained with *mCherry* exceeds significantly the usual 30-40% efficiency of the method. Here,
432 the significance threshold (blue line) indicates that 65% of clones express mCherry.


433

434

435 ***Supplemental Figure S2. Representation of Russell's paradox applied to mCherry.*** Each circle
436 represents a set of fluorescent proteins that contains a smaller set. The mCherry protein is supposedly
437 the smallest set. However, the circle with a cross represents Russell's paradox in the form of a short
438 mCherry isoform contained in itself.

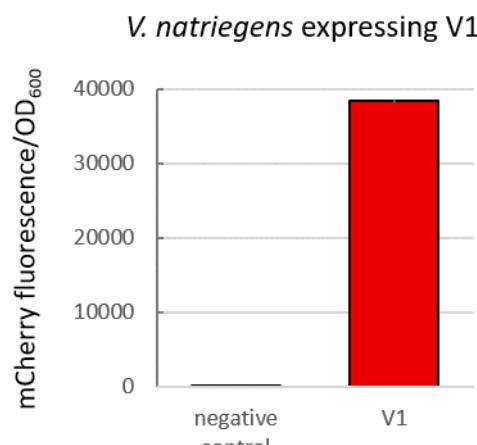
439



440

441 **Supplemental Figure S3. Peptide coverage of the mCherry V1 fluorescent protein found by**
442 **proteomics.** Peptides identified by LC-MS analysis are displayed in green. The main initial fragment
443 from G5 to K14 is absent, which confirms that the fluorescent isoform of mCherry lacks the N-terminal
444 region. The fragment between M10 and M17 (difference between mCherry V1 and V2) was not detected
445 due to the the cleavage site K14. However, mCherry V2 did not show fluorescence, thus mCherry V1
446 is the only short functional isoform.

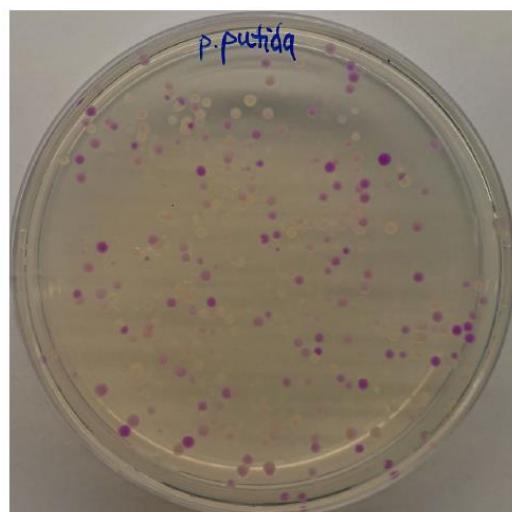
447


448

449

450 **Supplemental Figure S4. Fluorescence measurements of sfGFP from the fusions with the**
451 **different versions of mCherry.** The sfGFP fluorescence was used to normalize the mCherry
452 fluorescence and provide a relative ratio for comparison between mCherry versions (in *Figure 5*). A
453 plasmid expressing only sfGFP is used as negative control.

454


455

456 **Supplemental Figure S5. Fluorescence measurement of the short mCherry isoform V1 in *V.***

457 *natriegenes*. The short *mCherry* version was cloned onto a pACYC backbone and constitutively

458 expressed in *V. natriegens*. The short gene produced a functional protein detected by fluorescence.

459

460

461 **Supplemental Figure S6. Photograph of *P. putida* expressing *mCherry* original gene with the**
462 **200N random DNA library.** The percentage of positive clones exceeds significantly the usual
463 efficiency of the method, suggesting that the ATIS is also active in *P. putida*.