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Abstract9

Benzoxazinoids are a class of protective and allelopathic plant secondary metabolites,10
first identified in maize (Zea mays) and subsequently shown to be encoded by a11
biosynthetic gene cluster (BGC), the Bx cluster. Data mining of mining 4012
high-quality grass genomes identified complete Bx clusters (containing genes Bx1 to13
Bx5 and Bx8) in three genera (Zea, Echinochloa and Dichanthelium) in the14
Panicoideae and partial clusters in the Triticeae. The Bx cluster originated from gene15
duplication of native analogues of Bx genes and chromosomal translocation. An16
ancient Bx cluster including additional Bx genes (e.g., Bx6) is found in ancestral17
Panicoideae. The ancient Bx cluster was gained by the Triticeae ancestor via a18
horizontal transfer (HT) event from the ancestral Panicoideae and later separated into19
three parts on different chromosomes. Bx6 appears to have been under less20
constrained selection during evolution of the Panicoideae as evidenced by the fact that21
was translocated ~1.31-Mb away from the Bx cluster in Z. mays, moved to other22
chromosomes in Echinochloa, and even lost in Dichanthelium. Further investigation23
indicated that intense selection and polyploidization shaped the evolutionary24
trajectory of the Bx cluster in the grass family. This study provides the first case of25
HT of BGCs among plants and sheds new insights on the evolution of BGCs.26
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Significance30

Biosynthetic gene clustering and horizontal gene transfer are two evolutionary31
inventions for rapid adaption by organisms. Horizontal transfer of a gene cluster has32
been reported in fungi and bacteria, but not in plants up to now. By mining the33
genomes of 40 monocot species, we deciphered the organization of Bx gene cluster, a34
biosynthetic gene cluster for benzoxazinoids in grasses. We found that the Bx cluster35
was formed by gene duplication of native analogues of individual Bx genes and36
directional translocation. More importantly, the Bx cluster in Triticeae was inherited37
from the Panicoideae via horizontal transfer. Compared with the native analogues, Bx38
clusters in grasses show constrained purifying selection underscoring their39
significance in environmental adaption.40

Introduction41

Biosynthetic gene clusters (BGCs) are specialized genomic organizations comprised42
of a cluster of non-homologous genes contributing to the biosynthesis of chemical43
defensive metabolites (Nützmann et al., 2018; Nützmann and Osbourn, 2014). The44
selective advantages of clustering, such as gene co-regulation and co-inheritance, may45
promote the formation of BGCs (Rokas et al., 2018; Nützmann and Osbourn, 2014;46
Nützmann et al., 2016). Natural selection has also driven the establishment and47
maintenance of BGCs, including long-term purifying selection, positive selection, and48
balancing selection (Rokas et al., 2018; Slod and Rokas, 2010; Carbone et al., 2007;49
Liu et al., 2020; Takos and Rook, 2012). The formation and evolution of BGCs have50
been studied extensively in fungi (Rokas et al., 2018). About 30 examples of BGCs in51
plants have been identified in recent years (Guo e al., 2018). The Bx cluster for the52
biosynthesis of benzoxazinoids is the first identified BGC in plants (Frey et al., 1997).53

Gene duplication, neofunctionalization and relocation have been suggested as the54
origins of BGCs in most fungi and plants (Nützmann et al., 2018; Rokas et al., 2018).55
The DAL gene cluster involved in the allantoin metabolism originated from56
duplication of native genes and relocation in the yeast Saccharomyces cerevisiae57
(Wong and Wolfe, 2005). The GAL cluster found in Candida yeasts originated58
through the relocation of native unclustered genes (Slot and Rokas, 2010). Horizontal59
transfer (HT) also leads to the emergence and spread of BGCs and is an important60
source of genomic innovation (Khaldi et al., 2008; Slot and Rokas, 2011; Reynolds et61
al., 2018; Kominek et al., 2019). In the fungus Aspergillus clavatus, the ACE1 gene62
cluster originated by HT from a donor closely related to the rice blast fungus63
Magnaporthe grisea (Khaldi et al., 2008). The GAL cluster of Schizosaccharomyces64
yeasts was acquired from a Candida yeast (Slot and Rokas, 2010). A full operon65
encoding siderophore biosynthesis genes was horizontally transferred from bacteria to66
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a group of budding yeasts (Kominek et al., 2019). In animals, bdelloid rotifers, small67
freshwater invertebrates, appear to have acquired a BGC for cell wall peptidoglycan68
biosynthesis comprised of a racemase and a ligase, from bacteria (Gladyshev et al.,69
2008). In plants, BGCs were not likely to be derived from microbes via HT70
(Nützmann et al., 2018) and no BGCs via HT have been identified.71

Benzoxazinoids are a class of indole-derived protective and allelopathic secondary72
metabolites that function in plants to defend against insect herbivores, microbial73
pathogens and neighboring competing plants (reviewed in Frey et al., 2009).74
2,4-dihydroxy-1,4-benzoxazin-3-one (DIBOA) and its 7-methoxy analog DIMBOA75
are the predominant representatives of benzoxazinoids in plants (Frey et al., 1997;76
Frey et al., 2009) and these compounds have been identified in many plants, including77
maize (Zea mays), wheat (Triticum aestivum), and barnyardgrass (Echinochloa78
crus-galli) (Frey et al., 2009; Guo et al., 2017). In Echinochloa, a weed species,79
DIBOA functions as an allelopathic compound against rice in paddy fields (Guo et al.,80
2017).81

The pathway of benzoxazinoid biosynthesis has been elucidated extensively in Z.82
mays (Fig. 1a). The first step is the biosynthesis of indole from83
indole-3-glycerolphosphate in the chloroplast by Bx1, a homolog of the α-subunit of84
tryptophan synthase. Four P450 monooxygenases from CYP71C subfamily (Bx2 to85
Bx5) add four oxygen atoms at four position of the indole to synthesize DIBOA, the86
simplest benzoxazinoid (Frey et al., 1997). Two UDP-glucosyltransferases (UGTs),87
Bx8 and Bx9, attach a glucose moiety to DIBOA to produce DIBOA-Glc (Rad et al.,88
2001). Bx6, a 2-oxoglutarate-dependent dioxygenase (2-ODD), oxidizes DIBOA-Glc89
to TRIBOA-Glc and subsequently Bx7 (OMT, O-methyltransferase) methylates90
TRIBOA-Glc to produce DIMBOA-Glc (Jonczyk et al., 2008). Four OMTs (Bx10 to91
Bx12, and Bx14) catalyze the conversion of DIMBOA-Glc to HDMBOA-Glc with92
functional redundancy (Meihls et al., 2013). Bx13, a Bx6-like 2-ODD, converts93
DIMBOA-Glc to TRIMBOA-Glc and TRIMBOA-Glc is further methylated to94
produce DIM2BOA-Glc by Bx7 (Handrick et al., 2016). Bx14 catalyzes the reaction95
from DIM2BOA-Glc to HDIM2BOA-Glc by methylation (Handrick et al., 2016).96

In maize, six Bx genes (Bx1-Bx5, and Bx8) encoding enzymes functioning in the first97
few steps of DIMBOA biosynthesis form a well-defined BGC (named the Bx cluster),98
located at the tip region of chromosome 4 (Frey et al., 1997; Frey et al., 2009). Bx99
genes have been identified in barnyardgrass within an intact cluster, and in wheat and100
rye within disperse sub-clusters (Guo et al., 2017; Sue et al., 2011). Previous studies101
indicated a monophyletic origin of Bx genes in benzoxazinoid biosynthesis (Frey et102
al., 2009; Sue et al., 2011; Dutartre et al., 2012; Nützmann and Osbourn, 2014). The103
progenitors have evolved Bx genes before the divergence of the Triticeae and the104
Panicoideae (Sue et al., 2011; Dutartre et al., 2012). However, it should be noted that105
limited sampling may bring over-interpretation of gene phylogeny. The frequent gene106
loss and rearrangements, and patchy distribution across divergent species complicated107
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the understanding to the evolution of BGCs (Lind et al., 2017). The broad availability108
of high-quality genomes of important crops and wild grasses has facilitated the109
discovery of more BGCs (Guo et al., 2018) enabling us to trace the organization and110
evolution of BGCs more comprehensively and reliably.111

Here, we identified all Bx genes in the grass family using 40 high-quality monocot112
genomes and further explored the origin of the Bx cluster and reconstructed its113
evolutionary trajectory. Through analysis of sequence similarities, phylogenies and114
genomic synteny, we provide evidence that the Bx clusters currently observed in115
grasses originated from a complex evolution processes that included HT. The HT116
event and further intense selection shaped the presence of the Bx cluster in the grass117
family.118

Results119

Identification and distribution of Bx genes in the grass family120
Key genes in the benzoxazinoid biosynthesis pathway of Z. mays, including those in121
the Bx cluster (Bx1 to Bx5, Bx8) and Bx genes dispersed in the genome (Bx6, Bx7,122
Bx9 to Bx14) were used as baits to search the Bx genes in the genomes of 39 other123
species, covering five subfamilies of core grasses (Bambusoideae, Oryzoideae and124
Pooideae from BOP lineage, and Chloridoideae and Panicoideae from PACMAD125
lineage) and basal group of Poaceae (Pharus latifolius) (Fig. 1b; Table S1). All126
analogues of Bx genes were identified based on their sequence similarities, phylogeny,127
and genomic physical positions (Fig. 1b; Table S2).128

In addition to the Bx clusters previously reported in Z. mays and Echinochloa (Frey,129
1997; Guo et al., 2017), a Bx cluster was also found in Dichanthelium oligosanthes,130
Scribner’s rosette grass, a C3 panicoid grass (Fig. 1b). In the Triticeae, the Bx cluster131
was split into three sub-clusters located on three different chromosomes. In total, 12132
clusters were found in six grass species, of which 10 were in Echinochloa genus, with133
one cluster in each monoploid genome (except one subgenome in Echinochloa colona134
with two copies). The Bx gene orders in clusters were entirely consistent among Z.135
mays, D. oligosanthes and Echinochloa, implying a single origin of the Bx clusters136
(Fig. 1b). Although the Bx cluster was split in the Triticeae, the order of Bx3 to Bx5137
were same as the Bx cluster in the Panicoideae, which showed potential close138
relationship between Bx genes in BOP and PACMAD lineages. Bx6 was distant139
1.31-Mb away from Bx cluster in Z. mays genome, although both the gene and cluster140
were located on chromosome 4. Bx6 was also identified in Digitaria and Setaria from141
Panicoideae. Bx6 was located on chromosome 2 in Triticeae and chromosome 9 in142
Echinochloa. Bx7 was an ancient gene, distributed in both BOP and PACMAD143
lineages, in spite of massive loss.144
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Formation and HT of the Bx cluster (Bx1 to Bx5 and Bx8)145

With P. latifolius from Pharoideae (N1 in Fig. 2a) serving as an outgroup, the gene146
tree of Bx1 was divided into two lineages of BOP and PACMAD, in line with the147
species tree (Fig. 2a). Bx1 genes formed a monoclade, composed by Bx1 copies from148
previous identified species with Bx clusters. To distinguish other Bx homologs from149
Bx1 copies, we called the other Bx1 homologs as Bx1 analogues. The Bx1 analogues150
were native and extraordinarily conserved across the grass family and were in good151
synteny among genomes (Fig. 2b). The Bx1 analogue AET5Gv21022100 (N0 in Fig.152
2a) in Aegilop tauschii from Pooideae subfamily was syntenic to the Bx1 analogue153
Pl3g34340 (N1) in P. latifolius from the basal lineage of Poaceae, as well as the Bx1154
analogues LOC_Os3g58300 (N2) in Oryza sativa from Oryzoideae, Et_4A_034058155
(N5) in Eragrostis tef from Chloridoideae, Sevir.9G054600 (N6) in Setaria viridis156
from Paniceae, Panicoideae, and Zm00008a005484 (N8) in Z. mays from157
Andropogoneae, Panicoideae. Sequence alignments showed they were conserved with158
the domain of tryptophan synthase (Fig. 2c; Fig. S1). In contrast to the native Bx1159
analogues, the clade of Bx1 copies, which is nested between native analogues of160
Chloridoideae and Panicoideae and sister to native copies of Panicoideae, is an extra161
lineage-specific copy duplicated in the ancestor of Panicoideae (Fig. 2a). To ensure162
the lineage-specific duplication event, local synteny of Bx1 was scanned between Z.163
mays and other genomes (Fig. 2d). The two flanking genomic regions of Bx cluster in164
Z. mays showed high synteny to Brachypodium distachyon and A. tauschii from165
Pooideae, O. sativa from Oryzoideae, Sorghum bicolor from Andropogoneae,166
Panicoideae and S. viridis from Paniceae, Panicoideae. However, the Bx cluster was167
entirely absent in these genomes. Considering the species phylogeny in the Poaceae,168
the presence of Bx cluster in Z. mays is not ancestral but rather derived likely by169
translocation from other genomic positions. Comparing the gene positions of Bx170
clusters between Z. mays and Echinochloa haploclada from Echinochloa, their Bx171
clusters were in a large syntenic block, and the orders of Bx genes were consistent,172
implying the common origin of Bx cluster in their common ancestor before the173
divergence of Andropogoneae and Paniceae, although there was a translocation174
between them. Although the scaffold harboring the Bx cluster in D. oligosanthes was175
short, five Bx genes were assembled and their orders were in line with those in Z.176
mays, further supporting the origin of Bx cluster in ancestral Panicoideae. Sequence177
alignment among Bx1 genes and their native analogues showed Bx1 lineage-specific178
deletion and substitution, confirming a single origin of Bx1 genes (Fig. 2c).179

Within the Bx1 clade, Bx1 genes from the Triticeae form a monoclade nested among180
Bx1 genes from Panicoideae, indicating a single origin of these genes. Given that the181
divergence between the Pooideae and Panicoideae is ancient, estimated at more than182
50 million years ago (Ma et al., 2021) and native Bx1 analogues are present, the183
positional congruence of the Triticeae Bx1 clade is not likely to be derived from184
sexual hybridization, incomplete lineage sorting (ILS) or convergent evolution, but185
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HT from the Panicoideae (Fig. 2a). To further confirm the robustness of the186
phylogeny of Bx1 based on protein sequences, the phylogenetic trees of Bx1 based on187
coding sequence (CDS), codon12 (first and second codon positions) and codon3 (third188
codon position) were built and the topologies confirmed the existence of gene189
duplication and HT of Bx1 (Fig. S2).190

We built the phylogeny and scanned the genomic synteny of Bx2-Bx5 and Bx8 across191
the whole Poaceae (Figs. S3 and S4). Native analogues of Bx2 could be traced and192
were highly conservative (Fig. S3). Bx3, Bx4 and Bx5 were three tandemly duplicated193
CYP71C genes from cytochrome P450 superfamily. The native ancestral analogues of194
Bx3 to Bx5 were massively lost but the retained analogues showed high genomic195
synteny among subfamilies (Fig. S3). Based on the phylogeny of Bx8, Bx8 genes were196
products of native analogues and Bx8 genes in the Triticeae were nested within those197
in Panicoideae. Bx9 was a maize-specific duplicate of Bx8 (Fig. S4). In brief,198
topologies of the five Bx genes (Bx2-Bx5 and Bx8) were similar to what was observed199
with Bx1, implying that Bx genes in the cluster were derived from a single origin and200
Bx genes in Triticeae were likely acquired via HT of an intact Bx cluster from201
Panicoideae.202

To formally test the hypothesis of a Panicoideae origin of the Bx genes in Triticeae,203
we reconstructed phylogenies under constraints that the Bx genes in Triticeae were204
derived from Panicoideae Bx clade origin (PO) or outside of that clade (Non-PO). To205
determine whether the PO phylogenies statistically were better explanations than206
non-PO phylogenies we employed the approximately unbiased (AU) test, the207
resampling estimated log-likelihood method (RELL), and the Shimodaira-Hasegawa208
(SH) test. All tests of all Bx genes in cluster (Bx1-Bx5 and Bx8) strongly rejected the209
alternative hypothesis that Bx genes in Triticeae were not derived from Panicoideae210
(all p values < 0.001 for AU tests) (Table S3). The results indicated that the obtained211
tree topologies of all Bx genes were highly robust and reflected a HT event of Bx212
genes from Panicoideae to Triticeae.213

Co-evolution between Bx6 and the Bx cluster214

The Bx6 gene whose encoded product is responsible for oxidizing DIBOA-Glc to215
TRIBOA-Glc, the subsequent enzymatic step following the activity of the Bx cluster216
genes in maize was located away from the Bx cluster (Fig. 1a). The phylogeny of Bx6217
showed a similar pattern as Bx1, in that the Bx clade was duplicated from native Bx6218
analogues and HT from Panicoideae was likely responsible for the inheritance of the219
Bx6 genes in Triticeae (Fig. 3a). Multi-species genome synteny analyses supported the220
above results (Fig. 3b). Topology tests confirmed the robustness of Bx6 phylogeny221
and Bx6 genes in Triticeae were nested within Panicoideae Bx6 clade (p value < 0.001222
for AU test) (Table S3). Hence, it is reasonable to speculate that Bx6 co-evolved with223
the Bx cluster with similar evolutionary trajectories. Notably, besides species224
harboring Bx cluster, Bx6 genes could be identified in Setaria and Digitaria from225
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Panicoideae (Fig. 1b; Fig. 3a). The wide distribution of Bx6 across the Panicoideae226
implies that Bx6 originated by duplication at the common ancestor of Panicoideae. We227
also observed that Bx13 is a maize-specific duplicate of Bx6 (Fig. 3a).228

We also identified the presence of other dispersal Bx genes and built phylogenetic229
trees to trace their evolutionary histories. Bx7 catalyzes the conversion of230
TRIBOA-Glc to DIMBOA-Glc (Fig. 1a). Only limited homologs could be identified231
in grasses and its phylogenetic tree revealed that Bx7 was conserved in evolution232
without congruence to species phylogeny, although massive losses occurred (Fig. S5).233
Bx10/Bx11/Bx12/Bx14 encoded OMTs, acting as metabolic switches between234
caterpillar and aphid resistance, by transforming DIMBOA-Glc to HDMBOA-Glc (Li235
et al., 2018). From the phylogenetic analyses, the clade of Bx10/Bx11/Bx12/Bx14 were236
maize-specific duplicates, and was in a well-defined Panicoideae-specific clade (Fig.237
S6). Within the clade, no Triticeae homologs were found. While in wheat (T.238
aestivum), two OMT genes were characterized as functional DIMBOA-Glc OMTs239
both designated as TaBx10 but phylogenetically close to Bx7, rather than Bx10 in Z.240
mays, indicating the convergence in function of OMT genes in grasses during the241
process of O-methylation (Li et al., 2018). This case implied that other paralogs of242
OMTs could function as Bx10/Bx11/Bx12/Bx14 in the process of O-methylation and243
Bx10/Bx11/Bx12/Bx14 are not compulsory for benzoxazinoid biosynthesis. Taken244
together, Bx7 and Bx10/Bx11/Bx12/Bx14 were alternative and dispensable to some245
extents in the Bx pathway. Hence in the following analyses, we focused on the Bx246
cluster and Bx6.247

Constrained purifying selection on the Bx cluster248

Natural selection shapes the evolutionary dynamics of BGCs (Rokas et al., 2018; Slod249
and Rokas, 2010; Liu et al., 2020). The selection pressure was measured by ω (dN/dS,250
the ratio between non-synonymous sites substitution and synonymous sites251
substitution) in each lineages of the individual Bx genes. Generally, both the Bx genes252
and their native analogues were under purifying selection (ω < 1). Compared to253
outgroup lineage N-Chloridoideae (native Bx analogues in Chloridoideae),254
constrained purifying selections were detected in all of the native Bx genes for255
Panicoideae, with the exception of Bx6. The native analogues of Bx6 in Panicoideae256
suffered relaxed selection with a higher ω value, relative to other Bx native genes.257
Compared to the native analogues, the ω values were lower for the Bx genes in258
Panicoideae (B-Panicoideae) in cluster, while no difference in selection was found for259
Bx6, which was not clustered together with Bx cluster. This selection bias in260
Panicoideae corresponded to the presence-and-absence (PAV) of Bx genes and their261
analogues (Fig. S7). The loss of native analogues of Bx genes in cluster was more262
frequent than those of Bx genes in cluster, which mirrored the relaxed selection,263
especially for Bx2, Bx5 and Bx8. The presence of Bx6 native analogues was highly264
conserved, with one copy within one single analyzed genome, corresponding to265
unbiased selection pressure compared to Bx6 genes (Fig. S7). While in Triticeae, all of266
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the Bx genes exhibited constrained selection, despite the conserved presence of Bx267
native analogues (Fig. 4a; Fig. S7). Although Bx genes in Triticeae were inferred to be268
gained from Panicoideae, stronger selection was detected in Triticeae Bx genes than269
those in Panicoideae, especially for Bx1 and Bx6. To eliminate the effects by biases270
from species sampling and PAV of Bx genes or native analogues, the selection271
pressure was measured focusing on Echinochloa and Triticeae. The results further272
confirmed the selection profiling of Bx genes (Fig. S8).273

Dominance of Bx cluster genes in polyploids274

In species whose genomes contained Bx genes, polyploids are commonly seen275
(hexaploid T. aestivum, E. crus-galli and E. colona, and tetraploid Triticum276
dicoccoides and Echinochloa oryzicola in this study). We investigated the effects of277
polyploidization on Bx clusters or genes from three different views: PAV, selection,278
and gene expression. Duplicated genes tend to be lost due to gene redundancy or279
dosage effects in polyploids (Soltis and Soltis, 2009; Van de Peer et al., 2017). Not280
unexpectedly, Bx genes tended to be lost in polyploids, especially in Echinochloa281
(Fig.1b; Fig. S7). In diploid Echinochloa haploclada, the core Bx gene set was intact,282
while Bx losses were found in three polyploid Echinochloa species. In this case, only283
one intact copy of the core Bx gene set was retained in one subgenome in each species284
(e.g. BT in E. oryzicola, CH in E. crus-galli and DH2 in E. colona).285

The selection strengths to homologous duplicates usually varies in polyploids (Ye et286
al., 2020). The genomes of E. crus-galli and its progenitors (E. oryzicola and E.287
haploclada) provided a model to study the selection dominance of multi-copy288
homologous Bx genes and we calculated the ω values of Bx genes in each subgenome289
between E. crus-galli and its parents (Fig. 4b). Bx genes in subgenome Awere290
generally under relaxed purifying selection, with higher ω values compared to291
subgenomes B and C (e.g. Bx1 and Bx8). For native analogues, the selection on292
subgenome A copy was relaxed in the example of Bx6. In general, biased selection293
was observed for Bx genes in Echinochloa and Bx genes in subgenome Awere under294
less constrained selection in the post-hexaploidization.295

Expression dominance has been commonly observed in polyploids (Ye et al., 2020;296
Van de Peer et al., 2017). Response contribution of subgenomes (relative changes of297
expressed transcripts from each subgenome, compared to the total expression change)298
is also biased among subgenomes (Ye et al., 2020). To explore the effect of299
polyploidization on gene expression of multi-copy Bx genes, we compared the300
expression levels of Bx genes in E. crus-galli with and without allelopathy treatment301
(i.e., co-culture with rice)(Guo et al., 2017). Expression and response contribution302
were both suppressed for Bx genes in subgenome AH (Fig. 4c). The dominance of303
selection and gene expression or response were associated such that Bx genes in304
subgenome A suffering less constrained selection, were suppressed in expression and305
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response contribution (Fig. S8).306

Discussion307

Evolutionary trajectory of the Bx gene cluster in grass308

Given that the Bx cluster and Bx6 catalyze the first seven steps in the benzoxazinoid309
biosynthesis and are sufficient to synthesize benzoxazinoid compounds without other310
Bx genes (e.g. in wheat), we considered Bx cluster (Bx1 to Bx5 and Bx8) and Bx6 as311
the core set of Bx genes in the pathway (Fig. 1a). Based upon the results from all of312
the phylogenetic analyses of core Bx genes, the evolutionary trajectory of Bx genes313
could be assumed (Fig. 5). Native Bx analogues could be found in all phylogenetic314
trees of core Bx genes and were evolutionarily conserved with good genomic synteny315
among subfamilies. Therefore, the Bx genes in the Bx cluster and Bx6 should316
originate from duplication of native Bx analogues. Previous studies proposed Bx1317
evolved from duplication and modification of the alpha subunit of the tryptophan318
synthase (TSA) (Grun et al., 2005; Frey et al., 2009). Here, we comprehensively319
identified the native analogues of the Bx genes. Gene duplication, followed by320
neofunctionalization and/or subfunctionalization, and recurrent genomic translocation,321
gathered Bx genes together to form Bx cluster (Fig. 5). The processes of gene322
duplication and translocation may have been induced by activities of retrotransposon323
elements.324

The positional relationship between Bx cluster and Bx6 appears to be dynamic. Bx6325
and the Bx cluster are both located on chromosome 4 in Z. mays while they are326
separated into different chromosomes in Triticeae and Echinochloa (Fig. 1b).327
However, given that the genes in Bx cluster and Bx6 showed almost the same328
evolutionary phylogenies and Bx6 catalyzes the reaction following those catalyzed by329
the gene products encodedin the Bx cluster, we speculated that Bx6 co-evolved with330
the Bx cluster and were located in an ancient Bx cluster (Fig. 5). It is difficult to date331
accurately when the ancient Bx cluster formed, due to the unreliability of dating based332
on individual genes. However, we could infer that the duplication of Bx genes333
occurred at the common ancestor of Paniceae and Andropogoneae (supported by the334
Bx1 and Bx6 phylogenetic trees) or a common ancestor of Panicoideae and335
Chloridoideae (supported by the Bx2 and Bx8 phylogenies), and the Bx cluster was336
organized before the divergence of Paniceae and Andropogoneae.337

Previously it was proposed that the genes of Bx biosynthesis in the grasses were of338
monophyletic origin before the divergence of the Triticeae and Panicoideae (Frey et339
al., 2009; Grun et al., 2005). Here, the integrated evidence indicates strongly that the340
Bx genes in Triticeae originated from Panicoideae via HT (Fig. 5). Triticeae and341
Panicoideae diverged more than 50 mya, which ruled out the possibility of natural342
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hybridization between them and ILS. Previous studies also found that no343
benzoxazinoid biosynthesis can be detected in Brachypodium (basal genus in344
Pooideae) (Frey et al., 2009), corresponding to the absence of identifiable Bx genes in345
two Brachypodium genomes (Fig. 1b). Benzoxazinoids could be produced in wild346
Hordeum but not in cultivated Hordeum (H. vulgare in Triticeae), indicating the Bx347
genes were retained in wild Hordeum but lost in cultivated Hordeum (Grun et al.,348
2005; Sue et al., 2011). Therefore, it was speculated that the transfer occurred at the349
common ancestor of Triticeae after the divergence with Brachypodium. To trace the350
potential donor of Bx genes, we considered the topology between Bx genes of351
Triticeae, Andropogoneae (e.g. Z. mays) and Paniceae (e.g. Echinochloa, D.352
oligosanthes) (Fig. 5). Four Bx genes supported the common ancestor of353
Andropogoneae and Paniceae as the donor of Bx genes in Triticeae. However, three354
Bx genes showed discordant topology, implying the transfer event may have taken355
place at a time close to the divergence between Andropogoneae and Paniceae, which356
would result in an ILS-like phylogeny. With massive genome reshuffling in Triticeae,357
the intact ancient cluster (Bx cluster plus Bx6) was split into segments and scattered358
on four chromosomes (Frey et al., 2009). Gene loss resulted in the partial loss of Bx359
genes (e.g. T. urartu) and entire loss (e.g. H. vulgare) in Triticeae. It is noteworthy360
that phylogenies of individuals genes based on different sequence types (e.g., amino361
acid or nucleotide sequences), different substitution models, or other different362
parameters, are sometimes misleading. For example, the phylogenies of Bx1 based on363
amino acid sequences and nucleotide sequences (CDS, codon12 and codon3) were364
incongruent since in Triticeae and Andropogoneae (Z. mays) Bx1 formed a monoclade365
whereas Bx1 formed a monoclade in Triticeae and Paniceae (Fig. 2a; Fig. S2).366

In Panicoideae, genes in the Bx cluster and Bx6 all showed a single common origin367
before the divergence of Andropogoneae and Paniceae based on data from analysis of368
gene phylogeny, genomic synteny and Bx gene orders. The common ancestor of369
Panicoideae had a cluster of Bx genes including Bx6. After the divergence between370
Andropogoneae and Paniceae, different genomic rearrangements happened in the two371
tribes (Fig. 5). In Andropogoneae, Bx cluster and Bx6 were retained in Z. mays while372
being lost completely in other species (e.g., S. bicolor and Miscanthus sinensis).373
Furthermore, Bx6 was separated away from the Bx cluster by translocation in Z. mays,374
although they were still on the short arm of chromosome 4. In Paniceae, massive375
losses were found in Bx genes. The Bx cluster was retained in D. oligosanthes but376
Bx6 was lost. In contrast, Bx6 was retained in Setaria and Digitaria, but Bx clusters377
were missing. Both Bx cluster and Bx6 were absent in Panicum, Cenchrus and378
Alloteropsis. Echinochloa is the only genus in which the Bx cluster and Bx6 are on379
two chromosomes (Fig. 1b).380

HT of gene cluster in plants381

HT is an important driving force of trait innovation in various levels of organisms382
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(Soucy et al., 2015). In plants, HT were commonly seen between parasites and383
corresponding host species, and between grafting rootstock and scion, due to intimate384
physical cell-to-cell contacts (Kim et al., 2014; Fuentes et al., 2014). HT could also385
emerge without direct contact, a phenomenon that has been studied somewhat in386
grasses (Hibdige et al., 2021; Dunning et al., 2019; Park et al., 2021). A total of 135387
transferred candidate genes were identified across 17 grass species (Hibdige et al.,388
2021). Besides gene elements, transposon elements have also been detected to have389
been transferred among divergent grass species, as in the case for Echinochloa genus390
and Oryza punctata lineage (Park et al., 2021). In these reported HT events, a few391
have involved large genomic segments. A block containing 10 protein-coding genes392
was transmitted from Iseilema membranaceum (Andropopgoneae) to Alloteropsis393
semialata (Panicoideae) (Dunning et al., 2019). Here, we provided strong,394
unambiguous evidence that established that at least seven Bx biosynthetic genes in395
Triticeae are derived from donor ancestral Panicoideae as an intact ancient Bx cluster396
(including Bx6) via HT (Fig. 5). HT occurred more frequently between closely related397
species (Soucy et al., 2015; Hibdige et al., 2021), while Triticeae and Panicoideae398
were split more than 50 mya. The DNA transfer events from Panicoideae to Triticeae399
have been reported before. Several nuclear ribosomal DNA (rDNA) sequences in wild400
Hordeum and Elymus species were Panicum-like, indicating their foreign origins401
(Mahelka et al., 2010; Mahelka et al., 2017). Recently, a large chromosomal segment402
(~68 kb long) harboring five stress-related protein-coding genes, has been reported to403
be transferred from Panicum to wild Hordeum species (Mahelka et al., 2021; Verhage,404
2021). Some of these genes remained functional in the recipient Hordeum genomes.405
These cases reflected that the transfer of exotic DNAwas not as rare among plants as406
previously supposed (Mahelka et al., 2021), at least in grass from Panicoideae to407
Triticeae. It is reasonable to infer that more HT events could be detected from408
Panicoideae to Triticeae in future studies and this unidirectional and biased HT409
pathway has accelerated the capacity to environmental stress in Triticeae.410

Compared to prior reported plant-to-plant transfers, here we provide the first case of411
HT event of an intact gene cluster functioning in the biosynthesis of multi-effect412
chemical compounds in plants. The clustering of a series of biosynthetic genes413
facilitates the heritage and stress response by co-inheritance and co-expression in414
organisms, which is an ingenious invention in the long-term adaptive evolution. When415
combing HT and gene clustering together, it offers a rapid strategy to acquire highly416
efficient weapons to defend external stress. It seems this phenomenon is rare but417
universal in the kingdom of life, because transfers of BGC have been detected in418
fungi (Khaldi et al., 2008; Slot and Rokas, 2011; Reynolds et al., 2018). As for how419
the transfer between phylogenetically distant plant species occurs, one possible420
explanation is that it takes place because of occasional contact (e.g., like natural421
grafting) or is facilitated by vector transfer (e.g., insects, fungi, viruses) (Xia et al.,422
2021; Wang et al., 2020). The transfer of DNA between insect vectors and plants has423
been reported recently. For example, whitefly has acquired the plant-derived phenolic424
glucoside malonyltransferase gene BtPMaT1 from a plant host enabling it to425
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neutralize plant toxin phenolic glucosides (Xia et al., 2021). Similarly, the transfer of426
Fhb7 from fungus Epichloë to Thinopyrum wheatgrass (Triticeae) provides broad427
resistance to both Fusarium head blight and crown rot in wheat (Wang et al., 2020).428

Selection on gene clusters429

The driving forces for the organization and maintenance of BGCs remain in debate.430
Nevertheless, it is widely accepted that natural selection must inevitably shape their431
evolution. The selection analysis to BGCs were rare, due to limited identifications of432
BGCs and comparable sequences. In Saccharomycetes, the galactose BGCs are433
widely conserved in terms of sequence and function, suggesting the influence of434
long-term purifying selection (Slot and Rokas, 2010). Balancing selection also plays435
roles in maintaining diversity of BGCs, as in the case of the aflatoxin gene cluster in436
fungus Aspergillus parasiticus (Carbone et al., 2007). In Arabidopsis, the thalianol437
BGC appear to be under relaxed selection when compared with genes in the438
phytosterol biosynthetic pathway, but is still under strong purifying selection (Liu et439
al., 2020). In this study, we utilized multiple copies of Bx genes and their440
corresponding native analogues across a broad range of grass species to profile the441
selection landscapes of Bx clusters. Similar to what was found in the thalianol BGC,442
Bx genes in both Panicoideae and Triticeae showed purifying selection. When443
compared with native analogues, the selection on Bx genes in cluster was more444
constrained (Fig. 4a). The selection pressure was similar for Bx6 and its native445
analogues in Panicoideae, possibly the result of dispersal of Bx6 away from other core446
Bx genes in cluster. It is suggested that lateral pathway genes were less constrained447
than the early pathway genes in the biosynthesis of thalianol in Arabidopsis (Liu et al.,448
2020). Here, we noticed that Bx6, functioning after the reactions by genes in the Bx449
cluster, exhibited the highest ω value among the seven core Bx genes (Fig. 4a). Bx8,450
which is within Bx cluster, was less constrained than other Bx genes in the cluster. All451
identified Bx clusters or genes were transcribed in the various genomes and452
functioned in stress response, further indicating purifying selection in conserving the453
functions of Bx clusters.454

Subgenome dominance of gene clusters in polyploids455

We found that several species identified to have Bx clusters or whole-set core Bx456
genes are polyploids (Fig. 1b). In most cases, polyploidization provides stronger457
growth and higher tolerance to environmental stress than original diploid status (Soltis458
and Soltis, 2009; Van de Peer et al., 2017). On this basis, biosynthetic gene clustering459
further offers these species a powerful weapon to response external stimulus. To some460
extent, the existence of BGCs in these polyploids assisted in allowing these species to461
become main crops under artificial selection (e.g., hexaploid and tetraploid wheat, and462
paleo-tetraploid maize) or successful agricultural weeds (hexaploid and tetraploid463
barnyardgrass). In polyploids, the subgenome dominance usually exists in selection464
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and gene expression. The dominance of BGCs in polyploids has not been well studied.465
Differential expression of Bx genes in hexaploid wheat was detected (Nomura et al.,466
2005). The main contribution in hexaploid and tetraploid wheat is by subgenome B.467
In the hexaploid barnyardgrass E. crus-galli, we found an obvious suppression in468
expression of Bx genes on subgenome AH, compared with other two subgenomes469
(Fig. 4c). The dominance pattern of Bx genes was consistent with overall profiling470
across whole subgenomes with a significantly higher proportion of suppressed genes471
occurring in subgenome AH (Ye et al., 2020). Highly expressed metabolic genes tend472
to be retained preferentially after polyploidization due to selective pressure (Gout et473
al., 2009). The selection on Bx genes on subgenome Awas indeed less constrained474
than that on other two Bx homologs (Fig. 4b; Fig. S8). Furthermore, three out of four475
Bx gene losses in the E. crus-galli pedigree were from subgenome A (Fig. S7). Gene476
loss is the extreme result of relaxed selection. Differential transposon element477
contents among three subgenomes may be one of the driving forces of expression478
suppression and relaxed selection on subgenome A in Echinochloa. More transposon479
elements on subgenome A somewhat increased the degree of methylation, which will480
inactivate the gene expression (Ye et al., 2020). As seen in the cases of wheat481
(Nomura et al., 2005) and barnyardgrass, the genomic bias in the expression of Bx482
genes in polyploids was putatively derived from the diploid progenitors. Subsequent483
selection would shape the presence-and-absence of Bx genes on each genome. Clearly,484
additional studies are needed to decipher the mechanism of dominance of BGCs in485
polyploids.486

Materials and Methods487

Datasets488
Amino acid sequences of whole-genome protein and coding nucleotide sequences of489
39 grass genomes (including grass basal group: Pharus latifolius; Oryzoideae: Zizania490
latifolia, Leersia perrieri, Oryza brachyantha, Oryza punctata, Oryza rufipogon,491
Oryza sativa, Oryza barthii and Oryza glaberrima; Bambusoideae: Olyra latifolia and492
Bonia amplexicaulis; Pooideae: Brachypodium distachyon, Brachypodium stacei,493
Hordeum vulgare, Triticum aestivum, Triticum dicoccoides, Aegilop tauschii and494
Triticum urartu; Chloridoideae: Eragrostis curvula, Eragrostis nindensis, Eragrostis495
tef, Oropetium thomaeum, Cleistogenes songorica and Zoysia japonica; Panicoideae:496
Zea mays, Sorghum bicolor, Miscanthus sinensis, Dichanthelium oligosanthes,497
Digitaria exilis, Panicum hallii, Setaria italica, Setaria viridis, Cenchrus purpureus,498
Cenchrus americanus, Alloteropsis semialata, Echinochloa crus-galli, Echinochloa499
oryzicola, Echinochloa colona and Echinochloa haploclada) and outgroup species500
Ananas comosus were downloaded from Phytozome501
(https://phytozome-next.jgi.doe.gov) and NGDC(https://ngdc.cncb.ac.cn)(Table S1).502
Polyploids with chromosome-level assemblies (hexaploid T. aestivum, E. crus-galli503
and E. colona, and tetraploid T. dicoccoides, E. tef, C. songorica, M. sinensis, D.504
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exilis, C. purpureus and E. oryzicola) were split into subgenomes (Table S1). A total505
of 53 diploid or diploid-like genomes were used to construct grass phylogeny.506
OrthoFinder was used to identify single-copy orthologs in the 40 species genomes507
(Emms and Kelly, 2019). Individual phylogenetic trees of 45 single-copy genes were508
constructed using IQ-TREE (v1.6.12) with the best substitution model Model Finder509
(Nguyen et al., 2015) and integrated into a species tree using ASTRAL (v5.7.4)510
(Zhang et al., 2018). The divergence time was adopted from TimeTree database511
(www.timetree.org) (Kumar et al., 2017).512

Identification of Bx genes in grass513
The protein sequences of Bx genes in Z. mays (Bx1, Zm00008a014942; Bx2,514
Zm00008a014943; Bx3, Zm00008a014937; Bx4, Zm00008a014938; Bx5,515
Zm00008a014940; Bx6, Zm00008a014884; Bx7, Zm00008a015292; Bx8,516
Zm00008a014941; Bx9, Zm00008a003056; Bx10, Zm00008a001636; Bx11,517
Zm00008a001638; Bx12, Zm00008a001639; Bx13, Zm00008a010377; Bx14,518
Zm00008a008314) were used as baits to search Bx genes in grass species by BLASTP.519
The homologs of individual Bx genes were filtered by parameters of e-value less than520
1e-30 and identity greater than 50%. Homologs were then aligned using MAFFT521
(v7.310) (Katoh and Standley, 2013) and phylogenetic trees were built using522
IQ-TREE under the substitution model parameter ModelFinder with 1000 times of523
bootstrap replicates (Nguyen et al., 2015). Using the homologs in A. comosus or P.524
latifolius as outgroup, we only kept the closest homologous copies of Bx genes across525
the grass family as native analogues. For Bx trees where Bx homologs could not be526
found in outgroup species A. comosus and P. latifolius, we referred to the topological527
relationship among homologs in five subfamilies, to determine Bx genes and their528
native analogues.529

Phylogenetic analysis530
Bx homologs (Bx genes and native analogues) were re-aligned using MAFFT (Katoh531
and Standley, 2013). Substitution models were selected using ModelFinder and the532
maximum-likelihood phylogenetic trees were reconstructed by IQ-TREE using533
Ultrafast Bootstrap Approximation (1000 replicates) for branch support (Nguyen et al.,534
2015). Tests of tree topologies, including RELL approximation,535
Shimodaira-Hasegawa (SH) test and approximately unbiased (AU) test, were536
performed using IQ-TREE with 10000 bootstrap replicates (Nguyen et al., 2015). To537
eliminate the effects of protein sequence alignment gaps, we also used Gblocks538
(Castresana, 2000) to remove gaps from alignments with parameter “-b4=5 -b5=h”.539
The trimmed alignments of conserved regions were used in topology tests. The540
phylogeny constructions of Bx genes based on coding sequence, codon12 (first and541
second positions within a codon) and codon3 (third position within a codon) were542
performed using MAFFT for alignment and IQ-TREE with the best substitution543
model (ModelFinder) and 1000-replicate ultrafast bootstrap analysis (Nguyen et al.,544
2015).545
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Genome synteny analysis546
Whole-genome protein sequences were compared pairwise among the 39 grass547
species using BLASTP. The best hit of each blast was kept. We also required that the548
e-value should be less than 1e-30 and identity greater than 50%. According to the549
physical positions of the genes on each chromosome of each species, the genes or550
proteins were ordered. We performed the gene-to-gene synteny analysis among grass551
species based on their orders within each genome.552

Selection analysis553
Selection pressure was measured by indicator ω, the ratio between non-synonymous554
substitution rate (dN) and synonymous substitution rate (dS), with usually ω = 1555
meaning neutral mutations, ω < 1 purifying selection, and ω > 1 diversifying positive556
selection. Bx homologs whose lengths of CDS or protein sequences were longer than557
two-times or shorter than half of the lengths of Bx genes or proteins in Z. mays were558
removed. Within each clade in the phylogenetic tree of each Bx gene, only one copy559
was kept in following analysis within one (sub)genome for tandem duplicates and the560
copy of duplicates with abnormal sequence length (usually much shorter) was561
removed. The CDS and protein sequences were aligned using MAFFT and PAL2NAL562
(Suyama et al., 2006). The dN and dS values were calculated using KaKs_calculator563
in the NG model for all pairs of genes within each clade (Bx clade or native analogue564
clade) (Zhang et al., 2006).565

Gene expression analysis566
RNA-seq data from an analysis of E. crus-galli seedlings under the conditions of567
mono-culture and co-culture with rice were downloaded from NCBI (BioProject568
PRJNA268892) (Guo et al., 2017) and the low-quality reads were removed using the569
NGSQC toolkit (v2.3.348) (Patel and Jain, 2012). The clean reads were mapped to the570
chromosome-level reference genome of E. crus-galli (STB08) using TopHat (v2.1.1)571
(Trapnell et al., 2012). Relative gene expression levels were quantified and572
normalized to FPKM values using Cufflinks (v2.2.1) (Trapnell et al., 2012). The573
determination of expression dominance and response contributions of Bx genes in574
subgenomes of E. crus-galli followed a previously described approach (Ye et al.,575
2020).576
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Figure legends740

Fig. 1. Benzoxazinoid biosynthesis pathway and distributions of Bx genes in741
grass. (a) Biosynthesis pathway of benzoxazinoid secondary metabolites in maize.742
The pathway(Bx)-related genes in the Bx cluster are marked in red. (b) Phylogeny and743
Bx gene distribution of grass species. Background colors represent different744
sub-families in Poaceae. The lineage divergence time is adopted from TimeTree745
database (www.timetree.org). Each rectangle represents one gene element. A red slash746
refers two different chromosomes for the neighbouring genes and a black dashed slash747
refers to a same chromosome but not clustered.748

Fig. 2. Phylogeny and genomic synteny of Bx1 in grass. (a) Maximum-likelihood749
phylogenetic trees of Bx1 in grass with P. latifolius as an outgroup species. Bootstrap750
value of 1000 replicates is labeled at each branch. The node label is composed of751
genome abbreviation and gene ID. Background filled colors represent subfamilies.752
The Bx1 clade is highlighted as Bx-copy (e.g. B1-B4) and the paralogs of Bx1 are753
labeled as native-copy (e.g. N0-N7). Left bottom tree shows the phylogenetic754
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relationship of five subfamilies. (b) Genomic synteny among native Bx1 analogues755
between species. Red dots represent the native Bx1 analogues are syntenic. (c) Local756
protein sequence alignments among Bx1 genes and their native analogues. Bx-copy757
specific deletion and amino acid substitution are marked in gray rectangles. (d)758
Genomic synteny between Z. mays and other species around the position of Bx1. For759
each species, the local synteny around Bx1 is zoomed in at the right panel.760

Fig. 3. Phylogeny and genomic synteny of Bx6 in grass. (a) Maximum-likelihood761
phylogenetic trees of Bx6 in grass. Bootstrap value of 1000 replicates is labeled at762
each branch. Background filled colors represent subfamilies. The Bx6 clade is763
highlighted as Bx-copy (e.g. B1-B8) and the native analogues of Bx6 were labeled as764
native-copy (e.g. N1-N7). The other duplicates of Bx6 native analogues are labeled as765
duplicate-copy (e.g. D1-D3). Left bottom tree shows the phylogenetic relationship of766
five subfamilies. (b) Genomic synteny among Bx6 genes and their analogues between767
species based on gene order in each genome. Red dots represent the Bx6 genes or768
analogues are syntenic in genome.769

Fig. 4. Selection and polyploidization effects on the Bx genes. (a) selection770
pressure estimated by ω of Bx genes and analogues. N-Chloridoideae, native771
analogues of Bx genes in Chloridoideae; N-Panicoideae, native analogues of Bx genes772
in Panicoideae; B-Panicoideae, Bx genes in Panicoideae; N-Triticeae, native773
analogues of Bx genes in Triticeae; B-Triticeae, Bx genes in Triticeae. In the box plots774
the horizontal line shows the median value, and the whiskers show the 25% and 75%775
quartile values of ω. Pairwise t-test are performed to evaluate significant differences.776
n.s., not significant; *, p < 0.05; **, p < 0.01; ***, p < 0.0001. (b) pairwise ω of Bx777
genes and analogues in subgenomes A, B and C between E. crus-galli and its778
progenitors (E. haploclada and E. oryzicola). The topology shows the phylogenetic779
relationship among subgenomes in the three Echinochloa species, where AT and AH780
belong to subgenome A, BT and BH belong to subgenome B, and E. haploclada and781
CH belonged to subgenome C. (c) relative expression (upper ternary diagram) and782
relative response contribution (lower ternary diagram) of multi-copy homologous Bx783
genes in E. crus-galli subgenomes (AH, BH and CH) under control and allelopathy784
treatment.785

Fig. 5. A proposed scenario for origin and evolution of the Bx cluster in grass.786
Top left shows different topologies of Bx genes or analogue in different lineages. Top787
right shows the relative divergence time of grass lineages. Blue shades represent the788
potential time range when Bx cluster was organized. Pink shade represents potential789
time range when the ancient Bx cluster (the current Bx cluster+Bx6) was transferred790
to Triticeae. Bottom shows the evolutionary trajectories of core Bx genes. TMRCA,791
The most recent common ancestor.792
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Supporting information793

Table S1. A list of plant genomes used in this study794
Table S2. Core Bx genes (Bx1 to Bx6 and Bx8) and corresponding native analogues795
in grass genomes796
Table S3. Topology tests of two hypothesis on transfer of Bx genes in Triticeae from797
Panicoideae798

Fig. S1. Alignment of amino acid sequences of Bx1 gene in Fig. 2c799
Fig. S2. Phylogenies of Bx1 based on CDS, codon12 and codon3 datasets, related to800
Fig. 2a.801
Fig. S3. Phylogeny of Bx2 to Bx5 and genomic synteny of Bx2 and Bx5 regions802
across the grass family803
Fig. S4. Phylogeny of Bx8 and Bx9 across the grass family804
Fig. S5. Phylogeny of Bx7 across the grass family805
Fig. S6. Phylogeny of Bx10 to Bx12 and Bx14 across the grass family806
Fig. S7. Presence and absence of Bx genes (B-copy) and native analogues (N-copy).807
Blue grids represent presence and white represent absence.808
Fig. S8. Selection pressure of Bx genes in Echinochloa and Triticeae. In the box809
plots the horizontal line shows the median value, and the whiskers show the 25% and810
75% quartile values of ω. B-copy, Bx genes; N-copy, native analogues of Bx genes.811
Fig. S9. Negative relationship between selection indicator ω values and expression812
or response dominance.813
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