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Abstract

Benzoxazinoids are a class of protective and allelopathic plant secondary metabolites,
first identified in maize (Zea mays) and subsequently shown to be encoded by a
biosynthetic gene cluster (BGC), the Bx cluster. Data mining of mining 40
high-quality grass genomes identified complete Bx clusters (containing genes Bx/ to
Bx5 and Bx8) in three genera (Zea, Echinochloa and Dichanthelium) in the
Panicoideae and partial clusters in the Triticeae. The Bx cluster originated from gene
duplication of native analogues of Bx genes and chromosomal translocation. An
ancient Bx cluster including additional Bx genes (e.g., Bx6) is found in ancestral
Panicoideae. The ancient Bx cluster was gained by the Triticeae ancestor via a
horizontal transfer (HT) event from the ancestral Panicoideae and later separated into
three parts on different chromosomes. Bx6 appears to have been under less
constrained selection during evolution of the Panicoideae as evidenced by the fact that
was translocated ~1.31-Mb away from the Bx cluster in Z. mays, moved to other
chromosomes in Echinochloa, and even lost in Dichanthelium. Further investigation
indicated that intense selection and polyploidization shaped the evolutionary
trajectory of the Bx cluster in the grass family. This study provides the first case of
HT of BGCs among plants and sheds new insights on the evolution of BGCs.
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Significance

Biosynthetic gene clustering and horizontal gene transfer are two evolutionary
inventions for rapid adaption by organisms. Horizontal transfer of a gene cluster has
been reported in fungi and bacteria, but not in plants up to now. By mining the
genomes of 40 monocot species, we deciphered the organization of Bx gene cluster, a
biosynthetic gene cluster for benzoxazinoids in grasses. We found that the Bx cluster
was formed by gene duplication of native analogues of individual Bx genes and
directional translocation. More importantly, the Bx cluster in Triticeae was inherited
from the Panicoideae via horizontal transfer. Compared with the native analogues, Bx
clusters in grasses show constrained purifying selection underscoring their
significance in environmental adaption.

Introduction

Biosynthetic gene clusters (BGCs) are specialized genomic organizations comprised
of a cluster of non-homologous genes contributing to the biosynthesis of chemical
defensive metabolites (Niitzmann et al., 2018; Niitzmann and Osbourn, 2014). The
selective advantages of clustering, such as gene co-regulation and co-inheritance, may
promote the formation of BGCs (Rokas et al., 2018; Niitzmann and Osbourn, 2014;
Niitzmann et al., 2016). Natural selection has also driven the establishment and
maintenance of BGCs, including long-term purifying selection, positive selection, and
balancing selection (Rokas et al., 2018; Slod and Rokas, 2010; Carbone et al., 2007;
Liu et al., 2020; Takos and Rook, 2012). The formation and evolution of BGCs have
been studied extensively in fungi (Rokas et al., 2018). About 30 examples of BGCs in
plants have been identified in recent years (Guo e al., 2018). The Bx cluster for the
biosynthesis of benzoxazinoids is the first identified BGC in plants (Frey et al., 1997).

Gene duplication, neofunctionalization and relocation have been suggested as the
origins of BGCs in most fungi and plants (Niitzmann et al., 2018; Rokas et al., 2018).
The DAL gene cluster involved in the allantoin metabolism originated from
duplication of native genes and relocation in the yeast Saccharomyces cerevisiae
(Wong and Wolfe, 2005). The GAL cluster found in Candida yeasts originated
through the relocation of native unclustered genes (Slot and Rokas, 2010). Horizontal
transfer (HT) also leads to the emergence and spread of BGCs and is an important
source of genomic innovation (Khaldi et al., 2008; Slot and Rokas, 2011; Reynolds et
al., 2018; Kominek et al., 2019). In the fungus Aspergillus clavatus, the ACE1 gene
cluster originated by HT from a donor closely related to the rice blast fungus
Magnaporthe grisea (Khaldi et al., 2008). The GAL cluster of Schizosaccharomyces
yeasts was acquired from a Candida yeast (Slot and Rokas, 2010). A full operon
encoding siderophore biosynthesis genes was horizontally transferred from bacteria to
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67  a group of budding yeasts (Kominek et al., 2019). In animals, bdelloid rotifers, small
68  freshwater invertebrates, appear to have acquired a BGC for cell wall peptidoglycan
69  biosynthesis comprised of a racemase and a ligase, from bacteria (Gladyshev et al.,
70 2008). In plants, BGCs were not likely to be derived from microbes via HT

71 (Nitzmann et al., 2018) and no BGCs via HT have been identified.

72 Benzoxazinoids are a class of indole-derived protective and allelopathic secondary

73 metabolites that function in plants to defend against insect herbivores, microbial

74  pathogens and neighboring competing plants (reviewed in Frey et al., 2009).

75  2,4-dihydroxy-1,4-benzoxazin-3-one (DIBOA) and its 7-methoxy analog DIMBOA
76  are the predominant representatives of benzoxazinoids in plants (Frey et al., 1997;

77 Frey et al., 2009) and these compounds have been identified in many plants, including
78  maize (Zea mays), wheat (Triticum aestivum), and barnyardgrass (Echinochloa

79 crus-galli) (Frey et al., 2009; Guo et al., 2017). In Echinochloa, a weed species,

80  DIBOA functions as an allelopathic compound against rice in paddy fields (Guo et al.,
81 2017).

82  The pathway of benzoxazinoid biosynthesis has been elucidated extensively in Z.

83 mays (Fig. 1a). The first step is the biosynthesis of indole from

84  indole-3-glycerolphosphate in the chloroplast by Bx1, a homolog of the a-subunit of
85  tryptophan synthase. Four P450 monooxygenases from CYP71C subfamily (Bx2 to
86  Bx5) add four oxygen atoms at four position of the indole to synthesize DIBOA, the
87  simplest benzoxazinoid (Frey et al., 1997). Two UDP-glucosyltransferases (UGTSs),
88  Bx8 and Bx9, attach a glucose moiety to DIBOA to produce DIBOA-Glc (Rad et al.,
89  2001). Bx6, a 2-oxoglutarate-dependent dioxygenase (2-ODD), oxidizes DIBOA-GIc
90  to TRIBOA-GlIc and subsequently Bx7 (OMT, O-methyltransferase) methylates

91  TRIBOA-GlIc to produce DIMBOA-Glc (Jonczyk et al., 2008). Four OMTs (Bx10 to
92  Bx12, and Bx14) catalyze the conversion of DIMBOA-Glc to HDMBOA-Glc with
93  functional redundancy (Meihls et al., 2013). Bx13, a Bx6-like 2-ODD, converts

94  DIMBOA-Glc to TRIMBOA-Glc and TRIMBOA-GlIc is further methylated to

95  produce DIM2BOA-Glc by Bx7 (Handrick et al., 2016). Bx14 catalyzes the reaction
96  from DIM2BOA-Glc to HDIM2BOA-GIc by methylation (Handrick et al., 2016).

97  In maize, six Bx genes (Bx/-Bx5, and Bx§) encoding enzymes functioning in the first
98  few steps of DIMBOA biosynthesis form a well-defined BGC (named the Bx cluster),
99  located at the tip region of chromosome 4 (Frey et al., 1997; Frey et al., 2009). Bx
100  genes have been identified in barnyardgrass within an intact cluster, and in wheat and
101 rye within disperse sub-clusters (Guo et al., 2017; Sue et al., 2011). Previous studies
102 indicated a monophyletic origin of Bx genes in benzoxazinoid biosynthesis (Frey et
103 al., 2009; Sue et al., 2011; Dutartre et al., 2012; Niitzmann and Osbourn, 2014). The
104  progenitors have evolved Bx genes before the divergence of the Triticeae and the
105  Panicoideae (Sue et al., 2011; Dutartre et al., 2012). However, it should be noted that
106  limited sampling may bring over-interpretation of gene phylogeny. The frequent gene
107  loss and rearrangements, and patchy distribution across divergent species complicated
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108  the understanding to the evolution of BGCs (Lind et al., 2017). The broad availability
109  of high-quality genomes of important crops and wild grasses has facilitated the

110  discovery of more BGCs (Guo et al., 2018) enabling us to trace the organization and
111 evolution of BGCs more comprehensively and reliably.

112 Here, we identified all Bx genes in the grass family using 40 high-quality monocot
113 genomes and further explored the origin of the Bx cluster and reconstructed its

114 evolutionary trajectory. Through analysis of sequence similarities, phylogenies and
115  genomic synteny, we provide evidence that the Bx clusters currently observed in
116  grasses originated from a complex evolution processes that included HT. The HT
117  event and further intense selection shaped the presence of the Bx cluster in the grass
118 family.

119 Results

120  Identification and distribution of Bx genes in the grass family

121 Key genes in the benzoxazinoid biosynthesis pathway of Z. mays, including those in
122 the Bx cluster (Bx/ to Bx5, Bx8) and Bx genes dispersed in the genome (Bx6, Bx7,

123 Bx9 to BxI14) were used as baits to search the Bx genes in the genomes of 39 other

124 species, covering five subfamilies of core grasses (Bambusoideae, Oryzoideae and

125  Pooideae from BOP lineage, and Chloridoideae and Panicoideae from PACMAD

126  lineage) and basal group of Poaceae (Pharus latifolius) (Fig. 1b; Table S1). All

127 analogues of Bx genes were identified based on their sequence similarities, phylogeny,
128  and genomic physical positions (Fig. 1b; Table S2).

129  In addition to the Bx clusters previously reported in Z. mays and Echinochloa (Frey,
130 1997; Guo et al., 2017), a Bx cluster was also found in Dichanthelium oligosanthes,
131 Scribner’s rosette grass, a C3 panicoid grass (Fig. 1b). In the Triticeae, the Bx cluster
132 was split into three sub-clusters located on three different chromosomes. In total, 12
133 clusters were found in six grass species, of which 10 were in Echinochloa genus, with
134 one cluster in each monoploid genome (except one subgenome in Echinochloa colona
135 with two copies). The Bx gene orders in clusters were entirely consistent among Z.
136 mays, D. oligosanthes and Echinochloa, implying a single origin of the Bx clusters
137 (Fig. 1b). Although the Bx cluster was split in the Triticeae, the order of Bx3 to Bx5
138 were same as the Bx cluster in the Panicoideae, which showed potential close

139 relationship between Bx genes in BOP and PACMAD lineages. Bx6 was distant

140  1.31-Mb away from Bx cluster in Z. mays genome, although both the gene and cluster
141 were located on chromosome 4. Bx6 was also identified in Digitaria and Setaria from
142 Panicoideae. Bx6 was located on chromosome 2 in Triticeae and chromosome 9 in

143 Echinochloa. Bx7 was an ancient gene, distributed in both BOP and PACMAD

144  lineages, in spite of massive loss.
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145  Formation and HT of the Bx cluster (Bx!I to Bx5 and Bx8)

146 With P. latifolius from Pharoideae (N1 in Fig. 2a) serving as an outgroup, the gene
147 tree of BxI was divided into two lineages of BOP and PACMAD, in line with the

148 species tree (Fig. 2a). Bx/ genes formed a monoclade, composed by Bx/ copies from
149  previous identified species with Bx clusters. To distinguish other Bx homologs from
150  BxI copies, we called the other Bx/ homologs as Bx/ analogues. The Bx/ analogues
151  were native and extraordinarily conserved across the grass family and were in good
152 synteny among genomes (Fig. 2b). The Bx/ analogue AET5Gv21022100 (NO in Fig.
153 2a) in Aegilop tauschii from Pooideae subfamily was syntenic to the Bx/ analogue
154 P13g34340 (N1) in P. latifolius from the basal lineage of Poaceae, as well as the Bx/
155  analogues LOC_0s3g58300 (N2) in Oryza sativa from Oryzoideae, Et 4A 034058
156 (N5) in Eragrostis tef from Chloridoideae, Sevir.9G054600 (N6) in Setaria viridis
157  from Paniceae, Panicoideae, and Zm00008a005484 (N8) in Z. mays from

158  Andropogoneae, Panicoideae. Sequence alignments showed they were conserved with
159  the domain of tryptophan synthase (Fig. 2¢; Fig. S1). In contrast to the native Bx/
160  analogues, the clade of Bx/ copies, which is nested between native analogues of

161  Chloridoideae and Panicoideae and sister to native copies of Panicoideae, is an extra
162  lineage-specific copy duplicated in the ancestor of Panicoideae (Fig. 2a). To ensure
163 the lineage-specific duplication event, local synteny of Bx/ was scanned between Z.
164  mays and other genomes (Fig. 2d). The two flanking genomic regions of Bx cluster in
165  Z. mays showed high synteny to Brachypodium distachyon and A. tauschii from

166  Pooideae, O. sativa from Oryzoideae, Sorghum bicolor from Andropogoneae,

167  Panicoideae and S. viridis from Paniceae, Panicoideae. However, the Bx cluster was
168  entirely absent in these genomes. Considering the species phylogeny in the Poaceae,
169  the presence of Bx cluster in Z. mays is not ancestral but rather derived likely by

170 translocation from other genomic positions. Comparing the gene positions of Bx

171 clusters between Z. mays and Echinochloa haploclada from Echinochloa, their Bx
172 clusters were in a large syntenic block, and the orders of Bx genes were consistent,
173 implying the common origin of Bx cluster in their common ancestor before the

174 divergence of Andropogoneae and Paniceae, although there was a translocation

175  between them. Although the scaffold harboring the Bx cluster in D. oligosanthes was
176 short, five Bx genes were assembled and their orders were in line with those in Z.

177 mays, further supporting the origin of Bx cluster in ancestral Panicoideae. Sequence
178  alignment among Bx/ genes and their native analogues showed Bx/ lineage-specific
179  deletion and substitution, confirming a single origin of Bx/ genes (Fig. 2c).

180  Within the Bx/ clade, Bx/ genes from the Triticeae form a monoclade nested among
181  BxI genes from Panicoideae, indicating a single origin of these genes. Given that the
182  divergence between the Pooideae and Panicoideae is ancient, estimated at more than
183 50 million years ago (Ma et al., 2021) and native Bx/ analogues are present, the

184  positional congruence of the Triticeae Bx/ clade is not likely to be derived from

185  sexual hybridization, incomplete lineage sorting (ILS) or convergent evolution, but
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HT from the Panicoideae (Fig. 2a). To further confirm the robustness of the
phylogeny of Bx/ based on protein sequences, the phylogenetic trees of Bx/ based on
coding sequence (CDS), codon12 (first and second codon positions) and codon3 (third
codon position) were built and the topologies confirmed the existence of gene
duplication and HT of Bx!/ (Fig. S2).

We built the phylogeny and scanned the genomic synteny of Bx2-Bx5 and Bx§ across
the whole Poaceae (Figs. S3 and S4). Native analogues of Bx2 could be traced and
were highly conservative (Fig. S3). Bx3, Bx4 and Bx5 were three tandemly duplicated
CYP7I1C genes from cytochrome P450 superfamily. The native ancestral analogues of
Bx3 to Bx5 were massively lost but the retained analogues showed high genomic
synteny among subfamilies (Fig. S3). Based on the phylogeny of Bx8, Bx8§ genes were
products of native analogues and Bx8 genes in the Triticeae were nested within those
in Panicoideae. Bx9 was a maize-specific duplicate of Bx8 (Fig. S4). In brief,
topologies of the five Bx genes (Bx2-Bx5 and Bx8) were similar to what was observed
with Bx/, implying that Bx genes in the cluster were derived from a single origin and
Bx genes in Triticeae were likely acquired via HT of an intact Bx cluster from
Panicoideae.

To formally test the hypothesis of a Panicoideae origin of the Bx genes in Triticeae,
we reconstructed phylogenies under constraints that the Bx genes in Triticeae were
derived from Panicoideae Bx clade origin (PO) or outside of that clade (Non-PO). To
determine whether the PO phylogenies statistically were better explanations than
non-PO phylogenies we employed the approximately unbiased (AU) test, the
resampling estimated log-likelihood method (RELL), and the Shimodaira-Hasegawa
(SH) test. All tests of all Bx genes in cluster (Bx/-Bx5 and Bx38) strongly rejected the
alternative hypothesis that Bx genes in Triticeae were not derived from Panicoideae
(all p values < 0.001 for AU tests) (Table S3). The results indicated that the obtained
tree topologies of all Bx genes were highly robust and reflected a HT event of Bx
genes from Panicoideae to Triticeae.

Co-evolution between Bx6 and the Bx cluster

The Bx6 gene whose encoded product is responsible for oxidizing DIBOA-Glc to
TRIBOA-Glc, the subsequent enzymatic step following the activity of the Bx cluster
genes in maize was located away from the Bx cluster (Fig. 1a). The phylogeny of Bx6
showed a similar pattern as Bx/, in that the Bx clade was duplicated from native Bx6
analogues and HT from Panicoideae was likely responsible for the inheritance of the
Bx6 genes in Triticeae (Fig. 3a). Multi-species genome synteny analyses supported the
above results (Fig. 3b). Topology tests confirmed the robustness of Bx6 phylogeny
and Bx6 genes in Triticeae were nested within Panicoideae Bx6 clade (p value < 0.001
for AU test) (Table S3). Hence, it is reasonable to speculate that Bx6 co-evolved with
the Bx cluster with similar evolutionary trajectories. Notably, besides species
harboring Bx cluster, Bx6 genes could be identified in Setaria and Digitaria from
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226  Panicoideae (Fig. 1b; Fig. 3a). The wide distribution of Bx6 across the Panicoideae
227  implies that Bx6 originated by duplication at the common ancestor of Panicoideae. We
228  also observed that Bx/3 is a maize-specific duplicate of Bx6 (Fig. 3a).

229  We also identified the presence of other dispersal Bx genes and built phylogenetic

230  trees to trace their evolutionary histories. Bx7 catalyzes the conversion of

231  TRIBOA-GlIc to DIMBOA-GIc (Fig. 1a). Only limited homologs could be identified
232 in grasses and its phylogenetic tree revealed that Bx7 was conserved in evolution

233 without congruence to species phylogeny, although massive losses occurred (Fig. S5).
234 Bx10/Bx11/Bx12/Bx14 encoded OMTs, acting as metabolic switches between

235  caterpillar and aphid resistance, by transforming DIMBOA-GIlc to HDMBOA-GIc (Li
236  etal., 2018). From the phylogenetic analyses, the clade of Bx/0/Bx11/Bx12/Bx14 were
237  maize-specific duplicates, and was in a well-defined Panicoideae-specific clade (Fig.
238  S6). Within the clade, no Triticeae homologs were found. While in wheat (7.

239 aestivum), two OMT genes were characterized as functional DIMBOA-Glc OMTs
240  both designated as 7aBx10 but phylogenetically close to Bx7, rather than Bx/0 in Z.
241 mays, indicating the convergence in function of OMT genes in grasses during the

242 process of O-methylation (Li et al., 2018). This case implied that other paralogs of
243 OMTs could function as Bx/0/Bx11/Bx12/Bx14 in the process of O-methylation and
244  Bx10/Bx11/Bx12/Bx14 are not compulsory for benzoxazinoid biosynthesis. Taken

245  together, Bx7 and Bx10/Bx11/Bx12/Bx14 were alternative and dispensable to some
246  extents in the Bx pathway. Hence in the following analyses, we focused on the Bx
247  cluster and Bx6.

248  Constrained purifying selection on the Bx cluster

249  Natural selection shapes the evolutionary dynamics of BGCs (Rokas et al., 2018; Slod
250  and Rokas, 2010; Liu et al., 2020). The selection pressure was measured by o (dN/dS,
251  the ratio between non-synonymous sites substitution and synonymous sites

252 substitution) in each lineages of the individual Bx genes. Generally, both the Bx genes
253 and their native analogues were under purifying selection (@ < 1). Compared to

254  outgroup lineage N-Chloridoideae (native Bx analogues in Chloridoideae),

255  constrained purifying selections were detected in all of the native Bx genes for

256  Panicoideae, with the exception of Bx6. The native analogues of Bx6 in Panicoideae
257  suffered relaxed selection with a higher w value, relative to other Bx native genes.

258  Compared to the native analogues, the w values were lower for the Bx genes in

259  Panicoideae (B-Panicoideae) in cluster, while no difference in selection was found for
260  Bx6, which was not clustered together with Bx cluster. This selection bias in

261  Panicoideae corresponded to the presence-and-absence (PAV) of Bx genes and their
262  analogues (Fig. S7). The loss of native analogues of Bx genes in cluster was more

263 frequent than those of Bx genes in cluster, which mirrored the relaxed selection,

264  especially for Bx2, Bx5 and Bx8. The presence of Bx6 native analogues was highly
265  conserved, with one copy within one single analyzed genome, corresponding to

266  unbiased selection pressure compared to Bx6 genes (Fig. S7). While in Triticeae, all of
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the Bx genes exhibited constrained selection, despite the conserved presence of Bx
native analogues (Fig. 4a; Fig. S7). Although Bx genes in Triticeae were inferred to be
gained from Panicoideae, stronger selection was detected in Triticeae Bx genes than
those in Panicoideae, especially for Bx/ and Bx6. To eliminate the effects by biases
from species sampling and PAV of Bx genes or native analogues, the selection
pressure was measured focusing on Echinochloa and Triticeae. The results further
confirmed the selection profiling of Bx genes (Fig. S8).

Dominance of Bx cluster genes in polyploids

In species whose genomes contained Bx genes, polyploids are commonly seen
(hexaploid T aestivum, E. crus-galli and E. colona, and tetraploid Triticum
dicoccoides and Echinochloa oryzicola in this study). We investigated the effects of
polyploidization on Bx clusters or genes from three different views: PAV, selection,
and gene expression. Duplicated genes tend to be lost due to gene redundancy or
dosage effects in polyploids (Soltis and Soltis, 2009; Van de Peer et al., 2017). Not
unexpectedly, Bx genes tended to be lost in polyploids, especially in Echinochloa
(Fig.1b; Fig. S7). In diploid Echinochloa haploclada, the core Bx gene set was intact,
while Bx losses were found in three polyploid Echinochloa species. In this case, only
one intact copy of the core Bx gene set was retained in one subgenome in each species
(e.g. BT in E. oryzicola, CH in E. crus-galli and DH2 in E. colona).

The selection strengths to homologous duplicates usually varies in polyploids (Ye et
al., 2020). The genomes of E. crus-galli and its progenitors (E. oryzicola and E.
haploclada) provided a model to study the selection dominance of multi-copy
homologous Bx genes and we calculated the w values of Bx genes in each subgenome
between E. crus-galli and its parents (Fig. 4b). Bx genes in subgenome A were
generally under relaxed purifying selection, with higher @ values compared to
subgenomes B and C (e.g. Bx/ and Bx8). For native analogues, the selection on
subgenome A copy was relaxed in the example of Bx6. In general, biased selection
was observed for Bx genes in Echinochloa and Bx genes in subgenome A were under
less constrained selection in the post-hexaploidization.

Expression dominance has been commonly observed in polyploids (Ye et al., 2020;
Van de Peer et al., 2017). Response contribution of subgenomes (relative changes of
expressed transcripts from each subgenome, compared to the total expression change)
is also biased among subgenomes (Ye et al., 2020). To explore the effect of
polyploidization on gene expression of multi-copy Bx genes, we compared the
expression levels of Bx genes in E. crus-galli with and without allelopathy treatment
(i.e., co-culture with rice)(Guo et al., 2017). Expression and response contribution
were both suppressed for Bx genes in subgenome AH (Fig. 4c). The dominance of
selection and gene expression or response were associated such that Bx genes in
subgenome A suffering less constrained selection, were suppressed in expression and
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306  response contribution (Fig. S8).

307 Discussion

308  Evolutionary trajectory of the Bx gene cluster in grass

309  Given that the Bx cluster and Bx6 catalyze the first seven steps in the benzoxazinoid
310  biosynthesis and are sufficient to synthesize benzoxazinoid compounds without other
311  Bx genes (e.g. in wheat), we considered Bx cluster (Bx/ to Bx5 and Bx8) and Bx6 as
312 the core set of Bx genes in the pathway (Fig. 1a). Based upon the results from all of
313 the phylogenetic analyses of core Bx genes, the evolutionary trajectory of Bx genes
314  could be assumed (Fig. 5). Native Bx analogues could be found in all phylogenetic
315  trees of core Bx genes and were evolutionarily conserved with good genomic synteny
316  among subfamilies. Therefore, the Bx genes in the Bx cluster and Bx6 should

317  originate from duplication of native Bx analogues. Previous studies proposed Bx/

318  evolved from duplication and modification of the alpha subunit of the tryptophan

319  synthase (TSA) (Grun et al., 2005; Frey et al., 2009). Here, we comprehensively

320 identified the native analogues of the Bx genes. Gene duplication, followed by

321  neofunctionalization and/or subfunctionalization, and recurrent genomic translocation,
322 gathered Bx genes together to form Bx cluster (Fig. 5). The processes of gene

323 duplication and translocation may have been induced by activities of retrotransposon
324  elements.

325  The positional relationship between Bx cluster and Bx6 appears to be dynamic. Bx6
326  and the Bx cluster are both located on chromosome 4 in Z. mays while they are

327  separated into different chromosomes in Triticeae and Echinochloa (Fig. 1b).

328  However, given that the genes in Bx cluster and Bx6 showed almost the same

329  evolutionary phylogenies and Bx6 catalyzes the reaction following those catalyzed by
330  the gene products encodedin the Bx cluster, we speculated that Bx6 co-evolved with
331  the Bx cluster and were located in an ancient Bx cluster (Fig. 5). It is difficult to date
332 accurately when the ancient Bx cluster formed, due to the unreliability of dating based
333 on individual genes. However, we could infer that the duplication of Bx genes

334 occurred at the common ancestor of Paniceae and Andropogoneae (supported by the
335  BxI and Bx6 phylogenetic trees) or a common ancestor of Panicoideae and

336 Chloridoideae (supported by the Bx2 and Bx8 phylogenies), and the Bx cluster was
337  organized before the divergence of Paniceae and Andropogoneae.

338  Previously it was proposed that the genes of Bx biosynthesis in the grasses were of
339  monophyletic origin before the divergence of the Triticeae and Panicoideae (Frey et
340  al., 2009; Grun et al., 2005). Here, the integrated evidence indicates strongly that the
341  Bx genes in Triticeae originated from Panicoideae via HT (Fig. 5). Triticeae and

342 Panicoideae diverged more than 50 mya, which ruled out the possibility of natural
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hybridization between them and ILS. Previous studies also found that no
benzoxazinoid biosynthesis can be detected in Brachypodium (basal genus in
Pooideae) (Frey et al., 2009), corresponding to the absence of identifiable Bx genes in
two Brachypodium genomes (Fig. 1b). Benzoxazinoids could be produced in wild
Hordeum but not in cultivated Hordeum (H. vulgare in Triticeae), indicating the Bx
genes were retained in wild Hordeum but lost in cultivated Hordeum (Grun et al.,
2005; Sue et al., 2011). Therefore, it was speculated that the transfer occurred at the
common ancestor of Triticeae after the divergence with Brachypodium. To trace the
potential donor of Bx genes, we considered the topology between Bx genes of
Triticeae, Andropogoneae (e.g. Z. mays) and Paniceae (e.g. Echinochloa, D.
oligosanthes) (Fig. 5). Four Bx genes supported the common ancestor of
Andropogoneae and Paniceae as the donor of Bx genes in Triticeae. However, three
Bx genes showed discordant topology, implying the transfer event may have taken
place at a time close to the divergence between Andropogoneae and Paniceae, which
would result in an ILS-like phylogeny. With massive genome reshuffling in Triticeae,
the intact ancient cluster (Bx cluster plus Bx6) was split into segments and scattered
on four chromosomes (Frey et al., 2009). Gene loss resulted in the partial loss of Bx
genes (e.g. T. urartu) and entire loss (e.g. H. vulgare) in Triticeae. It is noteworthy
that phylogenies of individuals genes based on different sequence types (e.g., amino
acid or nucleotide sequences), different substitution models, or other different
parameters, are sometimes misleading. For example, the phylogenies of Bx/ based on
amino acid sequences and nucleotide sequences (CDS, codonl12 and codon3) were
incongruent since in Triticeae and Andropogoneae (Z. mays) Bx1 formed a monoclade
whereas Bx/ formed a monoclade in Triticeae and Paniceae (Fig. 2a; Fig. S2).

In Panicoideae, genes in the Bx cluster and Bx6 all showed a single common origin
before the divergence of Andropogoneae and Paniceae based on data from analysis of
gene phylogeny, genomic synteny and Bx gene orders. The common ancestor of
Panicoideae had a cluster of Bx genes including Bx6. After the divergence between
Andropogoneae and Paniceae, different genomic rearrangements happened in the two
tribes (Fig. 5). In Andropogoneae, Bx cluster and Bx6 were retained in Z. mays while
being lost completely in other species (e.g., S. bicolor and Miscanthus sinensis).
Furthermore, Bx6 was separated away from the Bx cluster by translocation in Z. mays,
although they were still on the short arm of chromosome 4. In Paniceae, massive
losses were found in Bx genes. The Bx cluster was retained in D. oligosanthes but
Bx6 was lost. In contrast, Bx6 was retained in Setaria and Digitaria, but Bx clusters
were missing. Both Bx cluster and Bx6 were absent in Panicum, Cenchrus and
Alloteropsis. Echinochloa is the only genus in which the Bx cluster and Bx6 are on
two chromosomes (Fig. 1b).

HT of gene cluster in plants

HT is an important driving force of trait innovation in various levels of organisms
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383  (Soucy et al.,, 2015). In plants, HT were commonly seen between parasites and

384  corresponding host species, and between grafting rootstock and scion, due to intimate
385  physical cell-to-cell contacts (Kim et al., 2014; Fuentes et al., 2014). HT could also
386  emerge without direct contact, a phenomenon that has been studied somewhat in

387  grasses (Hibdige et al., 2021; Dunning et al., 2019; Park et al., 2021). A total of 135
388 transferred candidate genes were identified across 17 grass species (Hibdige et al.,
389  2021). Besides gene elements, transposon elements have also been detected to have
390  been transferred among divergent grass species, as in the case for Echinochloa genus
391  and Oryza punctata lineage (Park et al., 2021). In these reported HT events, a few

392 have involved large genomic segments. A block containing 10 protein-coding genes
393  was transmitted from Iseilema membranaceum (Andropopgoneace) to Alloteropsis

394  semialata (Panicoideae) (Dunning et al., 2019). Here, we provided strong,

395  unambiguous evidence that established that at least seven Bx biosynthetic genes in
396  Triticeae are derived from donor ancestral Panicoideae as an intact ancient Bx cluster
397  (including Bx6) via HT (Fig. 5). HT occurred more frequently between closely related
398  species (Soucy et al., 2015; Hibdige et al., 2021), while Triticeae and Panicoideae

399  were split more than 50 mya. The DNA transfer events from Panicoideae to Triticeae
400  have been reported before. Several nuclear ribosomal DNA (rDNA) sequences in wild
401  Hordeum and Elymus species were Panicum-like, indicating their foreign origins

402  (Mahelka et al., 2010; Mahelka et al., 2017). Recently, a large chromosomal segment
403  (~68 kb long) harboring five stress-related protein-coding genes, has been reported to
404  be transferred from Panicum to wild Hordeum species (Mahelka et al., 2021; Verhage,
405  2021). Some of these genes remained functional in the recipient Hordeum genomes.
406  These cases reflected that the transfer of exotic DNA was not as rare among plants as
407  previously supposed (Mahelka et al., 2021), at least in grass from Panicoideae to

408  Triticeae. It is reasonable to infer that more HT events could be detected from

409  Panicoideae to Triticeae in future studies and this unidirectional and biased HT

410  pathway has accelerated the capacity to environmental stress in Triticeae.

411  Compared to prior reported plant-to-plant transfers, here we provide the first case of
412  HT event of an intact gene cluster functioning in the biosynthesis of multi-effect

413 chemical compounds in plants. The clustering of a series of biosynthetic genes

414  facilitates the heritage and stress response by co-inheritance and co-expression in

415  organisms, which is an ingenious invention in the long-term adaptive evolution. When
416  combing HT and gene clustering together, it offers a rapid strategy to acquire highly
417  efficient weapons to defend external stress. It seems this phenomenon is rare but

418  universal in the kingdom of life, because transfers of BGC have been detected in

419  fungi (Khaldi et al., 2008; Slot and Rokas, 2011; Reynolds et al., 2018). As for how
420  the transfer between phylogenetically distant plant species occurs, one possible

421  explanation is that it takes place because of occasional contact (e.g., like natural

422  grafting) or is facilitated by vector transfer (e.g., insects, fungi, viruses) (Xia et al.,
423 2021; Wang et al., 2020). The transfer of DNA between insect vectors and plants has
424 been reported recently. For example, whitefly has acquired the plant-derived phenolic
425  glucoside malonyltransferase gene BtPMaTl from a plant host enabling it to
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426  neutralize plant toxin phenolic glucosides (Xia et al., 2021). Similarly, the transfer of
427  Fhb7 from fungus Epichloé to Thinopyrum wheatgrass (Triticeae) provides broad
428  resistance to both Fusarium head blight and crown rot in wheat (Wang et al., 2020).

429  Selection on gene clusters

430  The driving forces for the organization and maintenance of BGCs remain in debate.
431  Nevertheless, it is widely accepted that natural selection must inevitably shape their
432 evolution. The selection analysis to BGCs were rare, due to limited identifications of
433  BGCs and comparable sequences. In Saccharomycetes, the galactose BGCs are

434 widely conserved in terms of sequence and function, suggesting the influence of

435  long-term purifying selection (Slot and Rokas, 2010). Balancing selection also plays
436  roles in maintaining diversity of BGCs, as in the case of the aflatoxin gene cluster in
437  fungus Aspergillus parasiticus (Carbone et al., 2007). In Arabidopsis, the thalianol
438 BGC appear to be under relaxed selection when compared with genes in the

439  phytosterol biosynthetic pathway, but is still under strong purifying selection (Liu et
440  al., 2020). In this study, we utilized multiple copies of Bx genes and their

441  corresponding native analogues across a broad range of grass species to profile the
442  selection landscapes of Bx clusters. Similar to what was found in the thalianol BGC,
443 Bx genes in both Panicoideae and Triticeae showed purifying selection. When

444  compared with native analogues, the selection on Bx genes in cluster was more

445  constrained (Fig. 4a). The selection pressure was similar for Bx6 and its native

446  analogues in Panicoideae, possibly the result of dispersal of Bx6 away from other core
447  Bx genes in cluster. It is suggested that lateral pathway genes were less constrained
448  than the early pathway genes in the biosynthesis of thalianol in Arabidopsis (Liu et al.,
449  2020). Here, we noticed that Bx6, functioning after the reactions by genes in the Bx
450  cluster, exhibited the highest w value among the seven core Bx genes (Fig. 4a). BxS,
451  which is within Bx cluster, was less constrained than other Bx genes in the cluster. All
452 identified Bx clusters or genes were transcribed in the various genomes and

453 functioned in stress response, further indicating purifying selection in conserving the
454  functions of Bx clusters.

455  Subgenome dominance of gene clusters in polyploids

456  We found that several species identified to have Bx clusters or whole-set core Bx

457  genes are polyploids (Fig. 1b). In most cases, polyploidization provides stronger

458  growth and higher tolerance to environmental stress than original diploid status (Soltis
459  and Soltis, 2009; Van de Peer et al., 2017). On this basis, biosynthetic gene clustering

460  further offers these species a powerful weapon to response external stimulus. To some
461  extent, the existence of BGCs in these polyploids assisted in allowing these species to
462  become main crops under artificial selection (e.g., hexaploid and tetraploid wheat, and
463  paleo-tetraploid maize) or successful agricultural weeds (hexaploid and tetraploid

464  barnyardgrass). In polyploids, the subgenome dominance usually exists in selection
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and gene expression. The dominance of BGCs in polyploids has not been well studied.
Differential expression of Bx genes in hexaploid wheat was detected (Nomura et al.,
2005). The main contribution in hexaploid and tetraploid wheat is by subgenome B.
In the hexaploid barnyardgrass E. crus-galli, we found an obvious suppression in
expression of Bx genes on subgenome AH, compared with other two subgenomes
(Fig. 4c). The dominance pattern of Bx genes was consistent with overall profiling
across whole subgenomes with a significantly higher proportion of suppressed genes
occurring in subgenome AH (Ye et al., 2020). Highly expressed metabolic genes tend
to be retained preferentially after polyploidization due to selective pressure (Gout et
al., 2009). The selection on Bx genes on subgenome A was indeed less constrained
than that on other two Bx homologs (Fig. 4b; Fig. S8). Furthermore, three out of four
Bx gene losses in the E. crus-galli pedigree were from subgenome A (Fig. S7). Gene
loss is the extreme result of relaxed selection. Differential transposon element
contents among three subgenomes may be one of the driving forces of expression
suppression and relaxed selection on subgenome A in Echinochloa. More transposon
elements on subgenome A somewhat increased the degree of methylation, which will
inactivate the gene expression (Ye et al., 2020). As seen in the cases of wheat
(Nomura et al., 2005) and barnyardgrass, the genomic bias in the expression of Bx
genes in polyploids was putatively derived from the diploid progenitors. Subsequent
selection would shape the presence-and-absence of Bx genes on each genome. Clearly,
additional studies are needed to decipher the mechanism of dominance of BGCs in
polyploids.

Materials and Methods

Datasets

Amino acid sequences of whole-genome protein and coding nucleotide sequences of
39 grass genomes (including grass basal group: Pharus latifolius; Oryzoideae: Zizania
latifolia, Leersia perrieri, Oryza brachyantha, Oryza punctata, Oryza rufipogon,
Oryza sativa, Oryza barthii and Oryza glaberrima; Bambusoideae: Olyra latifolia and
Bonia amplexicaulis; Pooideae: Brachypodium distachyon, Brachypodium stacei,
Hordeum vulgare, Triticum aestivum, Triticum dicoccoides, Aegilop tauschii and
Triticum urartu; Chloridoideae: Eragrostis curvula, Eragrostis nindensis, Eragrostis
tef, Oropetium thomaeum, Cleistogenes songorica and Zoysia japonica; Panicoideae:
Zea mays, Sorghum bicolor, Miscanthus sinensis, Dichanthelium oligosanthes,
Digitaria exilis, Panicum hallii, Setaria italica, Setaria viridis, Cenchrus purpureus,
Cenchrus americanus, Alloteropsis semialata, Echinochloa crus-galli, Echinochloa
oryzicola, Echinochloa colona and Echinochloa haploclada) and outgroup species
Ananas comosus were downloaded from Phytozome
(https://phytozome-next.jgi.doe.gov) and NGDC(https://ngdc.cncb.ac.cn)(Table S1).
Polyploids with chromosome-level assemblies (hexaploid 7. aestivum, E. crus-galli
and E. colona, and tetraploid T. dicoccoides, E. tef, C. songorica, M. sinensis, D.
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exilis, C. purpureus and E. oryzicola) were split into subgenomes (Table S1). A total
of 53 diploid or diploid-like genomes were used to construct grass phylogeny.
OrthoFinder was used to identify single-copy orthologs in the 40 species genomes
(Emms and Kelly, 2019). Individual phylogenetic trees of 45 single-copy genes were
constructed using IQ-TREE (v1.6.12) with the best substitution model Model Finder
(Nguyen et al., 2015) and integrated into a species tree using ASTRAL (v5.7.4)
(Zhang et al., 2018). The divergence time was adopted from TimeTree database
(www.timetree.org) (Kumar et al., 2017).

Identification of Bx genes in grass

The protein sequences of Bx genes in Z. mays (Bx1, Zm00008a014942; Bx2,
Zm000082a014943; Bx3, Zm00008a014937; Bx4, Zm00008a014938; BxJ,
Zm000082a014940; Bx6, Zm00008a014884; Bx7, Zm00008a015292; Bx8,
Zm00008a014941; Bx9, Zm00008a003056; Bx10, Zm00008a001636; Bx11,
Zm000082a001638; Bx12, Zm00008a001639; Bx13, Zm00008a010377; Bx14,
Zm00008a008314) were used as baits to search Bx genes in grass species by BLASTP.
The homologs of individual Bx genes were filtered by parameters of e-value less than
1e-30 and identity greater than 50%. Homologs were then aligned using MAFFT
(v7.310) (Katoh and Standley, 2013) and phylogenetic trees were built using
IQ-TREE under the substitution model parameter ModelFinder with 1000 times of
bootstrap replicates (Nguyen et al., 2015). Using the homologs in A. comosus or P.
latifolius as outgroup, we only kept the closest homologous copies of Bx genes across
the grass family as native analogues. For Bx trees where Bx homologs could not be
found in outgroup species A. comosus and P. latifolius, we referred to the topological
relationship among homologs in five subfamilies, to determine Bx genes and their
native analogues.

Phylogenetic analysis

Bx homologs (Bx genes and native analogues) were re-aligned using MAFFT (Katoh
and Standley, 2013). Substitution models were selected using ModelFinder and the
maximum-likelihood phylogenetic trees were reconstructed by IQ-TREE using
Ultrafast Bootstrap Approximation (1000 replicates) for branch support (Nguyen et al.,
2015). Tests of tree topologies, including RELL approximation,
Shimodaira-Hasegawa (SH) test and approximately unbiased (AU) test, were
performed using IQ-TREE with 10000 bootstrap replicates (Nguyen et al., 2015). To
eliminate the effects of protein sequence alignment gaps, we also used Gblocks
(Castresana, 2000) to remove gaps from alignments with parameter “-b4=5 -b5=h".
The trimmed alignments of conserved regions were used in topology tests. The
phylogeny constructions of Bx genes based on coding sequence, codon12 (first and
second positions within a codon) and codon3 (third position within a codon) were
performed using MAFFT for alignment and IQ-TREE with the best substitution
model (ModelFinder) and 1000-replicate ultrafast bootstrap analysis (Nguyen et al.,
2015).
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Genome synteny analysis

Whole-genome protein sequences were compared pairwise among the 39 grass
species using BLASTP. The best hit of each blast was kept. We also required that the
e-value should be less than 1e-30 and identity greater than 50%. According to the
physical positions of the genes on each chromosome of each species, the genes or
proteins were ordered. We performed the gene-to-gene synteny analysis among grass
species based on their orders within each genome.

Selection analysis

Selection pressure was measured by indicator w, the ratio between non-synonymous
substitution rate (dN) and synonymous substitution rate (dS), with usually @ = 1
meaning neutral mutations, @ < 1 purifying selection, and w > 1 diversifying positive
selection. Bx homologs whose lengths of CDS or protein sequences were longer than
two-times or shorter than half of the lengths of Bx genes or proteins in Z. mays were
removed. Within each clade in the phylogenetic tree of each Bx gene, only one copy
was kept in following analysis within one (sub)genome for tandem duplicates and the
copy of duplicates with abnormal sequence length (usually much shorter) was
removed. The CDS and protein sequences were aligned using MAFFT and PAL2NAL
(Suyama et al., 2006). The dN and dS values were calculated using KaKs_calculator
in the NG model for all pairs of genes within each clade (Bx clade or native analogue
clade) (Zhang et al., 2006).

Gene expression analysis

RNA-seq data from an analysis of E. crus-galli seedlings under the conditions of
mono-culture and co-culture with rice were downloaded from NCBI (BioProject
PRINA268892) (Guo et al., 2017) and the low-quality reads were removed using the
NGSQC toolkit (v2.3.348) (Patel and Jain, 2012). The clean reads were mapped to the
chromosome-level reference genome of E. crus-galli (STB0S) using TopHat (v2.1.1)
(Trapnell et al., 2012). Relative gene expression levels were quantified and
normalized to FPKM values using Cuftlinks (v2.2.1) (Trapnell et al., 2012). The
determination of expression dominance and response contributions of Bx genes in
subgenomes of E. crus-galli followed a previously described approach (Ye et al.,
2020).
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Figure legends

Fig. 1. Benzoxazinoid biosynthesis pathway and distributions of Bx genes in
grass. (a) Biosynthesis pathway of benzoxazinoid secondary metabolites in maize.
The pathway(Bx)-related genes in the Bx cluster are marked in red. (b) Phylogeny and
Bx gene distribution of grass species. Background colors represent different
sub-families in Poaceae. The lineage divergence time is adopted from TimeTree
database (www.timetree.org). Each rectangle represents one gene element. A red slash
refers two different chromosomes for the neighbouring genes and a black dashed slash
refers to a same chromosome but not clustered.

Fig. 2. Phylogeny and genomic synteny of Bx1 in grass. (a) Maximum-likelihood
phylogenetic trees of Bx/ in grass with P. latifolius as an outgroup species. Bootstrap
value of 1000 replicates is labeled at each branch. The node label is composed of
genome abbreviation and gene ID. Background filled colors represent subfamilies.
The BxI clade is highlighted as Bx-copy (e.g. B1-B4) and the paralogs of Bx/ are
labeled as native-copy (e.g. NO-N7). Left bottom tree shows the phylogenetic
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relationship of five subfamilies. (b) Genomic synteny among native Bx/ analogues
between species. Red dots represent the native Bx/ analogues are syntenic. (¢) Local
protein sequence alignments among Bx/ genes and their native analogues. Bx-copy
specific deletion and amino acid substitution are marked in gray rectangles. (d)
Genomic synteny between Z. mays and other species around the position of Bx/. For
each species, the local synteny around Bx/ is zoomed in at the right panel.

Fig. 3. Phylogeny and genomic synteny of Bx6 in grass. (a) Maximum-likelihood
phylogenetic trees of Bx6 in grass. Bootstrap value of 1000 replicates is labeled at
each branch. Background filled colors represent subfamilies. The Bx6 clade is
highlighted as Bx-copy (e.g. BI-B8) and the native analogues of Bx6 were labeled as
native-copy (e.g. N1-N7). The other duplicates of Bx6 native analogues are labeled as
duplicate-copy (e.g. D1-D3). Left bottom tree shows the phylogenetic relationship of
five subfamilies. (b) Genomic synteny among Bx6 genes and their analogues between
species based on gene order in each genome. Red dots represent the Bx6 genes or
analogues are syntenic in genome.

Fig. 4. Selection and polyploidization effects on the Bx genes. (a) selection
pressure estimated by w of Bx genes and analogues. N-Chloridoideae, native
analogues of Bx genes in Chloridoideae; N-Panicoideae, native analogues of Bx genes
in Panicoideae; B-Panicoideae, Bx genes in Panicoideae; N-Triticeae, native
analogues of Bx genes in Triticeae; B-Triticeae, Bx genes in Triticeae. In the box plots
the horizontal line shows the median value, and the whiskers show the 25% and 75%
quartile values of w. Pairwise ¢-test are performed to evaluate significant differences.
n.s., not significant; *, p <0.05; ** p <0.01; *** p <0.0001. (b) pairwise w of Bx
genes and analogues in subgenomes A, B and C between E. crus-galli and its
progenitors (E. haploclada and E. oryzicola). The topology shows the phylogenetic
relationship among subgenomes in the three Echinochloa species, where AT and AH
belong to subgenome A, BT and BH belong to subgenome B, and E. haploclada and
CH belonged to subgenome C. (c) relative expression (upper ternary diagram) and
relative response contribution (lower ternary diagram) of multi-copy homologous Bx
genes in E. crus-galli subgenomes (AH, BH and CH) under control and allelopathy
treatment.

Fig. 5. A proposed scenario for origin and evolution of the Bx cluster in grass.
Top left shows different topologies of Bx genes or analogue in different lineages. Top
right shows the relative divergence time of grass lineages. Blue shades represent the
potential time range when Bx cluster was organized. Pink shade represents potential
time range when the ancient Bx cluster (the current Bx cluster+Bx6) was transferred
to Triticeae. Bottom shows the evolutionary trajectories of core Bx genes. TMRCA,
The most recent common ancestor.
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