

1 **Horizontal Transfer and Evolution of the Biosynthetic Gene Cluster for**
2 **Benzoxazinoid**

3 Dongya Wu¹, Bowen Jiang¹, Chu-Yu Ye¹, Michael P. Timko², Longjiang Fan^{1,3,*}

4 ¹ Institute of Crop Science & Institute of Bioinformatics, Zhejiang University,
5 Hangzhou 310058, China

6 ² Department of Biology, University of Virginia, Charlottesville, VA 22904

7 ³ Zhejiang University City College, Hangzhou 310015, China

8 *Correspondence: fanlj@zju.edu.cn (L.F.)

9 **Abstract**

10 Benzoxazinoids are a class of protective and allelopathic plant secondary metabolites,
11 first identified in maize (*Zea mays*) and subsequently shown to be encoded by a
12 biosynthetic gene cluster (BGC), the Bx cluster. Data mining of mining 40
13 high-quality grass genomes identified complete Bx clusters (containing genes *Bx1* to
14 *Bx5* and *Bx8*) in three genera (*Zea*, *Echinochloa* and *Dichanthelium*) in the
15 Panicoideae and partial clusters in the Triticeae. The Bx cluster originated from gene
16 duplication of native analogues of Bx genes and chromosomal translocation. An
17 ancient Bx cluster including additional Bx genes (e.g., *Bx6*) is found in ancestral
18 Panicoideae. The ancient Bx cluster was gained by the Triticeae ancestor via a
19 horizontal transfer (HT) event from the ancestral Panicoideae and later separated into
20 three parts on different chromosomes. *Bx6* appears to have been under less
21 constrained selection during evolution of the Panicoideae as evidenced by the fact that
22 was translocated ~1.31-Mb away from the Bx cluster in *Z. mays*, moved to other
23 chromosomes in *Echinochloa*, and even lost in *Dichanthelium*. Further investigation
24 indicated that intense selection and polyploidization shaped the evolutionary
25 trajectory of the Bx cluster in the grass family. This study provides the first case of
26 HT of BGCs among plants and sheds new insights on the evolution of BGCs.

27 **Key words**

28 biosynthetic gene cluster | horizontal transfer | benzoxazinoid | grass | purifying
29 selection

30 **Significance**

31 Biosynthetic gene clustering and horizontal gene transfer are two evolutionary
32 inventions for rapid adaption by organisms. Horizontal transfer of a gene cluster has
33 been reported in fungi and bacteria, but not in plants up to now. By mining the
34 genomes of 40 monocot species, we deciphered the organization of Bx gene cluster, a
35 biosynthetic gene cluster for benzoxazinoids in grasses. We found that the Bx cluster
36 was formed by gene duplication of native analogues of individual Bx genes and
37 directional translocation. More importantly, the Bx cluster in Triticeae was inherited
38 from the Panicoideae via horizontal transfer. Compared with the native analogues, Bx
39 clusters in grasses show constrained purifying selection underscoring their
40 significance in environmental adaption.

41 **Introduction**

42 Biosynthetic gene clusters (BGCs) are specialized genomic organizations comprised
43 of a cluster of non-homologous genes contributing to the biosynthesis of chemical
44 defensive metabolites (Nützmann et al., 2018; Nützmann and Osbourn, 2014). The
45 selective advantages of clustering, such as gene co-regulation and co-inheritance, may
46 promote the formation of BGCs (Rokas et al., 2018; Nützmann and Osbourn, 2014;
47 Nützmann et al., 2016). Natural selection has also driven the establishment and
48 maintenance of BGCs, including long-term purifying selection, positive selection, and
49 balancing selection (Rokas et al., 2018; Slod and Rokas, 2010; Carbone et al., 2007;
50 Liu et al., 2020; Takos and Rook, 2012). The formation and evolution of BGCs have
51 been studied extensively in fungi (Rokas et al., 2018). About 30 examples of BGCs in
52 plants have been identified in recent years (Guo et al., 2018). The Bx cluster for the
53 biosynthesis of benzoxazinoids is the first identified BGC in plants (Frey et al., 1997).

54 Gene duplication, neofunctionalization and relocation have been suggested as the
55 origins of BGCs in most fungi and plants (Nützmann et al., 2018; Rokas et al., 2018).
56 The DAL gene cluster involved in the allantoin metabolism originated from
57 duplication of native genes and relocation in the yeast *Saccharomyces cerevisiae*
58 (Wong and Wolfe, 2005). The GAL cluster found in *Candida* yeasts originated
59 through the relocation of native unclustered genes (Slot and Rokas, 2010). Horizontal
60 transfer (HT) also leads to the emergence and spread of BGCs and is an important
61 source of genomic innovation (Khaldi et al., 2008; Slot and Rokas, 2011; Reynolds et
62 al., 2018; Kominek et al., 2019). In the fungus *Aspergillus clavatus*, the ACE1 gene
63 cluster originated by HT from a donor closely related to the rice blast fungus
64 *Magnaporthe grisea* (Khaldi et al., 2008). The GAL cluster of *Schizosaccharomyces*
65 yeasts was acquired from a *Candida* yeast (Slot and Rokas, 2010). A full operon
66 encoding siderophore biosynthesis genes was horizontally transferred from bacteria to

67 a group of budding yeasts (Kominek et al., 2019). In animals, bdelloid rotifers, small
68 freshwater invertebrates, appear to have acquired a BGC for cell wall peptidoglycan
69 biosynthesis comprised of a racemase and a ligase, from bacteria (Gladyshev et al.,
70 2008). In plants, BGCs were not likely to be derived from microbes via HT
71 (Nützmann et al., 2018) and no BGCs via HT have been identified.

72 Benzoxazinoids are a class of indole-derived protective and allelopathic secondary
73 metabolites that function in plants to defend against insect herbivores, microbial
74 pathogens and neighboring competing plants (reviewed in Frey et al., 2009).
75 2,4-dihydroxy-1,4-benzoxazin-3-one (DIBOA) and its 7-methoxy analog DIMBOA
76 are the predominant representatives of benzoxazinoids in plants (Frey et al., 1997;
77 Frey et al., 2009) and these compounds have been identified in many plants, including
78 maize (*Zea mays*), wheat (*Triticum aestivum*), and barnyardgrass (*Echinochloa*
79 *crus-galli*) (Frey et al., 2009; Guo et al., 2017). In *Echinochloa*, a weed species,
80 DIBOA functions as an allelopathic compound against rice in paddy fields (Guo et al.,
81 2017).

82 The pathway of benzoxazinoid biosynthesis has been elucidated extensively in *Z.
83 mays* (Fig. 1a). The first step is the biosynthesis of indole from
84 indole-3-glycerolphosphate in the chloroplast by Bx1, a homolog of the α -subunit of
85 tryptophan synthase. Four P450 monooxygenases from CYP71C subfamily (Bx2 to
86 Bx5) add four oxygen atoms at four position of the indole to synthesize DIBOA, the
87 simplest benzoxazinoid (Frey et al., 1997). Two UDP-glucosyltransferases (UGTs),
88 Bx8 and Bx9, attach a glucose moiety to DIBOA to produce DIBOA-Glc (Rad et al.,
89 2001). Bx6, a 2-oxoglutarate-dependent dioxygenase (2-ODD), oxidizes DIBOA-Glc
90 to TRIBOA-Glc and subsequently Bx7 (OMT, O-methyltransferase) methylates
91 TRIBOA-Glc to produce DIMBOA-Glc (Jonczyk et al., 2008). Four OMTs (Bx10 to
92 Bx12, and Bx14) catalyze the conversion of DIMBOA-Glc to HDMBOA-Glc with
93 functional redundancy (Meihls et al., 2013). Bx13, a Bx6-like 2-ODD, converts
94 DIMBOA-Glc to TRIMBOA-Glc and TRIMBOA-Glc is further methylated to
95 produce DIM2BOA-Glc by Bx7 (Handrick et al., 2016). Bx14 catalyzes the reaction
96 from DIM2BOA-Glc to HDIM2BOA-Glc by methylation (Handrick et al., 2016).

97 In maize, six Bx genes (*Bx1-Bx5*, and *Bx8*) encoding enzymes functioning in the first
98 few steps of DIMBOA biosynthesis form a well-defined BGC (named the Bx cluster),
99 located at the tip region of chromosome 4 (Frey et al., 1997; Frey et al., 2009). Bx
100 genes have been identified in barnyardgrass within an intact cluster, and in wheat and
101 rye within disperse sub-clusters (Guo et al., 2017; Sue et al., 2011). Previous studies
102 indicated a monophyletic origin of Bx genes in benzoxazinoid biosynthesis (Frey et
103 al., 2009; Sue et al., 2011; Dutartre et al., 2012; Nützmann and Osbourn, 2014). The
104 progenitors have evolved Bx genes before the divergence of the Triticeae and the
105 Panicoideae (Sue et al., 2011; Dutartre et al., 2012). However, it should be noted that
106 limited sampling may bring over-interpretation of gene phylogeny. The frequent gene
107 loss and rearrangements, and patchy distribution across divergent species complicated

108 the understanding to the evolution of BGCs (Lind et al., 2017). The broad availability
109 of high-quality genomes of important crops and wild grasses has facilitated the
110 discovery of more BGCs (Guo et al., 2018) enabling us to trace the organization and
111 evolution of BGCs more comprehensively and reliably.

112 Here, we identified all Bx genes in the grass family using 40 high-quality monocot
113 genomes and further explored the origin of the Bx cluster and reconstructed its
114 evolutionary trajectory. Through analysis of sequence similarities, phylogenies and
115 genomic synteny, we provide evidence that the Bx clusters currently observed in
116 grasses originated from a complex evolution processes that included HT. The HT
117 event and further intense selection shaped the presence of the Bx cluster in the grass
118 family.

119 **Results**

120 **Identification and distribution of Bx genes in the grass family**

121 Key genes in the benzoxazinoid biosynthesis pathway of *Z. mays*, including those in
122 the Bx cluster (*Bx1* to *Bx5*, *Bx8*) and Bx genes dispersed in the genome (*Bx6*, *Bx7*,
123 *Bx9* to *Bx14*) were used as baits to search the Bx genes in the genomes of 39 other
124 species, covering five subfamilies of core grasses (Bambusoideae, Oryzoideae and
125 Pooideae from BOP lineage, and Chloridoideae and Panicoideae from PACMAD
126 lineage) and basal group of Poaceae (*Pharus latifolius*) (Fig. 1b; Table S1). All
127 analogues of Bx genes were identified based on their sequence similarities, phylogeny,
128 and genomic physical positions (Fig. 1b; Table S2).

129 In addition to the Bx clusters previously reported in *Z. mays* and *Echinochloa* (Frey,
130 1997; Guo et al., 2017), a Bx cluster was also found in *Dichanthelium oligosanthes*,
131 Scribner's rosette grass, a C3 panicoid grass (Fig. 1b). In the Triticeae, the Bx cluster
132 was split into three sub-clusters located on three different chromosomes. In total, 12
133 clusters were found in six grass species, of which 10 were in *Echinochloa* genus, with
134 one cluster in each monoploid genome (except one subgenome in *Echinochloa colona*
135 with two copies). The Bx gene orders in clusters were entirely consistent among *Z.*
136 *mays*, *D. oligosanthes* and *Echinochloa*, implying a single origin of the Bx clusters
137 (Fig. 1b). Although the Bx cluster was split in the Triticeae, the order of *Bx3* to *Bx5*
138 were same as the Bx cluster in the Panicoideae, which showed potential close
139 relationship between Bx genes in BOP and PACMAD lineages. *Bx6* was distant
140 1.31-Mb away from Bx cluster in *Z. mays* genome, although both the gene and cluster
141 were located on chromosome 4. *Bx6* was also identified in *Digitaria* and *Setaria* from
142 Panicoideae. *Bx6* was located on chromosome 2 in Triticeae and chromosome 9 in
143 *Echinochloa*. *Bx7* was an ancient gene, distributed in both BOP and PACMAD
144 lineages, in spite of massive loss.

145 **Formation and HT of the Bx cluster (*Bx1* to *Bx5* and *Bx8*)**

146 With *P. latifolius* from Pharoideae (N1 in Fig. 2a) serving as an outgroup, the gene
147 tree of *Bx1* was divided into two lineages of BOP and PACMAD, in line with the
148 species tree (Fig. 2a). *Bx1* genes formed a monoclade, composed by *Bx1* copies from
149 previous identified species with Bx clusters. To distinguish other Bx homologs from
150 *Bx1* copies, we called the other *Bx1* homologs as *Bx1* analogues. The *Bx1* analogues
151 were native and extraordinarily conserved across the grass family and were in good
152 synteny among genomes (Fig. 2b). The *Bx1* analogue AET5Gv21022100 (N0 in Fig.
153 2a) in *Aegilop tauschii* from Pooideae subfamily was syntenic to the *Bx1* analogue
154 PI3g34340 (N1) in *P. latifolius* from the basal lineage of Poaceae, as well as the *Bx1*
155 analogues LOC_Os3g58300 (N2) in *Oryza sativa* from Oryzoideae, Et_4A_034058
156 (N5) in *Eragrostis tef* from Chloridoideae, Sevir.9G054600 (N6) in *Setaria viridis*
157 from Paniceae, Panicoideae, and Zm00008a005484 (N8) in *Z. mays* from
158 Andropogoneae, Panicoideae. Sequence alignments showed they were conserved with
159 the domain of tryptophan synthase (Fig. 2c; Fig. S1). In contrast to the native *Bx1*
160 analogues, the clade of *Bx1* copies, which is nested between native analogues of
161 Chloridoideae and Panicoideae and sister to native copies of Panicoideae, is an extra
162 lineage-specific copy duplicated in the ancestor of Panicoideae (Fig. 2a). To ensure
163 the lineage-specific duplication event, local synteny of *Bx1* was scanned between *Z.*
164 *mays* and other genomes (Fig. 2d). The two flanking genomic regions of Bx cluster in
165 *Z. mays* showed high synteny to *Brachypodium distachyon* and *A. tauschii* from
166 Pooideae, *O. sativa* from Oryzoideae, *Sorghum bicolor* from Andropogoneae,
167 Panicoideae and *S. viridis* from Paniceae, Panicoideae. However, the Bx cluster was
168 entirely absent in these genomes. Considering the species phylogeny in the Poaceae,
169 the presence of Bx cluster in *Z. mays* is not ancestral but rather derived likely by
170 translocation from other genomic positions. Comparing the gene positions of Bx
171 clusters between *Z. mays* and *Echinochloa haploclada* from *Echinochloa*, their Bx
172 clusters were in a large syntenic block, and the orders of Bx genes were consistent,
173 implying the common origin of Bx cluster in their common ancestor before the
174 divergence of Andropogoneae and Paniceae, although there was a translocation
175 between them. Although the scaffold harboring the Bx cluster in *D. oligosanthes* was
176 short, five Bx genes were assembled and their orders were in line with those in *Z.*
177 *mays*, further supporting the origin of Bx cluster in ancestral Panicoideae. Sequence
178 alignment among *Bx1* genes and their native analogues showed *Bx1* lineage-specific
179 deletion and substitution, confirming a single origin of *Bx1* genes (Fig. 2c).

180 Within the *Bx1* clade, *Bx1* genes from the Triticeae form a monoclade nested among
181 *Bx1* genes from Panicoideae, indicating a single origin of these genes. Given that the
182 divergence between the Pooideae and Panicoideae is ancient, estimated at more than
183 50 million years ago (Ma et al., 2021) and native *Bx1* analogues are present, the
184 positional congruence of the Triticeae *Bx1* clade is not likely to be derived from
185 sexual hybridization, incomplete lineage sorting (ILS) or convergent evolution, but

186 HT from the Panicoideae (Fig. 2a). To further confirm the robustness of the
187 phylogeny of *Bx1* based on protein sequences, the phylogenetic trees of *Bx1* based on
188 coding sequence (CDS), codon12 (first and second codon positions) and codon3 (third
189 codon position) were built and the topologies confirmed the existence of gene
190 duplication and HT of *Bx1* (Fig. S2).

191 We built the phylogeny and scanned the genomic synteny of *Bx2-Bx5* and *Bx8* across
192 the whole Poaceae (Figs. S3 and S4). Native analogues of *Bx2* could be traced and
193 were highly conservative (Fig. S3). *Bx3*, *Bx4* and *Bx5* were three tandemly duplicated
194 CYP71C genes from cytochrome P450 superfamily. The native ancestral analogues of
195 *Bx3* to *Bx5* were massively lost but the retained analogues showed high genomic
196 synteny among subfamilies (Fig. S3). Based on the phylogeny of *Bx8*, *Bx8* genes were
197 products of native analogues and *Bx8* genes in the Triticeae were nested within those
198 in Panicoideae. *Bx9* was a maize-specific duplicate of *Bx8* (Fig. S4). In brief,
199 topologies of the five Bx genes (*Bx2-Bx5* and *Bx8*) were similar to what was observed
200 with *Bx1*, implying that Bx genes in the cluster were derived from a single origin and
201 Bx genes in Triticeae were likely acquired via HT of an intact Bx cluster from
202 Panicoideae.

203 To formally test the hypothesis of a Panicoideae origin of the Bx genes in Triticeae,
204 we reconstructed phylogenies under constraints that the Bx genes in Triticeae were
205 derived from Panicoideae Bx clade origin (PO) or outside of that clade (Non-PO). To
206 determine whether the PO phylogenies statistically were better explanations than
207 non-PO phylogenies we employed the approximately unbiased (AU) test, the
208 resampling estimated log-likelihood method (RELL), and the Shimodaira-Hasegawa
209 (SH) test. All tests of all Bx genes in cluster (*Bx1-Bx5* and *Bx8*) strongly rejected the
210 alternative hypothesis that Bx genes in Triticeae were not derived from Panicoideae
211 (all p values < 0.001 for AU tests) (Table S3). The results indicated that the obtained
212 tree topologies of all Bx genes were highly robust and reflected a HT event of Bx
213 genes from Panicoideae to Triticeae.

214 **Co-evolution between *Bx6* and the Bx cluster**

215 The *Bx6* gene whose encoded product is responsible for oxidizing DIBOA-Glc to
216 TRIBOA-Glc, the subsequent enzymatic step following the activity of the Bx cluster
217 genes in maize was located away from the Bx cluster (Fig. 1a). The phylogeny of *Bx6*
218 showed a similar pattern as *Bx1*, in that the Bx clade was duplicated from native *Bx6*
219 analogues and HT from Panicoideae was likely responsible for the inheritance of the
220 *Bx6* genes in Triticeae (Fig. 3a). Multi-species genome synteny analyses supported the
221 above results (Fig. 3b). Topology tests confirmed the robustness of *Bx6* phylogeny
222 and *Bx6* genes in Triticeae were nested within Panicoideae *Bx6* clade (p value < 0.001
223 for AU test) (Table S3). Hence, it is reasonable to speculate that *Bx6* co-evolved with
224 the Bx cluster with similar evolutionary trajectories. Notably, besides species
225 harboring Bx cluster, *Bx6* genes could be identified in *Setaria* and *Digitaria* from

226 Panicoideae (Fig. 1b; Fig. 3a). The wide distribution of *Bx6* across the Panicoideae
227 implies that *Bx6* originated by duplication at the common ancestor of Panicoideae. We
228 also observed that *Bx13* is a maize-specific duplicate of *Bx6* (Fig. 3a).

229 We also identified the presence of other dispersal Bx genes and built phylogenetic
230 trees to trace their evolutionary histories. *Bx7* catalyzes the conversion of
231 TRIBOA-Glc to DIMBOA-Glc (Fig. 1a). Only limited homologs could be identified
232 in grasses and its phylogenetic tree revealed that *Bx7* was conserved in evolution
233 without congruence to species phylogeny, although massive losses occurred (Fig. S5).
234 *Bx10/Bx11/Bx12/Bx14* encoded OMTs, acting as metabolic switches between
235 caterpillar and aphid resistance, by transforming DIMBOA-Glc to HDMBOA-Glc (Li
236 et al., 2018). From the phylogenetic analyses, the clade of *Bx10/Bx11/Bx12/Bx14* were
237 maize-specific duplicates, and was in a well-defined Panicoideae-specific clade (Fig.
238 S6). Within the clade, no Triticeae homologs were found. While in wheat (*T.*
239 *aestivum*), two OMT genes were characterized as functional DIMBOA-Glc OMTs
240 both designated as *TaBx10* but phylogenetically close to *Bx7*, rather than *Bx10* in *Z.*
241 *mays*, indicating the convergence in function of OMT genes in grasses during the
242 process of O-methylation (Li et al., 2018). This case implied that other paralogs of
243 OMTs could function as *Bx10/Bx11/Bx12/Bx14* in the process of O-methylation and
244 *Bx10/Bx11/Bx12/Bx14* are not compulsory for benzoxazinoid biosynthesis. Taken
245 together, *Bx7* and *Bx10/Bx11/Bx12/Bx14* were alternative and dispensable to some
246 extents in the Bx pathway. Hence in the following analyses, we focused on the Bx
247 cluster and *Bx6*.

248 **Constrained purifying selection on the Bx cluster**

249 Natural selection shapes the evolutionary dynamics of BGCs (Rokas et al., 2018; Slod
250 and Rokas, 2010; Liu et al., 2020). The selection pressure was measured by ω (dN/dS,
251 the ratio between non-synonymous sites substitution and synonymous sites
252 substitution) in each lineages of the individual Bx genes. Generally, both the Bx genes
253 and their native analogues were under purifying selection ($\omega < 1$). Compared to
254 outgroup lineage N-Chloridoideae (native Bx analogues in Chloridoideae),
255 constrained purifying selections were detected in all of the native Bx genes for
256 Panicoideae, with the exception of *Bx6*. The native analogues of *Bx6* in Panicoideae
257 suffered relaxed selection with a higher ω value, relative to other Bx native genes.
258 Compared to the native analogues, the ω values were lower for the Bx genes in
259 Panicoideae (B-Panicoideae) in cluster, while no difference in selection was found for
260 *Bx6*, which was not clustered together with Bx cluster. This selection bias in
261 Panicoideae corresponded to the presence-and-absence (PAV) of Bx genes and their
262 analogues (Fig. S7). The loss of native analogues of Bx genes in cluster was more
263 frequent than those of Bx genes in cluster, which mirrored the relaxed selection,
264 especially for *Bx2*, *Bx5* and *Bx8*. The presence of *Bx6* native analogues was highly
265 conserved, with one copy within one single analyzed genome, corresponding to
266 unbiased selection pressure compared to *Bx6* genes (Fig. S7). While in Triticeae, all of

267 the Bx genes exhibited constrained selection, despite the conserved presence of Bx
268 native analogues (Fig. 4a; Fig. S7). Although Bx genes in Triticeae were inferred to be
269 gained from Panicoideae, stronger selection was detected in Triticeae Bx genes than
270 those in Panicoideae, especially for *Bx1* and *Bx6*. To eliminate the effects by biases
271 from species sampling and PAV of Bx genes or native analogues, the selection
272 pressure was measured focusing on *Echinochloa* and Triticeae. The results further
273 confirmed the selection profiling of Bx genes (Fig. S8).

274 **Dominance of Bx cluster genes in polyploids**

275 In species whose genomes contained Bx genes, polyploids are commonly seen
276 (hexaploid *T. aestivum*, *E. crus-galli* and *E. colona*, and tetraploid *Triticum*
277 *dicoccoides* and *Echinochloa oryzicola* in this study). We investigated the effects of
278 polyploidization on Bx clusters or genes from three different views: PAV, selection,
279 and gene expression. Duplicated genes tend to be lost due to gene redundancy or
280 dosage effects in polyploids (Soltis and Soltis, 2009; Van de Peer et al., 2017). Not
281 unexpectedly, Bx genes tended to be lost in polyploids, especially in *Echinochloa*
282 (Fig. 1b; Fig. S7). In diploid *Echinochloa haploclada*, the core Bx gene set was intact,
283 while Bx losses were found in three polyploid *Echinochloa* species. In this case, only
284 one intact copy of the core Bx gene set was retained in one subgenome in each species
285 (e.g. BT in *E. oryzicola*, CH in *E. crus-galli* and DH2 in *E. colona*).

286 The selection strengths to homologous duplicates usually varies in polyploids (Ye et
287 al., 2020). The genomes of *E. crus-galli* and its progenitors (*E. oryzicola* and *E.*
288 *haploclada*) provided a model to study the selection dominance of multi-copy
289 homologous Bx genes and we calculated the ω values of Bx genes in each subgenome
290 between *E. crus-galli* and its parents (Fig. 4b). Bx genes in subgenome A were
291 generally under relaxed purifying selection, with higher ω values compared to
292 subgenomes B and C (e.g. *Bx1* and *Bx8*). For native analogues, the selection on
293 subgenome A copy was relaxed in the example of *Bx6*. In general, biased selection
294 was observed for Bx genes in *Echinochloa* and Bx genes in subgenome A were under
295 less constrained selection in the post-hexaploidization.

296 Expression dominance has been commonly observed in polyploids (Ye et al., 2020;
297 Van de Peer et al., 2017). Response contribution of subgenomes (relative changes of
298 expressed transcripts from each subgenome, compared to the total expression change)
299 is also biased among subgenomes (Ye et al., 2020). To explore the effect of
300 polyploidization on gene expression of multi-copy Bx genes, we compared the
301 expression levels of Bx genes in *E. crus-galli* with and without allelopathy treatment
302 (i.e., co-culture with rice) (Guo et al., 2017). Expression and response contribution
303 were both suppressed for Bx genes in subgenome AH (Fig. 4c). The dominance of
304 selection and gene expression or response were associated such that Bx genes in
305 subgenome A suffering less constrained selection, were suppressed in expression and

306 response contribution (Fig. S8).

307 **Discussion**

308 **Evolutionary trajectory of the Bx gene cluster in grass**

309 Given that the Bx cluster and *Bx6* catalyze the first seven steps in the benzoxazinoid
310 biosynthesis and are sufficient to synthesize benzoxazinoid compounds without other
311 *Bx* genes (e.g. in wheat), we considered Bx cluster (*Bx1* to *Bx5* and *Bx8*) and *Bx6* as
312 the core set of Bx genes in the pathway (Fig. 1a). Based upon the results from all of
313 the phylogenetic analyses of core Bx genes, the evolutionary trajectory of Bx genes
314 could be assumed (Fig. 5). Native Bx analogues could be found in all phylogenetic
315 trees of core Bx genes and were evolutionarily conserved with good genomic synteny
316 among subfamilies. Therefore, the Bx genes in the Bx cluster and *Bx6* should
317 originate from duplication of native Bx analogues. Previous studies proposed *Bx1*
318 evolved from duplication and modification of the alpha subunit of the tryptophan
319 synthase (TSA) (Grun et al., 2005; Frey et al., 2009). Here, we comprehensively
320 identified the native analogues of the Bx genes. Gene duplication, followed by
321 neofunctionalization and/or subfunctionalization, and recurrent genomic translocation,
322 gathered Bx genes together to form Bx cluster (Fig. 5). The processes of gene
323 duplication and translocation may have been induced by activities of retrotransposon
324 elements.

325 The positional relationship between Bx cluster and *Bx6* appears to be dynamic. *Bx6*
326 and the Bx cluster are both located on chromosome 4 in *Z. mays* while they are
327 separated into different chromosomes in Triticeae and *Echinochloa* (Fig. 1b).
328 However, given that the genes in Bx cluster and *Bx6* showed almost the same
329 evolutionary phylogenies and *Bx6* catalyzes the reaction following those catalyzed by
330 the gene products encoded in the Bx cluster, we speculated that *Bx6* co-evolved with
331 the Bx cluster and were located in an ancient Bx cluster (Fig. 5). It is difficult to date
332 accurately when the ancient Bx cluster formed, due to the unreliability of dating based
333 on individual genes. However, we could infer that the duplication of Bx genes
334 occurred at the common ancestor of Paniceae and Andropogoneae (supported by the
335 *Bx1* and *Bx6* phylogenetic trees) or a common ancestor of Panicoideae and
336 Chloridoideae (supported by the *Bx2* and *Bx8* phylogenies), and the Bx cluster was
337 organized before the divergence of Paniceae and Andropogoneae.

338 Previously it was proposed that the genes of Bx biosynthesis in the grasses were of
339 monophyletic origin before the divergence of the Triticeae and Panicoideae (Frey et
340 al., 2009; Grun et al., 2005). Here, the integrated evidence indicates strongly that the
341 Bx genes in Triticeae originated from Panicoideae via HT (Fig. 5). Triticeae and
342 Panicoideae diverged more than 50 mya, which ruled out the possibility of natural

343 hybridization between them and ILS. Previous studies also found that no
344 benzoxazinoid biosynthesis can be detected in *Brachypodium* (basal genus in
345 Pooideae) (Frey et al., 2009), corresponding to the absence of identifiable Bx genes in
346 two *Brachypodium* genomes (Fig. 1b). Benzoxazinoids could be produced in wild
347 *Hordeum* but not in cultivated *Hordeum* (*H. vulgare* in Triticeae), indicating the Bx
348 genes were retained in wild *Hordeum* but lost in cultivated *Hordeum* (Grun et al.,
349 2005; Sue et al., 2011). Therefore, it was speculated that the transfer occurred at the
350 common ancestor of Triticeae after the divergence with *Brachypodium*. To trace the
351 potential donor of Bx genes, we considered the topology between Bx genes of
352 Triticeae, Andropogoneae (e.g. *Z. mays*) and Paniceae (e.g. *Echinochloa*, *D.*
353 *oligosanthes*) (Fig. 5). Four Bx genes supported the common ancestor of
354 Andropogoneae and Paniceae as the donor of Bx genes in Triticeae. However, three
355 Bx genes showed discordant topology, implying the transfer event may have taken
356 place at a time close to the divergence between Andropogoneae and Paniceae, which
357 would result in an ILS-like phylogeny. With massive genome reshuffling in Triticeae,
358 the intact ancient cluster (Bx cluster plus *Bx6*) was split into segments and scattered
359 on four chromosomes (Frey et al., 2009). Gene loss resulted in the partial loss of Bx
360 genes (e.g. *T. urartu*) and entire loss (e.g. *H. vulgare*) in Triticeae. It is noteworthy
361 that phylogenies of individuals genes based on different sequence types (e.g., amino
362 acid or nucleotide sequences), different substitution models, or other different
363 parameters, are sometimes misleading. For example, the phylogenies of *Bx1* based on
364 amino acid sequences and nucleotide sequences (CDS, codon12 and codon3) were
365 incongruent since in Triticeae and Andropogoneae (*Z. mays*) *Bx1* formed a monoclade
366 whereas *Bx1* formed a monoclade in Triticeae and Paniceae (Fig. 2a; Fig. S2).

367 In Panicoideae, genes in the Bx cluster and *Bx6* all showed a single common origin
368 before the divergence of Andropogoneae and Paniceae based on data from analysis of
369 gene phylogeny, genomic synteny and Bx gene orders. The common ancestor of
370 Panicoideae had a cluster of Bx genes including *Bx6*. After the divergence between
371 Andropogoneae and Paniceae, different genomic rearrangements happened in the two
372 tribes (Fig. 5). In Andropogoneae, Bx cluster and *Bx6* were retained in *Z. mays* while
373 being lost completely in other species (e.g., *S. bicolor* and *Miscanthus sinensis*).
374 Furthermore, *Bx6* was separated away from the Bx cluster by translocation in *Z. mays*,
375 although they were still on the short arm of chromosome 4. In Paniceae, massive
376 losses were found in Bx genes. The Bx cluster was retained in *D. oligosanthes* but
377 *Bx6* was lost. In contrast, *Bx6* was retained in *Setaria* and *Digitaria*, but Bx clusters
378 were missing. Both Bx cluster and *Bx6* were absent in *Panicum*, *Cenchrus* and
379 *Alloteropsis*. *Echinochloa* is the only genus in which the Bx cluster and *Bx6* are on
380 two chromosomes (Fig. 1b).

381 **HT of gene cluster in plants**

382 HT is an important driving force of trait innovation in various levels of organisms

383 (Soucy et al., 2015). In plants, HT were commonly seen between parasites and
384 corresponding host species, and between grafting rootstock and scion, due to intimate
385 physical cell-to-cell contacts (Kim et al., 2014; Fuentes et al., 2014). HT could also
386 emerge without direct contact, a phenomenon that has been studied somewhat in
387 grasses (Hibdige et al., 2021; Dunning et al., 2019; Park et al., 2021). A total of 135
388 transferred candidate genes were identified across 17 grass species (Hibdige et al.,
389 2021). Besides gene elements, transposon elements have also been detected to have
390 been transferred among divergent grass species, as in the case for *Echinochloa* genus
391 and *Oryza punctata* lineage (Park et al., 2021). In these reported HT events, a few
392 have involved large genomic segments. A block containing 10 protein-coding genes
393 was transmitted from *Iseilema membranaceum* (Andropogoneae) to *Alloteropsis*
394 *semialata* (Panicoideae) (Dunning et al., 2019). Here, we provided strong,
395 unambiguous evidence that established that at least seven Bx biosynthetic genes in
396 Triticeae are derived from donor ancestral Panicoideae as an intact ancient Bx cluster
397 (including *Bx6*) via HT (Fig. 5). HT occurred more frequently between closely related
398 species (Soucy et al., 2015; Hibdige et al., 2021), while Triticeae and Panicoideae
399 were split more than 50 mya. The DNA transfer events from Panicoideae to Triticeae
400 have been reported before. Several nuclear ribosomal DNA (rDNA) sequences in wild
401 *Hordeum* and *Elymus* species were *Panicum*-like, indicating their foreign origins
402 (Mahelka et al., 2010; Mahelka et al., 2017). Recently, a large chromosomal segment
403 (~68 kb long) harboring five stress-related protein-coding genes, has been reported to
404 be transferred from *Panicum* to wild *Hordeum* species (Mahelka et al., 2021; Verhage,
405 2021). Some of these genes remained functional in the recipient *Hordeum* genomes.
406 These cases reflected that the transfer of exotic DNA was not as rare among plants as
407 previously supposed (Mahelka et al., 2021), at least in grass from Panicoideae to
408 Triticeae. It is reasonable to infer that more HT events could be detected from
409 Panicoideae to Triticeae in future studies and this unidirectional and biased HT
410 pathway has accelerated the capacity to environmental stress in Triticeae.

411 Compared to prior reported plant-to-plant transfers, here we provide the first case of
412 HT event of an intact gene cluster functioning in the biosynthesis of multi-effect
413 chemical compounds in plants. The clustering of a series of biosynthetic genes
414 facilitates the heritage and stress response by co-inheritance and co-expression in
415 organisms, which is an ingenious invention in the long-term adaptive evolution. When
416 combining HT and gene clustering together, it offers a rapid strategy to acquire highly
417 efficient weapons to defend external stress. It seems this phenomenon is rare but
418 universal in the kingdom of life, because transfers of BGC have been detected in
419 fungi (Khaldi et al., 2008; Slot and Rokas, 2011; Reynolds et al., 2018). As for how
420 the transfer between phylogenetically distant plant species occurs, one possible
421 explanation is that it takes place because of occasional contact (e.g., like natural
422 grafting) or is facilitated by vector transfer (e.g., insects, fungi, viruses) (Xia et al.,
423 2021; Wang et al., 2020). The transfer of DNA between insect vectors and plants has
424 been reported recently. For example, whitefly has acquired the plant-derived phenolic
425 glucoside malonyltransferase gene *BtPMA1* from a plant host enabling it to

426 neutralize plant toxin phenolic glucosides (Xia et al., 2021). Similarly, the transfer of
427 *Fhb7* from fungus *Epichloë* to *Thinopyrum* wheatgrass (Triticeae) provides broad
428 resistance to both *Fusarium* head blight and crown rot in wheat (Wang et al., 2020).

429 **Selection on gene clusters**

430 The driving forces for the organization and maintenance of BGCs remain in debate.
431 Nevertheless, it is widely accepted that natural selection must inevitably shape their
432 evolution. The selection analysis to BGCs were rare, due to limited identifications of
433 BGCs and comparable sequences. In Saccharomycetes, the galactose BGCs are
434 widely conserved in terms of sequence and function, suggesting the influence of
435 long-term purifying selection (Slot and Rokas, 2010). Balancing selection also plays
436 roles in maintaining diversity of BGCs, as in the case of the aflatoxin gene cluster in
437 fungus *Aspergillus parasiticus* (Carbone et al., 2007). In *Arabidopsis*, the thalianol
438 BGC appear to be under relaxed selection when compared with genes in the
439 phytosterol biosynthetic pathway, but is still under strong purifying selection (Liu et
440 al., 2020). In this study, we utilized multiple copies of Bx genes and their
441 corresponding native analogues across a broad range of grass species to profile the
442 selection landscapes of Bx clusters. Similar to what was found in the thalianol BGC,
443 Bx genes in both Panicoideae and Triticeae showed purifying selection. When
444 compared with native analogues, the selection on Bx genes in cluster was more
445 constrained (Fig. 4a). The selection pressure was similar for *Bx6* and its native
446 analogues in Panicoideae, possibly the result of dispersal of *Bx6* away from other core
447 Bx genes in cluster. It is suggested that lateral pathway genes were less constrained
448 than the early pathway genes in the biosynthesis of thalianol in *Arabidopsis* (Liu et al.,
449 2020). Here, we noticed that *Bx6*, functioning after the reactions by genes in the Bx
450 cluster, exhibited the highest ω value among the seven core Bx genes (Fig. 4a). *Bx8*,
451 which is within Bx cluster, was less constrained than other Bx genes in the cluster. All
452 identified Bx clusters or genes were transcribed in the various genomes and
453 functioned in stress response, further indicating purifying selection in conserving the
454 functions of Bx clusters.

455 **Subgenome dominance of gene clusters in polyploids**

456 We found that several species identified to have Bx clusters or whole-set core Bx
457 genes are polyploids (Fig. 1b). In most cases, polyploidization provides stronger
458 growth and higher tolerance to environmental stress than original diploid status (Soltis
459 and Soltis, 2009; Van de Peer et al., 2017). On this basis, biosynthetic gene clustering
460 further offers these species a powerful weapon to response external stimulus. To some
461 extent, the existence of BGCs in these polyploids assisted in allowing these species to
462 become main crops under artificial selection (e.g., hexaploid and tetraploid wheat, and
463 paleo-tetraploid maize) or successful agricultural weeds (hexaploid and tetraploid
464 barnyardgrass). In polyploids, the subgenome dominance usually exists in selection

465 and gene expression. The dominance of BGCs in polyploids has not been well studied.
466 Differential expression of Bx genes in hexaploid wheat was detected (Nomura et al.,
467 2005). The main contribution in hexaploid and tetraploid wheat is by subgenome B.
468 In the hexaploid barnyardgrass *E. crus-galli*, we found an obvious suppression in
469 expression of Bx genes on subgenome AH, compared with other two subgenomes
470 (Fig. 4c). The dominance pattern of Bx genes was consistent with overall profiling
471 across whole subgenomes with a significantly higher proportion of suppressed genes
472 occurring in subgenome AH (Ye et al., 2020). Highly expressed metabolic genes tend
473 to be retained preferentially after polyploidization due to selective pressure (Gout et
474 al., 2009). The selection on Bx genes on subgenome A was indeed less constrained
475 than that on other two Bx homologs (Fig. 4b; Fig. S8). Furthermore, three out of four
476 Bx gene losses in the *E. crus-galli* pedigree were from subgenome A (Fig. S7). Gene
477 loss is the extreme result of relaxed selection. Differential transposon element
478 contents among three subgenomes may be one of the driving forces of expression
479 suppression and relaxed selection on subgenome A in *Echinochloa*. More transposon
480 elements on subgenome A somewhat increased the degree of methylation, which will
481 inactivate the gene expression (Ye et al., 2020). As seen in the cases of wheat
482 (Nomura et al., 2005) and barnyardgrass, the genomic bias in the expression of Bx
483 genes in polyploids was putatively derived from the diploid progenitors. Subsequent
484 selection would shape the presence-and-absence of Bx genes on each genome. Clearly,
485 additional studies are needed to decipher the mechanism of dominance of BGCs in
486 polyploids.

487 Materials and Methods

488 Datasets

489 Amino acid sequences of whole-genome protein and coding nucleotide sequences of
490 39 grass genomes (including grass basal group: *Pharus latifolius*; Oryzoideae: *Zizania*
491 *latifolia*, *Leersia perrieri*, *Oryza brachyantha*, *Oryza punctata*, *Oryza rufipogon*,
492 *Oryza sativa*, *Oryza barthii* and *Oryza glaberrima*; Bambusoideae: *Olyra latifolia* and
493 *Bonia amplexicaulis*; Pooideae: *Brachypodium distachyon*, *Brachypodium stacei*,
494 *Hordeum vulgare*, *Triticum aestivum*, *Triticum dicoccoides*, *Aegilops tauschii* and
495 *Triticum urartu*; Chloridoideae: *Eragrostis curvula*, *Eragrostis nindensis*, *Eragrostis*
496 *tef*, *Oropetium thomaeum*, *Cleistogenes songorica* and *Zoysia japonica*; Panicoideae:
497 *Zea mays*, *Sorghum bicolor*, *Miscanthus sinensis*, *Dichanthelium oligosanthes*,
498 *Digitaria exilis*, *Panicum hallii*, *Setaria italica*, *Setaria viridis*, *Cenchrus purpureus*,
499 *Cenchrus americanus*, *Alloteropsis semialata*, *Echinochloa crus-galli*, *Echinochloa*
500 *oryzicola*, *Echinochloa colona* and *Echinochloa haploclada*) and outgroup species
501 *Ananas comosus* were downloaded from Phytozome
502 (<https://phytozome-next.jgi.doe.gov>) and NGDC(<https://ngdc.cncb.ac.cn>)(Table S1).
503 Polyploids with chromosome-level assemblies (hexaploid *T. aestivum*, *E. crus-galli*
504 and *E. colona*, and tetraploid *T. dicoccoides*, *E. tef*, *C. songorica*, *M. sinensis*, *D.*

505 *exilis*, *C. purpureus* and *E. oryzicola*) were split into subgenomes (Table S1). A total
506 of 53 diploid or diploid-like genomes were used to construct grass phylogeny.
507 OrthoFinder was used to identify single-copy orthologs in the 40 species genomes
508 (Emms and Kelly, 2019). Individual phylogenetic trees of 45 single-copy genes were
509 constructed using IQ-TREE (v1.6.12) with the best substitution model Model Finder
510 (Nguyen et al., 2015) and integrated into a species tree using ASTRAL (v5.7.4)
511 (Zhang et al., 2018). The divergence time was adopted from TimeTree database
512 (www.timetree.org) (Kumar et al., 2017).

513 **Identification of Bx genes in grass**

514 The protein sequences of Bx genes in *Z. mays* (*Bx1*, Zm00008a014942; *Bx2*,
515 Zm00008a014943; *Bx3*, Zm00008a014937; *Bx4*, Zm00008a014938; *Bx5*,
516 Zm00008a014940; *Bx6*, Zm00008a014884; *Bx7*, Zm00008a015292; *Bx8*,
517 Zm00008a014941; *Bx9*, Zm00008a003056; *Bx10*, Zm00008a001636; *Bx11*,
518 Zm00008a001638; *Bx12*, Zm00008a001639; *Bx13*, Zm00008a010377; *Bx14*,
519 Zm00008a008314) were used as baits to search Bx genes in grass species by BLASTP.
520 The homologs of individual Bx genes were filtered by parameters of *e*-value less than
521 1e-30 and identity greater than 50%. Homologs were then aligned using MAFFT
522 (v7.310) (Katoh and Standley, 2013) and phylogenetic trees were built using
523 IQ-TREE under the substitution model parameter ModelFinder with 1000 times of
524 bootstrap replicates (Nguyen et al., 2015). Using the homologs in *A. comosus* or *P.*
525 *latifolius* as outgroup, we only kept the closest homologous copies of Bx genes across
526 the grass family as native analogues. For Bx trees where Bx homologs could not be
527 found in outgroup species *A. comosus* and *P. latifolius*, we referred to the topological
528 relationship among homologs in five subfamilies, to determine Bx genes and their
529 native analogues.

530 **Phylogenetic analysis**

531 Bx homologs (Bx genes and native analogues) were re-aligned using MAFFT (Katoh
532 and Standley, 2013). Substitution models were selected using ModelFinder and the
533 maximum-likelihood phylogenetic trees were reconstructed by IQ-TREE using
534 Ultrafast Bootstrap Approximation (1000 replicates) for branch support (Nguyen et al.,
535 2015). Tests of tree topologies, including RELL approximation,
536 Shimodaira-Hasegawa (SH) test and approximately unbiased (AU) test, were
537 performed using IQ-TREE with 10000 bootstrap replicates (Nguyen et al., 2015). To
538 eliminate the effects of protein sequence alignment gaps, we also used Gblocks
539 (Castresana, 2000) to remove gaps from alignments with parameter “-b4=5 -b5=h”.
540 The trimmed alignments of conserved regions were used in topology tests. The
541 phylogeny constructions of Bx genes based on coding sequence, codon12 (first and
542 second positions within a codon) and codon3 (third position within a codon) were
543 performed using MAFFT for alignment and IQ-TREE with the best substitution
544 model (ModelFinder) and 1000-replicate ultrafast bootstrap analysis (Nguyen et al.,
545 2015).

546 **Genome synteny analysis**

547 Whole-genome protein sequences were compared pairwise among the 39 grass
548 species using BLASTP. The best hit of each blast was kept. We also required that the
549 *e*-value should be less than 1e-30 and identity greater than 50%. According to the
550 physical positions of the genes on each chromosome of each species, the genes or
551 proteins were ordered. We performed the gene-to-gene synteny analysis among grass
552 species based on their orders within each genome.

553 **Selection analysis**

554 Selection pressure was measured by indicator ω , the ratio between non-synonymous
555 substitution rate (dN) and synonymous substitution rate (dS), with usually $\omega = 1$
556 meaning neutral mutations, $\omega < 1$ purifying selection, and $\omega > 1$ diversifying positive
557 selection. Bx homologs whose lengths of CDS or protein sequences were longer than
558 two-times or shorter than half of the lengths of Bx genes or proteins in *Z. mays* were
559 removed. Within each clade in the phylogenetic tree of each Bx gene, only one copy
560 was kept in following analysis within one (sub)genome for tandem duplicates and the
561 copy of duplicates with abnormal sequence length (usually much shorter) was
562 removed. The CDS and protein sequences were aligned using MAFFT and PAL2NAL
563 (Suyama et al., 2006). The dN and dS values were calculated using KaKs_calculator
564 in the NG model for all pairs of genes within each clade (Bx clade or native analogue
565 clade) (Zhang et al., 2006).

566 **Gene expression analysis**

567 RNA-seq data from an analysis of *E. crus-galli* seedlings under the conditions of
568 mono-culture and co-culture with rice were downloaded from NCBI (BioProject
569 PRJNA268892) (Guo et al., 2017) and the low-quality reads were removed using the
570 NGSQC toolkit (v2.3.348) (Patel and Jain, 2012). The clean reads were mapped to the
571 chromosome-level reference genome of *E. crus-galli* (STB08) using TopHat (v2.1.1)
572 (Trapnell et al., 2012). Relative gene expression levels were quantified and
573 normalized to FPKM values using Cufflinks (v2.2.1) (Trapnell et al., 2012). The
574 determination of expression dominance and response contributions of Bx genes in
575 subgenomes of *E. crus-galli* followed a previously described approach (Ye et al.,
576 2020).

577 **Reference**

1. S. Boycheva, L. Daviet, J. Wolfender, T. B. Fitzpatrick, The rise of operon-like gene clusters in plants. *Trends Plant Sci.* **19**, 447–459 (2014).
2. I. Carbone, J. L. Jakobek, J. H. Ramirez-prado, B. W. Horn, Recombination, balancing selection and adaptive evolution in the aflatoxin gene cluster of *Aspergillus parasiticus*. *Mol. Ecol.* **16**, 4401–4417 (2007).
3. J. Castresana, Selection of Conserved Blocks from Multiple Alignments for Their Use in Phylogenetic Analysis. *Mol. Biol. Evol.* **17**, 540–552 (2000).

585 4. L. T. Dunning, *et al.*, Lateral transfers of large DNA fragments spread
586 functional genes among grasses. *Proc. Natl. Acad. Sci.* **116**, 4416–4425 (2019).

587 5. L. Dutartre, F. Hilliou, R. Feyereisen, Phylogenomics of the benzoxazinoid
588 biosynthetic pathway of Poaceae: gene duplications and origin of the Bx cluster.
589 *BMC Evol. Biol.* **12**, 64 (2012).

590 6. D. M. Emms, S. Kelly, OrthoFinder: phylogenetic orthology inference for
591 comparative genomics. *Genome Biol.* **20**, 238 (2019).

592 7. M. Frey, *et al.*, Analysis of a Chemical Plant Defense Mechanism in Grasses.
593 *Science (80-).* **277**, 696–699 (1997).

594 8. M. Frey, K. Schullehner, R. Dick, A. Fießelmann, A. Gierl, Benzoxazinoid
595 biosynthesis, a model for evolution of secondary metabolic pathways in plants.
596 *Phytochemistry* **70**, 1645–1651 (2009).

597 9. I. Fuentes, S. Stegemann, H. Golczyk, D. Karcher, R. Bock, Horizontal
598 genome transfer as an asexual path to the formation of new species. *Nature* **511**,
599 232–235 (2014).

600 10. E. A. Gladyshev, M. Meselson, I. R. Arkhipova, Massive Horizontal Gene
601 Transfer in Bdelloid Rotifers. *Science (80-).* **320**, 1210–1213 (2008).

602 11. J.-F. Gout, L. Duret, D. Kahn, Differential Retention of Metabolic Genes
603 Following Whole-Genome Duplication. *Mol. Biol. Evol.* **26**, 1067–1072
604 (2009).

605 12. S. Grün, M. Frey, A. Gierl, Evolution of the indole alkaloid biosynthesis in the
606 genus Hordeum: Distribution of gramine and DIBOA and isolation of the
607 benzoxazinoid biosynthesis genes from *Hordeum lechleri*. *Phytochemistry* **66**,
608 1264–1272 (2005).

609 13. L. Guo, *et al.*, Genomic Clues for Crop–Weed Interactions and Evolution.
610 *Trends Plant Sci.* **23**, 1102–1115 (2018).

611 14. L. Guo, *et al.*, *Echinochloa crus-galli* genome analysis provides insight into its
612 adaptation and invasiveness as a weed. *Nat. Commun.* **8**, 1031 (2017).

613 15. V. Handrick, *et al.*, Biosynthesis of 8-O-methylated benzoxazinoid defense
614 compounds in maize. *Plant Cell* **28**, tpc.00065.2016 (2016).

615 16. S. G. S. Hibdige, P. Raimondeau, P. Christin, L. T. Dunning, Widespread
616 lateral gene transfer among grasses. *New Phytol.* **230**, 2474–2486 (2021).

617 17. R. Jonczyk, *et al.*, Elucidation of the Final Reactions of DIMBOA-Glucoside
618 Biosynthesis in Maize: Characterization of Bx6 and Bx7. *Plant Physiol.* **146**,
619 1053–1063 (2008).

620 18. K. Katoh, D. M. Standley, MAFFT Multiple Sequence Alignment Software
621 Version 7: Improvements in Performance and Usability. *Mol. Biol. Evol.* **30**,
622 772–780 (2013).

623 19. N. Khaldi, J. Collemare, M. Lebrun, K. H. Wolfe, Evidence for horizontal
624 transfer of a secondary metabolite gene cluster between fungi. *Genome Biol.* **9**,
625 R18 (2008).

626 20. G. Kim, M. L. LeBlanc, E. K. Wafula, C. W. DePamphilis, J. H. Westwood,
627 Genomic-scale exchange of mRNA between a parasitic plant and its hosts.
628 *Science (80-).* **345**, 808–811 (2014).

629 21. J. Kominek, *et al.*, Eukaryotic Acquisition of a Bacterial Operon. *Cell* **176**,
630 1356–1366.e10 (2019).

631 22. S. Kumar, G. Stecher, M. Suleski, S. B. Hedges, TimeTree: A Resource for
632 Timelines, Timetrees, and Divergence Times. *Mol. Biol. Evol.* **34**, 1812–1819
633 (2017).

634 23. B. Li, *et al.*, Convergent evolution of a metabolic switch between aphid and
635 caterpillar resistance in cereals. *Sci. Adv.* **4**, 1–15 (2018).

636 24. X. Li, *et al.*, Origin and Evolution of Fusidane-Type Antibiotics Biosynthetic
637 Pathway through Multiple Horizontal Gene Transfers. *Genome Biol. Evol.* **12**,
638 1830–1840 (2020).

639 25. A. L. Lind, *et al.*, Drivers of genetic diversity in secondary metabolic gene
640 clusters within a fungal species. *PLOS Biol.* **15**, e2003583 (2017).

641 26. Z. Liu, *et al.*, Formation and diversification of a paradigm biosynthetic gene
642 cluster in plants. *Nat. Commun.* **11**, 5354 (2020).

643 27. V. Mahelka, D. Kopecký, Gene Capture from across the Grass Family in the
644 Allohexaploid *Elymus repens* (L.) Gould (Poaceae, Triticeae) as Evidenced by
645 ITS, GBSSI, and Molecular Cytogenetics. *Mol. Biol. Evol.* **27**, 1370–1390
646 (2010).

647 28. V. Mahelka, *et al.*, A *Panicum* - derived chromosomal segment captured by
648 *Hordeum* a few million years ago preserves a set of stress - related genes.
649 *Plant J.* **105**, 1141–1164 (2021).

650 29. V. Mahelka, *et al.*, Multiple horizontal transfers of nuclear ribosomal genes
651 between phylogenetically distinct grass lineages. *Proc. Natl. Acad. Sci.* **114**,
652 1726–1731 (2017).

653 30. L. N. Meihls, *et al.*, Natural Variation in Maize Aphid Resistance Is Associated
654 with 2,4-Dihydroxy-7-Methoxy-1,4-Benzoxazin-3-One Glucoside
655 Methyltransferase Activity. *Plant Cell* **25**, 2341–2355 (2013).

656 31. L. Nguyen, H. A. Schmidt, A. von Haeseler, B. Q. Minh, IQ-TREE: A Fast and
657 Effective Stochastic Algorithm for Estimating Maximum-Likelihood
658 Phylogenies. *Mol. Biol. Evol.* **32**, 268–274 (2015).

659 32. T. Nomura, A. Ishihara, R. C. Yanagita, T. R. Endo, H. Iwamura, Three
660 genomes differentially contribute to the biosynthesis of benzoxazinones in
661 hexaploid wheat. *Proc. Natl. Acad. Sci.* **102**, 16490–16495 (2005).

662 33. H. Nützmann, A. Huang, A. Osbourn, Plant metabolic clusters – from genetics
663 to genomics. *New Phytol.* **211**, 771–789 (2016).

664 34. H.-W. Nützmann, A. Osbourn, Gene clustering in plant specialized metabolism.
665 *Curr. Opin. Biotechnol.* **26**, 91–99 (2014).

666 35. H.-W. Nützmann, C. Scazzocchio, A. Osbourn, Metabolic Gene Clusters in
667 Eukaryotes. *Annu. Rev. Genet.* **52**, 159–183 (2018).

668 36. M. Park, P. Christin, J. L. Bennetzen, Sample Sequence Analysis Uncovers
669 Recurrent Horizontal Transfers of Transposable Elements among Grasses. *Mol.*
670 *Biol. Evol.* **38**, 3664–3675 (2021).

671 37. R. K. Patel, M. Jain, NGS QC Toolkit: A Toolkit for Quality Control of Next
672 Generation Sequencing Data. *PLoS One* **7**, e30619 (2012).

673 38. H. T. Reynolds, *et al.*, Horizontal gene cluster transfer increased hallucinogenic
674 mushroom diversity. *Evol. Lett.* **2**, 88–101 (2018).

675 39. A. Rokas, J. H. Wisecaver, A. L. Lind, The birth, evolution and death of
676 metabolic gene clusters in fungi. *Nat. Rev. Microbiol.* **16**, 731–744 (2018).

677 40. J. M. Saarela, *et al.*, A 250 plastome phylogeny of the grass family (Poaceae):
678 topological support under different data partitions. *PeerJ* **6**, e4299 (2018).

679 41. J. C. Slot, A. Rokas, Horizontal Transfer of a Large and Highly Toxic
680 Secondary Metabolic Gene Cluster between Fungi. *Curr. Biol.* **21**, 134–139
681 (2011).

682 42. J. C. Slot, A. Rokas, Multiple GAL pathway gene clusters evolved
683 independently and by different mechanisms in fungi. *Proc. Natl. Acad. Sci.* **107**,
684 10136–10141 (2010).

685 43. P. S. Soltis, D. E. Soltis, The Role of Hybridization in Plant Speciation. *Annu.*
686 *Rev. Plant Biol.* **60**, 561–588 (2009).

687 44. S. M. Soucy, J. Huang, J. P. Gogarten, Horizontal gene transfer: building the
688 web of life. *Nat. Rev. Genet.* **16**, 472–482 (2015).

689 45. M. Sue, C. Nakamura, T. Nomura, Dispersed Benzoxazinone Gene Cluster:
690 Molecular Characterization and Chromosomal Localization of
691 Glucosyltransferase and Glucosidase Genes in Wheat and Rye. *Plant Physiol.*
692 **157**, 985–997 (2011).

693 46. M. Suyama, D. Torrents, P. Bork, PAL2NAL: robust conversion of protein
694 sequence alignments into the corresponding codon alignments. *Nucleic Acids*
695 *Res.* **34**, W609–W612 (2006).

696 47. A. M. Takos, F. Rook, Why biosynthetic genes for chemical defense
697 compounds cluster. *Trends Plant Sci.* **17**, 383–388 (2012).

698 48. S. M. Tralamazza, L. O. Rocha, U. Oggenfuss, B. Corrêa, D. Croll, Complex
699 Evolutionary Origins of Specialized Metabolite Gene Cluster Diversity among
700 the Plant Pathogenic Fungi of the *Fusarium graminearum* Species Complex.
701 *Genome Biol. Evol.* **11**, 3106–3122 (2019).

702 49. C. Trapnell, *et al.*, Differential gene and transcript expression analysis of
703 RNA-seq experiments with TopHat and Cufflinks. *Nat. Protoc.* **7**, 562–578
704 (2012).

705 50. Y. Van de Peer, E. Mizrachi, K. Marchal, The evolutionary significance of
706 polyploidy. *Nat. Rev. Genet.* **18**, 411–424 (2017).

707 51. L. Verhage, A hitchhiker’s guide to foreign genomes. *Plant J.* **105**, 1139–1140
708 (2021).

709 52. U. Von Rad, R. Hüttl, F. Lottspeich, A. Gierl, M. Frey, Two
710 glucosyltransferases are involved in detoxification of benzoxazinoids in maize.
711 *Plant J.* **28**, 633–642 (2002).

712 53. H. Wang, *et al.*, Horizontal gene transfer of *Fhb7* from fungus underlies
713 Fusarium head blight resistance in wheat. *Science (80-.)* **368** (2020).

714 54. S. Wong, K. H. Wolfe, Birth of a metabolic gene cluster in yeast by adaptive
715 gene relocation. *Nat. Genet.* **37**, 777–782 (2005).

716 55. J. Xia, *et al.*, Whitefly hijacks a plant detoxification gene that neutralizes plant
717 toxins. *Cell* **184**, 1693–1705.e17 (2021).

718 56. C. Ye, *et al.*, The Genomes of the Allohexaploid *Echinochloa crus-galli* and Its
719 Progenitors Provide Insights into Polyploidization-Driven Adaptation. *Mol.*
720 *Plant* **13**, 1298–1310 (2020).

721 57. C. Zhang, M. Rabiee, E. Sayyari, S. Mirarab, ASTRAL-III: polynomial time
722 species tree reconstruction from partially resolved gene trees. *BMC*
723 *Bioinformatics* **19**, 153 (2018).

724 58. Z. Zhang, *et al.*, KaKs_Calculator: Calculating Ka and Ks Through Model
725 Selection and Model Averaging. *Genomics. Proteomics Bioinformatics* **4**,
726 259–263 (2006).

727 **Acknowledgement**

728 The authors are grateful to Jie Qiu for insightful suggestions on the manuscript. This
729 work was supported by grants from the Zhejiang Natural Science Foundation
730 (LZ17C130001), Jiangsu Collaborative Innovation Center for Modern Crop
731 Production and 111 Project (B17039).

732 **Author contributions**

733 L. F. and D.W. conceived and designed research. L.F. and C.-Y.Y. supervised the
734 research. D.W. and B.J. carried out the data analysis. D.W., L.F., M.P.T, and C.-Y.Y.
735 analyzed the findings and wrote the manuscript.

736 **Competing interests**

737 The authors declare no competing interests.

738 **Additional information**

739 Supporting information is available for this paper online.

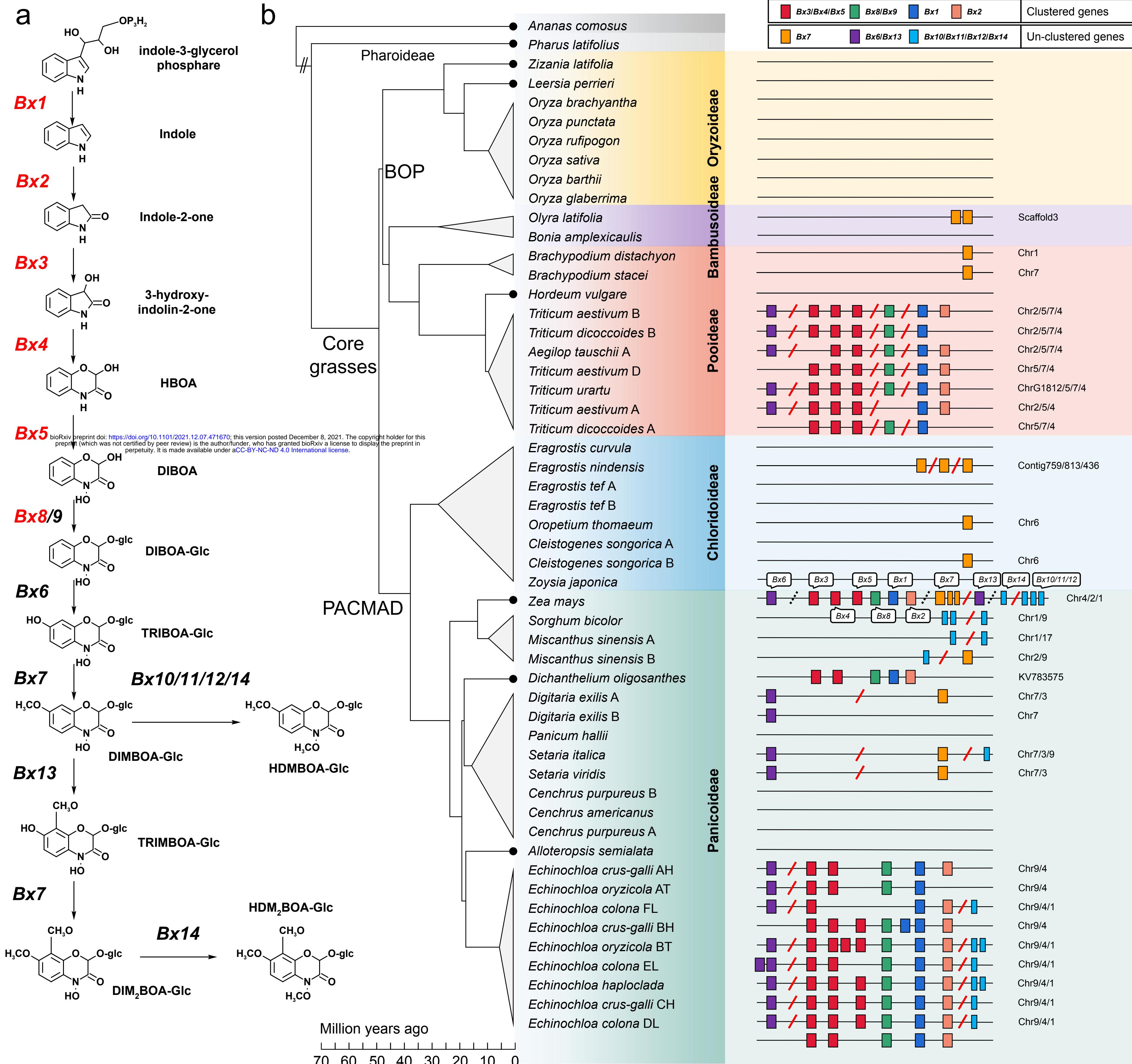
740 **Figure legends**

741 **Fig. 1. Benzoxazinoid biosynthesis pathway and distributions of Bx genes in**
742 **grass.** (a) Biosynthesis pathway of benzoxazinoid secondary metabolites in maize.
743 The pathway(Bx)-related genes in the Bx cluster are marked in red. (b) Phylogeny and
744 Bx gene distribution of grass species. Background colors represent different
745 sub-families in Poaceae. The lineage divergence time is adopted from TimeTree
746 database (www.timetree.org). Each rectangle represents one gene element. A red slash
747 refers two different chromosomes for the neighbouring genes and a black dashed slash
748 refers to a same chromosome but not clustered.

749 **Fig. 2. Phylogeny and genomic synteny of Bx1 in grass.** (a) Maximum-likelihood
750 phylogenetic trees of *Bx1* in grass with *P. latifolius* as an outgroup species. Bootstrap
751 value of 1000 replicates is labeled at each branch. The node label is composed of
752 genome abbreviation and gene ID. Background filled colors represent subfamilies.
753 The *Bx1* clade is highlighted as Bx-copy (e.g. B1-B4) and the paralogs of *Bx1* are
754 labeled as native-copy (e.g. N0-N7). Left bottom tree shows the phylogenetic

755 relationship of five subfamilies. (b) Genomic synteny among native *Bx1* analogues
756 between species. Red dots represent the native *Bx1* analogues are syntenic. (c) Local
757 protein sequence alignments among *Bx1* genes and their native analogues. Bx-copy
758 specific deletion and amino acid substitution are marked in gray rectangles. (d)
759 Genomic synteny between *Z. mays* and other species around the position of *Bx1*. For
760 each species, the local synteny around *Bx1* is zoomed in at the right panel.

761 **Fig. 3. Phylogeny and genomic synteny of *Bx6* in grass.** (a) Maximum-likelihood
762 phylogenetic trees of *Bx6* in grass. Bootstrap value of 1000 replicates is labeled at
763 each branch. Background filled colors represent subfamilies. The *Bx6* clade is
764 highlighted as Bx-copy (e.g. B1-B8) and the native analogues of *Bx6* were labeled as
765 native-copy (e.g. N1-N7). The other duplicates of *Bx6* native analogues are labeled as
766 duplicate-copy (e.g. D1-D3). Left bottom tree shows the phylogenetic relationship of
767 five subfamilies. (b) Genomic synteny among *Bx6* genes and their analogues between
768 species based on gene order in each genome. Red dots represent the *Bx6* genes or
769 analogues are syntenic in genome.


770 **Fig. 4. Selection and polyploidization effects on the Bx genes.** (a) selection
771 pressure estimated by ω of Bx genes and analogues. N-Chloridoideae, native
772 analogues of Bx genes in Chloridoideae; N-Panicoideae, native analogues of Bx genes
773 in Panicoideae; B-Panicoideae, Bx genes in Panicoideae; N-Triticeae, native
774 analogues of Bx genes in Triticeae; B-Triticeae, Bx genes in Triticeae. In the box plots
775 the horizontal line shows the median value, and the whiskers show the 25% and 75%
776 quartile values of ω . Pairwise *t*-test are performed to evaluate significant differences.
777 n.s., not significant; *, $p < 0.05$; **, $p < 0.01$; ***, $p < 0.0001$. (b) pairwise ω of Bx
778 genes and analogues in subgenomes A, B and C between *E. crus-galli* and its
779 progenitors (*E. haploclada* and *E. oryzicola*). The topology shows the phylogenetic
780 relationship among subgenomes in the three *Echinochloa* species, where AT and AH
781 belong to subgenome A, BT and BH belong to subgenome B, and *E. haploclada* and
782 CH belonged to subgenome C. (c) relative expression (upper ternary diagram) and
783 relative response contribution (lower ternary diagram) of multi-copy homologous Bx
784 genes in *E. crus-galli* subgenomes (AH, BH and CH) under control and allelopathy
785 treatment.

786 **Fig. 5. A proposed scenario for origin and evolution of the Bx cluster in grass.**
787 Top left shows different topologies of Bx genes or analogue in different lineages. Top
788 right shows the relative divergence time of grass lineages. Blue shades represent the
789 potential time range when Bx cluster was organized. Pink shade represents potential
790 time range when the ancient Bx cluster (the current Bx cluster+*Bx6*) was transferred
791 to Triticeae. Bottom shows the evolutionary trajectories of core Bx genes. TMRCA,
792 The most recent common ancestor.

793 **Supporting information**

794 Table S1. A list of plant genomes used in this study
795 Table S2. Core Bx genes (*Bx1* to *Bx6* and *Bx8*) and corresponding native analogues
796 in grass genomes
797 Table S3. Topology tests of two hypothesis on transfer of Bx genes in Triticeae from
798 Panicoideae

799 Fig. S1. Alignment of amino acid sequences of *Bx1* gene in Fig. 2c
800 Fig. S2. Phylogenies of *Bx1* based on CDS, codon12 and codon3 datasets, related to
801 Fig. 2a.
802 Fig. S3. Phylogeny of *Bx2* to *Bx5* and genomic synteny of *Bx2* and *Bx5* regions
803 across the grass family
804 Fig. S4. Phylogeny of *Bx8* and *Bx9* across the grass family
805 Fig. S5. Phylogeny of *Bx7* across the grass family
806 Fig. S6. Phylogeny of *Bx10* to *Bx12* and *Bx14* across the grass family
807 Fig. S7. Presence and absence of Bx genes (B-copy) and native analogues (N-copy).
808 Blue grids represent presence and white represent absence.
809 Fig. S8. Selection pressure of Bx genes in *Echinochloa* and Triticeae. In the box
810 plots the horizontal line shows the median value, and the whiskers show the 25% and
811 75% quartile values of ω . B-copy, Bx genes; N-copy, native analogues of Bx genes.
812 Fig. S9. Negative relationship between selection indicator ω values and expression
813 or response dominance.

Figure 1

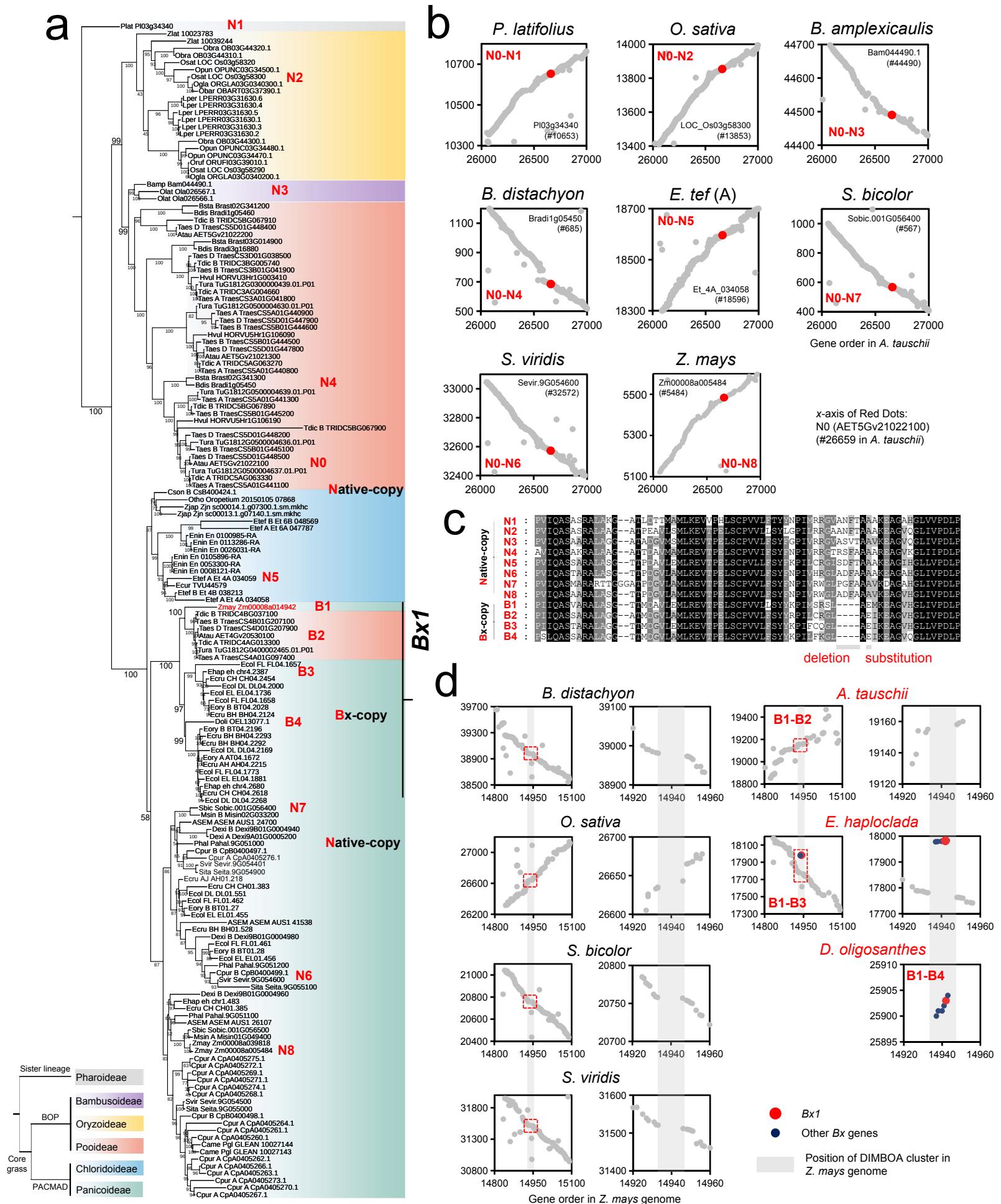


Figure 2

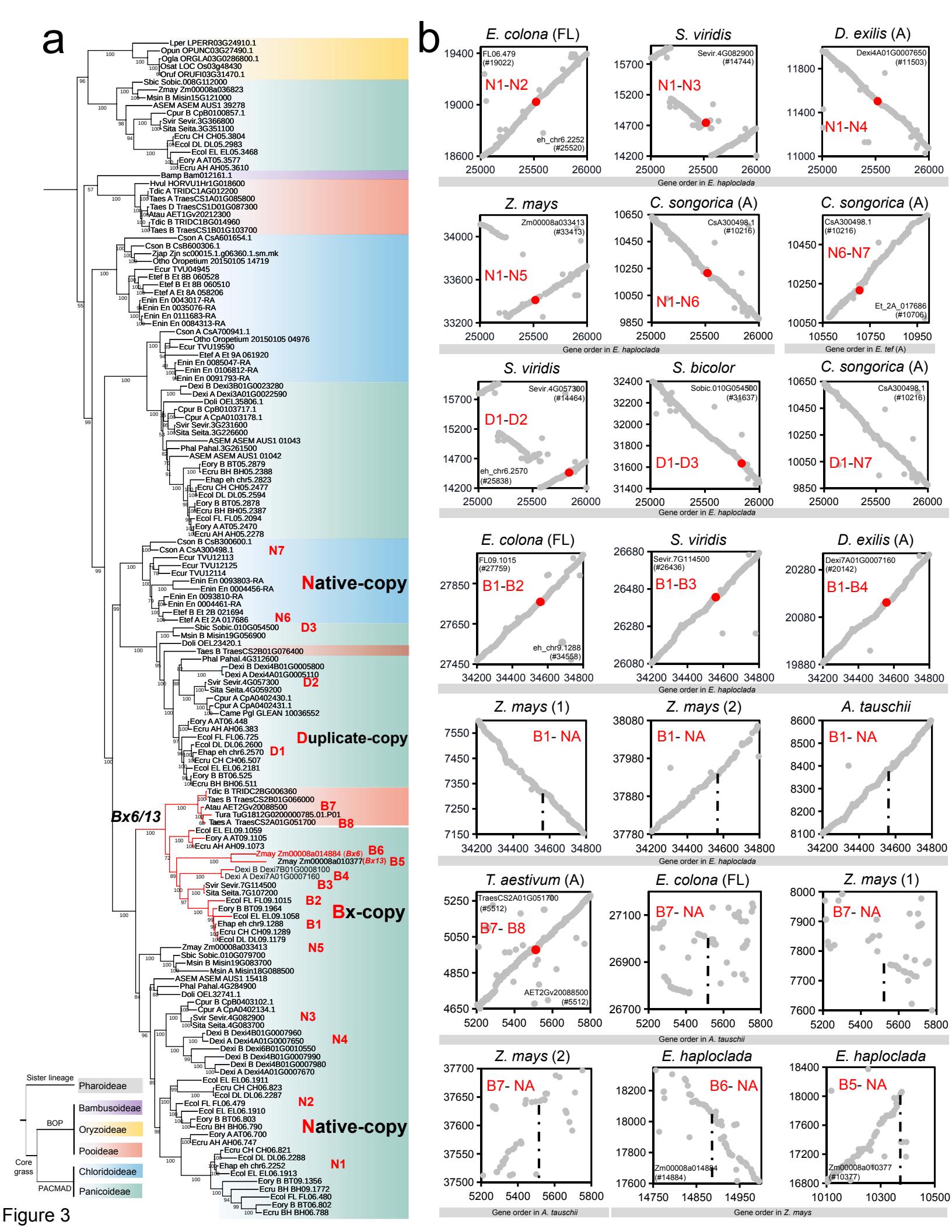


Figure 3

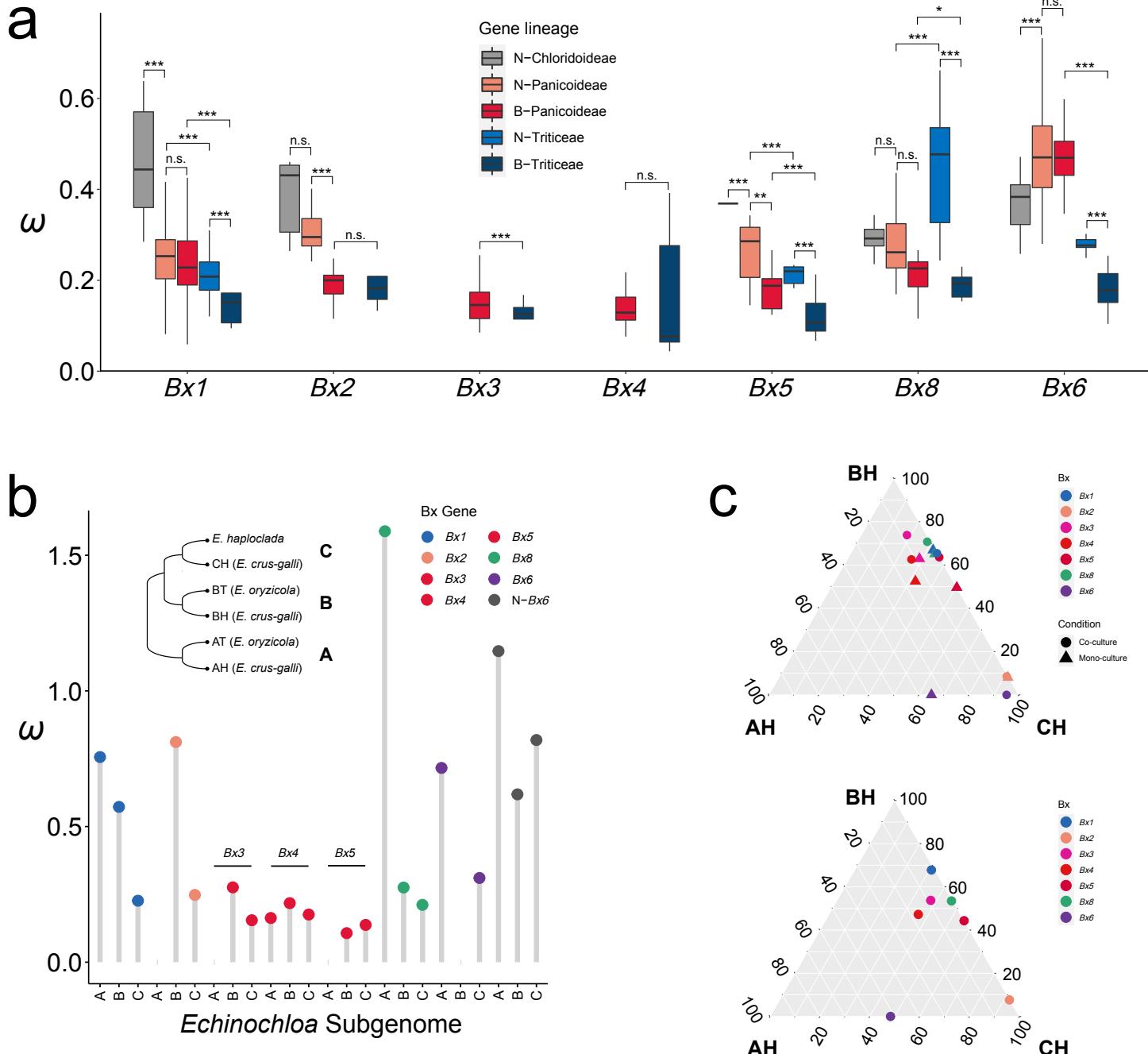
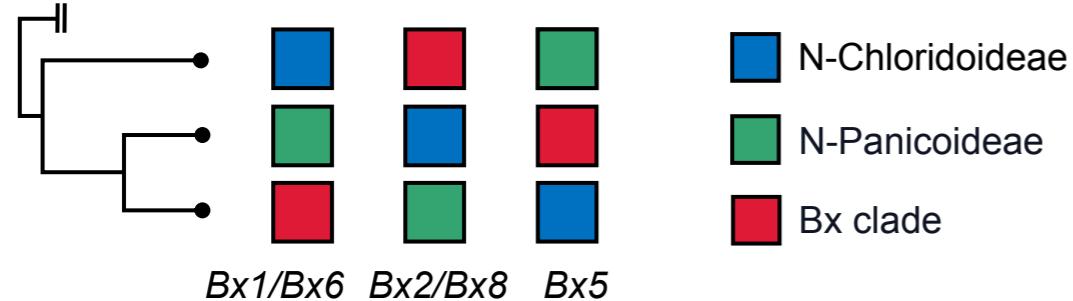
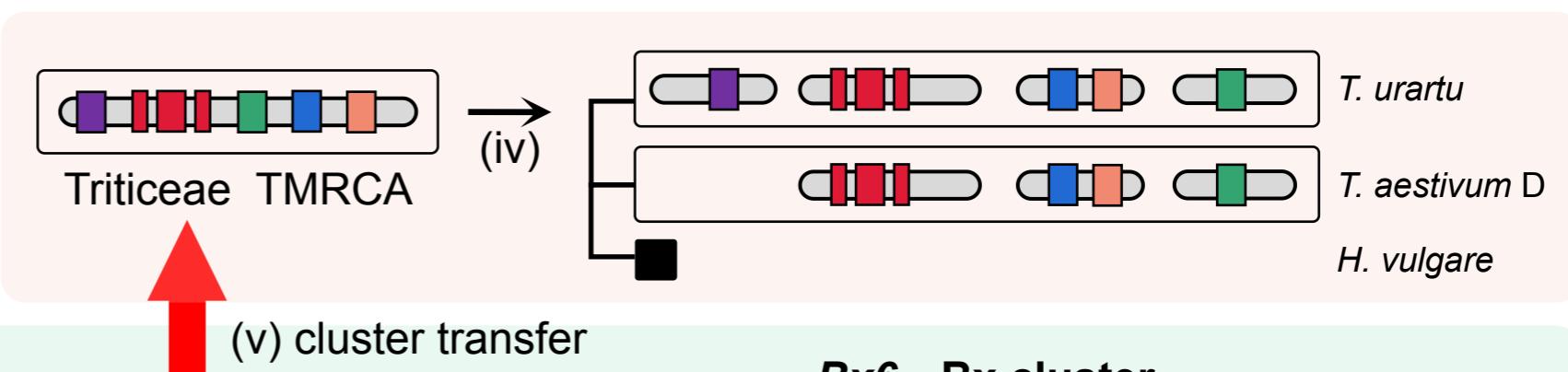
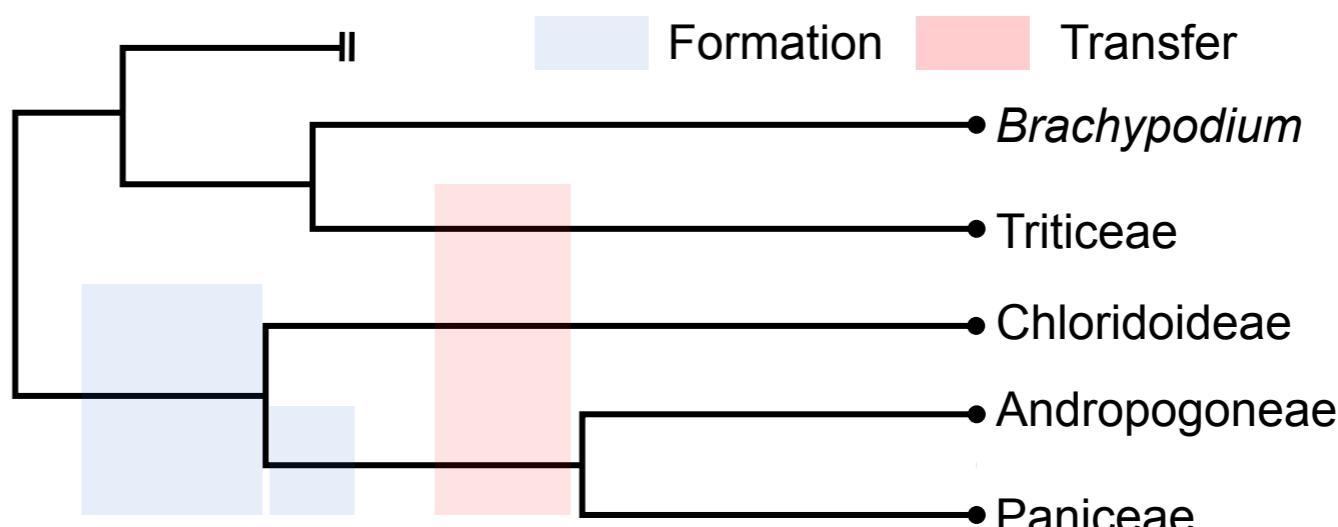
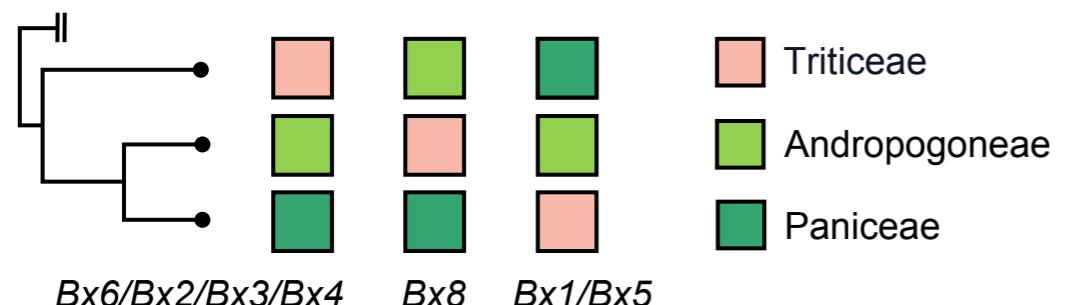






Figure 4

1. topology of Bx and native analogues

2. topology of Bx

Native copies of Bx analogues

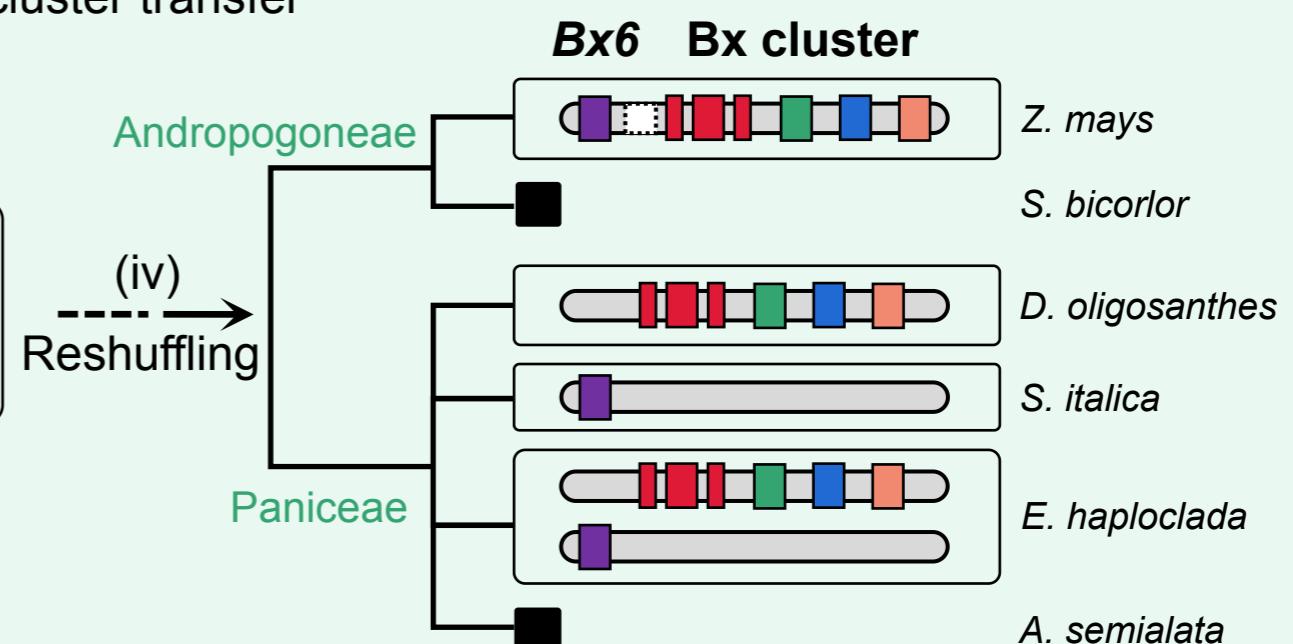
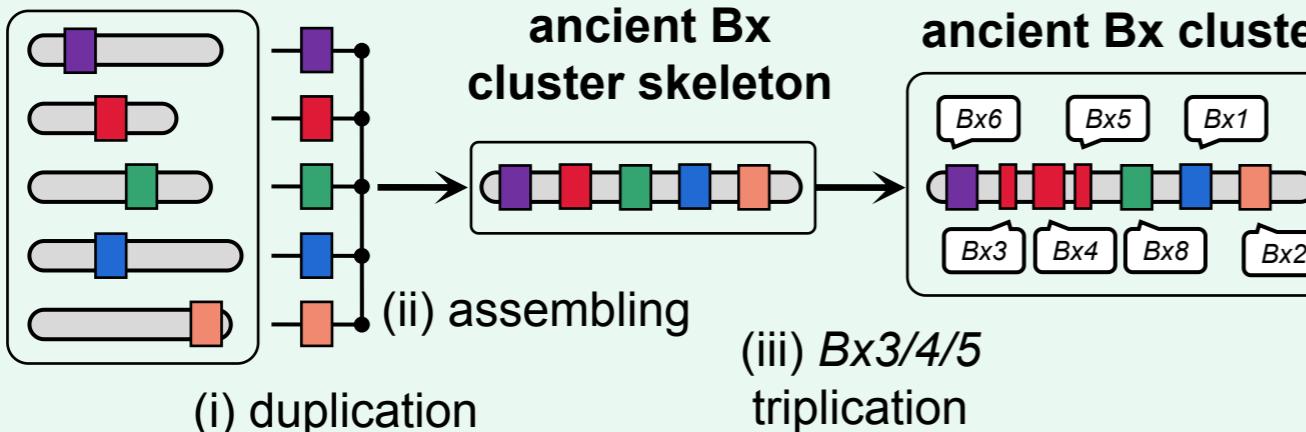



Figure 5