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ABSTRACT  

Assessing in vivo tissue toxicity of therapeutic targets remains a major challenge 

in drug development and drug safety research. We developed TissueTox, an 

algorithm that learns from multi-omic features of a target protein and predicts 

toxicity in human body systems and tissues. Predicted TissueTox scores 

accurately differentiate drugs that failed clinical trials from those that succeeded, 

and, importantly, can be used to identify the tissues where toxic events occurred.  

 

MAIN TEXT 

A critical step in drug development is to assess the in vivo toxicity of therapeutic 

targets, a primary cause for attrition in drug development accounting for 30% 

of clinical trial failures1, 2. In addition, drug toxicity is a significant cause of 

hospital adverse events and injuries, affecting two million patients in the US 

annually3. For instance, skin and gastrointestinal toxicity were frequently 

observed in patients receiving anti-EGFR therapy due to the indispensable role 

of EGFR activation in normal tissues4, 5. Similarly, hepatotoxicity of antiretroviral 

HIV therapy was associated with the important function of target proteins such 

as PNP and PXR in the liver6, 7. Previous efforts using pharmacovigilance data to 

identify proteins associated with side effects8 do not take into account tissue 

specificity. Other methods, including in silico quantitative structure-activity 

relationship (QSAR) models and in vitro screening of cell lines and organ-on-a-

chip assays assess toxicity only in a single tissue such as hepatotoxicity9, 10, 

nephrotoxicity11, or cardiotoxicity12. These methods can be costly and time-

consuming and are often limited in their accuracy and translatability13. An 

efficient and systematic approach that connects targets to in vivo tissue toxicity is 

needed.  

 

One of the key challenges is the knowledge gap between target proteins and side 

effects. Most of our knowledge on the pharmacology of druggable proteins is in 

their therapeutic potential, while the relationships between these proteins and 

adverse side effects remains enigmatic14. In addition, due to the difficulty of 

inferring causal relationship between targets and tissue-specific effects, there 

are few known examples that we can learn from, making it difficult to develop 

systematic approaches predicting tissue toxicity in general15.  

 

To address this fundamental problem, we introduce a target-based algorithmic 

framework, TissueTox, for the prediction of tissue toxicity (Fig. 1a). Using data 

from 548 drugs and 620 side effects in 45 human tissues and 10 body systems 

(Supplementary Table 1), we defined a reference dataset of targets and tissue 

toxicity (Online Methods). We trained a supervised model using this reference 

dataset for each of the 10 systems and 45 tissues. In TissueTox, we integrated 

four types of multi-omic features including mRNA expression, tolerance to
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Figure 1 | The workflow and performance of TissueTox. (a): In the workflow of TissueTox, training sets of 

targets and their tissue toxicity were constructed by integrating three data resources, SNOMED, SIDER, and 

DrugBank. (Step 1) Tissues are connected to side effects using SNOMED, side effects are connected to drugs 

using SIDER, and drugs are connected to targets using DrugBank. To aggregrate drugs across tissues and 

targets across drugs (both can have many to many relationships) we defined two thresholds (dashed lines) to 

reduce the number of spurious connections (e.g. off-target drug effects). We explored five values for each of the 

thresholds resulting in 25 possible models. (Step 2) TissueTox integrated four types of features to build random 

forest classifiers. (Step 3) We selected the best model based on a balance between performance and robustness. 

(Step 4) We applied the best model of each tissue/system to predict the toxicity of all proteins in human 

druggable genome, and (step 5) validated the results using clinical trials data. (b) Performance of TissueTox as 

well as other models built using one, two, or three types of features. The performance was measured by the 

area under receiver operating characteristic curve (AUROC) of each model. Significance assessed using one-

sided T test. (c) Robustness of TissueTox, which was measured by the change in AUROC when using partial 

samples (green) or features (pink) to rebuild the model. Results were averaged across 10 system models and 45 

tissue models with 95% confidence interval. (d,e) The distribution of receiver operating characteristic (ROC) 

curves among 10 tissue models (d) and 45 system models (e). Six models with the top, medium, and bottom two 

ranked AUROC values were plotted. AUROC values were shown as legend on the bottom-right. (f,g) The 
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predictive power of expression (pink), variation (green), regulatory (orange), and pathway (purple) features in 

10 tissue models (f) and 45 system models (g), which was measured by a normalized importance score 

proportional to the increase in mean squared error (MSE) when the feature was removed from the model. The 

normalized importance scores of four types were shown as stacked bars for each model. All 45 tissues were 

grouped by the 10 systems on y-axis in (g). Abbreviations for the 10 systems can be found at the bottom-right of 

Fig. 2. 

genetic variation, interaction with cellular regulatory networks, and 

pharmacological pathways, of which the first two types were based on existing 

resources while the last two were developed by us and unique to TissueTox 

models. In total, we have an average of 284±27 training examples and 334±39 

features per tissue/system. We selected the best model for each tissue/system 

based on a balance between performance and robustness (Online Methods and 

Supplementary Table 2). We observed a significant improvement (P < 5e-4) in 

the performance after the regulatory and pathway features were added in the 

model (Fig. 1b). The median area under receiver operating characteristic curve 

(AUROC) was 0.711 (95% CI: 0.652-0.729) across the 10 systems (Fig. 1d and 

Supplementary Fig. 1) and 0.691 (95% CI: 0.671-0.704) across the 45 tissues 

(Fig. 1e and Supplementary Fig. 2). The performance remained robust against 

the partial removal of features or samples, where we retained 90% of original 

AUROC with 50% of the data (Fig. 1c), suggesting that TissueTox models were 

not overfitting the training data. We also compared the predictive power of 

distinct features. Pathway features had the highest predictive power, accounting 

for 40±10% of the normalized importance among 10 systems (Fig. 1f) and 53±5% 

among 45 tissues (Fig. 1g). Genetic variation intolerance features showed the 

lowest predictive power. Expression features showed higher predictive power in 

systems (34±14%) compared to tissues (14±3%). 

 

We applied TissueTox to assess the toxicity of 4,857 proteins in the human 

druggable genome, including 2,540 proteins that have been targeted by 

approved or experimental drugs, as well as 2,317 potential targets within 

druggable classes (Online Methods). This is, to our knowledge, the first tissue-

specific toxicity profile of the human druggable genome. We then compared the 

predicted TissueTox scores across protein classes and observed distinct levels of 

toxicity as well as tissue-specificity within each class (Fig. 2a). For instance, 

GPCRs were predicted with low toxicity in most systems except reproductive 

system while ion channels were predicted with high toxicity, especially in the 

nervous system due to their high expression in these tissues. NHRs show high 

variability of predicted toxicity across systems, ranging from low toxicity in the 

renal system to high toxicity in the reproductive system, while transporters and 

proteases average toxicity consistently across systems. It is worth noting that 

well-established targets of cancer therapy such as RTKs, STKs, PI3Ks, and PTEN 

all exhibit high predicted toxicity in the digestive or integumentary system, 

where most side effects were observed among patients receiving the therapy4, 5. 

Based on the TissueTox scores, we identified 60 proteins that consistently show 
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high toxicity in all ten body systems (Supplementary Table 3 and Online 

Methods). Among the 60 proteins, we found 11 ligand-gated ion channels that 

are enriched in GABA-A receptor activity, chloride transmembrane transport, 

and 12 voltage-gated ion channels that are enriched in membrane 

depolarization, sodium ion transmembrane transport, as well as 6 RTKs, among 

which two have been targeted by existing cancer drugs: MET and PDGFRA 

(Supplementary Table 4).  

 

 

Figure 2 | TissueTox scores of 4,857 proteins in the human druggable genome. (a) Comparison of 

TissueTox scores across 17 protein classes. The number of proteins in each class was shown under the 

abbreviation of class name. The full name was shown as legend on the top-left. The toxicity of each class was 

measured by the median percentile of TissueTox scores among all 4,857 proteins. The median percentile scores 

were shown as boxplot with jitter points for 10 systems (diamond) and 45 tissues (circle). Each system was 

represented by a distinct color. Each tissue was represented by the color of the system. (b,c) Comparison of 

TissueTox scores across ATC drug categories. The results of 20 categories with the highest number of drugs 

were shown here. Results of the remaining 56 categories can be found in Supplementary Fig. 3. The ATC code of 

each category was shown on the left along with annotation. The toxicity of each category was measured by the 

average percentile of TissueTox scores among all 4,857 proteins. The average percentile scores were shown as 

two heatmaps for 10 systems (b) and 45 tissues (c). All 45 tissues were grouped by the 10 systems on x-axis in 

(c). The significance levels of two-sided T test against all 4,857 proteins were shown in the cells with adjusted 

p-value less than 0.05. 

We also compared the predicted scores of targets across ATC drug categories 

(Supplementary Table 5 and Online Methods). Targets of antiepileptics and 

psycholeptics show high predicted toxicity in most systems. This is likely 
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because drugs in those categories target GABA-A receptors. Targets of drugs that 

treat congestion, COPD, and diabetes show low predicted toxicity (Fig. 2b,c and 

Supplementary Fig. 3). Meanwhile, our prediction recaptured the tissue-

specific toxicity of several categories discovered by previous studies, such as 

antineoplastics in integumentary system4 (P = 4.4e-4) and antibacterials in 

respiratory system16 (P = 2.4e-4). TissueTox scores can also recapture the 

connections between targets and drug-induced liver injury made by previous 

studies. For instance, Ivanov et al identified 37 high-confidence and 24 low-

confidence proteins associated with drug-induced liver injury (DILI) based on 11 

curated pathological processes of DILI17. We showed that the high-confidence 

proteins are more likely to be predicted with higher TissueTox scores in liver 

compared to the low-confidence ones (OR = 3, P = 0.056; Supplementary Fig. 4).   

 

Figure 3 | Validation of TissueTox scores using clinical trials data. (a,b) Comparison of TissueTox scores 

between targets associated with failed trials (pink) and targets associated with succeeded trials (green) in 6 

systems (a) and 4 tissues (b) where severe side effects were observed (title). Results of the remaining systems 

and tissues can be found in Supplementary Fig. 5a,b. TissueTox scores of all proteins in druggable genome were 

shown in grey as comparison. Error bar shows the 95% confidence interval calculated by bootstrap sampling. 
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The significance levels of one-sided T test against targets associated with failed trials were shown under the x-

axis. Skin(ll): skin of lower leg (sun exposed); Blood: whole blood; Muscle: skeletal muscle. (c,d) Similar to (a,b) 

except the comparison was between drugs leading to the failure of trials (pink) and drugs leading the success 

of trials (green). Drugs leading to both outcomes were shown in orange as comparison. (e) ROC curves of four 

classifiers predicting the outcomes of clinical trials including structural-based method (grey), a previously 

developed method named PrOCTOR (green), TissueTox scores-based method (pink), and combining structural 

properties with TissueTox scores (blue). AUROC values were shown as legend on the bottom-right. The 

sensitivity (y-axis) and 1-specificity (x-axis) of three drug-likeness measurements were shown as red asterisks 

in the plot. (f) Applied the TissueTox scores-based model to 356 drugs currently undergoing clinical trials. The 

predicted probability to fail was shown in green boxplot. Three drugs with the highest probability were 

highlighted and annotated with their names. The out-of-bag probability of 337 drugs leading to success (grey) 

and 33 drugs leading to failure (pink) were also shown as comparison. (g) The mRNA expression (upper) and 

predicted toxicity (lower) of mocetinostat targets across 45 GTEx tissues. Both scores were normalized to 

percentiles to enable comparison across tissues. All 45 tissues were grouped by the 10 systems on x-axis. Blood 

and esophagus tissues were highlighted and annotated with the side effects that occurred in those tissues. 

Abbreviations for the 10 systems can be found at the bottom-right of Fig. 2. 

To further explore the application of TissueTox in drug development, we used 

the predicted scores to assess the toxicity of drugs administrated in clinical trials 

and connected the results to side effects and general outcomes of trials (Fig. 1a, 

Supplementary Tables 6-9 and Online Methods). In the systems or tissues 

where severe side effects were observed, we found that the targets of trials 

terminated due to tissue toxicity have significantly higher TissueTox scores 

compared to those trails that were completed (Fig 3a,b and Supplementary Fig 

5a,b). This result holds when we averaged the predicted scores across targets to 

compute tissue toxicity for drugs (Fig. 3c-d and Supplementary Fig. 5c,d). 

 

Using the TissueTox scores as features, we then trained a random forest 

classifier predicting the results (i.e. success or toxicity failure) of clinical trials 

using a reference dataset that includes 33 failures and 337 successes. As 

comparison, we also trained classifiers using structural properties, drug-likeness 

measurements, and PrOCTOR18, a previously developed approach that combined 

structure with target expression (Online Methods). TissueTox scores 

outperformed these approaches and achieved an AUROC of 0.753 (Fig. 3e), a 

17% increase from structure-based approach. Combining structural properties 

did not further improve the performance of our model, suggesting that the two 

types of features are not complementary of one another. We applied this model 

to 356 drugs currently undergoing clinical trials (Supplementary Table 10). 

Three drugs with the highest predicted probability to fail are mocetinostat, 

trifluridine, and pracinostat (Fig. 3f). We found that one trial using mocetinostat 

to treat follicular lymphoma was once put on hold due to toxicity concerns19. 

While the targets of mocetinostat show universal high expression across normal 

tissues, we predicted them with high toxicity in a subset of tissues such as blood 

and esophagus (Fig. 3g). These tissues match the sites of side effects observed in 

the trial such as anaemia, neutropenia, nausea, and diarrhea20. Similar pattern 

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted December 9, 2021. ; https://doi.org/10.1101/2021.12.07.471637doi: bioRxiv preprint 

https://doi.org/10.1101/2021.12.07.471637
http://creativecommons.org/licenses/by-nc-nd/4.0/


 8

was also found in targets of trifluridine and pracinostat (Supplementary Fig. 6). 

These results suggest that TissueTox scores can accurately capture the tissues 

where side effects will occur in clinical trials.  

  

TissueTox is a generally applicable approach for the assessment of toxicity in 

tissues or cell types with transcriptome profiling data available. Importantly, 

TissueTox is able to predict toxicity for any protein, even those that have not yet 

been targeted by drugs. We expect TissueTox to facilitate the generation of new 

hypotheses studying the genetic mechanism of toxicity, as well as improving 

drug safety. The approach can be further improved as the knowledge gap 

between target proteins and side effects is filled, providing us with more training 

data. Moreover, as tissue-specific prediction of off-targets becomes available, 

TissueTox can be applied to assess the off-target toxicity of drugs, which will 

likely result in more accurate prediction of outcomes for clinical trials.   

 

ONLINE METHODS 

Selection of objects for study. We conducted the study on two levels: tissues 

and organ systems. Forty-five human tissues were selected from GTEx 

consortium21 based on the data availability, and further classified into 10 organ 

systems based on anatomy (Supplementary Table 1). We applied the following 

steps to build one TissueTox model for every tissue/system. 

 

Construction of training sets. No existing resource provides standards that 

directly connect target proteins to tissue toxicity. We built the connections by 

integrating three existing resources, SNOMED, SIDER22, and DrugBank23. For 

each tissue/system, related side effect terms were extracted from SNOMED using 

semantic relationship of “finding_site_of”. Positive and negative control drugs of 

every side effect were obtained from SIDER and SIDERctrl24, respectively. We 

previously developed SIDERctrl that used biological and chemical properties of 

drugs to identify negative control drugs from all the unreported drugs of each 

side effect. SIDERctrl can reduce the false negative rate of unreported drugs by 

one-third to one-half. Target proteins of each drug were obtained from 

DrugBank. Since the target annotations in DrugBank are mostly on-targets of 

drugs, we applied the following filtering process to reduce the mismatch 

between on-targets and off-target side effects:  

1. For each drug D, we first calculated the probability of causing tissue 

toxicity (TT) ����� as 

����� � ������	�
 �
� �����
 �� ��������	�
 �
� �����
 �� �� � ������	�
 �
� �� ����� � �� ����	��� ���	���� 

A threshold TD was used to define tissue toxicity of drugs as  

����� � ��0, !�"                       ����	��� ���	��� �!� , 1 $ !��  ��%���
 &��% 	�� ��	 �1 $ !�, 1"                     	����� 	�'���	�(
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2. For each target protein P, we then calculated the probability of causing 

tissue toxicity �����  as  �����

� ��
���� 	����	��� � 	��	 ����� !!���
���� 	����	��� � 	��	 ����� !!� � ��
���� 	����	��� � 	��	 
� ��	 ����� !!� 

The same method was used to define tissue toxicity of target proteins 

with a threshold TP. 

We applied five different values 0, 0.1, …, 0.4 to TD and TP, respectively. As a 

result, 25 training sets were derived for each tissue/system. We further removed 

training sets with less than ten positive or negative samples to prevent 

overfitting. The best value of TD and TP was selected by a process described 

below, which identified the training set with the least noise.  

 

Calculation of target features Four types of target features were incorporated 

in every TissueTox model: expression, variation, pathway, and regulatory. 

Expression: TissueTox calculated two expression features per tissue, which 

indicated the absolute and differential expression of a target in the tissue, 

respectively. Absolute expression was measured by the percentile of RPKM value 

among all genes. Replicates of the same tissue were averaged. Differential 

expression was measured by the absolute fold change derived from DESeq 

analysis25. For each tissue type, the control samples were generated using the 

following method. First, samples from other tissues of the same body system 

were removed due to high similarity in expression. Next, the remaining tissues 

were averaged across replicates then grouped by the body system. Ten bootstrap 

samples were drawn from each system to account for the imbalanced number of 

GTEx tissues from different systems. The bootstrap samples were used as control 

for DESeq analysis. Log transformation was applied to the original fold change 

value to adjust for highly skewed distributions.  

Variation: TissueTox adopted two tissue-naïve variation features, Residual 

Variation Intolerance Score (RVIS)26 and Haploinsufficiency (HI) score27, which 

measure the tolerance of a target to genetic mutations. The two features are 

consistent across all TissueTox models.  

Pathway: TissueTox used Reactome28 as the data source for pathways. We 

previously developed two data-driven methods, GOTE29 and DATE30, which 

connected G-protein coupled receptors (GPCRs) or non-GPCRs to tissue-specific 

functional pathways, respectively. The two methods were designed for 

expression datasets containing one sample per tissue. Here, we introduced an 

enhanced version of the methods: MS-GOTE and MS-DATE, which can cope with 

multi-sample expression datasets such as GTEx. Details about the methods can 

be found in Supplementary Note. We implemented the methods to predict 

tissue-specific downstream pathways of targets. Pathways with less than 5 or 

more than 100 annotated proteins were considered as incompletely or 

excessively annotated, thus were eliminated from the results. In addition, to 

reduce the redundancy among predicted pathways, we used the hierarchy of 
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Reactome to filter out pathways that were connected to a target along with their 

descendants. Each predicted pathway was regarded as a binary feature in the 

TissueTox model, which indicated whether the pathway was connected to a 

target or not.  

Regulatory: TissueTox calculated two regulatory features per tissue: recall and 

precision, which measured the efficacy of targets modifying the activity of master 

regulators through downstream pathways (DPs). We first implemented 

ARACNe31 to infer tissue-specific gene regulatory network from normalized 

mRNA expression data (RPKM) of each GTEx tissue, then used VIPER32 to infer 

the activity of transcription factors (TFs) regulating gene expression. TFs with 

significant activity (P < 0.05) were defined as master regulators (MRs). Recall 

was defined as the weighted proportion of MRs that are regulated by the DPs of a 

target while precision was defined as the weighted proportion of DPs that 

effectively regulate MRs. Specifically,  

)����� � ∑ $����� + ,�� ����	�	�
 �� ����� � �	
 ∑ $������ � �	


 

��������� � ∑ $���������	��-� + ,�- ���	���� .)��� � ��


∑ $���������	��-�� � ��


 

where I is the indicator function, MRs are weighted by the p-value derived from 

VIPER analysis Pi, and DPs are weighted by the ratio of p-value derived from our 

pathway analysis Pj versus the number of proteins in the pathway.  

 

Training and selection of TissueTox model. Using the features above, 100 

random forest classifiers33 with 500 trees each were built for every training set 

derived for a tissue/system. The parameters of random forest were set to the 

same as our previous study30. Results were averaged over the 100 classifiers to 

account for the stochastic nature of random forest. The out-of-bag probability 

was used to evaluate the performance of each model, which was measured by the 

AUROC. To prevent overfitting, we randomly removed 10, 20, …, 50 percent 

samples or features from each training set and recalculated the AUROC of new 

models. The removal was repeated 100 times to account for the stochastic nature 

of sampling. Two linear regression models were fit using the normalized AUROC 

against the percentage of samples and features left to rebuild the model. The 

model robustness was measured by the absolute coefficients of two linear 

models: ksample and kfeature. The performance and robustness scores were 

normalized across all models derived for the same tissue/system using median 

absolute deviation (MAD) modified Z-scores34, which were then combined using 

Stouffer’s method35. Specifically,  

.�
�&��
 /� � 0.6745�'� $ '5�.6�  
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7�%����
 / � ��
	�� + /�
	�� � ��������
+ /�������
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+ /�����	
�
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	��
� � ��������

� � ������	
�
�

 

where ��
	�� , ��������
, ������	
�

are the weights used to combine three 

measurements and were set as 1, 0.5, 0.5 to ensure that performance and 

robustness were equally considered in model selection. The model with the 

highest combined Z-score was selected for each tissue/system (Supplementary 

Table 2). We measured the importance of each feature by the increase in mean 

squared error (MSE) when the feature was removed from the model. The 

importance score was then normalized by the sum across all features in each 

model.  

 

Application of TissueTox model to the human druggable genome. The 

human druggable genome containing 4,857 proteins were curated by integrating 

three databases: dGene36, GtoPdb37, and DrugBank. All druggable proteins were 

classified into seven major classes: GPCRs, nuclear hormone receptors, ion 

channels, transporters, catalytic receptors, enzymes, and other proteins. We 

applied the selected random forest model of each tissue/system to calculate the 

probability of causing tissue toxicity, which we defined as the TissueTox score.  

 

Identification of toxic proteins for Gene Ontology enrichment analysis.  

Toxic proteins were defined as proteins with TissueTox scores higher than the 

median of druggable genome in all ten body systems (Supplementary Table 3). 

Gene Ontology (GO) enrichment analysis of toxic proteins was performed using 

PANTHER38 at http://pantherdb.org (Supplementary Table 4). GO terms were 

analyzed by three distinct categories: biological process, molecular function, and 

cellular component. GO terms with less than 5 or more than 100 annotated genes 

were eliminated from the results.  

 

Comparison of TissueTox scores across ATC drug categories. ATC 

classification of drugs were obtained from Tatonetti et al39. We adopted the level 

two hierarchy (first three digits) to classify drugs into 76 categories. For each 

target protein, we calculated the percentile of TissueTox scores among the 

druggable genome to enable comparison across distinct tissues or systems. The 

distribution of percentile scores in each ATC category was compared to the 

whole druggable genome using two-sided T test (Supplementary Table 5). 

Bonferroni correction was performed to adjust for multiple testing across ATC 

categories.  

 

Validation of TissueTox score using clinical trials data from AACT. Curated 

data of clinical trials was obtained from AACT database40 as of Mar 14, 2018. The 

“studies.txt” file was used to extract 74 trials failed for toxicity reasons and 8,419 

trials as negative controls. The failed trials were identified by overall status of 
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“terminated”, “suspended”, or “withdrawn”, along with specified toxicity or 

safety reasons that led to the failure. The control trials were identified by overall 

status of “completed”. The “interventions.txt” file was used to extract drugs 

administrated in each clinical trial and the “reported_events.txt” file was used to 

extract side effects observed, along with the tissues or systems where the side 

effects occurred. The tissue names adopted by AACT were manually mapped to 

GTEx tissues (Supplementary Table 6). Target proteins of the drugs were 

obtained from DrugBank. Details about the validation dataset can be found in 

Supplementary Table 7. To ensure that the validation is independent of the 

model construction, we removed the drugs or target proteins from the training 

sets of TissueTox models if they appeared in the AACT dataset, then rebuilt the 

models with the rest of training data and regenerated TissueTox scores of all 

proteins in human druggable genome. TissueTox scores were compared on two 

levels: target proteins and drugs. TissueTox score of a drug was defined as the 

average scores of target proteins (Supplementary Table 8).  

  

Construction of supervised models to predict general outcomes of clinical 

trials. We calculated three types of features for the supervised models: chemical 

structure, PrOCTOR, and tissue toxicity.  

Chemical structure: The structure information (sdf format) of drugs was 

downloaded from DrugBank. Ten chemical features were extracted from the sdf 

file (Supplementary Table 9). We further included three binary features of 

drug-likeness measurements: Lipinsk’s rule of five41, Ghose42, and Veber43.  

PrOCTOR: PrOCTOR18 is a previously published method that predicts general 

outcomes of clinical trials. The algorithm integrated the chemical features of 

drugs described above with other properties of target proteins including mRNA 

expression from 30 GTEx tissues, degree and betweenness centrality in gene-

gene interaction network, and loss frequency from ExAC database.  

Tissue toxicity: TissueTox scores of 10 systems and 45 tissues were calculated 

for each drug in the validation set.    

We compared the performance of four supervised models predicting successes 

and failures of clinical trials: structure-based, PrOCTOR, tissue toxicity-based, 

and structure combined with tissue toxicity. For each model, 100 random forest 

classifiers with 500 trees each were built. Results were averaged over the 100 

classifiers to account for the stochastic nature of random forest. The out-of-bag 

probability was used to evaluate the performance of each model, which was 

measured by the AUROC.  

We applied our tissue toxicity-based model to 356 drugs undergoing clinical 

trials, which were identified by overall status of “active, not recruiting”, “not yet 

recruiting”, or “recruiting”. Detailed information about each trial was obtained 

through the process described above (Supplementary Table 10). The 

probability of failure was calculated for each drug using the random forest 

model.  

 

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted December 9, 2021. ; https://doi.org/10.1101/2021.12.07.471637doi: bioRxiv preprint 

https://doi.org/10.1101/2021.12.07.471637
http://creativecommons.org/licenses/by-nc-nd/4.0/


 13

Data availability  

The implementation codes and datasets of this paper can be accessed 

at http://tissuetox.tatonettilab.org . 
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