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ABSTRACT

Assessing in vivo tissue toxicity of therapeutic targets remains a major challenge
in drug development and drug safety research. We developed TissueTox, an
algorithm that learns from multi-omic features of a target protein and predicts
toxicity in human body systems and tissues. Predicted TissueTox scores
accurately differentiate drugs that failed clinical trials from those that succeeded,
and, importantly, can be used to identify the tissues where toxic events occurred.

MAIN TEXT

A critical step in drug development is to assess the in vivo toxicity of therapeutic
targets, a primary cause for attrition in drug development accounting for 30%
of clinical trial failures® 2. In addition, drug toxicity is a significant cause of
hospital adverse events and injuries, affecting two million patients in the US
annually3. For instance, skin and gastrointestinal toxicity were frequently
observed in patients receiving anti-EGFR therapy due to the indispensable role
of EGFR activation in normal tissues* . Similarly, hepatotoxicity of antiretroviral
HIV therapy was associated with the important function of target proteins such
as PNP and PXR in the liver® 7. Previous efforts using pharmacovigilance data to
identify proteins associated with side effects® do not take into account tissue
specificity. Other methods, including in silico quantitative structure-activity
relationship (QSAR) models and in vitro screening of cell lines and organ-on-a-
chip assays assess toxicity only in a single tissue such as hepatotoxicity? 10,
nephrotoxicity!l, or cardiotoxicityl2. These methods can be costly and time-
consuming and are often limited in their accuracy and translatability!3. An
efficient and systematic approach that connects targets to in vivo tissue toxicity is
needed.

One of the key challenges is the knowledge gap between target proteins and side
effects. Most of our knowledge on the pharmacology of druggable proteins is in
their therapeutic potential, while the relationships between these proteins and
adverse side effects remains enigmatic!% In addition, due to the difficulty of
inferring causal relationship between targets and tissue-specific effects, there
are few known examples that we can learn from, making it difficult to develop
systematic approaches predicting tissue toxicity in generall>.

To address this fundamental problem, we introduce a target-based algorithmic
framework, TissueTox, for the prediction of tissue toxicity (Fig. 1a). Using data
from 548 drugs and 620 side effects in 45 human tissues and 10 body systems
(Supplementary Table 1), we defined a reference dataset of targets and tissue
toxicity (Online Methods). We trained a supervised model using this reference
dataset for each of the 10 systems and 45 tissues. In TissueTox, we integrated
four types of multi-omic features including mRNA expression, tolerance to
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Figure 1 | The workflow and performance of TissueTox. (a): In the workflow of TissueTox, training sets of
targets and their tissue toxicity were constructed by integrating three data resources, SNOMED, SIDER, and
DrugBank. (Step 1) Tissues are connected to side effects using SNOMED, side effects are connected to drugs
using SIDER, and drugs are connected to targets using DrugBank. To aggregrate drugs across tissues and
targets across drugs (both can have many to many relationships) we defined two thresholds (dashed lines) to
reduce the number of spurious connections (e.g. off-target drug effects). We explored five values for each of the
thresholds resulting in 25 possible models. (Step 2) TissueTox integrated four types of features to build random
forest classifiers. (Step 3) We selected the best model based on a balance between performance and robustness.
(Step 4) We applied the best model of each tissue/system to predict the toxicity of all proteins in human
druggable genome, and (step 5) validated the results using clinical trials data. (b) Performance of TissueTox as
well as other models built using one, two, or three types of features. The performance was measured by the
area under receiver operating characteristic curve (AUROC) of each model. Significance assessed using one-
sided T test. (c) Robustness of TissueTox, which was measured by the change in AUROC when using partial
samples (green) or features (pink) to rebuild the model. Results were averaged across 10 system models and 45
tissue models with 95% confidence interval. (d,e) The distribution of receiver operating characteristic (ROC)
curves among 10 tissue models (d) and 45 system models (e). Six models with the top, medium, and bottom two

ranked AUROC values were plotted. AUROC values were shown as legend on the bottom-right. (f,g) The
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predictive power of expression (pink), variation (green), regulatory (orange), and pathway (purple) features in
10 tissue models (f) and 45 system models (g), which was measured by a normalized importance score
proportional to the increase in mean squared error (MSE) when the feature was removed from the model. The
normalized importance scores of four types were shown as stacked bars for each model. All 45 tissues were
grouped by the 10 systems on y-axis in (g). Abbreviations for the 10 systems can be found at the bottom-right of
Fig. 2.

genetic variation, interaction with cellular regulatory networks, and
pharmacological pathways, of which the first two types were based on existing
resources while the last two were developed by us and unique to TissueTox
models. In total, we have an average of 284+27 training examples and 334+39
features per tissue/system. We selected the best model for each tissue/system
based on a balance between performance and robustness (Online Methods and
Supplementary Table 2). We observed a significant improvement (P < 5e-4) in
the performance after the regulatory and pathway features were added in the
model (Fig. 1b). The median area under receiver operating characteristic curve
(AUROC) was 0.711 (95% CI: 0.652-0.729) across the 10 systems (Fig. 1d and
Supplementary Fig. 1) and 0.691 (95% CI: 0.671-0.704) across the 45 tissues
(Fig. 1e and Supplementary Fig. 2). The performance remained robust against
the partial removal of features or samples, where we retained 90% of original
AUROC with 50% of the data (Fig. 1¢), suggesting that TissueTox models were
not overfitting the training data. We also compared the predictive power of
distinct features. Pathway features had the highest predictive power, accounting
for 40+10% of the normalized importance among 10 systems (Fig. 1f) and 531+5%
among 45 tissues (Fig. 1g). Genetic variation intolerance features showed the
lowest predictive power. Expression features showed higher predictive power in
systems (34+14%) compared to tissues (14+3%).

We applied TissueTox to assess the toxicity of 4,857 proteins in the human
druggable genome, including 2,540 proteins that have been targeted by
approved or experimental drugs, as well as 2,317 potential targets within
druggable classes (Online Methods). This is, to our knowledge, the first tissue-
specific toxicity profile of the human druggable genome. We then compared the
predicted TissueTox scores across protein classes and observed distinct levels of
toxicity as well as tissue-specificity within each class (Fig. 2a). For instance,
GPCRs were predicted with low toxicity in most systems except reproductive
system while ion channels were predicted with high toxicity, especially in the
nervous system due to their high expression in these tissues. NHRs show high
variability of predicted toxicity across systems, ranging from low toxicity in the
renal system to high toxicity in the reproductive system, while transporters and
proteases average toxicity consistently across systems. It is worth noting that
well-established targets of cancer therapy such as RTKs, STKs, PI3Ks, and PTEN
all exhibit high predicted toxicity in the digestive or integumentary system,
where most side effects were observed among patients receiving the therapy*>.
Based on the TissueTox scores, we identified 60 proteins that consistently show
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high toxicity in all ten body systems (Supplementary Table 3 and Online
Methods). Among the 60 proteins, we found 11 ligand-gated ion channels that
are enriched in GABA-A receptor activity, chloride transmembrane transport,
and 12 voltage-gated ion channels that are enriched in membrane
depolarization, sodium ion transmembrane transport, as well as 6 RTKs, among
which two have been targeted by existing cancer drugs: MET and PDGFRA

(Supplementary Table 4).
a GPCR: g-protein coupled receptor STK: serine/threonine kinase PTEN: phosphatase and tensin homologue = Cardiovascular Muscular
NHR: nuclear hormone receptor RTK: receptor tyrosine kinase PTP: phosphotyrosine phosphatase Digestive = Nervous
VGIC: voltage-gated ion channel  OCR: other catalytic receptor MTMR: myotubularin related phosphotyrosine phosphatase Endocrine = Renal
o LGIC: ligand-gated ion channel PI3K: phosphatidylinositol-3-kinase OEnz: other enzyme = Integumentary Reproductive
- 1 OIC: Other ion channel Plnh: protease inhibitor OPrt: other protein in druggable genome Lymphatic = Respiratory
T | Trnsp: transporter Prts: protease <O system © tissue
0
22
o°
x
L
G | b 1
25 PR
c —~ Y . I
8 Rl
oY | ¢ 7Y
Q0 :
c o
8 .
8 :
™ :
=5 :
P
o o
S  GPCRNHR VGIC LGIC OIC Trnsp STK RTK OCR PI3K Plnh Prts PTEN PTP MTMROEnz OPrt
(729) (47) (159) (83) (46) (504) (402) (93) (171) (13) (145) (532) (5) (78) (17) (968) (903)
lon Channel Catalytic Receptor Enzyme

S01 Ophthalmologicals.
NOS Psycholeptics

LO1 Antinecpiastics
€01 Cardiac therapy
NG Psychoanalepiics
MO1 Antinflammatory

D e ———
03-02-01 0 01 02 03
Toxicity Percentile - 0.5

CCardiovascular  M:Muscular
D.Digestive N:Nervous
E:Endocrine Rn:Renal
lintegumentary  Rd:Reproductive
LiLymphatic Rs:Respiratory

J01 Antivacterials

vs druggable genome
+ P<005
X P<5e-4
* P<5e-6

A10 Diabetes

G0 Urologicals

RO1 Nasal pregarations
C02 Antihypertensives
et

B0t

Figure 2 | TissueTox scores of 4,857 proteins in the human druggable genome. (a) Comparison of
TissueTox scores across 17 protein classes. The number of proteins in each class was shown under the
abbreviation of class name. The full name was shown as legend on the top-left. The toxicity of each class was
measured by the median percentile of TissueTox scores among all 4,857 proteins. The median percentile scores
were shown as boxplot with jitter points for 10 systems (diamond) and 45 tissues (circle). Each system was
represented by a distinct color. Each tissue was represented by the color of the system. (b,c) Comparison of
TissueTox scores across ATC drug categories. The results of 20 categories with the highest number of drugs
were shown here. Results of the remaining 56 categories can be found in Supplementary Fig. 3. The ATC code of
each category was shown on the left along with annotation. The toxicity of each category was measured by the
average percentile of TissueTox scores among all 4,857 proteins. The average percentile scores were shown as
two heatmaps for 10 systems (b) and 45 tissues (c). All 45 tissues were grouped by the 10 systems on x-axis in
(c). The significance levels of two-sided T test against all 4,857 proteins were shown in the cells with adjusted
p-value less than 0.05.

We also compared the predicted scores of targets across ATC drug categories
(Supplementary Table 5 and Online Methods). Targets of antiepileptics and
psycholeptics show high predicted toxicity in most systems. This is likely
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because drugs in those categories target GABA-A receptors. Targets of drugs that
treat congestion, COPD, and diabetes show low predicted toxicity (Fig. 2b,c and
Supplementary Fig. 3). Meanwhile, our prediction recaptured the tissue-
specific toxicity of several categories discovered by previous studies, such as
antineoplastics in integumentary system* (P = 4.4e-4) and antibacterials in
respiratory systeml®¢ (P = 2.4e-4). TissueTox scores can also recapture the
connections between targets and drug-induced liver injury made by previous
studies. For instance, Ivanov et al identified 37 high-confidence and 24 low-
confidence proteins associated with drug-induced liver injury (DILI) based on 11
curated pathological processes of DILIY”. We showed that the high-confidence
proteins are more likely to be predicted with higher TissueTox scores in liver
compared to the low-confidence ones (OR = 3, P = 0.056; Supplementary Fig. 4).
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Figure 3 | Validation of TissueTox scores using clinical trials data. (a,b) Comparison of TissueTox scores
between targets associated with failed trials (pink) and targets associated with succeeded trials (green) in 6
systems (a) and 4 tissues (b) where severe side effects were observed (title). Results of the remaining systems
and tissues can be found in Supplementary Fig. 5a,b. TissueTox scores of all proteins in druggable genome were

shown in grey as comparison. Error bar shows the 95% confidence interval calculated by bootstrap sampling.
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The significance levels of one-sided T test against targets associated with failed trials were shown under the x-
axis. Skin(ll): skin of lower leg (sun exposed); Blood: whole blood; Muscle: skeletal muscle. (¢, d) Similar to (a,b)
except the comparison was between drugs leading to the failure of trials (pink) and drugs leading the success
of trials (green). Drugs leading to both outcomes were shown in orange as comparison. (e) ROC curves of four
classifiers predicting the outcomes of clinical trials including structural-based method (grey), a previously
developed method named PrOCTOR (green), TissueTox scores-based method (pink), and combining structural
properties with TissueTox scores (blue). AUROC values were shown as legend on the bottom-right. The
sensitivity (y-axis) and 1-specificity (x-axis) of three drug-likeness measurements were shown as red asterisks
in the plot. (f) Applied the TissueTox scores-based model to 356 drugs currently undergoing clinical trials. The
predicted probability to fail was shown in green boxplot. Three drugs with the highest probability were
highlighted and annotated with their names. The out-of-bag probability of 337 drugs leading to success (grey)
and 33 drugs leading to failure (pink) were also shown as comparison. (g) The mRNA expression (upper) and
predicted toxicity (lower) of mocetinostat targets across 45 GTEX tissues. Both scores were normalized to
percentiles to enable comparison across tissues. All 45 tissues were grouped by the 10 systems on x-axis. Blood
and esophagus tissues were highlighted and annotated with the side effects that occurred in those tissues.

Abbreviations for the 10 systems can be found at the bottom-right of Fig. 2.

To further explore the application of TissueTox in drug development, we used
the predicted scores to assess the toxicity of drugs administrated in clinical trials
and connected the results to side effects and general outcomes of trials (Fig. 1a,
Supplementary Tables 6-9 and Online Methods). In the systems or tissues
where severe side effects were observed, we found that the targets of trials
terminated due to tissue toxicity have significantly higher TissueTox scores
compared to those trails that were completed (Fig 3a,b and Supplementary Fig
5a,b). This result holds when we averaged the predicted scores across targets to
compute tissue toxicity for drugs (Fig. 3c-d and Supplementary Fig. 5¢,d).

Using the TissueTox scores as features, we then trained a random forest
classifier predicting the results (i.e. success or toxicity failure) of clinical trials
using a reference dataset that includes 33 failures and 337 successes. As
comparison, we also trained classifiers using structural properties, drug-likeness
measurements, and PrOCTOR!8, a previously developed approach that combined
structure with target expression (Online Methods). TissueTox scores
outperformed these approaches and achieved an AUROC of 0.753 (Fig. 3e), a
17% increase from structure-based approach. Combining structural properties
did not further improve the performance of our model, suggesting that the two
types of features are not complementary of one another. We applied this model
to 356 drugs currently undergoing clinical trials (Supplementary Table 10).
Three drugs with the highest predicted probability to fail are mocetinostat,
trifluridine, and pracinostat (Fig. 3f). We found that one trial using mocetinostat
to treat follicular lymphoma was once put on hold due to toxicity concernsi®,
While the targets of mocetinostat show universal high expression across normal
tissues, we predicted them with high toxicity in a subset of tissues such as blood
and esophagus (Fig. 3g). These tissues match the sites of side effects observed in
the trial such as anaemia, neutropenia, nausea, and diarrhea?0. Similar pattern
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was also found in targets of trifluridine and pracinostat (Supplementary Fig. 6).
These results suggest that TissueTox scores can accurately capture the tissues
where side effects will occur in clinical trials.

TissueTox is a generally applicable approach for the assessment of toxicity in
tissues or cell types with transcriptome profiling data available. Importantly,
TissueTox is able to predict toxicity for any protein, even those that have not yet
been targeted by drugs. We expect TissueTox to facilitate the generation of new
hypotheses studying the genetic mechanism of toxicity, as well as improving
drug safety. The approach can be further improved as the knowledge gap
between target proteins and side effects is filled, providing us with more training
data. Moreover, as tissue-specific prediction of off-targets becomes available,
TissueTox can be applied to assess the off-target toxicity of drugs, which will
likely result in more accurate prediction of outcomes for clinical trials.

ONLINE METHODS

Selection of objects for study. We conducted the study on two levels: tissues
and organ systems. Forty-five human tissues were selected from GTEx
consortium?! based on the data availability, and further classified into 10 organ
systems based on anatomy (Supplementary Table 1). We applied the following
steps to build one TissueTox model for every tissue/system.

Construction of training sets. No existing resource provides standards that
directly connect target proteins to tissue toxicity. We built the connections by
integrating three existing resources, SNOMED, SIDER?2, and DrugBank?3. For
each tissue/system, related side effect terms were extracted from SNOMED using
semantic relationship of “finding_site_of”. Positive and negative control drugs of
every side effect were obtained from SIDER and SIDERctrl?4, respectively. We
previously developed SIDERctrl that used biological and chemical properties of
drugs to identify negative control drugs from all the unreported drugs of each
side effect. SIDERctrl can reduce the false negative rate of unreported drugs by
one-third to one-half. Target proteins of each drug were obtained from
DrugBank. Since the target annotations in DrugBank are mostly on-targets of
drugs, we applied the following filtering process to reduce the mismatch
between on-targets and off-target side effects:

1. For each drug D, we first calculated the probability of causing tissue

toxicity (TT) Pp_rr as
N (related SEs caused by D)

N(related SEs caused by D) + N (related SEs in which D is negative control)

Pporr =

A threshold Tp was used to define tissue toxicity of drugs as

[0,Tp] negative control
Pp_r =1 (Tp,1 —Tp) removed from the set
[1-Tp,1] tissue toxicity
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2. For each target protein P, we then calculated the probability of causing
tissue toxicity Pp_rr as
Pp_rr
_ N(drugs targeting P that cause TT)
N(drugs targeting P that cause TT) + N (drugs targeting P that do not cause TT)

The same method was used to define tissue toxicity of target proteins
with a threshold Tp.
We applied five different values 0, 0.1, .., 0.4 to Tp and Tbp, respectively. As a
result, 25 training sets were derived for each tissue/system. We further removed
training sets with less than ten positive or negative samples to prevent
overfitting. The best value of Tp and Tp was selected by a process described
below, which identified the training set with the least noise.

Calculation of target features Four types of target features were incorporated
in every TissueTox model: expression, variation, pathway, and regulatory.
Expression: TissueTox calculated two expression features per tissue, which
indicated the absolute and differential expression of a target in the tissue,
respectively. Absolute expression was measured by the percentile of RPKM value
among all genes. Replicates of the same tissue were averaged. Differential
expression was measured by the absolute fold change derived from DESeq
analysis?>. For each tissue type, the control samples were generated using the
following method. First, samples from other tissues of the same body system
were removed due to high similarity in expression. Next, the remaining tissues
were averaged across replicates then grouped by the body system. Ten bootstrap
samples were drawn from each system to account for the imbalanced number of
GTEXx tissues from different systems. The bootstrap samples were used as control
for DESeq analysis. Log transformation was applied to the original fold change
value to adjust for highly skewed distributions.

Variation: TissueTox adopted two tissue-naive variation features, Residual
Variation Intolerance Score (RVIS)2¢ and Haploinsufficiency (HI) score2?, which
measure the tolerance of a target to genetic mutations. The two features are
consistent across all TissueTox models.

Pathway: TissueTox used Reactome?® as the data source for pathways. We
previously developed two data-driven methods, GOTE2® and DATE3?, which
connected G-protein coupled receptors (GPCRs) or non-GPCRs to tissue-specific
functional pathways, respectively. The two methods were designed for
expression datasets containing one sample per tissue. Here, we introduced an
enhanced version of the methods: MS-GOTE and MS-DATE, which can cope with
multi-sample expression datasets such as GTEx. Details about the methods can
be found in Supplementary Note. We implemented the methods to predict
tissue-specific downstream pathways of targets. Pathways with less than 5 or
more than 100 annotated proteins were considered as incompletely or
excessively annotated, thus were eliminated from the results. In addition, to
reduce the redundancy among predicted pathways, we used the hierarchy of
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Reactome to filter out pathways that were connected to a target along with their
descendants. Each predicted pathway was regarded as a binary feature in the
TissueTox model, which indicated whether the pathway was connected to a
target or not.

Regulatory: TissueTox calculated two regulatory features per tissue: recall and
precision, which measured the efficacy of targets modifying the activity of master
regulators through downstream pathways (DPs). We first implemented
ARACNe3! to infer tissue-specific gene regulatory network from normalized
mRNA expression data (RPKM) of each GTEx tissue, then used VIPER32 to infer
the activity of transcription factors (TFs) regulating gene expression. TFs with
significant activity (P < 0.05) were defined as master regulators (MRs). Recall
was defined as the weighted proportion of MRs that are regulated by the DPs of a
target while precision was defined as the weighted proportion of DPs that
effectively regulate MRs. Specifically,

i e mrs —logP; * I(i annotated in DPs)

Recall = 2iemrs —logP;
—logP; . .
N Ye oPs Tength(7) * I(j contains MRs)
Precision = —logP;
— 77
Zje DPs Tength())

where [ is the indicator function, MRs are weighted by the p-value derived from
VIPER analysis P;, and DPs are weighted by the ratio of p-value derived from our
pathway analysis P; versus the number of proteins in the pathway.

Training and selection of TissueTox model. Using the features above, 100
random forest classifiers33 with 500 trees each were built for every training set
derived for a tissue/system. The parameters of random forest were set to the
same as our previous study3?. Results were averaged over the 100 classifiers to
account for the stochastic nature of random forest. The out-of-bag probability
was used to evaluate the performance of each model, which was measured by the
AUROC. To prevent overfitting, we randomly removed 10, 20, .., 50 percent
samples or features from each training set and recalculated the AUROC of new
models. The removal was repeated 100 times to account for the stochastic nature
of sampling. Two linear regression models were fit using the normalized AUROC
against the percentage of samples and features left to rebuild the model. The
model robustness was measured by the absolute coefficients of two linear
models: Ksampte and kpeawre. The performance and robustness scores were
normalized across all models derived for the same tissue/system using median
absolute deviation (MAD) modified Z-scores34, which were then combined using
Stouffer’s method?3. Specifically,

0.6745 (x; — %)

Modified Z; = VIAD
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Wauroc * Zavroc + Wiggmpe * Zk + wyi * Ly
. ple sample eature eature
Combined Z = ! !

2 2 2
\/WAUROC + Wksample + kaeature

where wiyroc , Wk are the weights used to combine three

sample ’ kaea.ture

measurements and were set as 1, 0.5, 0.5 to ensure that performance and
robustness were equally considered in model selection. The model with the
highest combined Z-score was selected for each tissue/system (Supplementary
Table 2). We measured the importance of each feature by the increase in mean
squared error (MSE) when the feature was removed from the model. The
importance score was then normalized by the sum across all features in each
model.

Application of TissueTox model to the human druggable genome. The
human druggable genome containing 4,857 proteins were curated by integrating
three databases: dGene3¢, GtoPdb37, and DrugBank. All druggable proteins were
classified into seven major classes: GPCRs, nuclear hormone receptors, ion
channels, transporters, catalytic receptors, enzymes, and other proteins. We
applied the selected random forest model of each tissue/system to calculate the
probability of causing tissue toxicity, which we defined as the TissueTox score.

Identification of toxic proteins for Gene Ontology enrichment analysis.
Toxic proteins were defined as proteins with TissueTox scores higher than the
median of druggable genome in all ten body systems (Supplementary Table 3).
Gene Ontology (GO) enrichment analysis of toxic proteins was performed using
PANTHERS3® at http://pantherdb.org (Supplementary Table 4). GO terms were
analyzed by three distinct categories: biological process, molecular function, and
cellular component. GO terms with less than 5 or more than 100 annotated genes
were eliminated from the results.

Comparison of TissueTox scores across ATC drug categories. ATC
classification of drugs were obtained from Tatonetti et al3°. We adopted the level
two hierarchy (first three digits) to classify drugs into 76 categories. For each
target protein, we calculated the percentile of TissueTox scores among the
druggable genome to enable comparison across distinct tissues or systems. The
distribution of percentile scores in each ATC category was compared to the
whole druggable genome using two-sided T test (Supplementary Table 5).
Bonferroni correction was performed to adjust for multiple testing across ATC
categories.

Validation of TissueTox score using clinical trials data from AACT. Curated
data of clinical trials was obtained from AACT database*? as of Mar 14, 2018. The
“studies.txt” file was used to extract 74 trials failed for toxicity reasons and 8,419
trials as negative controls. The failed trials were identified by overall status of
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“terminated”, “suspended”, or “withdrawn”, along with specified toxicity or
safety reasons that led to the failure. The control trials were identified by overall
status of “completed”. The “interventions.txt” file was used to extract drugs
administrated in each clinical trial and the “reported_events.txt” file was used to
extract side effects observed, along with the tissues or systems where the side
effects occurred. The tissue names adopted by AACT were manually mapped to
GTEx tissues (Supplementary Table 6). Target proteins of the drugs were
obtained from DrugBank. Details about the validation dataset can be found in
Supplementary Table 7. To ensure that the validation is independent of the
model construction, we removed the drugs or target proteins from the training
sets of TissueTox models if they appeared in the AACT dataset, then rebuilt the
models with the rest of training data and regenerated TissueTox scores of all
proteins in human druggable genome. TissueTox scores were compared on two
levels: target proteins and drugs. TissueTox score of a drug was defined as the
average scores of target proteins (Supplementary Table 8).

Construction of supervised models to predict general outcomes of clinical
trials. We calculated three types of features for the supervised models: chemical
structure, PrOCTOR, and tissue toxicity.

Chemical structure: The structure information (sdf format) of drugs was
downloaded from DrugBank. Ten chemical features were extracted from the sdf
file (Supplementary Table 9). We further included three binary features of
drug-likeness measurements: Lipinsk’s rule of five*l, Ghose*2, and Veber43.
PrOCTOR: PrOCTORI8 is a previously published method that predicts general
outcomes of clinical trials. The algorithm integrated the chemical features of
drugs described above with other properties of target proteins including mRNA
expression from 30 GTEx tissues, degree and betweenness centrality in gene-
gene interaction network, and loss frequency from ExAC database.

Tissue toxicity: TissueTox scores of 10 systems and 45 tissues were calculated
for each drug in the validation set.

We compared the performance of four supervised models predicting successes
and failures of clinical trials: structure-based, PrOCTOR, tissue toxicity-based,
and structure combined with tissue toxicity. For each model, 100 random forest
classifiers with 500 trees each were built. Results were averaged over the 100
classifiers to account for the stochastic nature of random forest. The out-of-bag
probability was used to evaluate the performance of each model, which was
measured by the AUROC.

We applied our tissue toxicity-based model to 356 drugs undergoing clinical
trials, which were identified by overall status of “active, not recruiting”, “not yet
recruiting”, or “recruiting”. Detailed information about each trial was obtained
through the process described above (Supplementary Table 10). The
probability of failure was calculated for each drug using the random forest
model.
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Data availability
The implementation codes and datasets of this paper can be accessed

at http:/ /tissuetox.tatonettilab.org.
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