

1 **Cohesin modulates DNA replication to preserve genome integrity**

2

3 Jinchun Wu^{1,2}, Yang Liu^{1,2}, Zhengrong Zhangding^{1,2}, Xuhao Liu^{1,2}, Chen Ai¹, Tingting Gan¹,
4 Yiyang Liu¹, Jianhang Yin¹, Weiwei Zhang¹, Jiazhi Hu^{1,*}

5

6 ¹ The MOE Key Laboratory of Cell Proliferation and Differentiation, School of Life
7 Sciences, Center for Life Sciences, Genome Editing Research Center, Peking University,
8 Beijing 100871, China.

9 ² These authors contributed equally to this work.

10 * Corresponding authors: hujz@pku.edu.cn (J.H.).

11 **Abstract**

12 Cohesin participates in loop formation by extruding DNA fibers from its ring-shaped
13 structure. Cohesin dysfunction eliminates chromatin loops but only causes modest
14 transcription perturbation, which cannot fully explain the frequently observed mutations of
15 cohesin in various cancers. Here, we found that DNA replication initiates at more than one
16 thousand extra dormant origins after acute depletion of RAD21, a core subunit of cohesin,
17 resulting in earlier replicating timing at approximately 30% of the human genomic regions. In
18 contrast, CTCF is dispensable for suppressing the early firing of dormant origins that are
19 distributed away from the loop boundaries. Furthermore, greatly elevated levels of gross
20 DNA breaks and genome-wide chromosomal translocations arise in RAD21-depleted cells,
21 accompanied by dysregulated replication timing at dozens of hotspot genes. Thus, we
22 conclude that cohesin coordinates DNA replication initiation to ensure proper replication
23 timing and safeguards genome integrity.

24

25 **Keywords**

26 Early replication initiation; chromosomal translocations; replication timing; DNA breaks;
27 DNA metabolism.

28

29 **Introduction**

30 The mammalian genomes are organized into different hierarchies to achieve DNA
31 metabolism activities. The chromatin loops are fundamental units of the 3D genome and play
32 important roles in regulating gene expression (Bonev and Cavalli, 2016; Fudenberg et al.,
33 2016; Rao et al., 2017). Cohesin and CTCF co-anchor chromatin loops and are essential for
34 stabilizing loop domains or topologically associating domains (TADs) (Fudenberg et al.,
35 2016; Nora et al., 2017; Rao et al., 2017; Schwarzer et al., 2017). The ring-shaped cohesin
36 comprises SMC1, SMC3, RAD21, and STAG1/STAG2 subunits (Gruber et al., 2003) (Figure
37 1A). The structural basis of cohesin in maintaining 3D genome integrity has been extensively
38 investigated by the depiction of how cohesin translocate and extrudes DNA (Bauer et al.,
39 2021; Davidson et al., 2019; Li et al., 2020; Shi et al., 2020).

40 Mutations of cohesin subunits are frequently observed in various cancers including
41 leukemia and lymphomas (Barber et al., 2008; De Koninck and Losada, 2016; Kon et al.,
42 2013). Though cohesin is crucial for chromosome segregation, the correlation between
43 aneuploidy and cohesin mutations in cancer cells is tenuous (De Koninck and Losada, 2016;
44 Kon et al., 2013; Waldman, 2020). The dysfunction of cohesin leads to the elimination of
45 loop domains and TADs, however, global transcription is mildly affected in the absence of
46 cohesin (Rao et al., 2017). The limited ectopic gene activation induced by cohesin
47 inactivation does not match the frequently observed cohesin mutations in cancer cells. Thus,
48 the global contribution of cohesin dysfunction in genome integrity and tumorigenesis has yet
49 to be fully elucidated.

50 DNA replication timing program is extremely robust and conserved (Marchal et al.,
51 2019; Müller and Nieduszynski, 2012; Ryba et al., 2010), for timely and orderly duplication
52 of the genome. Dysregulation of the replication process is the major source of genome
53 instability and often leads to cancers (Song et al., 2018; Tomasetti et al., 2017). Cohesin has
54 been reported to colocalize with the double hexamers of mini-chromosome maintenance
55 complex (MCM) that is the core helicase of DNA replication machinery in the human
56 genome (Guillou et al., 2010; Zheng et al., 2018). Moreover, abolishing the acetylation of
57 cohesin subunit SMC3 slows replication fork progression (Terret et al., 2009), further
58 suggesting the to-be-explored role of cohesin in DNA replication.

59 Employing the degron system to rapidly deplete RAD21 (Natsume et al., 2016), we
60 explored the role of cohesin in DNA replication and genome integrity. We conclude that
61 cohesin governs replication timing via modulating early replication initiation. And the loss of
62 RAD21 leads to exacerbated DNA damages and chromosomal translocations within cancer-

63 related genes in the genome, accompanied by disordered replication timing, shedding light on
64 the mechanism for tumorigenesis of previously identified cohesin mutations.

65

66 **Results**

67 **Acute depletion of RAD21 in K562 cells**

68 We introduced a mini auxin-inducible degron (mAID) system to rapidly degrade the
69 cohesin core subunit RAD21 (Natsume et al., 2016) (Figures 1A and S1A). To this end, we
70 knocked in the doxycycline (dox)-inducible *OsTIR1* gene in the *AAVS1* locus in K562 cells
71 and subsequently introduced the in-frame mAID-mClover encoding sequence at the 3' end
72 of *RAD21* gene in both alleles (Figure 1A). Two clones 1# and 4# are identified and validated
73 by both Sanger sequencing and western blot (Figure S1A and S1B; termed as RAD21-mAC
74 hereafter). In the RAD21-mAC cells, CTCF and SMC1 are bound to chromatin normally
75 (Figure S1B). In the presence of dox and indole-3-acetic acid (IAA), the RAD21-mAID-
76 mClover protein underwent rapid degradation and more than 60% of the RAD21-mAC cells
77 showed undetectable levels of fusion protein at one-hour post-treatment (Figure S1C).
78 However, more than 20% or 24% of RAD21-mAC cells showed comparable expression
79 levels of RAD21 to non-treated samples at 6- or 24-hour post-treatment, respectively (Figures
80 1B and S1C). To preclude the contamination of IAA-resistant cells, we isolated homogenous
81 RAD21-depleted cells with undetectable mClover fluorescence through fluorescence-
82 activated cell sorting (FACS) for the following analysis (Figure 1C).

83 To further validate the complete depletion of RAD21, we performed RAD21
84 chromatin immunoprecipitation-sequencing (ChIP-seq) in both wild-type (WT) and RAD21-
85 mAC cells. Cohesin distribution in the genome was identical between IAA-treated and
86 untreated WT cells (Figure 1D). However, RAD21 was no longer associated with its binding
87 sites in the sorted RAD21-mAC cells treated with IAA for 6 hours (Figure 1D).
88 Consequentially, the amount of chromatin-associated SMC1 was reduced, but CTCF
89 remained constant on the chromatin (Figure 1C), consistent with the previous report (Rao et
90 al., 2017). We also employed a quantitative 3C-seq (q3C-seq) to examine the impact of
91 RAD21 loss on chromatin loops. We placed a primer anchored at the proximal upstream
92 CTCF-binding element (CBE) of *c-MYC* and found that chromatin interaction involved in
93 this CBE was eliminated in RAD21-depleted cells (Figure 1E). Collectively, these data
94 indicated that RAD21 could be effectively depleted in RAD21-mAC K562 cells.

95

96

97 **Aberrant DNA replication initiation in RAD21-depleted cells**

98 To determine the impact of RAD21 depletion on DNA replication, we employed
99 previously developed nucleoside analog incorporation loci sequencing (NAIL-seq) to identify
100 the early replication initiation zones (ERIZs) in RAD21-depleted cells (Liu et al., 2021b).
101 Briefly, cells were synchronized at the G1 phase by CDK4/6 inhibitor for 36 hours and then
102 treated with IAA for 6 hours before being released into G1/S transition for EdU-then-BrdU
103 labeling (Figure S2A). The arrested RAD21-depleted cells entered the S phase normally
104 though at a slower progression than WT cells (Figure S2B). To capture early DNA
105 replication initiation, we collected cells at 4- and 3- hours post-release for RAD21-depleted
106 and WT cells, respectively, with similar timing in the previous report(Liu et al., 2021b). With
107 regards to EdU incorporation under hydroxyurea (HU) treatments, the G1-arrested WT or
108 RAD21-depleted cells were released into HU-containing medium for 24 hours before
109 harvest(Liu et al., 2021b) (Figure S2A). Of note, the amounts of origin recognition complex
110 (ORC) and MCM remained constant on the chromatin before release (Figure S2C).

111 We identified 2,122 ERIZs in IAA-treated WT cells, similar to our previous
112 report(Liu et al., 2021b). While 3,593 and 3,475 ERIZs were identified in RAD21-mAC
113 clones 1# and 4#, respectively, with a very high correlation (Figures 2A, 2B, and S2D).
114 Strikingly, 1,209 and 1,095 new ERIZs were identified in RAD21-depleted 1# and 4# cells,
115 respectively, which occupied approximately 30% of the total ERIZs in each RAD21-depleted
116 clone (Figure 2B-D). By comparing the replication signal intensity of shared ERIZs between
117 WT and RAD21-depleted cells, we identified the “increased” (639 in 1# and 630 in 4#),
118 “equal” (1,555 in 1# and 1,544 in 4#), and “decreased” (190 in 1# and 206 in 4#) ERIZs that
119 showed up-regulated, equivalent, or down-regulated early replication signals in RAD21-
120 depleted cells in comparison to WT cells (Figures 2A-D). Besides, 202 or 203 “disappeared”
121 ERIZs occurred in WT but not in RAD21-depleted cells. However, these disappeared ERIZs
122 were relatively weak in WT cells and the total replication signal intensity was only slightly
123 decreased in RAD21-depleted cells (Figure S2E), so we combined them into “decreased”
124 ERIZs for further analysis (Figure 2B). In total, only less than half of the ERIZs exhibited
125 comparative intensity of replication signals after RAD21 depletion (Figure 2C).

126 We next examined the chromatin features of the new ERIZs identified in RAD21-
127 depleted cells. We found that the replication initiation-associated factors, ORC, MCM, and
128 H2A.Z (Long et al., 2020) were enriched at the new ERIZs, similar to other classes of ERIZs
129 in RAD21-depleted cells (Figure 1E). In addition, transcription was also devoid in all four
130 classes of identified ERIZs including the new ones, in line with previous reports that

131 replication initiation occurred in non-transcribed regions (Liu et al., 2021b; Wang et al.,
132 2021) (Figure S2F). A sharp switch of OK-seq signals was also detected right at the center of
133 the new ERIZs (Figure 1E). Collectively, the new ERIZs in RAD21-depleted cells show
134 typical features of DNA replication origins, suggesting that they may originate from temporal
135 dysregulation of origin firing after RAD21 depletion, but not occur *de novo*.

136

137 **Perturbed DNA replication timing in RAD21-depleted cells**

138 To determine whether the new ERIZs result from dysregulated origin firing, we
139 performed replication timing analysis for RAD21-depleted cells. To this end, we labeled the
140 growing WT or RAD21-depleted cells with EdU for 15 minutes and then collected the cells
141 into 6 fractions by DNA content as previously described (Brison et al., 2019) (Figure S3A).
142 We used the EdU labeling method in NAIL-seq to construct sequencing libraries and adapted
143 the Repli-seq pipeline for replication timing computation (Brison et al., 2019; Liu et al.,
144 2021b). The new ERIZs induced advanced replication of the neighbor regions in RAD21-
145 depleted cells, resulting in relatively earlier replication timing than the same regions in WT
146 cells (Figures 3A, 3B, and S3B). The two replicates of WT cells showed resemble profiles of
147 replication timing and we used their correlation map to determine the 95% quantile interval
148 for the assessment of unchanged regions (Figure 3C, left panel). Approximately 10.2% and
149 30.1% of the genomic regions showed significantly earlier replication timing in RAD21-
150 depleted cells treated with IAA for 6- or 24-hours, respectively (Figures 3C right panel, S3B
151 and S3C). In the RAD21-depleted 4# cells at 24-hours post-IAA-treatment, 527 out of 1,095
152 new ERIZs induced advanced replication in the adjacent regions, while 168 increased and
153 103 equal ERIZs led to earlier replication timing (Figure 3D). Of note, 42 decreased ERIZs
154 exhibited earlier replication timing, possibly because they were close to other classes of
155 ERIZs (Figures 3D and S3E). Thus, cohesin dysfunction leads to aberrant replication timing
156 in K562 cells.

157 To determine the original replication timing of the ERIZs identified from RAD21-
158 depleted cells, we plotted these ERIZs on the replication timeline of RAD21-proficient cells.
159 The initiation of equal ERIZs occurred at similar time points between WT and RAD21-
160 depleted cells while decreased ERIZs showed a minor delay in the RAD21-depleted cells
161 with IAA treatment for 24 hours (Figures 3E and S3F). In contrast, the genomic regions
162 containing the increased ERIZs replicated earlier and the new ERIZs-containing regions
163 showed an even more significant earlier replication timing after RAD21 degradation (Figures
164 2E, 2F, and S3F). These data imply that the new ERIZs in RAD21-depleted cells arise from

165 the earlier firing of substantial origins that are originally dormant at the early replication
166 initiation stage.

167

168 **Redistributed replication initiation within loop domains in RAD21-depleted cells**

169 Given that both cohesin and CTCF are required for the formation of loop domains
170 (Figure 4A), we next sought to investigate whether CTCF is also involved in the advanced
171 firing of identified new ERIZs. To this end, we constructed a CTCF-mAID-mClover (CTCF-
172 mAC, clone 5C9) K562 cell line. Similar to the RAD21-mAC cell lines, the 3' end of *CTCF*
173 was tagged with an in-frame mAID-mClover encoding sequence on both alleles (Figures
174 S4A, B). We isolated the CTCF-depleted cells by FACS to remove IAA-resistant cells and
175 performed NAIL-seq EdU/HU method as for RAD21-mAC cells (Figure S2A and S4B). The
176 overall distribution profile of replication signals at identified ERIZs in CTCF-depleted cells
177 was similar to that in WT cells except with a lower intensity (Figures 4B-D, and S4C).
178 Specifically, CTCF-depleted cells exhibited very low intensity of replication signals at the
179 new ERIZs as WT cells (Figure 3C), suggesting that CTCF is dispensable for suppressing the
180 firing of dormant origins.

181 Cohesin functions as molecular motors to progressively extrude DNA to convergent
182 CTCF that is resident at the boundaries of loop domains (Davidson et al., 2019) (Figure 4A),
183 therefore we examined the distribution of early replication signals in chromatin loop domains
184 (Rao et al., 2014). In WT cells, early replication tended to occur at the regions close to loop
185 boundaries (Figure 4E). Though the overall early replication profile of cohesin-depleted cells
186 was similar to that of the WT cells, more replication signals accumulated in the regions away
187 from the loop boundaries (Figure 4E). In contrast, the replication signals within non-loop
188 domains were highly similar between WT and RAD21-depleted cells (Figure S4D). With
189 regards to the distribution of four classes of ERIZs in loop domains, much more replication
190 signals from new and increased ERIZs occurred in the middle of loop domains (Figure 4F).
191 The median distance to loop boundaries was up to 40.8 kb and 32.0 kb for new and increased
192 ERIZs, respectively, in RAD21-depleted cells, in comparison to 26.5 kb for all ERIZs of WT
193 cells (Figure S4E). We also performed MCM5 ChIP-seq analysis for G1-arrested cells
194 because origin licensing occurs in the G1 phase (O'Donnell et al., 2013). Similar to the early
195 replication signals, MCM displayed a higher accumulation in the middle of loop domains in
196 cohesin-depleted cells than in WT cells (Figure 4G). Collectively, these data suggest that
197 loop extruding by cohesin within the entire loop domains possibly suppresses aberrant origin
198 firing away from loop boundaries.

199 **Increased chromosomal translocations in RAD21-depleted cells**

200 To determine the impact of cohesin dysfunction on genome stability, we employed a
201 previously developed primer-extension-mediated sequencing (PEM-seq) assay to profile and
202 quantify the DNA double-stranded breaks (DSBs) in RAD21-depleted cells (Liu et al.,
203 2021a; Yin et al., 2019; Zhang et al., 2021). We used CRISPR-Cas9 to generate bait DSBs at
204 the *c-MYC* or *TP53* loci and captured the genome-wide DSBs that formed chromosomal
205 translocations with the bait DSBs (Figure 5A). Dramatically increased chromosomal
206 translocations were detected in RAD21-depleted cells, especially at the bait site-containing
207 chromosome, and the total translocation levels were 3 to 5 fold of that in IAA-treated WT
208 cells (Figures 5B, 5C, and S5A). We then identified genome-wide enriched translocation
209 clusters in RAD21-depleted cells against WT cells with a significance of FDR<0.01. 196 and
210 204 translocation clusters were identified at the two bait sites, which harbored 30 to 46
211 hotspot genes for the two RAD21-mAC clones (Figures 5D, S5B and S5C). More than 45%
212 of these hotspot genes were involved in translocations of both bait sites in RAD21-depleted
213 cells (Table S1). Moreover, more than one-third of these hotspot genes were reported to be
214 mutated in cancers or other diseases, including *KDM6A*, *SMYD3*, *RUNX1*, *MAPK1*, and *BCR*
215 (Figures 5E, S5D, S5E, and Table S1).

216 We also employed precision nuclear run-on sequencing (PRO-seq) to examine the
217 transcription profile of identified hotspot genes (Jiang et al., 2020; Sigova et al., 2015). The
218 vast majority of these hotspot genes showed similar transcription levels in the presence or
219 absence of RAD21 (Figure S6A), indicating that transcription is not involved in inducing
220 DSBs at these hotspot genes. Then we examined the change of replication timing of these
221 hotspot genes. Approximately 34.4% of total genes fell in regions with altered replication
222 timing, while the percentages of the identified hotspot genes were increased to more than
223 55% at both bait sites (Figure 6A), indicating the involvement of altered replication timing in
224 DNA breaks at these hotspot genes. Specifically, more hotspot genes exhibited earlier rather
225 than later replication timing, exemplified by *KDM6A* and *STAG1* captured by *c-MYC* DSBs
226 in addition to *CCNY* and *RUNX1* captured by *TP53* DSBs (Figure 6B-D).

227

228 **Discussion**

229 Though the degron system enables the rapid degradation of target protein, the
230 depletion efficiency varies for different proteins. In our system, more than 20% of RAD21-
231 mAC K562 cells are resistant to IAA treatment, in line with a previous report in HCT116
232 cells (Oldach and Nieduszynski, 2019) (Figure 1B and S1C). Given that RAD21-proficient

233 cells enter the S phase more efficiently than RAD21-deficient cells (Figure S2C), the impact
234 of these RAD21-retained cells on ERIZ identification and replication timing profiling can be
235 further exacerbated. Therefore, we employed FACS to isolate homogenous RAD21-deficient
236 cells for all the analyses to rule out the contamination of both RAD21-retained cells and dead
237 cells.

238 Dormant origins are fired in the early S phase after RAD21 depletion, which leads to
239 perturbed replication timing. We identified 50% more ERIZs in RAD21-depleted cells in
240 comparison to WT cells, consistent with the previous report (Cremer et al., 2020). The newly
241 identified ERIZs in RAD21-depleted cells are distributed evenly in the loop domains,
242 different from the ERIZs of WT cells that are enriched in the regions close to the loop
243 boundaries (Figure 4E, 4F). Moreover, cohesin suppresses the firing of dormant origins,
244 which is independent of CTCF (Figure 4C). Therefore, the CTCF-dispensable loop extruding
245 function of cohesin is important for ensuring proper firing of early DNA origins. In this
246 context, cohesin may lead to redistribution of MCM during loop extrusion to promote DNA
247 replication initiation at the regions close to loop boundaries in WT cells (Figure S6B). While
248 in the absence of cohesin, MCM may accumulate at any region within the loop domains,
249 which results in more DNA replication initiation in the middle of loop domains (Figures 4E-
250 G, and S6D). With this regard, we detected a coincident redistribution of MCM and early
251 replication signals in the middle of loop domains after cohesin dysfunction (Figure 4E and
252 4G). Moreover, MCM double hexamer colocalizes with cohesin in Hela cells, which can be
253 detected during MCM redistribution by cohesin (Guillou et al., 2010; Zheng et al., 2018).
254 Similarly, cohesin has been proposed to redistribute the RAG complex during V(D)J
255 recombination in developing lymphocytes (Dai et al., 2021; Hu et al., 2015; Zhang et al.,
256 2019). Nevertheless, how cohesin interplays with MCM remain to be explored.

257 Excess DNA replication initiation induced by RAD21 depletion may pose great threats to
258 genome integrity. Replication initiation *per se* may occasionally cause DSBs because
259 accumulating evidence showed that early replication is colocalized with double-stranded
260 DNA breaks and DNA repair factors in mouse B cells (Barlow et al., 2013; Tubbs et al.,
261 2018). Moreover, excess replication forks consume more replication factors than normal, and
262 the exhausted replication limiting factors lead to severe replication stresses (Toledo et al.,
263 2013; Zeman and Cimprich, 2014). In addition, a collision between replication forks and
264 transcription as well as excess replication terminations may be also involved in the genome
265 instability after cohesin dysfunction (Hamperl et al., 2017; Liu et al., 2021b; Wang et al.,
266 2021). In this context, the alteration of replication timing program is prevalent in some

267 cancers and associated with common fragile sites (Brison et al., 2019; Ryba et al., 2012).
268 Therefore, cohesin dysfunction induces greatly elevated levels of DNA breaks and
269 chromosomal translocations. At the tested two loci, the genome-wide translocation levels are
270 increased to 3 to 5 fold in RAD21-depleted K562 cells (Figure 5B), even higher than the 2-
271 fold change detected in the ATM-deficient B cells (Hu et al., 2014). Of note, ATM is the
272 master kinase for DSB repair and ATM mutations frequently lead to lymphomas and leukemia
273 in both humans and mice (Alt et al., 2013; Gostissa et al., 2011).

274

275 **STAR Methods**

276 **Cell culture, mAID-mClover introducing, and cell cycle synchronization**

277 The authenticated K562 cells (3111C0001CCC000039, National Infrastructure of Cell
278 line resource, China) were cultured in the RPMI1640 with 15% FBS as described (Liu et al.,
279 2021b). The *OsTIR1* gene controlled by the Tet-On promoter was integrated into the *AAVS1*
280 locus by CRISPR-Cas9-mediated homology-directed repair (HDR). Clones were validated
281 for the integration at the target site by both PCR and western blotting. A validated clone with
282 a higher expression level of OsTIR1 than other clones was subjected to the subsequent
283 gene manipulation.

284 For the tagging of either RAD21 or CTCF, the selected clone expressing OsTIR1 was
285 transfected with plasmids containing Cas9-single guide RNA and an in-frame mAID-
286 mClover tag, flanked by homology arms identical to RAD21 or CTCF, respectively, by
287 nucleofector (Lonza, 4D-Nucleofector X). Cells were subcloned and candidate clones were
288 subjected to further validation by PCR, sanger sequencing, flow cytometer analysis, and
289 western blot as presented. Finally, two clones (RAD21-mAC 1# and 4#) for RAD21 and one
290 clone (CTCF-mAC 5C9) for CTCF were validated and used for further analysis.

291 The WT, RAD21-mAC, and CTCF-mAC are synchronized as previously reported(Liu
292 et al., 2021b). For G1 arrest, cells were incubated with 5 μ M Palbociclib (Selleckchem,
293 S1116) for 36 hours. To be released to the G1/S transition, G1-arrested cells with or without
294 RAD21 were released into a fresh medium for 4 or 3 hours, respectively. For HU treatment,
295 G1-arrested cells were released into a fresh medium supplied with 10 mM HU for 24 hours.
296 For detailed treatments of each assay including ChIP-seq, q3C-seq, NAIL-seq, Repli-seq,
297 PEM-seq, and PRO-seq, please refer to the following sections. All the sequencing data were
298 aligned to human genome hg19 for further analysis.

299

300 **ChIP-seq of RAD21, CTCF, and MCM5 in the G1 phase**

301 For G1 arrest, both WT and RAD21-mAC (1# and 4#) cells were cultured with
302 palbociclib (Selleckchem, S1116) for 36 hours. Cells with no treatment were set as control.
303 To induce the acute depletion of RAD21, 2ug/ml dox (Sigma, D9891) and 500uM IAA
304 (Sigma, I5148) was included in the medium at 24 hours and 6 hours before harvest,
305 respectively, and cells were then subjected to FACS purification for the mClover-negative
306 cells indicating the ablation of RAD21. Only G1-arrested WT cells were applied to CTCF
307 ChIP-seq analysis.

308 Collected cells were fixed by 1% formaldehyde (Sigma, F1635, fresh-made) for 10
309 min at 25°C and quenched by 125 mM glycine (VWR-amerasco 0167) for 5 min. Thoroughly
310 washed by PBS, cells were lysed on ice for 15 min with ice-cold NP40 lysis buffer (10 mM
311 Tris-HCl, pH 7.5; 150 mM NaCl; 0.05% NP40) supplied with protease inhibitors (PIs)
312 (Bimake, B14012). The nuclei fraction was isolated, washed by PBS/1 mM EDTA, and then
313 lysed with glycerol buffer (20 mM Tris-HCl, pH 8.0; 75 mM NaCl; 0.5 mM EDTA; 0.85 mM
314 DTT; 50% glycerol) and nuclei lysis buffer (10 mM HEPES, pH 7.6; 1 mM DTT; 7.5 mM
315 MgCl₂; 0.2 mM EDTA; 0.3 M NaCl; 1 M urea; 1% NP40). The chromatin was pelleted by
316 centrifuge, washed twice by PBS/1 mM EDTA, and eventually suspended in sonication
317 buffer (20 mM Tris-HCl, pH 8.0; 150 mM NaCl; 2 mM EDTA; 0.1% SDS; 1% Triton X-100;
318 4 mM CaCl₂) with PIs. Chromatin fractions were then treated with 50 U MNase (NEB,
319 M2047S) for 10-12 min at 37°C, and the digestion was quenched by adding 5 mM EGTA and
320 5 mM EDTA. After that, pre-digested chromatin was sonicated by a Biorupter (Energy: High;
321 On: 30 s; Off: 60 s; 15 cycles; 4°C). 30 µL of soluble chromatin fraction was kept as input
322 and the rest was subjected to ChIP analysis.

323 For ChIP-seq, an antibody against RAD21 (1:50; Abcam, ab992), CTCF (1:100;
324 Millipore 07-729) or MCM5 (1:50; Abcam, ab75975) was incubated with the soluble
325 chromatin fraction for 2 hours at 4°C. 40 µL protein G dynabeads (Invitrogen, 10003D) were
326 then added overnight. Next, beads were sequentially washed by high-salt buffer (500 mM
327 NaCl; 0.1% SDS; 1% Triton X-100; 2 mM EDTA; 20 mM Tris-HCl, pH 8.0) for twice, LiCl
328 buffer (0.25 M LiCl; 1% NP-40; 10 mM Tris-HCl; pH 8.0, 1 mM EDTA) for once, and TE
329 buffer for three times. Chromatin bound on beads was eluted twice with elution buffer (20
330 mM Tris-HCl, pH 8.0; 10 mM EDTA; 1% SDS) at 65 °C, each for 15 min. Eluate fraction
331 was treated with RNase A (Thermo Fisher, EN0531), Proteinase K (Invitrogen, 25530015),
332 and de-crosslinked at 65 °C overnight. Purified DNA was end-repaired, tailed with poly-dC,
333 tagged with biotin, captured by Streptavidin C1 beads (Invitrogen, 65002), and ligated with
334 an adapter. The beads-bound DNA was thoroughly washed, tagged with Illumina sequences,
335 and sequenced with Hi-seq (2×150 bp).

336 Sequencing data for MCM5, CTCF, and RAD21 were processed and analyzed as
337 reported (Liu et al., 2021b). Specifically, for MCM5, the ChIP-seq signals were normalized
338 to fold change defined by the ratio of ChIP-ed signals over input signals. Regarding the
339 distribution of MCM within loop domains (Rao et al., 2014), the width of loop domains was
340 divided into 250 bins, with 20kb upstream and downstream. Matrix was generated by using

341 normalizeToMatrix (extend=2000, w=1000, mean_mode= “absolute”, smooth=TRUE,
342 background=0, target_ratio=25/29). Of note, a z-score-transformed fold change value was
343 calculated for each loop domain. After that, the average z-score-transformed values at each
344 window were used to plot the relative signal intensity at this location in the absence or
345 presence of RAD21. For note, in RAD21 ChIP-seq, the ChIP-seq signals were normalized to
346 the total mapped reads without removing duplications with RPKM normalization as the
347 RAD21-depletion cells had much higher duplication rate. The parameter was used for peak
348 calling in RAD21 ChIP-seq data: “*macs2 bdgpeakcall -c 30*”.

349

350 **PEM-seq**

351 Cells were treated with dox for 24 hours and IAA for 6 hours before being transfected
352 with CRISPR-Cas9 targeting the *c-MYC* or *TP53* loci., Transfected cells with or without
353 RAD21 depletion were sorted by FACS at 48 hours post-transfection. The library preparation
354 process is the same as previously reported (Yin et al., 2019).

355 PEM-seq data was processed by the PEM-Q pipeline for translocation identification
356 as previously described (Liu et al., 2021a). Translocation was defined as genome-wide
357 junctions excluding the off-target sites and adjacent upstream and downstream 500-kb
358 regions. Three repeats of each treatment were combined, and translocations at the cut site
359 chromosome were removed before SICER analysis to avoid the dominance of the cut site
360 chromosome in cluster identification. Then, the spatial clustering approach for the
361 identification of chromatin immunoprecipitation (ChIP)-enriched regions (SICER) algorithm
362 (Zang et al., 2009) was applied to identify the translocation clusters with following
363 parameters: *SICER.sh species- hg19; redundancy threshold- 5; window- 30,000 bp; fragment*
364 *size- 1; effective genome fraction- 0.74; gap size- 90, 000 bp; FDR- 0.01*. Only the clusters
365 shared by two clones were considered as hotspot clusters. The cluster-containing genes with
366 junctions in all 3 replicates of each sample were defined as hotspot genes.

367

368 **Quantitative 3C sequencing (q3C-seq)**

369 Cells were treated as described in the ChIP-seq section. Briefly, G1-arrested cells
370 with or without RAD21 were purified by FACS isolation and then fixed by formaldehyde.
371 Fixed cells were then subjected to q3C-seq, similar to the description in 3C-HTGTS (Liu et
372 al., 2021a), except that the 80 cycles LAM PCR were replaced by one-round primer
373 extension and biotinylated PCR products were ligated with a barcoded bridge adapter, to
374 quantify chromatin interaction. The 4-bp cutter DpnII (NEB, R0543L) was used for the

375 identification of interaction from CBE upstream of *c-MYC*. The library construction
376 procedure is similar to PEM-seq. Data of q3C-seq was applied to the PEM-Q pipeline for
377 further processing.

378

379 **NAIL-seq**

380 NAIL-seq was carried out as previously reported (Liu et al., 2021b) with minor
381 modifications. For EdU -and- BrdU labeling, G1-arrested WT or RAD21-depleted cells were
382 released into fresh medium for 3 or 4 hours, respectively. Then, cells were labeled by 20 μ M
383 EdU (Invitrogen, A10044) for 15 min, washed with pre-warmed fresh medium, and then
384 incubated with 50 μ M BrdU (Invitrogen, B23151) for 15 min. Of note, dox and IAA
385 persisted in the medium during release and labeling with nucleoside analogs. After that, cells
386 were thoroughly washed by ice-cold PBS and subjected to FACS purification of RAD21-
387 depletion cells. Genomic DNA was isolated, tagged with biotin by click-iT reaction,
388 subjected to the sequential isolation of BrdU and then EdU. After on-beads ligation, purified
389 DNA was tagged with Illumina sequencing primers and sequenced on Hi-seq, 2 \times 150 bp.

390 Data processing: NAIL-seq data were processed and early replication initiations zones
391 (ERIZs) were identified as previously described with modifications (Liu et al., 2021b). For
392 EdU/HU, peaks were called by MACS (version 2.1.1) with bdgpeakcall (-c 1.1 -l 200 -g 30).
393 The neighboring peaks with an interval shorter than 10kb were merged and merged peaks
394 with a width less than 10kb were discarded. For EdU-and-BrdU, EdU-rich regions were
395 defined exactly the same as that in the previous report (Liu et al., 2021b). Moreover, ERIZs
396 were also defined as EdU/HU peaks that overlapped with EdU-rich regions. Unique ERIZs in
397 WT+IAA or RAD21-mAC+IAA were grouped into “new” or “disappeared” ERIZs after
398 RAD21 depletion, respectively. For the common peaks, the signal intensity of EdU/HU in
399 each peak was compared in the absence and presence of RAD21. The “increased” or
400 “decreased” ERIZs in RAD21-depleted cells showed a 0.25-fold higher or lower EdU/HU
401 signal intensity than that in WT cells, respectively, and the rest ERIZs were grouped into
402 “equal”.

403 To depict the pattern of replication initiation for each class of ERIZs, the ERIZs were
404 firstly centered at the midpoint with \pm 100-kb regions. Then we generated the matrix using
405 *normalizeToMatrix extend=100000, w=1000, mean_mode="absolute", smooth=TRUE,*
406 *background=0.*

407

408 **Replication signal profile in loop domains**

409 The contact domains in K562 WT cells were annotated in the previous study(Rao et
410 al., 2014). Also, the loop domains were identified by the screen for domains containing the
411 peak pixels within 50kb or 0.2 of the domain lengths at the corner (Rao et al., 2014). Non-
412 loop domains pointed to the domains that have no overlapping regions with loop domains.
413 Replication signals within the genomic windows of 4 classes of ERIZs were extracted and
414 applied for metaplot analysis. All domains were divided into 250 bins with 20-kb regions
415 upstream and downstream of both domain boundaries. The matrixes were obtained using the
416 *normalizeToMatrix* function of R package “*EnrichedHeatmap*” with following parameters:
417 *extend*=2000, *w*=1000, *mean_mode*=“*absolute*”, *smooth*=TRUE, *background*=0,
418 *target_ratio*=25/29. the mean values of normalized RPKM signal were displayed for
419 visualization.

420 For the computation of the distance between ERIZs and loop boundaries, the ERIZs
421 inside loops were selected by *bedtools* for calculating the genome coordinate of their centers
422 to the centers of closest loop boundaries. The Mann-Whitney U test was applied to compare
423 the median value of distances. The loop boundaries were defined as the pair of loci
424 corresponding to 10-kb pixels with high contact frequency as described (Rao et al., 2014).
425 K562 loop data was from GSE63525 (Rao et al., 2014).

426

427 **Repli-seq**

428 The WT and RAD21-mAC cells were treated with dox for 24 hours, IAA for 6 or 24
429 hours, Hochest 33342 for 30 min, and 20 μ M EdU for 15 min before harvest. The harvested
430 cells with or without RAD21 depletion were sorted into six fractions based on the DNA
431 content by FACS. The isolated DNA was prepared to be library following the procedure
432 described in NAIL-seq and then sequenced on Hi-seq, 2 \times 150 bp.

433 *Data processing*: Reads were processed by the NAIL-seq “RepFind” pipeline and
434 analyzed as previously reported (Liu et al., 2021b). Briefly, reads with unique alignment, out
435 of the blacklist regions, were normalized to RPKM signals with a 50-kb bin. The S50 value
436 of replication timing profiles was calculated at each 50-kb bin, according to a published
437 pipeline (<https://github.com/CL-CHEN-Lab/RepliSeq>), using linear interpolation of RPKM
438 signal from G1 to G2 phase with a scale number at 100 (Brison et al., 2019).

439 To determine the replication timing changed regions in RAD21-depletion cells, the
440 differences of S50 values at each 50kb bin from IAA-treated WT repeat 1 and 2 ($\Delta S50_{wt}$)

441 were calculated. Then the differences of S50 values ($\Delta S50$) between RAD21-depletion cells
442 and WT cells were computed. The replication timing changed regions were defined as the
443 regions in which $|\Delta S50|$ beyond the 95% quantile of $|\Delta S50_{wt}|$. The replication timing
444 unchanged regions were defined as regions within the 95% quantile interval of $|\Delta S50_{wt}|$.

445

446 **PRO-seq**

447 Cells were treated and sorted as described in the ChIP-seq section, and then subjected
448 to nuclear run-on following the procedures in the previous report(Mahat et al., 2016). Briefly,
449 5 million cells, spiked with 0.25 million fruit-fly S2 cells, were incubated with ice-cold
450 permeabilization buffer (10 mM Tris-HCl, pH 7.4, 300 mM sucrose, 10 mM KCl, 5 mM
451 MgCl₂, 1 mM EGTA, 0.05% Tween-20, 0.1% NP40, 0.5 mM DTT) supplied with PIs. The
452 isolated nuclei resuspended in storage buffer (10 mM Tris-HCl, pH 8.0, 25% (vol/vol)
453 glycerol, 5 mM MgCl₂, 0.1 mM EDTA and 5 mM DTT) were subjected to nuclear run-on
454 with biotin-11-dCTP (Jena Bioscience, NU-809-BIOX) at 37°C for 5 min. Extracted RNA
455 was fragmented by 1 N NaOH on ice for 10 min, neutralized by 1M Tris-HCl, pH 6.8, and
456 subjected to enrich biotinylated RNA. The nascent RNA was reversely transcribed to cDNA
457 with an N9 random primer. After that, purified cDNA was tailed with poly-dC, biotinylated,
458 ligated with an adapter, tagged with Illumina sequences, and sequenced on Hi-seq, 2×150 bp.

459 *Data processing:* The adapter sequences on R1 and R2 were trimmed by using
460 cutadapt (-a AAGATCGGAAGAGCACACGTCTGAACCTCCAGT -A
461 NCCCCCCCCCAGATCGGAAGAGCGTCGTAGGGAAAGAGTGT -g
462 GGGGGGGGGN -q 15.15 --overlap 1 -m 25). Next, reads were aligned to a combined
463 genome (assembly hg19 combined with dm6) using bowtie (-q –very-sensitive-local –L 30 –
464 score-min G,20,8 –reorder –rg). Duplicates or reads with multiple alignments, and reads in
465 the blacklist regions were removed. Reads uniquely aligned to hg19 were normalized by the
466 spike-in reads with a normalization factor measured by 1000000 / (the number of reads
467 aligned to the dm6 genome).

468 Differentially expressed genes: Genes, from GENCODE, with a length > 1kb (Sigova
469 et al., 2015) were used to quantify the transcription level by using featureCounts (-p -M -F
470 SAF -s 2). The differential expression testing was performed using DESeq2 bioconductor
471 package with a threshold of Benjamini-Hochberg corrected *p*-value < 0.01, and log2 (FC) >
472 1.

473

474

475 **Data availability**

476 All sequencing data presented in the present study were deposited at NCBI Gene
477 Expression Omnibus (GEO) under the accession number: GSE189762.

478

479 **Contributions**

480 J.H. conceived and supervised the project. J.W., Y.L., X.L., and J.H. designed the
481 experiments; J.W., Y.L., X.L., T.G., Y.L., J.Y., and W.Z. performed the experiments; J.W.,
482 Y.L., Z.Z., X.L., C.A., and J.H. analyzed the data; J.W., Y.L., Z.Z., and J.H. wrote the paper.

483

484 **Competing interests**

485 The authors declare no competing interests.

486

487 **Acknowledgments**

488 We acknowledge the members of the Hu laboratory for their helpful discussions. This
489 work was supported by the National Key R&D Program of China (2017YFA0506700 to J.H.)
490 and the NSFC grant (31771485 and 32122018 to J.H.). J.H. is an investigator at the PKU-
491 TSU Center for Life Sciences. Y.L. is supported by the Boehringer Ingelheim-Peking
492 University Postdoctoral Program. We thank the Flow Cytometry Core at the National Center
493 for Protein Sciences, Peking University. The degron plasmid backbones were kind gifts from
494 Dr. Xiong Ji.

495

496 **References**

497 Alt, F.W., Zhang, Y., Meng, F.L., Guo, C., and Schwer, B. (2013). Mechanisms of
498 programmed DNA lesions and genomic instability in the immune system. *Cell* *152*, 417-429.
499 Barber, T.D., McManus, K., Yuen, K.W., Reis, M., Parmigiani, G., Shen, D., Barrett, I.,
500 Nouhi, Y., Spencer, F., and Markowitz, S. (2008). Chromatid cohesion defects may underlie
501 chromosome instability in human colorectal cancers. *Proceedings of the National Academy
502 of Sciences* *105*, 3443-3448.
503 Barlow, J.H., Faryabi, R.B., Callén, E., Wong, N., Malhowski, A., Chen, H.T., Gutierrez-
504 Cruz, G., Sun, H.W., McKinnon, P., Wright, G., *et al.* (2013). Identification of early
505 replicating fragile sites that contribute to genome instability. *Cell* *152*, 620-632.
506 Bauer, B.W., Davidson, I.F., Canena, D., Wutz, G., Tang, W., Litos, G., Horn, S.,
507 Hinterdorfer, P., and Peters, J.M. (2021). Cohesin mediates DNA loop extrusion by a "swing
508 and clamp" mechanism. *Cell* *184*, 5448-5464.e5422.
509 Bonev, B., and Cavalli, G. (2016). Organization and function of the 3D genome. *Nature
510 Reviews Genetics* *17*, 661-678.
511 Brison, O., El-Hilali, S., Azar, D., Koundrioukoff, S., Schmidt, M., Nähse, V., Jaszczyzyn,
512 Y., Lachages, A.-M., Dutrillaux, B., and Thermes, C. (2019). Transcription-mediated
513 organization of the replication initiation program across large genes sets common fragile sites
514 genome-wide. *Nature communications* *10*, 1-12.

515 Cremer, M., Brandstetter, K., Maiser, A., Rao, S.S.P., Schmid, V.J., Guirao-Ortiz, M., Mitra,
516 N., Mamberti, S., Klein, K.N., Gilbert, D.M., *et al.* (2020). Cohesin depleted cells rebuild
517 functional nuclear compartments after endomitosis. *Nature Communications* *11*, 6146.

518 Dai, H.Q., Hu, H., Lou, J., Ye, A.Y., Ba, Z., Zhang, X., Zhang, Y., Zhao, L., Yoon, H.S.,
519 Chapdelaine-Williams, A.M., *et al.* (2021). Loop extrusion mediates physiological IgH locus
520 contraction for RAG scanning. *Nature* *590*, 338-343.

521 Davidson, I.F., Bauer, B., Goetz, D., Tang, W., Wutz, G., and Peters, J.-M. (2019). DNA
522 loop extrusion by human cohesin. *Science* *366*, 1338-1345.

523 De Koninck, M., and Losada, A. (2016). Cohesin mutations in cancer. *Cold Spring Harbor
524 Perspectives in Medicine* *6*, a026476.

525 Fudenberg, G., Imakaev, M., Lu, C., Goloborodko, A., Abdennur, N., and Mirny, L.A.
526 (2016). Formation of Chromosomal Domains by Loop Extrusion. *Cell Rep* *15*, 2038-2049.

527 Gostissa, M., Alt, F.W., and Chiarle, R. (2011). Mechanisms that Promote and Suppress
528 Chromosomal Translocations in Lymphocytes. *Annual Review of Immunology* *29*, 319-350.

529 Gruber, S., Haering, C.H., and Nasmyth, K. (2003). Chromosomal Cohesin Forms a Ring.
530 *Cell* *112*, 765-777.

531 Guillou, E., Ibarra, A., Coulon, V., Casado-Vela, J., Rico, D., Casal, I., Schwob, E., Losada,
532 A., and Méndez, J. (2010). Cohesin organizes chromatin loops at DNA replication factories.
533 *Genes & development* *24*, 2812-2822.

534 Hamperl, S., Bocek, M.J., Saldivar, J.C., Swigut, T., and Cimprich, K.A. (2017).
535 Transcription-Replication Conflict Orientation Modulates R-Loop Levels and Activates
536 Distinct DNA Damage Responses. *Cell* *170*, 774-786.e719.

537 Hu, J., Tepsuporn, S., Meyers, R.M., Gostissa, M., and Alt, F.W. (2014). Developmental
538 propagation of V (D) J recombination-associated DNA breaks and translocations in mature B
539 cells via dicentric chromosomes. *Proceedings of the National Academy of Sciences* *111*,
540 10269-10274.

541 Hu, J., Zhang, Y., Zhao, L., Frock, R.L., Du, Z., Meyers, R.M., Meng, F.L., Schatz, D.G.,
542 and Alt, F.W. (2015). Chromosomal Loop Domains Direct the Recombination of Antigen
543 Receptor Genes. *Cell* *163*, 947-959.

544 Jiang, Y., Huang, J., Lun, K., Li, B., Zheng, H., Li, Y., Zhou, R., Duan, W., Wang, C., and
545 Feng, Y. (2020). Genome-wide analyses of chromatin interactions after the loss of Pol I, Pol
546 II, and Pol III. *Genome biology* *21*, 1-28.

547 Kon, A., Shih, L.-Y., Minamino, M., Sanada, M., Shiraishi, Y., Nagata, Y., Yoshida, K.,
548 Okuno, Y., Bando, M., and Nakato, R. (2013). Recurrent mutations in multiple components
549 of the cohesin complex in myeloid neoplasms. *Nature genetics* *45*, 1232-1237.

550 Li, Y., Haarhuis, J.H., Cacciatore, Á.S., Oldenkamp, R., van Ruiten, M.S., Willems, L.,
551 Teunissen, H., Muir, K.W., de Wit, E., and Rowland, B.D. (2020). The structural basis for
552 cohesin-CTCF-anchored loops. *Nature* *578*, 472-476.

553 Liu, M., Zhang, W., Xin, C., Yin, J., Shang, Y., Ai, C., Li, J., Meng, F.-L., and Hu, J.
554 (2021a). Global detection of DNA repair outcomes induced by CRISPR-Cas9. *Nucleic Acids
555 Research* *49*, 8732-8742.

556 Liu, Y., Ai, C., Gan, T., Wu, J., Jiang, Y., Liu, X., Lu, R., Gao, N., Li, Q., and Ji, X. (2021b).
557 Transcription shapes DNA replication initiation to preserve genome integrity. *Genome
558 biology* *22*, 1-27.

559 Long, H., Zhang, L., Lv, M., Wen, Z., Zhang, W., Chen, X., Zhang, P., Li, T., Chang, L., Jin,
560 C., *et al.* (2020). H2A.Z facilitates licensing and activation of early replication origins.
561 *Nature* *577*, 576-581.

562 Mahat, D.B., Kwak, H., Booth, G.T., Jonkers, I.H., Danko, C.G., Patel, R.K., Waters, C.T.,
563 Munson, K., Core, L.J., and Lis, J.T. (2016). Base-pair-resolution genome-wide mapping of

564 active RNA polymerases using precision nuclear run-on (PRO-seq). *Nat Protoc* 11, 1455-
565 1476.

566 Marchal, C., Sima, J., and Gilbert, D.M. (2019). Control of DNA replication timing in the 3D
567 genome. *Nature Reviews Molecular Cell Biology* 20, 721-737.

568 Miotto, B., Ji, Z., and Struhl, K. (2016). Selectivity of ORC binding sites and the relation to
569 replication timing, fragile sites, and deletions in cancers. *Proceedings of the National
570 Academy of Sciences* 113, E4810-E4819.

571 Müller, C.A., and Nieduszynski, C.A. (2012). Conservation of replication timing reveals
572 global and local regulation of replication origin activity. *Genome research* 22, 1953-1962.

573 Natsume, T., Kiyomitsu, T., Saga, Y., and Kanemaki, M.T. (2016). Rapid protein depletion
574 in human cells by auxin-inducible degron tagging with short homology donors. *Cell reports*
575 15, 210-218.

576 Nora, E.P., Goloborodko, A., Valton, A.L., Gibcus, J.H., Uebersohn, A., Abdennur, N.,
577 Dekker, J., Mirny, L.A., and Bruneau, B.G. (2017). Targeted Degradation of CTCF
578 Decouples Local Insulation of Chromosome Domains from Genomic Compartmentalization.
579 *Cell* 169, 930-944 e922.

580 O'Donnell, M., Langston, L., and Stillman, B. (2013). Principles and concepts of DNA
581 replication in bacteria, archaea, and eukarya. *Cold Spring Harbor perspectives in biology* 5,
582 a010108.

583 Oldach, P., and Nieduszynski, C.A. (2019). Cohesin-mediated genome architecture does not
584 define DNA replication timing domains. *Genes* 10, 196.

585 Rao, S.S., Huntley, M.H., Durand, N.C., Stamenova, E.K., Bochkov, I.D., Robinson, J.T.,
586 Sanborn, A.L., Machol, I., Omer, A.D., Lander, E.S., *et al.* (2014). A 3D map of the human
587 genome at kilobase resolution reveals principles of chromatin looping. *Cell* 159, 1665-1680.

588 Rao, S.S.P., Huang, S.C., Glenn St Hilaire, B., Engreitz, J.M., Perez, E.M., Kieffer-Kwon,
589 K.R., Sanborn, A.L., Johnstone, S.E., Bascom, G.D., Bochkov, I.D., *et al.* (2017). Cohesin
590 Loss Eliminates All Loop Domains. *Cell* 171, 305-320 e324.

591 Ryba, T., Battaglia, D., Chang, B.H., Shirley, J.W., Buckley, Q., Pope, B.D., Devidas, M.,
592 Druker, B.J., and Gilbert, D.M. (2012). Abnormal developmental control of replication-
593 timing domains in pediatric acute lymphoblastic leukemia. *Genome research* 22, 1833-1844.

594 Ryba, T., Hiratani, I., Lu, J., Itoh, M., Kulik, M., Zhang, J., Schulz, T.C., Robins, A.J.,
595 Dalton, S., and Gilbert, D.M. (2010). Evolutionarily conserved replication timing profiles
596 predict long-range chromatin interactions and distinguish closely related cell types. *Genome
597 research* 20, 761-770.

598 Schwarzer, W., Abdennur, N., Goloborodko, A., Pekowska, A., Fudenberg, G., Loe-Mie, Y.,
599 Fonseca, N.A., Huber, W., Haering, C.H., Mirny, L., *et al.* (2017). Two independent modes
600 of chromatin organization revealed by cohesin removal. *Nature* 551, 51-56.

601 Shi, Z., Gao, H., Bai, X.-c., and Yu, H. (2020). Cryo-EM structure of the human cohesin-
602 NIPBL-DNA complex. *Science* 368, 1454-1459.

603 Sigova, A.A., Abraham, B.J., Ji, X., Molinie, B., Hannett, N.M., Guo, Y.E., Jangi, M.,
604 Giallourakis, C.C., Sharp, P.A., and Young, R.A. (2015). Transcription factor trapping by
605 RNA in gene regulatory elements. *Science* 350, 978-981.

606 Song, M., Vogelstein, B., Giovannucci, E.L., Willett, W.C., and Tomasetti, C. (2018). Cancer
607 prevention: Molecular and epidemiologic consensus. *Science* 361, 1317-1318.

608 Terret, M.-E., Sherwood, R., Rahman, S., Qin, J., and Jallepalli, P.V. (2009). Cohesin
609 acetylation speeds the replication fork. *Nature* 462, 231-234.

610 Toledo, L.I., Altmeyer, M., Rask, M.-B., Lukas, C., Larsen, D.H., Povlsen, L.K., Bekker-
611 Jensen, S., Mailand, N., Bartek, J., and Lukas, J. (2013). ATR prohibits replication
612 catastrophe by preventing global exhaustion of RPA. *Cell* 155, 1088-1103.

613 Tomasetti, C., Durrett, R., Kimmel, M., Lambert, A., Parmigiani, G., Zauber, A., and
614 Vogelstein, B. (2017). Role of stem-cell divisions in cancer risk. *Nature* 548, E13-E14.

615 Tubbs, A., Sridharan, S., van Wietmarschen, N., Maman, Y., Callen, E., Stanlie, A., Wu, W.,
616 Wu, X., Day, A., Wong, N., *et al.* (2018). Dual Roles of Poly(dA:dT) Tracts in Replication
617 Initiation and Fork Collapse. *Cell* 174, 1127-1142.e1119.

618 Waldman, T. (2020). Emerging themes in cohesin cancer biology. *Nature Reviews Cancer*
619 20, 504-515.

620 Wang, W., Klein, K.N., Proesmans, K., Yang, H., Marchal, C., Zhu, X., Borrman, T., Hastie,
621 A., Weng, Z., Bechhoefer, J., *et al.* (2021). Genome-wide mapping of human DNA
622 replication by optical replication mapping supports a stochastic model of eukaryotic
623 replication. *Mol Cell* 81, 2975-2988.e2976.

624 Wu, X., Kabalane, H., Kahli, M., Petryk, N., Laperrousaz, B., Jaszczyzyn, Y., Drillon, G.,
625 Nicolini, F.-E., Perot, G., Robert, A., *et al.* (2018). Developmental and cancer-associated
626 plasticity of DNA replication preferentially targets GC-poor, lowly expressed and late-
627 replicating regions. *Nucleic Acids Research* 46, 10157-10172.

628 Yin, J., Liu, M., Liu, Y., Wu, J., Gan, T., Zhang, W., Li, Y., Zhou, Y., and Hu, J. (2019).
629 Optimizing genome editing strategy by primer-extension-mediated sequencing. *Cell*
630 discovery 5, 1-11.

631 Zang, C., Schones, D.E., Zeng, C., Cui, K., Zhao, K., and Peng, W. (2009). A clustering
632 approach for identification of enriched domains from histone modification ChIP-Seq data.
633 *Bioinformatics* 25, 1952-1958.

634 Zeman, M.K., and Cimprich, K.A. (2014). Causes and consequences of replication stress.
635 *Nature cell biology* 16, 2-9.

636 Zhang, W., Yin, J., Zhang-Ding, Z., Xin, C., Liu, M., Wang, Y., Ai, C., and Hu, J. (2021). In-
637 depth assessment of the PAM compatibility and editing activities of Cas9 variants. *Nucleic*
638 *Acids Research*.

639 Zhang, Y., Zhang, X., Ba, Z., Liang, Z., Dring, E.W., Hu, H., Lou, J., Kyritsis, N., Zurita, J.,
640 Shamim, M.S., *et al.* (2019). The fundamental role of chromatin loop extrusion in
641 physiological V(D)J recombination. *Nature* 573, 600-604.

642 Zheng, G., Kanchwala, M., Xing, C., and Yu, H. (2018). MCM2-7-dependent cohesin
643 loading during S phase promotes sister-chromatid cohesion. *Elife* 7, e33920.

644

645

646

647 **Figure Legends**

648 **Figure 1. Acute depletion of RAD21 in K562 cells**

649 A. Diagram of core subunits of cohesin (top) and the auxin-inducible degron (AID) system
650 for rapid degradation of RAD21 (bottom).

651 B. Indole-3-acetic acid (IAA) induces incomplete depletion of RAD21-mAC. Grey and
652 green panels refer to the wild-type (WT) and RAD21-mAC populations, respectively, and
653 red panels refer to RAD21-mAC clones (1# or 4#) with IAA treatment for 6 hours.
654 mClover-positive (with percentage) and -negative cells are separated by blue lines.

655 C. Western blotting showing the chromatin-bound indicated proteins in IAA-treated cells
656 with or without FACS.

657 D. RAD21 ChIP-seq signals in G1-arrested WT and RAD21-mAC cells with and without
658 IAA treatment for 6 hours. mClover-negative RAD21-mAC cells were sorted for ChIP-
659 seq analysis.

660 E. Profiles of RAD21 distribution and chromatin interactions around the *c-MYC* locus in
661 WT and RAD21-mAC cells (clone 4#) with IAA treatment for 6 hours. mClover-negative
662 cells of RAD21-mAC were sorted for q3C-seq and ChIP-seq analysis. Red asterisk
663 indicates the *c-MYC* locus bait for q3C-seq.

664 **Figure 2. RAD21 regulates early replication initiation in K562 cells**

665 A. Representative profiles of early replication signals and identified ERIZs in WT and
666 RAD21-depleted cells (clone 4#). The ChIP-seq signals of ORC2, H2A.Z, and OK-seq of
667 WT cells from previous reports (Miotto et al., 2016; Wu et al., 2018) were on the bottom.

668 B. Venn diagram showing the overlap of ERIZs between WT and RAD21-depleted cells
669 from indicated clones. The black curved arrow represented that the “disappeared” ERIZs
670 were merged into “decreased” ERIZs for further analysis.

671 C. Percentages of each class of ERIZs after RAD21 depletion in clone 1# and 4#,
672 respectively.

673 D. Heatmaps showing the distribution of early replication signals from IAA-treated WT and
674 RAD21-mAC cells at the ERIZs of RAD21-mAC 1#. The ERIZs were ranked by width
675 and centered at the midpoint.

676 E. Distributions of EdU/HU, ORC2, H2A.Z, and OK-seq at the 4 classes of ERIZs identified
677 from RAD21-mAC 1#. ERIZs are aligned at the mid-point. ORC2, MCM5, H2A.Z, and
678 OK-seq were from WT cells. And ORC2, H2A.Z, and OK-seq were from re-analysis of
679 previous data (Miotto et al., 2016; Wu et al., 2018).

680 **Figure 3. RAD21 depletion reprograms replication timing in K562 cells.**

681 A. Representative example of a “new” ERIZ nested in an earlier replication timing region.
682 The profiles of replication timing were represented by S50. The black curve is WT+IAA
683 for 24h and the dark red line is RAD21-mAC 4#+IAA for 24h. Bin size=50 kb.
684 Replication signals were placed on the bottom. Shadow in grey indicates the position of
685 new ERIZ.

686 B. Profiles showing the replication timing in a 13.5-Mb region. Replication timing profiles
687 were from WT (black or grey lines, IAA for 24 h) and RAD21-mAC 4# (orange or dark
688 red line, IAA for 6h or 24 h, respectively) cells. Red strips mark the “new” ERIZs
689 identified in Figure1 d-f; magenta strips refer to the replication timing significantly
690 advanced regions identified in Figure 3C.

691 C. Left: Scatter plot of S50 value between two WT+IAA replicates. Right: Scatter plot of
692 S50 value between WT replicate 1 and RAD21-mAC cells (clone 4#) with IAA treatment
693 for 24 hours. Each dot represents a 50-kb genomic region. Grey dots within the two
694 dashed lines represent unchanged regions in WT+IAA cells. Blue or red dots mark bins
695 with a later or earlier replication timing in the WT+IAA replicate 2 (left) or RAD21-
696 mAC+IAA (right), respectively. The pie charts summarize the percentages of bins with a
697 later (blue) or earlier (red) replication timing in each panel.

698 D. The numbers of ERIZs (from RAD21-mAC 4#) locate in earlier timing regions identified
699 in Figure 3C. The percentages of earlier ERIZs in “new”, “increased”, “equal”, and
700 “decreased” ERIZs are 48.1%, 26.7%, 6.7%, and 10.3%, respectively.

701 E. Density plots showing the distribution of S50 values of four classes of ERIZs identified
702 from RAD21-depleted cells (clone 4#) in the WT (left) or RAD21-mAC (right)
703 replication timelines, respectively.

704 F. The distribution of S50 values of four classes of ERIZs from WT or RAD21-depleted
705 cells (clone 4#). The Wilcoxon matched-pairs signed-rank test was applied for statistics
706 and the *p*-value is marked on the top.

707 **Figure 4. Distribution of early replication signals within loop domains.**

708 A. Diagram of Cohesin-mediated loop extrusion model. Yellow and red arrows refer to the
709 CTCF protein and the movement direction of DNA, respectively.

710 B. Distribution of early replication signals of IAA-treated WT, RAD21-mAC, and CTCF-
711 mAC cells in the centered ERIZs identified in the RAD21-depleted cells (clone 1#).

712 C. Heatmaps showing the distribution of early replication signals from IAA-treated RAD21-
713 mAC, CTCF-mAC, and WT samples at the new ERIZs identified from RAD21-mAC
714 (clone 1#). Legends are depicted as described in Figure 2D.

715 D. Example of early replication signals in a represented loop domain after RAD21 or CTCF
716 depletion. The ChIP-seq signals of RAD21 and CTCF are showed on the bottom.

717 E. Distribution of early replication signals in the presence (black) or absence (pink or red) of
718 RAD21 within loop domains in K562 cells. Each loop domain was divided into 250 bins
719 and aligned at loop boundaries, with 20-kb regions upstream and downstream.

720 F. Distribution of early replication signals in the four classes of ERIZs after RAD21
721 depletion within the loop domains in K562 cells. Legends are depicted as described in e.

722 G. Distribution of MCM5 signals in the presence (black) or absence (pink or red) of RAD21
723 within loop domains in K562 cells. The fold-change of MCM5 is defined as the ratio of
724 ChIP-ed over input signals and normalized to z-scores.

725 **Figure 5. RAD21 depletion leads to increased chromosomal translocations.**

726 A. The strategy for mapping DSBs and genome-wide translocations in RAD21-depleted
727 cells. Cells were sorted by FACS for PEM-seq analysis.

728 B. Frequency of translocations with or without RAD21 depletion. Mean±SD from three
729 repeats; *t*-test, ****p*<0.001. The bait sites are indicated on the top.

730 C. Dot plots exhibiting the distribution of translocation junctions on Chromosome 8 in IAA-
731 treated cells. The number of translocations were normalized to 100,000 editing events
732 from each sample. The red arrow indicates the position of bait site at the *c-MYC* locus.
733 Numbers of junctions are indicated at each plot. Legend for dot colors is indicated on the
734 top.

735 D. Circos plots showing the genome-wide translocations and translocation hotspot genes
736 cloned from *c-MYC* locus. The outer circle shows each indicated chromosome of human
737 genome. The inner circle shows the number of translocations within each 1-Mb bin with a
738 log scale in IAA-treated WT (black) and RAD21-depleted (green) cells. Bins with less
739 than 3 translocation junctions were considered as under background levels and were not
740 shown. Red arrows indicate the bait site of *c-MYC*. Colored lines link the bait site and
741 translocation hotspot genes after RAD21-loss and refer to the translocation frequency of
742 each hotspot gene per 10,000 translocations, indicated by the color legend.

743 E. Translocation frequencies of RAD21-depletion-induced hotspot genes in RAD21-mAC
744 1# captured by *c-MYC* DSBs. Cancer-related (red) and disease-related (blue) genes are
745 annotated by The Human Protein Atlas.

746

747

748 **Figure 6. Translocation hotspot genes tend to locate in replication timing-altered**
749 **regions**

750 A. The proportion of the total annotated genes (*GENCODE*, Top) or translocation hotspot
751 genes (Middle and Bottom) containing replication timing-altered regions. The hotspot
752 gene list contained the hotspots genes identified from both RAD21-mAC 1# and 4#
753 clones. RT, replication timing.

754 B. Heatmaps showing the divergences of S50 between RAD21-depleted and IAA-treated
755 WT cells in each translocation hotspot gene. Each row indicates a hotspot gene. The S50
756 for indicated gene of WT replicate 1 was defined as 0 and the S50 from other samples
757 were normalized to WT replicate 1 (direct subtraction). The colors represent the mean
758 value of S50 in the gene region. Red or blue refers to relatively earlier or later replication
759 timing, respectively, in comparison to WT replicate 1.

760 C. Examples of hotspot gene regions captured by *c-MYC* (top) and *TP53* (bottom). The
761 profile of replication timing in indicated regions is shown on the top. The dot plots
762 present translocation junctions identified from indicated locus. The red arrows indicate
763 the primer direction of PEM-seq. The black and red lines mark the S50 in IAA-treated
764 WT and RAD21-mAC cells, respectively. The grey shadows mark the hotspot genes.

765
766 **Supplemental Figure Legends**

767 **Figure S1 Characterization of RAD21-mAC K562 cells**

768 A. Knock-in and PCR screening strategy for the RAD21 tagged with mAID-mClover. The
769 result of PCR validation was showed on the bottom. The amplified products were
770 confirmed by sanger sequencing.

771 B. Western blotting for chromatin-bound RAD21, CTCF and SMC1 using histone H3 as
772 loading control in WT and RAD21-mAC cells (no IAA treatment).

773 C. Flow cytometry analyzing mClover fluorescence of two RAD21-mAC clones after IAA
774 treatment for indicated time.

775 **Figure S2 RAD21 regulates the firing of early replication origins in K562 cells**

776 A. Schematic for NAIL-seq analysis to identify early replication initiation zones (ERIZs).
777 The detailed procedures are described in Methods.

778 B. The release of G1-arrested WT and RAD21-depleted into early S phase. Cells were
779 synchronized by CDKi for 36 hours, treated with IAA for 6 hours before being released

780 into a fresh medium with dox and IAA. Cells were labeled with BrdU for 30 minutes
781 before being harvested at the indicated time and then fixed by ethanol. Rx, Release for x
782 hours.

783 C. Western blotting showing the amounts of chromatin-bound RAD21, CTCF, ORC2, and
784 MCM6 in the G1-arrested WT or RAD21-mAC cells with IAA treatment for 6 hours.
785 D. Overlap of ERIZs identified in IAA-treated RAD21-mAC clones 1# and 4#.
786 E. Heatmap showing the intensity of early replication signals from IAA-treated WT and
787 RAD21-mAC cells in disappeared ERIZs.
788 F. Signal intensity of PRO-seq from G1-arrested cells with or without RAD21 depletion in
789 non-transcribed regions adjacent to each class of ERIZs.

790 **Figure S3 RAD21 depletion affects replication timing in K562 cells.**

791 A. FACS sorting strategy for replication timing analysis. mClover negative live cells from
792 IAA treated WT and RAD21-mAC cells were gated by blue boxes, the black and green
793 circles gate the mClover negative and positive cells, respectively. The red rectangles
794 indicate the 6 fractions sorted according to DNA content of cells marked by
795 Hoechst33342.
796 B. A representative profile of replication timing in IAA-treated WT and RAD21-mAC cells
797 (clone 4#). Grey shadow highlights the neighbor region of a new ERIZ.
798 C. Scatter plot of S50 values between WT and RAD21-mAC cells (clone 4#) with IAA
799 treatment for 6 hours. Legends are described in Figure 3C.
800 D. Distribution of S50 values in IAA-treated WT and RAD21-mAC cells. Rp, repeat.
801 E. A representative profile of a decreased ERIZ overlapping with a region showing an
802 earlier replication timing.
803 F. Density plots showing the distribution of S50 values from IAA-treated WT (grey) or
804 RAD21-mAC (purple) cells in each class of ERIZs identified in RAD21-mAC 4#. The
805 dashed lines and number mark the median of S50 in WT (grey numbers) or RAD21-mAC
806 (purple numbers) cells.

807 **Figure S4 The distribution of early replication initiation sites after RAD21 depletion**

808 A. Western blotting for the validation of the CTCF-mAC cell line (clone 5C9).
809 B. Flow cytometry analyzing mClover fluorescence of CTCF-mAC clone 5C9 after IAA
810 treatment for indicated time.

811 C. Heatmaps showing the distribution of early replication signals from IAA-treated RAD21-
812 mAC, CTCF-mAC, and WT samples at the increased, equal, and decreased ERIZs of
813 RAD21-mAC 1#. The ERIZs were ranked by width and centered at the midpoint.
814 Legends are depicted as described in Figure 2D.

815 D. Distribution of early replication signals in the presence (black) or absence (pink or red) of
816 RAD21 within non-loop domains of WT cells. Each loop domain was divided into 250
817 bins and aligned at loop boundaries, with 20 kb regions upstream and downstream.

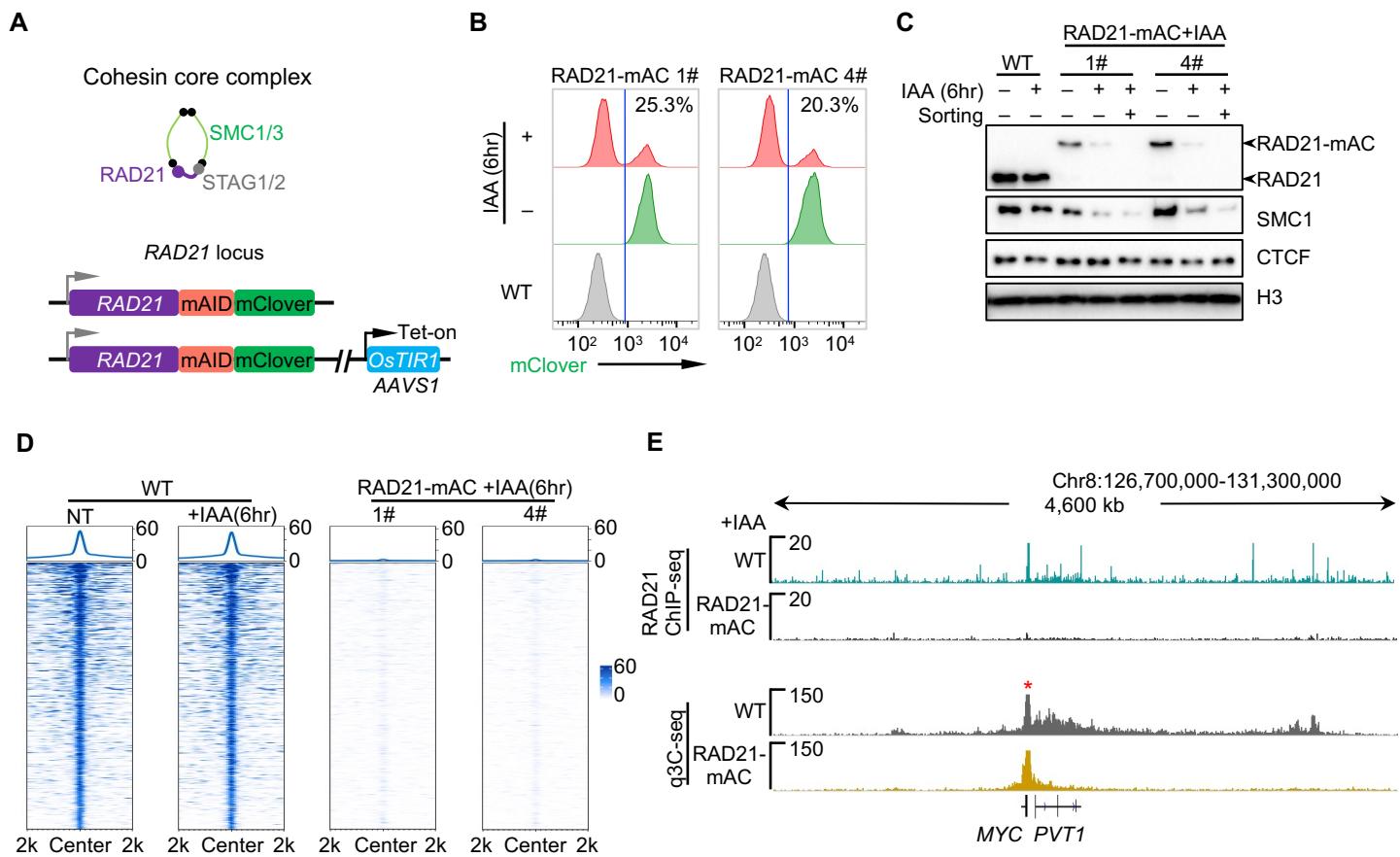
818 E. Distances between the center of each ERIZ and the closest loop anchor. ERIZs outside of
819 loops were excluded for analysis. Red lines and numbers mark the median distances. The
820 *p*-value from Mann–Whitney U test is labeled on the top of the violin plots.

821 **Figure S5 RAD21 depletion leads to genome instability**

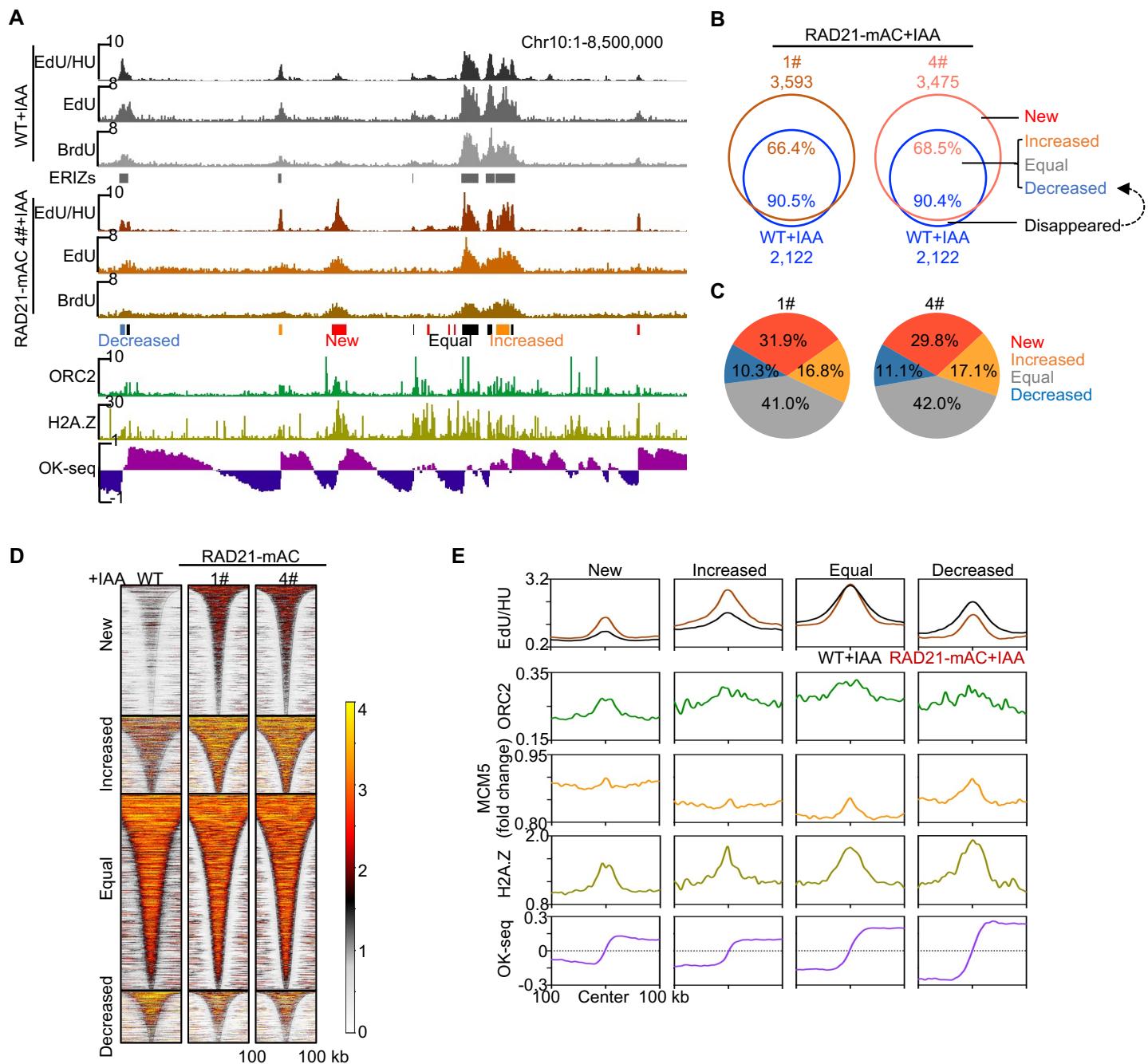
822 A. Dot plots exhibiting the distribution of translocation junctions on Chromosome 17 in
823 IAA-treated cells. The number of translocations were normalized to 100,000 editing
824 events from each sample. The red arrow indicates the position of bait site at the *TP53*
825 locus. Numbers of junctions are indicated at each plot. Legend for dot colors is indicated
826 on the top.

827 B. Flow diagram for the identification of translocation hotspot genes. See Methods for more
828 details.

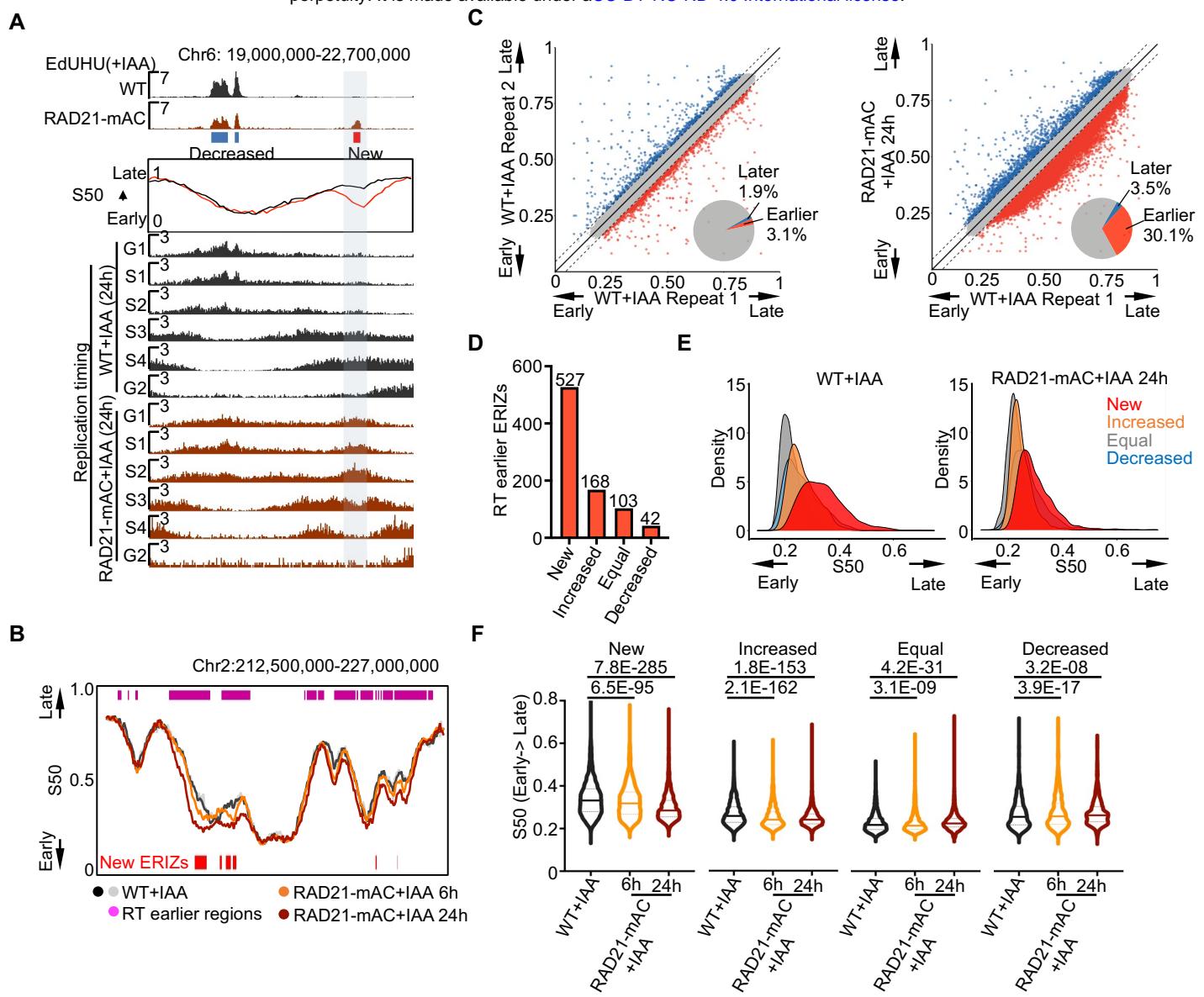
829 C. Circos plots showing the genome-wide translocations and translocation hotspot genes
830 cloned from the *TP53* locus with RAD21 depletion. The legend of the circos plot is
831 described in Figure 5D.

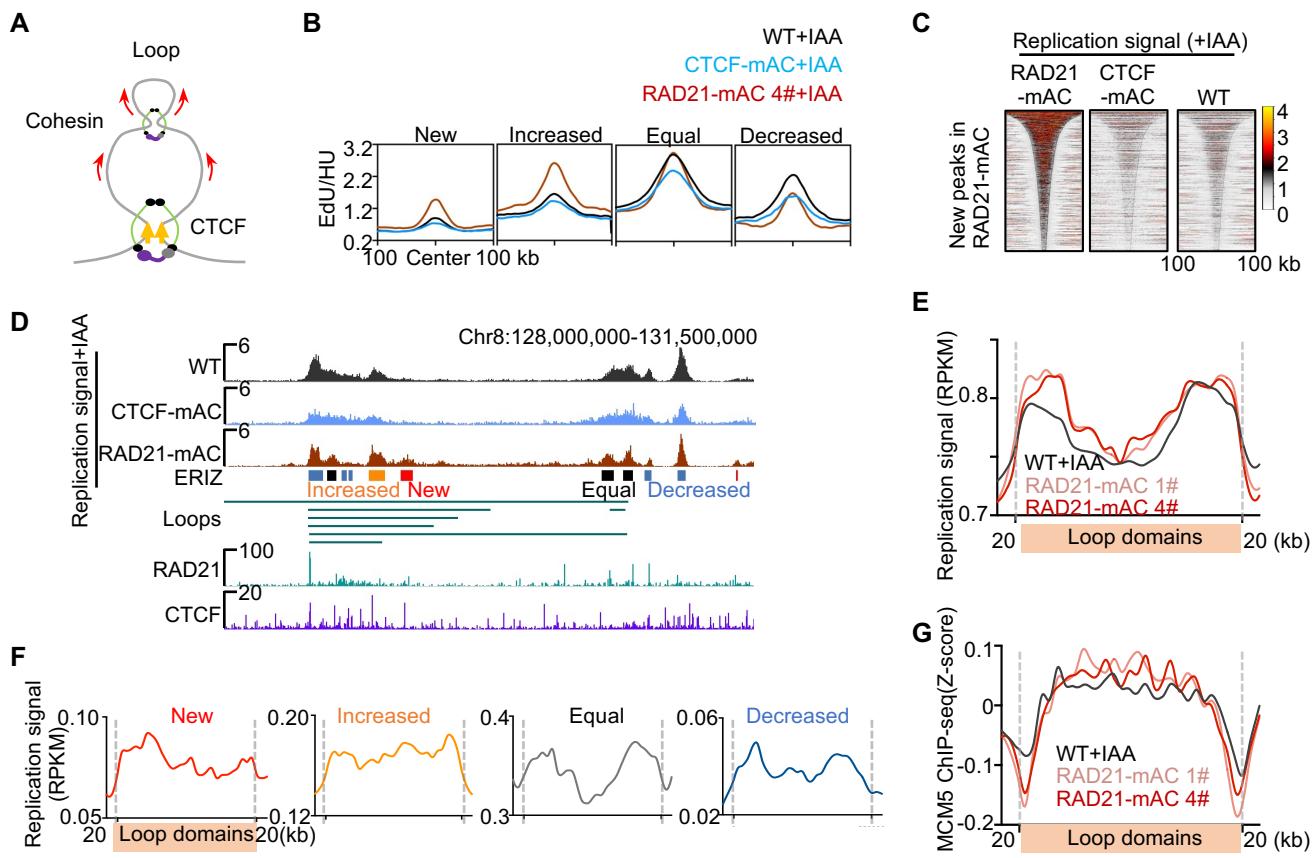

832 D. Translocation frequencies of RAD21-depletion-induced translocation hotspot genes in
833 RAD21-mAC 4# captured by *c-MYC* DSBs. Legends are depicted as described in Figure
834 5E.

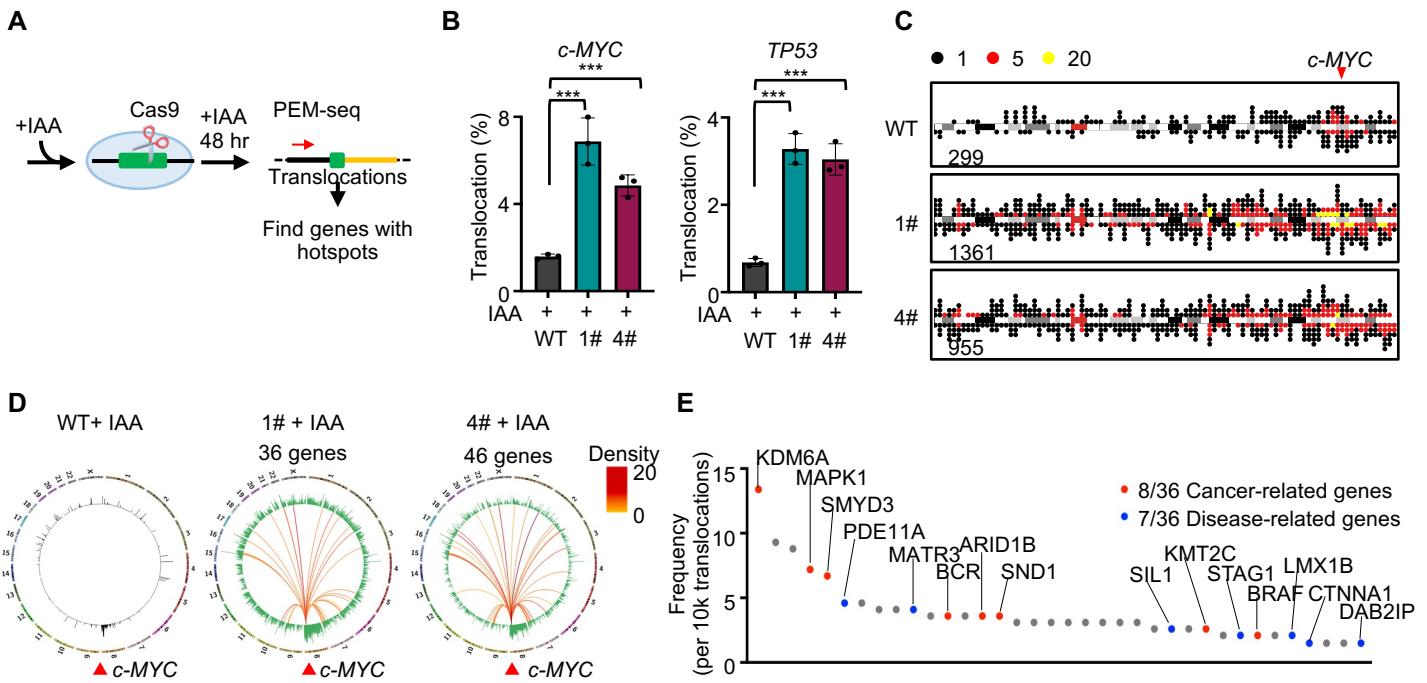
835 E. Translocation frequencies of RAD21-depletion-induced translocation hotspot genes in
836 RAD21-mAC 1# (top) and 4# (down) captured by *TP53* DSBs.

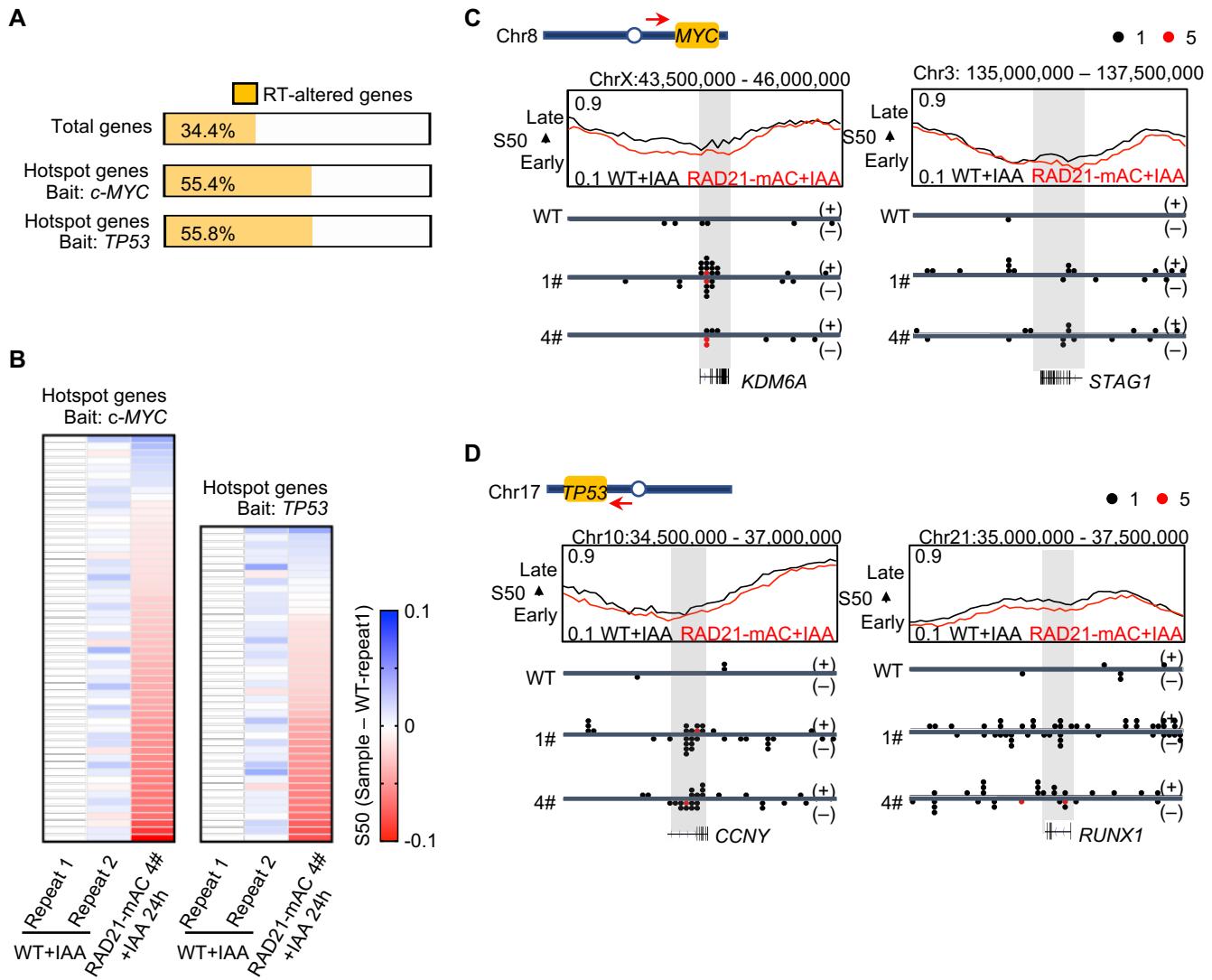

837 **Figure S6 Translocation hotspot genes tend to locate in replication timing-altered
838 regions**

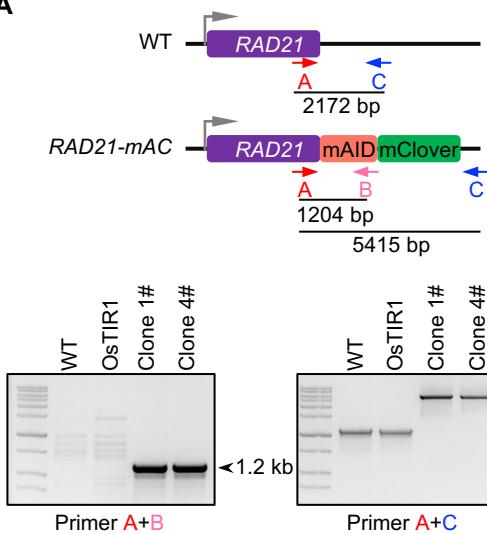
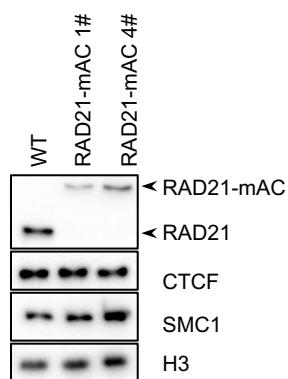
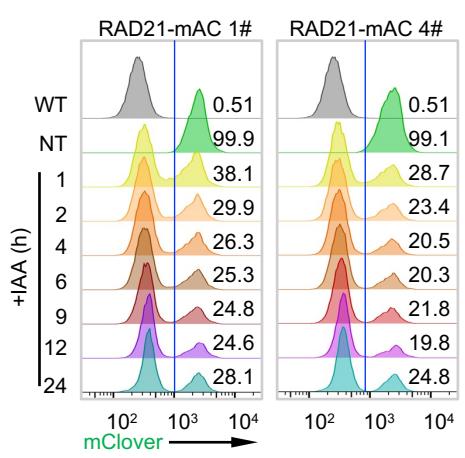
839 A. Volcano plot depicting the fold change of gene expression in the absence or presence of
840 RAD21. Red dots mark the translocation hotspot genes identified by *c-MYC* and *TP53*
841 DSBs; grey dots mark the differentially expressed genes after RAD21 depletion in the G1
842 phase.

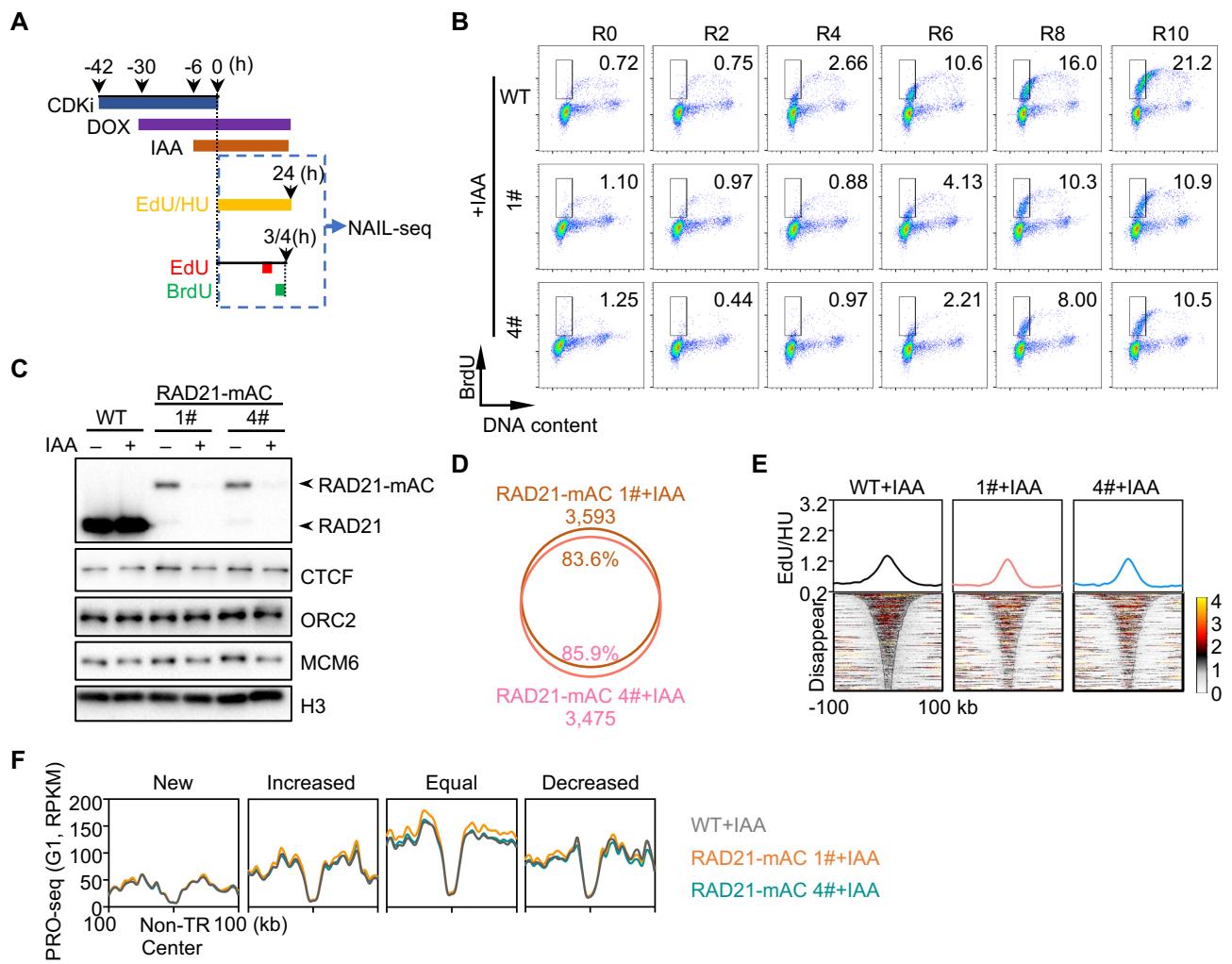

843 B. Working model of cohesin-mediated loop extrusion in modulating early replication
844 initiation. During the G1 phase, chromatin-bound MCM double hexamer undergoes
845 redistribution mediated by cohesin-driven loop extrusion and stalls at loop boundaries,
846 resulting in early replication adjacent to the loop boundaries in WT cells. Loss of cohesin-
847 mediated MCM redistribution induces ectopic origin firing within loop domains but away
848 from loop boundaries in the early S phase. The firing of multiple origins in a limited
849 regions may lead to DSBs as indicated by red asterisk.

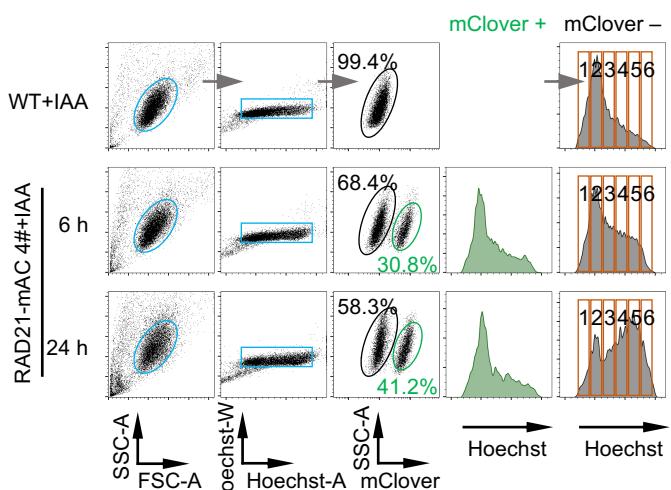
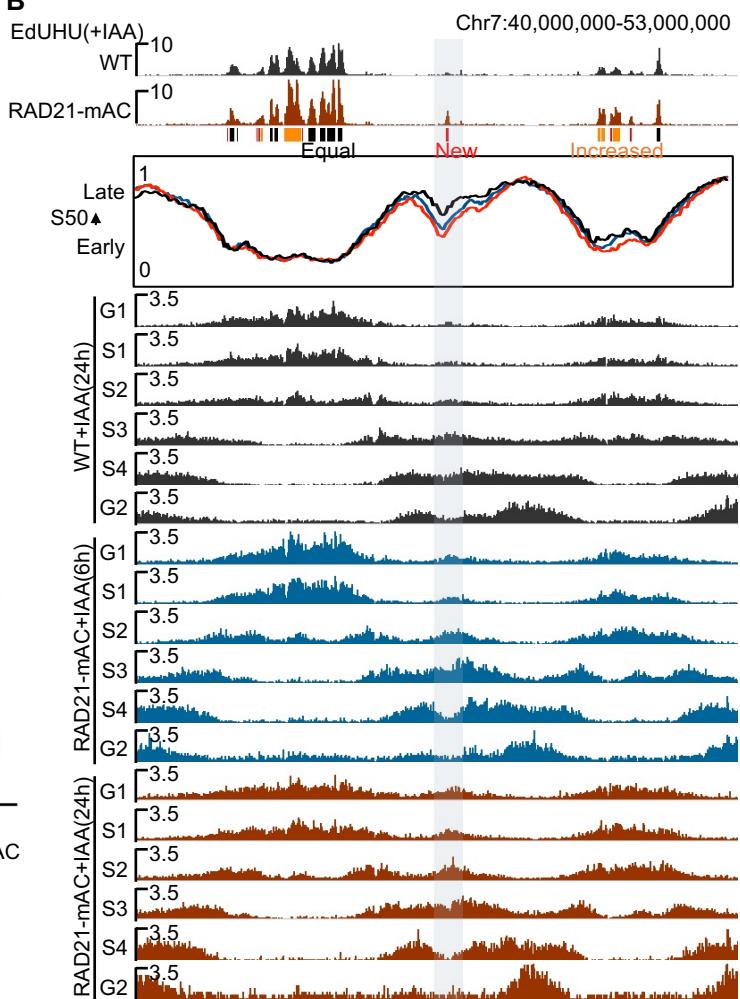
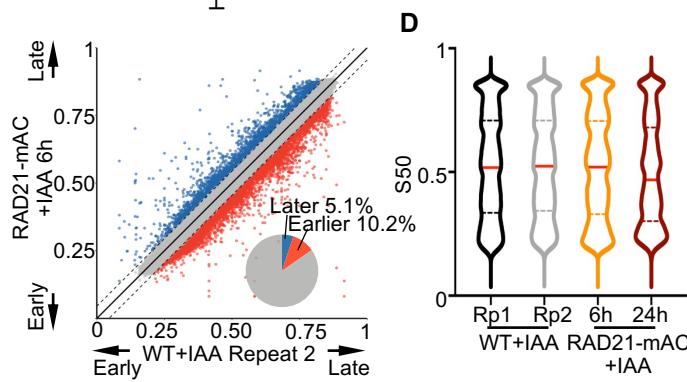
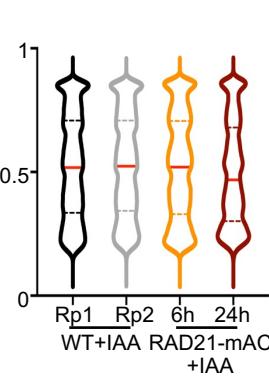
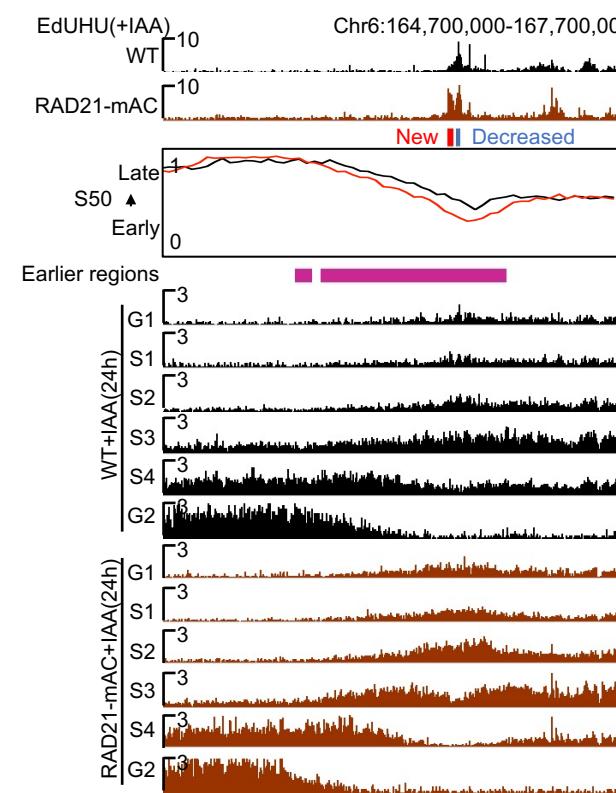
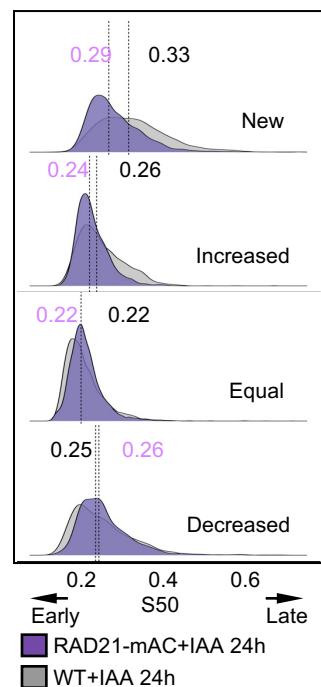

Figure 1. Acute depletion of RAD21 in K562 cells


Figure 2. RAD21 regulates early replication initiation in K562 cells

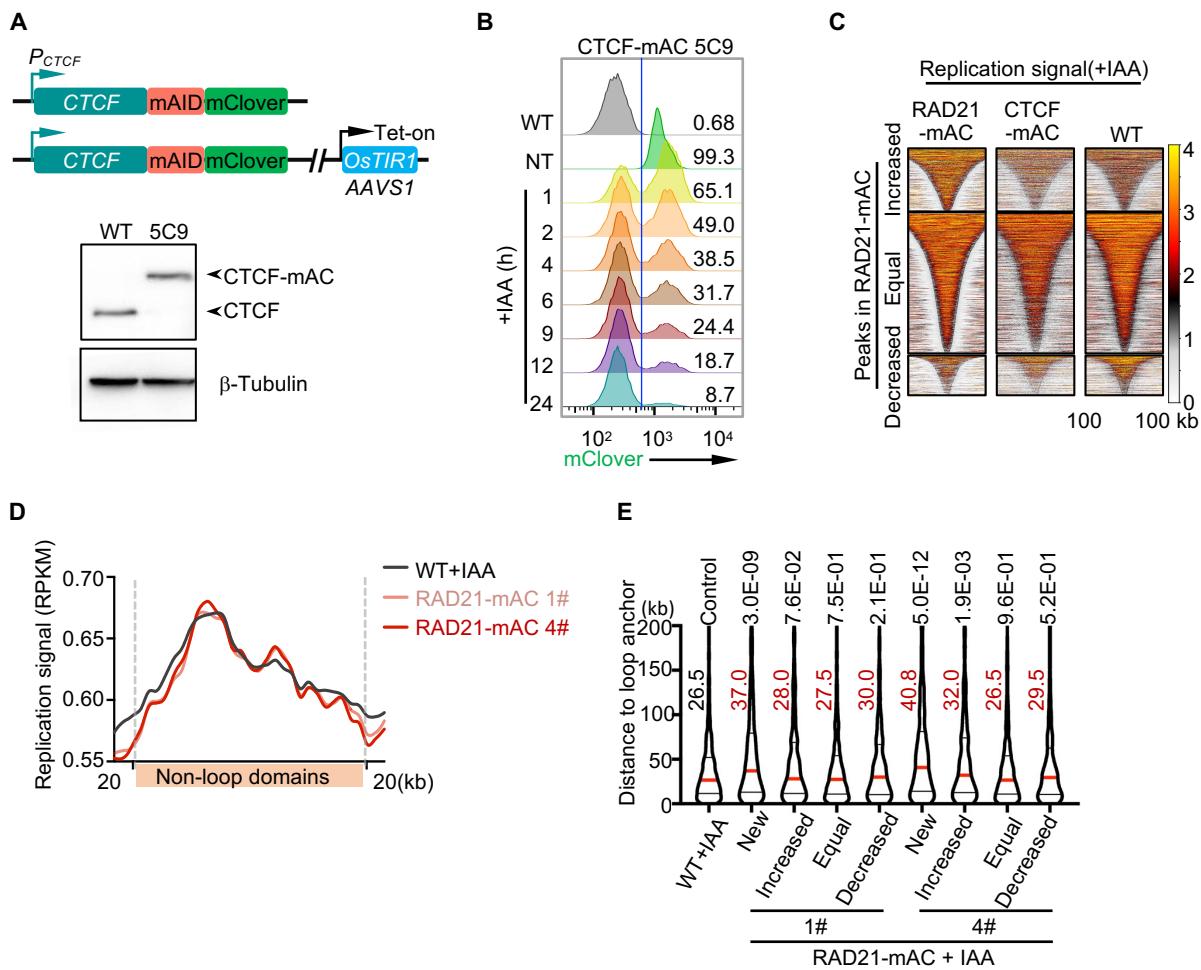

Figure 3. RAD21 depletion reprograms replication timing in K562 cells.

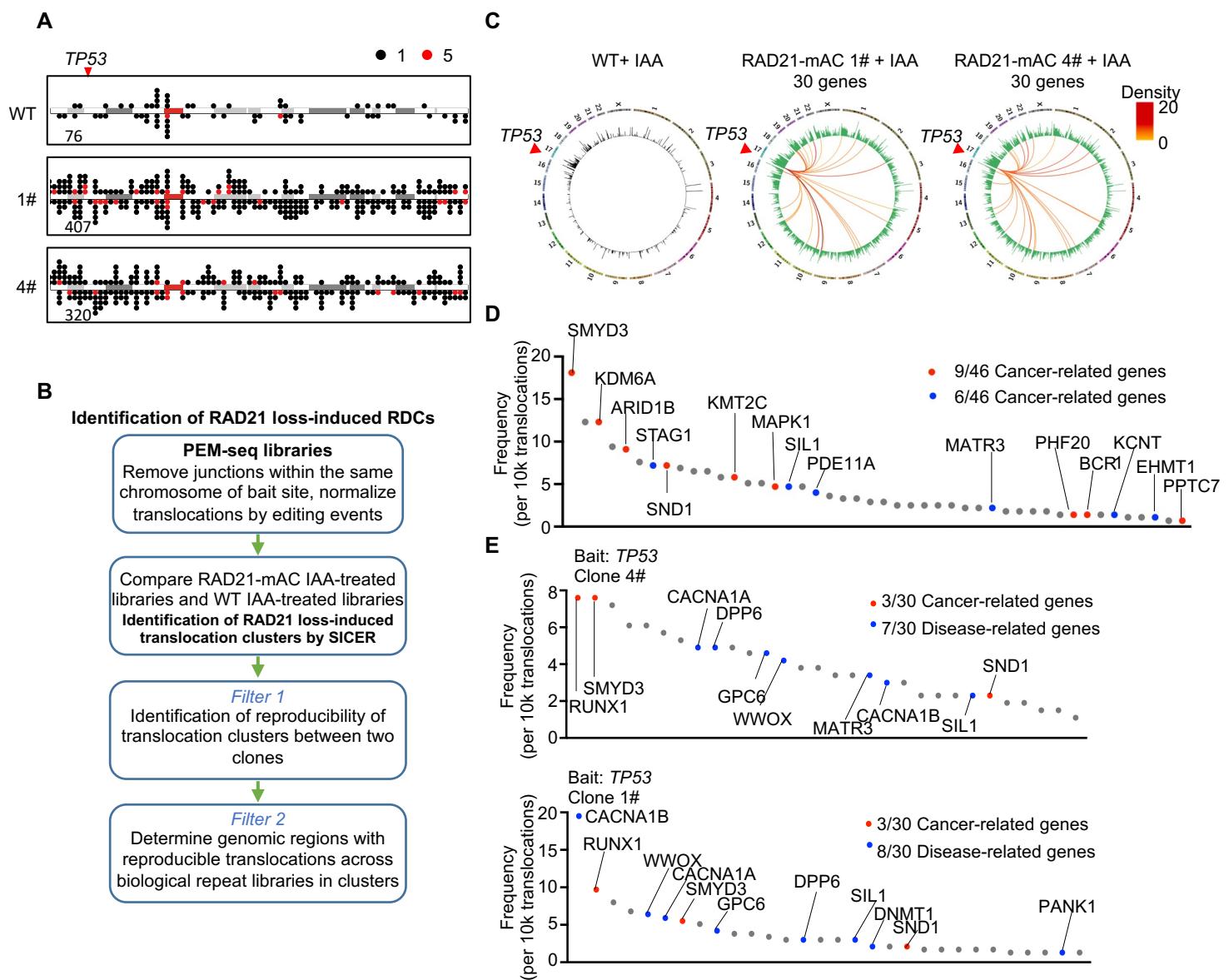



Figure 4. Distribution of early replication signals within loop domains


Figure 5. RAD21 depletion leads to increased chromosomal translocations







Figure 6. Translocation hotspot genes tend to locate in replication timing-altered regions

A**B****C**


Figure S1. Characterization of RAD21-mAC K562 cells.


Figure S2. RAD21 regulates the firing of early replication origins in K562 cells

A**B****C****D****E****F**

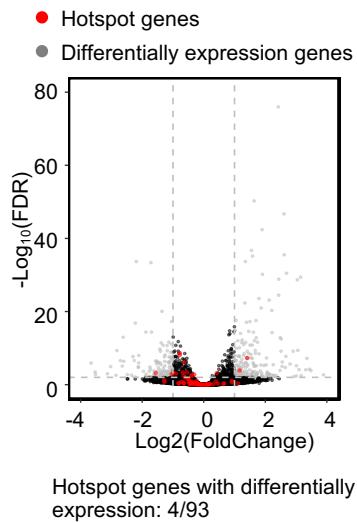
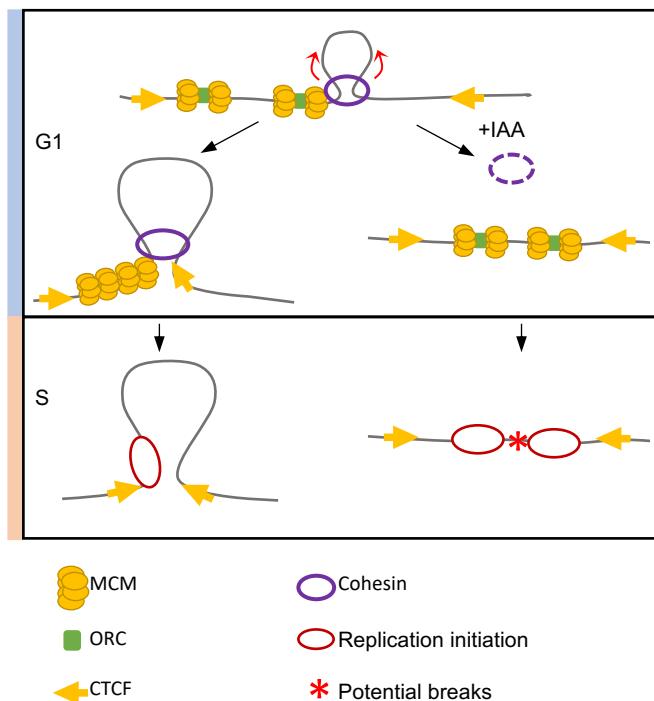


Figure S3. RAD21 depletion affects replication timing in K562 cells

Figure S4. Distribution of early replication initiation sites after RAD21 depletion

Figure S5. RAD21 depletion leads to genome instability

A**B**

Figure S6. Translocation hotspot genes tend to locate in replication timing-altered regions

Key resource table

REAGENT or RESOURCE	SOURCE	IDENTIFIER
Antibodies		
Anti-BrdU (3D4), FITC	BD Bioscicences	556028
Anti-BrdU (BU1/75)	Abcam	ab6326
Anti-ORC2 (3G6)	Santa Cruz	sc-32734X
Anti-MCM6 (EPR17686)	Abcam	ab201683
Anti-MCM5 (EP2683Y)	Abcam	ab75975
Anti-RAD21	Abcam	ab992
Anti-H3	Abcam	ab4729
Anti-CTCF	Millipore	07-729
Anti- β -tubulin	Huaxingbio	HX1829
Anti-SMC1	Bethyl	A300-055A
Chemicals, peptides, and recombinant proteins		
Palbociclib (PD-0332991) HCl	Selleckchem	S1116
HU (Hydroxyurea)	Sigma	H8627
EdU (5-ethynyl-2'-deoxyuridine)	Invitrogen	A10044
Biotin Azide (PEG4 carboxamide-6-Azidohexanyl Biotin)	Invitrogen	B10184
BrdU (5-Bromo-2'-Deoxyuridine)	Invitrogen	B23151
T4 PNK	NEB	M0201L
T4 DNA ligase	Thermo Fisher	EL0012
TdT (Terminal Transferase)	NEB	M0315L
Klenow Fragment	NEB	M0210L
DpnII	NEB	R0543L
T4 DNA polymerase	NEB	M0203L
MNase (Micrococcal Nuclease)	NEB	M0247S
Biotin-11-dCTP	Jena Bioscience	NU-809-BIOX
RNase A	Thermo Fisher	EN0531
Proteinase K	Invitrogen	25530015
Streptavidin C1 beads	Invitrogen	65002
Dynabead Protein G	Invitrogen	10003D
PI (Propidium Iodide)	Sigma	P4170
Hoechst 33342	Invitrogen	H3570
THPTA (Tris (3-hydroxypropyltriazolylmethyl) amine)	Sigma	762342
37% formaldehyde	Sigma	F1635
Doxycycline (dox)	Sigma	D9891
Proteinase Inhibitor cocktail	Bimake	B14012
Indole-3-acetic acid sodium salt (IAA)	Sigma	I5148
SF Cell Line 4D-Nucleofecto X Kit	Lonza	V4XC-2024
Deposited data		
Raw and analyzed data	This paper	GEO: GSE189762
OK-seq K562	Wu et al., 2018	ENA: PRJEB25180 or SRA: ERS2253426
K562 ORC2 ChIP-seq	Miotto et al., 2016	GEO: GSE70165: GSM1717888_Orc2_K562_rep1.bw
Hg19 Blacklist	The ENCODE Project Consortium, 2012	https://www.encodeproject.org/files/ENCF000KJP/@@download/ENCF000KJP.bigBed
K562 H2A. Z ChIP-seq	The ENCODE Project Consortium, 2012	http://hgdownload.cse.ucsc.edu/golde/nPath/hg19/encodeDCC/

K562 contact domains	Rao et al., 2014	GEO:GSE63525
K562 loop list	Rao et al., 2014	GEO:GSE63525
Experimental models: Cell lines		
K562	National infrastructure of cell line resource, China	3111C0001CCC000039
K562-RAD21-mAC-Clone 1	This paper	
K562-RAD21-mAC-Clone 4	This paper	
K562-CTCF-mAC-5C9	This paper	
Oligonucleotides		
5'P-CCACCGCTGCTCTACANNNTNNNNNNNNNNNAGATC GGAAGAGCGCTCGTAGGGAAAGAGT-NH2	This paper	PEM-seq-Bridge Adapter-1-up (also used for NAIL-seq Bridge Adapter-1-up)
5'-TGTAGAGCACGCGTGGNNNNNN-NH2	This paper	PEM-seq-Bridge Adapter-1-down (also used for NAIL-seq Bridge Adapter-1-up)
5'-ACTGGAGTTCAGACGTGTGCTCTCCGATCT	This paper	Bridge Adapter-2-up
5'-NNNNNNAGATCGGAAGAGCACACGTCTGAACCTCCAGT-NH2	This paper	Bridge Adapter-2-down
5'-Biotin- ACTCTTCCCTACACGACGCTCTCCGATCTGGGGGGGGH	This paper	ChIP-seq extension
5'P-AGATCGGAAGAGCACACGTCTGAACCTCCAGT-NH2	This paper	ChIP-seq Bridge Adapter-up
5'-GACGTGTGCTCTTCCGATCTNNNNNN-NH2	This paper	ChIP-seq Bridge Adapter-down
5'-CACCGGGATGTGGAGCTTGGCTAT	This paper	PEM-seq gRNA-F-myc
5'-AAACATAGCCAAGCTCCACATCCC	This paper	PEM-seq gRNA-R-myc
5'Biotin-GGTGACTCACTGGGAATCGGGAAAGGTG	This paper	PEM-seq Bio-primer-myc
5'-ACTCTTCCCTACACGACGCTCTCCGATCTNNNNCCTC AGAATAGGAGAGAGTG	This paper	PEM-seq RED-primer-myc
5'-CACCGACCATTACTCAGCTCTGAG	This paper	PEM-seq gRNA-F-p53
5'-AAACCTCAGAGCTGAGTAATGGTC	This paper	PEM-seq gRNA-R-p53
5'Biotin-CAAGCCCAGCGACAGCCGCTG	This paper	PEM-seq Bio-primer-p53
5'-ACTCTTCCCTACACGACGCTCTCCGATCTNNNNCCTC TGACTCTGGCAACTGGG	This paper	PEM-seq RED-primer-p53
5'-AGCGAGCGGGCGGCCGCGCTA	This paper	Q-3C-Bio-primer
5'-TGGAAGAGCCGGCGAGCAGA	This paper	Q-3C-RED-primer
5'-AATGATACGGCGACCACCGAGATCTACACACACTTTCC CCTACACGACGC	This paper	P5-I5
5'-CAAGCAGAACAGCGCATACGAGATNNNNNNNTGACTG GAGTTCAGACGTGTGC	This paper	P7-I7-Index
5'-CACCGCCAAGGTTCCATATTATATA	This paper	RAD21-gRNA-F
5'-AAACTATATAATATGGAACCTTGGC	This paper	RAD21-gRNA-R
5'-CACCGCACAAGGCTCGCCATCAC	This paper	CTCF-gRNA-F
5'-AACCGTGTGGCGAGCCTTGTGC	This paper	CTCF-gRNA-R
5'-GGGCATGTCGAGAACAAACTCTCAGG	This paper	CTCF-check-F
5'-CCTAGTGAATTTCTGGCCCAGC	This paper	CTCF-check-R
5'-CTCCTTTGTATGCCTGCACCTTCT	This paper	RAD21-check-F
5'-CTGGATATAGGATTCGTTGCAACGC	This paper	RAD21-check-R
5'-TTGGCCGGAGGTTGGCTGG	This paper	mAID-check-R
Software and algorithms		
FlowJo 10.4	FlowJo	https://www.flowjo.com/solutions/flowjo/

ImageJ	NIH	https://imagej.nih.gov/ij/download.html
Prism 8	GraphPad Software, Inc.	https://www.graphpad.com/scientific-software/prism/
BWA 0.7.12	Li et al., 2013	https://github.com/lh3/bwa
Bowtie 1.1.2	Langmead et al., 2009	https://sourceforge.net/projects/bowtieebio/files/bowtie/1.1.2/
PEAR	Zhang et al., 2014	https://cme.h-its.org/exelixis/web/software/pear/
Cutadapt 2.3	Martin 2013	https://cutadapt.readthedocs.io/en/stable/
Samtools 0.1.19	Li et al., 2009	https://github.com/samtools/samtools
Bedtools 2.27.0	Quinlan and Hall, 2010	https://bedtools.readthedocs.io/en/latest/
SICER	Zang et al., 2009	https://github.com/dariober/SICERpy
MACS 2.1.1	Zhang et al., 2008	http://liulab.dfci.harvard.edu/MACS/00 README.html
DeepTools 3.1.3	Ramírez et al., 2016	https://deeptools.readthedocs.io/en/develop/
EnrichedHeatmap 1.12.0	Gu et al., 2018	https://github.com/jokergoo/EnrichedHeatmap
R 3.5.1		https://www.r-project.org/
UCSC Database	Karolchick et al., 2004	https://genome.ucsc.edu
UCSC Genome Browser	Kent et al., 2002	https://genome.ucsc.edu
IGV	James et al., 2011	https://software.broadinstitute.org/software/igv/home
Juicer	Rao et al., 2014	https://github.com/aidenlab/juicer/
Whatshap 0.18	Martin et al., bioarxiv	https://whatshap.readthedocs.io/en/latest/
Homer	Heinz et al., 2010	http://homer.ucsd.edu/homer/
RepliSeq	Brison, O. et al, 2019	https://github.com/CL-CHEN-Lab/RepliSeq
DESeq2 1.22.2	Love et al., 2014	https://github.com/mikelove/DESeq2
PEM-Q	Liu et al., 2021	https://github.com/liumz93/PEM-Q

Table 1. Frequency of translocation hotspot genes (Junctions per 10k translocations)

Gene name (GENCODE)	Clone 1# <i>c-MYC</i>	Clone 4# <i>c-MYC</i>	Clone 1# <i>TP53</i>	Clone 4# <i>TP53</i>	Cancer-related	Disease-related	Captured by <i>c-MYC</i> and <i>TP53</i>	Only captured by one bait
<i>RALGPS1</i>	23	3	2	2			Y	
<i>KDM6A</i>	13	10	9	11	Y		Y	
<i>EPC1</i>	9	4	5	5			Y	
<i>AGAP1</i>	9	6	7	6			Y	
<i>MAPK1</i>	7	4	6	8	Y		Y	
<i>SMYD3</i>	7	16	6	8	Y		Y	
<i>KANSL1</i>	6	11	15	36			Y	
<i>LINC01004</i>	5	5	2	2			Y	
<i>PDE11A</i>	5	4	1	1		Y		<i>c-MYC</i>
<i>RTDR1</i>	5	3	0	7			Y	
<i>CCNY</i>	4	4	8	7			Y	
<i>CELF2</i>	4	5	4	6			Y	
<i>CRKL</i>	4	2	3	4			Y	
<i>CTC-432M15.3</i>	4	1	1	5			Y	
<i>DPP6</i>	4	7	3	5		Y	Y	
<i>FNIP1</i>	4	1	1	4			Y	
<i>MATR3</i>	4	2	2	3		Y	Y	
<i>ARID1B</i>	4	7	1	3	Y		Y	
<i>BCR</i>	4	1	4	3	Y		Y	
<i>GNAZ</i>	4	3	0	4			Y	
<i>RUNX1</i>	4	4	10	8	Y		Y	
<i>SND1</i>	4	6	2	2	Y		Y	
<i>THSD4</i>	4	5	2	1			Y	
<i>AC079807.4</i>	3	2	0	2				<i>c-MYC</i>
<i>CMIP</i>	3	2	5	3			Y	
<i>hsa-mir-490</i>	3	4	1	2			Y	
<i>LY86-AS1</i>	3	1	1	1				<i>c-MYC</i>
<i>RBFOX3</i>	3	8	18	16			Y	
<i>RP11-307C19.2</i>	3	1	0	0				<i>c-MYC</i>
<i>RP11-382A20.4</i>	3	2	1	2			Y	
<i>ZFAND3</i>	3	1	1	1				<i>c-MYC</i>
<i>KMT2C</i>	3	4	3	2	Y		Y	
<i>PLEKHG1</i>	3	1	1	0				<i>c-MYC</i>
<i>RALY</i>	3	0	0	2				<i>c-MYC</i>
<i>RIMBP2</i>	3	3	3	2			Y	
<i>SIL1</i>	3	4	3	2		Y	Y	
<i>BRAF</i>	2	1	0	2	Y			<i>c-MYC</i>
<i>EPC2</i>	2	3	2	1			Y	
<i>GPC6</i>	2	2	4	5		Y	Y	
<i>LMX1B</i>	2	1	0	1		Y		<i>c-MYC</i>
<i>RP11-458D21.1</i>	2	0	0	0				<i>c-MYC</i>
<i>STAG1</i>	2	7	3	5		Y	Y	
<i>TTLL11</i>	2	1	2	3			Y	
<i>VIPR2</i>	2	1	1	3			Y	
<i>CACNA1B</i>	2	1	19	3		Y	Y	
<i>CDH4</i>	2	2	2	6			Y	
<i>CTB-111H14.1</i>	2	1	0	1				<i>c-MYC</i>
<i>CTD-2143L24.1</i>	2	1	2	0				<i>TP53</i>
<i>CTNNA1</i>	2	3	0	2		Y		<i>c-MYC</i>
<i>DAB2IP</i>	2	1	3	2		Y	Y	
<i>EHMT1</i>	2	1	0	0		Y		<i>c-MYC</i>
<i>FAM157B</i>	2	0	4	3				<i>TP53</i>
<i>GNG7</i>	2	0	3	5				<i>TP53</i>
<i>LINGO1</i>	2	2	1	1				<i>c-MYC</i>
<i>RP3-323P13.2</i>	2	1	2	2			Y	
<i>UBE2L3</i>	2	2	3	4			Y	
<i>WWOX</i>	2	2	6	4		Y	Y	
<i>AKAP13</i>	1	1	0	2				<i>TP53</i>
<i>AP000320.7</i>	1	0	1	3				<i>TP53</i>
<i>CACNA1A</i>	1	2	6	5		Y	Y	
<i>FAM129B</i>	1	0	1	1				<i>TP53</i>
<i>JAKMIP3</i>	1	1	2	3				<i>TP53</i>

<i>MAML3</i>	1	2	1	0				<i>c-MYC</i>
<i>MIR4435-1HG</i>	1	1	3	6				<i>TP53</i>
<i>MORF4L1</i>	1	5	1	2			Y	
<i>PHF20</i>	1	1	0	0	Y			<i>c-MYC</i>
<i>RP11-458D21.5</i>	1	2	4	2			Y	
<i>BRINP1</i>	1	3	1	1				<i>c-MYC</i>
<i>CD109</i>	1	1	1	0				<i>c-MYC</i>
<i>CTD-3162L10.1</i>	1	1	3	2			Y	
<i>GGT2</i>	1	1	0	1				<i>c-MYC</i>
<i>HERC2P8</i>	1	1	0	0				<i>c-MYC</i>
<i>KCNT1</i>	1	1	1	0	Y			<i>c-MYC</i>
<i>PPTC7</i>	1	1	1	0				<i>c-MYC</i>
<i>SNED1</i>	1	2	2	0				<i>c-MYC</i>
<i>TMC04</i>	1	1	1	0				<i>c-MYC</i>
<i>ANO2</i>	0	0	1	2				<i>TP53</i>
<i>AP000318.2</i>	0	0	0	2				<i>TP53</i>
<i>CEACAM7</i>	0	0	0	2				<i>TP53</i>
<i>COQ5</i>	0	0	2	0				<i>TP53</i>
<i>DNMT1</i>	0	0	2	0	Y			<i>TP53</i>
<i>DTX1</i>	0	0	1	0				<i>TP53</i>
<i>EFCAB6</i>	0	1	0	2				<i>TP53</i>
<i>ELF1</i>	0	2	2	4				<i>TP53</i>
<i>IFFO2</i>	0	0	0	2				<i>TP53</i>
<i>MUC12</i>	0	0	3	1				<i>TP53</i>
<i>MUC16</i>	0	1	2	1				<i>TP53</i>
<i>MUC3A</i>	0	0	2	1				<i>TP53</i>
<i>PACSN2</i>	0	1	1	0				<i>TP53</i>
<i>PANK2</i>	0	1	1	1	Y			<i>TP53</i>
<i>SPSB1</i>	0	0	2	0				<i>TP53</i>
<i>TAF4</i>	0	0	1	0				<i>TP53</i>
<i>UPK3B</i>	0	0	1	2				<i>TP53</i>

Table 1. Frequency of translocation hotspot genes. Table 1 summarized the translocation frequency of hotspot genes captured by *c-MYC* and *TP53* DSBs. The bait loci and genes are indicated in italic font. The genes that have 3 or more junctions captured by both baits were noted in the 8th column. Y, yes.