

1      **Gap genes are involved in inviability in hybrids**  
2      ***Drosophila melanogaster and D. santomea***

3

4      W enhan Chang<sup>1</sup>, Martin Kreitman<sup>1</sup>, and Daniel R. Matute<sup>2</sup>

5

6      <sup>1</sup>Department of Ecology and Evolution, University of Chicago

7      <sup>2</sup>Biology Department, University of North Carolina, Chapel Hill, North Carolina

8

9

10

11     Correspondence:

12     Biology Department, University of North Carolina, 250 Bell Tower Road, Chapel Hill,  
13     27599.

14     Tel: 919-962-2077

15     Fax: 919-962-1625

16     E-mail: [dmatute@email.unc.edu](mailto:dmatute@email.unc.edu)

17

18

19     **Running title:** Gap genes cause hybrid inviability

20

21 **ABSTRACT**

22 Evolved changes within species lead to the inevitable loss of viability in hybrids.  
23 Inviability is also a convenient phenotype to genetically map and validate functionally  
24 divergent genes and pathways differentiating closely related species. Here we identify the  
25 *Drosophila melanogaster* form of the highly conserved essential gap gene *giant* (*gt*) as a  
26 key genetic determinant of hybrid inviability in crosses with *D. santomea*. We show that  
27 the coding region of this allele in *D. melanogaster*/*D. santomea* hybrids is sufficient to  
28 cause embryonic inviability not seen in either pure species. Further genetic analysis  
29 indicates that *tailless* (*tll*), another gap gene, is also involved in the hybrid defects. *giant*  
30 and *tll* are both members of the gap gene network of transcription factors that participate  
31 in establishing anterior-posterior specification of the dipteran embryo, a highly conserved  
32 developmental process. Genes whose outputs in this process are functionally conserved  
33 nevertheless evolve over short timescales to cause inviability in hybrids.

34

| 35

36 **INTRODUCTION**

37

38 The formation and persistence of species involves the buildup of barriers to gene  
39 flow as genome divergence accrues over time. These genetic barriers arise as species  
40 differentiate and involve breakdowns in a variety of cellular, developmental, and  
41 behavioral processes; eventually these barriers lead to reduced fitness of hybrids relative  
42 to pure species (Coyne and Orr 2004; Coughlan and Matute 2020). Hybrid inviability  
43 (HI), the condition in which interspecific hybrids do not achieve adulthood because of  
44 developmental defects, is one of these barriers. The question of how natural selection  
45 could allow such maladaptive and extreme phenotypes has been a subject of intense  
46 interest to evolutionary biologists and developmental geneticists alike (Darwin 1859;  
47 Weir 1885; Shull 1923).

48 Dobzhansky (Dobzhansky 1937) and Muller (Muller 1942) formulated a widely  
49 regarded genetic model in which hybrid defects, including HI, arise as a collateral effect  
50 of evolutionary divergence between populations that acquire incompatible changes in  
51 interacting loci, or Dobzhansky-Muller incompatibilities (DMIs; (Dobzhansky 1937;  
52 Muller 1942)). Because the divergent alleles at the DMIs loci only have fitness costs  
53 when they are forced together in hybrids, natural selection does not oppose the changes in  
54 each species. There is substantial evidence in support of the DM model (Maheshwari and  
55 Barbash 2011), including nearly a dozen instances in which HI alleles have been  
56 identified to the gene level (Wellbrock *et al.* 1998; Presgraves 2003; Brideau *et al.* 2006;  
57 Bomblies *et al.* 2007; Lee *et al.* 2008; Tang and Presgraves 2009; Ferree and Barbash  
58 2009; Phadnis *et al.* 2015; Zuellig and Sweigart 2018; Powell *et al.* 2020; Moran *et al.*  
59 2021). Some of these alleles have been shown to evolve through positive selection  
60 (Presgraves *et al.* 2003; Brideau *et al.* 2006; Bomblies *et al.* 2007; Tang and Presgraves  
61 2009; Satyaki *et al.* 2014) while others show no clear signature of selection (Phadnis and  
62 Orr 2009). The variety of both the gene type in HI and the processes that drive allelic  
63 divergence indicates that HI can occur in a multitude of ways (Johnson 2010).

64 Developmental processes are generally guided by interacting regulatory genes and  
65 elements, making them a rich source of potential candidates for HI. The question arises,  
66 however, as to whether they evolve functionally at a sufficient pace to fuel the rapid

67 formation of DMIs in the speciation process. Developmental processes and their outputs  
68 are often deeply conserved phylogenetically, often displaying conserved functional  
69 attributes (reviewed in (Gordon and Ruvinsky 2012)). Large-effect mutations to  
70 developmental regulators are often incompatible with life, and these genes tend to be  
71 evolutionarily conserved both in sequence and phenotypic output (Manzanares *et al.*  
72 2000; Gaunt 2002; Santini *et al.* 2003; Lee *et al.* 2006). While the developmental  
73 phenotypes in which these genes are involved generally remain similar across species, the  
74 genetic underpinnings of these crucial phenotypes may evolve (Weiss and Fullerton  
75 2000; True and Haag 2001; Palmer and Feldman 2009; Rebeiz *et al.* 2009; Pavlicev and  
76 Wagner 2012), and if their pace of functional evolution is sufficiently fast, could  
77 contribute to HI.

78 Several lines of evidence elevate this possibility and thus challenge the notion that  
79 the conservation and selective constraints on regulatory genes, and the processes they  
80 direct, immunize them from possibly contributing to HI. First, recent work by us on a  
81 canonical example of a conserved regulatory gene and pathway — the gap gene *giant* in  
82 *Drosophila* and the process of pattern formation— shows contrary to expectations that  
83 this gene diverges functionally at a rapid and continuous pace in the genus, as evidenced  
84 by loss of viability in carefully controlled transgenic complementation experiments  
85 (Chang *et al.* 2021).

86 Second, several cases of embryonic hybrid lethality have been identified in  
87 *Drosophila*: female hybrid inviability in hybrids between *D. montana* females and *D.*  
88 *texana* males (Kinsey 1967), female lethality in hybrids of *D. melanogaster* females and  
89 *D. simulans* males (Sawamura and Yamamoto 1993; Sawamura *et al.* 1993b; a); and  
90 male embryonic lethality in hybrids of *D. melanogaster* females and *D. santomea* males  
91 ((Gavin-Smyth and Matute 2013), see below).

92 Third, even for developmental phenotypes that remain similar across phylogeny,  
93 their genetic underpinnings change occasionally in substantial ways (Weiss and Fullerton  
94 2000; True and Haag 2001; Palmer and Feldman 2009; Rebeiz *et al.* 2009; Pavlicev and  
95 Wagner 2012). Referred to as developmental systems drift —functional divergence of  
96 genes in developmental regulatory pathways with conserved outputs — has also been  
97 documented for nematode vulva induction (Wang and Sommer 2011; Sommer 2012), and

98 sex determination in frogs (Cauret *et al.* 2020). Developmental systems drift has also  
99 been proposed to lead to hybrid defects (Lynch 2009). If genetic changes occur in  
100 different directions in two species, their hybrids might not have a functional pathway to  
101 produce the required developmental phenotype. This is a simple—but to date  
102 unsubstantiated—way to explain HI.

103

## 104 RESULTS

105

106 We first explored whether *Drosophila* hybrids other than *mel/san* also showed  
107 embryonic hybrid inviability and abdominal ablations. We examined the embryonic  
108 lethality rates and associated cuticular phenotypes from hybrid crosses between various  
109 species within the *melanogaster* supercomplex and species of the *yakuba* subgroup  
110 (Figure 1, [Figure S1](#)). Hybrid embryos between *D. santomea* and the other species in the  
111 *yakuba* subgroup — *D. teissieri* and *D. yakuba* — are mostly viable and showed no  
112 abdominal ablations in any of the six possible reciprocal crosses (Table S1; (Gavin-  
113 Smyth and Matute 2013; Turissini *et al.* 2015, 2018; Cooper *et al.* 2017)). Embryonic  
114 inviability is rare among crosses between collections of these species (but see (Cooper *et*  
115 *al.* 2017)). Hybrid inviability is also non-existent in hybrids between collections of  
116 species of the *simulans* species group — *D. simulans* (*sim*), *D. mauritiana* (*mau*) and *D.*  
117 *sechellia* (*sec*) (Figure 1, (Turissini *et al.* 2018)). The embryonic viability of male  
118 *mel/sim* and *mel/mau* hybrids is high in all cases (Table S2, (Sturtevant 1920; Sawamura  
119 *et al.* 1993a; Presgraves 2003; Matute *et al.* 2014)). The few rare embryos that failed to  
120 develop and hatch showed no abdominal ablations (Table S2).

121 Crosses between females of two species of the *sim* clade (*sim* and *mau*) and *san*  
122 males showed high levels of hybrid inviability, especially of males (Figure S1). These  
123 dead hybrids show the characteristic abdominal ablation. This shared phenotype with *mel*  
124 in hybrids with *san* indicated that genetic changes that ultimately lead to abdominal  
125 ablations must have occurred before the split of the three species, approximately five  
126 million years ago (Tamura *et al.* 2004; Matute *et al.* 2010; Suvorov *et al.* 2021). Genetic  
127 analysis with these crosses also confirm that the locus involved in HI resides in the *X*-

128 chromosome. We next identified the genetic locus that causes hybrid inviability by  
129 abdominal ablation using genetic tools available in *D. melanogaster*.

130

131 Genetic mapping shows *giant* is involved in *mel/san* HI

132 To identify the *X*-linked allele involved in HI, we did a genome-wide association study  
133 using a panel of inbred *D. melanogaster* lines (i.e., DGRP, (MacKay *et al.* 2012; Huang  
134 *et al.* 2014)) and studied whether any genetic variant segregating in *D. melanogaster* was  
135 associated with total inviability in hybrids with *D. santomea*. In all crosses, the hybrid  
136 males die, but the females show differential rates of survival. We found a strong  
137 association between a 16.5 kb haplotype in the *X*-chromosome and high levels of HI  
138 (Figure 2A). This haplotype harbors two genes: *CG32797* and *gt*, and overlaps with a  
139 segment of the *D. melanogaster* *X*-chromosome (*X<sub>mel</sub>*) previously associated with male  
140 HI (Matute and Gavin-Smyth 2014).

141 A similar GWAS for the incidence of abdominal ablations (Figure 2B) showed  
142 the frequency of abdominal ablations in *mel/san* hybrids (both sexes pooled) is associated  
143 with an *X<sub>mel</sub>* haplotype that contains six genes (*CG32797*, *gt*, *tko*, *boi*, *z*, and *trol*; Figure  
144 2B). This interval also overlaps with the region associated with HI. Gene(s) on the tip of  
145 *X<sub>mel</sub>* cause both HI and abdominal ablations.

146 Next, we generated *mel/san* hybrid males with the *X*-chromosome from *D.*  
147 *santomea* (*X<sub>san</sub>*) and studied whether introducing small segments of *X<sub>mel</sub>* would cause HI.  
148 *mel/san* hybrid males with the abdominal ablation typically inherit a *X<sub>mel</sub>* chromosome  
149 and a *Y* chromosome from *san* (*Y<sub>san</sub>*). By using *mel* attached-*X* chromosomes (Figure S1),  
150 we manipulated chromosomal inheritance and generated hybrid F<sub>1</sub> males that inherit a  
151 *X<sub>san</sub>* and a *D. melanogaster* *Y* chromosome (*Y<sub>mel</sub>*). These animals do not manifest the  
152 abdominal ablation and are regularly viable (Gavin-Smyth and Matute 2013; Matute and  
153 Gavin-Smyth 2014). We obtained a similar result when we crossed *sim* attached-*X*  
154 females to *san* males; the cross produces viable hybrid F<sub>1</sub> males with a *X<sub>san</sub>* and a *D.*  
155 *simulans* *Y* chromosome. To refine the region of the *X<sub>mel</sub>* chromosome carrying the  
156 determinant of the abdominal ablation phenotype, we introduced small segments of *X<sub>mel</sub>*  
157 (containing *mel* alleles ranging from approximately 10 to 100 genes each; as in (Cook *et*  
158 *al.* 2010; Venken *et al.* 2010; Matute and Gavin-Smyth 2014) into the genetic makeup of

159  $X_{san}/Y_{mel}$  hybrid F<sub>1</sub> males (crossing scheme shown in Figure S2; fly stocks listed in Table  
160 S3). Previous results had shown that the distal tip of  $X_{mel}$  contains an allele that causes  
161 inviability in hybrid males. Measuring the rates of hybrid embryonic lethality in the  
162 presence of nested  $Dp(1;Y)$  and  $Dp(1;3)$  duplications of the  $X_{mel}$  chromosome allowed us  
163 to refine the genomic interval to the region encompassing the cytological region 3A3  
164 (dmel6: 2,410,000-2,580,000; (Dos Santos *et al.* 2015b)). Male hybrid embryos harboring  
165  $X_{san}$  and  $Y_{mel}$  with duplications containing the 3A3 portion of  $X_{mel}$  routinely fail to hatch  
166 (Figure 2C). They also show the striking abdominal ablation common in *mel/san* hybrid  
167 males carrying the full-length  $X_{mel}$  and  $Y_{san}$  (Figure 2C; Figure S3). Previous results had  
168 shown that the distal tip of  $X_{mel}$  contains an allele that causes inviability in hybrid males.  
169 Measuring the rates of hybrid embryonic lethality in the presence of nested  $Dp(1;Y)$  and  
170  $Dp(1;3)$  duplications of the  $X_{mel}$  chromosome allowed us to refine the genomic interval to  
171 the region encompassing the cytological region 3A3 (dmel6: 2,410,000-2,580,000; (Dos  
172 Santos *et al.* 2015b)). The comparison of  $Dp(1;Y)$  and  $Dp(1;3)$  duplications has two  
173 caveats worth noting. First, pure species *mel*  $C(1)DX$ ,  $Dp(1;3)/Dp(1;3)$  females are  
174 generally weaker than  $C(1)DX$ ,  $Dp(1;Y)$  and lay fewer eggs in conspecific and  
175 heterospecific crosses. We thus had lower power in crosses involving the former type of  
176 females (Table S4). Second, the rate of complementation of  $Dp(1;3)$  and  $Dp(1;Y)$  is not  
177 identical (Table S5) suggesting the existence of position effects.

178 \_\_\_\_\_ Male hybrid embryos harboring  $X_{san}$  and  $X_{mel}$  duplications containing the 3A3  
179 portion fail to hatch (Figure 2C). They also show the striking abdominal ablation  
180 common in *mel/san* hybrid males carrying the full-length  $X_{mel}$  and  $Y_{san}$  (Figure 2D, Figure  
181 S2). Notably, the overlapping region of the duplications that cause this ablation contains  
182 only one gene: *giant* (Figure S2). The ablation phenotype is not found in the presence of  
183 other lethality-inducing fragments from elsewhere on the  $X_{mel}$  chromosome (as found in  
184 this work and (Matute and Gavin-Smyth 2014)).  $gt_{mel}$  caused HI with abdominal ablation  
185 in hybrids with all examined lines from *D. santomea* confirming that the interaction is not  
186 a line specific effect (Figure S4; Table S6). These experiments suggest that introducing a  
187  $gt_{mel}$  allele in a  $X_{san}/Y_{mel}$  male hybrid background is sufficient to cause lethality with  
188 abdominal ablation.

189 We also did similar genetic crosses using  $Dp(1;Y)$  and  $Dp(1;3)$  duplications to

190 assess whether the same *X*-chromosome segments (and therefore *gt<sub>mel</sub>*) caused HI in  
191 crosses with four additional species, two from the *simulans* species complex (*mau* and  
192 *sim*), one from the *yakuba* species complex, *D. teissieri*, and *mel* itself. In no other  
193 interspecific hybrids did *gt<sub>mel</sub>* have a deleterious effect (either reduced viability or  
194 abdominal ablations) suggesting that the hybrid lethal effects *gt<sub>mel</sub>* are exclusive to  
195 *mel/san* hybrids (Figures S5-S6).

196

197 The *gt<sub>mel</sub>* allele causes inviability in both male and female hybrids

198 The crosses described above address the effect of the presence of a *gt<sub>mel</sub>* allele on  
199 HI in *mel/san* hybrids. Next, we studied the absence of a functional *gt<sub>mel</sub>* allele using a  
200 *gt<sub>mel</sub>* null-allele, *gt<sub>mel</sub><sup>XII</sup>* (Perrimon *et al.* 1984; Petschek *et al.* 1987). Hybrid male  
201 embryos carrying *gt<sup>XII</sup>* were less likely to be abdominally ablated compared to other  
202 *X<sup>mel</sup>/Y<sup>san</sup>* hybrids (mean number of *FM7/Y<sup>san</sup>* ablated embryos: 80.33%, Figure 3A; mean  
203 proportion of *gt<sub>mel</sub><sup>XII</sup>/Y<sup>san</sup>* ablated embryos: 4.41%, Figure 4B; t-test comparing the  
204 frequency of ablations in *FM7/Y<sup>san</sup>* males and *gt<sub>mel</sub><sup>XII</sup>/Y<sup>san</sup>* males: *t* = 23.972, *df* = 21.614,  
205 *P* < 1 × 10<sup>-10</sup>), and instead show other developmental defects (Figure S7).

206 *X<sub>mel</sub>/Y<sub>san</sub>* males with a null allele of *gt<sub>mel</sub>* (i.e., *gt<sub>mel</sub><sup>XII</sup>/Y<sub>san</sub>*) do not show increased  
207 viability. This result is not surprising because *X<sub>mel</sub>* harbors at least eight more dominant  
208 (or semidominant) factors that also cause embryonic inviability (Matute and Gavin-  
209 Smyth 2014), which may be specifically lethal to *mel/san* hybrids. In contrast, male  
210 hybrid embryos carrying a *X<sub>mel</sub>* chromosome and null mutations of the genes adjacent to  
211 *gt* (*boi*, *trol*, and *tko*) show abdominal ablations (Figure S8). These experiments  
212 demonstrate that *gt<sub>mel</sub>* is necessary for the abdominal ablation in *mel/san* hybrid males,  
213 but is not the only allele that can cause inviability in this hybrid individuals.

214 We also tested whether *gt<sub>mel</sub>* had a deleterious effect on hybrid females by scoring  
215 whether any allele on *X<sub>mel</sub>* between the cytological positions 2F1 and 3A4 affected the  
216 fitness of *mel/san* hybrid females. We used deficiency mapping and scored the number of  
217 *df(i)/san* hybrid females compared to their *FM7/san* sisters ((Coyne *et al.* 1998;  
218 Presgraves 2003), see Methods). Deviations from 1:1 expected ratio indicate the presence  
219 of alleles involved in HI. If *FM7/san* hybrids survive at a higher rate than *df(i)/san*, then  
220 the uncovered *san* segment contains a recessive allele involved in HI. If *FM7/san* hybrids

221 survive at a lower rate than *df(i)/san* hybrids, then the absent *mel* segment contains a  
222 dominant (or semi-dominant) allele involved in HI. The initial screening using the line  
223 *san* Carv2015.16 showed that hybrid females with a deletion for the *X<sub>mel</sub>* region between  
224 3A2 and 3A3 (which contains *gt<sub>mel</sub>*) are more viable than hybrid females that carry the  
225 balancer chromosome with *gt<sub>mel</sub>* (*df/san* to *FM7/san* ratio  $\approx$  2:1; Figure 3A). The minimal  
226 interval that harbors the female HI determinant contains six genes, one of them being *gt*.

227 We further refined the genetic analysis of this region by testing null alleles of the  
228 genes in the interval. Of the four genetically characterized genes in the mapped interval,  
229 3A3, only mutants of *gt<sub>mel</sub>* lead to an increase of female hybrid viability (Table S7).  
230 Females that carry *gt<sub>mel</sub>* (*FM7::GFP/san*) emerged at a lesser frequency than their null  
231 allele-carrying sisters (*gt<sub>mel</sub><sup>x11</sup>/san* Figure 3B, Table S7). This difference in viability holds  
232 when other *X*-chromosome balancers are used as well (Figure S9).

233 The abdominal ablation defect that is characteristic of *mel/san* males is also  
234 present in some proportion of *mel/san* female embryos that die (Gavin-Smyth and Matute  
235 2013; Matute and Gavin-Smyth 2014). We next tested whether *gt<sub>mel</sub>* causes abdominal  
236 ablations in female as it does in male hybrids. *gt<sub>mel</sub>*-carrying females (*FM7::GFP/san*;  
237 Figure 3B) have abdominal ablations more frequently than their *gt<sub>mel</sub><sup>x11</sup>/san* sisters  
238 (Figure 5B; t-test comparing the frequency of ablations in *FM7/X<sup>san</sup>* males and *gt<sup>x11</sup>/X<sup>san</sup>*  
239 females  $t = 6.853$ ,  $df = 16.147$ ,  $P = 3.699 \times 10^{-6}$ ). These results indicate that *gt<sub>mel</sub>*, the  
240 primary genetic determinant of the abdominal ablation in male *mel/san* hybrids, is  
241 sufficient to render some hybrid females inviable by inducing abdominal ablations. This  
242 trait varies across *san* lines, however, ranging from little inviability (e.g., *san* SYN2005,  
243 *df/san* to *FM7/san* ratio  $\approx$  1:1; Figure 3C) to almost complete inviability (e.g., *san*  
244 *Rain42*; *df/san* to *FM7/san* ratio  $\approx$  4:1; Figure 3C, Figure S4).

245 Two genes adjacent to *gt*, *CG32797* and *CG12496* have no available mutant  
246 stocks. The former, *CG32797*, is not expressed in embryos (Kaminker *et al.* 2002; Brown  
247 *et al.* 2014) and is an unlikely candidate to cause embryonic inviability in *mel/san*  
248 hybrids. *CG12496* is expressed in the early embryos (2-14 hours after egg laying,  
249 (Kaminker *et al.* 2002; Brown *et al.* 2014)), so an undetectable role in HI cannot be  
250 excluded. However, the results for the *gt<sub>mel</sub>* allele explain a large proportion of the  
251 inviability and abdominal ablation phenotypes we observe with the larger deletion

252 (Figure 3B, Figure S10).

253 These effects of  $gt^{mel}$  are specific to the *mel/san* hybrid background, as crosses  
254 between  $gt^{XII}/FM7::GFP$  and males from *D. simulans*, *D. mauritiana* (Figure S11), and  
255 multiple lines of *D. melanogaster* (Figure S12) all yielded the 1:1 expectation of balancer  
256 and null-allele progeny. Taken together, the mapping efforts are consistent and reveal that  
257 the  $gt^{mel}$  allele is: (1) necessary and sufficient to cause abdominal ablation defects; (2)  
258 contributes to hybrid inviability in both male and female *mel/san* hybrids; and (3) causes  
259 defects in that are specific to hybrids that have a *san* father.

260

#### 261 Transgenic swaps confirm *D. melanogaster* *gt* causes hybrid inviability

262 To identify the specific region(s) of the *gt* locus responsible for causing *mel/san*  
263 hybrid inviability, we generated whole-locus *gt* transgenes from *mel* and *san*, as well as  
264 coding/noncoding chimeras between them, which we integrated into the *D. melanogaster*  
265 3<sup>rd</sup> chromosome docking site attP2 (Groth *et al.* 2004; Bischof *et al.* 2007); we replaced  
266 the endogenous *gt<sub>mel</sub>* with these *gt* transgenes in flies carrying the *gt* null allele *gt<sub>mel</sub><sup>XII</sup>*  
267 (Figure S13). The whole-locus *gt<sub>mel</sub>*, also designated *gt<sub>mel:mel</sub>* to identify the species source  
268 of coding and noncoding regions respectively, is a ~27kb segment of DNA that rescues  
269 lethality in the *gt<sub>mel</sub><sup>XII</sup>* null mutant (Manu *et al.* 2013). First, we asked whether the *gt*  
270 transgenes might carry cryptic functional elements, different from *gt* itself, that might  
271 affect viability. To disrupt the function of *gt* specifically, a ~1.73kb removable piggyBac  
272 cassette was inserted into the 5'UTR of every *gt* transgene to conditionally eliminate the  
273 gene product (Figure S13B). All of them failed to restore viability in a *gt<sub>mel</sub><sup>XII</sup>* mutant  
274 (Table S8). To restore the wildtype transgene allele, a piggyBac transposase was  
275 employed to remove the piggyBac cassette (Thibault *et al.* 2004). This precise excision,  
276 confirmed with sequencing, does not leave behind any additional DNA. Each pair of *gt*  
277 transgenes with or without the piggyBac cassette have identical genetic backgrounds. The  
278 restored *gt* transgenes rescue lethality in a *gt<sub>mel</sub><sup>XII</sup>* mutant (Tables 1 and 2). Thus,  
279 transgene *gt* expression itself is necessary for viability in this rescue assay.

280 We carried out three sets of crosses with the pure-species and chimeric transgenes  
281 (Figure S13) to measure *gt* contribution in hybrids to embryonic viability (Figure S13C),  
282 and female adult viability (Figure S13D). We first measured the relative viability of

283 transgene alleles in  $gt_{mel}^{XII}$ /san hybrid embryos (sexes pooled). *mel/san* hybrids carrying  
284  $gt_{mel}^{XII}$  and the  $gt_{mel:mel}$  transgene show a high prevalence of the embryonic lethal  
285 phenotype (Table 1).  $gt_{san::mel}$ , an allele with the  $gt_{san}$  non-coding DNA and the coding  
286 sequence from  $gt_{mel}$ , caused the embryonic lethality in *mel/san* hybrids at a similar rate  
287 than that caused by  $gt_{mel:mel}$  (Table 1). In contrast,  $gt_{mel:san}$ , an allele with the  $gt_{mel}$  non-  
288 coding and  $gt_{san}$  coding, increased viability compared to  $gt_{mel:mel}$  hybrids (Table 1).  
289 Notably, the  $gt_{san::san}$  allele, which has the full  $gt_{san}$  allele, shows viability comparable to  
290 that of  $gt_{mel:san}$  carriers ( $X^2_1 = 0.075$ ,  $P = 0.784$ ), but higher than chimeras carrying the  
291  $gt_{mel}$  coding sequence ( $gt_{san::mel}$  and  $gt_{mel::mel}$ ,  $X^2_1 > 4.98$ ,  $P < 0.026$ ; Table 1). These  
292 results point to the coding region of  $gt_{mel}$  alone as being necessary for embryonic hybrid  
293 inviability.

294 We next evaluated the effects of these *gt* transgenes on a different metric of  
295 hybrid fitness – female viability. We crossed *san* males to *mel* females that were  
296 homozygous for  $gt_{mel}^{XII}$  and hemizygous for each of the four *gt* transgenes; the resulting  
297 female progeny from this cross was hybrid females carries  $gt_{mel}^{XII}/gt_{san}$  *X*-chromosomes  
298 and either a *gt* transgene or a wildtype  $3_{mel}$  chromosome lacking a transgene (Figure  
299 S13D). The effect of the transgene on hybrid female viability can then be measured the  
300 ratio of flies with the transgene to flies with the wildtype  $3_{mel}$  chromosome. The results  
301 are largely consistent with the results from scoring embryonic lethality: one copy of the  
302  $gt_{mel:mel}$  allele reduces hybrid female adult viability compared to hybrids females without  
303 the same transgene. This finding with transgenic *gt* is also consistent with the deficiency  
304 mapping results using *X*-chromosome balancers. Hybrid females with one  $gt_{san:mel}$  allele  
305 also show a reduction of viability similar to the one observed in  $gt_{mel:mel}$  carriers (Table  
306 2); the reciprocal chimeric allele — $gt_{mel: san}$ —, caused no reduction in relative viability.  
307 Finally, we find that the  $gt_{san:san}$  transgene increases hybrid female adult viability  
308 compared to the control (Table 2). This increase in viability can only be explained by an  
309 epistatic interaction between coding and noncoding regions of  $gt_{san}$ , as neither the coding  
310 nor the non-coding region of  $gt_{san}$  alone confers such an increase of hybrid female  
311 viability. These results collectively suggest that the inviability is mainly attributable to  
312 coding region of  $gt_{mel}$ , consistent with its predominant role in hybrid embryonic lethality.  
313

314 *tll<sub>mel</sub>* exacerbates the hybrid inviability caused by *gt<sub>mel</sub>*

315 Hybrid defects are usually caused by at least two interacting elements (reviewed  
316 in (Maheshwari and Barbash 2011; Nosil and Schluter 2011)). *Giant* is an essential factor  
317 in the gap gene regulatory network, a set of interacting genes expressed in the blastoderm  
318 embryo to establish anterior-posterior patterning (Petschek *et al.* 1987; Mohler *et al.*  
319 1989; Eldon and Pirrotta 1991; Kraut and Levine 1991); its function in segmentation as a  
320 reciprocal transcriptional repressor of other gap genes (*Kruppel* and *knirps*; (Kraut and  
321 Levine 1991; Capovilla *et al.* 1992; Wu *et al.* 1998)) is conserved in arthropods. *giant* is  
322 itself repressed by the gene products of *hunchback* (Eldon and Pirrotta 1991; Kraut and  
323 Levine 1991; Struhl *et al.* 1992), *tailless* (Reinitz and Levine 1990), and *hucklebein*  
324 (Brönnner *et al.* 1994). The proteins *Caudal* (Schulz and Tautz 1995) and *Bicoid* (Eldon  
325 and Pirrotta 1991; Rivera-Pomar *et al.* 1995) activate *gt*, which localizes to two broad  
326 stripes, one towards the anterior and one towards the posterior pole of the embryo  
327 (reviewed in (Jaeger 2011)). Given this knowledge, we hypothesized that gap genes  
328 interacting with *gt<sub>mel</sub>* could be additional candidates contributing to inviability in *mel/san*  
329 hybrids.

330 Even though *gt<sub>mel</sub>* is involved in generating abdominal ablations, hybrids with no  
331 functional *gt<sub>mel</sub>* allele also show abdominal ablations but at lower frequency (Figure 3B,  
332 (Matute and Gavin-Smyth 2014)). This means that other alleles in the genome are  
333 involved in producing the maladaptive trait. We introgressed a *gt<sub>mel</sub><sup>XII</sup>* allele into the  
334 background of 200 DGRP (*Drosophila* Genetic Reference Panel) lines (Figure S14) to  
335 assess whether autosomal variants segregating within *mel*, other than those in *gt<sub>mel</sub>*, would  
336 affect the frequency of abdominal ablations in hybrids. Using GWAS, we found a strong  
337 association between a 75.7kb haplotype in 3L which harbors nine genes: *cindr*,  
338 *CG15544*, *tll*, *Cpr100A*, *CG15545*, *CG15546*, *CG15547*, *CG12071*, and *Sap-r* (Figure 4).  
339 Of these nine, the only gene known to interact with *gt* is *tll*.

340 To determine whether the two genes interact genetically in causing HI, we  
341 generated double mutant females carrying loss of function mutations of *gt* and *tll*  
342 (*gt<sup>XII</sup>/FM7::GFP*, *tll<sub>mel</sub><sup>ΔGFP</sup>/TM3 Ser Sb*) and crossed them to *san* males. First, we scored  
343 whether the presence of *tll<sub>mel</sub>* had any effect on hybrid female viability by itself. We  
344 found no effect of *tll<sub>mel</sub>* in hybrid female viability in an otherwise heterozygote F1

345 background (*FM7::GFP* /*X<sub>san</sub>*, *tll<sub>mel</sub>*<sup>ΔGFP</sup> /*3<sub>san</sub>* vs. *FM7::GFP* /*X<sub>san</sub>*, *TM3 Sb* /*3<sub>san</sub>*; Table 3).  
346 Next, we scored whether the presence of *tll<sub>mel</sub>* had an effect on hybrid female viability in  
347 a *gt<sub>mel</sub>*<sup>X11</sup> background. Hybrid *mel/san* females that have only a functional copy of *gt<sub>san</sub>*  
348 (i.e., carry a *gt<sub>mel</sub>*<sup>X11</sup> allele) and are hemizygous for *tll* (i.e., only have *tll<sub>san</sub>*) are more  
349 likely to survive to adulthood than *gt<sub>mel</sub>*<sup>X11</sup>-carrying females and a functional *tll<sub>mel</sub>*  
350 (*gt<sub>mel</sub>*<sup>X11</sup> /*X<sub>san</sub>*, *tll<sub>mel</sub>*<sup>ΔGFP</sup> /*3<sub>san</sub>* vs. *gt<sub>mel</sub>*<sup>X11</sup> /*X<sub>san</sub>*, *TM3 Sb* /*3<sub>san</sub>* Table 3A). These results suggest  
351 that while removing *tll<sub>mel</sub>* on its own has no major effect on HI, removing both *gt<sub>mel</sub>* and  
352 *tll<sub>mel</sub>* has a positive effect in viability that is larger than removing either allele  
353 individually.

354 *tll<sub>mel</sub>* also has a role in the frequency of abdominal ablations. Abrogating *tll<sub>mel</sub>* in a  
355 *gt<sub>mel</sub>/gt<sub>san</sub>* background has no detectable effect in the frequency of abdominal ablations in  
356 hybrid males or hybrid females with a functional copy of *gt<sub>mel</sub>* (*FM7/X<sub>san</sub>*, *tll<sub>mel</sub>*<sup>ΔGFP</sup> /*3<sub>san</sub>* vs.  
357 *FM7/X<sub>san</sub>*, *TM3 Sb* /*3<sub>san</sub>*, Table 3B and 3C). In a *gt<sub>mel</sub>*<sup>X11</sup> background, abrogating *tll<sub>mel</sub>*  
358 decreases the proportion of male and female embryos showing abdominal ablations  
359 (Table 3). These results suggest —just as occurs with female viability— the absence of  
360 *gt<sub>mel</sub>* and *tll<sub>mel</sub>* together has a larger positive effect than the absence of each allele  
361 individually. Table S9 shows similar analyses with a different *tll* loss-of-function allele.  
362 Notably, in the conspecific crosses and the three possible interspecific crosses between *D.*  
363 *melanogaster* females and males from other species, *gt<sub>mel</sub>*<sup>X11</sup> and *tll<sub>mel</sub>*<sup>ΔGFP</sup> have no effects  
364 on viability (Table S10).

365 Finally, we tested the effect of disrupting the *tll<sub>san</sub>* in hybrids. *tll<sub>san</sub>*<sup>ΔdsRed</sup> did not  
366 rescue *tll<sub>mel</sub>*<sup>ΔGFP</sup> in hybrids. In *mel/san* hybrids, the *tll<sub>san</sub>*<sup>ΔdsRed</sup> deletion had no effect on  
367 female viability when tested in hybrids with multiple *mel* backgrounds (Table S11). This  
368 result suggests that removing *tll<sub>san</sub>* in *mel/san* hybrids has no effect on hybrid viability in  
369 an otherwise heterozygote hybrid background. Next, we tested the effect of *tll<sub>san</sub>*<sup>ΔdsRed</sup> in  
370 the null-*gt<sub>mel</sub>*, *gt<sub>mel</sub>*<sup>X11</sup> background. We find that the *tll<sub>san</sub>* deletion does not improve  
371 viability in *gt<sub>mel</sub>*<sup>X11</sup>-carrying *mel/san* females either (Table S12). These results suggests  
372 that even in the absence of a functional *gt<sub>mel</sub>* allele, removing *tll<sub>san</sub>* has no effect on hybrid  
373 female viability. Since the reciprocal deletion (removing *tll<sub>mel</sub>* and exposing the *tll<sub>san</sub>*  
374 allele) does improve female hybrid viability in *gt<sub>mel</sub>*<sup>X11</sup>-carriers, these results indicate that  
375 the presence of *tll<sub>mel</sub>*, but not of *tll<sub>san</sub>*, is involved in the HI of *mel/san* female hybrids.

376

377 *Molecular Evolution*

378        Gap genes *gt* and *tll* have phylogenetically conserved roles in pattern formation,  
379 as evidenced by their functionally conserved outputs in blastoderm embryos of distantly  
380 related *Drosophila* species (Hare *et al.* 2008a) and beyond (Bucher 2004; Wilson *et al.*  
381 2010). Yet, they have diverged sufficiently between *mel* and *san* such that they  
382 malfunction in hybrids. We therefore conducted analyses to assess the patterns and  
383 mechanism of divergence of the *gt* coding sequence in the *melanogaster* species  
384 subgroup and across the *Drosophila* genus.

385        Both *gt* and *tll* are highly conserved in their coding regions. The bZip domain that  
386 confers Gt protein its ability to bind DNA is highly conserved across animals (Nitta *et al.*  
387 2015) and shows no fixed differences among *Drosophila* species (Figure S15, Chang *et*  
388 *al.* 2021). Gt shows only thirteen single amino acid substitutions in the *melanogaster*  
389 species subgroup (Figures S15 and S16), six of which occur on the branches connecting  
390 *mel* and *san*. *Giant* also contains three low complexity regions (including polyQ) that  
391 show extensive variation both within and between species (Figure S17). *tll* is also  
392 conserved in the *melanogaster* species subgroup; only four residues differ between the *tll*  
393 alleles in the *yakuba* clade and the *melanogaster* clade: Val509Asp, Arg1118Lys,  
394 Ser1208Thr, Leu1246Met (Figure S18). Only Val509Asp represents a change in the type  
395 of amino acid (a change from a nonpolar to an acidic residue).

396        We also investigated whether substitutions in these two genes might have been  
397 driven by adaptive evolution. Both genes, *gt* and *tll*, fall within the slowest-evolving  
398 quantile of genes comparing *mel* with *yak* or *san* (25% and 10% respectively) and, noting  
399 the limited power to detect selection as a result, show no signature of accelerated  
400 evolution (Table S13).

401 DMI partner(s) of *gt*<sup>*mel*</sup> is (are) unique to the *D. santomea* lineage

402        The phylogenetic occurrence of developmental defects provides an additional  
403 hypothesis to test: we next evaluated whether the unknown genetic element(s) in the *D.*  
404 *santomea* genome that must interact with *gt*<sub>*mel*</sub> and *tll*<sub>*mel*</sub> (*gt*<sub>*sim*</sub>) to cause HI are also  
405 present in *D. teissieri* (a close relative of *D. santomea*, Figure 1A). The crosses ♀*mel* ×

406 ♂*tei*, ♀*sim* × ♂*tei* and ♀*mel* × ♂*tei* all produce viable adult females and males that die as  
407 late larvae/early pupae. Little embryonic lethality is observed in any of these two crosses  
408 and the rare embryos that die do not show abdominal ablations (Figure 1E, Figure S1).  
409 All *D. teissieri* lines showed similar levels of viability in each cross (Figure S19). These  
410 results suggest that at least one of the partners of this incompatibility is specific to *san*,  
411 and evolved after *san* and *tei* diverged.

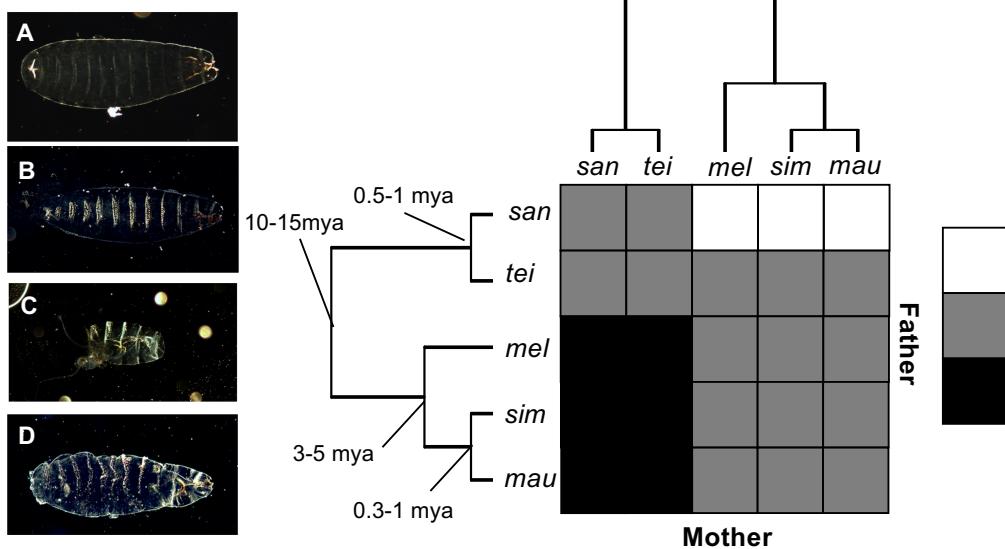
412

|413

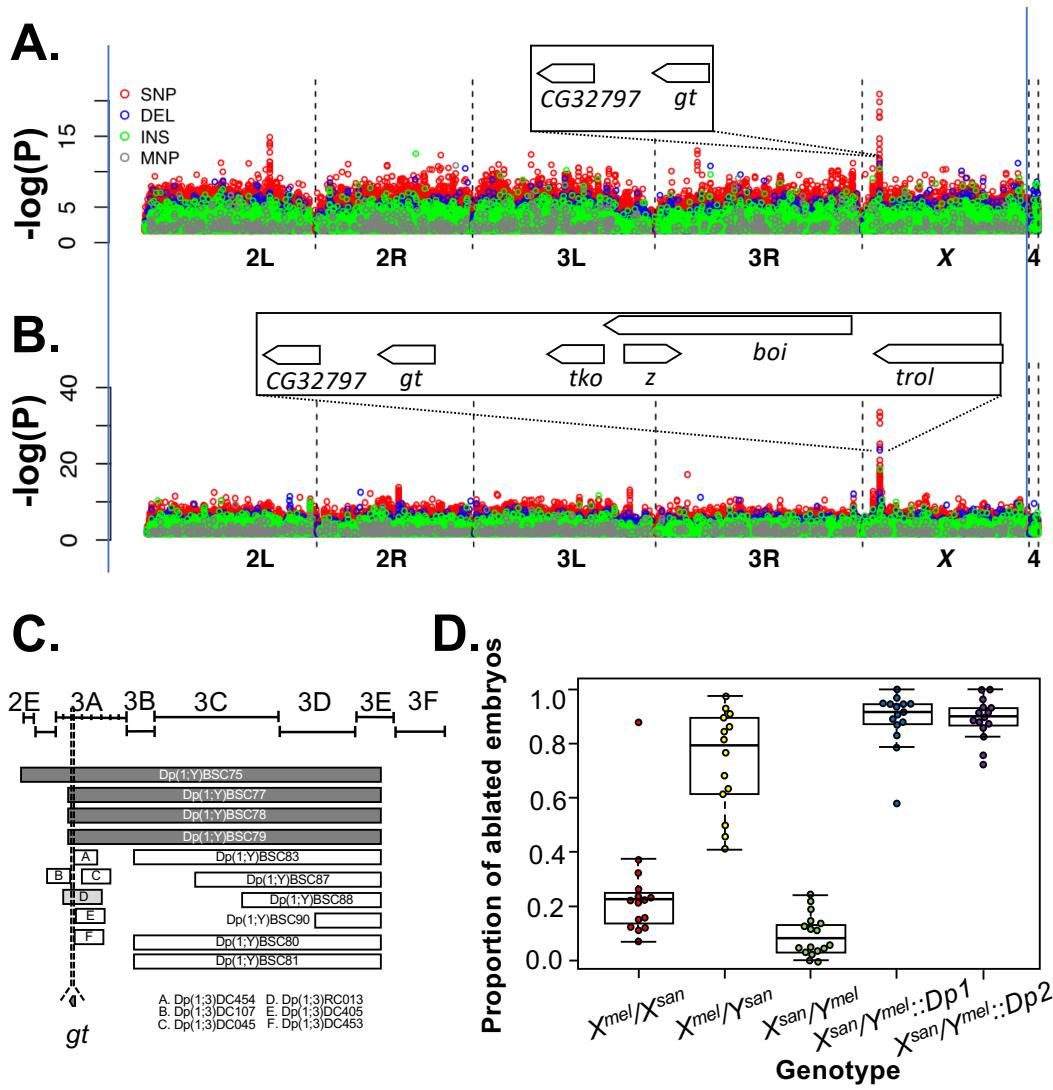
414 **DISCUSSION**

415 Hybrid inviability is a strong barrier to gene exchange between species. While it is clear  
416 that this trait is often caused by epistatic interactions between alleles from different  
417 species, few examples have been identified to the gene level. Here, we identified two  
418 genes, *gt* and *tll*, which contribute to HI in hybrids between two *Drosophila* species. The  
419 two genes belong to the gap gene network, a highly conserved pathway that is in charge  
420 of establishing embryonic polarity in insects (Bucher 2004; Goltsev *et al.* 2004; Hare *et*  
421 *al.* 2008a; Wilson *et al.* 2010; Crombach *et al.* 2014; Wotton *et al.* 2015; Crombach *et al.*  
422 2016). The *mel* alleles of these two genes are necessary and sufficient to cause a male  
423 abdominal ablation phenotype that is particularly common in hybrid males of the cross.  
424 We also find support for a third (or even more) elements that are exclusive to *D.*  
425 *santomea* and remain unidentified. Additional members of the gap gene network must  
426 have functionally diverged between the two species and contribute to HI. These are not  
427 the only alleles that contribute to inviability in the cross but are sufficient to cause the  
428 abdominal ablation defect that is particularly common in hybrid males of the cross (Gavin-  
429 Smyth and Matute 2013; Matute and Gavin-Smyth 2014).

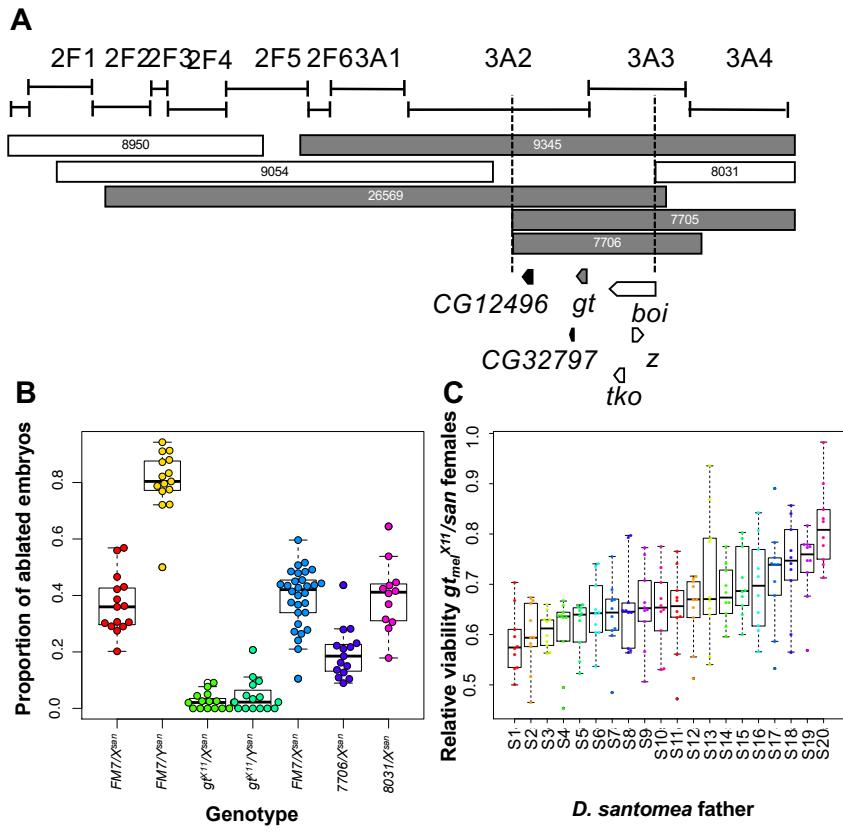
430 The involvement of *gt<sub>mel</sub>* and *tll<sub>mel</sub>* in HI indicates that one or more features of their  
431 function have diverged between relatively closely related species, despite their broad  
432 conservation across the Diptera ((Goltsev *et al.* 2004; Hare *et al.* 2008a; Crombach *et al.* 2014;  
433 Wotton *et al.* 2015); but see (García-Solache *et al.* 2010; Janssens *et al.* 2014; Crombach *et al.*  
434 2016)), bees (Wilson *et al.* 2010) and beetles (Bucher 2004; Cerny *et al.* 2008). Our results  
435 confirm speculation that HI can arise in phylogenetically conserved gene networks regulating  
436 development (True and Haag 2001; Ludwig *et al.* 2005; Schiffman and Ralph 2021). The  
437 involvement of *gt<sub>mel</sub>* and *tll<sub>mel</sub>* in HI suggests that their function has diverged across *Drosophila*  
438 species. Consistent with this result, precise gene replacements have also shown that *gt* alleles  
439 from different species vary in the ability to complement in a *D. melanogaster* background (Chang  
440 *et al.* 2021). Natural selection has driven the evolution of regulatory elements of many  
441 developmental genes in *Drosophila* which has led to a rapid turnover (Hare *et al.* 2008a; b; He *et*  
442 *al.* 2011; Ni *et al.* 2012). Yet, neither *gt* nor *tll* show signatures of positive selection in their  
443 coding sequences. Our results also suggest that the evolution of the different components  
444 involved in the DMI occurred at different times and is unlikely to have had any role on  
445 speciation. The deleterious effects caused by *gt<sub>mel</sub>* seem to be common to *D. melanogaster* and


446 the species in the *D. simulans* clade, suggesting that the allele necessary for the  
447 incompatibility evolved before these species split between three and five million years  
448 ago (Tamura *et al.* 2004; Suvorov *et al.* 2021). Because the presence of *gt<sup>mel</sup>* has no  
449 quantifiable viability effect in *mel/tei* hybrids, at least one of the genetic factor(s) that  
450 interact with *gt<sup>mel</sup>* to cause abdominal ablation in hybrid embryos must have arisen after  
451 *D. santomea* and *D. teissieri* split between 1 and 2.5 million years ago (Bachtrog *et al.*  
452 2006; Turissini and Matute 2017). An alternative divergence scenario is that at least one  
453 of the genetic components of the DMI evolved in the *tei* branch to suppress HI.  
454 Regardless of which of these two scenarios is correct, the components of the DMI must  
455 have evolved at different times in the two lineages, and the interactions with *giant* that  
456 cause abdominal ablation could not have been involved with any speciation event in the  
457 *melanogaster* species subgroup (Figure S11). Instead, these loci must have evolved  
458 independently in each lineage, accumulating differences as the genomes diverged after  
459 speciation, a scenario in accord with the Dobzhansky Muller model (Dobzhansky 1937;  
460 Muller 1942; Coyne and Orr 2004; Matute *et al.* 2010; Moyle and Nakazato 2010; Wang  
461 *et al.* 2015). Mapping the allele(s) that interact with *gt<sup>mel</sup>* and *tll<sup>mel</sup>* in the *D. santomea*  
462 genome is the next step in describing how genomic divergence creates hybrid defects.

463 Previous comparative analyses of gap gene expression in dipterans indicates gene  
464 network evolution in spite of a conserved developmental phenotype (Wotton *et al.* 2015),  
465 which suggests continual fine-tuning of the genetic interactions in the gap gene network  
466 within species. Coevolved compensatory changes have been proposed to cause HI in  
467 instances in which the phenotypic output of a gene network is under moderate stabilizing  
468 selection (Kondrashov *et al.* 2002; Johnson and Porter 2007; Tulchinsky *et al.* 2014;  
469 Mack and Nachman 2017). Molecular functional evolution without phenotypic change, or  
470 developmental systems drift, has been hypothesized to underlie hybrid breakdown  
471 involving canalized traits such as embryogenesis and gametogenesis (True and Haag  
472 2001). The HI involving *gt<sub>mel</sub>* and *tll<sub>mel</sub>* may exemplify compensatory changes resulting in  
473 a stable phenotype when comparing pure species, but in an aberrant phenotype in  
474 hybrids.


475 The introduction of a developmental genetics perspective to speciation studies has  
476 the potential to shed new light on the study of hybrid inviability (Cutter and Bundus  
477 2020). Hybrid inviability is a natural experiment to test genetic interactions between  
478 diverging genomes: the molecular interactions that go awry in hybrids reveal  
479 evolutionary divergence of the genes involved, or the timing, location, or amount of their  
480 expression (Mack and Nachman 2017). The interactions between *gt<sub>mel</sub>*, *tll<sub>mel</sub>* and the  
481 unknown factors in the genome of *D. santomea*, had nothing to do with setting the  
482 speciation process in motion in the *melanogaster* species subgroup. They are also not  
483 involved in currently keeping species apart as *D. melanogaster* and *D. santomea* do not  
484 naturally hybridize. The results shown here should be viewed in the broad context of  
485 genome divergence and how genomes keep evolving long after speciation has occurred.  
486 This represents a path forward in terms of how to think about stability vs. change of  
487 different functional units within the genome and different developmental processes. The  
488 identification of *giant* and *tll* as genes involved in HI is the first indication that genes  
489 involved in early embryonic development, a canonical example of a conserved  
490 developmental process, functionally co-evolve at a pace sufficient to cause hybrid  
491 inviability.

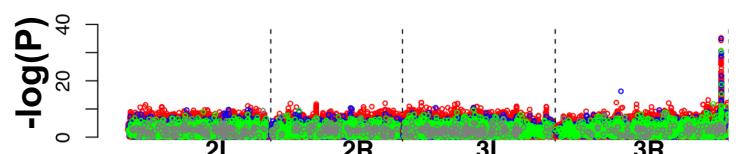
492


493 **FIGURE 1. All the X chromosomes from the *mel* supercomplex cause inviability in**  
494 ***mel/san* hybrids but not in *mel/tei* hybrids.** Unlike pure species (A. *D. santomea*; B. *D.*  
495 *melanogaster*), F1 *mel/san* hybrid males show abdominal ablations (C). The nature of the  
496 defect in these hybrid males is identical to that seen in *sim/san* and *mau/san* hybrid males.  
497 Females from the same cross also show such ablations but more rarely and the majority  
498 of dead embryos show a complete abdomen (Figure S8). Hybrids between females from  
499 the *melanogaster* supercomplex and *D. teissieri* males show little embryonic lethality and  
500 among the few dead embryos there are no abdominal ablations (e.g., D. *mel/tei* hybrid  
501 male). The viability of each genotype is shown in Figure S1. E. Phylogenetic  
502 relationships between the species of the *melanogaster* species subgroup. The heatmap  
503 shows the relative occurrence of abdominal ablations in hybrid males. White: common,  
504 grey: absent. Black: pairs with complete behavioral isolation.

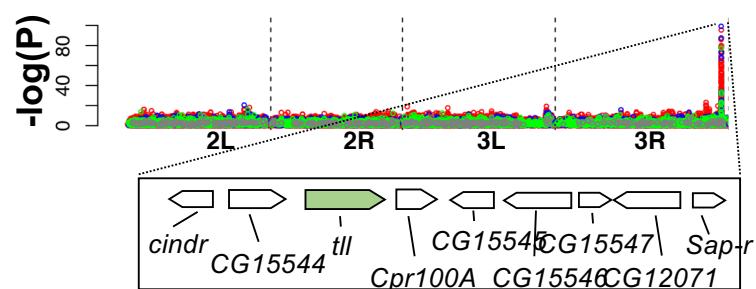


506 **FIGURE 2. A *D. melanogaster* X-chromosome haplotype that encompasses *gt<sup>mel</sup>* is**  
507 **associated with hybrid inviability and abdominal ablations in ♀ *D. melanogaster*/♂**  
508 ***D. santomea* hybrid males. A.** Genome-wide association study of the genetic causes of  
509 hybrid inviability in *mel/san* hybrids (both sexes pooled) using segregating variation  
510 within *D. melanogaster*. A haplotype of 54kb in the tip of the X-chromosome is strongly  
511 associated with the presence of abdominal ablations. The haplotype harbors six genes:  
512 *CG32797*, *gt*, *tko*, *boi*, *z*, and *trol*. **B.** Genome-wide association study of the genetic  
513 causes of abdominal ablations in *mel/san* hybrids (both sexes pooled) using segregating  
514 variation within *D. melanogaster*. A haplotype of 54kb in the tip of the X-chromosome is  
515 strongly associated with the presence of abdominal ablations. The haplotype harbors six  
516 genes: *CG32797*, *gt*, *tko*, *boi*, *z*, and *trol*. Green: insertions, blue: deletions, red: SNPs,  
517 purple: multinucleotide polymorphisms. Green: insertions (INS), blue: deletions (DEL),  
518 red: SNPs, purple: multinucleotide polymorphisms (MNP). **C.** We introduced small *X<sup>mel</sup>*  
519 pieces attached to *Y<sub>mel</sub>* to identify *X<sub>mel</sub>*-linked alleles that cause hybrid inviability in in  
520 *mel/san* hybrids males. For all *Dp(1;Y)* duplications, we evaluated at least 50 embryos  
521 per cross were for viability. For *Dp(1;3)* duplications, we evaluate between 20-56  
522 embryos as *C(1)DX*, *Dp(1;3)/Dp(1;3)* are weak. We narrowed down the allele that  
523 causes HI to an interval of *X<sup>mel</sup>* comprising 3A3 which only contains *giant*. White bars  
524 show duplications with no abdominal ablations. The light grey bar shows a duplication  
525 with a moderate rate of abdominal ablations; dark grey show duplications with high  
526 levels of abdominal ablations. **D.** Relative frequency of abdominal defects in five  
527 different hybrid genotypes from *D. melanogaster* and *D. santomea* crosses. Pure species  
528 embryos show no abdominal defects and show little embryonic lethality. *mel/san* hybrid  
529 males (*X<sup>mel</sup>/Y<sup>san</sup>*) frequently show a lethal characteristic abdominal ablation (red points)  
530 that is also present in some *mel/san* hybrid females (blue points). The reciprocal *mel/san*  
531 hybrid males (*X<sup>san</sup>/Y<sup>mel</sup>*) routinely survive and the few embryos who die do not show  
532 abdominal ablations (red points). *X<sup>san</sup>/Y<sup>mel</sup>* males carrying X-Y translocations [i.e.,  
533 *Dp(1;Y)* in blue and *Dp(1;Y)* in red] that harbor *gt<sup>mel</sup>* also show this lethal ablation. *Dp1*:  
534 *Dp(1;Y)BSC78* (stock 29802); *Dps*: *Dp(1;Y)BSC79* (stock 29803). A map showing the  
535 frequency of abdominal defects caused by multiple *X<sup>mel</sup>* translocation is shown in Figure  
536 S2.




539 **FIGURE 3. *giant<sup>mel</sup>* causes HI and abdominal ablations in *mel/san* females. A.**  
540 Deficiency mapping and null-allele mapping revealed that *giant* also causes hybrid  
541 inviability in hybrid females. Grey: deficiencies that increase viability of *mel/san* F1  
542 hybrid females (Significant linear contrasts,  $P < 0.05$  after multiple comparison  
543 corrections). White: deficiencies that do not increase viability. **B.** When females fail to  
544 hatch, it is not uncommon for them to be abdominally ablated. The presence of *gt<sub>mel</sub>*  
545 increases the frequency of abdominal ablations. **C.** Relative *gt<sub>mel</sub><sup>XII</sup>/X<sub>san</sub>* female viability  
546 (i.e., proportion of *gt<sub>mel</sub><sup>XII</sup>* carriers in hybrid crosses) in twenty *D. santomea* isofemale  
547 lines. Boxes in the boxplot are ordinated from the lower median (left) to the highest  
548 (right). S1: SYN2005; S2: sanCAR1490; S3: sanCOST1250.5; S4: sanCOST1270.1; S5:  
549 sanOBAT1200; S6: sanOBAT1200.2; S7: sanRain39; S8: sanCAR1600.3; S9:  
550 Carv2015.1; S10: Carv2015.5; S11: Carv2015.11; S12: Carv2015.16; S13: Pico1680.1;  
551 S14: Pico1659.2; S15: Pico1659.3; S16: Amelia2015.1; S17: Amelia2015.6; S18:  
552 Amelia2015.12; S19: A1200.7; S20: Rain42.




554 **FIGURE 4. A *D. melanogaster* third-chromosome haplotype that encompasses *tll* is**  
555 **associated with the prevalence of abdominal ablations in *gt*<sup>XII</sup> mutants.** Association  
556 study of autosomal genetic variants associated with the frequency of abdominal ablations  
557 in *gt*<sup>XII</sup>/*X<sup>san</sup>* hybrids using segregating variation within *D. melanogaster*. A haplotype of  
558 54kb in the tip of the *X*-chromosome is strongly associated with the presence of  
559 abdominal ablations in both males (A) and females (B). Each panel shows a different  
560 chromosome arm. The haplotype 9 genes: *cindr*, *CG15544*, *tll*, *Cpr100A*, *CG15545*,  
561 *CG15546*, *CG15547*, *CG12071*, and *Sap-r*. Of these nine, *tll* is the only one known to  
562 interact with *gt*. Green: insertions, blue: deletions, red: SNPs, purple: multinucleotide  
563 polymorphisms.

564

**A. Females.**



**B. Males.**



567

568 **TABLE 1. The coding region of *gt<sub>mel</sub>* causes embryonic lethality in *mel/san* hybrids.**569 All *gt* proteins were tagged with eGFP. We used a 2-sample test for equality of570 proportions to compare the proportion of dead embryos in *mel/san* *gt<sub>mel</sub><sup>X11</sup>*, *gt<sub>mel:mel</sub>*

571 carriers with the other three transgenes. df=1 for all tests.

| Allele                      | Non-coding | Coding     | Hatched Embryos | Dead Embryos | Relative Embryonic Lethality | $\chi^2$ | P                     |
|-----------------------------|------------|------------|-----------------|--------------|------------------------------|----------|-----------------------|
| <i>gt<sub>mel:mel</sub></i> | <i>mel</i> | <i>mel</i> | 40              | 17           | 0.298                        | NA       | NA                    |
| <i>gt<sub>san:mel</sub></i> | <i>san</i> | <i>mel</i> | 66              | 20           | 0.303                        | 0.467    | 0.495                 |
| <i>gt<sub>mel:san</sub></i> | <i>mel</i> | <i>san</i> | 90              | 10           | 0.100                        | 8.676    | $3.22 \times 10^{-3}$ |
| <i>gt<sub>san:san</sub></i> | <i>san</i> | <i>san</i> | 51              | 4            | 0.091                        | 7.922    | $4.88 \times 10^{-3}$ |

572

573 **TABLE 2. The coding region of *gt<sub>mel</sub>* causes female inviability in hybrid *mel/san* females.** The coding region of *gt<sub>mel</sub>* while *gt<sub>san</sub>* increases female hybrid viability. We used a  $\chi^2$  test to compare the number of females carrying the transgene and those without it. df=1 for all tests.

| Allele                      | Non-coding | Coding     | F <sub>1</sub> females with a <i>gt</i> transgene | F <sub>1</sub> females with a <i>3<sub>mel</sub></i> chromosome | Relative Hybrid Viability | $\chi^2$ | P     |
|-----------------------------|------------|------------|---------------------------------------------------|-----------------------------------------------------------------|---------------------------|----------|-------|
| <i>gt<sub>mel:mel</sub></i> | <i>mel</i> | <i>mel</i> | 86                                                | 116                                                             | 0.741                     | 4.455    | 0.035 |
| <i>gt<sub>san:mel</sub></i> | <i>san</i> | <i>mel</i> | 143                                               | 188                                                             | 0.761                     | 6.118    | 0.013 |
| <i>gt<sub>mel:san</sub></i> | <i>mel</i> | <i>san</i> | 173                                               | 180                                                             | 0.961                     | 0.139    | 0.710 |
| <i>gt<sub>san:san</sub></i> | <i>san</i> | <i>san</i> | 81                                                | 56                                                              | 1.45                      | 4.562    | 0.033 |

577

578 **TABLE 3. *tll<sub>mel</sub>* exacerbates the defects caused by *gt<sub>mel</sub>* in *mel/san* hybrids. A.**579 Females that carry functional *gt<sub>mel</sub>* and *tll<sub>mel</sub>* alleles are more likely to die than females  
580 that carry an abrogation of *gt<sub>mel</sub>* (regardless of the genotype at *tll*) or that carry a  
581 functional *gt<sub>mel</sub>* and a null allele of *tll<sub>mel</sub>*. Tests with a different *tll* loss of function allele

582 show similar results (Table S6). **B.** *mel/san* hybrid males with functional copies of *gt<sub>mel</sub>*  
 583 and *tll<sub>mel</sub>* are more likely to show abdominal ablations than hybrid males with an  
 584 abrogated copy of *tll<sub>mel</sub>*, an abrogated copy of *gt<sub>mel</sub>*, or abrogated copies of both. **C.**  
 585 Similar to males, *mel/san* hybrid females with functional copies of *gt<sub>mel</sub>* and *tll<sub>mel</sub>* are  
 586 more likely to show abdominal ablations than hybrid males with an abrogated copy of  
 587 *tll<sub>mel</sub>*, an abrogated copy of *gt<sub>mel</sub>*, or abrogated copies of both. In all three cases, we used a  
 588  $\chi^2$  proportion test for the two pairwise comparisons.

589

| <b>A. Female hybrid viability</b>                                                     |                                                                                                            |                                                                                                                |                                                                                                                 |                                                                                                                     |
|---------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------|
|                                                                                       | <i>FM7;</i><br><i>sqh::mCherry/X<sub>san</sub>;</i><br><i>TM3, Act::GFP,</i><br><i>Ser/3<sub>san</sub></i> | <i>FM7;</i><br><i>sqh::mCherry/X<sub>san</sub>;</i><br><i>tll<sub>mel</sub><sup>AGFP</sup>/3<sub>san</sub></i> | <i>gt<sub>mel</sub><sup>XII</sup>; /X<sub>san</sub>;</i><br><i>TM3, Act::GFP,</i><br><i>Ser/3<sub>san</sub></i> | <i>gt<sub>mel</sub><sup>XII</sup>; /X<sub>san</sub>;</i><br><i>tll<sub>mel</sub><sup>AGFP</sup>/3<sub>san</sub></i> |
|                                                                                       | 43                                                                                                         | 51                                                                                                             | 97                                                                                                              | 153                                                                                                                 |
| $\chi^2_1=0.681$ , P=0.409                                                            |                                                                                                            | $\chi^2_1=12.544$ , P=3.975 $\times 10^{-4}$                                                                   |                                                                                                                 |                                                                                                                     |
| <b>B. Proportion of male embryos showing abdominal ablations (100 embryos each)</b>   |                                                                                                            |                                                                                                                |                                                                                                                 |                                                                                                                     |
|                                                                                       | <i>FM7;</i><br><i>sqh::mCherry/Y<sub>san</sub>;</i><br><i>TM3, Act::GFP,</i><br><i>Ser/3<sub>san</sub></i> | <i>FM7;</i><br><i>sqh::mCherry/Y<sub>san</sub>;</i><br><i>tll<sub>mel</sub><sup>AGFP</sup>/3<sub>san</sub></i> | <i>gt<sub>mel</sub><sup>XII</sup>; /Y<sub>san</sub>;</i><br><i>TM3, Act::GFP,</i><br><i>Ser/3<sub>san</sub></i> | <i>gt<sub>mel</sub><sup>XII</sup>; /Y<sub>san</sub>;</i><br><i>tll<sub>mel</sub><sup>AGFP</sup>/3<sub>san</sub></i> |
|                                                                                       | 94                                                                                                         | 88                                                                                                             | 23                                                                                                              | 9                                                                                                                   |
| $\chi^2_1= 1.526$ , P= 0.217                                                          |                                                                                                            | $\chi^2_1= 6.287$ , P = 0.012                                                                                  |                                                                                                                 |                                                                                                                     |
| <b>C. Proportion of female embryos showing abdominal ablations (100 embryos each)</b> |                                                                                                            |                                                                                                                |                                                                                                                 |                                                                                                                     |
|                                                                                       | <i>FM7;</i><br><i>sqh::mCherry/X<sub>san</sub>;</i><br><i>TM3, Act::GFP,</i><br><i>Ser/3<sub>san</sub></i> | <i>FM7;</i><br><i>sqh::mCherry/X<sub>san</sub>;</i><br><i>tll<sub>mel</sub><sup>AGFP</sup>/3<sub>san</sub></i> | <i>gt<sub>mel</sub><sup>XII</sup>; /X<sub>san</sub>;</i><br><i>TM3, Act::GFP,</i><br><i>Ser/3<sub>san</sub></i> | <i>gt<sub>mel</sub><sup>XII</sup>; /X<sub>san</sub>;</i><br><i>tll<sub>mel</sub><sup>AGFP</sup>/3<sub>san</sub></i> |
|                                                                                       | 48                                                                                                         | 35                                                                                                             | 16                                                                                                              | 6                                                                                                                   |
| $\chi^2_1= 2.966$ , P= 0.085                                                          |                                                                                                            | $\chi^2_1= 4.137$ , P= 0.042                                                                                   |                                                                                                                 |                                                                                                                     |

590

591

592 **SUPPLEMENTARY MATERIAL**

593 **TABLE OF CONTENTS**

594

595 **SUPPLEMENTARY METHODS**

596

597 **1. Stocks**

598 **1.1. *Drosophila melanogaster* mutants**

599 **1.1.1. *gt* alleles**

600 **1.1.2. *tll* alleles**

601 **1.1.3. Attached-X stocks**

602 **1.1.4. X-Y translocations**

603 **1.1.5. *gt* transgenics**

604 **1.2. Other species stocks**

605 **1.2.1. Isofemale lines**

606 **1.2.2. Other mutant stocks**

607 **2. INTERSPECIFIC GENETIC CROSSES**

608 **2.1. Wild-type crosses**

609 **2.2. Genome wide association studies**

610 **2.2.1. Hybrid inviability GWAS**

611 **2.2.2. GWAS restricted to the autosomes**

612 **2.3. Duplication mapping**

613 **2.4. Deficiency mapping**

614 **3. INTRASPECIFIC CROSSES: DOSAGE EFFECTS.**

615 **4. CUTICLE PREPARATION**

616 **4.1. Wild-type hybrids**

617 **4.2. *Dp(1;Y)* carrying male hybrids**

618 **4.3. *gt<sub>mel</sub>*<sup>x11</sup> carrying female hybrids**

619 **5. GENOME SEQUENCING**

620 **5.1. Stock collection**

621 **5.2. Sequencing: Genomic data**

622 **5.3. Sequencing: Read mapping and variant calling**

623 **5.4. Sequencing: Indel identification**

624 **5.5. Genomic Alignments**

625 **6. DETECTION OF NATURAL SELECTION**

626 **6.1. PAML**

627 **SUPPLEMENTARY TABLES**

628 **TABLE S1. Rates of ablation in F1 hybrids between the species of the *yakuba***

629 species complex.

630 **TABLE S2. Hybrids between *D. melanogaster* females and *D. simulans* and *D.***  
631 ***mauritiana* show no abdominal ablations or embryonic lethality.**

632 **TABLE S3. Mutant stocks used in this study**

633 **TABLE S4. *C(1)DX, Dp(1;3)/TM3* lay few eggs are thus not ideal to measure the**  
634 **magnitude of HI in crosses with *D. santomea*.**

635 **TABLE S5. The cross involved a *gt<sub>mel</sub>XII/FM7* female and a male hemizygote for the**  
636 **duplication.**

637 **TABLE S6. Isofemale lines from 4 species used to assess whether HI in *mel/san***  
638 **hybrids was a species-specific phenomenon or a line specific phenomenon.**

639 **TABLE S7. Complementation mapping using loss-of function and hypomorphic**  
640 **alleles show that *gt* mutants are the only alleles in cytological region 3A3 that lead to**  
641 **an increase of female viability in *mel/san* hybrid.**

642 **TABLE S8. The *gt*-vector does not carry extraneous elements that rescue the**  
643 **viability of *D. melanogaster* *gt<sub>mel</sub>XII*-carriers.**

644 **TABLE S9. Confirmation that *tll<sup>mel</sup>* exacerbates the defects caused by *gt<sup>mel</sup>* in**  
645 ***mel/san* hybrids using a different *tll* mutant.**

646 **TABLE S10. Double mutant analysis of survival in hybrids between *D. melanogaster***  
647 **females and three males from four different species (*D. melanogaster*, *D. simulans*,**  
648 ***D. mauritiana*, and *D. teissieri*).**

649 **TABLE S11. A *tll<sub>san</sub>4dsRed* has no effect on HI in crosses between *mel* females from**  
650 **four different backgrounds.**

651 **TABLE S12. Abrogating the *tll<sub>san</sub>* allele has no viability effect in *gt<sub>mel</sub>XII mel/san***  
652 **hybrids.**

653 **TABLE S13. *gt* and *tll* are slowly evolving genes as measured by the rate of**  
654 **aminoacid substitutions.**

655 **TABLE S14. Sequencing details and coverage for all the lines included in this study.**

656

657 **SUPPLEMENTARY FIGURES.**

658

659 **FIGURE S1. *X<sub>mel</sub>*, *X<sub>sim</sub>* and *X<sub>mau</sub>* cause abdominal ablations in hybrid males with *D.***

660 *santomea*.

661 **FIGURE S2.** Crossing design to assess whether small piece of the  $X^{mel}$  cause hybrid  
662 inviability and abdominal ablations.

663 **FIGURE S3.** Frequency of abdominal ablations caused by the  $X^{mel}$  translocations  
664 shown in Figure 1 in  $X^{san}/Y^{mel}$  hybrid males.

665 **FIGURE S4.** The presence of  $gt^{mel}$  causes HI in *mel/san* hybrids produced with all *D.*  
666 *santomea* lines but the magnitude of the inviability varies.

667 **FIGURE S5.** Crosses between *D. melanogaster* females harboring  $Dp(1;Y)$   
668 duplications and males from the *simulans* species group (*D. mauritiana*, and *D.*  
669 *simulans*) show no evidence of male embryo lethality or abdominal ablations.

670 **FIGURE S6.** Crosses between *D. melanogaster* females harboring  $Dp(1;Y)$   
671 duplications and males from different lines of *D. melanogaster* show no evidence of  
672 male embryo lethality or abdominal ablations.

673 **FIGURE S7.** Hybrid male embryos carrying a  $gt_{mel}^{XII}$  *D. melanogaster* allele show a  
674 variety of developmental defects.

675 **FIGURE S8.** *mel/san* hybrids carrying a *D. melanogaster* chromosome and null  
676 alleles for *boi*, *trol*, or *tko* show similar levels of hybrid viability, embryonic lethality,  
677 and abdominal ablations at the same rate than *FM7::GFP/san*.

678 **FIGURE S9.** The X-chromosome balancer has no effect on the quantification of  
679 hybrid inviability in *mel/san* hybrid females.

680 **FIGURE S10.** Frequency of abdominal ablations in each deficiency cross shown in  
681 Figure 2.

682 **FIGURE S11.**  $gt^{mel}$  has no effect on the viability of *mel/tei*, *mel/mau*, and *mel/sim*  
683 hybrid females.

684 **FIGURE S12.**  $gt^{mel}$  has no effect on the viability of *D. melanogaster* F1 females.

685 **FIGURE S13.** *gt* transgene, removable piggyBac cassette design and crossing  
686 schemes involving *gt* transgenes.

687 **FIGURE S14.** Introgression of the *FM7::GFP* and  $gt^{XII}$  alleles into 200 lines of the  
688 DGRP lines.

689 **FIGURE S15.** *gt* alleles from six different species in the *melanogaster* species

690 complex.

691 **FIGURE S16. Maximum-likelihood ancestral sequence reconstruction of GT**  
692 **protein, excluding polyQ.**

693 **FIGURE S17. The polyglutamine repeats (polyQ) show differences among the**  
694 ***melanogaster* subspecies complex species.**

695 **FIGURE S18. *tll* alleles from six different species in the *melanogaster* species**  
696 **complex.**

697 **FIGURE S19. Embryonic hybrid inviability does not occur in *mel/tei* hybrids.**

698 **FIGURE S20. Divergence in *giant* in the *melanogaster* species subgroup.**

699 **FIGURE S21. Experimental design to generated a GFP-mediated disruption of *tll<sub>mel</sub>*.**

700

701

702

703

704 **METHODS AND MATERIALS**705 **1. STOCKS**706 1. 1. *Drosophila melanogaster* mutants

707 With two exceptions (see 1.1.2. *tll* alleles and 1.1.5. *gt* transgenics), all *D. melanogaster*  
708 mutant stocks used in this study were originally obtained from the Bloomington Stock  
709 Center (BSC) and are listed in Table S1.

710

711 1.1.1. *gt alleles*. We obtained multiple *gt* mutant alleles from BSC but we focused on a  
712 null allele: *gt<sub>mel</sub><sup>XII</sup>* (*y<sup>l</sup> sc<sup>l</sup> gt<sup>XII</sup>/FM6*; BDSC stock #1529). The *gt<sub>mel</sub><sup>XII</sup>* has a  
713 frameshift mutation that abrogates the bZIP DNA-binding domain (Chang *et al.*  
714 2021). First, we confirmed that this stock did not complement a deficiency of  
715 *giant* (*Df(1)Exel6231*; BDSC stock #7706) and verified *gt<sup>XII</sup>* was indeed a loss-of-  
716 function allele. To differentiate between embryos carrying the *gt* allele or the  
717 balancer, we rebalanced each stock with a *FM7 Actin::GFP* to allow for  
718 genotypic distinctions in all further crosses.

719 1.1.2. *tll alleles*. We used two *tll<sub>mel</sub>* alleles. The first one was a loss-of-function allele of  
720 *tll*: *tll<sup>l</sup>* which was procured from the Bloomington Stock center (*st<sup>l</sup> e<sup>l</sup> tll<sup>l</sup>/TM3,*  
721 *Sb<sup>l</sup>*; BDSC stock #2729). We also obtained a CRISPR-mediated *tll<sub>mel</sub> GFP*  
722 disruption: *tll<sub>mel</sub><sup>ΔGFP</sup>*. Construct design, construction were performed by Rainbow  
723 Transgenics (Camarillo, CA). The design for the disruption is shown in Figure  
724 S21. The construct was then injected into a *y w<sup>1118</sup>* *D. melanogaster* stock. 105  
725 larvae were injected and one showed a GFP integration. Heterozygote  
726 transformants were identified by the GFP marker. These heterozygote flies (*tll<sub>mel</sub><sup>ΔGFP</sup>/tll<sup>l</sup>*)  
727 were then crossed to a *TM3, Sb/TM6B* stock to obtain *tll<sub>mel</sub><sup>ΔGFP</sup>/TM3, Sb*  
728 flies.

729 1.1.3. *Attached-X stocks*. We used two different attached-X stocks: *C(1)RM* and  
730 *C(1)DX*. These two stocks differ in the way that the two *X*-chromosomes are  
731 attached to each other. *C(1)RM*, or reverse metacentric, is a fusion of the *X*-  
732 chromosomes joint at their heterochromatic regions (Lindsley and Zimm 1992).  
733 *C(1)DX* is a fusion of *X*-chromosomes with a reverse acrocentric fusion (Lindsley  
734 and Zimm 1992). These chromosomes are a fusion of two *X*-chromosomes with

735 the centromere at one end and the two joint *X* chromosomes fused in opposite  
736 directions.

737 1.1.4. *X-Y translocations.* (*Dp(1;Y)*) duplications and deficiencies are described below  
738 in sections 2.2 and 2.3 respectively.

739 1.1.5. *gt transgenics.* We generated *gt* alleles that carried either the non-coding region  
740 and coding region of *gt<sub>mel</sub>* and *gt<sub>san</sub>* using the phiC31 targeted transgene  
741 integration system. Our goal was to generate four transgenes: one with the *mel*  
742 non-coding and coding sequences, one with the *san* non-coding and coding  
743 sequences, one with the *mel* non-coding sequences and the *san* coding sequence,  
744 and one with the *san* non-coding sequences and the *mel* coding sequence. The  
745 protocol to generate *gt* chimeric alleles is described elsewhere (Chang *et al.* 2021).  
746 Briefly, the *gt<sub>mel</sub>* transgene contains a 1.422kb interval encoding the *gt* protein  
747 (CDS), ~25kb of flanking non-coding DNA. The corresponding orthologous  
748 whole-locus *gt* from *D. santomea*, *gt<sup>san:san</sup>* is approximately ~27kb in length,  
749 containing 1.43kb coding region and ~26kb non-coding sequence. To generate the  
750 transgenics, we used long-range PCR and amplified DNA fragments of  
751 approximately 5kb. Besides the coding and non-coding elements described above,  
752 we included two additional tags on each transgene. First, we included a piggyback  
753 insertion on the 5' UTR of each chimeric allele. Second we included an eGFP tag  
754 at the C-terminus. We used Sanger sequencing to verify the amplification had  
755 introduced no extraneous mutations. Figure S13 shows a scheme with the  
756 transgene design. These segments were then merged using Gibson assembly  
757 (NEB E2611, (Gibson *et al.* 2009)) to generate all transgenics. Injections of the  
758 transgenes were done by GenetiVision (Houston, TX). The piggyback insertion  
759 was removed by crossing to a by crossing the transformed lines to a line  
760 expressing a PiggyBac transposase ((Thibault *et al.* 2004), BDSC stock #8285).  
761 While the transgenic flies with the piggyback insertion do not rescue viability a  
762 *gt<sub>mel</sub><sup>XII</sup>* mutant (Table S8), the lines with the excised insertion do rescue viability,  
763 at least partially (Table 3). Please note that the san *gt* locus has a single short  
764 intron, 75bp and 71bp for *gt<sup>mel</sup>* and *gt<sup>san</sup>*, respectively, with identical intron-exon  
765 splice junction sequences. Although we cannot rule out the possibility that the

766 small ~70bp intron region of *gt* CDS may contribute to the functional divergence  
767 between *gt<sup>mel</sup>* and *gt<sup>san</sup>*, it is unlikely as this intron region does not harbor any  
768 known regulatory elements that might significantly affect *gt* expression. To  
769 compare the proportion of inviable embryos across genotypes we used 2-sample  
770 tests for equality of proportions with continuity correction as implemented in the  
771 R function *prop.test* (library *stats*, (R Core Team 2016)).  
772

773 1. 2. Other species stocks.

774 Initial surveys of HI alleles used outbred lines (i.e., lines derived from combined  
775 individuals from several isofemale lines) for interspecific crosses. In this report, we used  
776 isofemale lines collected in nature. This allowed us to survey whether HI was a line-  
777 specific or a species-wide phenomenon.  
778

779 1.2.1 *Isofemale lines.* For interspecific crosses involving *D. melanogaster*  
780 *gt<sub>mel</sub><sup>x11</sup>/FM7::GFP* and *D. melanogaster df(BSC)/FM7::GFP* we used 25 *D.*  
781 *santomea* isofemale lines collected in the island of São Tomé. We also quantified  
782 hybrid viability for hybrids from hybrids between females from these two *D.*  
783 *melanogaster* mutant crosses with 25 *D. mauritiana*, 25 *D. teissieri*, and 25 *D.*  
784 *simulans* lines. All lines, including their collection details, are listed in Table S6.

785 1.2.2. *Other mutant stocks.* Finally, we used five mutant stocks from three other species  
786 from *D. melanogaster*. Attached *X* stocks from *D. simulans* (*y w*, (Coyne 1985)  
787 reviewed in (Presgraves and Meiklejohn 2021)) were donated by D. Presgraves.  
788 Attached *X* from *D. yakuba* (*y*) were produced by J. Coyne (Coyne *et al.* 2004).  
789 Attached *X* from *D. santomea* (*gn*) were donated by A. Llopart (Coyne *et al.*  
790 2004; Turissini *et al.* 2015; Llopart *et al.* 2018). *yellow* stocks from *D. simulans*,  
791 and *D. mauritiana* were obtained from the San Diego stock Center (now Cornell  
792 Stock Center).

793

794 **2. INTERSPECIFIC GENETIC CROSSES**

795 2. 1. Wild-type crosses

796        Pure species males and females of each species were collected as virgins within 8  
797        hours of eclosion under CO<sub>2</sub> anesthesia and kept for three days in single-sex groups of 20  
798        flies in 30mL, corn meal food-containing vials. Flies were kept at 24°C under a 12 h  
799        light/dark cycle. On day four, we assessed whether there were larvae in the media. If the  
800        inspection revealed any progeny, the vial was discarded.

801        On the morning of day four after collection, we placed forty males and twenty  
802        females together at room temperature (21°–23°C) to mate *en masse* on corn meal media.  
803        To produce hybrid adults, vials were inspected every five days to assess the presence of  
804        larvae and/or dead embryos. In order to maximize the lifespan of the parental, we kept all  
805        the vials laying on their side. We transferred all the pure species adults to a new vial  
806        (without anesthesia) every five days. This procedure was repeated until the cross stopped  
807        producing progeny (i.e., females were dead). Once L<sub>2</sub> larvae were observed in a vial, we  
808        added a solution of 0.05% propionic acid and a KimWipe (Kimberly Clark, Kimwipes  
809        Delicate Task, Roswell, GA) to the vial. We counted the hybrids as they hatched by  
810        anesthetizing them with CO<sub>2</sub>.

811        To quantify embryonic lethality, we mixed males and females as described above  
812        in a 30mL plastic vial with corn-meal or molasses food. After two days, we transferred  
813        the adults from the vials that showed larvae to an oviposition cage with apple juice media  
814        and yeast. The plates were inspected every 48 hours for the presence of viable eggs. To  
815        quantify embryonic lethality, we counted the number of egg cases (viable embryos) and  
816        the number of brown eggs (dead embryos) in each oviposition cage. Rates of embryonic  
817        lethality were calculated as the proportion of brown eggs over the total number of eggs.  
818        For all interspecific crosses within the *yakuba* species complex (*D. santomea*, *D. yakuba*,  
819        and *D. teissieri*), we only used lines that have been shown to be infected by *Wolbachia*  
820        (wB) to minimize any possible effect of endosymbionts on hybrid inviability (Cooper *et*  
821        *al.* 2017).

822

823        2. 2. Genome wide association studies (GWAS)

824

825        *2.2.1. Hybrid inviability GWAS.* We identified polymorphisms segregating in *D.*  
826        *melanogaster* associated with hybrid inviability and penetrance of abdominal ablations in

827 *mel/san* F1 hybrids. We leveraged the *Drosophila* Genetic Reference Panel (DGRP)  
828 genotype information (MacKay *et al.* 2012; Huang *et al.* 2014) to identify variants within  
829 *D. melanogaster* associated with the presence of abdominal ablations when crossed to *D.*  
830 *santomea* males. In total, we used 200 *D. melanogaster* lines, all of which are listed in  
831 Table S1. In order to identify SNPs associated with abdominal ablations in hybrids, we  
832 mated females from each of the *D. melanogaster* lines with *D. santomea* males following  
833 the procedure described in 2.1 (immediately above). The response phenotype was the  
834 percentage of larvae that showed abdominal ablations (scored as described above).

835 We submitted the percentage of ablated embryos of the 200-line study, not sexed,  
836 to the web portal dgrp2.gnets.ncsu.edu for analysis. Since we could not differentiate  
837 between female and male embryos (DGRP lines do not carry a *y* marker), we collected a  
838 single ablation score per line, combining the two sexes. Associations between the  
839 phenotype (i.e. percentage of ablated embryos) and genome wide polymorphisms within  
840 *D. melanogaster* were calculated by the DGRP algorithm, using a linear mixed model,  
841 which accounts for any effects of *Wolbachia* infection, common polymorphic inversions,  
842 and cryptic relatedness in the DGRP lines, as described in detail in (MacKay *et al.* 2012).  
843 This GWAS incorporates information from 1.9 million SNP variants. The genome-wide  
844 significant threshold at the 5% significance level was determined after a Bonferroni  
845 correction for multiple testing (Johnson *et al.* 2010) and adjusting the critical P-value for  
846 significance to as  $2.60 \times 10^{-8}$  ( $0.05/1,900,000$ ).

847  
848 2.2.2. *GWAS restricted to the autosomes*. Next, we assessed if any of the autosomal  
849 segregating variants in the DGRP modified the effects of *gt<sub>mel</sub><sup>XII</sup>*. To this end, we  
850 introgressed an *FM7::GFP* balancer and the null allele of giant, *gt<sub>mel</sub><sup>XII</sup>* into 200 lines  
851 from the DGRP. The introgression protocol is shown in Figure S18 and involved  
852 introgressing *FM7::GFP* (10 generations of backcrossing) by following the *Bar* and *GFP*  
853 markers of the balancer (Figure S18A). On generation 11, and for each DGRP stock,  
854 *gt<sub>mel</sub><sup>XII</sup>/FM7* females, were crossed to a male from each of the DGRP stocks that carried a  
855 *FM7:GFP* (from the first round of introgression). F1 females with yellow mouth parts  
856 carried *gt<sub>mel</sub><sup>XII</sup>* and *FM7::GFP* and were again crossed to DGRP males carrying  
857 *FM7:GFP*. This procedure was repeated for 10 generations (Figure S18B). The result

858 from this crosses was having  $FM7::GFP/y_{mel^-} gt_{mel}^{XII}$  in 200 different genetic  
859 backgrounds.

860 Next, we assessed the effects of the different DGRP genetic backgrounds on the  
861 penetrance of  $gt_{mel}^{XII}$  in *mel/san* hybrids. We crossed females from each of these 200  
862 stocks to *D. santomea* sanCAR1600.3 males. We separated the progeny into four  
863 different categories. Females have black mouthparts (i.e.,  $FM7::GFP/X_{san}$  and  $y_{mel^-}$   
864  $gt_{mel}^{XII}/X_{san}$ ;  $y_{san}$  rescue  $y_{mel^-}$ ); males (either  $FM7::GFP/Y_{san}$  or  $y_{mel^-} gt_{mel}^{XII}/Y_{san}$ ) have  
865 brown mouthparts. Balancer carriers (i.e.,  $FM7::GFP/X_{san}$  and  $FM7::GFP/Y_{san}$ ) have a  
866 *GFP* marker. The goal of this experiment was to find autosomal factors that would affect  
867 the frequency of abdominal ablations in a  $gt_{mel}^{XII}$  background in both females and males;  
868 we scored the percentage of ablated embryos in  $y_{mel^-} gt_{mel}^{XII}/Y_{san}$  males and  $y_{mel^-} gt_{mel}^{XII}/$   
869  $X_{san}$  hybrid females apart. Because of the experimental design (introgression of a full  $y_{mel^-}$   
870  $gt_{mel}^{XII}$  *X*-chromosome on multiple autosomal backgrounds), we did not study possible *X*-  
871 linked modifiers of the penetrance of  $gt_{mel}^{XII}$ . Association mapping was done as described  
872 immediately above but splitting the two sexes and excluding markers from the *X*-  
873 chromosome (section 2.2.1. Hybrid inviability GWAS).

874

### 875 2.3. Duplication mapping.

876 Duplication mapping identifies dominant (or semidominant) alleles in the *D.*  
877 *melanogaster* *X*-chromosome ( $X_{mel}$ ) that cause inviability in hybrids resulting from  
878 interspecific crosses. The technique uses stocks provided by Bloomington Stock Center  
879 in which segments of the *X*-chromosome have been duplicated and attached to the *Y*-  
880 chromosome by BAC recombineering (Venken *et al.* 2010). We used two classical  
881 *Drosophila* techniques—attached-*X* females (described in section 1.1.2), and *X*-*Y*  
882 chromosome fusions—to finely characterize the identity of HI alleles in the  $X_{mel}$ .  
883 *Drosophila melanogaster* attached-*X* females carry two *X*-chromosome fused together  
884 which carry recessive alleles for easy identification. We used two genotypes of attached-  
885 *X* females: *C(1)DX* and *C(1)RM*. Unless otherwise noted, all crosses used *C(1)DX*. These  
886 females can carry a  $y_{mel}$  chromosome and remain morphologically female. When these  
887 females carry both an attached-*X* and a *Y* chromosome, they produce attached-*X* gametes  
888 and  $y_{mel}$  gametes.

889 Previous experiments have shown that when *C(1)DX* (or *C(1)RM*) females are  
890 crossed with *D. santomea* males the only viable genotype are  $F_1$  hybrid males with  
891 genotype  $X_{san} Y_{mel}$  (Figure S1, (Matute and Gavin-Smyth 2014)). *Drosophila*  
892 *melanogaster* *C(1)DX* females can also be crossed to *D. simulans* (Orr 1993), *D.*  
893 *mauritiana* (Cattani and Presgraves 2012), and *D. teissieri*. In the first two cases, the  
894 cross produces viable hybrid males with an *X*-chromosome from the father, and a  $Y_{mel}$ . In  
895 the cross with *D. teissieri* males, *C(1)DX* females produce viable larvae from both sexes  
896 that die before molting into pupae.

897 We addressed whether the introduction of small pieces of  $X_{mel}$  in *mel/san* hybrid  
898 males cause HI. We used a panel of small  $X_{mel}$ -chromosome fragments attached to the *Y*-  
899 chromosome [*Dp(1;Y)*] that tilled the cytological bands 2, 3 and 4 in the *X*-chromosome  
900 (12 duplications). These segments also carry two phenotypic markers:  $y_{mel}^+$ , and *Bar*.  
901 Despite the multiple genetic modifications these stocks carry, the viability of these  
902 crosses has been validated with several lines of wild-caught *D. melanogaster* (see below,  
903 Section 3. Intraspecific crosses: dosage effects).

904 Since the procedure to produce interspecific hybrid males for the four species (*D.*  
905 *santomea*, *D. teissieri*, *D. mauritiana*, and *D. simulans*) is identical, we only describe the  
906 protocol for only one of them, *D. santomea*. We crossed attached- $X^{mel}$  females [*C(1)DX*]  
907 to *D. melanogaster* *Dp(1;Y)* males that carry small fragments of  $X_{mel}$  on their *Y*-  
908 chromosome. The female progeny [*mel C(1)DX/Dp(1;Y)*] will carry both the attached-*X*  
909 and the *Y*-chromosome with the small fragment of *X* to be tested. These virgin females  
910 aww then crossed to *D. santomea* males to produce  $F_1$  hybrid males harboring an  $X_{san}$   
911 and a ( $Y_{mel} Dp(1;Y)$ ) chromosomes. The crossing scheme to identify these dominant  
912 alleles on the  $X_{mel}$  chromosome is shown in Figure S1. The effect of the  $X_{mel}$  fragment  
913 was assessed by counting how many individuals survive the transition between three  
914 developmental stages (embryo, larvae, pupae). This approach (shown in Figure S1) has  
915 been used to identify alleles from  $X_{mel}$  that cause hybrid inviability (Sawamura and  
916 Yamamoto 1993; Cattani and Presgraves 2012; Matute and Gavin-Smyth 2014).

917 A parallel set of *X*-duplications, was not attached to the *Y*-chromosome but the  
918 third chromosome instead (*Dp(1;3)*; (Venken *et al.* 2010)). We introgressed these  
919 duplications into a *C(1)DX, TM3/+* background by repeated backcrossing (4 generations)

920 to produce  $C(1)DX; Dp(1;3)/ Dp(1;3)$  females. The effect of the  $Dp(1;3)$  was measured  
921 in the same manner as described above for  $Dp(1;Y)$  by measuring transition rates across  
922 developmental stages. Interspecific crosses using  $C(1)DX, TM3$  or  $C(1)DX, TM6B$  stocks  
923 yielded very low numbers of progeny which were not enough for embryo collection  
924 (Nagy *et al.* 2018).

925

926 2. 4. Deficiency mapping

927 Traditionally, deficiency mapping has been used to find recessive alleles in the  
928 genome of the other species that are lethal when the *D. melanogaster* allele is deleted  
929 (Coyne *et al.* 1998; Presgraves 2003; Matute *et al.* 2010). We took a different approach  
930 and focused on dominant alleles: those that when removed increased hybrid viability. We  
931 used *mel* females from stocks containing known genomic deletions, or “deficiencies” (*df*,  
932 Bloomington *Drosophila* Fly Stock Center) maintained as heterozygotes against a  
933 balancer (*Bal*) chromosome carrying a dominant homozygous lethal mutation, to *D.*  
934 *santomea* (*san*) males. Seven deficiencies encompass *gt<sub>mel</sub>* (listed in Table S1). Virgin *D.*  
935 *melanogaster* females were crossed to *D. santomea* males following previously described  
936 procedures (Matute *et al.* 2010; Miller and Matute 2017). (Behavioral isolation seems to  
937 be complete in the reciprocal direction (Gavin-Smyth and Matute 2013).) Crosses were  
938 kept until no more progeny was produced out of each vial, usually 45 days after they  
939 were set up. The effect of each hemizygous region on the viability of hybrid female  
940 offspring was measured by comparing the ratio of *df/san* to *Bal/san* hybrid females. The  
941 significance of the departure was assessed by a  $\chi^2$  test followed by a Sidak’s multiple  
942 comparison correction. P-values were considered significant lower than 0.007 ( $P < 0.05$   
943 adjusted for 7 multiple comparisons). If the deletion has no effect on hybrid viability, the  
944 ratio of  $F_1 df/san$  to the total number of progeny ( $F_1 Bal/san + F_1 df/san$ ) will not differ  
945 from 0.5. If the deletion reveals alleles in the *san* genome that cause complete inviability,  
946 the ratio will be equal to 0 (only progeny carrying the *Balancer* will survive). If the *D.*  
947 *melanogaster* deficiency uncovers a recessive region of the *D. santomea* genome that  
948 compromises hybrid fitness but does not cause complete lethality, the ratio ( $F_1 df/san$   
949 /Total) will be greater than 0 and significantly lower than 0.5. Finally, and the target of  
950 this study, if the ratio ( $F_1 df/san$  /Total) is significantly higher than 0.5, then the *df* is

951 removing a dominant (or semidominant) contributor to HI. This last category must be  
952 seen with caution as Balancer chromosomes carry deleterious alleles that might bias the  
953 ratio upwards. To minimize the potentially deleterious effect of any given balancer, we  
954 used seven different *X*-chromosome balancers to replicate crosses involving *gt<sup>XII</sup>* and  
955 *df(gt)*: *FM6::GFP*, *Binscy*, *Basc*, *Basc*, *Binsn*, *Binsn*, *FM4* and *FM7a*.

956 **3. INTRASPECIFIC CROSSES: DOSAGE EFFECTS.**

957

958 We tested whether any of the mutants caused phenotypic defects or inviability by  
959 dosage effects. This is important because *Dp(1;Y)* carrying males have two copies of the  
960 genes under study while wild-type males only have one copy. Similarly, *df*-carrying  
961 females only have a single copy of a gene (i.e., they are hemizygous) while wild-type  
962 females have two copies of that gene.

963 We studied whether any of the used duplications cause inviability in males for  
964 being diploid (when they are normally hemizygous). All crosses were done as described  
965 in section 2.3. (Duplication mapping) but instead of using heterospecific males, we used  
966 males from 25 different *D. melanogaster* isofemale lines. The list of isofemale lines used  
967 for these experiments is shown in Table S2. If there is a dosage effect (i.e., carrying  
968 *Dp(1;Y)* and thus two copies of a gene while being male is deleterious), one would expect  
969 inviability and/or developmental defects in these crosses.

970 We did a similar analysis to assess for potential haploinsufficiency in *df*-carrying  
971 females. We tested whether any of the used deficiencies cause inviability in females for  
972 being hemizygous (when they are normally diploid) in the same twenty-five *D.*  
973 *melanogaster* backgrounds described immediately above. We measured the ratios of *df*-  
974 and *Balancer*-carrying females using the methods described above.

975

976 **4. CUTICLE PREPARATION**

977

978 We generated cuticles for wild-type (i.e., progeny produced by crossing wild-type  
979 stocks), *Dp(1;Y)*-carrying and *gt<sup>XII</sup>*-carrying hybrids. The details for the production of the  
980 three types of cuticles are described as follows.

981

982 4.1 Wild-type hybrids.

983 To collect sex-specific hybrid cuticles, we used *D. melanogaster* a  $y^l$  *w* stock.  
984 *Drosophila melanogaster*  $y^l$  *w* females were crossed to *D. santomea* males. Inseminated  
985 females were allowed to deposit on apple juice plates overnight and embryos were aged  
986 for 24 hours before scoring. To prepare cuticles, we used a slightly modified the protocol  
987 described in (Gavin-Smyth and Matute 2013; Matute and Gavin-Smyth 2014a) . Briefly,  
988 we dechorionated embryos using double-sided scotch tape. To devitellinize brown (dead)  
989 embryos. We made a cut on the vitelline membrane and removed the rest of the cuticle  
990 with a tungsten dissection needle and placed them in a 3:1 solution of acetic acid and  
991 glycerol for 48 hours. After this period, cuticles were mounted on a pre-clean glass slide  
992 (VMR VistaVision™, VWR; cat. no. 16004-422; Radnor, PA) on 20 $\mu$ l of a 1:1 solution  
993 of Hoyer's media (kindly donated by Dr. Daniel McKay) and acetic acid. Embryos  
994 without pigmentation of the mouth hooks were scored as male with the genotype  $y^l$  *w* /  
995  $Y_{san}$ . Embryos with black mouth parts were identified as females ( $y^l$  /  $y_{san}$ ) as the  $y^l$  allele  
996 is complemented by the homologous  $y_{san}$ . Embryos were visualized and imaged with an  
997 Olympus BX61 dark-field microscope at the Microscopy facility of the Pathology  
998 department at UNC.

999

1000 4.2. *Dp(1;Y)* carrying male hybrids.

1001 To collect  $X_{san}$   $Y_{mel}$  ( $Dp1;Y$ ), we followed a similar procedure to that described  
1002 immediately above (section 4.1). Individuals with brown mouth parts were concluded to  
1003 be females carrying  $C(1)DX$  ( $y^-/y^-$  homozygotes). Individuals with black mouth parts had  
1004 two possible genotypes: metafemales carrying three  $X$  chromosomes ( $C(1)DX$   $y^-$  and  $X_{san}$ ;  
1005  $y^-/y^-/y_{san}$ ) or  $X_{san}/Y_{mel}$ ,  $Dp(1;Y)$  males ( $y_{san}$ ). Since metafemales (i.e.,  $C(1)DX$   $y^-/X_{san}$   
1006 females) are thought to show a low rate of embryonic defects (Matute and Gavin-Smyth  
1007 2014b), the pooling of these two categories underestimates the penetrance of the alleles  
1008 responsible for the ablation. This bias is not a concern as it should occur at a similar rate  
1009 in all crosses involving  $C(1)DX$ . All rates of penetrance using  $C(1)DX$ ,  $Dp1;Y$  females  
1010 should then be considered an underestimation.

1011

1012 4.3  $gt_{mel}^{x11}$  carrying female hybrids.

1013 We used a similar approach to collect cuticles for hybrids carrying a *gt*-null allele  
1014 ( $gt_{mel}^{x11}$ ). To score hybrid defects on *gt*-carriers, we used  $y^l sc^l gt^{X11}$ . This stock was  
1015 purchased as  $y^l sc^l gt^{X11}/FM6$  (Table S1, Row 1). We rebalanced the stock over a  $y^l FM7$   
1016 chromosome carrying an *Gal4-Actin::UAS-GFP* reporter. To produce  $gt^{x11}/san$  cuticles,  
1017  $gt^{x11}/FM7Actin::GFP$  *D. melanogaster* females were crossed to *D. santomea* males. *GFP*  
1018 minus embryos that failed to hatch were separated and prepared for cuticle mounting  
1019 using standard procedures (see (Gavin-Smyth and Matute 2013)). Both, *GFP* minus  
1020 embryos ( $gt^{x11}$ -carriers) and *GFP* plus embryos (*FM7* carriers) were separated by the  
1021 color of their mouth-hooks as described above to identify by sex. Cuticles of other  
1022 interspecific crosses (e.g., *mel/tei*, *mel/mau*, *mau/sim*) were collected, prepared, and  
1023 imaged using the same scheme.

1024

1025 **5. GENOME SEQUENCING**

1026 We next studied the patterns of polymorphism in *gt* across the nine species of the  
1027 *melanogaster* species subgroup. This involved (i) collecting flies in nature, (ii)  
1028 sequencing their genomes, and (iii) aligning them. These three steps are described in  
1029 detail as follows.

1030 5.1. Stock collection

1031 We collected lines from five species in the *melanogaster* group in their natural habitat.  
1032 *Drosophila santomea* and *D. yakuba* were collected in the volcanic island of São Tomé.  
1033 *Drosophila teissieri* was collected in the highlands of the island of Bioko, Equatorial  
1034 Guinea. *Drosophila simulans* was collected in Bioko, São Tomé and Zambia. In all cases,  
1035 single females were collected with banana traps, anesthetized with FlyNap (triethylamine,  
1036 Carolina Biological Supply Co.) for 2-5 minutes. Individual females were then placed in  
1037 plastic vials with instant potato fly media (Carolina Biological Supply Co.) and were  
1038 allowed to oviposit until their death. Vials with progeny were hand carried to the USA  
1039 (USDA permit: P526-150127-009) and progeny was transferred to a corn-meal diet in  
1040 100 mL vials. *Drosophila mauritiana* stocks were kindly donated by D. Presgraves.

1041 5.2. Sequencing: Genomic data

1042 All the genomes of the lines used in this study were previously published. We  
1043 downloaded available raw reads (FASTQ files) for *D. yakuba* (Rogers *et al.* 2014, 2017;  
1044 Turissini and Matute 2017; Turissini *et al.* 2018), *D. santomea* (Turissini and Matute  
1045 2017; Turissini *et al.* 2018), *D. teissieri* (Turissini and Matute 2017; Turissini *et al.*  
1046 2018), *D. mauritiana* (Garrigan *et al.* 2012; Brand *et al.* 2013), *D. sechellia* (Schrider *et*  
1047 *al.* 2018; Turissini *et al.* 2018), *D. simulans* (Garrigan *et al.* 2012; Serrato-Capuchina *et*  
1048 *al.* 2021), and *D. melanogaster* (Pool 2015; Lack *et al.* 2016) from NCBI and mapped  
1049 them to the corresponding reference genome (see below). All the accession numbers are  
1050 listed in Table S14.

1051 5.3. Sequencing: Read mapping and variant calling

1052 Reads were mapped to the closest reference genome using bwa version 0.7.12 (Li and  
1053 Durbin 2009; Li 2013). Reads from *D. yakuba*, *D. teissieri*, and *D. santomea* were  
1054 mapped to the *D. yakuba* genome version 1.04 (Drosophila 12 Genomes Consortium *et*  
1055 *al.* 2007), and reads from *D. simulans*, *D. sechellia*, and *D. mauritiana* were mapped to  
1056 the *D. simulans* *w<sup>501</sup>* genome (Hu *et al.* 2013). We used Samtools version 0.1.19 (Li *et al.*  
1057 2009) to merge Bam files. We used GATK version 3.2-2 RealignerTargetCreator and  
1058 IndelRealigner functions to identify indels and polymorphic sites (McKenna *et al.* 2010;  
1059 DePristo *et al.* 2011). Read mapping and SNP genotyping were done independently for  
1060 the *D. yakuba* and *D. simulans* clades using GATK UnifiedGenotyper but in both cases  
1061 we used similar parameters and files. The parameter het was set to 0.01. We also used the  
1062 following filters to all resulting vcf files: QD = 2.0, FS\_filter = 60.0, MQ\_filter = 30.0,  
1063 MQ\_Rank\_Sum\_filter = -12.5, and Read\_Pos\_Rank\_Sum\_filter = -8.0. If a site had a  
1064 coverage below five reads or above than the 99<sup>th</sup> quantile of the genomic coverage  
1065 distribution for the given line, that site was assigned an 'N'.

1066 5.4. Sequencing: Indel identification

1067 We studied the positions of indels in the giant locus across the *melanogaster* species  
1068 subgroup. To genotype indels, we used GATK UnifiedGenotyper with the -glm INDEL

1069 flag for just the sequence orthologous to the *D. melanogaster* *giant* gene. We then  
1070 generated fasta files for the *giant* locus. No coverage thresholds were used for indel  
1071 genotypes.

1072 5.5. Genomic Alignments.

1073 We next generated genome alignments that included *D. melanogaster*, *D. simulans* and  
1074 *D. yakuba*. The *D. yakuba* and *D. simulans* reference genomes were separately aligned to  
1075 the *D. melanogaster* genome using nucmer version 3.23 with parameters –r and –q. Next,  
1076 we used the dmel6.01 annotation:

1077 [ftp://flybase.net/genomes/Drosophila\\_melanogaster/dmel\\_r6.01\\_FB2014\\_04/gff/](ftp://flybase.net/genomes/Drosophila_melanogaster/dmel_r6.01_FB2014_04/gff/) dmel-all-r6.01.gff.gz  
1078 (Dos Santos *et al.* 2015a) to identify the *giant* coding region (*D. melanogaster* *X*  
1079 chromosome: 2,427,113 – 2,429,467). These alignments were the used to extract  
1080 polymorphism data for this region for 8 species in the *melanogaster* species subgroup. In  
1081 total, we included data for 903 sequences. The subsequent alignment was visually  
1082 inspected using Mesquite version 3.04 (Maddison and Maddison 2010) to ensure indels  
1083 were aligned and did not disrupt codons.

1084 **6. DETECTION OF NATURAL SELECTION**

1085 6.1. PAML

1086 Next, we studied whether the *giant* locus had evolved though natural selection. The first  
1087 approach to detect positive selection was to count the number of synonymous (dS) and  
1088 non-synonymous (dN) substitutions in each branch and calculate the ratio between these  
1089 two variables. First, we generated a consensus sequence for each of the species in the  
1090 *melanogaster* species subgroup. Next, we ran PAML version 4.8 (Yang 1997, 2007) to  
1091 calculate dN/dS ratios. We used four sets of parameters: basic model (model=0), free  
1092 ratios (model=1), 3 ratios (model=2, tree = ((mel, (sim, sech, mau) \$2)\$1, ((yak, san), tei)  
1093 \$3);), and 2 ratios (model=2, tree = ((mel, (sim, sech, mau))\$1, ((yak, san), tei) \$2)). A  
1094 dN/dS ratio significantly higher than 1 means positive selection, while a dN/dS ratio  
1095 significantly lower than 1 means negative/purifying selection ((Yang 1997, 2007) but see

1096 (Venkat *et al.* 2018)). dN/dS values not significantly different from zero represent neutral  
1097 evolution.

1098 **SUPPLEMENTARY TABLES**

1099

1100 **TABLE S1. Rates of ablation in F1 hybrids between the species of the *yakuba***  
1101 **species complex.** None of the six possible F1 hybrids show abdominal ablations.

| Cross                                         | Scored<br>embryos | Dead embryos | Ablated<br>embryos |
|-----------------------------------------------|-------------------|--------------|--------------------|
| ♀ <i>D. santomea</i> × ♂ <i>D. santomea</i>   | 120               | 2            | 0                  |
| ♀ <i>D. yakuba</i> × ♂ <i>D. yakuba</i>       | 162               | 4            | 0                  |
| ♀ <i>D. teissieri</i> × ♂ <i>D. teissieri</i> | 149               | 7            | 0                  |
| ♀ <i>D. santomea</i> × ♂ <i>D. yakuba</i>     | 102               | 16           | 0                  |
| ♀ <i>D. santomea</i> × ♂ <i>D. teissieri</i>  | 110               | 21           | 0                  |
| ♀ <i>D. yakuba</i> × ♂ <i>D. santomea</i>     | 123               | 19           | 0                  |
| ♀ <i>D. yakuba</i> × ♂ <i>D. teissieri</i>    | 98                | 16           | 0                  |
| ♀ <i>D. teissieri</i> × ♂ <i>D. santomea</i>  | 101               | 15           | 0                  |
| ♀ <i>D. teissieri</i> × ♂ <i>D. yakuba</i>    | 98                | 10           | 0                  |

1102

1103

1104 **TABLE S2. Hybrids between *D. melanogaster* females and *D. simulans* and *D.***  
 1105 ***mauritiana* show no abdominal ablations or embryonic lethality.** The reciprocal  
 1106 crosses ( $\text{♀} D. simulans \times \text{♂} D. melanogaster$ ;  $\text{♀} D. mauritiana \times \text{♂} D. melanogaster$ ) show  
 1107 high levels of female embryonic lethality but death occurs before embryogenesis stars.

| Cross                                                      | Hatched embryos | Dead brown embryos | Ablated embryos |
|------------------------------------------------------------|-----------------|--------------------|-----------------|
| $\text{♀} D. melanogaster \times \text{♂} D. melanogaster$ | 110             | 6                  | 0               |
| $\text{♀} D. simulans \times \text{♂} D. simulans$         | 105             | 5                  | 0               |
| $\text{♀} D. sechellia \times \text{♂} D. sechellia$       | 88              | 8                  | 0               |
| $\text{♀} D. mauritiana \times \text{♂} D. mauritiana$     | 121             | 4                  | 0               |
| $\text{♀} D. melanogaster \times \text{♂} D. simulans$     | 98              | 5                  | 0               |
| $\text{♀} D. melanogaster \times \text{♂} D. mauritiana$   | 74              | 5                  | 0               |
| $\text{♀} D. melanogaster \times \text{♂} D. sechellia$    | 99              | 41                 | 0               |
| $\text{♀} D. simulans \times \text{♂} D. melanogaster$     | 101             | 6                  | 0               |
| $\text{♀} D. simulans \times \text{♂} D. sechellia$        | 78              | 1                  | 0               |
| $\text{♀} D. simulans \times \text{♂} D. mauritiana$       | 95              | 2                  | 0               |
| $\text{♀} D. sechellia \times \text{♂} D. melanogaster$    | 73              | 2                  | 0               |
| $\text{♀} D. sechellia \times \text{♂} D. simulans$        | 77              | 4                  | 0               |
| $\text{♀} D. sechellia \times \text{♂} D. mauritiana$      | 71              | 6                  | 0               |
| $\text{♀} D. mauritiana \times \text{♂} D.$                | 83              | 4                  | 0               |

|                                      |    |   |   |
|--------------------------------------|----|---|---|
| <i>sechellia</i>                     |    |   |   |
| ♀ <i>D. mauritiana</i> × ♂ <i>D.</i> | 99 | 2 | 0 |
| <i>simulans</i>                      |    |   |   |
| ♀ <i>D. mauritiana</i> × ♂ <i>D.</i> | 68 | 4 | 0 |
| <i>melanogaster</i>                  |    |   |   |

1108

1109

1110 TABLE S3. Mutant stocks used in this study.

1111

|    | <b>Stock<br/>number</b> | <b>Genotype</b>                                                                                                                                                                                 |
|----|-------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 1  | 53                      | gt1 wa                                                                                                                                                                                          |
| 2  | 54                      | gt[13z]/Dp(1;2;Y)w[+]/C(1)DX, y[1] f[1]                                                                                                                                                         |
| 3  | 1528                    | gt[Q292] rst[6]/FM7a                                                                                                                                                                            |
| 4  | 1529                    | y[1] sc[1] gt[X11]/FM6                                                                                                                                                                          |
| 5  | 1530                    | y[1] gt[E6] rst[6]                                                                                                                                                                              |
| 6  | 35                      | dor4/C(1)RM, y1 w1 f1                                                                                                                                                                           |
| 7  | ?                       | C(1)DX                                                                                                                                                                                          |
| 8  | 17003                   | P{EP}boiEP1385 w1118                                                                                                                                                                            |
| 9  | 13245                   | y1 P{SUPor-P}boiKG03233                                                                                                                                                                         |
| 10 | 4283                    | tko3/FM7a/Dp(1;2;Y)w+                                                                                                                                                                           |
| 11 | 59642                   | y1 Mi{MIC}tkoMI15120 w*/FM7h<br>y1 tkoA w* P{neoFRT}19A/FM7c, P{GAL4-Kr.C}DC1, P{UAS-}                                                                                                          |
| 12 | 52400                   | GFP.S65T}DC5, sn+<br>y1 tkoB w* P{neoFRT}19A/FM7c, P{GAL4-Kr.C}DC1, P{UAS-}                                                                                                                     |
| 13 | 52401                   | GFP.S65T}DC5, sn+<br>FM7::GFP                                                                                                                                                                   |
| 14 | ?                       | Dp(1;Y)BSC75, y[+] P{w[+mW.Scer\ FRT.hs3]=3'.RS5+3.3'}BSC3,<br>B[S]/Df(1)ED6630, P{w[+mW.Scer\ FRT.hs3]=3'.RS5+3.3'}ED6630                                                                      |
| 15 | 29799                   | w[1118]/C(1)RA, In(1)sc[J1], In(1)sc[8], l(1)1Ac[1], sc[J1] sc[8]<br>Dp(1;Y)BSC77, y[+] P{w[+mW.Scer\ FRT.hs3]=3'.RS5+3.3'}BSC3,<br>B[S]/Df(1)ED6630, P{w[+mW.Scer\ FRT.hs3]=3'.RS5+3.3'}ED6630 |
| 16 | 29801                   | w[1118]/C(1)RA, In(1)sc[J1], In(1)sc[8], l(1)1Ac[1], sc[J1] sc[8]<br>Dp(1;Y)BSC79, y[+] P{w[+mW.Scer\ FRT.hs3]=3'.RS5+3.3'}BSC3,<br>B[S]/Df(1)ED6630, P{w[+mW.Scer\ FRT.hs3]=3'.RS5+3.3'}ED6630 |
| 17 | 29803                   | w[1118]/C(1)RA, In(1)sc[J1], In(1)sc[8], l(1)1Ac[1], sc[J1] sc[8]<br>Dp(1;Y)BSC80, y[+] P{w[+mW.Scer\ FRT.hs3]=3'.RS5+3.3'}BSC3,<br>B[S]/Df(1)ED6630, P{w[+mW.Scer\ FRT.hs3]=3'.RS5+3.3'}ED6630 |
| 18 | 29804                   | w[1118]/C(1)RA, In(1)sc[J1], In(1)sc[8], l(1)1Ac[1], sc[J1] sc[8]                                                                                                                               |

|    |       |                                                                                                                                                                                           |
|----|-------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|    |       | Dp(1;Y)BSC81, y[+] P {w[+mW.Scer\FRT.hs3]=3'.RS5+3.3'}BSC3, B[S]/Df(1)ED6630, P {w[+mW.Scer\FRT.hs3]=3'.RS5+3.3'}ED6630                                                                   |
| 19 | 29805 | w[1118]/C(1)RA, In(1)sc[J1], In(1)sc[8], l(1)1Ac[1], sc[J1] sc[8] Dp(1;Y)BSC82, y[+] P {w[+mW.Scer\FRT.hs3]=3'.RS5+3.3'}BSC3, B[S]/Df(1)Exel6233, w[1118] P {w[+mC]=XP-U}Exel6233/C(1)RA, |
| 20 | 29806 | In(1)sc[J1], In(1)sc[8], l(1)1Ac[1], sc[J1] sc[8] Dp(1;Y)BSC83, y[+] P {w[+mW.Scer\FRT.hs3]=3'.RS5+3.3'}BSC3, B[S]/Df(1)Exel6233, w[1118] P {w[+mC]=XP-U}Exel6233/C(1)RA,                 |
| 21 | 29807 | In(1)sc[J1], In(1)sc[8], l(1)1Ac[1], sc[J1] sc[8] Dp(1;Y)BSC84, y[+] P {w[+mW.Scer\FRT.hs3]=3'.RS5+3.3'}BSC3, B[S]/Df(1)Exel6233, w[1118] P {w[+mC]=XP-U}Exel6233/C(1)RA,                 |
| 22 | 29808 | In(1)sc[J1], In(1)sc[8], l(1)1Ac[1], sc[J1] sc[8] Dp(1;Y)BSC85, y[+] P {w[+mW.Scer\FRT.hs3]=3'.RS5+3.3'}BSC3, B[S]/Df(1)Exel6233, w[1118] P {w[+mC]=XP-U}Exel6233/C(1)RA,                 |
| 23 | 29809 | In(1)sc[J1], In(1)sc[8], l(1)1Ac[1], sc[J1] sc[8] Dp(1;Y)BSC87, y[+] P {w[+mW.Scer\FRT.hs3]=3'.RS5+3.3'}BSC3, B[S]/Df(1)Exel6233, w[1118] P {w[+mC]=XP-U}Exel6233/C(1)RA,                 |
| 24 | 29811 | In(1)sc[J1], In(1)sc[8], l(1)1Ac[1], sc[J1] sc[8] Dp(1;Y)BSC88, y[+] P {w[+mW.Scer\FRT.hs3]=3'.RS5+3.3'}BSC3, B[S]/Df(1)Exel6233, w[1118] P {w[+mC]=XP-U}Exel6233/C(1)RA,                 |
| 25 | 29812 | In(1)sc[J1], In(1)sc[8], l(1)1Ac[1], sc[J1] sc[8] Dp(1;Y)BSC90, y[+] P {w[+mW.Scer\FRT.hs3]=3'.RS5+3.3'}BSC3,                                                                             |
| 26 | 29814 | B[S]/winsey/C(1)RA, In(1)sc[J1], In(1)sc[8], l(1)1Ac[1], sc[J1] sc[8] w[1118]; Dp(1;3)DC454, PBac {y[+mDint2]}                                                                            |
| 27 | 32295 | w[+mC]=DC454}VK00033/TM6C, Sb[1] w[1118]; Dp(1;3)DC045, PBac {y[+mDint2]}                                                                                                                 |
| 28 | 30233 | w[+mC]=DC045}VK00033 w[1118]; Dp(1;3)DC107, PBac {y[+mDint2]}                                                                                                                             |
| 29 | 30751 | w[+mC]=DC107}VK00033 w[1118]; Dp(1;3)RC013, PBac {y[+mDint2]}                                                                                                                             |
| 30 | 38476 | w[+mC]=RC013}VK00033/TM6C, Sb[1] w[1118]; Dp(1;3)DC405, PBac {y[+mDint2]}                                                                                                                 |
| 31 | 31455 | w[+mC]=DC405}VK00033 w[1118]; Dp(1;3)DC453, PBac {y[+mDint2]}                                                                                                                             |
| 32 | 32294 | w[+mC]=DC453}VK00033/TM6C, Sb[1] Df(1)ED409, P {w[+mW.Scer\FRT.hs3]=3'.RS5+3.3'}ED409                                                                                                     |
| 33 | 8950  | w[1118]/FM7h Df(1)ED11354, P {w[+mW.Scer\FRT.hs3]=3'.RS5+3.3'}ED11354                                                                                                                     |
| 34 | 9345  | w[1118]/FM7h Df(1)ED11354, P {w[+mW.Scer\FRT.hs3]=3'.RS5+3.3'}ED11354                                                                                                                     |
| 35 | 9054  | w[1118]/FM7h Df(1)ED411, P {w[+mW.Scer\FRT.hs3]=3'.RS5+3.3'}ED411                                                                                                                         |
| 36 | 8031  | w[1118]/FM7j, B[1] Df(1)BSC717, P+PBac {w[+mC]=XP3.RB5}BSC717                                                                                                                             |
| 37 | 26569 | w[1118]/FM7h/Dp(2;Y)G, P {w[+mC]=hs-hid}Y                                                                                                                                                 |
| 38 | 7705  | Df(1)Exel6230, P {XP-U}Exel6230 w1118/FM7c                                                                                                                                                |

**39** 7706 Df(1)Exel6231, P{XP-U}Exel6231 w1118/FM7c

1112

1113

1114 **TABLE S4. *C(1)DX, Dp(1;3)/TM3* lay few eggs are thus not ideal to measure the**  
1115 **magnitude of HI in crosses with *D. santomea*.** The second and third column show the  
1116 number of eggs produced by a singly-mated female when mated to a  $w^{1118}$  male over 4  
1117 days.

| Duplication           | Stock | <i>C(1)DX,</i><br><i>Dp(1;3)/Dp(1;3)</i> | <i>C(1)DX,</i><br><i>Dp(1;3)/TM3,Sb</i> | <i>C(1)DX,</i><br><i>Dp(1;Y)</i> |
|-----------------------|-------|------------------------------------------|-----------------------------------------|----------------------------------|
| <b>Dp(1;3)DC405</b>   | 31455 | 47                                       | 7                                       | NA                               |
| <b>Dp(1;3)DC301</b>   | 31452 | 51                                       | 24                                      | NA                               |
| <b>Dp(1;3)DC112</b>   | 31445 | 43                                       | 15                                      | NA                               |
| <b>Dp(1;3)DC272</b>   | 30389 | 24                                       | 20                                      | NA                               |
| <b>Dp(1;Y)BSC87</b>   | 29811 | NA                                       | NA                                      | 56                               |
| <b>Dp(1;Y) BSC170</b> | 32117 | NA                                       | NA                                      | 68                               |
| <b>Dp(1;Y)BSC58</b>   | 29782 | NA                                       | NA                                      | 53                               |
| <b>Dp(1;Y)BSC14</b>   | 29782 | NA                                       | NA                                      | 64                               |

1118

1119

1120 **TABLE S5. The cross involved a  $gt_{mel}^{XII}/FM7$  female and a male hemizygote for the**  
1121 **duplication.** In the case of  $Dp(1;Y)$  duplications, the male had a  $X_{mel}/Y_{mel}Dp(1;Y)$   
1122 genotype. In the case of  $Dp(1;3)$  duplication, the male had a  $X_{mel}/Y_{mel}, Dp(1,3)/TM3,Sb$   
1123 genotype.

1124

| Genotype       | Stock | $Dp(1;Y)$ or<br>$Dp(1;3)?$ | F1 male genotypes |          | Rescue<br>Rate | $X^2$ | P     |
|----------------|-------|----------------------------|-------------------|----------|----------------|-------|-------|
|                |       |                            | $gt^{XII}/Dp$     | $FM7/Dp$ |                |       |       |
| $Dp(1;Y)BSC74$ | 29798 | $Dp(1;Y)$                  | 81                | 73       | 0.526          | 0.117 | 0.732 |
| $Dp(1;Y)BSC78$ | 29802 | $Dp(1;Y)$                  | 53                | 48       | 0.525          | 0.045 | 0.833 |
| $Dp(1;3)DC405$ | 31455 | $Dp(1;3)$                  | 41                | 75       | 0.353          | 4.511 | 0.034 |
| $Dp(1;3)RC013$ | 38476 | $Dp(1;3)$                  | 16                | 37       | 0.302          | 3.545 | 0.060 |

1125

1126

1127

1128 **TABLE S6. Isofemale lines from four species used to assess whether HI in *mel/san***  
 1129 **hybrids was a species-specific phenomenon or a line specific phenomenon.** All lines  
 1130 were collected by D. R. Matute with the exception of the three *D. teissieri* lines marked  
 1131 with an asterisk. Those three lines were donated by J.R. David.

1132

| Species             | Line          | Notation in<br>Figures S4 and<br>S19 | Location          | Year |
|---------------------|---------------|--------------------------------------|-------------------|------|
| <i>D. santomea</i>  | Thena5        | S1                                   | São Tomé          | 2005 |
| <i>D. santomea</i>  | sanCAR1490    | S2                                   | São Tomé          | 2005 |
| <i>D. santomea</i>  | sanCOST1250.5 | S3                                   | São Tomé          | 2009 |
| <i>D. santomea</i>  | sanCOST1270.1 | S4                                   | São Tomé          | 2009 |
| <i>D. santomea</i>  | sanOBAT1200   | S5                                   | São Tomé          | 2005 |
| <i>D. santomea</i>  | sanOBAT1200.2 | S6                                   | São Tomé          | 2009 |
| <i>D. santomea</i>  | sanRain39     | S7                                   | São Tomé          | 2009 |
| <i>D. santomea</i>  | sanCAR1600.3  | S8                                   | São Tomé          | 2009 |
| <i>D. santomea</i>  | Carv2015.1    | S9                                   | São Tomé          | 2015 |
| <i>D. santomea</i>  | Carv2015.5    | S10                                  | São Tomé          | 2015 |
| <i>D. santomea</i>  | Carv2015.11   | S11                                  | São Tomé          | 2015 |
| <i>D. santomea</i>  | Carv2015.16   | S12                                  | São Tomé          | 2015 |
| <i>D. santomea</i>  | Pico1680.1    | S13                                  | São Tomé          | 2015 |
| <i>D. santomea</i>  | Pico1659.2    | S14                                  | São Tomé          | 2015 |
| <i>D. santomea</i>  | Pico1659.3    | S15                                  | São Tomé          | 2015 |
| <i>D. santomea</i>  | Amelia2015.1  | S16                                  | São Tomé          | 2015 |
| <i>D. santomea</i>  | Amelia2015.6  | S17                                  | São Tomé          | 2015 |
| <i>D. santomea</i>  | Amelia2015.12 | S18                                  | São Tomé          | 2015 |
| <i>D. santomea</i>  | A1200.7       | S19                                  | São Tomé          | 2009 |
| <i>D. santomea</i>  | Rain42        | S20                                  | São Tomé          | 2009 |
| <i>D. teissieri</i> | Balancha_1    | T1                                   | Bioko, Equatorial | 2013 |

|                     |                |     |                                       |       |
|---------------------|----------------|-----|---------------------------------------|-------|
|                     |                |     |                                       |       |
| <i>D. teissieri</i> | Balancha_2     | T2  | Guinea<br>Bioko, Equatorial<br>Guinea | 2013  |
| <i>D. teissieri</i> | Balancha_3     | T3  | Guinea<br>Bioko, Equatorial<br>Guinea | 2013  |
| <i>D. teissieri</i> |                | T4  | Guinea<br>Bioko, Equatorial<br>Guinea | 2013  |
| <i>D. teissieri</i> | House_Bioko_0  |     | Guinea<br>Bioko, Equatorial<br>Guinea |       |
| <i>D. teissieri</i> | House_Bioko_1  | T5  | Guinea<br>Bioko, Equatorial<br>Guinea | 2013  |
| <i>D. teissieri</i> | House_Bioko_2  | T6  | Guinea<br>Bioko, Equatorial<br>Guinea | 2013  |
| <i>D. teissieri</i> | La_Lope_Gabon* | T7  | Gabón                                 | ~1975 |
| <i>D. teissieri</i> | Selinda*       | T8  | Gabón                                 | ~1975 |
| <i>D. teissieri</i> | Zimbabwe*      | T9  | Gabón                                 | ~1975 |
| <i>D. teissieri</i> |                | T10 | Guinea<br>Bioko, Equatorial           | 2013  |
| <i>D. teissieri</i> | cascade_2_1    |     | Guinea<br>Bioko, Equatorial           |       |
| <i>D. teissieri</i> |                | T11 | Guinea<br>Bioko, Equatorial           | 2013  |
| <i>D. teissieri</i> | cascade_2_2    |     | Guinea<br>Bioko, Equatorial           |       |
| <i>D. teissieri</i> |                | T12 | Guinea<br>Bioko, Equatorial           | 2013  |
| <i>D. teissieri</i> | cascade_2_4    |     | Guinea<br>Bioko, Equatorial           |       |
| <i>D. teissieri</i> |                | T13 | Guinea<br>Bioko, Equatorial           | 2013  |
| <i>D. teissieri</i> | cascade_4_1    |     | Guinea<br>Bioko, Equatorial           |       |
| <i>D. teissieri</i> |                | T14 | Guinea<br>Bioko, Equatorial           | 2013  |
| <i>D. teissieri</i> | cascade_4_2    |     | Guinea<br>Bioko, Equatorial           |       |
| <i>D. teissieri</i> |                | T15 | Guinea<br>Bioko, Equatorial           | 2013  |
| <i>D. teissieri</i> | cascade_4_3    |     | Guinea<br>Bioko, Equatorial           |       |
| <i>D. teissieri</i> | cascade_4_4    | T16 | Guinea<br>Bioko, Equatorial           | 2013  |
| <i>D. teissieri</i> | cascade_4_5    | T17 | Guinea<br>Bioko, Equatorial           | 2013  |

|                     |             |     |                          |      |
|---------------------|-------------|-----|--------------------------|------|
| <i>D. teissieri</i> | cascade_4_6 | T18 | Bioko, Equatorial Guinea | 2013 |
| <i>D. teissieri</i> | Bata_2      | T19 | Bata, Equatorial Guinea  | 2009 |
| <i>D. teissieri</i> | Bata_8      | T20 | Bata, Equatorial Guinea  | 2009 |

1133

1134

1135 **TABLE S7. Complementation mapping using loss-of function and hypomoprhic**  
 1136 **alleles show that *gt* mutants are the only alleles in cytological region 3A3 that lead to**  
 1137 **an increase of female viability in *mel/san* hybrid.** *mutant/san* refers to the number of  
 1138 F1 hybrids carrying the mutant allele. *gt*<sup>XII</sup> is a loss of function (amorphic) allele (Eldon  
 1139 and Pirrotta 1991; Chang *et al.* 2021). Both *boi*<sup>d04197</sup> and *boi*<sup>e01708</sup> shows significantly lower  
 1140 RNA production than wild-type flies (Hartman *et al.* 2010). *trol*<sup>G0271</sup> is a hypomorph  
 1141 (Skeath *et al.* 2017). *tko*<sup>3</sup> is null allele. Carriers of the allele die as larvae but are able to  
 1142 complete embryogenesis (Toivonen *et al.* 2001).

| <b>Gene</b>  | <b>Allele</b>                         | <b>FM7::GFP/san</b> | <b>mutant/san</b> | <b>Ratio<br/>(F1 mutant/san)/Total</b> |
|--------------|---------------------------------------|---------------------|-------------------|----------------------------------------|
| <i>giant</i> | <i>gt</i> <sup>XII</sup>              | 256                 | 610               | 0.704                                  |
| <i>boi</i>   | P{XP} <i>boi</i> <sup>d04197</sup>    | 440                 | 478               | 0.521                                  |
| <i>boi</i>   | PBac{RB} <i>boi</i> <sup>e01708</sup> | 561                 | 610               | 0.521                                  |
| <i>troll</i> | <i>trol</i> <sup>G0271</sup>          | 510                 | 464               | 0.476                                  |
| <i>tko</i>   | <i>tko</i> <sup>3</sup>               | 501                 | 457               | 0.477                                  |

1143

1144 **TABLE S8. The *gt*-vector does not carry extraneous elements that rescue the**  
1145 **viability of *D. melanogaster* *gt<sub>mel</sub>*<sup>XII</sup>-carriers.** When the *gt* alleles are disrupted by a  
1146 piggyBac stop cassette , none of the transgenics causes rescue of a *gt<sub>mel</sub>*<sup>XII</sup> null allele.

1147

| Allele                           | Non-coding | Coding          | F1 male genotypes                        |                       | Rescue Rate |
|----------------------------------|------------|-----------------|------------------------------------------|-----------------------|-------------|
|                                  |            |                 | <i>gt</i> <sup>XII</sup> /Y; transgene/+ | FM6/Y;<br>transgene/+ |             |
| <i>gt<sub>mel:mel</sub>:STOP</i> | <i>mel</i> | <i>mel-STOP</i> | 0                                        | 150                   | 0           |
| <i>gt<sub>san:mel</sub>:STOP</i> | <i>san</i> | <i>mel-STOP</i> | 0                                        | 221                   | 0           |
| <i>gt<sub>mel:san</sub>:STOP</i> | <i>mel</i> | <i>san-STOP</i> | 0                                        | 180                   | 0           |
| <i>gt<sub>san:san</sub>:STOP</i> | <i>san</i> | <i>San-STOP</i> | 0                                        | 300                   | 0           |

1148

1149 **TABLE S9. Confirmation that *tll<sup>mel</sup>* exacerbates the defects caused by *gt<sup>mel</sup>* in**  
 1150 ***mel/san* hybrids using a different *tll* mutant.** The analysis is similar to that shown in  
 1151 Table 1 with the difference that the  $\chi^2$  test has 4 degrees of freedom and not two as the  
 1152 tests in Table 1. **A.** Female viability **B.** Frequency of abdominal ablations in hybrid  
 1153 males. **C.** Frequency of abdominal ablations in hybrid females.  
 1154

| <b>A. Female hybrid viability</b>                                                     |                                                                              |                                                                           |                                                                               |                                                                            |
|---------------------------------------------------------------------------------------|------------------------------------------------------------------------------|---------------------------------------------------------------------------|-------------------------------------------------------------------------------|----------------------------------------------------------------------------|
|                                                                                       | <i>FM7; sqh::mCherry/X<sup>san</sup>; TM3, Act::GFP, Ser/3<sup>san</sup></i> | <i>FM7; sqh::mCherry/X<sup>san</sup>; tll<sup>1</sup>/3<sup>san</sup></i> | <i>gt<sup>XII</sup>; /X<sup>san</sup>; TM3, Act::GFP, Ser/3<sup>san</sup></i> | <i>gt<sup>XII</sup>; /X<sup>san</sup>; tll<sup>1</sup>/3<sup>san</sup></i> |
|                                                                                       | 18                                                                           | 22                                                                        | 34                                                                            | 54                                                                         |
| $\chi^2_1 = 0.40, P = 0.527$                                                          |                                                                              | $\chi^2_1 = 4.55, P = 0.033$                                              |                                                                               |                                                                            |
| <b>B. Proportion of male embryos showing abdominal ablations (100 embryos each)</b>   |                                                                              |                                                                           |                                                                               |                                                                            |
|                                                                                       | <i>FM7; sqh::mCherry/Y<sup>san</sup>; TM3, Act::GFP, Ser/3<sup>san</sup></i> | <i>FM7; sqh::mCherry/Y<sup>san</sup>; tll<sup>1</sup>/3<sup>san</sup></i> | <i>gt<sup>XII</sup>; /Y<sup>san</sup>; TM3, Act::GFP, Ser/3<sup>san</sup></i> | <i>gt<sup>XII</sup>; /Y<sup>san</sup>; tll<sup>1</sup>/3<sup>san</sup></i> |
|                                                                                       | 94                                                                           | 88                                                                        | 23                                                                            | 9                                                                          |
| $\chi^2_1 = 1.526, P = 0.217$                                                         |                                                                              | $\chi^2_1 = 6.287, P = 0.012$                                             |                                                                               |                                                                            |
| <b>C. Proportion of female embryos showing abdominal ablations (100 embryos each)</b> |                                                                              |                                                                           |                                                                               |                                                                            |
|                                                                                       | <i>FM7; sqh::mCherry/X<sup>san</sup>; TM3, Act::GFP, Ser/3<sup>san</sup></i> | <i>FM7; sqh::mCherry/X<sup>san</sup>; tll<sup>1</sup>/3<sup>san</sup></i> | <i>gt<sup>XII</sup>; /X<sup>san</sup>; TM3, Act::GFP, Ser/3<sup>san</sup></i> | <i>gt<sup>XII</sup>; /X<sup>san</sup>; tll<sup>1</sup>/3<sup>san</sup></i> |
|                                                                                       | 48                                                                           | 35                                                                        | 16                                                                            | 6                                                                          |
| $\chi^2_1 = 2.966, P = 0.08505$                                                       |                                                                              | $\chi^2_1 = 4.137, P = 0.0420$                                            |                                                                               |                                                                            |

1155

**TABLE S10. Double mutant analysis of survival in hybrids between *D. melanogaster* females and three males from four different species (*D. melanogaster*, *D. simulans*, *D. mauritiana*, and *D. teissieri*).** Individuals that are hemizygote for both alleles do not show different viability from individuals that are hemizygote for one allele and heterozygote for the other one, or heterozygote for both alleles.

| <i>tll</i> <sup>l</sup>    |                                                                              |                                                                           |          |                                                                               |                                                                            |                  |         |
|----------------------------|------------------------------------------------------------------------------|---------------------------------------------------------------------------|----------|-------------------------------------------------------------------------------|----------------------------------------------------------------------------|------------------|---------|
|                            | <i>FM7; sqh::mCherry/X<sup>san</sup>; TM3, Act::GFP, Ser/3<sup>san</sup></i> | <i>FM7; sqh::mCherry/X<sup>san</sup>; tll<sup>l</sup>/3<sup>san</sup></i> | $\chi^2$ | <i>gt<sup>XII</sup>; /X<sup>san</sup>; TM3, Act::GFP, Ser/3<sup>san</sup></i> | <i>gt<sup>XII</sup>; /X<sup>san</sup>; tll<sup>l</sup>/3<sup>san</sup></i> | $\chi^2$ , df =3 | P-value |
| <i>D. melanogaster</i>     | 95                                                                           | 104                                                                       |          | 121                                                                           | 98                                                                         | 1.869            | 0.599   |
|                            |                                                                              |                                                                           |          |                                                                               | 5                                                                          |                  | 9       |
| <i>D. simulans</i>         | 34                                                                           | 31                                                                        |          | 28                                                                            | 29                                                                         | 0.338            | 0.952   |
|                            |                                                                              |                                                                           |          |                                                                               | 64                                                                         |                  | 6       |
| <i>D. mauritiana</i>       | 52                                                                           | 41                                                                        |          | 39                                                                            | 41                                                                         | 1.143            | 0.766   |
|                            |                                                                              |                                                                           |          |                                                                               | 6                                                                          |                  | 6       |
| <i>D. teissieri</i>        | 19                                                                           | 22                                                                        |          | 15                                                                            | 20                                                                         | 0.715            | 0.869   |
|                            |                                                                              |                                                                           |          |                                                                               | 74                                                                         |                  | 5       |
| <i>tll</i> <sup>ΔGFP</sup> |                                                                              |                                                                           |          |                                                                               |                                                                            |                  |         |
|                            | <i>FM7; sqh::mCherry/X<sup>san</sup>; TM3, Act::GFP, Ser/3<sup>san</sup></i> | <i>FM7; sqh::mCherry/X<sup>san</sup>; tll<sup>l</sup>/3<sup>san</sup></i> | $\chi^2$ | <i>gt<sup>XII</sup>; /X<sup>san</sup>; TM3, Act::GFP, Ser/3<sup>san</sup></i> | <i>gt<sup>XII</sup>; /X<sup>san</sup>; tll<sup>l</sup>/3<sup>san</sup></i> | $\chi^2$         |         |
| <i>D. melanogaster</i>     | 104                                                                          | 87                                                                        |          | 99                                                                            | 78                                                                         | 2.142            | 0.543   |
|                            |                                                                              |                                                                           |          |                                                                               | 8                                                                          |                  | 3       |

|                      |    |    |  |    |    |             |            |
|----------------------|----|----|--|----|----|-------------|------------|
| <i>D. simulans</i>   | 42 | 36 |  | 39 | 44 | 0.460<br>75 | 0.927<br>4 |
| <i>D. mauritiana</i> | 51 | 38 |  | 49 | 43 | 1.181<br>5  | 0.757<br>5 |
| <i>D. teissieri</i>  | 20 | 25 |  | 21 | 26 | 0.567<br>22 | 0.903<br>9 |

**TABLE S11.** A *tll<sub>san</sub><sup>dsRed</sup>* has no effect on HI in crosses between *mel* females from four different backgrounds.

|                    | <i>tll<sup>dsRed</sup>/3<sub>mel</sub></i> | <i>3<sub>san</sub>/3<sub>mel</sub></i> | $\chi^2$ | <b>P-value</b> |
|--------------------|--------------------------------------------|----------------------------------------|----------|----------------|
| <i>mel AkLa</i>    | 31                                         | 36                                     | 0.067    | 0.795          |
| <i>mel Zs2</i>     | 62                                         | 74                                     | 1.600    | 0.206          |
| <i>mel Senegal</i> | 49                                         | 41                                     | 0.200    | 0.654          |
| <i>mel NC103</i>   | 62                                         | 71                                     | 0.184    | 0.668          |

**TABLE S12.** Abrogating the *tll<sub>san</sub>* allele has no viability effect in *gt<sub>mel</sub><sup>X11</sup> mel/san* hybrids.

| <b>A. Female hybrid viability</b>                                                                  |                                                                                            |                                                                                                                            |                                                                                                |  |
|----------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------|--|
| <i>FM7; Act::GFP/X<sub>san</sub>;</i><br><i>3<sub>mel</sub>, tll<sub>san</sub><sup>dsRed</sup></i> | <i>FM7;</i><br><i>Act::GFP/X<sub>san</sub>;</i><br><i>3<sub>mel</sub>, 3<sub>san</sub></i> | <i>gt<sub>mel</sub><sup>X11</sup>/X<sub>san</sub>;</i> <i>3<sub>mel</sub>,</i><br><i>tll<sub>san</sub><sup>dsRed</sup></i> | <i>gt<sub>mel</sub><sup>X11</sup>/X<sub>san</sub>;</i> <i>3<sub>mel</sub>, 3<sub>san</sub></i> |  |
| 12                                                                                                 | 20                                                                                         | 41                                                                                                                         | 44                                                                                             |  |
| $\chi^2_1=0.571, P=0.450$                                                                          |                                                                                            | $\chi^2_1=0.006, P=0.939$                                                                                                  |                                                                                                |  |

**TABLE S13. *gt* and *tll* are slowly evolving genes as measured by the rate of aminoacid substitutions. We show  $K_A/K_S$  values for two species comparisons (*D. melanogaster* vs. *D. santomea*, and *D. melanogaster* vs. *D. yakuba*) and the quantiles of the  $K_A/K_S$  values compared to the rest of the genome. We used four different parametrizations in PAML (listed in the first column). *D. melanogaster*: *mel*, *D. santomea*: *san*; *D. yakuba*: *yak*.**

| Giant           |        |                                    |                                    |                                        |                                             |                                    |                                    |                                        |                                             |
|-----------------|--------|------------------------------------|------------------------------------|----------------------------------------|---------------------------------------------|------------------------------------|------------------------------------|----------------------------------------|---------------------------------------------|
| Parameter model | CG     | $K_A$<br><i>mel</i> vs. <i>san</i> | $K_S$<br><i>mel</i> vs. <i>san</i> | $K_A/K_S$<br><i>mel</i> vs. <i>san</i> | Quantile<br>$K_A$ <i>mel</i> vs. <i>san</i> | $K_A$<br><i>mel</i> vs. <i>yak</i> | $K_S$<br><i>mel</i> vs. <i>yak</i> | $K_A/K_S$<br><i>mel</i> vs. <i>yak</i> | Quantile<br>$K_A$ <i>mel</i> vs. <i>yak</i> |
| 2_ratios        | CG7952 | 0.0062                             | 0.2192                             | 0.0283                                 | 0.2227                                      | 0.0060                             | 0.2074                             | 0.0289                                 | 0.2281                                      |
| 3_ratios        | CG7952 | 0.0062                             | 0.2189                             | 0.0283                                 | 0.2427                                      | 0.0060                             | 0.2071                             | 0.0290                                 | 0.2499                                      |
| basic_model     | CG7952 | 0.0055                             | 0.2218                             | 0.0248                                 | 0.1869                                      | 0.0052                             | 0.2102                             | 0.0247                                 | 0.1862                                      |
| free_ratios     | CG7952 | 0.0055                             | 0.2222                             | 0.0248                                 | 0.2278                                      | 0.0044                             | 0.2139                             | 0.0206                                 | 0.1960                                      |
| <i>Tailless</i> |        |                                    |                                    |                                        |                                             |                                    |                                    |                                        |                                             |
| Parameter model | CG     | $K_A$<br><i>mel</i> vs. <i>san</i> | $K_S$<br><i>mel</i> vs. <i>san</i> | $K_A/K_S$<br><i>mel</i> vs. <i>san</i> | Quantile<br>$K_A$ <i>mel</i> vs. <i>san</i> | $K_A$<br><i>mel</i> vs. <i>yak</i> | $K_S$<br><i>mel</i> vs. <i>yak</i> | $K_A/K_S$<br><i>mel</i> vs. <i>yak</i> | Quantile<br>$K_A$ <i>mel</i> vs. <i>yak</i> |
| 2_ratios        | CG1378 | 0.0045                             | 0.384                              | 0.012                                  | 0.095                                       | 0.0045                             | 0.376                              | 0.012                                  | 0.0977                                      |
| 3_ratios        | CG1378 | 0.0034                             | 0.395                              | 0.009                                  | 0.086                                       | 0.0034                             | 0.383                              | 0.009                                  | 0.0872                                      |
| basic_model     | CG1378 | 0.0037                             | 0.389                              | 0.010                                  | 0.075                                       | 0.0037                             | 0.380                              | 0.010                                  | 0.076                                       |
| free_ratios     | CG1378 | 0.0028                             | 0.389                              | 0.007                                  | 0.087                                       | 0.0028                             | 0.381                              | 0.007                                  | 0.091                                       |

TABLE S14. Sequencing details and coverage for all the lines included in this study.

| Species              | Line        | Read type | Average coverage | Source                                                    | SRA                                           |
|----------------------|-------------|-----------|------------------|-----------------------------------------------------------|-----------------------------------------------|
| <i>D. mauritiana</i> | mau12w      | pe        | 153.67           |                                                           | SRR1555246, SRR1560430, SRR1560444, SRR483621 |
| <i>D. mauritiana</i> | MauKiti     | se        | 13.86            |                                                           |                                               |
| <i>D. mauritiana</i> | mauST       | se        | 3.11             |                                                           |                                               |
| <i>D. mauritiana</i> | MS17        | se,pe     | 60.56            |                                                           | SRR556195, SRR556206, SRR556199, SRR556196    |
| <i>D. mauritiana</i> | R23         | pe        | 115.98           |                                                           | SRR1560090, SRR1560089, SRR1560087            |
| <i>D. mauritiana</i> | R31         | pe        | 99.96            |                                                           | SRR1560098, SRR1560097, SRR1560095            |
| <i>D. mauritiana</i> | R32         | pe        | 120.55           |                                                           | SRR1560102, SRR1560100, SRR1560103            |
| <i>D. mauritiana</i> | R39         | pe        | 116.33           |                                                           | SRR1560110, SRR1560109, SRR1560108            |
| <i>D. mauritiana</i> | R41         | pe        | 145.38           |                                                           | SRR1560130, SRR1560132, SRR1560131            |
| <i>D. mauritiana</i> | R44         | pe        | 122.59           |                                                           | SRR1560147, SRR1560146, SRR1560133            |
| <i>D. mauritiana</i> | R56         | pe        | 121.66           |                                                           | SRR1560150, SRR1560149, SRR1560148            |
| <i>D. mauritiana</i> | R61         | pe        | 140.32           |                                                           | SRR1560268, SRR1560267, SRR1560269            |
| <i>D. mauritiana</i> | R8          | pe        | 90.27            |                                                           | SRR1560276, SRR1560275                        |
| <i>D. santomea</i>   | Qiuja630.39 | se        | 24.16            | (Turissini and Matute 2017; Turissini <i>et al.</i> 2018) | SRX3029341                                    |

|                     |                |    |       |                                                                |             |
|---------------------|----------------|----|-------|----------------------------------------------------------------|-------------|
| <i>D. santomea</i>  | Quija37        | se | 11.74 | (Turissini and Matute 2017;<br>Turissini <i>et al.</i> 2018)   | SRX3029336  |
| <i>D. santomea</i>  | sanC1350.14    | se | 18.62 | (Turissini and Matute 2017;<br>Turissini <i>et al.</i> 2018)   | SRX3029340  |
| <i>D. santomea</i>  | sanCAR1490.5   | se | 15.77 | (Turissini and Matute 2017;<br>Turissini <i>et al.</i> 2018)   | SRX3029339  |
| <i>D. santomea</i>  | sanCOST1250.5  | se | 13.27 | (Turissini and Matute 2017;<br>Turissini <i>et al.</i> 2018)   | SRX3029322  |
| <i>D. santomea</i>  | sanCOST1270.6  | se | 14.76 | (Turissini and Matute 2017;<br>Turissini <i>et al.</i> 2018)   | SRX3029337  |
| <i>D. santomea</i>  | sanOBAT1200.13 | se | 14.47 | (Turissini and Matute 2017;<br>Turissini <i>et al.</i> 2018)   | SRX3029334  |
| <i>D. santomea</i>  | sanOBAT1200.5  | se | 16.82 | (Turissini and Matute 2017;<br>Turissini <i>et al.</i> 2018)   | SRX3029332  |
| <i>D. santomea</i>  | sanRain39      | se | 15.81 | (Turissini and Matute 2017;<br>Turissini <i>et al.</i> 2018)   | SRX3029333: |
| <i>D. santomea</i>  | sanSTO7        | se | 15.29 | (Turissini and Matute 2017;<br>Turissini <i>et al.</i> 2018)   | SRX3029335  |
| <i>D. santomea</i>  | sanThena5      | se | 12.98 | (Turissini and Matute 2017;<br>Turissini <i>et al.</i> 2018)   | SRX3029338  |
| <i>D. sechellia</i> | Anro_B1        | pe | 36.85 | (Schrider <i>et al.</i> 2018;<br>Turissini <i>et al.</i> 2018) | SRX3029286  |
| <i>D. sechellia</i> | Anro_B2        | pe | 34.56 | (Schrider <i>et al.</i> 2018;<br>Turissini <i>et al.</i> 2018) | SRX3029285  |
| <i>D. sechellia</i> | Anro_B3        | pe | 38.75 | (Schrider <i>et al.</i> 2018;<br>Turissini <i>et al.</i> 2018) | SRX3029281  |
| <i>D. sechellia</i> | Anro_B5        | pe | 38.36 | (Schrider <i>et al.</i> 2018;<br>Turissini <i>et al.</i> 2018) | SRX3029270  |
| <i>D. sechellia</i> | Anro_B6        | pe | 33.48 | (Schrider <i>et al.</i> 2018;<br>Turissini <i>et al.</i> 2018) | SRX3029283  |

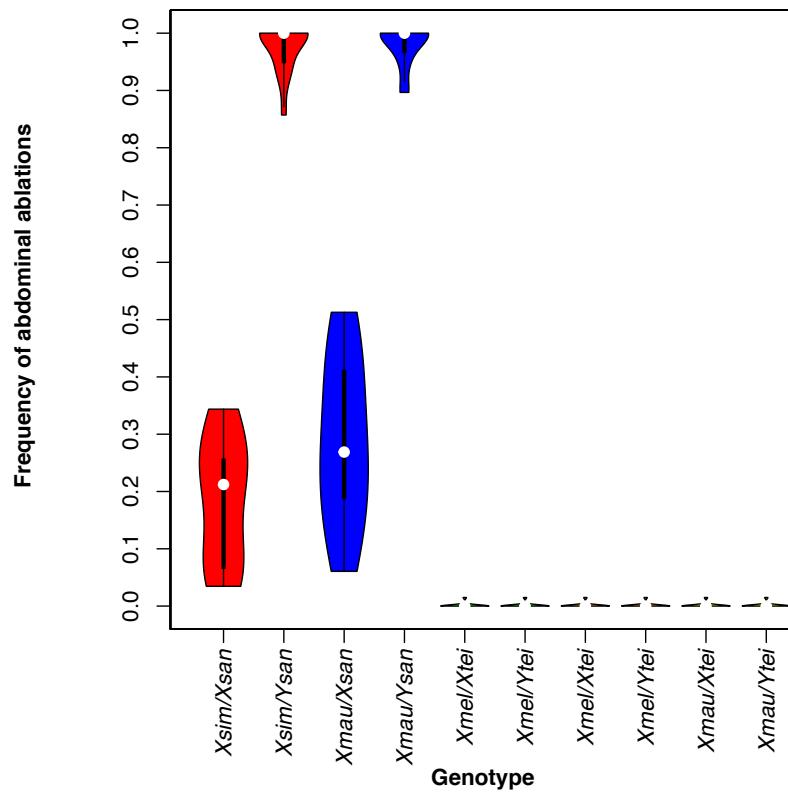
|                     |            |    |       |                                                                |            |
|---------------------|------------|----|-------|----------------------------------------------------------------|------------|
| <i>D. sechellia</i> | Anro_B7    | pe | 39.25 | (Schrider <i>et al.</i> 2018;<br>Turissini <i>et al.</i> 2018) | SRX3029301 |
| <i>D. sechellia</i> | Anro_B8    | pe | 34.84 | (Schrider <i>et al.</i> 2018;<br>Turissini <i>et al.</i> 2018) | SRX3029373 |
| <i>D. sechellia</i> | Denis124   | se | 24.73 | (Schrider <i>et al.</i> 2018;<br>Turissini <i>et al.</i> 2018) | SRX3029315 |
| <i>D. sechellia</i> | Denis135   | se | 32.4  | (Schrider <i>et al.</i> 2018;<br>Turissini <i>et al.</i> 2018) | SRX3029275 |
| <i>D. sechellia</i> | Denis7_2   | se | 28    | (Schrider <i>et al.</i> 2018;<br>Turissini <i>et al.</i> 2018) | SRX3029314 |
| <i>D. sechellia</i> | Denis7_8   | se | 28    | (Schrider <i>et al.</i> 2018;<br>Turissini <i>et al.</i> 2018) | SRX3029277 |
| <i>D. sechellia</i> | DenisAMT   | se | 14.44 | (Schrider <i>et al.</i> 2018;<br>Turissini <i>et al.</i> 2018) | SRX3029303 |
| <i>D. sechellia</i> | DenisAT3   | se | 28.03 | (Schrider <i>et al.</i> 2018;<br>Turissini <i>et al.</i> 2018) | SRX3029317 |
| <i>D. sechellia</i> | DenisDNJ6  | se | 22.63 | (Schrider <i>et al.</i> 2018;<br>Turissini <i>et al.</i> 2018) | SRX3029319 |
| <i>D. sechellia</i> | DenisJT1   | se | 23.99 | (Schrider <i>et al.</i> 2018;<br>Turissini <i>et al.</i> 2018) | SRX3029316 |
| <i>D. sechellia</i> | DenisMCL   | se | 46.04 | (Schrider <i>et al.</i> 2018;<br>Turissini <i>et al.</i> 2018) | SRX3029276 |
| <i>D. sechellia</i> | DenisNF100 | se | 10.12 | (Schrider <i>et al.</i> 2018;<br>Turissini <i>et al.</i> 2018) | SRX3029307 |
| <i>D. sechellia</i> | DenisNF123 | se | 13.07 | (Schrider <i>et al.</i> 2018;<br>Turissini <i>et al.</i> 2018) | SRX3029306 |
| <i>D. sechellia</i> | DenisNF13  | se | 24.12 | (Schrider <i>et al.</i> 2018;<br>Turissini <i>et al.</i> 2018) | SRX3029313 |
| <i>D. sechellia</i> | DenisNF134 | se | 14.45 | (Schrider <i>et al.</i> 2018;<br>Turissini <i>et al.</i> 2018) | SRX3029302 |

|                     |              |    |       |                                                                |            |
|---------------------|--------------|----|-------|----------------------------------------------------------------|------------|
| <i>D. sechellia</i> | DenisNF155   | se | 15.84 | (Schrider <i>et al.</i> 2018;<br>Turissini <i>et al.</i> 2018) | SRX3029321 |
| <i>D. sechellia</i> | DenisNF66    | se | 27.16 | (Schrider <i>et al.</i> 2018;<br>Turissini <i>et al.</i> 2018) | SRX3029312 |
| <i>D. sechellia</i> | DenisNoni10  | se | 14.63 | (Schrider <i>et al.</i> 2018;<br>Turissini <i>et al.</i> 2018) | SRX3029320 |
| <i>D. sechellia</i> | DenisNoni101 | se | 25.07 | (Schrider <i>et al.</i> 2018;<br>Turissini <i>et al.</i> 2018) | SRX3029278 |
| <i>D. sechellia</i> | DenisNoni60  | se | 19.35 | (Schrider <i>et al.</i> 2018;<br>Turissini <i>et al.</i> 2018) | SRX3029318 |
| <i>D. sechellia</i> | LD11_sech    | pe | 44.37 | Turissini <i>et al.</i> 2018)                                  | SRX3029282 |
| <i>D. sechellia</i> | LD12         | pe | 37.29 | (Schrider <i>et al.</i> 2018;<br>Turissini <i>et al.</i> 2018) | SRX3029284 |
| <i>D. sechellia</i> | LD13         | pe | 45.52 | (Schrider <i>et al.</i> 2018;<br>Turissini <i>et al.</i> 2018) | SRX3029289 |
| <i>D. sechellia</i> | LD14         | pe | 34.93 | (Schrider <i>et al.</i> 2018;<br>Turissini <i>et al.</i> 2018) | SRX3029288 |
| <i>D. sechellia</i> | LD15         | pe | 49.06 | (Schrider <i>et al.</i> 2018;<br>Turissini <i>et al.</i> 2018) | SRX3029362 |
| <i>D. sechellia</i> | LD16         | pe | 40.63 | (Schrider <i>et al.</i> 2018;<br>Turissini <i>et al.</i> 2018) | SRX3029290 |
| <i>D. sechellia</i> | LD8          | pe | 41.54 | (Schrider <i>et al.</i> 2018;<br>Turissini <i>et al.</i> 2018) | SRX3029364 |
| <i>D. sechellia</i> | mariane_1    | pe | 49.51 | (Schrider <i>et al.</i> 2018;<br>Turissini <i>et al.</i> 2018) | SRX3029287 |
| <i>D. sechellia</i> | maria_3      | pe | 39.82 | (Schrider <i>et al.</i> 2018;<br>Turissini <i>et al.</i> 2018) | SRX3029376 |
| <i>D. sechellia</i> | PNF10        | pe | 34.48 | (Schrider <i>et al.</i> 2018;<br>Turissini <i>et al.</i> 2018) | SRX3029280 |

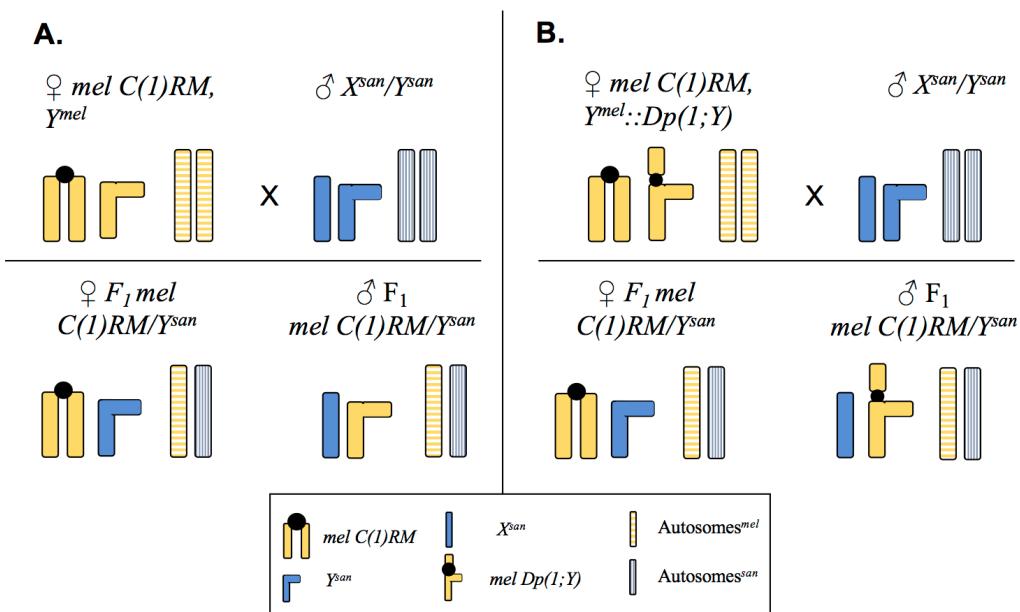
|                     |                   |       |        |                                                                |                                               |
|---------------------|-------------------|-------|--------|----------------------------------------------------------------|-----------------------------------------------|
| <i>D. sechellia</i> | PNF11             | pe    | 39.12  | (Schrider <i>et al.</i> 2018;<br>Turissini <i>et al.</i> 2018) | SRX3029279                                    |
| <i>D. sechellia</i> | PNF3              | pe    | 46.24  | (Schrider <i>et al.</i> 2018;<br>Turissini <i>et al.</i> 2018) | SRX3029272                                    |
| <i>D. sechellia</i> | PNF4              | pe    | 32.94  | (Schrider <i>et al.</i> 2018;<br>Turissini <i>et al.</i> 2018) | SRX3029363                                    |
| <i>D. sechellia</i> | PNF5              | pe    | 41.99  | (Schrider <i>et al.</i> 2018;<br>Turissini <i>et al.</i> 2018) | SRX3029273                                    |
| <i>D. sechellia</i> | PNF7              | pe    | 28.88  | (Schrider <i>et al.</i> 2018;<br>Turissini <i>et al.</i> 2018) | SRX3029271                                    |
| <i>D. sechellia</i> | PNF8              | pe    | 55.93  | (Schrider <i>et al.</i> 2018;<br>Turissini <i>et al.</i> 2018) | SRX3029274                                    |
| <i>D. simulans</i>  | Bioko_cascade_1   | pe    | 38.1   | 2020, 2021)                                                    | SRX7116491                                    |
| <i>D. simulans</i>  | Bioko_H1          | pe    | 38.4   | (Serrato-Capuchina <i>et al.</i><br>2020, 2021)                | SRX7116492                                    |
| <i>D. simulans</i>  | Bioko_LB1         | pe    | 38.26  | (Serrato-Capuchina <i>et al.</i><br>2020, 2021)                | SRX7116493                                    |
| <i>D. simulans</i>  | Bioko_Riaba_9     | pe    | 32.7   | (Serrato-Capuchina <i>et al.</i><br>2020, 2021)                | SRX7116489                                    |
| <i>D. simulans</i>  | Bioko_Riaba_mixed | pe    | 32.53  | (Serrato-Capuchina <i>et al.</i><br>2020, 2021)                | SRX7116490                                    |
| <i>D. simulans</i>  | Kib32             | se,pe | 52.05  | (Rogers <i>et al.</i> 2014, 2017)                              | SRR580348, SRR580347,<br>SRR580350, SRR580349 |
| <i>D. simulans</i>  | MD06              | pe    | 128.34 | (Rogers <i>et al.</i> 2014, 2017)                              | SRX6458044                                    |
| <i>D. simulans</i>  | MD105             | pe    | 101.25 | (Rogers <i>et al.</i> 2014, 2017)                              | SRX6458047                                    |
| <i>D. simulans</i>  | MD106             | pe    | 104.11 | (Rogers <i>et al.</i> 2014, 2017)                              | SRX6458049                                    |
| <i>D. simulans</i>  | MD15              | pe    | 115.94 | (Rogers <i>et al.</i> 2014, 2017)                              | SRX6458052                                    |
| <i>D. simulans</i>  | MD199             | pe    | 128.89 | (Rogers <i>et al.</i> 2014, 2017)                              | SRX8034374                                    |
| <i>D. simulans</i>  | MD221             | pe    | 115.61 | (Rogers <i>et al.</i> 2014, 2017)                              | SRX6458058                                    |

|                     |               |    |        |                                   |                      |
|---------------------|---------------|----|--------|-----------------------------------|----------------------|
| <i>D. simulans</i>  | MD233         | pe | 139.25 | (Rogers <i>et al.</i> 2014, 2017) | SRX6458061           |
| <i>D. simulans</i>  | MD251         | pe | 133.51 | (Rogers <i>et al.</i> 2014, 2017) | SRX6458064           |
| <i>D. simulans</i>  | MD63          | pe | 64.75  | (Rogers <i>et al.</i> 2014, 2017) | SRX6458067           |
| <i>D. simulans</i>  | MD73          | pe | 130.06 | (Rogers <i>et al.</i> 2014, 2017) | SRX6458070           |
| <i>D. simulans</i>  | NS05          | pe | 135.43 | (Rogers <i>et al.</i> 2014, 2017) | SRX6458073           |
| <i>D. simulans</i>  | NS113         | pe | 125.58 | (Rogers <i>et al.</i> 2014, 2017) | SRX6458076           |
| <i>D. simulans</i>  | NS137         | pe | 111.69 | (Rogers <i>et al.</i> 2014, 2017) | SRX6458078           |
| <i>D. simulans</i>  | NS33          | pe | 125    | (Rogers <i>et al.</i> 2014, 2017) | SRX6458081           |
| <i>D. simulans</i>  | NS39          | pe | 136.06 | (Rogers <i>et al.</i> 2014, 2017) | SRX6458084           |
| <i>D. simulans</i>  | NS40          | pe | 136.32 | (Rogers <i>et al.</i> 2014, 2017) | SRX6458087           |
| <i>D. simulans</i>  | NS50          | pe | 131.23 | (Rogers <i>et al.</i> 2014, 2017) | SRX6458090           |
| <i>D. simulans</i>  | NS67          | pe | 139.1  | (Rogers <i>et al.</i> 2014, 2017) | SRX6458093           |
| <i>D. simulans</i>  | NS78          | pe | 136.03 | (Rogers <i>et al.</i> 2014, 2017) | SRX6458096           |
| <i>D. simulans</i>  | NS79          | pe | 135.12 | (Rogers <i>et al.</i> 2014, 2017) | SRX6458099           |
| <i>D. simulans</i>  | tsimbazazaa   | pe | 38.11  |                                   | SRR869580, SRR869579 |
| <i>D. simulans</i>  | w501          | pe | 26.35  | (Hu <i>et al.</i> 2013)           | SRR520350            |
| <i>D. teissieri</i> | Balancha_1    | pe | 30.37  | (Turissini and Matute 2017)       | SRX3029331           |
| <i>D. teissieri</i> | Bata2         | se | 20.7   | (Turissini and Matute 2017)       | SRX3029370           |
| <i>D. teissieri</i> | Bata8         | se | 18.56  | (Turissini and Matute 2017)       | SRX3029369           |
| <i>D. teissieri</i> | cascade_2_1   | pe | 29.2   | (Turissini and Matute 2017)       | SRX3029323           |
| <i>D. teissieri</i> | cascade_2_2   | pe | 33.88  | (Turissini and Matute 2017)       | SRX3029330           |
| <i>D. teissieri</i> | cascade_2_4   | pe | 26.91  | (Turissini and Matute 2017)       | SRX3029324           |
| <i>D. teissieri</i> | cascade_4_1   | pe | 27.07  | (Turissini and Matute 2017)       | SRX3029328           |
| <i>D. teissieri</i> | cascade_4_2   | pe | 39.54  | (Turissini and Matute 2017)       | SRX3029374           |
| <i>D. teissieri</i> | cascade_4_3   | pe | 23.26  | (Turissini and Matute 2017)       | SRX3029329           |
| <i>D. teissieri</i> | House_Bioko   | pe | 35.7   | (Turissini and Matute 2017)       | SRX3029325           |
| <i>D. teissieri</i> | La_Lope_Gabon | pe | 36.6   | (Turissini and Matute 2017)       | SRX3029375           |
| <i>D. teissieri</i> | Selinda       | pe | 27.74  | (Turissini and Matute 2017)       | SRX3029326           |

|                  |                  |    |        |                                   |                                                          |
|------------------|------------------|----|--------|-----------------------------------|----------------------------------------------------------|
| <i>D. yakuba</i> | 1_19             | se | 18.51  | (Turissini and Matute 2017)       | SRX3029345                                               |
| <i>D. yakuba</i> | 1_5              | se | 19.27  | (Turissini and Matute 2017)       | SRX3518253                                               |
| <i>D. yakuba</i> | 1_6              | se | 20.16  | (Turissini and Matute 2017)       | SRX3029348                                               |
| <i>D. yakuba</i> | 1_7              | se | 22.01  | (Turissini and Matute 2017)       | SRX3029297                                               |
| <i>D. yakuba</i> | 2_11             | se | 19.51  | (Turissini and Matute 2017)       | SRX3029350                                               |
| <i>D. yakuba</i> | 2_14             | se | 19.15  | (Turissini and Matute 2017)       | SRX3029347                                               |
| <i>D. yakuba</i> | 2_6              | se | 23.43  | (Turissini and Matute 2017)       | SRX3029353                                               |
| <i>D. yakuba</i> | 2_8              | se | 20.38  | (Turissini and Matute 2017)       | SRX3029343                                               |
| <i>D. yakuba</i> | 3_16             | se | 19.82  | (Turissini and Matute 2017)       | SRX3029344                                               |
| <i>D. yakuba</i> | 3_2              | se | 21.89  | (Turissini and Matute 2017)       | SRX3029356                                               |
| <i>D. yakuba</i> | 3_23             | se | 22.11  | (Turissini and Matute 2017)       | SRX3029291                                               |
| <i>D. yakuba</i> | 4_21             | se | 22.44  | (Turissini and Matute 2017)       | SRX3029299                                               |
| <i>D. yakuba</i> | Abidjan_12       | se | 23.79  | (Turissini and Matute 2017)       | SRX3029360                                               |
| <i>D. yakuba</i> | Airport_16_5     | se | 20.11  | (Turissini and Matute 2017)       | SRX3029355                                               |
| <i>D. yakuba</i> | Anton_1_Principe | se | 19.54  | (Turissini and Matute 2017)       | SRX3029295                                               |
| <i>D. yakuba</i> | Anton_2_Principe | se | 21.38  | (Turissini and Matute 2017)       | SRX3029361                                               |
| <i>D. yakuba</i> | BAR_1000_2       | se | 21.23  | (Turissini and Matute 2017)       | SRX3029367                                               |
| <i>D. yakuba</i> | BIOKO_NE_4_6     | se | 17.17  | (Turissini and Matute 2017)       | SRX3029351                                               |
| <i>D. yakuba</i> | Bosu_1235_14     | se | 17.22  | (Turissini and Matute 2017)       | SRX3029300                                               |
| <i>D. yakuba</i> | Cascade_18       | se | 23.96  | (Turissini and Matute 2017)       | SRX3029354                                               |
| <i>D. yakuba</i> | Cascade_19_16    | se | 16.5   | (Turissini and Matute 2017)       | SRX3029342                                               |
| <i>D. yakuba</i> | Cascade_21       | se | 20.59  | (Turissini and Matute 2017)       | SRX3029368                                               |
| <i>D. yakuba</i> | Cascade_SN6_1    | se | 18.85  | (Turissini and Matute 2017)       | SRX3029358                                               |
| <i>D. yakuba</i> | COST_1235_2      | se | 17.69  | (Turissini and Matute 2017)       | SRX3029296                                               |
| <i>D. yakuba</i> | COST_1235_3      | se | 15.42  | (Turissini and Matute 2017)       | SRX3029349                                               |
| <i>D. yakuba</i> |                  |    |        | (Rogers <i>et al.</i> 2014, 2017) | SRX6457979,<br>SRX6457980 ,<br>SRX6457981,<br>SRX6457982 |
|                  | CY01A            | pe | 196.72 |                                   |                                                          |

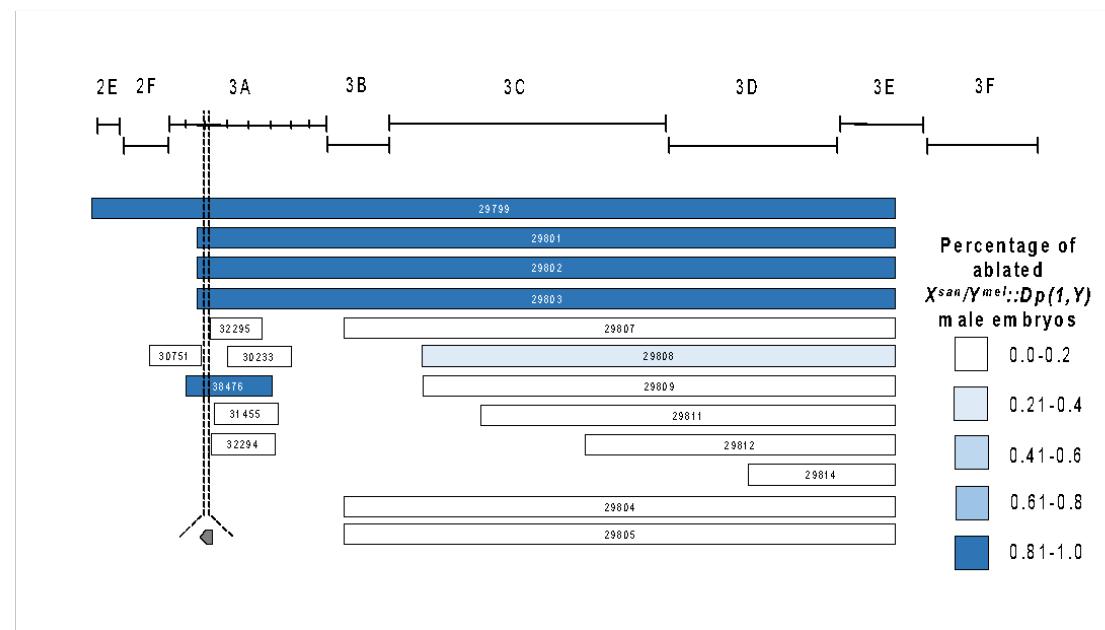

|                  |                         |          |                 |                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
|------------------|-------------------------|----------|-----------------|-----------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| <i>D. yakuba</i> | CY02B5                  | pe       | 69.98           | (Rogers <i>et al.</i> 2014, 2017) | SRX6457983,<br>SRX6457984,<br>SRX6457985<br>SRX6457986,<br>SRX6457987,<br>SRX6457988,<br>SRX6457989<br>SRX6457990,<br>SRX6457991,<br>SRX6457992<br>SRX6457990,<br>SRX6457991,<br>SRX6457992<br>SRX6457996,<br>SRX6457997,<br>SRX6457998,<br>SRX6457999<br>SRX6458000,<br>SRX6458001,<br>SRX6458002<br>SRX6458003,<br>SRX6458004,<br>SRX6458005<br>SRX6458006,<br>SRX6458007,<br>SRX6458008<br>SRX6458009,<br>SRX6458010,<br>SRX6458011<br>SRX3029359 |
| <i>D. yakuba</i> | CY04B                   | pe       | 157.94          | (Rogers <i>et al.</i> 2014, 2017) |                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| <i>D. yakuba</i> | CY08A                   | pe       | 75.04           | (Rogers <i>et al.</i> 2014, 2017) |                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| <i>D. yakuba</i> | CY13A                   | pe       | 72.72           | (Rogers <i>et al.</i> 2014, 2017) |                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| <i>D. yakuba</i> | CY17C                   | pe       | 193.88          | (Rogers <i>et al.</i> 2014, 2017) |                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| <i>D. yakuba</i> | CY20A                   | pe       | 183.65          | (Rogers <i>et al.</i> 2014, 2017) |                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| <i>D. yakuba</i> | CY21B3                  | pe       | 173.17          | (Rogers <i>et al.</i> 2014, 2017) |                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| <i>D. yakuba</i> | CY22B                   | pe       | 69.84           | (Rogers <i>et al.</i> 2014, 2017) |                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| <i>D. yakuba</i> | CY28<br>Montecafe_17_17 | pe<br>se | 110.16<br>19.97 | (Turissini and Matute 2017)       |                                                                                                                                                                                                                                                                                                                                                                                                                                                      |

|                  |                    |    |        |                                   |                                          |
|------------------|--------------------|----|--------|-----------------------------------|------------------------------------------|
| <i>D. yakuba</i> |                    |    |        |                                   |                                          |
| <i>D. yakuba</i> | NY141              | pe | 143.54 | (Turissini and Matute 2017)       | SRX6458037,<br>SRX6458038,<br>SRX6458039 |
| <i>D. yakuba</i> | NY42               | pe | 118.02 | (Turissini and Matute 2017)       | SRX6458040,<br>SRX6458041                |
| <i>D. yakuba</i> | NY48               | pe | 84.99  | (Rogers <i>et al.</i> 2014, 2017) | SRX6458013,<br>SRX6458014,<br>SRX6458015 |
| <i>D. yakuba</i> | NY56               | pe | 88.65  | (Rogers <i>et al.</i> 2014, 2017) | SRX6458016,<br>SRX6458017,<br>SRX6458018 |
| <i>D. yakuba</i> | NY62               | pe | 94.51  | (Rogers <i>et al.</i> 2014, 2017) | SRX6458019,<br>SRX6458020,<br>SRX6458021 |
| <i>D. yakuba</i> | NY65               | pe | 91.46  | (Rogers <i>et al.</i> 2014, 2017) | SRX6458022,<br>SRX6458023,<br>SRX6458024 |
| <i>D. yakuba</i> | NY66               | pe | 148.65 | (Rogers <i>et al.</i> 2014, 2017) | SRX6458025,<br>SRX6458026,<br>SRX6458027 |
| <i>D. yakuba</i> | NY73               | pe | 92.08  | (Rogers <i>et al.</i> 2014, 2017) | SRX6458028,<br>SRX6458029,<br>SRX6458030 |
| <i>D. yakuba</i> | NY81               | pe | 148.42 | (Rogers <i>et al.</i> 2014, 2017) | SRX6458031,<br>SRX6458032,<br>SRX6458033 |
| <i>D. yakuba</i> | NY85               | pe | 99.03  |                                   | SRX6458034,<br>SRX6458035,<br>SRX6458036 |
| <i>D. yakuba</i> | OBAT_1200_5        | se | 22.7   | (Turissini and Matute 2017)       | SRX3029357                               |
| <i>D. yakuba</i> | SanTome_city_14_26 | se | 22.75  | (Turissini and Matute 2017)       | SRX3029372                               |

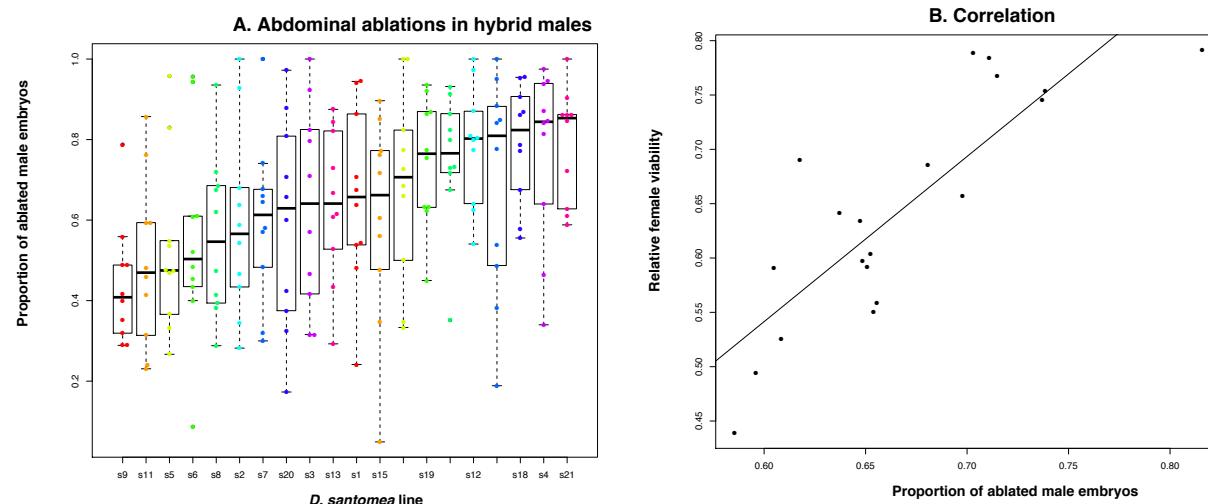

|                  |               |    |       |                             |            |
|------------------|---------------|----|-------|-----------------------------|------------|
| <i>D. yakuba</i> | SA_3          | se | 18.64 | (Turissini and Matute 2017) | SRX3029294 |
| <i>D. yakuba</i> | SJ14          | se | 15.77 | (Turissini and Matute 2017) | SRX3029293 |
| <i>D. yakuba</i> | SJ4           | se | 25.82 | (Turissini and Matute 2017) | SRX3029292 |
| <i>D. yakuba</i> | SJ7           | se | 19.51 | (Turissini and Matute 2017) | SRX3029352 |
| <i>D. yakuba</i> | SJ_1          | se | 21.35 | (Turissini and Matute 2017) | SRX3029371 |
| <i>D. yakuba</i> | SN7           | se | 23.66 | (Turissini and Matute 2017) | SRX3029366 |
| <i>D. yakuba</i> | SN_Cascade_22 | se | 21.78 | (Turissini and Matute 2017) | SRX3029365 |
| <i>D. yakuba</i> | Tai_18        | se | 22.17 | (Turissini and Matute 2017) | SRX3029298 |

## SUPPLEMENTARY FIGURES

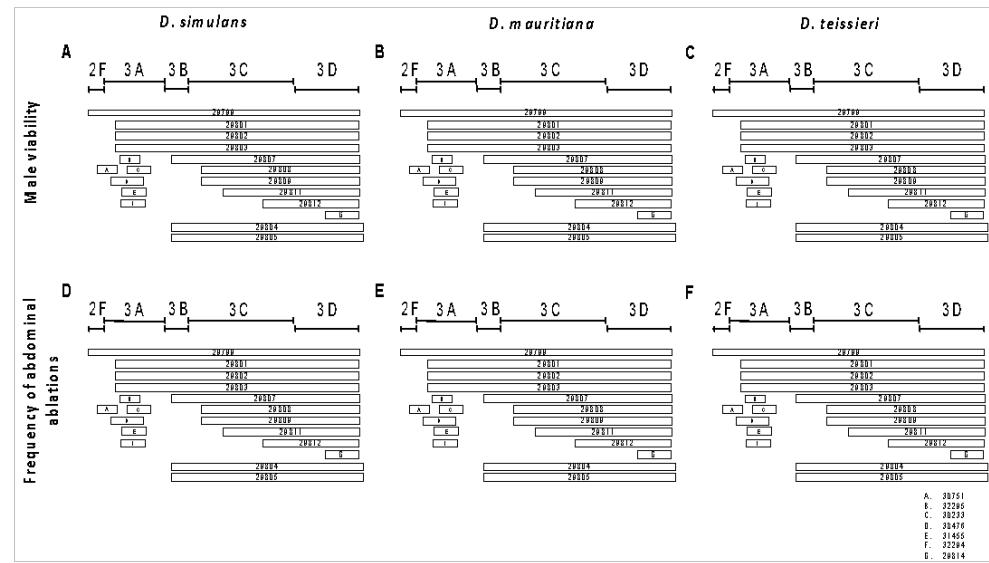
**FIGURE S1.  $X_{mel}$ ,  $X_{sim}$  and  $X_{mau}$  cause abdominal ablations in hybrid males with *D. santomea*.** Hybrid males from the ♀*sim* × ♂*san* and ♀*mau* × ♂*san* crosses show high frequency of abdominal ablations similar to those observed in ♀*mel* × ♂*san* hybrids. Hybrid females from the same crosses show a lower frequency of ablations. The nature of the defect in these hybrid males is identical to that seen in *mel/san* hybrid males, a characteristic ablation of abdominal segments (as shown in Figure 1).



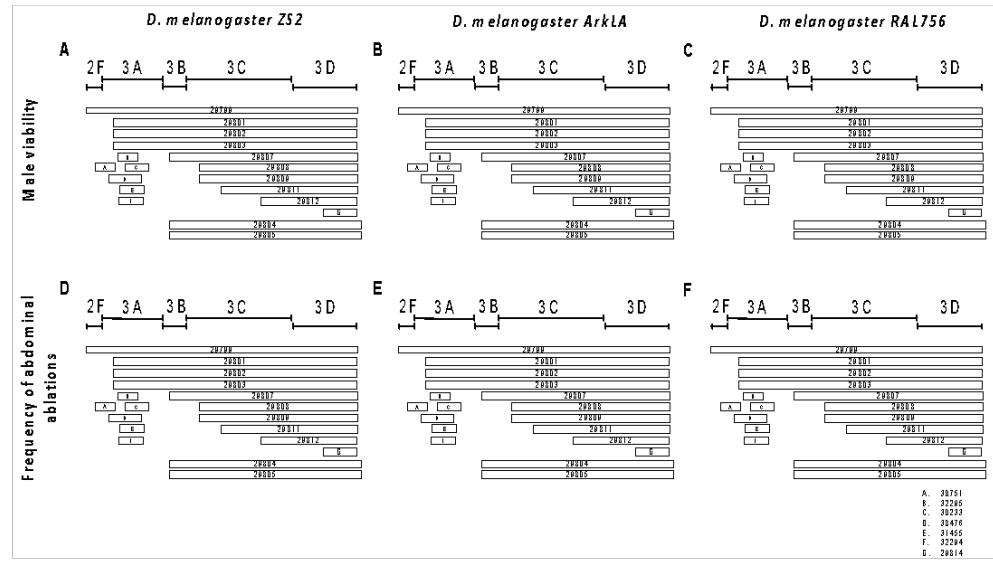

**FIGURE S2. Crossing design to assess whether small piece of the  $X_{mel}$  cause hybrid inviability and abdominal ablations.** Blue bars represent *D. santomea* chromosomes; yellow bars represent *D. melanogaster* chromosomes. Solid colors: sex chromosomes, striped bars: autosomes. This approach is a modified version of (Sawamura and Yamamoto 1993; Cattani and Presgraves 2012; Matute and Gavin-Smyth 2014).




**FIGURE S3. Frequency of abdominal ablations caused by the *X<sub>mel</sub>* translocations shown in Figure 2 in *X<sub>san</sub>/Y<sub>mel</sub>* hybrid males.**

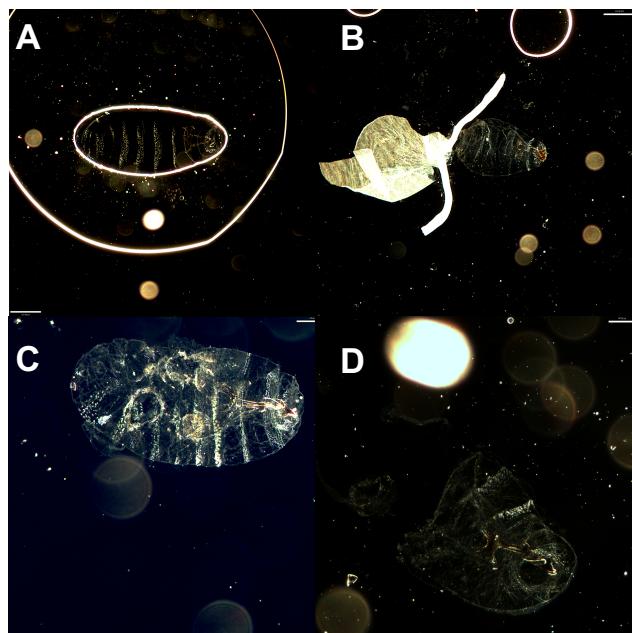

Each Bloomington stock number is shown within the bar. The precise genotype of each stock is shown in Table S1.



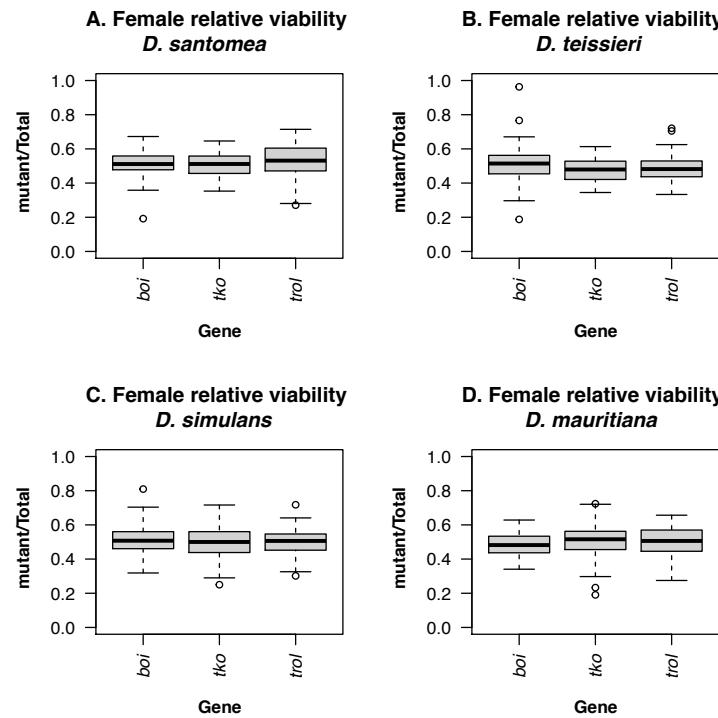

**FIGURE S4. The presence of *gt<sub>mel</sub>* causes HI in *mel/san* hybrids produced with all *D. santomea* lines but the magnitude of the inviability varies.** We measured frequency of abdominal ablations in hybrid *X<sub>mel</sub>/Y<sub>san</sub>* males (A). The magnitude of the frequency of abdominal ablations and of hybrid female inviability are correlated among lines (panel B;  $p = 0.1734$ ,  $P = 0.0141$ ). Boxes in the boxplot are ordinated from the lower median (left) to the highest (right). S1: Thena5; S2: sanCAR1490; S3: sanCOST1250.5; S4: sanCOST1270.1; S5: sanOBAT1200; S6: sanOBAT1200.2; S7: sanRain39; S8: sanCAR1600.3; S9: Carv2015.1; S10: Carv2015.5; S11: Carv2015.11; S12: Carv2015.16; S13: Pico1680.1; S14: Pico1659.2; S15: Pico1659.3; S16: Amelia2015.1; S17: Amelia2015.6; S18: Amelia2015.12; S19: A1200.7; S20: Rain42.



**FIGURE S5. Crosses between *D. melanogaster* females harboring *Dp(1;Y)* duplications and males from the *simulans* species group (*D. mauritiana*, and *D. simulans*) show no evidence of male embryo lethality or abdominal ablations. *Dp(1;Y)* duplications containing *gt<sub>mel</sub>* cause no embryonic defects and do not cause heightened hybrid inviability. The color code is the same as used in Figure 2C. The lack of gray bars indicates that none of the duplications caused hybrid inviability in any of the crosses. Please note that embryonic lethality is low in all these crosses and consequently the number of dissected embryos (Panels D-F) is also low.**

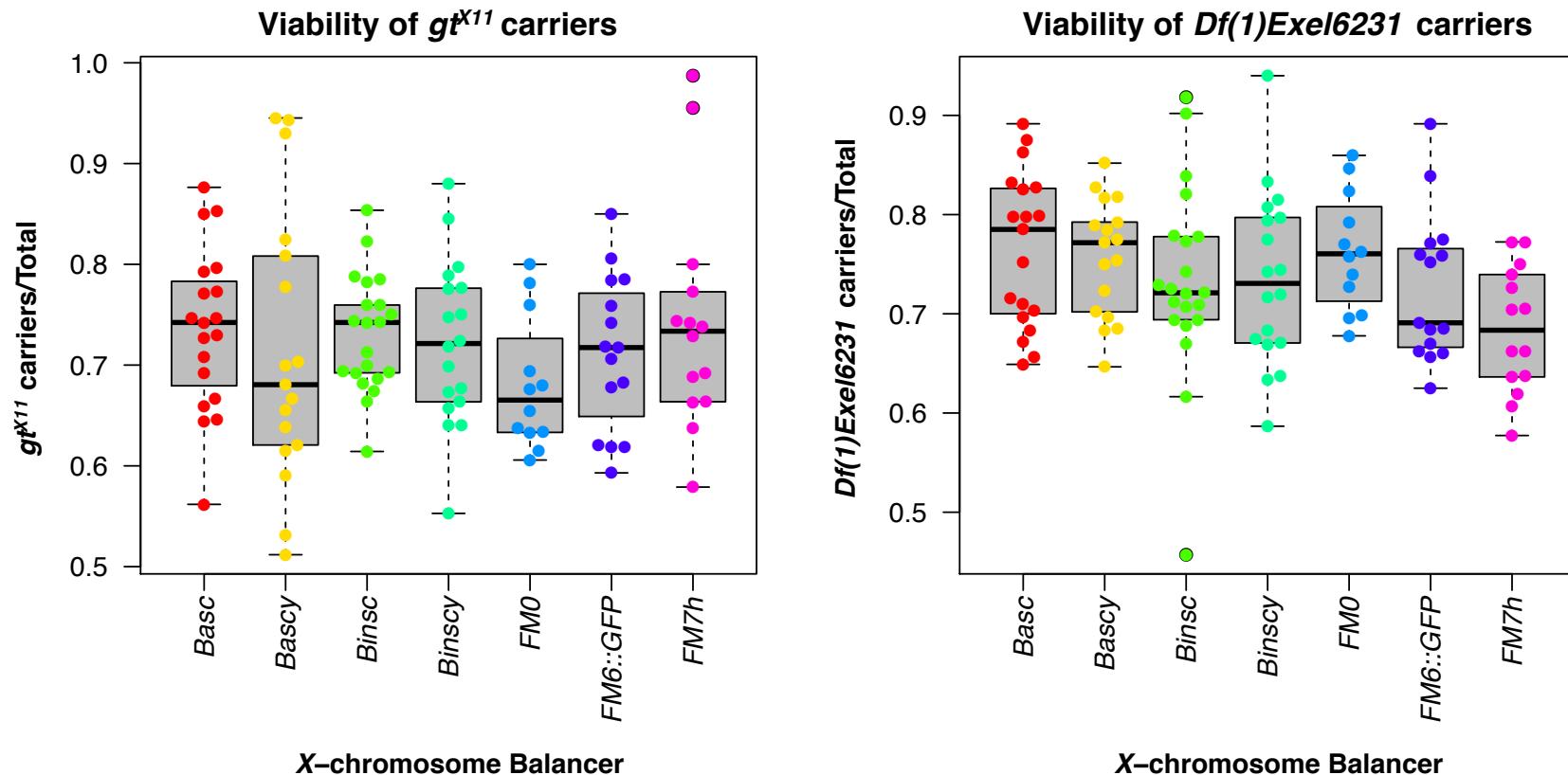



**FIGURE S6. Crosses between *D. melanogaster* females harboring *Dp(1;Y)* duplications and males from different lines of *D. melanogaster* show no evidence of male embryo lethality or abdominal ablations. *Dp(1;Y)* duplications containing *gt<sup>mel</sup>* cause no embryonic defects and do not cause heightened hybrid inviability. The color code is the same as used in Figure 2C. The lack of gray bars indicates that none of the duplications caused hybrid inviability in any of the crosses. Please note that embryonic lethality is exceptionally low in all these crosses and consequently the number of dissected embryos (Panels D-F) is also low.**

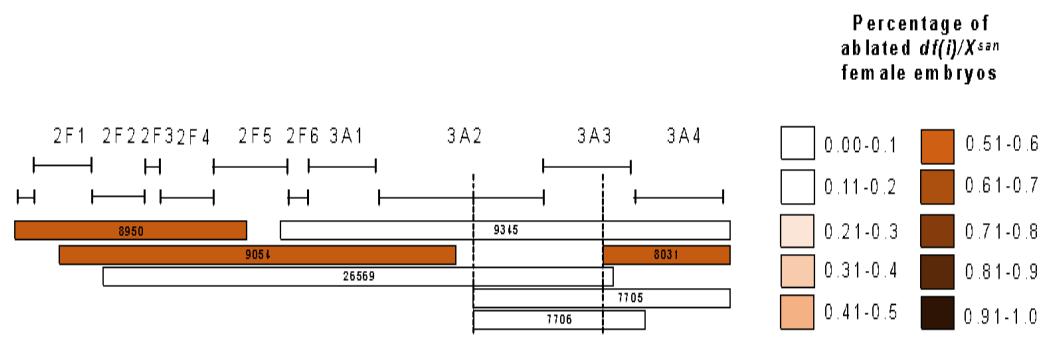



**FIGURE S7. Hybrid male embryos carrying a *gt<sub>mel</sub>*<sup>XII</sup> *D. melanogaster* allele show a variety of developmental defects.**

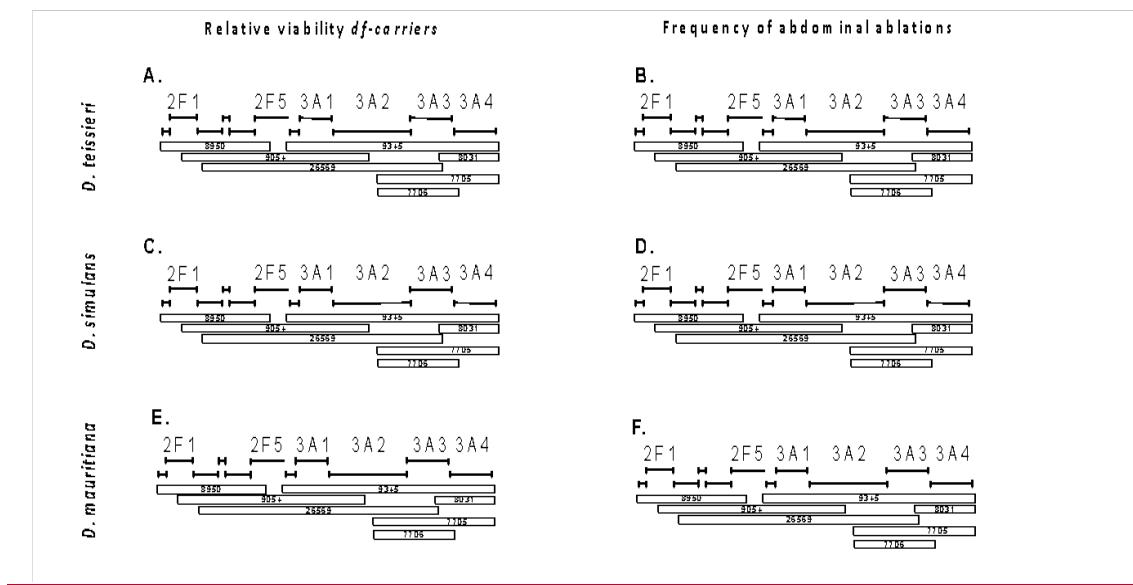
*gt<sub>mel</sub>*<sup>XII</sup>/*Y<sub>san</sub>* males are inviable and show a variety of developmental defects (A-C). Some individuals also show abdominal ablations (D).



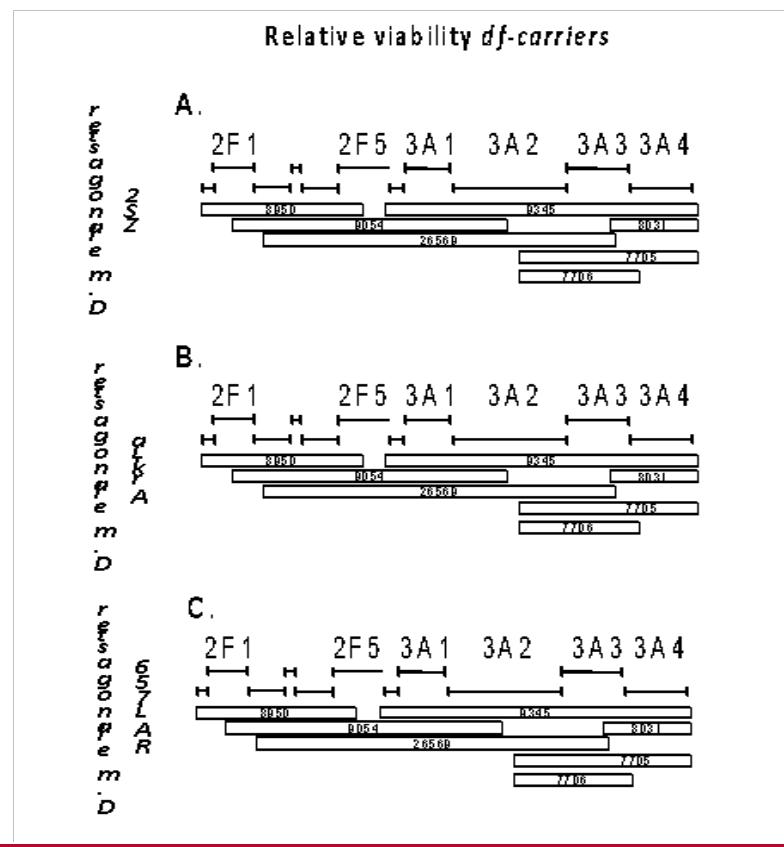

**FIGURE S8. *mel/san* hybrids carrying a *D. melanogaster* chromosome and null alleles for *boi*, *trol*, or *tko* show similar levels of hybrid viability.** This is in contrast to males also carrying a *D. melanogaster* chromosome but a *gt* null allele ( $gt_{mel}^{XII}$ ) which show a significant reduction in abdominal ablations (shown in Figure 2). These three genes have no effect in hybrids between *D. melanogaster* and three more species (*D. teissieri* [B], *D. simulans* [C], and *D. mauritiana* [D]).



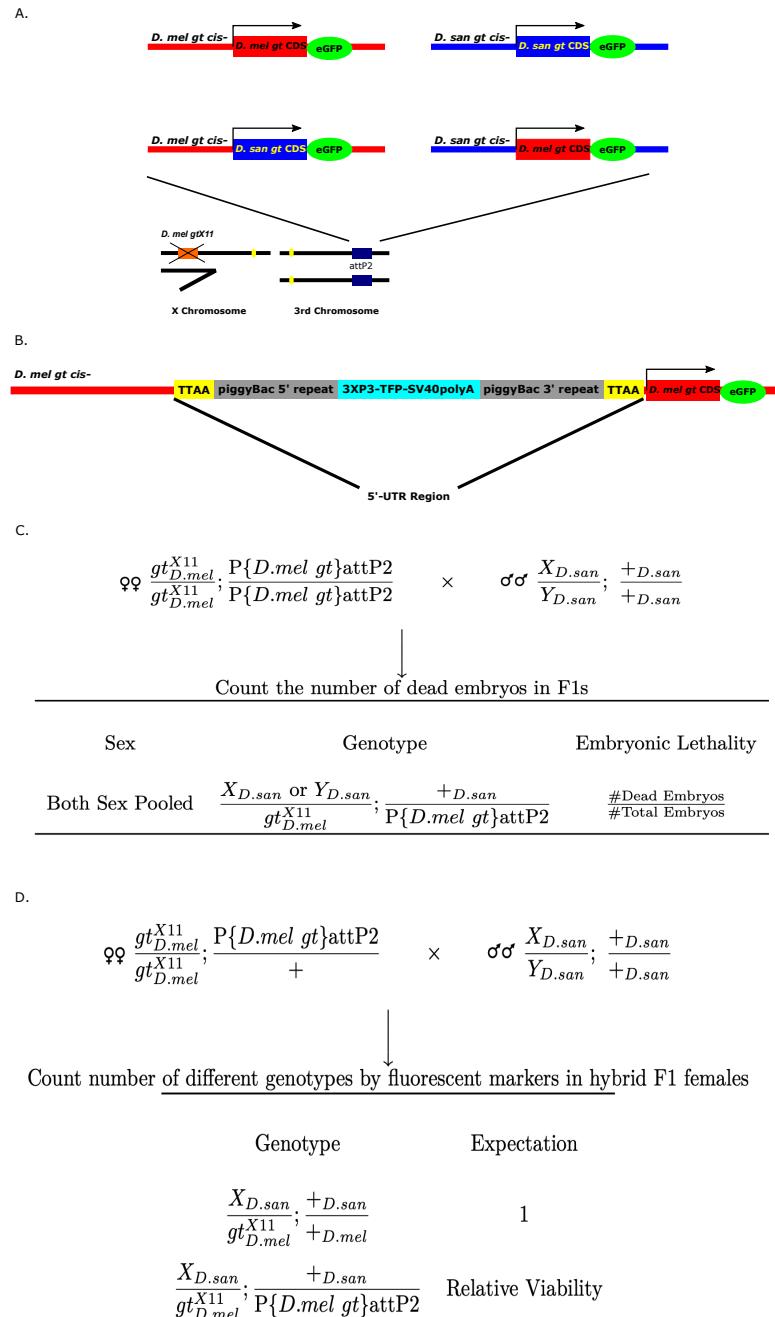

**FIGURE S9. The X-chromosome balancer has no effect on the quantification of hybrid inviability in *mel/san* hybrid females.**


We found no heterogeneity in the relative viability of  $gt_{mel}^{XII}$  when different balancer chromosomes are used (One-way ANOVA,  $F_{6,109} = 0.694$ ,  $P = 0.655$ ). We used seven different X-chromosome balancers and none of them had a major effect on the quantification of the relative frequency of  $gt_{mel}^{XII}$  viability in any of the hybrid crosses.

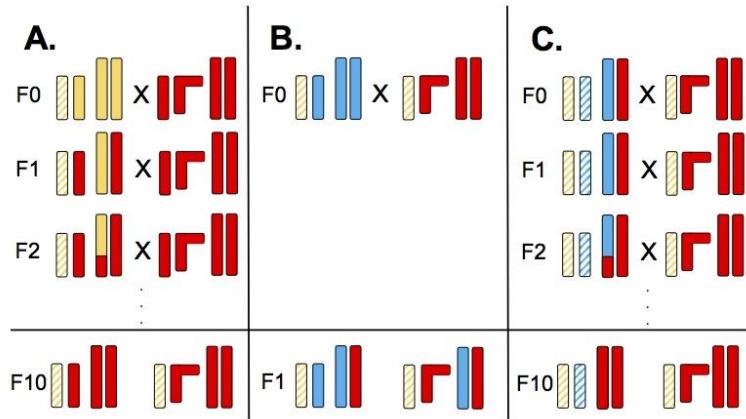



**FIGURE S10. Frequency of abdominal ablations in each deficiency cross shown in Figure 2. Deficiency chromosomes that contain a functional *gt<sub>mel</sub>* (e.g., 8031, 9054, and 8950) were prone to show abdominal ablations than deficiencies that harbored other genes. On the other hand, deficiency chromosomes with no functional copy of *gt<sub>mel</sub>* show reduced rates of abdominal ablations. The mean proportion of abdominal ablation in *X<sub>mel</sub>/X<sub>san</sub>* hybrid females is 0.420.**




**FIGURE S11. *gt<sup>mel</sup>* has no effect on the viability of *mel/tei*, *mel/mau*, and *mel/sim* hybrid females.** We used the same deficiency chromosomes reported to detect the effect of *gt<sup>mel</sup>* in *mel/san* hybrid females (Figure 3A). In all three cases, *df/FM7::GFP* crossed to males of each of the species led to 1:1 ratios in female progeny. The color code is the same as in Figure 3A but since no deficiency departed from the 1:1 expected (i.e., no *gt<sup>mel</sup>* effect on hybrid viability), there are no gray bars.



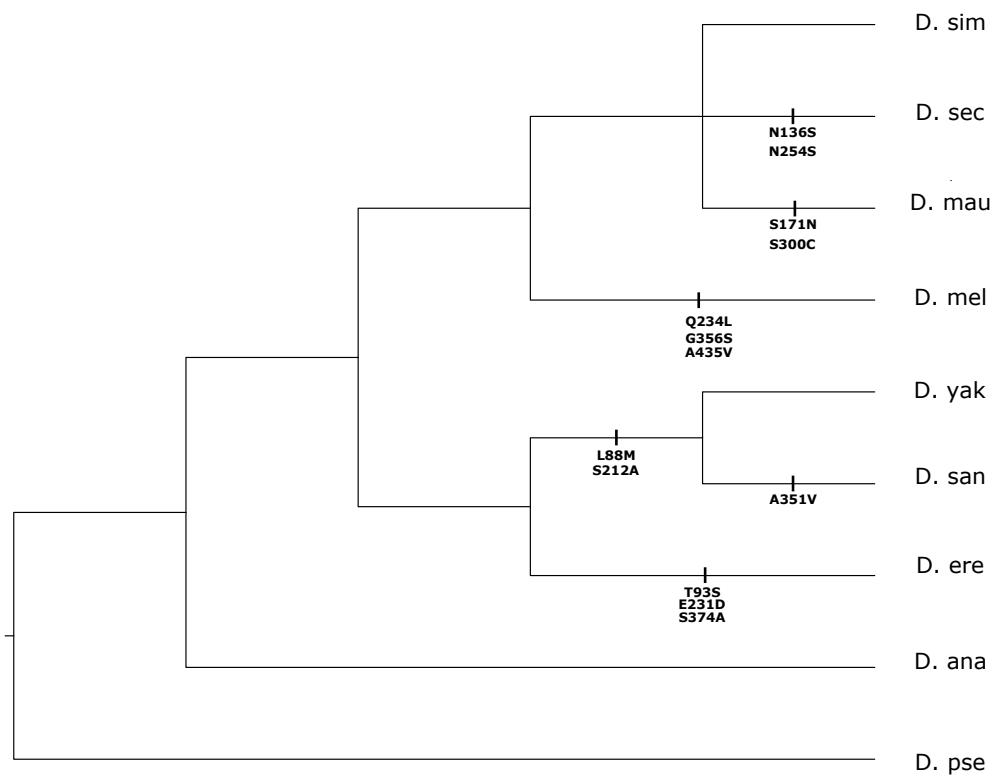

**FIGURE S12.** *gt<sub>mel</sub>* has no effect on the viability of pure-species *D. melanogaster* F1 females. We used the same deficiency chromosomes reported to detect the effect of *gt<sub>mel</sub>* in *mel/san* hybrid females (Figure 3A). In all three types of crosses (three isofemale lines), *df/FM7::GFP* crossed to males of each of the species led to 1:1 ratios in female progeny. The color code is the same as in Figure 3A but since no deficiency departed from the 1:1 expected (i.e., no *gt<sub>mel</sub>* effect on hybrid viability), there are no gray bars. No cross showed any abdominal ablation.



**FIGURE S13. *gt* transgene, removable piggyBac cassette design and crossing schemes involving *gt* transgenes.** Panel **A** shows the general experimental design to generate the four chimeric alleles included in this study and the insertion site for their integration (attP2 site in the 3rd chromosome). Panel **B** shows a detail of the 5' UTR common to all the four alleles with piggyBac cassette. Panel **C** shows the crosses used in Table 1 when measuring giant's effects on hybrid embryonic lethality. Panel **D** shows the crosses used in Table 2 when measuring the effects of different alleles of *giant* on adult hybrid female lethality.



**FIGURE S14. Introgression of the *FM7::GFP* and *gt<sup>XII</sup>* alleles into 200 lines of the DGRP lines.** Each bar represents a chromosome. Short bars are the *X*-chromosome while longer bars represent the autosomes (only one set of autosomes shown). The bar with dashed lines represents the *FM7::GFP* balancer. Solid yellow represent the *FM7::GFP* background. Red bars represent each of the DGRP genetic backgrounds. Dashed blue lines represent the *gt<sup>XII</sup>* chromosome, while solid blue lines represent the autosomal background of the *gt<sup>XII</sup>* stock. **A.** The first step of the experimental design involves introgressing the *FM7::GFP* balancer into each of the 200 DGRP backgrounds. After ten generations of repeating backcrossing, we obtained both females and males that carried the balancer and the DGRP background. **B.** Males from the cross shown in **A** (carriers of the *FM7::GFP* balancer) were crossed the *gt<sup>XII</sup>/FM7::GFP* females. This cross produces females that carry the *gt<sup>XII</sup>* chromosome, the *FM7::GFP* balancer and a mixed genetic background. These females were crossed to males that had the DGRP autosomal background and a *FM7::GFP* balancer (**C**). We repeated this backcrossing approach for ten generations. After, 11 generations we obtained *gt<sup>XII</sup>/FM7::GFP* females with DGRP autosomal backgrounds. These females were then crossed to *D. santomea* and the percentage of ablated progeny were scored.

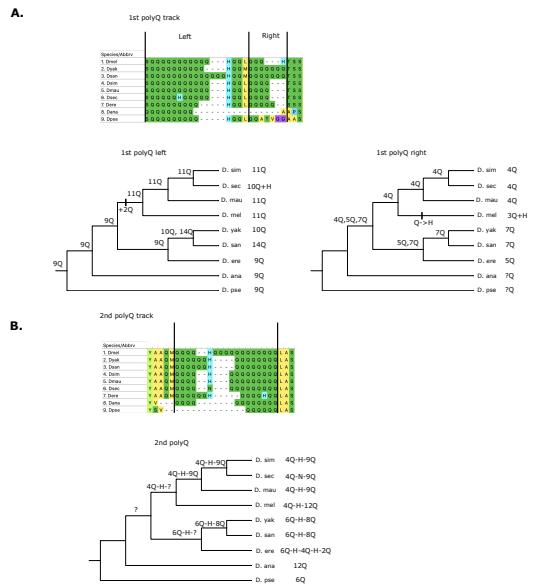



**FIGURE S15. *gt* alleles from six different species in the *melanogaster* species complex.** We found no major differences at the coding portion of the gene between the *melanogaster* species supercomplex (*D. melanogaster*, *D. simulans*, and *D. sechellia*) and that the *D. santomea*/*D. yakuba* species pair is the structure of poly-glutamine repeats. melgt: *D. melanogaster*, simgt: *D. simulans*, sechgt: *D. sechellia*, sangt: *D. santomea*, eregt: *D. erecta*. Asterisks show residues that are conserved across the whole group.

nelgt 1 MLMHEKLMAG QFFDLXKTRK PLMHMHQYOH H000PLHBLP HS0LPV0GSL  
 singt 1 MLMHEKLMAG QFFDLXKTRK PLMHMHQYOH H000PLHBLP HS0LPV0GSL  
 secgt 1 MLMHEKLMAG QFFDLXKTRK PLMHMHQYOH H000PLHBLP HS0LPV0GSL  
 yakgt 1 MLMHEKLMAG QFFDLXKTRK PLMHMHQYOH H000PLHBLP HS0LPV0GSL  
 sangt 1 MLMHEKLMAG QFFDLXKTRK PLMHMHQYOH H000PLHBLP HS0LPV0GSL  
 ecegt 1 MLMHEKLMAG QFFDLXKTRK PLMHMHQYOH H000PLHBLP HS0LPV0GSL  
 \*\*\*\*\*  
 nelgt S1 GLPIMDLYTA YAY000LLGA AL50000000 00-----0 0H---00L00  
 singt S1 GLPIMDLYTA YAY000LLGA AL50000000 00-----0 0H---00L00  
 secgt S1 GLPIMDLYTA YAY000LLGA AL50000000 00-----0 0H---00L00  
 yakgt S1 GLPIMDLYTA YAY000LLGA AL50000000 00-----0 0H00000000  
 sangt S1 GLPIMDLYTA YAY000LLGA AL50000000 00000000 0M---00000  
 ecegt S1 GLPIMDLYTA YAY000LLGA AL50000000 -000000 0H---0L000  
 \*\*\*\*\*  
 nelgt 91 QHTTSAEVL D LSRRCDSVET PRKTSVYQT SYSYGGSF5 ASPTSMULY  
 singt 90 QHTTSAEVL D LSRRCDSVET PRKTSVYQT SYSYGGSF5 ASPTSMULY  
 secgt 91 QHTTSAEVL D LSRRCDSVET PRKTSVYQT SYSYGGSF5 ASPTSMULY  
 yakgt 93 QHTTSAEVL D LSRRCDSVET PRKTSVYQT SYSYGGSF5 ASPTSMULY  
 sangt 93 QHTTSAEVL D LSRRCDSVET PRKTSVYQT SYSYGGSF5 ASPTSMULY  
 ecegt 90 QHTTSAEVL D LSRRCDSVET PRKTSVYQT SYSYGGSF5 ASPTSMULY  
 \* \*\*\*\*\*  
 nelgt 141 A0MQ00QHQ - 000000000 QLASLYPAFY YSMIKQEQAT PTAAAPKVT  
 singt 140 A0MQ00QHQ - 000000000 -LASLYPAFY YSMIKQEQAT PTAAAPKVT  
 secgt 141 A0MQ00QHQ - 000000000 -LASLYPAFY YSMIKQEQAT PTAAAPKVT  
 yakgt 143 A0MQ00QHQ - 000000000 -LASLYPAFY YSMIKQEQAT PTAAAPKVT  
 sangt 143 A0MQ00QHQ - 000000000 -LASLYPAFY YSMIKQEQAT PTAAAPKVT  
 ecegt 140 A0MQ00QHQ - 000000000 -LASLYPAFY YSMIKQEQAT PTAAAPKVT  
 \*\*\*\*\*  
 nelgt 190 TANLQTTFAA A5AAAAAAA ASATNSPPRA SNASTM0DVB LENPQSPAN  
 singt 166 TANLQTTFAA A5AAA-AAA ASATNSPPRA SNASTM0DVB LENPQSPAN  
 secgt 187 TANLQTTFAA A5AAAAAAA ASATNSPPRA SNASTM0DVB LENPQSPAN  
 yakgt 190 TANLQTTFAA A5AAAAAAA ASATNSPPRA SNASTM0DVB LENPQSPAN  
 sangt 190 TANLQTTFAA A5AAAAAAA ASATNSPPRA SNASTM0DVB LENPQSPAN  
 ecegt 186 TANLQTTFAA A5AAAAAAA ASATNSPPRA SNASTM0DVB LENPQSPAN  
 \*\*\*\*\*  
 nelgt 240 ATTPPTTSSS6 EAGONTTRPK AFPRDPLVIA ANFAATDVLV DM0PVERYTE  
 singt 234 ATTPPTTSSS6 EAGONTTRPK AFPRDPLVIA ANFAATDVLV DM0PVERYTE  
 secgt 237 ATTPPTTSSS6 EAGKSTRTRPK AFPRDPLVIA ANFAATDVLV DM0PVERYTE  
 yakgt 240 ATTPPTTSSS6 EAGONTTRPK AFPRDPLVIA ANFAATDVLV DM0PVERYTE  
 sangt 240 ATTPPTTSSS6 EAGONTTRPK AFPRDPLVIA ANFAATDVLV DM0PVERYTE  
 ecegt 236 ATTPPTTSSS6 EAGONTTRPK AFPRDPLVIA ANFAATDVLV DM0PVERYTE  
 \*\*\*\*\*  
 nelgt 290 YKRVYLEQIR SSNGGSRVYT NPKMERTNSR SG5VMEGSSS NNNSSEDR  
 singt 284 YKRVYLEQIR SSNGGSRVYT NPKMERTNSR SG5VMEGSSS NNNSSEDR  
 secgt 287 YKRVYLEQIR SSNGGSRVYT NPKMERTNSR SG5VMEGSSS NNNSSEDR  
 yakgt 290 YKRVYLEQIR SSNGGSRVYT NPKMERTNSR SG5VMEGSSS NNNSSEDR  
 sangt 290 YKRVYLEQIR SSNGGSRVYT NPKMERTNSR SG5VMEGSSS NNNSSEDR  
 ecegt 286 YKRVYLEQIR SSNGGSRVYT NPKMERTNSR SG5VMEGSSS NNNSSEDR  
 \*\*\*\*\*  
 nelgt 340 AAEESSDDCS QAGNFEKSA TS555NLANA TAAN5G1SSG SQVKAAYYE  
 singt 334 AAEESSDDCS QAGNFEKSA TS555NLANA TAAN5G1SSG SQVKAAYYE  
 secgt 337 AAEESSDDCS QAGNFEKSA TS555NLANA TAAN5G1SSG SQVKAAYYE  
 yakgt 340 AAEESSDDCS QAGNFEKSA TS555NLANA TAAN5G1SSG SQVKAAYYE  
 sangt 340 AAEESSDDCS QAGNFEKSA TS555NLANA TAAN5G1SSG SQVKAAYYE  
 ecegt 336 AAEESSDDCS QAGNFEKSA TS555NLANA TAANAG1SSG SQVKAAYYE  
 \*\*\*\*\*  
 nelgt 390 RRRQWAAAK KSRDPBRKE DEIAIRAAYL ERQNIELLQ IDALKVOLA  
 singt 384 RRRQWAAAK KSRDPBRKE DEIAIRAAYL ERQNIELLQ IDALKVOLA  
 secgt 387 RRRQWAAAK KSRDPBRKE DEIAIRAAYL ERQNIELLQ IDALKVOLA  
 yakgt 390 RRRQWAAAK KSRDPBRKE DEIAIRAAYL ERQNIELLQ IDALKVOLA  
 sangt 390 RRRQWAAAK KSRDPBRKE DEIAIRAAYL ERQNIELLQ IDALKVOLA  
 ecegt 386 RRRQWAAAK KSRDPBRKE DEIAIRAAYL ERQNIELLQ IDALKVOLA  
 \*\*\*\*\*  
 nelgt 440 FTSAKVTIA  
 singt 434 FTSAKVTIA  
 secgt 437 FTSAKVTIA  
 yakgt 440 FTSAKVTIA  
 sangt 440 FTSAKVTIA  
 ecegt 436 FTSAKVTIA  
 \*\*\*\*

**FIGURE S16. Maximum-likelihood ancestral sequence reconstruction of GT protein, excluding polyQ.** All ancestral sites could be reconstructed with high confidence (posterior probability > 0.98), except for polyQ tracks. Ancestral substitutions beyond D. ere were not displayed. AA positions based on *D. melanogaster* GT protein.

**Maximum-Likelihood Ancestral Sequence Reconstruction (excluding 2 polyQ tracks)**




AA position based on *D. mel* gt protein

**FIGURE S17.** The polyglutamine repeats (polyQ) show differences among the *melanogaster* subspecies complex species.

Maximum-parsimony ancestral sequence reconstruction of 2 polyQ tracks of gt protein. The conserved H within polyQ tracks helps to delineate both polyQ tracks to two parts. Due to the lack of proper substitution models, this maximum-parsimony based ancestral reconstruction for polyQ tracks may subject to bias due to alignment error, arbitrary choice of polyQ unit etc.

#### Maximum Parsimony Ancestral Sequence Reconstruction for 2 polyQ Tracks



**FIGURE S18. *tll* alleles from six different species in the *melanogaster* species complex.** We found no major differences at the coding portion of the gene between the *melanogaster* species supercomplex (*D. melanogaster*, *D. simulans*, and *D. sechellia*) and that the *D. santomea*/*D. yakuba* species pair is the structure of poly-glutamine repeats. melgt: *D. melanogaster*, simgt: *D. simulans*, sechgt: *D. sechellia*, sangt: *D. santomea*, eregt: *D. erecta*. Asterisks show residues that are conserved across the whole group.

```

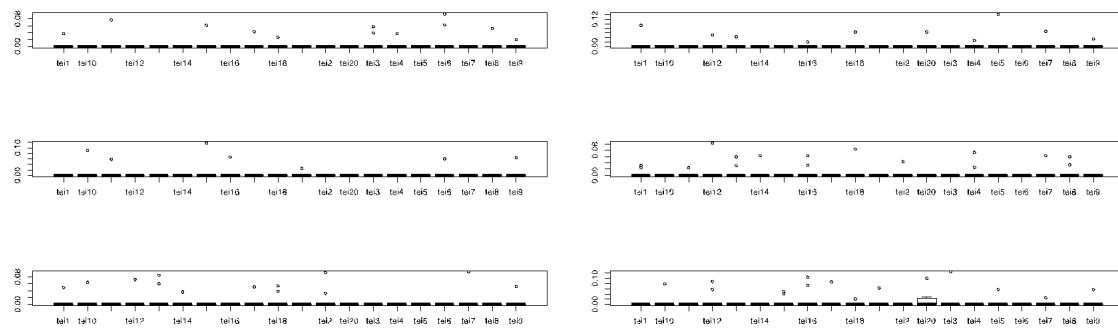
tll_sil      MSSDGPFAIRDVKVNSVLSPLAA SSRSLVYVPPVCFVQD9 HSSGKHYGIVACDGCAGFFKR 60
tll_sim      MSSGEGSP*MMDCGKNSVRLSPASSRLVHVPCKVCD9 HSSGKHYGIVACDGCAGFFKR 60
tll_mau      MSSGEGSP*MMDCGKNSVRLSPASSRLVHVPCKVCD9 HSSGKHYGIVACDGCAGFFKR 60
tll_era      MSSGEGSP*MMDCGKNSVRLSPASSRLVHVPCKVCD9 HSSGKHYGIVACDGCAGFFKR 60
tll_tei      MSSGEGSP*MMDCGKNSVRLSPASSRLVHVPCKVCD9 HSSGKHYGIVACDGCAGFFKR 60
tll_san      MSSGEGSP*MMDCGKNSVRLSPASSRLVHVPCKVCD9 HSSGKHYGIVACDGCAGFFKR 60
tll_yak      MSSGEGSP*MMDCGKNSVRLSPASSRLVHVPCKVCD9 HSSGKHYGIVACDGCAGFFKR 60
*****  

tll_mel      SIRRSGQYVCKSOKGGLCVVDTKRNQCAFCLRKCFEVGMNKAQVQE RGPFRNSTLRRH120
tll_sim      SIRRSGQYVCKSOKGGLCVVDTKRNQCAFCLRKCFEVGMNKAQVQE RGPFRNSTLRRH120
tll_mau      SIRRSGQYVCKSOKGGLCVVDTKRNQCAFCLRKCFEVGMNKAQVQE RGPFRNSTLRRH120
tll_era      SIRRSGQYVCKSOKGGLCVVDTKRNQCAFCLRKCFEVGMNKAQVQE RGPFRNSTLRRH120
tll_tei      SIRRSGQYVCKSOKGGLCVVDTKRNQCAFCLRKCFEVGMNKAQVQE RGPFRNSTLRRH120
tll_san      SIRRSGQYVCKSOKGGLCVVDTKRNQCAFCLRKCFEVGMNKAQVQE RGPFRNSTLRRH120
tll_yak      SIRRSGQYVCKSOKGGLCVVDTKRNQCAFCLRKCFEVGMNKAQVQE RGPFRNSTLRRH120
*****  

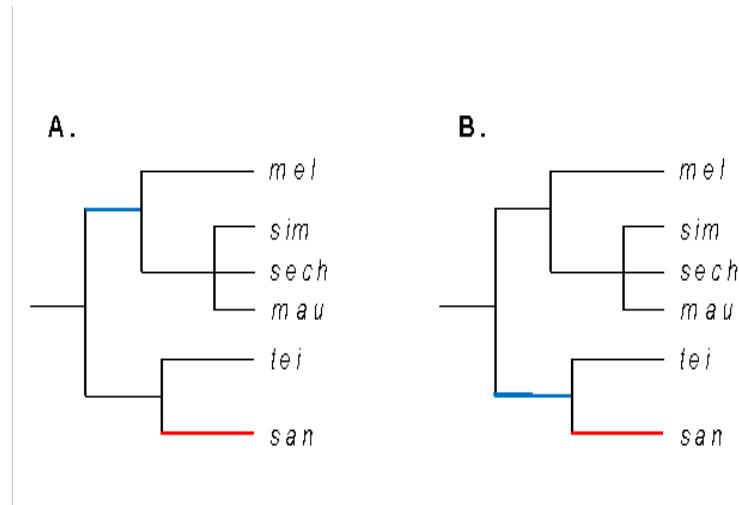
tll_mel      MAMYKDAMGAGEMPQIPAFIDLMNTAALTGTGPPGVPMMPGLPORAGHHPDMMAAPOPSS 180
tll_sim      MAMYKDAMGAGEMPQIPAFIDLMNTAALTGTGPPGVPMMPGLPORAGHHPDMMAAPOPSS 180
tll_mau      MAMYKDAMGAGEMPQIPAFIDLMNTAALTGTGPPGVPMMPGLPORAGHHPDMMAAPOPSS 180
tll_era      MAMYKDAMGAGEMPQIPAFIDLMNTAALTGTGPPGVPMMPGLPORAGHHPDMMAAPOPSS 180
tll_tei      MAMYKDAMGAGEMPQIPAFIDLMNTAALTGTGPPGVPMMPGLPORAGHHPDMMAAPOPSS 180
tll_san      MAMYKDAMGAGEMPQIPAFIDLMNTAALTGTGPPGVPMMPGLPORAGHHPDMMAAPOPSS 180
tll_yak      MAMYKDAMGAGEMPQIPAFIDLMNTAALTGTGPPGVPMMPGLPORAGHHPDMMAAPOPSS 180
*****  

tll_mel      AAAVLDLSVPPVPHFPVHQGHMF FSPDAAZMNLATRALLPTDPLMMAAHKETAALHL 240
tll_sim      AAAVLDLSVPPVPHFPVHQGHMF FSPDAAZMNLATRALLPTDPLMMAAHKETAALHL 240
tll_mau      AAAVLDLSVPPVPHFPVHQGHMF FSPDAAZMNLATRALLPTDPLMMAAHKETAALHL 240
tll_era      AAAVLDLSVPPVPHFPVHQGHMF FSPDAAZMNLATRALLPTDPLMMAAHKETAALHL 240
tll_tei      AAAVLDLSVPPVPHFPVHQGHMF FSPDAAZMNLATRALLPTDPLMMAAHKETAALHL 240
tll_san      AAAVLDLSVPPVPHFPVHQGHMF FSPDAAZMNLATRALLPTDPLMMAAHKETAALHL 240
tll_yak      AAAVLDLSVPPVPHFPVHQGHMF FSPDAAZMNLATRALLPTDPLMMAAHKETAALHL 240
*****  

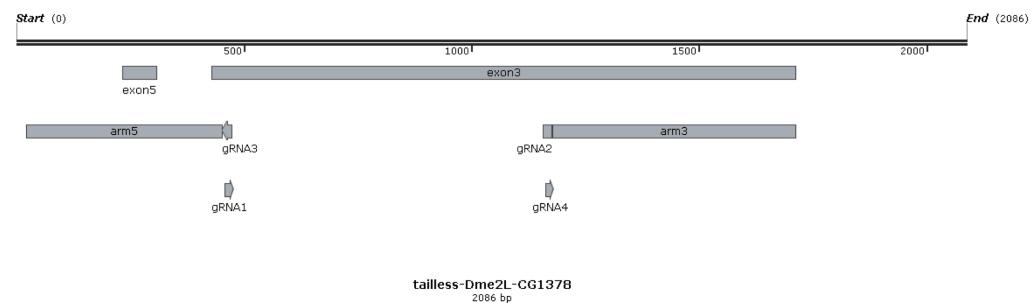
tll_mel      FDNVWIKVSRPATELMPDQILLLESWKEFPLIAMAQYLMPPNWFQAGLLPVYSEXWANR 300
tll_sim      FDNVWIKVSRPATELMPDQILLLESWKEFPLIAMAQYLMPPNWFQAGLLPVYSEXWANR 300
tll_mau      FDNVWIKVSRPATELMPDQILLLESWKEFPLIAMAQYLMPPNWFQAGLLPVYSEXWANR 300
tll_era      FDNVWIKVSRPATELMPDQILLLESWKEFPLIAMAQYLMPPNWFQAGLLPVYSEXWANR 300
tll_tei      FDNVWIKVSRPATELMPDQILLLESWKEFPLIAMAQYLMPPNWFQAGLLPVYSEXWANR 300
tll_san      FDNVWIKVSRPATELMPDQILLLESWKEFPLIAMAQYLMPPNWFQAGLLPVYSEXWANR 300
tll_yak      FDNVWIKVSRPATELMPDQILLLESWKEFPLIAMAQYLMPPNWFQAGLLPVYSEXWANR 300
*****  


tll_mel      EIMGMVTRVHAFQEVNLQCHLWIDSTYECRAISLFRKSPP SASSTEDLANSILTG 360
tll_sim      EIMGMVTRVHAFQEVNLQCHLWIDSTYECRAISLFRKSPP SASSTEDLANSILTG 360
tll_mau      EIMGMVTRVHAFQEVNLQCHLWIDSTYECRAISLFRKSPP SASSTEDLANSILTG 360
tll_era      EIMGMVTRVHAFQEVNLQCHLWIDSTYECRAISLFRKSPP SASSTEDLANSILTG 360
tll_tei      EIMGMVTRVHAFQEVNLQCHLWIDSTYECRAISLFRKSPP SASSTEDLANSILTG 360
tll_san      EIMGMVTRVHAFQEVNLQCHLWIDSTYECRAISLFRKSPP SASSTEDLANSILTG 360
tll_yak      EIMGMVTRVHAFQEVNLQCHLWIDSTYECRAISLFRKSPP SASSTEDLANSILTG 360
*****  

tll_mel      SGSPNSASAESKGLESGKVAAMHNNDASPSALHNYICORTHPSQMRFTQL6VVQVLQMHKV 420
tll_sim      SGSPNSASAESKGLESGKVAAMHNNDASPSALHNYICORTHPSQMRFTQL6VVQVLQMHKV 420
tll_mau      SGSPNSASAESKGLESGKVAAMHNNDASPSALHNYICORTHPSQMRFTQL6VVQVLQMHKV 420
tll_era      SGSPNSASAESKGLESGKVAAMHNNDASPSALHNYICORTHPSQMRFTQL6VVQVLQMHKV 420
tll_tei      SGSPNSASAESKGLESGKVAAMHNNDASPSALHNYICORTHPSQMRFTQL6VVQVLQMHKV 420
tll_san      SGSPNSASAESKGLESGKVAAMHNNDASPSALHNYICORTHPSQMRFTQL6VVQVLQMHKV 420
tll_yak      SGSPNSASAESKGLESGKVAAMHNNDASPSALHNYICORTHPSQMRFTQL6VVQVLQMHKV 420
*****  


tll_mel      SPTTIEELPFKRTIGDITIVRISDMYSQRK 452
tll_sim      SPTTIEELPFKRTIGDITIVRISDMYSQRK 452
tll_mau      SPTTIEELPFKRTIGDITIVRISDMYSQRK 452
tll_era      SPTTIEELPFKRTIGDITIVRISDMYSQRK 452
tll_tei      SPTTIEELPFKRTIGDITIVRISDMYSQRK 452
tll_san      SPTTIEELPFKRTIGDITIVRISDMYSQRK 452
tll_yak      SPTTIEELPFKRTIGDITIVRISDMYSQRK 452
*****  


```


**FIGURE S19. Embryonic hybrid inviability does not occur in *mel/tei* hybrids.** No line of *D. teissieri* showed either embryonic inviability or abdominal ablations when crossed with *D. melanogaster*, *D. simulans*, or *D. mauritiana* females. The vast majority of assays revealed no dead embryos. **A.** *mel/tei* male hybrids. **B.** *sim/tei* male hybrids. **C.** *mau/tei* male hybrids. **D.** *mel/tei* female hybrids. **E.** *sim/tei* female hybrids. **F.** *mau/tei* female hybrids. tei1: Balancha\_1; tei2: Balancha\_2, tei3: Balancha\_3, tei4: House\_Bioko\_0, tei5: House\_Bioko\_1, tei6: House\_Bioko\_2, tei7: La\_Lope\_Gabon, tei8: Selinda, tei9: Zimbabwe, tei10: cascade\_2\_1, tei11: cascade\_2\_2; tei12: cascade\_2\_4, tei13: cascade\_4\_1, tei14: cascade\_4\_2, tei15: cascade\_4\_3, tei16: cascade\_4\_4, tei17: cascade\_4\_5, tei18: cascade\_4\_6, tei19: Bata\_2, tei20: Bata\_8.



**FIGURE S20. Divergence in *giant* in the *melanogaster* species subgroup. A.** The evolutionary timing of  $gt^{mel}$  and its interactor leading to HI. The  $gt$  allele responsible for HI in hybrids with *D. santomea* evolved before *mel*, *sim*, and *mau* had a common ancestor (Blue branch). At least one of the interactors of  $gt^{mel}$  is not shared with *D. teissieri* which indicates that such element must have evolved after the last common ancestor of *D. santomea* and *D. teissieri* speciated (Red branch).



**FIGURE S21. Experimental design to generated a GFP-mediated disruption of *tll<sub>mel</sub>*.**



## REFERENCES

Bachtrog D., K. Thornton, A. Clark, and P. Andolfatto, 2006 Extensive introgression of mitochondrial DNA relative to nuclear genes in the *Drosophila yakuba* species group. *Evolution* 60: 292–302.

Bischof J., R. K. Maeda, M. Hediger, F. Karch, and K. Basler, 2007 An optimized transgenesis system for *Drosophila* using germ-line-specific φC31 integrases. *PNAS* 104: 3312–3317.

Bomblies K., J. Lempe, P. Epple, N. Warthmann, C. Lanz, *et al.*, 2007 Autoimmune response as a mechanism for a Dobzhansky-Muller-type incompatibility syndrome in plants. *PLoS Biology*. <https://doi.org/10.1371/journal.pbio.0050236>

Brand C. L., S. B. Kingan, L. Wu, and D. Garrigan, 2013 A selective sweep across species boundaries in *Drosophila*. *Molecular Biology and Evolution*. <https://doi.org/10.1093/molbev/mst123>

Brideau N. J., H. A. Flores, J. Wang, S. Maheshwari, X. Wang, *et al.*, 2006 Two Dobzhansky-Muller Genes interact to cause hybrid lethality in *Drosophila*. *Science* 314: 1292–1295. <https://doi.org/10.1126/science.1133953>

Brönnér G., Q. Chu-LaGraff, C. Q. Doe, B. Cohen, D. Weigel, *et al.*, 1994 Sp1/egr-like zinc-finger protein required for endoderm specification and germ-layer formation in *Drosophila*. *Nature* 369: 664–668. <https://doi.org/10.1038/369664a0>

Brown J. B., N. Boley, R. Eisman, G. E. May, M. H. Stoiber, *et al.*, 2014 Diversity and dynamics of the *Drosophila* transcriptome. *Nature* 512: 393–399. <https://doi.org/10.1038/nature12962>

Bucher G., 2004 Divergent segmentation mechanism in the short germ insect *Tribolium* revealed by giant expression and function. *Development* 131: 1729–1740. <https://doi.org/10.1242/dev.01073>

Capovilla M., E. D. Eldon, and V. Pirrotta, 1992 The giant gene of *Drosophila* encodes a b-ZIP DNA-binding protein that regulates the expression of other segmentation gap genes. *Development* (Cambridge, England) 114: 99–112.

Cattani M. V., and D. C. Presgraves, 2012 Incompatibility between *X* chromosome factor and pericentric heterochromatic region causes lethality in hybrids between *Drosophila melanogaster* and its sibling species. *Genetics* 191: 549–559.

Cauret C. M. S., M.-T. Gansauge, A. S. Tupper, B. L. S. Furman, M. Knytl, *et al.*, 2020 Developmental systems drift and the drivers of sex chromosome evolution. *Molecular Biology and Evolution* 37: 799–810. <https://doi.org/10.1093/molbev/msz268>

Cerny A. C., D. Grossmann, G. Bucher, and M. Klingler, 2008 The *Tribolium* ortholog of *knirps* and *knirps*-related is crucial for head segmentation but plays a minor role during abdominal patterning. *Developmental Biology* 321: 284–294. <https://doi.org/10.1016/j.ydbio.2008.05.527>

Chang W., D. R. Matute, and M. Kreitman, 2021 Rapid evolution of the functionally conserved gap gene *giant* in *Drosophila*. bioRxiv 2021.07.08.451553. <https://doi.org/10.1101/2021.07.08.451553>

Clark A. G., M. B. Eisen, D. R. Smith, C. M. Bergman, and the *Drosophila* 12 Genomes Consortium, 2007 Evolution of genes and genomes on the *Drosophila* phylogeny. *Nature* 450: 203–218. <https://doi.org/10.1038/nature06341>

Cook R. K., M. E. Deal, J. A. Deal, R. D. Garton, C. A. Brown, *et al.*, 2010 A new resource for characterizing *X*-linked genes in *Drosophila melanogaster*: Systematic coverage and subdivision of the *X* chromosome with nested, *Y*-linked duplications. *Genetics* 186: 1095–1109. <https://doi.org/10.1534/genetics.110.123265>

Cooper B. S., P. S. Ginsberg, M. Turelli, and D. R. Matute, 2017 *Wolbachia* in the *Drosophila yakuba* complex: Pervasive frequency variation and weak cytoplasmic incompatibility, but no apparent effect on reproductive isolation. *Genetics* 205: 333–351. <https://doi.org/10.1534/genetics.116.196238>

Coughlan J. M., and D. R. Matute, 2020 The importance of intrinsic postzygotic barriers throughout the speciation process. *Philosophical Transactions of the Royal Society B: Biological Sciences* 375: 20190533. <https://doi.org/10.1098/rstb.2019.0533>

Coyne J. A., 1985 Genetic studies of three sibling species of *Drosophila* with relationship to theories of speciation. *Genetical Research*. <https://doi.org/10.1017/S0016672300022643>

Coyne J. A., S. Simeonidis, and P. Rooney, 1998 Relative paucity of genes causing inviability in hybrids between *Drosophila melanogaster* and *D. simulans*. *Genetics* 150: 1091–1103.

Coyne J. A., S. Elwyn, S. Y. Kim, and A. Llopart, 2004 Genetic studies of two sister species in the *Drosophila melanogaster* subgroup, *D. yakuba* and *D. santomea*. *Genetics Research* 84: 11–26.

Coyne J. A., and H. A. Orr, 2004 *Speciation*. Sinauer Associates.

Crombach A., M. A. García-Solache, and J. Jaeger, 2014 Evolution of early development in dipterans: Reverse-engineering the gap gene network in the moth midge *Clogmia albipunctata* (Psychodidae). *BioSystems* 123: 74–85.  
<https://doi.org/10.1016/j.biosystems.2014.06.003>

Crombach A., K. R. Wotton, E. Jiménez-Guri, and J. Jaeger, 2016 Gap gene regulatory dynamics evolve along a genotype network. *Molecular Biology and Evolution* 33: 1293–1307. <https://doi.org/10.1093/molbev/msw013>

Cutter A. D., and J. D. Bundus, 2020 Speciation and the developmental alarm clock. *eLife* 9: e56276.

<https://doi.org/10.7554/eLife.56276>

Darwin C., 1859 *The origin of species by means of natural selection.*

DePristo M. A., E. Banks, R. Poplin, K. V. Garimella, J. R. Maguire, *et al.*, 2011 A framework for variation discovery and genotyping using next-generation DNA sequencing data. *Nature genetics* 43: 491–498.

Dobzhansky T., 1937 Genetic nature of species differences. *The American Naturalist* 71: 404–420. <https://doi.org/10.2307/2457293>

Dos Santos G., A. J. Schroeder, J. L. Goodman, V. B. Strelets, M. A. Crosby, *et al.*, 2015a FlyBase: Introduction of the *Drosophila melanogaster* Release 6 reference genome assembly and large-scale migration of genome annotations. *Nucleic Acids Research* 43: D690–D697. <https://doi.org/10.1093/nar/gku1099>

Eldon E. D., and V. Pirrotta, 1991 Interactions of the *Drosophila* gap gene *giant* with maternal and zygotic pattern-forming genes. *Development* (Cambridge, England) 111: 367–378.

Ferree P. M., and D. A. Barbash, 2009 Species-specific heterochromatin prevents mitotic chromosome segregation to cause hybrid lethality in *Drosophila*. *PLOS Biology* 7: e1000234. <https://doi.org/10.1371/journal.pbio.1000234>

García-Solache M., J. Jaeger, and M. Akam, 2010 A systematic analysis of the gap gene system in the moth midge *Clogmia albipunctata*. *Developmental Biology* 344: 306–318. <https://doi.org/10.1016/j.ydbio.2010.04.019>

Garrigan D., S. B. Kingan, A. J. Geneva, P. Andolfatto, A. G. Clark, *et al.*, 2012 Genome sequencing reveals complex speciation in the *Drosophila simulans* clade. *Genome Research* 22: 1499–1511. <https://doi.org/10.1101/gr.130922.111>

Gaunt S. J., 2002 Conservation in the *Hox* code during morphological evolution. *International Journal of Developmental Biology* 38: 549–552.

Gavin-Smyth J., and D. R. Matute, 2013 Embryonic lethality leads to hybrid male inviability in hybrids between *Drosophila melanogaster* and *D. santomea*. *Ecology and Evolution* 3: 1580–1589. <https://doi.org/10.1002/ece3.573>

Gibson D. G., L. Young, R.-Y. Chuang, J. C. Venter, C. A. Hutchison, *et al.*, 2009 Enzymatic assembly of DNA molecules up to several hundred kilobases. *Nature methods* 6: 343–345.

Goltsev Y., W. Hsiong, G. Lanzaro, and M. Levine, 2004 Different combinations of gap repressors for common stripes in *Anopheles* and *Drosophila* embryos. *Developmental Biology* 275: 435–446. <https://doi.org/10.1016/j.ydbio.2004.08.021>

Gordon K. L., and I. Ruvinsky, 2012 Tempo and mode in evolution of transcriptional regulation. PLOS Genetics 8: e1002432.

<https://doi.org/10.1371/journal.pgen.1002432>

Groth A. C., M. Fish, R. Nusse, and M. P. Calos, 2004 Construction of transgenic *Drosophila* by using the site-specific integrase from phage φC31. Genetics 166: 1775–1782.

Hare E. E., B. K. Peterson, and M. B. Eisen, 2008a A careful look at binding site reorganization in the even-skipped enhancers of *Drosophila* and sepsids. PLoS genetics, 4(11), p.e1000268.

Hare E. E., B. K. Peterson, V. N. Iyer, R. Meier, and M. B. Eisen, 2008b Sepsid *even-skipped* enhancers are functionally conserved in *Drosophila* despite lack of sequence conservation. PLoS Genetics 4. <https://doi.org/10.1371/journal.pgen.1000106>

Hartman T. R., D. Zinshteyn, H. K. Schofield, E. Nicolas, A. Okada, *et al.*, 2010 *Drosophila Boi* limits hedgehog levels to suppress follicle stem cell proliferation. Journal of Cell Biology 191: 943–952. <https://doi.org/10.1083/jcb.201007142>

He B. Z., A. K. Holloway, S. J. Maerkl, and M. Kreitman, 2011 Does positive selection drive transcription factor binding site turnover? a test with *Drosophila cis*-regulatory modules. PLoS Genetics 7. <https://doi.org/10.1371/journal.pgen.1002053>

Hu T. T., M. B. Eisen, K. R. Thornton, and P. Andolfatto, 2013 A second-generation assembly of the *Drosophila simulans* genome provides new insights into patterns of lineage-specific divergence. *Genome Research* 23: 89–98.

<https://doi.org/10.1101/gr.141689.112>

Huang W., A. Massouras, Y. Inoue, J. Peiffer, M. Ràmia, *et al.*, 2014 Natural variation in genome architecture among 205 *Drosophila melanogaster* Genetic Reference Panel lines. *Genome Research* 24: 1193–1208. <https://doi.org/10.1101/gr.171546.113>

Jaeger J., 2011 *The gap gene network*.

Janssens H., K. Siggens, D. Cicin-Sain, E. Jiménez-Guri, M. Musy, *et al.*, 2014 A quantitative atlas of *even-skipped* and *Hunchback* expression in *Clogmia albipunctata* (Diptera: Psychodidae) blastoderm embryos. *EvoDevo* 5. <https://doi.org/10.1186/2041-9139-5-1>

Johnson N. A., and A. H. Porter, 2007 Evolution of branched regulatory genetic pathways: Directional selection on pleiotropic loci accelerates developmental system drift. *Genetica* 129: 57–70. <https://doi.org/10.1007/s10709-006-0033-2>

Johnson N. A., 2010 Hybrid incompatibility genes: Remnants of a genomic battlefield? *Trends in Genetics*, 26: 317-325.

Johnson R. C., G. W. Nelson, J. L. Troyer, J. A. Lautenberger, B. D. Kessing, *et al.*, 2010 Accounting for multiple comparisons in a genome-wide association study (GWAS). *BMC genomics* 11: 1–6.

Kaminker J., C. Bergman, B. Kronmiller, J. Carlson, R. Svirskas, *et al.*, 2002 The transposable elements of the *Drosophila melanogaster* euchromatin: a genomics perspective. *Genome Biology* 3: 1–20. <https://doi.org/10.1186/gb-2002-3-12-research0084>

Kinsey J. D., 1967 Studies on an embryonic lethal hybrid in *Drosophila*. *Development* 17: 405–423.

Kondrashov A. S., S. Sunyaev, and F. A. Kondrashov, 2002 Dobzhansky–Muller incompatibilities in protein evolution. *PNAS* 99: 14878–14883. <https://doi.org/10.1073/pnas.232565499>

Kraut R., and M. Levine, 1991 Mutually repressive interactions between the gap genes *giant* and *Krüppel* define middle body regions of the *Drosophila* embryo. *Development* 111: 611–621.

Lack J. B., J. D. Lange, A. D. Tang, R. B. Corbett-Detig, and J. E. Pool, 2016 A thousand fly genomes: An expanded *Drosophila* genome Nexus. *Molecular Biology and Evolution* 33: 3308–3313. <https://doi.org/10.1093/molbev/msw195>

Lee A. P., E. G. Koh, A. Tay, S. Brenner, and B. Venkatesh, 2006 Highly conserved syntenic blocks at the vertebrate Hox loci and conserved regulatory elements within and outside Hox gene clusters. *Proceedings of the National Academy of Sciences* 103: 6994–6999.

Lee H. Y., J. Y. Chou, L. Cheong, N. H. Chang, S. Y. Yang, *et al.*, 2008 Incompatibility of nuclear and mitochondrial genomes causes hybrid sterility between two yeast species. *Cell* 135: 1065–1073. <https://doi.org/10.1016/j.cell.2008.10.047>

Li H., B. Handsaker, A. Wysoker, T. Fennell, J. Ruan, *et al.*, 2009 The sequence alignment/map format and SAMtools. *Bioinformatics* 25: 2078–2079.

Li H., and R. Durbin, 2009 Fast and accurate short read alignment with Burrows-Wheeler transform. *Bioinformatics* 25: 1754–1760. <https://doi.org/10.1093/bioinformatics/btp324>

Li H., 2013 Aligning sequence reads, clone sequences and assembly contigs with BWA-MEM. *arXiv preprint arXiv* 00: 3. <https://doi.org/arXiv:1303.3997> [q-bio.GN]

Lindsley D. L., and G. G. Zimm, 1992 The genome of *Drosophila melanogaster*.

Llopart A., E. Brud, N. Pettie, and J. M. Comeron, 2018 Support for the dominance theory in *Drosophila* transcriptomes. *Genetics* 210: 703–718. <https://doi.org/10.1534/genetics.118.301229>

Ludwig M. Z., A. Palsson, E. Alekseeva, C. M. Bergman, J. Nathan, *et al.*, 2005 Functional evolution of a *cis*-regulatory module. *PLoS Biology* 3: 0588–0598. <https://doi.org/10.1371/journal.pbio.0030093>

Lynch V. J., 2009 Use with caution: Developmental systems divergence and potential pitfalls of animal models. *Yale J Biol Med* 82: 53–66.

Mack K. L., and M. W. Nachman, 2017 Gene regulation and speciation. *Trends in Genetics* 33: 68–80.

MacKay T. F. C., S. Richards, E. A. Stone, A. Barbadilla, J. F. Ayroles, *et al.*, 2012 The *Drosophila melanogaster* Genetic Reference Panel. *Nature* 482: 173–178. <https://doi.org/10.1038/nature10811>

Maddison W., and D. Maddison, 2010 Mesquite 2. Manual 1–258.

Maheshwari S., and D. A. Barbash, 2011 The genetics of hybrid incompatibilities. *Annual Review of Genetics* 45: 331–355. <https://doi.org/10.1146/annurev-genet-110410-132514>

Manu, M. Z. Ludwig, and M. Kreitman, 2013 Sex-specific pattern formation during early *Drosophila* development. *Genetics* 194: 163–173. <https://doi.org/10.1534/genetics.112.148205>

Manzanares M., H. Wada, N. Itasaki, P. A. Trainor, R. Krumlauf, *et al.*, 2000 Conservation and elaboration of Hox gene regulation during evolution of the vertebrate head. *Nature* 408: 854–857.

Matute D. R., I. A. Butler, D. A. Turissini, and J. A. Coyne, 2010 A test of the snowball theory for the rate of evolution of hybrid incompatibilities. *Science* 329: 1518–1521. <https://doi.org/10.1126/science.1193440>

Matute D. R., and J. Gavin-Smyth, 2014 fine mapping of dominant *X*-linked incompatibility alleles in *Drosophila* hybrids. *PLoS Genetics* 10. <https://doi.org/10.1371/journal.pgen.1004270>

Matute D. R., J. Gavin-Smyth, and G. Liu, 2014 Variable post-zygotic isolation in *Drosophila melanogaster/D. simulans* hybrids. *Journal of Evolutionary Biology*. <https://doi.org/10.1111/jeb.12422>

McKenna A., M. Hanna, E. Banks, A. Sivachenko, K. Cibulskis, *et al.*, 2010 The Genome Analysis Toolkit: A MapReduce framework for analyzing next-generation DNA sequencing data. *Genome Res.* 20: 1297–1303.  
<https://doi.org/10.1101/gr.107524.110>

Miller C. J. J., and D. R. Matute, 2017 The effect of temperature on *Drosophila* hybrid fitness. *G3 Genes|Genomes|Genetics* 7: 377–385. <https://doi.org/10.1534/g3.116.034926>

Mohler J., E. D. Eldon, and V. Pirrotta, 1989 A novel spatial transcription pattern associated with the segmentation gene, *giant*, of *Drosophila*. *The EMBO journal* 8: 1539–1548.

Moran B. M., C. Y. Payne, D. L. Powell, E. N. K. Iverson, S. M. Banerjee, *et al.*, 2021 A lethal genetic incompatibility between naturally hybridizing species in Mitochondrial Complex I. *BioRxiv*. doi: <https://doi.org/10.1101/2021.07.13.452279>

Moyle L. C., and T. Nakazato, 2010 Hybrid incompatibility “snowballs” between *Solanum* species. *Science* 329: 1521–1523.  
<https://doi.org/10.1126/science.1193063>

Muller H. J., 1942 Isolating mechanisms, evolution and temperature. *Biology Symposium*, 6, 71-125.

Nagy O., I. Nuez, R. Savisaar, A. E. Peluffo, A. Yassin, *et al.*, 2018 Correlated evolution of two copulatory organs via a single *cis*-regulatory nucleotide change. *Current Biology* 28: 3450–3457.

Ni X., Y. E. Zhang, N. Nègre, S. Chen, M. Long, *et al.*, 2012 Adaptive evolution and the birth of ctcf binding sites in the *Drosophila* genome. *PLoS Biology* 10. <https://doi.org/10.1371/journal.pbio.1001420>

Nitta K. R., A. Jolma, Y. Yin, E. Morgunova, T. Kivioja, *et al.*, 2015 Conservation of transcription factor binding specificities across 600 million years of bilateria evolution, (B. Ren, Ed.). eLife 4: e04837. <https://doi.org/10.7554/eLife.04837>

Nosil P., and D. Schluter, 2011 The genes underlying the process of speciation. Trends in ecology & evolution, 26(4), pp.160-167.

Orr H. a, 1993 Haldane's rule has multiple genetic causes. Nature 361: 532–533. <https://doi.org/10.1038/361532a0>

Palmer M. E., and M. W. Feldman, 2009 Dynamics of hybrid incompatibility in gene networks in a constant environment. Evolution 63: 418–431. <https://doi.org/10.1111/j.1558-5646.2008.00577.x>

Pavlicev M., and G. P. Wagner, 2012 A model of developmental evolution: Selection, pleiotropy and compensation. Trends in Ecology & Evolution, 27(6), pp.316-322.

Perrimon N., L. Engstrom, and A. P. Mahowald, 1984 Developmental genetics of the 2e-F region of the *Drosophila* X chromosome: A region rich in “developmentally important” genes. Genetics 108: 559–572.

Petschek J. P., N. Perrimon, and A. P. Mahowald, 1987 Region-specific defects in *l(1)giant* embryos of *Drosophila melanogaster*. Developmental Biology 119: 175–189. [https://doi.org/10.1016/0012-1606\(87\)90219-3](https://doi.org/10.1016/0012-1606(87)90219-3)

Phadnis N., and H. A. Orr, 2009 A single gene causes both male sterility and segregation distortion in *Drosophila* hybrids. *Science*.  
<https://doi.org/10.1126/science.1163934>

Phadnis N., E. P. Baker, J. C. Cooper, K. A. Frizzell, E. Hsieh, *et al.*, 2015 An essential cell cycle regulation gene causes hybrid inviability in *Drosophila*. *Science* (New York, N.Y.) 350: 1552–5. <https://doi.org/10.1126/science.aac7504>

Pool J. E., 2015 The mosaic ancestry of the *Drosophila* genetic reference panel and the *D. melanogaster* reference genome reveals a network of epistatic fitness interactions. *Molecular biology and evolution* 32: 3236–3251.

Powell D. L., M. García-Olazábal, M. Keegan, P. Reilly, K. Du, *et al.*, 2020 Natural hybridization reveals incompatible alleles that cause melanoma in swordtail fish. *Science* 368: 731–736.

Presgraves D. C., 2003 A fine-scale genetic analysis of hybrid incompatibilities in *Drosophila*. *Genetics* 163: 955–972.

Presgraves D. C., and C. D. Meiklejohn, 2021 Hybrid sterility, genetic conflict and complex speciation: lessons from the *Drosophila simulans* clade species. *Front. Genet.* 0. <https://doi.org/10.3389/fgene.2021.669045>

R Core Team, 2016 R Development Core Team.

Rebeiz M., M. Ramos-Womack, S. Jeong, P. Andolfatto, T. Werner, *et al.*, 2009 Evolution of the *tan* Locus contributed to pigment loss in *Drosophila santomea*: A Response to Matute et al. *Cell* 139: 1189–1196. <https://doi.org/10.1016/j.cell.2009.11.004>

Reinitz J., and M. Levine, 1990 Control of the initiation of homeotic gene expression by the gap genes *giant* and *tailless* in *Drosophila*. *Developmental Biology* 140: 57–72. [https://doi.org/10.1016/0012-1606\(90\)90053-L](https://doi.org/10.1016/0012-1606(90)90053-L)

Rivera-Pomar R., X. Lu, N. Perrimon, H. Taubert, and H. Jäckle, 1995 Activation of posterior gap gene expression in the *Drosophila* blastoderm. *Nature*, 376: 253-256

Rogers R. L., J. M. Cridland, L. Shao, T. T. Hu, P. Andolfatto, *et al.*, 2014 Landscape of standing variation for tandem duplications in *Drosophila yakuba* and *Drosophila simulans*. *Molecular Biology and Evolution* 31: 1750–1766.  
<https://doi.org/10.1093/molbev/msu124>

Rogers R. L., L. Shao, and K. R. Thornton, 2017 Tandem duplications lead to novel expression patterns through exon shuffling in *Drosophila yakuba*. *PLoS Genetics* 13. <https://doi.org/10.1371/journal.pgen.1006795>

Santini S., J. L. Boore, and A. Meyer, 2003 Evolutionary conservation of regulatory elements in vertebrate Hox gene clusters. *Genome research* 13: 1111–1122.

Santos G. Dos, A. J. Schroeder, J. L. Goodman, V. B. Strelets, M. A. Crosby, *et al.*, 2015b FlyBase: Introduction of the *Drosophila melanogaster* Release 6 reference genome assembly and large-scale migration of genome annotations. Nucleic Acids Research 43: D690–D697. <https://doi.org/10.1093/nar/gku1099>

Sawamura K., T. Taira, and T. K. Watanabe, 1993a Hybrid lethal systems in the *Drosophila melanogaster* species complex. I. The maternal hybrid rescue (*mhr*) gene of *Drosophila simulans*. Genetics 133: 299–305.

Sawamura K., and M. T. Yamamoto, 1993 Cytogenetical localization of Zygotic hybrid rescue (*Zhr*), a *Drosophila melanogaster* gene that rescues interspecific hybrids from embryonic lethality. MGG Molecular & General Genetics. <https://doi.org/10.1007/BF00276943>

Sawamura K., M. T. Yamamoto, and T. K. Watanabe, 1993b Hybrid lethal systems in the *Drosophila melanogaster* species complex. II. The Zygotic hybrid rescue (*Zhr*) gene of *D. melanogaster*. Genetics 133: 307–313.

Schiffman J. S., and P. L. Ralph, 2021 System drift and speciation. Evolution. <https://doi.org/10.1111/evo.14356>

Schrider D. R., J. Ayroles, D. R. Matute, and A. D. Kern, 2018 Supervised machine learning reveals introgressed loci in the genomes of *Drosophila simulans* and *D. sechellia*. PLoS genetics. <https://doi.org/10.1371/journal.pgen.1007341>

Schulz C., and D. Tautz, 1995 Zygotic caudal regulation by *hunchback* and its role in abdominal segment formation of the *Drosophila* embryo. *Development* (Cambridge, England) 121: 1023–1028.

Serrato-Capuchina A., J. Wang, E. Earley, D. Peede, K. Isbell, *et al.*, 2020a Paternally inherited p-element copy number affects the magnitude of hybrid dysgenesis in *Drosophila simulans* and *D. melanogaster*. *Genome Biol Evol* 12: 808–826.  
<https://doi.org/10.1093/gbe/evaa084>

Serrato-Capuchina A., E. R. R. D'Agostino, D. Peede, B. Roy, K. Isbell, *et al.*, 2021 P-elements strengthen reproductive isolation within the *Drosophila simulans* species complex. *Evolution* 75: 2425-2440

Shull G. H., 1923 The species concept from the point of view of a geneticist. *American Journal of Botany* 10: 221–228.  
<https://doi.org/10.2307/2435375>

Skeath J. B., B. A. Wilson, S. E. Romero, M. J. Snee, Y. Zhu, *et al.*, 2017 The extracellular metalloprotease AdamTS-A anchors neural lineages in place within and preserves the architecture of the central nervous system. *Development*, 144: 3102-3113.  
<https://doi.org/10.1242/dev.145854>

Sommer R. J., 2012 Evolution of regulatory networks: Nematode vulva induction as an example of developmental systems drift, pp. 79–91 in *Evolutionary Systems Biology*, Advances in Experimental Medicine and Biology. edited by Soyer O. S. Springer, New York, NY.

Struhl G., P. Johnston, and P. A. Lawrence, 1992 Control of *Drosophila* body pattern by the hunchback morphogen gradient. *Cell* 69: 237–249. [https://doi.org/10.1016/0092-8674\(92\)90405-2](https://doi.org/10.1016/0092-8674(92)90405-2)

Sturtevant A. H., 1920 Genetic Studies on *Drosophila Simulans*. I. Introduction. Hybrids with *Drosophila melanogaster*. *Genetics* 5: 488–500. <https://doi.org/10.1002/jez.b.21128>

Suvorov A., B. Y. Kim, J. Wang, E. E. Armstrong, D. Peede, *et al.*, 2021 Widespread introgression across a phylogeny of 155 *Drosophila* genomes. *Current Biology*. <https://doi.org/10.1016/j.cub.2021.10.052>

Tamura K., S. Subramanian, and S. Kumar, 2004 Temporal patterns of fruit fly (*Drosophila*) evolution revealed by mutation clocks. *Molecular Biology and Evolution* 21: 36–44. <https://doi.org/10.1093/molbev/msg236>

Tang S., and D. C. Presgraves, 2009 Evolution of the *Drosophila* nuclear pore complex results in multiple hybrid incompatibilities. *Science* 323: 779–782. <https://doi.org/10.1126/science.1169123>

Thibault S. T., M. A. Singer, W. Y. Miyazaki, B. Milash, N. A. Dompe, *et al.*, 2004 A complementary transposon tool kit for *Drosophila melanogaster* using *P* and *piggyBac*. *Nature genetics* 36: 283–287.

Toivonen J. M., K. M. C. O'Dell, N. Petit, S. C. Irvine, G. K. Knight, *et al.*, 2001 *Technical knockout*, a *Drosophila* model of mitochondrial deafness. *Genetics. Genetics*, 159: 241-254.

True J. R., and E. S. Haag, 2001 Developmental system drift and flexibility in evolutionary trajectories. *Evolution & development*, 3: 109-119.

Tulchinsky A. Y., N. A. Johnson, and A. H. Porter, 2014 Hybrid incompatibility despite pleiotropic constraint in a sequence-based bioenergetic model of transcription factor binding. *Genetics* 198: 1645–1654. <https://doi.org/10.1534/genetics.114.171397>

Turissini D. A., G. Liu, J. R. David, and D. R. Matute, 2015 The evolution of reproductive isolation in the *Drosophila yakuba* complex of species. *J. Evol. Biol.* 28: 557–575. <https://doi.org/10.1111/jeb.12588>

Turissini D. A., and D. R. Matute, 2017 Fine scale mapping of genomic introgressions within the *Drosophila yakuba* clade. *PLOS Genetics* 13: e1006971. <https://doi.org/10.1371/journal.pgen.1006971>

Turissini D. A., J. A. McGirr, S. S. Patel, J. R. David, and D. R. Matute, 2018 The rate of evolution of postmating-prezygotic reproductive isolation in *Drosophila*. *Molecular Biology and Evolution* 35: 312–334. <https://doi.org/10.1093/molbev/msx271>

Venkat A., M. W. Hahn, and J. W. Thornton, 2018 Multinucleotide mutations cause false inferences of lineage-specific positive selection. *Nature Ecology and Evolution*. 2: 1280-1288. <https://doi.org/10.1038/s41559-018-0584-5>

Venken K. J. T., E. Popodi, S. L. Holtzman, K. L. Schulze, S. Park, *et al.*, 2010 A molecularly defined duplication set for the *X* chromosome of *Drosophila melanogaster*. *Genetics* 186: 1111–1125. <https://doi.org/10.1534/genetics.110.121285>

Wang X., and R. J. Sommer, 2011 Antagonism of LIN-17/Frizzled and LIN-18/Ryk in Nematode vulva induction reveals evolutionary alterations in core developmental pathways. *PLOS Biology* 9: e1001110. <https://doi.org/10.1371/journal.pbio.1001110>

Wang R. J., M. A. White, and B. A. Payseur, 2015 The pace of hybrid incompatibility evolution in house mice. *Genetics* 201: 229–242. <https://doi.org/10.1534/genetics.115.179499>

Weir J. J., 1885 An unnoticed factor in evolution. *Nature* 31: 194–194. <https://doi.org/10.1038/031194b0>

Weiss K. M., and S. M. Fullerton, 2000 Phenogenetic drift and the evolution of genotype-phenotype relationships. *Theoretical population biology*, 57: 187-195.

Wellbrock C., E. Geissinger, A. Gómez, P. Fischer, K. Friedrich, *et al.*, 1998 Signalling by the oncogenic receptor tyrosine kinase Xmrk leads to activation of STAT5 in *Xiphophorus* melanoma. *Oncogene* 16: 3047–3056.

<https://doi.org/10.1038/sj.onc.1201844>

Wilson M. J., M. Havler, and P. K. Dearden, 2010 Giant, Krüppel, and caudal act as gap genes with extensive roles in patterning the honeybee embryo. *Developmental Biology* 339: 200–211. <https://doi.org/10.1016/j.ydbio.2009.12.015>

Wotton K. R., E. Jimenez-Guri, A. Crombach, H. Janssens, A. Alcaine-Colet, *et al.*, 2015a Quantitative system drift compensates for altered maternal inputs to the gap gene network of the scuttle fly *Megaselia abdita*. *eLife* 2015.

<https://doi.org/10.7554/eLife.04785>

Wu X., R. Vakani, and S. Small, 1998 Two distinct mechanisms for differential positioning of gene expression borders involving the *Drosophila* gap protein *giant*. *Development* 125: 3765–3774.

Yang Z., 1997 PAML: a program package for phylogenetic analysis by maximum likelihood. *Computer applications in the biosciences*, 13: 555-556.

Yang Z., 2007 PAML 4: Phylogenetic analysis by maximum likelihood. *Molecular Biology and Evolution*. 24: 1586-1591.<https://doi.org/10.1093/molbev/msm088>

Zuellig M. P., and A. L. Sweigart, 2018 Gene duplicates cause hybrid lethality between sympatric species of *Mimulus*. *PLOS Genetics* 14: e1007130. <https://doi.org/10.1371/journal.pgen.1007130>