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24  Abstract

25  Stress-induced genome instability in microbial organisms is emerging as a critical
26  regulatory mechanism for driving rapid and reversible adaption to drastic

27  environmental changes. In Candida albicans, a human fungal pathogen that causes
28 life-threatening infections, genome plasticity confers increased virulence and

29 antifungal drug resistance. Discovering the mechanisms regulating C. albicans

30 genome plasticity is a priority to understand how this and other microbial pathogens
31 establish life-threatening infections and develop resistance to antifungal drugs. We
32 identified the SUMO protease Ulp2 as a critical regulator of C. albicans genome

33 integrity through genetic screening. Deletion of ULP2 leads to hypersensitivity to

34  genotoxic agents and increased genome instability. This increased genome diversity
35 causes reduced fitness under standard laboratory growth conditions but enhances
36 adaptation to stress, making ulp24/4 cells more likely to thrive in the presence of

37 antifungal drugs. Whole-genome sequencing indicates that ulp24/4 cells counteract
38 antifungal drug-induced stress by developing segmental aneuploidies of

39 chromosome R and chromosome I. We demonstrate that intrachromosomal

40 repetitive elements drive the formation of complex novel genotypes with adaptive

41  power.
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43  Introduction

44  Understanding how organisms survive and thrive in changing environments is a

45  fundamental question in biology. Genetic variation is central to environmental

46  adaptation as it allows selection of certain genotypes better fit to grow in new

47  environments. Different types of genetic change contribute to genetic variability,

48 including (i) mutations such as single-base alteration and small (<100 bp) insertions
49  or deletions (indels), (ii) large (>1 kb) deletions and duplications, (iii) whole-

50 chromosome or segmental-chromosome aneuploidy and (iv) translocations and

51  complex genomic rearrangements [1]. Furthermore, diploid cells can undergo Loss
52  of Heterozygosity (LOH) driven by cross-overs or gene conversions between the two
53 homologous chromosomes [2]. Excessive genome instability is harmful in the

54  absence of selective pressure as it alters the copy-number of many genes, leading to
55 unbalanced protein levels [3]. However, an unstable genome can provide rapid

56 adaptive power in hostile environments [4,5] because it provides genetic diversity

57 upon which selection can act.

58 Genome plasticity — the ability to generate genomic variation — is emerging as a

59 critical adaptive mechanism in human microbial pathogens that need to adapt rapidly
60 to extreme environmental shifts, including changes in temperature, pH and nutrient
61  availability following colonisation of different host environments [6,7]. One such

62  organism is Candida albicans, the most common human fungal pathogen and the

63  most prevalent cause of death due to fungal infection. C. albicans is part of the

64  normal microflora of most healthy individuals where it colonises the skin, mucosal

65 surface, gastrointestinal and the female genitourinary tract. However, C. albicans

66  can become a dangerous pathogen causing a wide range of infections, from

67  superficial mucosal infections to life-threatening disseminated diseases [8]. Azole

68  antifungal agents, such as Fluconazole (FLC), are the most commonly prescribed

69 drugs for treating Candida infections [9-11]. FLC targets the enzyme lanosterol 140-
70  demethylase, encoded by ERG11, blocking biosynthesis of ergosterol, an essential
71 component of the fungal cell membrane [12,13]. As a result, FLC arrests C. albicans
72 cell growth without killing the fungus. This fungistatic, rather than fungicidal, mode of
73 action allows for the evolution of drug-resistant strains [14]. One primary mechanism
74  of drug resistance is an increased production of the FLC target, Ergll enzyme,

75  diluting the activity of the drug [12]. This high target production is often due to
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76  increased activity of the transcription factor Upc2 activating ERG11 transcription [15—
77 18] Overproduction of efflux pumps, such as the C. albicans proteins Cdrl, Cdr2 and
78  Mdrl, can also drive FLC resistance by decreasing intracellular FLC levels [19].

79 Inrecent years, genome plasticity has emerged as a critical adaptive mechanism

80  causing antifungal drug resistance. C. albicans is a diploid organism with a highly

81 heterozygous genome organised into 2 x 8 chromosomes (2n = 16) [20,21].

82  Population studies have identified a remarkable genomic variation among C.

83 albicans isolates and specific chromosomal variations are selected during host-niche
84  colonisation [22—28]. Indeed, many drug-resistant isolates exhibit karyotypic

85 diversity, including aneuploidy and gross chromosomal rearrangements that can

86  confer resistance due increased copy number of specific genes including ERG11,

87 and/or multidrug transporters [7,29,30].

88 C. albicans genome instability is not random: it occurs more frequently at specific
89  hotspots that are often repetitive [31-35]. Subtelomeric regions and the rDNA locus
90 are among the most unstable genomic sites [34,36]. Indeed, C. albicans
91  subtelomeric regions are enriched in transposons-derived repetitive sequences and
92  protein-coding genes [31,37]. Most notable are the telomere-associated TLO genes,
93  a family of 14 closely related paralogues encoding proteins similar to the Mediator 2
94  subunit of the mediator transcriptional regulator [38—40]. The majority of TLO genes
95 are located at subtelomeric regions except TLO34, located at an internal locus on
96 the left arm of Chrl [38]. The number and position of TLO genes vary widely
97 between clinical isolates, indicating significant plasticity with potential consequences
98 for the fitness of the organism [34]. The rDNA locus consists of a tandem array of a
99  ~120Jkb unit repeated 50 to 200 times on chromosome R; rDNA length
100  polymorphisms occur frequently [21,34]. In addition to these complex repetitive
101  elements, different types of Long Repeat Sequences (65 bp to 6.5 Kb) dispersed
102  across the C. albicans genomes have been shown to drive karyotype variation
103  during adaptation to antifungal drugs and passage through the mouse host [32,33].
104 C. albicans genome plasticity is regulated by environmental conditions: the genome
105 is relatively stable under optimal laboratory growth conditions but becomes more
106  unstable under stress conditions [41,42]. For example, FLC treatment drives a global
107 increase in LOH, chromosome rearrangements and aneuploidy [41,42]. This

108 increased genetic variation facilitates selection of fitter genotypes [28,29]. Similarly,


https://doi.org/10.1101/2021.12.06.471441
http://creativecommons.org/licenses/by/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2021.12.06.471441; this version posted December 7, 2021. The copyright holder for this preprint
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY 4.0 International license.

109 higher rates of genomic variation are detected following passage of C. albicans in
110  vivo relative to passage in vitro [35,43]. It is unknown if and how stress regulates
111  genome plasticity. The discovery of such regulatory mechanisms will be essential to

112 reveal how resistance to antifungal drugs emerges.

113 This study posits that gene deletions for critical regulators of C. albicans genome

114  integrity would cause higher genome variation and rapid adaptation to FLC. To test
115  this hypothesis, we performed a genetic screen to identify modulators of C. albicans
116  genome stability. The screen led to the identification of the SUMO protease Ulp2. In
117  the absence of stress, ULP2 deletion leads to elevated genome instability causing
118  fitness defects and hypersensitivity to genotoxic agents. In contrast, the elevated

119  genome instability of the ulp2 A/4 strain is advantageous in the presence of high FLC
120 doses. This is because the increased genetic diversity expands the pool of

121 genotypes upon which selection can act, driving adaptation to a new stress

122 environment (FLC), concomitantly rescuing the fitness defects associated with ULP2
123 deletion. We also demonstrate that intrachromosomal repetitive elements are sites of
124  genetic diversity that drive the formation of complex novel genotypes with adaptive

125  potential.
126  Results

127 A systematic genetic screen identifies the Ulp2 as a regulator of C. albicans

128 genotoxic stress response

129  To identify factors regulating C. albicans genome integrity, we utilised a deletion
130 library comprising a subset (674/3000) of C. albicans genes that are not conserved
131  in other organisms or have a functional motif potentially related to virulence [44]. As
132 defects in genome integrity lead to hypersensitivity to genotoxic agents [45], the
133 deletion library was screened for hypersensitivity to two DNA damaging agents:

134  Ultraviolet (UV) irradiation which induces formation of pyrimidine dimers [46], and
135  Methyl MethaneSulfonate (MMS), which leads to replication blocks and base

136  mispairing [47].

137  Genotoxic stress hypersensitivity was semi-quantitatively scored by comparing the
138  growth of treated versus untreated on a scale of 0 to 4, where 0 indicates no

139  sensitivity, and 4 specifies strong hypersensitivity (Fig 1A). The screen identified 32
140  gene deletions linked to DNA damage hypersensitivity (UV or MMS score 22).
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141 Almost half of these hits (14/32; ~44%) are genes predicted to encode components
142 of the DNA Damage Response pathway (7/32; ~22%) or the cell division machinery
143 (7/32; ~22%) (Table S1). For example, the top 4 hits of the screen were MECS3,

144 RAD18, GRR1 and KIP3 genes. Although C. albicans MEC3 and RAD18 are

145  uncharacterised, they encode for proteins, conserved in other organisms, that are
146  universally involved in sensing DNA damage (Mec3) [48] and in DNA post-replication
147  repair (Rad18) [49]. C. albicans GRR1 and KIP3 are required for cell cycle

148  progression [50] and mitotic spindle organisation, respectively [51] (Fig 1B and

149 Table S1). ~25% (8/32) of the remaining hits are genes encoding proteins with no
150 apparent orthologous in the two well-studied yeast model systems (S. cerevisiae and
151  S. pombe). This high percentage is not surprising as one of the criteria used to select
152 target genes for the deletion library was the lack of conservation between C. albicans
153  and yeast model systems [44]. The remaining 10 hits are genes encoding for

154  proteins with diverse functions, including stress response (HOG1) [52],

155  transcriptional and chromatin regulation (SPT8, SET3) [53-55], transport (YPT7,

156 DUR35, NPR2, FCY2) [56-59], protein folding (HCH1) [60], MAP kinase pathway
157  (STT4) [61] and cell wall biosynthesis (KRES5) [62].

158  One of the highest-ranked genes on our screen is ULP2 (CR_03820C/ orf19.4353:
159  EMS score:3, UV score:3) encoding for a SUMO protease (Fig 1C). SUMOylation is
160  a dynamic and reversible post-translation modification in which a member of the

161  SUMO family of proteins is conjugated to target proteins at lysine residues by E1

162  activating enzymes, E2 conjugating enzymes and E3 ligases [63—-65]. SUMO

163  proteases remove the polypeptide SUMO from target proteins, regulating their

164  function, activity or localisation [66,67].

165 C. albicans ULP2 is an excellent candidate for a modulator of stress-induced

166  genome plasticity for several reasons: (i) post-translation modifications (PTMs), such
167 as SUMOyolation, are rapid and reversible. Consequently, PTMs can modulate

168  genome instability in response to rapid and transient environmental changes [68,69],
169 (i) protein sumoylation is emerging as a critical stress response mechanism across
170  eukaryotes [66,70—73] (iii) C. albicans protein sumoylation levels change in response
171  to environmental stresses encountered in the host [74].

172 Colony-Forming Unit (CFU) assays of UV-treated cells confirm the importance of

173 ULPZ2 in DNA damage resistance as UV treatment reduced the number of CFU in a

174  ulp2 A/4 strain (~14.5% survival) compared to a wild-type (WT) strain (~33.7%
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175  survival:) (Fig 1D). Furthermore, the ulp2 A/A strain also displayed a reduced growth
176  rate in liquid media containing MMS or Hydroxyurea (HU), a chemotherapeutic agent
177  that challenges genome integrity by stalling replication forks [75] (Fig 1E and 1F).

178  Thus, ULP2 has a role in the response to a wide range of genotoxic agents.
179  ULP2 but not ULP1 is required for survival under stress

180  C. albicans contains three putative SUMO-deconjugating enzymes: Ulp1, Ulp2 and
181  Ulp3 (Fig 2A). Sequence comparison between the three C. albicans Ulp proteins
182  and the two S. cerevisiae Ulps (Ulpl and Ulp2) reveals that although the C. albicans
183  proteins are poorly conserved, the amino acid residues essential for catalytic activity
184  are conserved. This analysis suggests that all C. albicans Ulps are active SUMO
185 proteases (Fig 2A and 2B). Accordingly, recombinantly expressed C. albicans Ulp1,
186  Ulp2 and Ulp3 have SUMO-processing activity in vitro [76]. Similarly to S. cerevisiae
187 ULP1, C. albicans ULP3 is an essential gene and was not investigated further in this
188  study [77].

189  Previous studies suggested that C. albicans Ulp2 is an unstable or a very low

190 abundant protein undetectable by Western blot analysis [76]. We reassessed ULP2
191  expression by generating strains expressing, at the endogenous locus, an epitope-
192  tagged Ulp2 protein (Ulp2-HA). Western analyses show that Ulp2-HA expression is
193  readily detected in extracts from independent integrant strains. (Fig 2C). Thus, a
194  stable Ulp2 protein is expressed in cells grown under standard laboratory growth

195 conditions (YPD, 30 °C). To assess whether C. albicans ULP1 and ULP2 gene share
196  a similar function, we engineered homozygous deletion strains for ULP1 (ulp1A/A)
197 and ULP2 (ulp2A/A). Growth analysis demonstrated that deletion of ULP2 reduces
198 fitness as the newly generated ulp2A/A strain is viable, but cells are slow-growing
199 (Fig 2D and 2E). In contrast, the ulp1A/A strain grows similarly to the WT control in
200 solid and liquid media (Fig 2D and 2E). Phenotypic analysis confirms that ULP2 is
201  an important regulator of C. albicans stress response as, similarly to the deletion

202 library mutant, the newly generated ulp2 A/A strain is sensitive to different stress

203  conditions including treatment with DNA damaging agents (UV and MMS), DNA

204  replication inhibitor (HU), oxidative stress (H20,) and high temperature (39°C) (Fig
205  2E) In contrast, deletion of ULP1 did not cause any sensitivity to the tested stress

206  conditions (Fig 2E).
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207  In summary, we could not detect any phenotype associated with deletion of ULP1,
208  while loss of ULP2 leads to poor growth in standard laboratory growth conditions and

209  hypersensitivity to multiple stresses.
210 Loss of ULP2 leads to increased genome instability

211 To assess whether the hypersensitivity to DNA damage agents observed in the

212 ulp2A/A strain was indeed due to enhanced genome instability, we deleted the ULP2
213 gene from a set of tester strains containing a heterozygous URA3" marker gene

214  inserted in three different chromosomes (Chr 1, 3 and 7) [41]. We quantified the

215 frequency of URA3" marker loss by plating on plates containing the URA3 counter-
216  selective drug FOA and scoring the number of colonies able to grow on FOA-

217  containing media compared to non-selective (N/S) media. Deletion of ULP2 leads to
218 adramatic increase in LOH rate at all three chromosomes (Chrl: ~5000X, Chr3:

219  ~18X, Chr7: ~170X), indicating that ULP2 is required for maintaining genome

220  stability across the C. albicans genome (Fig 3A).

221 In C. albicans, hypersensitivity to genotoxic stress often correlates with filamentous
222 growth [45,78-81]. Accordingly, and in agreement with a significant role for ULP2 in
223 genotoxic stress response, the ulp2A/A strain displays a higher frequency of

224  abnormal morphologies than a WT strain, including filamentous pseudohyphal-like
225 and hyphal-like cells (Fig 3B). To assess whether the exacerbated ulp24/4 genome
226 instability is linked to defective chromosome segregation, we deleted the ULP2 gene
227 in areporter strain in which TetO sequences are integrated adjacent to the

228 centromere (CEN7) of one Chromosome 7 homolog and TetR-GFP fusion protein is
229  expressed from an intergenic region [82]. Binding of TetR-GFP to tetO sequences
230 allowed visualisation of Chr7 duplication and segregation during the cell cycle. We
231  found that deletion of ULP2 leads to abnormal Chr7 segregation, including cells with
232 no TetR-GFP signals or multiple TetR-GFP-foci, which was ~5 fold higher in the ulp2
233 A/A strain than the WT control strain (Fig 3C).

234  Previous studies performed in the model system S. cerevisiae demonstrated that
235 loss of ULP2 leads to the accumulation of a specific multichromosome aneuploidy
236  (amplification of both Chrl and ChrXIl) that rescues the potential lethal defects of
237  ulp2 deletion by amplification of specific genes on both chromosomes [83,84]. To

238 determine whether loss of C. albicans ULP2 results in a specific aneuploidy, we
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239  sequenced the genome of 3 randomly selected ulp2 A/A colonies by whole genome
240 sequencing (WGS) and compared their genome sequences to the C. albicans

241  reference genome. This analysis demonstrates that deletion of C. albicans ULP2
242 does not select for specific chromosome rearrangements and identifies different

243  genomic variations that are not present in the parental WT strain (Fig 3D and Table
244  S2) [85]. While deletion of ULP2 leads to very few (<10) de novo mutations (Table
245  S2), two of the three colonies underwent extensive LOH on different chromosomes
246  (Fig 3D and Table S2). For example, chromosome missegregation followed by

247  reduplication of the remaining homologue is detected on isolate C1 (C1: ChrR) and
248  the genome of C2 contains a long-track LOH (C2:Chr 3L) that occurred within 4.6 kb
249  of arepeat locus on Chr3L (PGAL1S8, [32]) (Fig 3D). Our analysis collectively

250 demonstrates that deletion of C. albicans ULP2 leads to increased genome instability

251  via the formation of extensive chromosomal variation.
252  Loss of ULP2 leads to drug resistance via selection of novel genotypes

253  We hypothesised that the increased genome instability of the ulp2 4/4 strain would
254  facilitate adaptation to hostile environments via selection of fitter genotypes. To test
255  this hypothesis, we assessed whether WT and ulp24/4 strains differ in their ability to
256  overcome the stress imposed by low or high concentrations of 2 drugs: Fluconazole
257 (FLC) and caffeine (CAF). FLC was chosen because it is the most used antifungal
258  drug in the clinic. CAF was chosen because it is associated with well-known

259  resistance mechanisms [86,87]. Serial dilution analyses demonstrate that the

260  ulp24/4 strain is not sensitive to a low FLC (15 ug/ml) dose while it is sensitive a low
261 CAFF (5mM) doses (Fig 4A and 4B).

262  In contrast, deletion of ULP2 increases adaptation to high doses FLC and CAF. On
263  plates containing an inhibitory concentration of FLC (128 pug/ml), a WT strain

264  produced only tiny abortive colonies while the ulp24/4 strain produces colonies of
265 heterogenous size (Large and Small, Fig 4C). The starting ulp24/4 strain is highly
266  sensitive to 12 mM CAF (Fig S1A), and therefore a reduced number of ulp24/4
267  colonies grew at this high drug concentration compared to the WT strain (Fig 4D).
268  Despite this difference, the ulp2 4/4 strain, but not the WT strain, produces large

269  colonies that can grow on high CAF concentration following passaging in the
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270 absence of the drug, indicative of adaptation (Fig 4D, Fig S1B ). Thus, deletion of

271 ULP2 accelerates adaptation to lethal drug concentration.

272 To test whether enhanced drug adaption was linked with selection of novel

273  genotypes, we sequenced the genome of 4 independent ulp24/4 FLC-adapted

274  isolates (FLC-1, FLC-2, FLC-3 and FLC-4). FLC-1, FLC-2 and FLC-3 were randomly
275  selected from the High FLC plates and sequenced immediately. In contrast, FLC-4
276  was selected because this isolate was still able to grow on high FLC following

277  passaging in non-selective (N/S) media (Fig S1C). To assess for genotype

278  heterogeneity, three FLC-4 derived single colonies (FLC-4a, b and c) were

279  sequenced (Fig S2A and B). The WGS analysis demonstrates that all FLC-adapted
280 colonies have a genotype that is distinct from the ulp2 4/4 progenitor. We detected
281 very few (<10) de novo point mutations, and none of these are common among all
282  the sequenced FLC isolates (Table S3). In contrast, all colonies are marked by an
283  extensive segmental chromosome aneuploidy: a partial deletion (~ 388 Kb) of the
284  right arm of Chromosome R (ChrRR-Deletion). ChrRR-deletion occurs at the

285 ribosomal DNA (25S subunit) and it extends to the right telomere of ChrR

286  (ChrR:1,897,750 bp - 2,286,380 bp), reducing the dosage of 204 genes (Fig 4E,
287 S2A and Table S4). GO analysis revealed that ChrRR-Deletion leads to a reduced
288 dosage of 34/204 genes associated with the "response to stress" pathways and
289  18/204 genes linked to "response to drug" pathways (Table S4). We posit that this
290 reduced gene dosage enables growth in the presence of high FLC. For example,
291  CKAL, a gene whose deletion leads to FLC resistance [88], is located within the
292  ChrRR-deletion (Fig 4G).

293 Interestingly, we found that all three FLC-4 sequences colonies (FLC-4a, b and c),
294  are marked by a second segmental aneuploidy: a partial Chrl amplification (Chr1-
295  Duplication) (Fig 4E and S2A). This novel Chrl-Duplication amplifies a genomic

296 fragment of ~1.3 Mbp containing 535 protein-coding genes (Table S4). The Chrl-
297  Duplication starts and ends near two distinct DNA repeat sequences with high

298  sequence identity elsewhere in the genome: the 5' breakpoint is within the TLO34
299 and its 3' breakpoint is within 3 kb of a Zeta-1a Long Terminal Repeat (LTR) (Fig 4G
300 and S3)[32,33,89]. These WGS data led us to hypothesise that a chromosome-

301 chromosome fusion event occurred between the Chrl-Duplication and Chr6 within
302 homologous TLO sequences (Fig 4G). Indeed, the TLO34 gene on Chrl has high

10
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303 sequence identity with a 380 bp region located at Chr6 (position: 6182-6562 bp). In
304 addition, sequence polymorphisms unique to Chrl-TLO34 mapped to Chr6 in the
305 FLC-4 isolate (but notin FLC-1, FLC-2 and FLC-3), supporting a novel

306 interchromosomal recombination product between TLO-homologous sequences.
307  This model is supported by CHEF gel electrophoresis analyses as, when compared
308 to the ulp2 4/4 progenitor, the FLC-4 genome lacks one band corresponding to the
309 shorter Chr6 homologue (blue asterisk), and it contains a new chromosome band of
310 ~2.2 Mb (magenta asterisk) (Fig 4F).

311  We posit that Chrl-Duplication provides a synergistic fithess advantage in response
312 to two independent stressors (the presence of FLC and lack of ULP2) by

313  simultaneously changing the dosage of several genes. Indeed, GO analyses

314 demonstrated that 41 genes present in the Chrl-Duplication are associated with a"
315 drug resistance" phenotypes (Table S4). Among these, amplification of UPC2

316 encoding for the Upc?2 transcription factor is likely to be critical. Indeed, it is well

317 established that UPC2 overexpression leads to FLC resistance by ERG11

318 upregulation [90,91]. Chrl-Duplication likely rescues the fithess defects of the ulp2
319  A/4strain by amplifying two key genes: CCR4 and NOT5 (Fig 4G). Ccr4 and Not5
320 are subunits of the evolutionarily conserved Ccr4-Not complex that modulate gene
321  expression at multiple levels, including transcription initiation, elongation, de-

322 adenylation and mRNA degradation [92]. It has been shown that S. cerevisiae CCR4
323 and NOT5 overexpression rescue the lethal defects associated with a ulp2 deletion
324  strain [83].

325 Collectively our data suggest that the combined selective pressure of two
326 independent stresses leads to selection of a chromosome aneuploidy that

327 overcomes both stresses by overexpressing two different sets of genes.
328 Discussion

329 In this study, we demonstrate that the SUMO protease Ulp2 is a critical regulator of
330 C. albicans genome plasticity and that the development of drug resistance is

331 accelerated in cells lacking ULP2. We unveil a striking flexibility of C. albicans cells
332 in their response to complex stresses caused by drug treatment and dysregulation of
333 the SUMO system, leading to the selection of extensive chromosome

334 rearrangements.
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335 Ulp2is acritical regulator of C. albicans genome stability

336  Our study identifies protein SUMOylation as a critical regulatory mechanism of C.
337 albicans genome stability. SUMOylation is a dynamic and reversible post-translation
338  modification in which a member of the SUMO family of proteins is conjugated to

339 target proteins at lysine residues by E1 activating enzymes, E2 conjugating enzymes
340 and E3 ligases [63-65]. SUMO is removed from its target proteins by SUMO-specific
341  Ulp2 proteases [67]. Several observations are in agreement with our findings and
342  suggest that SUMOylation controls stress-induced genome plasticity. Firstly,

343  SUMOylation is a post-translational modification that is rapid and reversible, an

344  essential requirement for a regulator of stress-induced genome plasticity. Secondly,
345 C. albicans protein SUMOylation levels are different in normal and stress growth

346  conditions [74]. Thirdly, deletion of genes encoding other components of the C.

347 albicans SUMOylation machinery lead to filamentation, a phenotype often associated
348  with defective cell division and compromised genome integrity [74,93,94]. Finally, C.
349  albicans strains lacking the SUMO (Smt3) protein or the E3 ligase Mms21 display

350 nuclear segregation defects [74,93].

351  C. albicans Ulp2 likely controls genome plasticity by modulating SUMO levels of

352  several target proteins. SUMO proteases have a broad substrate specificity

353 catalysing SUMO deconjugation of several substrates [95]. In other organisms, it is
354  well known that SUMOylation modulates pathways ensuring genome integrity,

355 including the DNA damage-sensing and repair pathway and the cell division and

356 chromosome segregation pathway [63—66,96—98]. Despite the broad substrate

357  specificity, our data suggest that one significant function of C. albicans ULP2 is to
358 ensure faithful chromosome segregation as high rates of chromosome

359  missegregation is detected in the ulp2 A4/4 strain. Furthermore, the lllumina Genome
360 sequencing analyses demonstrated that lack of ULP2 is associated with extensive
361 LOH events. Such extensive genomic changes are reminiscent of catastrophic

362  mitotic events associated with defective chromosome segregation [99,100]. The
363 targets of C. albicans Ulp2 are unknown, and it will be important to adopt proteomic
364 approaches to identify the entire repertoire of SUMO targets and determine how

365 ULP2 contributes to C. albicans genome plasticity.
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366 Complex chromosome rearrangements drive adaptation to multiple stress

367 environments.

368  Our data demonstrate that the ulp2 A/4 strain is more likely than the WT parental

369  strain to develop resistance to anti-fungal drugs by selecting specific segmental

370  aneuploidies on ChrR (ChrRR-deletion) and Chrl (Chrl-duplication). These adaptive
371  genotypes confer a growth advantage in response to two independent stressors: the

372  absence of ULP2 and drug treatment.

373  In agreement with the notion that repetitive elements play a significant role in

374  genome instability, we identified intrachromosomal repetitive elements as drivers of
375 genome instability. Indeed, all the sequenced FLC-adapted isolates carry a partial
376  deletion of ChrR originating within the rDNA locus. We have previously

377 demonstrated that the C. albicans rDNA locus is a hotspot for mitotic recombination
378 [36], and clinical isolates are often marked by chromosomal aberrations originating
379  from this locus [34]. This rDNA-driven chromosomal aberration leads to the deletion
380 of one copy of 204 genes. We hypothesise that this reduced gene dosage drives
381 FLC adaptation. For example, CKA1, one of the genes affected by ChrRR deletion,
382 encodes for one of the two C. albicans Casein Kinases (Ckal and Cka2). Deletion of
383 these genes causes FLC resistance by controlling the expression of the efflux pump
384 CDR1 and CDR2 [88].

385 WGS analysis demonstrated that the FLC-4 isolate, whose FLC resistance is

386 maintained followed by passaging on non-selective media, carries a second

387 segmental aneuploidy: a partial duplication of Chrl with breakpoints at repetitive
388 elements. We provide evidence suggesting that Chrl Duplication results from a

389 fusion event between Chrl and Chr6 due to a novel interchromosomal

390 recombination product between TLO homologous sequences. We hypothesise that
391  Chrl-duplication leads to gene dosage changes that are critical for overcoming two
392 independent stresses: the presence of FLC and the absence of ULP2. Indeed, one
393  of the master regulators of FLC resistance, UPC2, is located on the Chrl-duplication
394 and its overexpression is likely to allow growth in the presence of FLC. UPC2

395 encodes a key transcription factor of ERG11, the target of FLC [91]. It is well

396 established that UPC2 deletion leads to increased FLC susceptibility and that UPC2
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397 overexpression causes FLC resistance [91,101]. Accordingly, UPC2 gain-of-function
398  mutations are prevalent among FLC resistant clinical isolates [101].

399  The Chrl-duplication carries two key genes, CCR4 and NOTS5, likely to rescue the
400 fitness defects associated with the ulp2 4/4 strain. Indeed, it has been shown that
401 CCR4 and NOT5 overexpression rescues the fitness defects of a ULP2 deletion

402  strain in S. cerevisiae [83]. Crr4 and Not5 are components of the evolutionarily

403  conserved Crr4-Not multiprotein complex that regulate gene expression at all steps
404  from transcription to translation and mRNA decay [102]. It is unknown why

405  overexpression of the Crr4-Not complex rescues the fitness defect of an ulp2

406  deletion strain, but it has been suggested that it might be linked to the transcriptional
407  regulation of snoRNA and rRNA genes [84]. Here, for the first time, we demonstrate
408 that segmental aneuploidy can lead to adaptation to different stressors by

409 overexpressing genes located in the same chromosome and independently rescue

410 the two stressors, leading to an overall fithess advantage.
411  Material and Methods

412 Yeast strains and Growth Conditions

413  Strains used in this study are listed in Table S5. Routine culturing was performed at
414  30°C in Yeast Extract-Peptone-D-Glucose (YPD) liquid and solid media containing
415 1% yeast extract, 2% peptone, 2% dextrose, 0.1 mg/ml adenine and 0.08 mg/ml

416 uridine, Synthetic Complete (SC-Formedium) or Casitone (5 g/L Yeast extract, 9 g/L
417  BactoTryptone, 20 g/L Glucose, 11.5 g/L Sodium Citrate dehydrate, 15 g/L Agar)
418 media. When indicated, media were supplemented with 1mg/ml 5-Fluorotic acid (5-
419 FOA, Melford), 200 pg/ml Nourseothricin (clonNAT, Melford), 5mM and 12 mM

420 Caffeine (Sigma #C0750), 15 mg/ml and 128 mg/ml Fluconazole (Sigma #F8929),
421 6m H,0, (Sigma #H1009), 12 mM and 22 mM Hydroxyurea (Sigma #H8627),

422 0.005% MMS (Sigma #129925).

423  Genetic Screening

424  The genetic screening was performed using a C. albicans homozygous deletion

425 library [44] arrayed in 96 colony format on YPD plates (145x20 mm) using a replica
426  plater (Sigma #R2508). Control N/S plates were grown at 30 °C for 48 hours. UV
427  treatment was performed using UVitec (Cambridge) with power density of

428  7.5pW/cm? (0.030 J for 4 seconds). Following UV treatment, plates were incubated
429 in the dark at 30°C for 48 hours. For MMS treatment, the library was spotted on YPD
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430 plates (145x20mm) containing 0.05% MMS and incubated at 30°C for 48 hours. UV
431 and/or MMS sensitivity of selected strains was confirmed by serial dilution assays in
432 control (YPD) and stress (UV: power density of 7.5pW/cm?, MMS: 0.05% ) plates.
433 Correct gene deletions were confirmed by PCR using gene-specific primers (Table
434  S6).

435  Yeast strain construction

436 Integration and deletion of genes were performed using long oligos-mediated PCR
437  for gene deletion and tagging [103]. Oligonucleotides and plasmids used for strain
438  constructions are listed in Supplementary Table S6 and S7, respectively. For Lithium
439  Acetate transformation, overnight liquid yeast cultures were diluted in fresh YPD and
440  grown to ODgqo Of 1.3. Cells were harvested by centrifugation and washed once with
441  dH,0O and once with SORB solution (100mM Lithium acetate, 10mM Tris-HCL pH
442 7.5, 1mM EDTA pH 7.5/8, 1M sorbitol; pH 8). The pellet was resuspended in SORB
443  solution containing single-stranded carrier DNA (Sigma-Aldrich) and stored -80 °C in
444 50 pl aliquots. Frozen competent cells were defrosted on ice, mixed with 5 uL of

445  PCR product and 300 pL PEG solution (100mM Lithium acetate, 10mM Tris-HCL pH
446 7.5, 1mM EDTA pH 8, 40% PEG4000) and incubated for 21-24 hours at 30 °C. Cells
447  were heat-shocked at 44°C for 15 minutes and grown in 5mL YPD liquid for 6 hours
448  before plating on selective media at 30 °C.

449 UV survival quantification

450  Following dilution of overnight liquid cultures, 500 cells were plated in YPD control
451  plates while 1500 cells were plated in YPD stress plates and UV irradiates with

452 power density of 7.5 pW/cm? (0.030 J for 4 seconds). Plates were kept in the dark
453  and incubated at 30°C for 48 hours. Colonies were counted using a colony counter
454  (Stuart Scientific). Experiments were performed in 5 biological replicates, and violin
455  plots graphs were generated using R Studio (http://www.r-project.org/).

456 Growth curve

457  Overnight liquid cultures were diluted to 60 cells/pL in 200uL YPD and incubated at
458 30 °C in a 96 well plate (Cellstar®, #655180) with double orbital agitation of 400 rpm
459 using a BMG Labtech SPECTROstar nanoplate reader for 48 hours. When indicated,
460 YPD media was supplemented with MMS (0.05%) and HU (22 mM). Graphs show
461 the average of 3 biological replicates and error bars show the standard deviation.

462  Serial dilution assay
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Overnight liquid cultures were diluted to an ODgqg Of 4, serially diluted 1:5 and
spotted into agar plates with and without indicated additives using a replica plater
(Replica plater for 96-well plates, Sigma Aldrich, #R2383). Images of the plates were
then taken using Syngene GBox Chemi XX6 Gel imaging system. Experiments were
performed in 3 biological replicates

Protein extraction and Western blotting

Yeast extracts were prepared as described [104] using 1 x 102 cells from overnight
cultures grown to a final ODggo Of 1.5—2. Protein extraction was performed in the
presence of 2% SDS (Sigma) and 4 M acetic acid (Fisher) at 90°C. Proteins were
separated in 2% SDS (Sigma), 40% acrylamide/bis (Biorad, 161-0148) gels and
transfer into PVDF membrane (Biorad) by semi-dry transfer (Biorad, Trans Blot SD,
semi-dry transfer cell). Western-blot antibody detection was used using antibodies
from Roche Diagnostics Mannheim Germany (Anti-HA, mouse monoclonal primary
antibody (12CA5 Roche, 5 mg/ml) at a dilution of 1:1000, and anti-mouse IgG-
peroxidase (A4416 Sigma, 0.63 mg/ml) at a dilution of 1:5000, and Clarity™ ECL
substrate (Bio-Rad).

URA3" marker loss quantification

Strains were first streaked on —Uri media to ensure the selection of cells carrying
the URA3" marker gene. Parallel liquid cultures. grown for 16 hours at 30°C in YPD,
were plated on synthetic complete (SC) plates containing 1r1mg/ml 5-FOA (5-
fluorotic acid; Sigma) and on non-selective SC plates/. Colonies were counted after
2r1days of growth at 30°C, the frequency of the URA3" marker loss was calculated
using the formula F = m/M, where m represents the median number of colonies
obtained on 5-FOA medium corrected by the dilution factor used and the fraction of
culture plated and M the average number of colonies obtained on YPD corrected by
the dilution factor used and the fraction of culture plated [80]. Statistical differences
between results from samples were calculated using the Kruskal-Wallis test and the
Mann-Whitney U test for post hoc analysis. Statistical analysis was performed and
violin plots were generated using R Studio (http://www.r-project.org/).

Microscopy

30 ml of yeast cultures (ODgoo=1) grown in SC were centrifuged at 2000 rpm for 5
minute and washed once with dH,O. Cells were fixed in 10ml of 3.7%

paraformaldehyde (Sigma #F8775) for 15 minutes, washed twice with 10ml of
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496  KPO./Sorbitol (100 mM KPO,, 1.2 M Sorbitol) and resuspended in 250 ul PBS

497  containing 10 ug of Dapi. Cells were then sonicated and resuspended in a 1% low
498  melting point agarose (Sigma Aldrich) before mounting under a 22mm coverslip of
499  0,17um thickness. Samples were imaged on a Zeiss LSM 880 Airyscan with a

500 63x/1.4NA oil objective. Airyscan images were taken with a relative pinhole diameter
501 of 0.2 AU (airy unit) for maximal resolution and reduced noise. GFP was imaged with
502 a 488nm Argon laser and 495-550 nm bandpass excitation filter, RFP with a 546nm
503 solid-state diode laser and a 570nm long pass excitation filter. The Dapi channel was
504 imaged on a PMT with standard pinhole of 1AU and brightfield image were captured
505 on the trans-PMT with the same excitation laser of 405nm., Dapi and brightfield

506 images were taken with the same pixel size and bit depth (16bit) as the airyscan

507 images. Images were of a 42.7x42.7um field of view and with a 33 nm pixel size

508 resolution. z-stacks were taken containing cells of z interval of 500nm. Airyscan

509 Veena filtering was performed with the inbuilt algorithms of Zeiss Zen Black 2.3. Fiji
510  scripts were written to automatically create a maximum intensity projection with

511  standardised intensity scaling for the fluorescence images and overlay them with the
512  best focus image of the brightfield picture. Experiments were performed in 3

513  biological replicates and >100 cells/replicate were counted.

514  Drug Selection

515  Strains were incubated overnight in casitone liquid media at 30°C with shaking. 10*
516  cells were plated in small (10cm) casitone plates or plates containing: (i) 128 pg/mL
517 DMSO (Fluconazole Control), (ii) 128 pg/mL Fluconazole or (iii) 12 mM Caffeine.

518 Plates were incubated at 30°C for 7 days. Colonies able to grow on Fluconazole- or
519 Caffeine-containing plates were streaked in non-selective plates and tested by

520 spotting assay in casitone+ DMSO plates, casitone+Fluconazole or

521 casitone+Caffeine plates. Following incubation at 30°C, plates were imaged using
522  Syngene GBox Chemi XX6 Gel imaging system. Experiments were performed in 3
523  biological replicates.

524 Whole-genome sequence analysis

525 All genome sequencing data have been deposited in the Sequence Read Archive
526  under BioProject PRINA781758, Genomic DNA was isolated using a phenol-

527  chloroform extraction as previously described [29]. Paired-end (2 x 151 bp)

528 sequencing was carried out by the Microbial Genome Sequencing Center (MiGS) on
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529 the lllumina NextSeq 2000 platform. Adaptor sequences and low-quality reads were
530 removed using Trimmomatic (v0.33 LEADING:3 Trailing:3 SLIDINGWINDOW:4:15
531  MINLEN:36 TOPHRED33) [105]. Trimmed reads were mapped to the C. albicans
532 reference genome (A21-s02-m09-r08) from the Candida Genome Database

533  (http://www.candidagenome.org/download/sequence/C albicans SC5314/Assembly

534  21/archive/C albicans SC5314 version A21-s02-m09-r08 chromosomes.fasta.qz).

535 Reads were aligned to the reference using BWA-MEM (v0.7.17) with default

536 parameters [106]. The BAM files, containing aligned reads, were sorted and PCR
537 duplicates removed using Samtools (v1.10 samtools sort, samtools rmdup) [107].
538  Qualimap (v2.2.1) analysed the BAM files for mean coverage of the reference

539 genome; coverages ranged from 73.7x to 89.3x coverage [108]. Variant detection
540 was conducted using the Genome Analysis Toolkit (Mutect, v2.2-25) [109]. Variants
541  were annotated using SnpEff (V4.3) [110] using the SC5314 reference genome fasta
542  and gene feature file above. Parental variants were removed, and all remaining

543  variants were verified visually using the Integrative Genomic Viewer (IGV, v2.8.2)
544  [111].

545 Read depth and breakpoint analysis

546  Whole-genome sequencing data were analysed for copy number and allele ratio

547  changes as previously described [32,33]. Aneuploidies were visualised using the
548  Yeast Mapping Analysis Pipeline (YMAP, v1.0) [112]. BAM files aligned to the

549  SC5314 reference genome as described above were uploaded to YMAP and read
550 depth was determined and plotted as a function of chromosome position. Read

551  depth was corrected for both chromosome-end bias and GC-content. The GBrowse
552  CNV track and GBrowse allele ratio track identified regions of interest for CNV and
553  LOH breakpoints, and more precise breakpoints were determined visually using IGV.
554  LOH breakpoints are reported as the first informative homozygous position in a

555  region that is heterozygous in the parental genome. CNV breakpoints were identified
556 as described previously [32,33].

557 Contour-clamped homogeneous electric field (CHEF) electrophoresis

558 Intact yeast chromosomal DNA was prepared as previously described [113].
559  Briefly, cells were grown overnight, and a volume equivalent to an ODgg Of 7 was
560 washed in 50 mM EDTA and resuspended in 20 pl of 10 mg/ml Zymolyase 100T

561  (Amsbio #120493-1) and 300 pl of 1% Low Melt agarose (Biorad® # 1613112) in

562 100 mM EDTA. Chromosomes were separated on a 1% Megabase agarose gel (Bio-
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563 Rad) in 0.5X TBE using a CHEF DRIl apparatus. Run conditions as follows: 60-120s
564  switch at 6 V/cm for 12 hours followed by a 120-300s switch at 4.5 V/cm for 12

565 hours, 14 °C. The gel was stained in 0.5x TBE with ethidium bromide (0.5 pg/ml) for
566 30 minutes and destained in water for 30 minutes. Chromosomes were visualised
567 using a Syngene GBox Chemi XX6 gel imaging system.

568
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948 Figure Legends
949 Fig 1. ULP2is aregulator of C. albicans genotoxic stress response

950 (A) Schematic representation of the screening strategy. 674 C. albicans deletion
951  strains were screened using a 96-plate format for hypersensitivity to UV and MMS.
952  Hypersensitivity was scored by comparing the growth of treated vs untreated on a
953 scale of O (white) to 4 (magenta). Black *: genes encoding for DNA damage and
954  sensing repair pathway components, Blue *: genes encoding for cell division and
955 chromosome segregation machinery, Green arrow: ulp2 4/4 (B) Data for a plate
956  containing mec3 A/4 strain (cyan circle). Growth on Non-selective (N/S) media or
957 following UV and MMS treatment is shown. (C) Data for a plate containing ulp2 4/4
958  strain (magenta circle). Growth on Non-selective (N/S) media or following UV and
959 MMS treatment is shown (D) Colony-forming Unit assay of UV treated WT and ulp2
960  A/A strains. % survival is shown. (E) Growth curve on WT and ulp2 4/4 strains

961 grown in non-selective (N/S) liquid media and MMS-containing liquid media. Error
962 bars: standard deviation (SD) of three biological replicates (F) Growth curve on WT
963 and ulp2 4/4 strains grown in non-selective (N/S) liquid media and HU-containing

964  liquid media.
965 Fig 2. ULP2 is necessary for survival under stress

966 (A) Schematic representation of Ulpl, Ulp2 and Ulp3 protein organisation. The

967 systematic name and the amino acid (aa) number is indicated for each protein. Blue
968 box: putative catalytic UD domain typical of Ulp SUMO proteases (B) Protein

969 alignments of the three C. albicans Ulp proteins (Ulp1, Ulp2 and Ulp3) and the two S.
970 cerevisiae proteins (Ulpl and Ulp2). Magenta arrows: amino acids essential for

971  SUMO protease activity (C) HA Western Blot analysis of 4 independent ULP2-HA
972 integrants and the progenitor untagged control (No Tag). Magenta arrow: Ulp2-HA
973  (Magenta arrow). *: non-specific cross-reacting bands serving as a loading control
974  (C) Growth curves of WT, ulpl 4/4 and ulp2 4/4 strains grown in non-selective (N/S)
975 liquid media. Error bars: standard deviation (SD) of three biological replicates (D)
976  Serial dilution assay of WT, ulpl A4/4 and ulp2 4/4 strains grown in unstressed (N/S)
977  orstress (UV, MMS, HU, H202 and 39 °C) growth conditions.

978 Fig 3. Loss of ULP2 leads to increased genome instability
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979  (A) Quantification of loss of a heterozygous URA3" marker gene inserted in Chrl,
980 Chr3 and Chr7 in WT and ulp2 A4/4 strain. A fold difference of URA3" marker loss
981  between ulp2 4/4 and WT strains is indicated. **: Chrl (4.11E-07) and Chr7 (6.74E-
982  05) p-value, *: Chr3 (2.87E-02) p-value (B) Top: Representative images displaying
983 the morphologies of WT and ulp2 4/4 strains. Bottom: Quantification (%) of yeast

984 and filamentous (hyphae + pseudohyphae) cells in WT and ulp2 4/4 strains. Error
985 bar: Standard deviation of 3 biological replicates. (C) Top: schematics of the CEN7
986 TetO and TetR-GFP system. Bottom: nuclear morphology and segregation pattern of
987 centromere 7 (CEN7) in WT and ulp2 4/4 strain. Quantification (%) of abnormal

988 GFP-CENTY patterns is indicated. Error bar: Standard deviation of 3 biological

989 replicates. (D) Whole genome sequencing analysis of the progenitor (SN152) and
990 three single colonies C1, C2, and C3. Data were plotted as the log2 ratio and

991  converted to chromosome copy number (y-axis, 1-4 copies) as a function of

992 chromosome position (x-axis, Chr1-ChrR) using the Yeast Mapping Analysis Pipeline
993  (YMAP) [112]. Heterozygous (AB) regions are indicated with grey shading, and

994  homozygous regions (loss of heterozygosity) are indicated by shading of the

995 remaining haplotype, either AA (cyan) or BB (magenta). Two homozygous positions
996 are present in the progenitor (the left side of Chr2 and a small region near the

997 centromere of Chr3), while C1 and C2 underwent loss of heterozygosity of ChrR and
998  Chr3.

999 Fig 4. Loss of ULP2 leads to drug resistance via selection of novel genotypes

1000  (A) Serial dilution assay of WT and ulp2 4/4 strains grown in non-selective (N/S) or
1001  media containing low (15 ug/ml) concentration of fluconazole (FLC). (B) Serial

1002  dilution assay of WT and ulp2 4/4 strains grown in non-selective (N/S) or media

1003  containing low (5 mM) Caffeine (CAF). (C) Left: Plating assay of ulp2 4/4and WT
1004  strain in media containing high (128 pg/ml) concentration of fluconazole (FLC) or
1005 non-selective (NS) media Right: Plating assay quantification. The number of large
1006 (L) and small (S) colonies recovered from fluconazole (FLC) containing media and
1007  non-selective (N/S) media is shown for WT and ulp2 A4/4 strains. (D) Left: Plating
1008  assay of ulp2 4/4 and WT strain in media containing high (12 mM) concentration of
1009 caffeine (CAF) and non-selective (NS) media Right: Plating assay quantification. The

1010 number of large (L) and small (S) colonies recovered from caffeine (CAF)-containing
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media and non-selective (N/S) media is shown for WT and ulp2 4/4 strains. (E)
Whole genome sequencing data plotted as in Figure 3D for four single colonies
isolated from 128 pg/ml fluconazole plates (FLC1-FLC4). The chromosome copy
number is plotted along the y-axis (1-4 copies). All four single colonies have a
recurrent segmental deletion of part of ChrRR. Colony FLC-4 has an amplification of
the middle part of Chrl. Copy number breakpoints and allele ratio changes in FLC-4
are indicated in Figure S3. (F) CHEF karyotype gel stained with ethidium bromide of
ulp2 A/4 progenitor and FLC-4 isolate. A band (blue *) corresponding to Chr6 is
present in the ulp2 4/4 progenitor and absent in the FLC-4 isolate. Conversely, a
new band (magenta *) is present in the FLC-4 isolate but absent in the ulp2

A/A progenitor. (G) Schematics of segmental aneuploidies detected in FLC-1, FLC-2,
FLC-3 and FLC-4 isolates.
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