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Abstract 
 
Long diagnostic wait times hinder international efforts to address multi-drug resistance in M. 
tuberculosis. Pathogen whole genome sequencing, coupled with statistical and machine 
learning models, offers a promising solution. However, generalizability and clinical adoption 
have been limited in part by a lack of interpretability and verifiability, especially in deep 
learning methods. Here, we present a deep convolutional neural network (CNN) that predicts 
the antibiotic resistance phenotypes of M. tuberculosis isolates. The CNN performs with state-
of-the-art levels of predictive accuracy. Evaluation of salient sequence features permits 
biologically meaningful interpretation and validation of the CNN’s predictions, with promising 
repercussions for functional variant discovery, clinical applicability, and translation to 
phenotype prediction in other organisms.        
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1. Introduction 
 

Tuberculosis is a leading cause of death worldwide from an infectious pathogen, with 
more than 1.5 million people succumbing to the disease annually(1). Rising rates of antibiotic-
resistant Mycobacterium tuberculosis, the causative agent of tuberculosis, continue to rise, pose 
a threat to public health(2). A major challenge in combatting antibiotic-resistant tuberculosis 
is the timely selection of appropriate treatments for each patient, particularly when growth-
based drug susceptibility testing takes weeks(1).  

Molecular diagnostic tests for M. tuberculosis antimicrobial resistance reduce the time 
to result to hours or days, but only target a small number of loci relevant to a few antibiotics, 
and cannot detect most rare genetic variants(3). Although whole genome sequencing-related 
diagnostic tests offer the promise of resolving some of these deficiencies, statistical association 
techniques have seen limited success, hindered by their inability to assess newly observed 
variants and epistatic effects(3–7). More complex models such as deep learning provide 
promising flexibility but are often uninterpretable, making them difficult to audit for safety 
purposes (8, 9). Moreover, interrogating black box models offers the opportunity for hypothesis 
generation which can be later validated, potentially improving scientific understanding of the 
underlying phenomenon (10). 

A recent “wide-and-deep” neural network applied to M. tuberculosis genomic data 
outperformed previous methods to predict antimicrobial resistance to 10 antibiotics(11); 
however, like most deep learning methods, the logic behind its predictions was indiscernible. 
Although more interpretable rule-based classifiers of antimicrobial resistance in M. 
tuberculosis have been developed(12, 13),  these rely on predetermined single-nucleotide 
polymorphisms or k-mers, hindering their flexibility to generalize to newly observed mutations, 
and universally ignore genomic context. Deep convolutional neural networks (CNNs), which 
greatly reduce the number of required parameters compared to traditional neural networks, 
could be used to consider multiple complete genomic loci with the ultimate goal of 
incorporating the whole genome. This would allow the model to assess mutations in their 
genetic context by capturing the order and distance between resistance mutations of the same 
locus, allowing a better incorporation of rare or newly observed variation. Deep CNNs, when 
paired with attribution methods that highlight the most salient features informing the model 
predictions, are a promising means of harnessing the predictive power of deep neural networks 
in genomics for biological discovery and interpretation(14). CNNs also have the added 
advantage of minimizing the preprocessing needed of genomic variant data. The extent to 
which we may trust these highlighted features remains the subject of ongoing scientific 
exploration(8, 15, 16).   
 Here, we show that CNNs perform en par with the state-of-the-art in predicting 
antimicrobial resistance in M. tuberculosis and provide biological interpretability through 
motif representation captured in saliency mapping. We train two models: one designed for 
accuracy that incorporates genetic and phenotypic information about all drugs; and a second 
designed for interpretability that forces the model to only consider putatively causal regions 
for a particular drug. Our models are trained on the entire genetic sequence of 18 regions of 
the genome known or predicted to influence antibiotic resistance, using data collected from 
over 20,000 M. tuberculosis strains spanning the four major global lineages. Across each locus, 
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we calculate genomic positions that most influence the prediction of resistance for each drug, 
validating our method by recapitulating known positions and providing predictions of new 
positions potentially involved in drug resistance. Given the growing movement towards greater 
interpretability in machine learning methods(16, 17), we expect this model to have implications 
for hypothesis generation about molecular mechanisms of antimicrobial resistance through 
genotype-phenotype association. 
 
2. Results 
 
Training dataset characteristics 

We train and cross-validate our models using 10,201 M. tuberculosis isolates from the 
ReSeqTB and the WHO Supranational Reference Laboratory Network (sources detailed in the 
Materials and Methods). Each isolate is phenotyped for resistance to at least one of thirteen 
antitubercular drugs: the four first-line drugs isoniazid, rifampicin, ethambutol, and 
pyrazinamide, and nine additional second-line drugs (Table 1). All drugs are represented by at 
least 250 phenotyped isolates. 
  
Model design 

We build two models to predict antibiotic resistance phenotypes from genome 
sequences. The first is a multi-drug convolutional neural network (MD-CNN), designed to 
predict resistance phenotypes to all 13 drugs at once. The model inputs are the full sequences 
of 18 loci in the M. tuberculosis genome, selected based on known or putative roles in antibiotic 
resistance (Table 2). We chose the final MD-CNN architecture using an iterative process 
(Figure 1, Supplementary Figure 1). As superior performance of multi-task over single-task 
models has been demonstrated with convolutional neural networks in computer vision(18–20), 
the MD-CNN is designed to optimize performance by combining all genetic information and 
relating it to the full resistance antibiogram. We compare the MD-CNN with 13 single-drug 
convolutional neural networks (SD-CNN), each of which has a single-task, single-label 
architecture, in which only loci with previously known causal associations for any given drug 
are incorporated (Supplementary Figure 2). We benchmark both types of CNNs against an 
existing state-of-the-art multi-drug wide-and-deep neural network (MD-WDNN)(11), and a 
logistic regression with L2 regularization penalty. 
 
Benchmarking CNN models against state-of-the-art 

We used 5-fold cross-validation to compare the performance of the four architectures 
(MD-CNN, the SD-CNN, L2 regression, and WDNN(11)) on the training dataset (N=10,201 
isolates, Supplementary Table 1).  

The mean MD-CNN AUC of 0.912 for second-line drugs is significantly higher than 
the mean 0.860 for L2 regression (Welch's t-test with Benjamini-Hochberg FDR q<0.05), but 
the mean AUCs for first-line drugs (0.948 vs. 0.923) are not significantly different (Benjamini-
Hochberg q=0.055). The mean SD-CNN AUCs of 0.938 (first-line drugs) and 0.877 (second-
line drugs) are not significantly different than for L2 regression (first-line q=0.20, second-line 
q=0.16). However, L2 regression demonstrates much wider confidence intervals than the CNN 
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models (median 0.037 versus 0.010, IQR 0.035 versus 0.014), indicating a lack of reliability 
as the performance depends on the particulars of the cross-validation split (Figure 2).  

Against the state-of-the-art WDNN, the AUCs, sensitivities, and specificities of the 
MD-CNN are comparable: the MD-CNN’s mean AUC is 0.948 (vs. 0.959 for the MD-WDNN, 
q=0.15) for first-line drugs, and 0.912 (vs. 0.924 for the MD-WDNN, q=0.30) for second-line 
drugs. The SD-CNN is less accurate than the MD-WDNN for both first-line (Benjamini-
Hochberg q=0.006) and second-line drugs (q = 0.005, Supplementary Table 1, Figure 2). 

The SD-CNN (mean AUC of 0.938 for first-line drugs; mean AUC of 0.877 for second-
line drugs) performs comparably to the MD-CNN for first-line drugs (q=0.19), and is less 
accurate than the MD-CNN for second-line drugs (q=0.009). 

 
CNN models generalize well on hold-out test data 

We test the generalizability and real-world applicability of our CNN models on a hold-
out dataset of 12,848 isolates which were curated on a rolling basis during our study (Table 
1b, Materials and Methods). Rolling curation provides a more realistic test of generalizability 
to newly produced datasets. Due to rolling curation and source difference, the test dataset 
exhibits different proportions of resistance to the 13 drugs (e.g. isoniazid resistance in 28% vs. 
43% in the training dataset). We assessed generalizability of the models using phenotype data 
for 11 drugs in the hold-out test dataset, since it contained low resistance counts for 
ciprofloxacin and ethionamide.   
 We find that the MD-CNN generalizes well to never-before-seen data for first-line 
antibiotic resistance prediction, achieving mean AUCs of 0.965  (95% confidence interval [C.I.] 
0.948 - 0.982) on both training and hold-out test sets for first-line drugs (Figure 3). However, 
generalization for second-line drugs is mixed: for the drugs streptomycin, amikacin, ofloxacin, 
and moxifloxacin, the model generalizes well, achieving mean AUCs of 0.939 (CI 0.928 - 
0.949) on the test data (compared with 0.939 (CI 0.929 - 0.949) on the training data). For the 
second-line drugs capreomycin, kanamycin, and levofloxacin, the model generalization was 
reduced, achieving mean AUCs of 0.831 (CI 0.824 - 0.838) on the test data (compared with 
0.955 (CI 0.931 – 0.978) on the training data). We find that the SD-CNN generalizes well on 
first-line drug resistance for hold-out test data, with a mean AUC of 0.956 (CI 0.929 – 0.974). 
The SD-CNN also generalizes well for second-line drugs, with a mean AUC of 0.862 (CI 0.830 
– 0.894).  

We test the hypothesis that missed resistance (false negatives) is due to mutations 
affecting phenotype found outside of the 18 incorporated loci. To achieve this, we compute the 
number of mutations in the incorporated loci that separate each test isolate from the nearest 
isolate(s) in the training set and the corresponding phenotype of the nearest isolates (Methods). 
We find that many of the false negatives have a genomically identical yet sensitive isolate in 
the training set, ranging from a minimum of 34% for pyrazinamide to a maximum of 86% for 
kanamycin, and suggesting that additional mutations outside of the examined loci may 
influence the resistance phenotype. 
 
MD-CNN achieves accuracy by learning dependency structure of drug resistances 
 Because the inputs to the CNN models are the complete sequence of 18 genetic loci 
involved in drug resistance, we are able to assess the contribution of every site, in its 
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neighboring genetic context, to the prediction of antibiotic resistance phenotype. We do this by 
calculating an importance score for each nucleotide site in each input sequence using 
DeepLIFT(21). For any input, DeepLIFT calculates the change in predicted resistance relative 
to a reference input, and then backpropagates that difference through all neurons in the network 
to attribute the change in output to changes in the input variable. We use the pan-susceptible 
H37Rv genome as a reference(22). We take the highest magnitude (positive or negative) 
importance score for each nucleotide across all isolates in the training set (Methods).  
 We find evidence that the MD-CNN achieves high performance by relying on drug-
drug resistance correlations. Due to the global standard therapeutic regimen for tuberculosis, 
resistances to first-line drugs almost always evolve before resistances to second-line drugs, and 
frequently in a particular order(23) (Figure 4A-B). When considering the top 0.01% (N=17) 
of positions with the highest DeepLIFT importance scores for each drug, we observe that an 
average of 85.0% are known to confer resistance to any drug(24), but only a mean of 24.0% 
are known to confer resistance to the particular drug being investigated. For example, the top 
three hits for the antibiotic kanamycin are, in order, a causal hit to the rrs gene, an ethambutol-
resistance causing hit to the embB gene, and a fluoroquinolone-resistance-causing hit to the 
gyrA gene (Extended Data 1). To probe this further, we introduce mutations that confer 
resistance to the first-line drugs rifampicin and isoniazid into a pan-susceptible genomic 
sequence background, in silico, and this increased the MD-CNN predicted resistance 
probability of pyrazinamide, streptomycin, amikacin, moxifloxacin and ofloxacin resistance 
(Figure 5A). The MD-CNN model generalized well for all five of these drugs: AUC of 0.939 
for these drugs versus 0.831 for the remaining second-line drugs. Taken together, these 
observations show that the MD-CNN benefits from the correlation structure of antibiotic 
resistance.  
 
SD-CNN saliencies highlight known and new potential predictors of resistance 
 We assess whether the DeepLIFT saliency scores for the SD-CNN models are able to 
capture known causal, resistance-conferring variants by cross-referencing the WHO catalog of 
established resistance-conferring mutations(24). We find that of the 0.1% of sites with the 
largest absolute DeepLIFT saliencies in each model, a large proportion are in the WHO catalog 
of known resistance-conferring positions (ranging from 37.5% for streptomycin to 100% for 
capreomycin, Methods, Supplementary Table 2). In total, we identify 38 variants in the top 
0.1% of sites that are not previously known to cause resistance, or classified by the WHO as 
of “uncertain significance”. Variants associated with the M. tuberculosis population structure 
comprise a smaller proportion, ranging from 0% to 8% of the top 0.1% of hits for each locus 
(Methods, Supplementary Table 3). We examine the distribution of saliency scores closely 
for two drugs with well understood resistance mechanisms: rifampicin and isoniazid; and for 
pyrazinamide a drug for which elucidating resistance mechanisms has been more challenging. 
 Rifampicin: Positions in the rpoB gene known to cause rifampicin resistance(24) 
constitute 86% of the top 0.1% and 55% of the top 1% of saliency scores (Supplementary 
Figure 4). Four of the five highest-scoring variants that have not been previously identified as 
resistance-causing are located in three-dimensional proximity (minimum atom distance < 8Å) 
to resistance-conferring variants in the RpoB protein structure, demonstrating the biological 
plausibility for these newly identified sites to confer resistance (Supplementary Figure 4).  
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 Isoniazid: The common causal site KatG S315 has the highest maximum saliency in 
the isoniazid SD-CNN (Figure 5A). We observe several high saliency peaks in the promoter 
region of the ahpC gene, which are currently designated as “uncertain significance” to isoniazid 
resistance by the WHO(25). We observe three saliency peaks in the InhA protein, the mycolic 
acid biosynthesis enzyme targeted by isoniazid. One peak was at the known resistance-
conferring mutation S94, and two at positions I21 and I194, of uncertain significance in the 
WHO catalogue. All three of these positions are close in 3D structure (minimum atom distance 
<8Å) to the bound isoniazid molecule(26). (Figure 6B) 
 Pyrazinamide: Of the top 1% of high saliency positions, 62% are known to be 
resistance-conferring, and an additional 23% are in pncA, but not previously known to cause 
resistance. The top three of these unknown pncA mutations are physically adjacent to known 
resistance-conferring mutations (Figure 5 C,D). The top 1% of salient positions also includes 
positions in clpC1, a gene recently implicated in pyrazinamide resistance, but mutations within 
are not yet recognized to be useful for resistance prediction(27, 28) (Extended Data 1).  
 
3. Discussion 
 

In summary, we find that the convolutional neural networks offer similar predictive 
accuracy to the state-of-art MD-WDNN while also being able to discover new loci implicated 
in resistance, and to visualize them in their genomic context. Another major advantage of the 
CNNs, is that they require significantly less pre-processing and curation because they directly 
analyze alignments of genomic loci, allowing the models to consider not only single nucleotide 
polymorphisms but also sequence features such as insertions and deletions or more complex 
variation. They also circumvent challenges arising from differing variant naming conventions, 
and in reconciling variant features across datasets and time.  

We find the MD-CNN’s AUCs to be similar to those of the drug-specific SD-CNNs for 
first-line drugs, and are significantly higher for second-line drugs. CNNs generalize well to the 
distinct, hold-out, test isolates for these first-line antibiotics, a promising aspect if they are to 
be deployed in clinical practice. By contrast, there are more mixed results and generally lower 
hold-out test AUCs for second-line drugs.  For both first- and second-line drugs, we observe 
that false negative isolates are often genetically identical at the considered loci to their drug-
sensitive counterparts in the training dataset, indicating that additional genetic information is 
needed to accurately predict the phenotype for certain isolates.   

Although deep neural networks are generally deemed to be less interpretable than 
traditional statistical methods, we are able to apply two distinct methods to interpret the 
network’s inner logic: first, assessing model predictions using in silico mutagenesis; and 
second, assessing DeepLIFT importance scores for every input site. By computationally 
introducing resistance-conferring mutations into known susceptible sequences, we discover 
that the MD-CNN’s predictions for second-line drugs relies on the correlation structure of drug 
resistance which is present in both the training and test set. Using DeepLIFT, we highlight 
which sequence features are informing model predictions: for example, our model confirmed 
the importance of known, resistance-conferring mutations, such as in the rpoB, and katG genes.  

In addition to highlighting known resistance-conferring mutations, our model discovers 
38 resistance variants previously unknown or of “uncertain significance” based on the WHO 
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catalogue(24). Including these mutations in resistance prediction may be useful for clinical 
diagnosis of antibiotic resistance – for example, 6% of isoniazid resistant strains contain at 
least one newly discovered mutation, and 2.4% contain only newly discovered mutations and 
no canonical resistance variants. The interpretable, nucleotide-level saliency scores permit the 
protein contextualization of mutations and offers the prospect of modeling how certain 
mutations would impact protein structure, and drug binding. This can allow for in silico 
prioritization of putative mutations for further experimental validation.   

Limitations of this study include: first, the genomic variants highlighted by saliency 
analysis and protein contextualization cannot be confirmed to be causative without further in 
silico and in vitro corroboration, although further validation in independent data will support a 
causal role. Second, traditional laboratory-based susceptibility testing can have high variance, 
especially for second-line drugs, introducing a potential source of error. Third, there is 
insufficient phenotypic data for  certain anti-TB drugs (e.g. the novel agents bedaquiline and 
pretomanid, and second-line agents like ethionamide). Fourth, the non-causal mutation 
correlations observed in the MD-CNN boosted performance, but both the training and test data 
were enriched for multi-drug resistance. Further assessment of generalizability to a clinical 
setting with a low background prevalence of multi-drug-resistant M. tuberculosis is needed. 
Finally, additional computational resources would allow the inclusion of more loci of interest, 
likely augmenting the performance of the MD-CNN and SD-CNNs. 

We believe this to be the first study to demonstrate the feasibility of interpretable, 
convolutional neural networks for prediction of antibiotic resistance in M. tuberculosis. Greater 
interpretability, reliability and accuracy make this model more clinically applicable than 
existing benchmarks and other deep learning approaches. Saliency mapping and protein 
contextualization also offer the possibility of creating hypotheses on mechanisms of anti-TB 
drug resistance to focus further research. Along with increasingly accessible WGS-capable 
infrastructure globally, machine-learning-based diagnostics may support faster initialization of 
appropriate treatment for MDR-TB, reducing morbidity and mortality, and improving health 
economic endpoints(1, 29).  
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Materials and methods 
 
Sequence data  

The training, cross-validation, and test datasets consist of a combined 23,049 M. 
tuberculosis isolates for which whole genome sequence data and antibiotic resistance 
phenotype data are available. The sequencing data are obtained through the National Center 
for Biotechnology Information database, PATRIC, and published literature,:  10,201 strains 
are in the “train” dataset (for training and cross-validation) (6, 30–42), 7,537 are in the hold-
out “test_1” dataset (for hold-out testing) (31, 43–47), and the remaining 5,312 are in the hold-
out “test_GenTB” dataset (for hold-out testing) (31, 43–47). 

We process sequences in the train and test_1 datasets using a previously validated 
pipeline as described by Ezewudo et al. (2018), with modifications as elaborated by Freschi et 
al. (2020)(42, 48). Briefly, reads are trimmed and filtered using PRINSEQ(49), contaminated 
isolates are removed using Kraken(50), and aligned to the reference genome H37Rv using 
BWA-MEM(22, 51). Duplicate reads are removed using Picard, and we dropped isolates with 
less than 95% coverage of the reference genome at 10x coverage.  

For the “test_GenTB” dataset, we prepare the sequencing data in accordance with the 
protocol in Groschel et al.(52) , a different variant of the Ezewudo et al. pipeline.  

With regard to curated genetic variants, the predictor sets of features for the multi-drug 
wide and deep neural network (MD-WDNN, see Machine learning models below) are 
processed as described by Chen et al. (2019)(11). Conversely, for the single-drug and multi-
drug convolutional neural networks (SD-CNN and MD-CNN, see Machine learning models 
below), only the FASTA files for the loci of interest are necessary.  
 
Antimicrobial resistance phenotype data 

Culture-based antimicrobial drug susceptibility to 2-to-13 anti-TB drugs are available 
for all 23,049 isolates in the combined training, cross-validation, and test dataset, collated with 
quality control criteria described by Farhat et al. (2016)(3). Phenotypes (drug susceptibility test 
results) for isolates in the training and cross-validation dataset are from the ReSeqTB data 
portal, the PATRIC database, and manual curation of phenotypic data available in the 
literature(6, 30–42). Phenotypes for the test dataset isolates are from data available in the 
literature(31, 43–47). Each isolate’s phenotype is classified as resistant, susceptible, or 
unavailable, with respect to a combination of 13 possible first-line (rifampicin, isoniazid, 
pyrazinamide, ethambutol) and second-line drugs (streptomycin, ciprofloxacin, levofloxacin, 
moxifloxacin, ofloxacin, capreomycin, amikacin, kanamycin, ethionamide). (Table 1). In the 
hold-out test dataset, ethionamide and ciprofloxacin were excluded due to data missingness 
(0/2 resistant to ciprofloxacin; 12/25 resistant to ethionamide).  
 
Selecting input loci 

The loci of the isolate sequences are selected from genes known or suspected to cause 
resistance based on previous models and experiments (Table 1). In order to incorporate 
regulatory sequences from the immediate genetic neighborhood, regions upstream from genes 
of interest are included. Loci were aligned to the H37Rv reference genome for comparison of 
coordinates and genome annotations are based on H37Rv coordinates from Mycobrowser(53). 
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Machine learning models 

The Multi-Drug (multi-task) Wide-and-Deep Neural Network (MD-WDNN) is 
described by Chen et al. (2019), and involves three hidden layers (256 ReLU), dropout, and 
batch normalization(11) 

The Multi-Drug Convolutional Neural Network (MD-CNN) comprises two 
convolution layers (with filter size 12 nucleotides in length), one max-pooling layer, two 
convolution layers, one max-pooling layer, followed by two fully-connected hidden layers each 
with 256 rectified linear units (ReLU) (Table 1). This architecture is selected based on its 
performance, as defined by area under the receiver operator characteristic curve (AUC), 
compared to other architectures with fewer convolutional layers and differential filter sizes 
(Supplementary Figure 1). Neither random nor cartesian grid search of optimal 
hyperparameters is conducted.    

The MD-CNN is trained for 250 epochs via stochastic gradient descent and the Adam 
optimizer (learning rate of e–9). We select an optimal number of epochs based on minimizing 
validation loss (Supplementary Figure 5). The training is performed simultaneously using the 
resistance phenotype for all 13 drugs, hence the 13 nodes in the final output layer (Table 1), 
the output of each node corresponding to the sigmoid probability of the strain being resistant 
to the respective drug.  

The MD-CNN’s loss function is adapted from the masked, class-weighted binary cross-
entropy function described by Chen et al. (2019)(11). This function addresses the dataset 
imbalance (missing resistance phenotypes for a varying number of drugs in any given isolate) 
by upweighting the sparser of the susceptible and resistant classes for each drug, and masking 
outputs where resistance status was completely missing. 
 The Single-Drug Convolutional Neural Networks (SD-CNNs) are thirteen individually 
trained convolutional neural networks, each trained to predict for only one drug, hence the 
output layer having size 1 instead of 13. Each SD-CNN is given only the input loci relevant to 
its particular antibiotic, resulting in different input sizes depending on the longest locus for 
each drug. The architecture for the SD-CNNs is otherwise identical to that of the MD-CNN. 
The SD-CNNs are initially trained for 150 epochs using stochastic gradient descent and the 
Adam optimizer (learning rate of e–9) and an optimal number of epochs for each SD-CNN is 
selected to minimize the validation loss (Supplementary Table 4).  
 
Logistic regression benchmark 
 We build a logistic regression benchmark to evaluate the performance of our neural 
network models. For each of the 18 input loci used in the MD-CNN and SD-CNNs, we select 
all sites with a minor allele frequency of at least 0.1%, resulting in 3,011 sites across 23,049 
genomes. Sites are then encoded using a major/minor allele encoding.  
 Using the same train/test partitioning as for the neural network models, we use 
GridSearchCV in Scikit-learn v.0.23.2(54) to select the optimal L2 penalty weight for a 
LogisticRegression classifier with balanced class weights. Hyperparameter search is performed 
for each drug independently, testing the values C=[0.0001, 0.001, 0.01, 0.1, 1]. After selecting 
the optimal L2 weight, we use five-fold cross-validation on the training set to assess the AUC, 
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specificity, and sensitivity, selecting a model threshold that maximized the sum of specificity 
and sensitivity. 
 
Training and model evaluation 

Five-fold cross-validation is performed five times to obtain the performance metrics – 
area under the receiver operator characteristic curve (AUC), sensitivity, specificity, and 
probability threshold (to maximize the sum of sensitivity and specificity) – and the 95% 
confidence intervals of the AUC values between the models.  
 Model performance on the hold-out test sets is evaluated using the probability threshold 
selected during training.  
 
Computational details 

The MD-CNN is developed and implemented using TensorFlow 2.3.0 in Python 3.7.9 
with CUDA 10.1(55–57). Model training is performed on an NVIDIA GeForce GTX Titan X 
graphics processing unit (GPU).  
 
Analysis of mis-predicted isolates 
 For each SD-CNN model, we compute the genetic distance (number of different sites) 
between all isolates in the training and test sets. Only the loci included in each SD-CNN model 
are incorporated in the calculation.  
 
Importance Score calculation 

Importance scores are calculated using DeepLIFT v. 0.6.12.0, using the recommended 
defaults for genomics: “rescale” rule applied to convolutional layers, and “reveal-cancel” rule 
applied to fully connected layers. We use the H37Rv reference genome, which is sensitive to 
all antibiotics, as the baseline(22). 
 Importance scores for each isolate sequence are calculated relative to the H37Rv 
baseline. For our analysis of positions influencing antibiotic resistance prediction, we take the 
maximum of the absolute value of the scores at each position across all resistant isolates. 
 
Lineage variant analysis 
 We define lineage variants as those found in the Coll et al. or Freschi et al. barcode of 
lineage-defining variants(58, 59). We further annotate any position in our 18 loci as lineage 
associated if that position has an identical distribution of major/minor alleles to any position in 
the Freschi et al barcode, excluding the position 1,137,518 which defines lineage 7 (not present 
in our dataset).  
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 Tables 
 
 

 
 

Table 1a: training & cross-validation isolates   Table 1b: test dataset isolates  
  
 
Tables 1a & 1b : Phenotypic summary of the 23,049 isolates used to train and cross-validate 
(1a), and test (1b) the models: the numbers of resistant isolates, susceptible isolates, the total 
tested (sum of the numbers of resistant and susceptible isolates), and the resistant proportion, 
with respect to each of the 13 anti-TB drugs (training and cross-validation) or 11 anti-TB 
drugs (test). Ciprofloxacin and ethionamide were excluded from the test dataset due to small 
numbers (0/2 resistant to ciprofloxacin; 12/25 resistant to ethionamide).  
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Locus Start End Drug(s) Length (in 
H37Rv) 

acpM-kasA 2517695 2519365 Isoniazid 1670 
gid 4407528 4408334 Streptomycin 806 

rpsA 1833378 1834987 Pyrazinamide 1609 
clpC 4036731 4040937 Pyrazinamide 4206 

embCAB 4239663 4249810 Ethambutol 10147 

aftB-ubiA 4266953 4269833 Ethambutol 2880 
rrs-rrl 1471576 1477013 Streptomycin, Amikacin, 

Capreomycin, Kanamycin 
5437 

ethAR 4326004 4328199 Ethionamide 2195 

oxyR-ahpC 2725477 2726780 Isoniazid 1303 
tlyA 1917755 1918746 Capreomycin 991 
katG 2153235 2156706 Isoniazid 3471 
rpsL 781311 781934 Streptomycin 623 

rpoBC 759609 767320 Rifampicin 7711 
fabG1-inhA 1672457 1675011 Isoniazid, Ethionamide 2554 

eis 2713783 2716314 Kanamycin, Amikacin 2531 
gyrBA 4997 9818 Ciprofloxacin, 

Levofloxacin, 
Moxifloxacin, Ofloxacin 

4821 

panD 4043041 4045210 Pyrazinamide 2169 
pncA 2287883 2289599 Pyrazinamide 1716 

 
 
Table 2: Loci included in the MD-CNN and SD-CNN models. The 18 loci included in the 
MD-CNN and their start and end coordinates (in H37Rv numbering). Each locus was 
designated as putatively involved in resistance to at least one drug. To construct the 13 SD-
CNN models, the relevant loci for each drug were combined – for example, the isoniazid 
(INH) model contained the acpM-kasA, oxyR-ahpC, katG, and fabG1-inhA loci. 
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Figures 
 
Figure 1: schematic diagram and table of the multi-drug convolutional neural network (MD-
CNN). In the output layer, each of the 13 nodes is composed of a sigmoid function to compute 
a probability of resistance for their respective anti-TB drug (13 anti-TB drugs in total). The 
input consisted of ‘10,201’ isolates (TB strains) for which there was resistance phenotype data 
for at least 2 anti-TB drugs; ‘5’ for one-hot encoding of each nucleotide (5 dimensions, one for 
each nucleotide – adenine, thymine, guanine, cytosine plus gaps); ’10,291’ being the number 
of nucleotides of the longest locus (embC-embA-embB); ‘18’ loci of interest were incorporated 
as detailed in ‘Materials and methods’. 

 
  

Layer Operation Number of 
Filters

Filter 
Size Stride Output Dimensions

Input - - - - 10,201 x 5 x 10,291 x 
18

1D convolution Convolution�
ReLU 64 5 x 12 1 x 1 10,201 x 1 x 10,280 x 

64

1D convolution Convolution�
ReLU 64 1 x 12 1 x 1 10,201 x 1 x 10,269 x 

64

Pooling Max pooling 1 1 x 3 1 x 1 10,201 x 1 x 3,423 x 
64

1D convolution Convolution�
ReLU 32 1 x 3 1 x 1 10,201 x 1 x 3,421 x 

32

1D convolution Convolution�
ReLU 32 1 x 3 1 x 1 10,201 x 1 x 3,419 x 

32

Pooling Max pooling 1 1 x 3 1 x 1 10,201 x 1 x 1,139 x 
32

Inner product�
(two times)

Fully connected�
ReLU - - - 256

Output - - - - 13
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Figure 2: MD-CNN performs comparably to state-of-art WDNN for both first- and 
second-line drugs. Results of five-fold cross validation on the training dataset for the four 
models: WDNN, logistic regression + L2 benchmark, SD-CNN, and MD-CNN. (A) mean 
AUC and 95% confidence intervals, pooled for first and second line drugs. (B) mean AUC 
and 95% confidence intervals for each drug. The WDNN was not initially trained on 
levofloxacin or ethionamide and thus was not evaluated for these drugs. 

  

First line
drugs

Second line
drugs

Second line drugsFirst line drugs

Mean AUC

A

B
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Figure 3: MD-CNN and SD-CNN model generalize well on hold-out test data. 
Performance of CNN models trained on the entire training dataset evaluated on either the 
training dataset or the hold-out test dataset. (A) Mean AUC and 95% confidence intervals 
(calculated across drugs) for first- and second-line drugs, pooled. (B) Mean AUC for each 
drug with confidence intervals generated by 100x bootstrapping with 80% of isolates. 
Ciprofloxacin and ethionamide were not assessed due to low number of resistant isolates.  

  

First line
drugs

Second line
drugs

Second line drugsFirst line drugs

Mean AUC

A

B
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Figure 4: MD-CNN learns dependency structure of antibiotic resistance. (A) 
Introduction of single resistance-conferring mutations into pan-susceptible wild-type 
background (H37Rv) is sufficient to cause MD-CNN model to predict false positive 
resistances. A single isoniazid-resistance conferring mutations (2155168G, katG S315T) or 
one isoniazid- and one rifampicin-resistance conferring mutation (2155168G and 761155T, 
rpoB S450L) were introduced in silico into the wild-type background sequence and 
resistances were predicted using the MD-CNN model. (B) Dependency heatmaps of drug 
resistance for training isolates. The horizontal axis represents the drugs to which isolates 
exhibited resistance. Based on this condition of resistance, the proportion of resistance to 
other drugs (vertical axis) was computed.  
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Figure 5: SD-CNN importance scores highlight known and plausible new resistance-
conferring loci. Variants not known to cause resistance according to the WHO(24) are 
shown in purple. (A) Maximum of absolute value DeepLIFT importance scores for the 
isoniazid SD-CNN across all isoniazid-resistant loci. (B) High-importance variants in the 
InhA protein mapped to its crystal structure(60). (C) High-importance variants in the PncA 
protein mapped to its crystal structure(61). (D) Maximum of absolute value DeepLIFT 
importance scores for the pyrazinamide SD-CNN in the pncA locus. 
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