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Abstract

The recent years have seen the rise of pangenomes as comparative ge-
nomic tools to better understand the evolution of gene content among
microbial genomes in close phylogenetic groups such as species. While
the core or persistent genome is often well-known as it includes essential
or ubiquitous genes, the variable genome is usually less characterized and
includes many genes with unknown functions even among the most stud-
ied organisms. It gathers important genes for strain adaptation that are
acquired by horizontal gene transfer. Here, we introduce panModule, an
original method to identify conserved modules in pangenome graphs built
from thousands of microbial genomes. These modules correspond to syn-
teny blocks composed of consecutive genes that are conserved in a subset of
the compared strains. Identifying conserved modules can provide insights
on genes involved in the same functional processes, and as such is a very
helpful tool to facilitate the understanding of genomic regions with com-
plex evolutionary histories. The panModule method was benchmarked
on a curated dataset of conserved modules in Escherichia coli genomes.
Its use was illustrated through a study of a high pathogenicity island in
Klebsiella pneumoniae that allowed a better understanding of this region.
panModule is freely available and accessible through the PPanGGOLiN
software suite (https://github.com/labgem/PPanGGOLiN).

1 Introduction

Lately, the data deluge provided by NGS has given access to over a million
of prokaryotic genome sequences in public data banks, as well as a wealth of
genomes reconstructed from environmental data, such as metagenome assem-
bled genomes (MAGs) or single-cell assembled genomes (SAGs). Consequently,
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many bacterial species of interest now have hundreds to several thousands of
genomes publicly available. It represents a fantastic opportunity to understand
the evolution of prokaryotic genomes, and more specifically to study gene flow
within a given species. However, processing such a huge amount of data for
comparative genomics analyses is becoming a real challenge and requires new
bioinformatics solutions. In particular, many new methods rely on the con-
ceptual framework of the pangenome, which corresponds to the entire gene
repertoire of a taxonomic group [1]. Multiple methods have been developed to
study pangenome structures and to perform comparative studies of hundreds to
thousands of genomes (e.g. Roary [2], PIRATE [3], Panaroo [4], PPanGGOLiN
[5], PanACoTA [6]). A pangenome can be described by two components: the
core genome, which contains genes shared by all (or almost all) individuals, and
the variable genome, which gathers all other genes.

Studying the variable part of the pangenome is of major interest since it gath-
ers genes of importance for adaptation of the strains, and particularly genes that
have been acquired by Horizontal gene transfer (HGT). Indeed, as described for
many years, HGT is a significant source of gene novelty [7] and is a major driver
of genome evolution in bacterial species providing and maintaining diversity at
the population level [8, 9]. This horizontal gene flow occurs through different
well-known mechanisms involving mobile genetic elements and can spread genes
between potentially very distant bacterial lineages [10]. Transferred genetic ma-
terial can correspond to single genes as well as clusters of consecutive genes on
the chromosome from one or more transfer events. These latter are commonly
described as genomic islands (GIs) [11]. They may bring an evolutionary advan-
tage allowing adaptations to new environments or providing new pathogenicity
capacities, for instance [12]. Studying the evolution and functional impact of
GIs on bacterial populations is of major interest for microbiologists, since they
are widely distributed in pathogenic and environmental microorganisms. GIs
tend to insert at specific sites of the genome, such as tRNA genes [13]. Some of
those insertion sites, called hotspots, are more active than the rest of the genome
in terms of acquisition rate of new elements and have a much more diverse gene
content, even between closely related individuals [14]. Indeed, hotspots diver-
sify by rapid gene turnover driven by homologous recombination and horizontal
gene transfer.

In the framework of the study of several Escherichia coli genomes, two
publications have described the structure of GIs at a given hotspot [15, 16].
They showed a patchy structure corresponding to a segmented organization of
genes into modules that can be found independently in different genome loci.
These modules correspond to synteny blocks composed of consecutive genes
that are conserved in a subset of the compared strains and can be functionally
linked. In the pheV -tRNA hotspot of E. coli, the presence/absence of mod-
ules was shown to be uncorrelated with either the phylogenetic group or the
pathotype [15]. Several other studies have described the modular structures of
GIs in various species, such as in Klebsiella pneumoniae [17] or in Photorhab-
dus/Xenorhabdus [18]. Many methods to identify conserved synteny regions in
prokaryotic genomes have been developed through the years. However, most of
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them do not scale higher than a few dozen genomes. To our knowledge, only
two are designed for prokaryotes and have the ability to cope with more than
a few hundred genomes, namely Gecko3 [19] and CSBFinder [20, 21]. While
both of those methods provide an answer to the problem of finding conserved
syntenies [22], they are not designed to work with pangenomes but rather on
a more diverse taxonomic selection of genomes. Other approaches that do not
rely on synteny conservation but on the cooccurrence or coevolution of genes in
a pangenome to infer functional associations exist as well. Pantagruel [23] or
Coinfinder [24] are recent examples designed for bacterial pangenomes. How-
ever, their goal is to infer associations or dissociations between pairs of genes,
and they do not attempt to refine those relations into groups of colocalized genes
directly.

In this article, we propose a new method called panModule to detect modules
in GIs based on the pangenome graph representation of PPanGGOLiN [5]. In
this graph, nodes represent gene families and edges represent genetic contiguity.
In PPanGGOLiN, families are classified by a statistical model into a tri-partition
scheme as introduced by [25]: (i) the persistent genome, which corresponds to
genes that are present in most individuals of the studied clade, (ii) the shell
genome, which groups genes that are conserved between some individuals of
the group but not most and (iii) the cloud genome, which corresponds to genes
that are rare within the population and found only in one or a few individuals.
To predict modules, the panModule algorithm detects sets of co-occurring and
colocalized genes in the variable part of the pangenome graph, composed of shell
and cloud families. The predictions of panModule were evaluated at the species
level using a curated dataset of modules in 12 genomes of Escherichia coli pre-
viously analyzed [15]. We then illustrate our approach by predicting modules
in a set of complete Klebsiella pneumoniae genomes and comparing those pre-
dictions with formerly studied modules in a high pathogenicity island (HPI)
of a strain of medical interest [17]. The panModule method is integrated in
the PPanGGOLiN software suite (https://github.com/labgem/PPanGGOLiN).
Modules can be predicted on pangenomes made of thousands of genomes and
be analyzed along with the GIs and integration spot results from the previously
published panRGP method [26].

2 Materials and Methods

2.1 Module detection algorithm

The panModule method uses the pangenome graph representation of PPanG-
GOLiN [5] in which nodes correspond to homologous gene families (classified
into persistent, shell and cloud partitions) and edges represent genetic contigu-
ity (two families are linked in the graph if they contain genes that are neighbors
in the genomes). Modules are defined as non-overlapping sets of cooccurring
and colocalized variable gene families (i.e., shell and cloud families) that corre-
spond to connected components in the pangenome graph. The graph algorithm
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behind panModule is inspired from a previously published method [27] that
merges information from two or more graphs in a multigraph and then detects
common connected components. These components correspond to conserved
synteny groups, where the input graphs are genomes. In panModule, we do not
use a multigraph representation but directly the pangenome graph to detect
synteny conservation and thus modules in the variable genome.

First, each annotated genome sequence (i.e. complete genome sequences or
contigs) is read to obtain a genome graph, which is a linear graph of genes that is
cyclic in case of complete sequences of circular plasmids or chromosomes. Then,
the pangenome graph G(V,E) is built from all genome graphs where V is a set
of vertices corresponding to gene families and E is a set of edges representing
genetic contiguity in the genome graphs between those gene families. An edge
ei,j is added between each pair of gene families (vi, vj) if their corresponding
genes are separated by less than t genes on a genome graph. For t > 1, it
corresponds to a transitive closure applied to the genome graphs and allows to
connect two families even if their genes are not directly adjacent. This can be
useful in case a module in a genome is interrupted by a gene insertion (e.g.
an insertion sequence) or has lost genes due to a deletion or pseudogenization
event.

For each edge ei,j , two Jaccard similarity coefficients are computed as follows:

J(vi, ei,j) =
wei,j

wvi
and J(vj , ei,j) =

wei,j

wvj
where wvi

and wvj
are the number of

genes associated with the families vi and vj , respectively, and wei,j is the number
of pairs of genes used to create an edge ei,j between two nodes vi and vj . A
threshold s is defined as being the minimal Jaccard similarity to consider an
edge as belonging to a module. If J(vi, ei,j) > s ∧ J(vj , ei,j) > s, the edge is
kept, otherwise it is removed from the graph. In addition, nodes corresponding
to gene families that are present in less than m genomes are also removed.

After this filtering step, each connected component is extracted using a mod-
ified Breadth-First Search (BFS) algorithm. A connected component is consid-
ered as a predicted module if it contains at least 3 nodes made of the shell, cloud
or multigenic persistent families according to PPanGGOLiN classification [5].
Indeed, modules containing non-multigenic persistent families are not consid-
ered because they are not part of the variable genome and generally correspond
to long syntenic regions that are conserved in almost all compared genomes
without any or only a few rearrangement events.

2.2 Reference dataset and genome collections

To evaluate panModule predictions, we used a reference dataset of modules
based on the expert annotation of 12 E. coli complete genomes originally pub-
lished in [15]. These 12 strains are from different phylogroups (i.e. A, B1, B2
and D) and are commensal or ExPEC (Extra-intestinal Pathogenic Escherichia
coli). Their genomes have been curated with the MicroScope platform [28] and
their GIs have been divided into modules according to both synteny conser-
vation and functional annotation of the genes. This dataset, named EcoliRef,
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contains a total of 165 modules that are present in at least 2, and not more than
10 of the 12 genomes, for a total of 793 occurrences in 461 GIs. GIs and mod-
ules are described by their genomic coordinates on the 12 E. coli chromosome
sequences and were classified into 7 functional categories (Supplementary Data
file ’benchmark/reference modules.tsv’).

Module prediction was run on 4 collections of E. coli genomes. The first one
corresponds to the 12 genomes of the EcoliRef reference dataset. The second
one contains all 1671 E. coli genomes classified as ‘Complete’ or ‘Chromosome’
in NCBI RefSeq [29] (downloaded the 1st of March 2021 and listed in Supple-
mentary Data file ’benchmark/EcoliComplete genomes.list’). This dataset will
be thereafter called EcoliComplete and includes the 12 genomes of EcoliRef.
The third collection, named EcoliContigs, includes 1659 unfinished genomes
plus the 12 genomes of EcoliRef. All E. coli genomes classified as ’Contigs’ or
’Scaffold’ in NCBI RefSeq (downloaded the 22nd of June 2021) were compared
to all EcoliComplete genomes (apart from the 12 genomes of EcoliRef) with
Mash (version 2.1.1, parameters: -s 5000, default for the others) [30] to itera-
tively pick out the closest genome in contigs (Supplementary Data file ’bench-
mark/EcoliContigs genomes.list’). As such, we get an equivalent bias in genome
composition between both datasets to compare them properly and thus evaluate
the impact of using genomes in contigs for module prediction. The last collec-
tion, named EcoliMAGs, contains 1 416 MAGs classified as ’Escherichia coli ’
from the study of Pasolli et al. [31] plus the 12 genomes of EcoliRef. MAGs
were annotated using bakta (version 1.0.3, default parameters) [32]. As this
dataset is much smaller than NCBI RefSeq, we chose not to apply the same fil-
ters as for the EcoliContigs dataset and just kept all MAGs. Therefore, we have
here a collection of incomplete and fragmented E. coli genomes whose diversity
is different from the two previous ones. Indeed, it contains potentially fewer
pathogenic strains because MAGs were obtained from metagenomic samples
not involving patients with an E. coli infections.

To illustrate the use of panModule on another species, a dataset contain-
ing 566 complete genomes classified as ’s Klebsiella pneumoniae’ in GTDB (re-
lease 06-RS202) [33] was downloaded on the 3rd of May 2021 from GenBank and
NCBI RefSeq (listed in Supplementary Data file ’Klebsiella pneumoniae/Klebsiella pneumoniae genomes.list’).
Then the modules were predicted using the method described in 2.1 with param-
eters t = 4, m = 2 and s = 0.86. The GIs of interest were identified by searching
for those with positions overlapping with KPHPI208 in Klebsiella pneumoniae
1084. Annotations considered in the analysis are those from the downloaded
file of NCBI RefSeq.

Genomic region illustrations were obtained using an online version of the
CGView software [34] available at https://beta.proksee.ca.

2.3 Module prediction and benchmark procedure

The panModule method was run on the four E. coli genome collections using
PPanGGOLiN software version 1.2.0 with default parameters to obtain homol-
ogous gene families and pangenome graphs. Module prediction was evaluated
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at the genome level using the reference modules from the 12 genomes of the
EcoliRef dataset. In a GI of a given genome, a set of genes is considered to
be part of a predicted module if their corresponding families are members of
the same module. The benchmark uses genomic positions and processes GIs
one by one with the following assumptions: (i) pairs of genes located between
the genomic positions of a reference module are considered as positive relations
(ii) pairs of genes that do not belong to the same reference module but are in
the same GI are considered as negative relations. Thus, pairs of genes in a GI
that are in the same predicted module and the same reference module are True
Positives (TP). Pairs of genes that are in different predicted modules or not
in a predicted module but in the same reference module are False Negatives
(FN). Pairs of genes that are in the same predicted module but in different ref-
erence modules or not in a reference module are False Positives (FP). Pairs of
genes that are in different predicted modules or not in a predicted module and
in different reference modules or not in a reference module are True Negatives
(TN).

To evaluate module prediction, Matthew’s correlation coefficient (MCC),
F1-score, accuracy, precision and recall values were computed for the 4 E. coli
genome collections as follows:

recall =
TP

TP + FN

precision =
TP

TP + FP

accuracy =
TP + TN

TP + FP + FN + TN

F1score =
2TP

2TP + FP + FN

MCC =
TP ∗ TN − FP ∗ FN√

(TP + FP )(TP + FN)(TN + FP )(TN + FN)

In order to determine the best values for the s, m and t parameters of
panModule, we evaluated the predictions on the EcoliRef dataset using a set
of realistic value combinations and chose the one that gives the best MCC
(Supplementary Data file ’benchmark/EcoliScope benchmark metrics.tsv’). We
then used this set of parameters on the other genome collections for comparison.

3 Results & Discussion

3.1 Benchmark results

To evaluate panModule, we ran the benchmark as described in the Materials
and Methods section to see how it performed against a curated set of functional
modules. The best set of parameters was estimated on the EcoliRef dataset, and
applied on the other datasets as such: m = 2, t = 4 and s = 0.86. A summary
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of the benchmark results for each dataset with these parameters is available in
Table 1. It is possible that other parameters yield better results, which we will
discuss with the case of the EcoliMAGs dataset.

The figure 1 represents the modules predicted with the different datasets on
a plastic region of the genome of Escherichia coli 536 with the set of parameters
previously mentioned.

Figure 1: Modularized plastic region of Escherichia coli 536
Each track in the figure is a layer of information about genomic features in
a region of the chromosome of E. coli 536 (accession CP000247.1). The 1st
and 2nd tracks indicate gene positions and orientation. In between them are
indicated the known pathogenicity islands in the region, respectively PAI-VII,
PAI-IV and PAI-VI [35]. The 3rd track indicates for each gene its pangenome
partition from the EcoliRef dataset by a color code: orange for persistent, green
for shell and cyan for cloud. The 4th track indicates GI positions. The 5th track
indicates reference modules. Tracks 6 to 9 show the module predictions using
the different datasets (EcoliRef, EcoliComplete, EcoliContigs and EcoliMAGs).
Colors for tracks 5 to 9 are selected randomly, and genes belonging to the same
modules are colored identically in each track.

Overall, the modules detected by our approach in the EcoliRef dataset (i.e.
the same set of genomes that were used for the expert annotation of modules)
compare favorably to the reference modules with MCC and F1 score values of
0.63 and 0.66, respectively. The precision and accuracy values (0.96 and 0.85,
respectively) are particularly high. This indicates that most of the genes be-
longing to a predicted module are found together in a reference module (True
Positives) and that few genes are wrongly associated (False Positives). Simi-
larly, most of the genes in a GI that do not belong to a same or any reference
module are also not grouped into a module by our method (True Negatives).
On the other hand, the recall value (0.51) is much lower, indicating that while
we do recover proper modules a non-negligible number of the genes belonging
to a reference module are not covered by our predictions (False Negatives).
In summary, using the EcoliRef dataset, the modules predicted by panModule
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Metric EcoliRef EcoliComplete EcoliContigs EcoliMAGs EcoliMAGs
(s = 0.49)

Genomes 12 1671 1671 1428 1428
Families 8867 57346 64318 44045 44045
Shell families 748 5542 5524 2410 2410
MCC 0.63 0.56 0.55 0.34 0.56
F1 score 0.66 0.59 0.60 0.31 0.60
Accuracy 0.85 0.83 0.83 0.76 0.83
Precision 0.96 0.93 0.89 0.90 0.90
Recall 0.51 0.43 0.45 0.19 0.45
Gene coverage 69.9% 64.6% 64.0% 39.2% 61.5%
Module coverage 79.9% 74.9% 73.8% 48.7% 68.0%
Predicted modules 219 1839 1516 1119 1485
Families in modules 1379 11558 9047 5473 11434
Shell in modules 61.9% 48.0% 42.2% 33.2% 54.8%

Table 1: panModule results and benchmark on the four E. coli genome collec-
tions
For each E. coli dataset, the number of genomes and pangenome gene families
is given along with the number of families in the shell. Benchmark results
are provided with two additional metrics (gene coverage and module coverage)
corresponding to the percentage of genes and modules of the reference dataset
that are associated to a predicted module. The benchmark was made using
s = 0.86 except for the last column where s = 0.49. The number of predicted
modules, their gene families and the percentage of shell families in modules are
also provided.
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are frequently included in or equal to the reference modules and rarely overlap
multiple reference modules, but some reference modules may be missed or be
incomplete. Those missing genes represent about 30% of the genes associated
to a reference module, and about 20% of the reference modules are not covered
by any prediction (see Table 1 and Figure 1 as an illustration).

Both EcoliComplete and EcoliContigs datasets show equivalent results to the
EcoliRef dataset but with slightly lower metrics overall, with the recall being
the most impacted (i.e. 0.43 and 0.45, respectively, versus 0.51 for the Ecol-
iRef dataset). It is further amplified when looking at the EcoliMAGs dataset
whose metrics are much lower, especially in terms of recall, where it reaches a
staggering value of 0.19, meaning that most of the reference modules are not
predicted. Figure 1 clearly displays the sparsity of predictions in that spe-
cific dataset. However, it still keeps an acceptable precision and accuracy with
0.90 and 0.76, respectively, indicating that predicted modules even with the
most incomplete and fragmented genome datasets are often actual modules. In-
deed, the method parameters estimated on the EcoliRef dataset are likely too
stringent to analyze MAGs as many modules may be incomplete or split on
several contigs. We looked for the Jaccard similarity (s) parameter providing
the best MCC using the same values for t and m (Supplementary Data file
’benchmark/EcoliMAGs benchmark metrics.tsv’). The best value of s is 0.49,
and gives a MCC value of 0.56 which is equivalent to the EcoliComplete and
EcoliContigs datasets. Even using such a low s value, accuracy and precision
remain high. Those results indicate that our method is applicable on very incom-
plete and fragmented genome datasets such as MAGs using a relaxed Jaccard
similarity threshold.

This benchmark shows that panModule is able to correctly predict modules
with a very good accuracy and precision even with incomplete genomes. It
should be noticed that this validation is based only on a limited subset of cu-
rated data made of 12 E. coli genomes of which 6 are from the B2 phylogroup.
Therefore, this reference dataset does not capture the overall diversity of E. coli.
Nevertheless, panModule can modularize a large fraction of the shell pangenome
of large and diverse genome datasets as well (e.g. 48% of the shell families are
predicted in a module for the EcoliComplete dataset). It would have been in-
teresting to validate the method on a larger amount of reference data and also
on other species but we did not find such available resources.

3.2 Analysis of the KPHPI208 genomic island in Kleb-
siella pneumoniae

To illustrate the potential of panModule on other species, we chose to reanalyze
the KPHPI208 GI of Klebsiella pneumoniae 1084. This 208-kb GI inserted at
the asn-tRNA loci was described to be composed of 8 genomic modules (GM1
to GM8) using comparative genomics [17].

First, we used panRGP to predict GIs in K. pneumoniae 1084 from a
pangenome made of 566 genomes. Two predicted GIs correspond to KPHPI208.
The first detected GI starts at 1,744,478 bp and stops at 1,906,798 bp while the
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second one starts at 1,920,068 bp and stops at 1,952,189 bp. The two GIs cover
the majority of the region, with the remaining portion being persistent genes
between the two islands. In the KPHPI208 region made of 135 genes, panMod-
ule predicted 9 modules including a total of 98 genes. An overall picture of the
region is represented in Figure 2 and Table 2 summarizes the correspondences
between the formerly published and the predicted modules. The genomic posi-
tions of each described GMs and predicted modules are given in Supplementary
Data file ’Klebsiella pneumoniae/Klebsiella modules.tsv’.

Figure 2: KPHPI208 genomic island in Klebsiella pneumoniae 1084
Each track in the figure is a layer of information about genomic features of the
KPHPI208 genomic island. The 1st and 2nd tracks indicate gene positions and
orientation. The 3rd track indicates for each gene its pangenome partition by
a color code: orange for persistent, green for shell and cyan for cloud. The
4th track indicates GI predicted by panRGP. The 5th track indicates Genomic
Modules (named GM1 to GM8). The 6th track indicates modules predicted by
panModule.

Overall, our approach confirms the GMs that were functionally described
by the authors, and provides novel insights for those that were uncharacterized.
Only GM5 and GM7 were not predicted by panModule since they are composed
of persistent genes. The predicted Module 12 is perfectly identical to the GM1
which codes for colibactin. Module 17 is extremely similar to GM6, only 2
genes which are likely unrelated to microcin biosynthesis were excluded from
panModule predictions. Finding both GM2 (VirB) and GM3 (yersiniabactin) in
the same predicted Module 13 indicates that they are conserved together in most
K. pneumoniae genomes and suggests that they were exchanged together in the
evolution of this species. Only two genes involved in the VirB secretion system
are absent from the predicted module because they are not found conserved
with other VirB system genes in a large number of genomes.

Among GMs that were described as unknown, GM4 and GM8 are composed
of multiple modules predicted by panModule. Regarding GM4, we noticed that
the genes that are in the same modules have similar annotations. No clear func-
tion could be inferred from Module 14. However, Module 15 contains mainly
genes encoding enzymes and as such may be a metabolic pathway whereas Mod-
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Genomic
Modules

panModule pre-
diction

Functional annotation genes in mod-
ules / all genes

Pangenome
module
occurrence

GM1 Module 12 Colibactin 21 / 21 46
GM2

Module 13
VirB secretion system 15 / 24

322
GM3 Yersiniabactin 11 / 12

GM4

Module 14 Unknown

22 / 34

85
Module 15 Unknown enzymes 148
Module 16 ABC transporter 81

GM5 None Unknown 0 / 1 NA
GM6 Module 17 Microcin 15 / 17 34
GM7 None Unknown 0 / 12 NA

GM8
Module 18 Unknown

18 / 31
85

Module 19 Unknown 100
Module 20 Unknown 66
Module 21 Unknown 83

Table 2: Comparison between genomic modules of the KPHPI208 genomic is-
land and panModule predictions
Genomic modules (GM) corresponds to the modules that were characterized
in the original publication. The panModule prediction column contains the
correspondences between the predicted modules and their GMs. Functional
annotation column provides a brief summary of the module functions based on
the gene annotation. Genes in modules / all genes column indicates how many
genes are classified in a predicted module among all the genes in the original
GM. Pangenome module occurrence column gives the number of genomes with
the predicted module in the pangenome.

11

.CC-BY 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted December 7, 2021. ; https://doi.org/10.1101/2021.12.06.471380doi: bioRxiv preprint 

https://doi.org/10.1101/2021.12.06.471380
http://creativecommons.org/licenses/by/4.0/


ule 16 gathers proteins that are mostly related to an ABC transporter. Those
common annotations are a strong indication that both are proper functional
modules. For GM8, its analysis was less straightforward because most of the
gene functions are either unknown or very generic and do not appear to be
related to each other. Although we do not have much information in terms of
functional annotation, the detected modules can be used as a basis for experi-
mental studies to determine the biological processes in which they are involved.

Looking more broadly at the pangenome level, a total of 315 out of 566 K.
pneumoniae genomes have a predicted variable region in the same integration
spot as the one of GM1-GM6 region of the 1084 strain. It is a highly vari-
able region, as there are 128 different organizations among the 315 genomes,
with 108 different combinations of modules. The KPHPI208 organization ap-
pears only once in the pangenome as such, but 13 other genomes include all of
those modules as well. A dynamic visualization of those 128 organizations with
their module composition was generated by PPanGGOLiN and is available in
Supplementary Data file ’Klebsiella pneumoniae/spot 19.html’.

4 Conclusion

We presented a novel method, named panModule, which groups genes into mod-
ules among thousands of genomes. Our approach uses a partitioned pangenome
graph, which makes large-scale comparisons easier to compute. We bench-
marked it against a curated set of E. coli genomes which were expertly an-
notated and whose GIs were divided into modules. We showed that panModule
predictions were quite reliable regarding those annotations even for incomplete
genomes. We illustrated the usefulness of our approach by revisiting the curated
annotation of a genomic island in K. pneumoniae 1084. Overall, we believe that
panModule provides an original approach to identify conserved modules in the
variable regions of genomes, which may help to determine their function but
also to better understand their complex evolutionary history.

The panModule method is freely available and easily installable as part of
the PPanGGOLiN software suite, and can therefore be coupled with the other
tools provided by the software, such as the analysis of pangenome partitions, the
detection of GIs and spots of insertion. A potential improvement of the method
presented here could be to include information from the species phylogeny in the
computation of modules. Indeed, the calculation of Jaccard similarity could be
weighted by a phylogenetic distance to favor the grouping of genes from distant
strains into modules.

5 Data Availability

All mentioned Supplementary Data files and scripts to compute the benchmark
are available at https://github.com/axbazin/panmodule-supplementary. The
software is available at https://github.com/labgem/PPanGGOLiN.
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