

1 **Salmonella enterica** serovar **Typhimurium** chitinases modulate the intestinal glycome
2 and promote small intestinal invasion.

3

4 Jason R Devlin¹, William Santus¹, Jorge Mendez¹, Wenjing Peng², Aiying Yu², Junyao Wang²,
5 Xiomarie Alejandro-Navarreto¹, Kaitlyn Kiernan¹, Manmeet Singh³, Peilin Jiang², Yehia
6 Mechref², and Judith Behnson^{1*}

7

8 ¹Department of Microbiology and Immunology, University of Illinois Chicago, Chicago, Illinois,
9 United States of America

10 ²Department of Chemistry and Biochemistry, Texas Tech University, Lubbock, Texas, United
11 States of America

12 ³Department of Pathology, University of Illinois Chicago, Chicago, Illinois, United States of
13 America

14 Short Title: *Salmonella* chitinases modulate the intestinal glycome.

15 *Corresponding Author: jbehnson@uic.edu (JB)

16

17 Funding: Funds provided by the National Institutes of Health (1R01AI143641 to JB and
18 1R01GM112490 to YM) and the Department of Microbiology at the University of Illinois Chicago
19 (to JB). The funders had no role in study design, data collection and analysis, decision to
20 publish, or preparation of the manuscript.

21

22 Data availability: Glycome analysis data set is available in the GlycoPOST repository via the
23 accession number GPST000225. The preview page can be accessed through:
24 <https://glycopost.glycosmos.org/preview/2086580268617c0c826fa8c> with pin code 6083. All
25 other relevant data is present within this manuscript.

26 **Abstract**

27 *Salmonella enterica* serovar Typhimurium (*Salmonella*) is one of the leading causes of food-borne
28 illnesses worldwide. To colonize the gastrointestinal tract, *Salmonella* produces multiple virulence
29 factors that facilitate cellular invasion. Chitinases have been recently emerging as virulence
30 factors for various pathogenic bacterial species and the *Salmonella* genome contains two
31 annotated chitinases: *STM0018* (*chiA*) and *STM0233*. However, the role of these chitinases
32 during *Salmonella* pathogenesis is unknown. The putative chitinase *STM0233* has not been
33 studied previously and only limited data exists on ChiA. Chitinases typically hydrolyze chitin
34 polymers, which are absent in vertebrates. However, *chiA* expression was detected in infection
35 models and purified ChiA cleaved carbohydrate subunits present on mammalian surface
36 glycoproteins, indicating a role during pathogenesis. Here, we demonstrate that expression of
37 *chiA* and *STM0233* is upregulated in the mouse gut and that both chitinases facilitate epithelial
38 cell adhesion and invasion. *Salmonella* lacking both chitinases showed a 70% reduction in
39 invasion of small intestinal epithelial cells *in vitro*. In a gastroenteritis mouse model, chitinase-
40 deficient *Salmonella* strains were also significantly attenuated in the invasion of small intestinal
41 tissue. This reduced invasion resulted in significantly delayed *Salmonella* dissemination to the
42 spleen and the liver, but chitinases were not required for systemic survival. The invasion defect
43 of the chitinase-deficient strain was rescued by the presence of wild-type *Salmonella*, suggesting
44 that chitinases are secreted. By analyzing *N*-linked glycans of small intestinal cells, we identified
45 specific *N*-acetylglucosamine-containing glycans as potential extracellular targets of *Salmonella*
46 chitinases. This analysis also revealed differential abundance of Lewis X-containing glycans that
47 is likely a result of host cell modulation due to the detection of *Salmonella* chitinases. Similar
48 glycomic changes elicited by chitinase deficient strains indicate functional redundancy of the
49 chitinases. Overall, our results demonstrate that *Salmonella* chitinases contribute to intestinal
50 adhesion and invasion through modulation of the host glycome.

51 **Author Summary**

52 *Salmonella* Typhimurium infection is one of the leading causes of food-borne illnesses worldwide.
53 In order for *Salmonella* to effectively cause disease, it has to invade the epithelial cells lining the
54 intestinal tract. This invasion step allows *Salmonella* to replicate efficiently, causing further tissue
55 damage and inflammation. In susceptible patients, *Salmonella* can spread past the intestines and
56 infect peripheral organs. It is essential to fully understand the invasion mechanism used by
57 *Salmonella* to design better treatments for infection. Here, we demonstrate that the two chitinases
58 produced by *Salmonella* are involved in this invasion process. We show that *Salmonella*
59 chitinases interact with surface glycans of intestinal epithelial cells and promote adhesion and
60 invasion. Using a mouse infection model, we show that *Salmonella* chitinases are required for the
61 invasion of the small intestine and enhance the dissemination of *Salmonella* to other organs. This
62 study reveals an additional mechanism by which *Salmonella* invades and causes infection.

63

64 **Introduction**

65 As a food-borne pathogen, *Salmonella* colonizes the gastrointestinal tract causing self-limiting
66 gastroenteritis. A critical step in the infection cycle of *Salmonella* is the invasion of intestinal
67 epithelial cells via the type-3 secretion system-1 (T3SS-1) [1]. Once inside, *Salmonella* hyper-
68 replicates and triggers pyroptosis of the intestinal epithelial cell, releasing newly formed bacterial
69 cells back into the intestinal lumen, exacerbating infection [2]. Immuno-compromised individuals
70 are more susceptible to infection due to the ability of *Salmonella* to breach the epithelial barrier
71 and disseminate to peripheral organs, causing a systemic infection [3]. *Salmonella* expresses a
72 variety of virulence factors that promote this pathogenic lifestyle. These provide functions ranging
73 from aiding in the adhesion to and invasion of intestinal epithelial cells, promoting intracellular
74 survival, and modulating the host immune response [4–6]. Many of these virulence factors have
75 been studied in detail, while others are continuously being discovered. Two chitinases present in

76 the genome of *Salmonella* LT2, STM0018 (ChiA) and STM0233, have been recently proposed as
77 potential virulence factors [7]. Our study uses the ATCC 14028 strain of *Salmonella*, which has
78 the genomic identifier *STM14_0022* and *STM14_0275* for *chiA* and *STM0233*, respectively. For
79 the sake of consistency, we will use the LT2 nomenclature to refer to these chitinases.

80 The main function of chitinases is the hydrolysis of chitin polymers into *N*-acetyl glucosamine
81 (GlcNAc) oligomers [8]. Chitin is a component of the cuticle of insects and crustaceans and is a
82 part of the fungal cell wall, making it the second most abundant biopolymer in nature. Despite
83 chitin's prevalence, it is absent in mammalian species [8]. However, chitinases can also
84 demonstrate catalytic activity towards other GlcNAc-containing polysaccharides, such as
85 peptidoglycan [9]. This observation indicates that chitinases may interact with other biologically
86 relevant polysaccharides to serve alternative roles. Interestingly, chitinases and chitin-binding
87 proteins, which are similar to chitinases but lack catalytic activity, are emerging as virulence
88 factors for various pathogenic bacterial species. *Legionella pneumophila* expresses a chitinase
89 that shows catalytic activity towards mucins and is required for colonization of the lungs [10,11].
90 The intestinal pathogen *Listeria monocytogenes* produces a chitinase that modulates inducible
91 nitric oxide synthase (iNOS) expression to facilitate colonization of the liver and spleen [12,13].
92 *Vibrio cholerae* produces a chitinase that degrades and allows the utilization of intestinal mucins
93 as a carbon source [14]. *V. cholerae* also produces a chitin-binding protein that adheres to mucins
94 to promote gastrointestinal colonization [14,15]. Both Adherent-Invasive *Escherichia coli* (AIEC)
95 and *Serratia marcescens* produce a chitinase and a chitin-binding protein, respectively, that
96 contribute to the adhesion to intestinal epithelial cells [16,17]. A mammalian chitin-binding protein,
97 Chitinase 3 like 1, has already been implicated in *Salmonella* infection by promoting the invasion
98 of colonic epithelial cells *in vitro* and intestinal colonization and dissemination *in vivo* [18]. These
99 previous studies indicate that the chitinases encoded by *Salmonella* have the potential to
100 contribute to human infection.

101 Despite the clear interest in the roles of chitinases during infection, *Salmonella* chitinases have
102 yet to be studied in detail, and their roles in gastrointestinal infection are still unknown. The
103 putative chitinase STM0233 has not been studied experimentally, and its expression, enzymatic
104 activity, and role during infection are entirely unknown. The expression of *chiA* has been detected
105 during infection of epithelial cells, murine macrophages, and the gastrointestinal system of
106 chickens [19–21]. The enzymatic activity of ChiA has been partially elucidated. As expected, ChiA
107 shows *in vitro* hydrolytic activity towards chitin. However, ChiA also cleaves *N*-acetyllactosamine
108 (LacNAc) [22,23], a common component of surface glycoproteins of intestinal epithelial cells.
109 *Salmonella* chitinases might therefore represent glycoside hydrolases that have flexible specificity
110 and interact with the intestinal glycome. In many surface glycoproteins, LacNAc masks the
111 underlying mannose subunits [24]. Exposing these mannose residues is potentially important for
112 *Salmonella* pathogenesis. An increase of high-mannose glycans was previously shown to
113 increase invasion of intestinal epithelial cells *in vitro* [25,26]. *Salmonella* also produces a type 1
114 fimbria (FimH) that binds mannose subunits on surface glycoproteins to facilitate adhesion to host
115 cells [27]. Therefore, we hypothesized that *Salmonella* chitinases are remodeling the intestinal
116 glycome by removing LaNAc residues to expose mannose residues that facilitate the adhesion to
117 and invasion of intestinal epithelial cells. Here, we demonstrate that both *Salmonella* chitinases
118 are required to adhere to and invade intestinal epithelial cells *in vitro*. In a mouse model, chitinases
119 facilitated small intestinal cell invasion, which contributed to *Salmonella* dissemination to
120 peripheral organs. Presence of *Salmonella* chitinases resulted in specific changes in the
121 abundance of GlcNAc-containing *N*-linked surface glycans, indicating that chitinases cleave these
122 GlcNAc residues. *Salmonella* chitinase also stimulated host cells to upregulate Lewis X-
123 containing glycans and other complex glycan species.

124 **Results**

125 ***Salmonella* chitinases are required for intestinal epithelial cell adhesion and invasion.**

126 Since there are no experimental studies on STM0233 and only limited studies of ChiA in the
127 current literature [22,23], we set out to determine the roles of these two chitinases during
128 *Salmonella* infection. We first confirmed that both chitinases are expressed by *Salmonella* *in vitro*.
129 The expression of *STM0233* and *chiA* mRNA was detectable by RT-qPCR. Wild-type (WT)
130 *Salmonella* expressed both chitinases under growth conditions relevant to our *in vitro* studies (LB
131 broth and DMEM/F12 + 10% FBS) (Fig. 1A). We observed a 2-fold upregulation of *STM0233* in
132 DMEM/F12, but a similar expression of *chiA* across both media (Fig. 1A). We generated single-
133 and double-deletion strains lacking the chitinase encoding genes and confirmed that the strains
134 have similar growth kinetics as WT in rich medium (Fig. S1A). One potential role for *Salmonella*
135 chitinases is the degradation and utilization of dietary chitin as a carbon source. We thus
136 performed growth curves in minimal media supplemented with colloidal chitin but found no
137 difference in the growth of strains lacking chitinases compared to WT (Fig. S1B). The lack of a
138 growth defect for the chitinase-deficient strains indicates that *Salmonella* chitinases are not
139 involved in utilizing chitin as a carbon source.

140 ChiA's activity towards LacNAc *in vitro* indicates that this chitinase has the potential to interact
141 with surface glycoproteins of intestinal epithelial cells [22,23]. Interactions with surface
142 glycoproteins have been previously shown to promote *Salmonella* invasion [25–27]. We therefore
143 hypothesized that *Salmonella* chitinases facilitate the invasion of intestinal epithelial cells to
144 promote infection. We assessed the capabilities of the chitinase-deficient strains to invade
145 epithelial cells of the small intestine (IPEC-1) and colon (T-84) by performing a gentamicin
146 protection assay. An *invA* deletion strain was used as a negative control, as it lacks expression
147 of a functional T3SS-1, which is required to invade this cell type [28]. *Salmonella* strains deficient
148 in only one chitinase showed a trend towards reduced invasion of colonic cells, whereas the strain
149 deficient in both chitinases (Δ *STM0233* Δ *chiA*) showed a highly significant >70% reduction in
150 invasion compared to WT (Fig. 1B). In the small intestinal epithelial cell line (IPEC-1), invasion

151 deficiencies of *Salmonella* strains lacking chitinases were even more evident. Here, strains
152 deficient in only one chitinase also showed >70% reduction in invasion, similar to the double-
153 chitinase deletion strain (Fig. 1C). The complementation of the deleted chitinase genes restored
154 invasion of the chitinase-deficient strains (Fig. S2). Therefore, both STM0233 and ChiA contribute
155 to the invasion of intestinal epithelial cells, and deletion of either chitinase seems to have a greater
156 effect on small intestinal invasion than colonic invasion.

157 Invasion of intestinal epithelial cells by *Salmonella* requires successful adhesion and the
158 deployment of the T3SS [29,30]. We therefore investigated whether chitinases contribute directly
159 to invasion or if their primary role is influencing adhesion. Intestinal epithelial cells were incubated
160 with cytochalasin D prior to and during infection to inhibit the actin rearrangement required for
161 *Salmonella* invasion. Cytochalasin D treatment completely blocked the invasion of colonic and
162 small intestinal cells (Fig. S3A, B). The *invA* deletion strain was used as a negative control since
163 the T3SS-1 is known to contribute to the stable adhesion to epithelial cells [31,32]. In colonic
164 epithelial cells, the Δ STM0233 strain showed a 33% reduction in adhesion compared to WT (Fig.
165 1D), indicating a potentially more significant role for STM0233 in adhesion than ChiA. The double-
166 deletion strain also showed a trend toward reduced adhesion ($p=0.0698$; Fig. 1D). In the small
167 intestinal cell line, the double-deletion strains showed a 50% reduction in adhesion (Fig. 1E),
168 similar to the observed 70% reduced invasion (Fig. 1C). Although chitinases seem to play a partial
169 role in contributing to colonic adhesion, both chitinases significantly contributed to the adhesion
170 to small intestinal cells.

171

172 ***Salmonella* chitinases are required for invasion and colonization of the small intestines *in***
173 ***vivo*.**

174 Given the significant role of chitinases as invasion factors for epithelial cells *in vitro*, we next
175 explored if chitinases contribute to *Salmonella* pathogenicity *in vivo*. We used a streptomycin-
176 pretreatment mouse model (Fig. 2A), in which C57BL/6 mice were treated with streptomycin 24
177 h prior to infection to promote *Salmonella* colonization of the intestinal tract and to allow
178 *Salmonella* to trigger intestinal inflammation similar to human infection [33]. We first tested if
179 expression of chitinase genes was changed in colonic luminal samples collected 48 hours post-
180 infection (hpi) compared to LB. Expression of both *STM0233* and *chiA* was significantly
181 upregulated *in vivo* (Fig. 2B). We further examined *Salmonella* invasion of the ileum and colon by
182 performing a gentamicin protection assay on intestinal tissue and determined luminal colonization
183 levels. The chitinase-deficient strains displayed markedly reduced invasion of ileal tissue at 48
184 hpi, with the double-deletion strain showing a 10-fold invasion defect compared to *Salmonella* WT
185 (Fig. 2C). Simultaneously, chitinase-deficient strains also showed a defect in the colonization of
186 the lumen of the ileum (Fig. 2C). Surprisingly, there was no defect in the ability of the chitinase-
187 deficient strains to invade colonic tissue or colonize the colon at 48 hpi (Fig 2D). Consistent with
188 this finding, chitinase-deficient strains did not show decreased colonization in fecal samples
189 collected throughout infection (Fig. 2D). The *in vivo* invasion defect is therefore specific to the
190 small intestines, despite the invasion defect observed during *in vitro* infection of colonic epithelial
191 cells (Fig. 1B).

192

193 ***Salmonella* chitinases are required for dissemination during the early stages of**
194 ***gastrointestinal infection but are dispensable during systemic infection.***

195 Early during infection, *Salmonella* specifically targets M cells and invades Peyer's patches [34].
196 *Salmonella* is then transported to the mesenteric lymph nodes by antigen-presenting cells and
197 eventually colonizes the spleen and liver, entering systemic circulation [35]. We therefore
198 investigated the ability of the chitinase-deficient strains to disseminate to peripheral organs during

199 infection. Both the *chiA* (14-fold) and the double-deletion strain (50-fold) showed significantly
200 reduced colonization of the spleen 48 hpi compared to WT *Salmonella* (Fig. 3A). Strikingly, for all
201 but one mouse, the double-chitinase deletion strain did not colonize the liver to detectable levels,
202 in contrast to WT *Salmonella* (Fig. 3A). This colonization defect may be due to a direct role of
203 chitinases for *Salmonella* survival at systemic sites. To rule out this possibility, we administered
204 *Salmonella* directly into the peritoneum. Without the requirement of intestinal invasion, chitinase-
205 deficient strains were able to colonize the spleen and the liver to a similar extent as WT (Fig. 3B).
206 These results indicate that chitinase-mediated invasion of the intestines leads to an increase in
207 dissemination. No colonization defect was detected in the Peyer's patches or mesenteric lymph
208 nodes at 48 hours post-gastrointestinal infection (Fig 3A). These sites are the first that *Salmonella*
209 disseminates to during infection [35]. An initial defect in the colonization of the Peyer's patches or
210 mesenteric lymph nodes due to lower gastrointestinal invasion might thus be masked by bacterial
211 replication.

212 The hypothesis that chitinases are mediators during the early stages of infection is supported by
213 data from an extended infection mouse model (Fig. S4A). When mice were infected for 96 h, both
214 WT and chitinase-deficient strains showed similar invasion and colonization of the ileum (Fig.
215 S4B). Chitinase-deficient strains were also not defective in their ability to colonize the colon or
216 disseminate to the Peyer's patches, mesenteric lymph nodes, spleen, or liver (Fig. S4C-D). Our
217 findings thus far show that chitinases are required during early infection but are dispensable for
218 survival at systemic sites and during later stages of infection once *Salmonella* has fully
219 established colonization.

220

221 ***Salmonella* chitinases are not involved in modulating the innate immune response.**

222 Based on the ability of the chitinase produced by *Listeria monocytogenes*, ChiA, to downregulate
223 the expression of inducible nitric oxide synthase (iNOS) as a mechanism to promote colonization
224 of the liver and spleen [12], we set out to explore if *Salmonella* chitinases interact with the immune
225 system in a similar manner. We collected cecal tissue from mice infected with WT or chitinase-
226 deficient strains for 48h and analyzed the expression of a panel of genes that are known to be
227 involved in the immune response to *Salmonella* infection [6,36]. We found no changes in the
228 expression of *Nos2*, *Duox2*, *Cxcl1*, *Ifng*, *Il6*, *Il22*, *Il23*, *S100a9* (encoding a subunit of the
229 antimicrobial protein calprotectin), *Lcn2*, *IL1b*, or *Tnf* in mice infected with chitinase-deficient
230 strains compared to WT infected mice (Fig. 4A-K). We detected a 2-fold upregulation of *Il17* in
231 mice infected with chitinase-deficient strains (Fig. 4L). The biological relevance of this differential
232 expression is unclear, as there are no changes in upstream regulators (*Il23*) or any downstream
233 effectors (*Lcn2*, *Cxcl1*, *S100a9*). Furthermore, histopathological analysis of small intestinal and
234 cecal tissue showed no differences between mice infected with WT *Salmonella* and mice infected
235 with chitinase-deficient strains (Fig. 4 M-N, Fig. S5 A-D). Given the similarity in immune gene
236 expression and the lack of differential pathological scores, we concluded that the phenotypes
237 observed with chitinase-deficient strains were not driven by an altered immune response.

238

239 **The presence of wild-type chitinases can rescue mutant colonization and invasion.**

240 The chitinases ChiA and STM0233 are predicted to be secreted based on their amino acid
241 sequences [37,38]. We therefore hypothesized that the chitinase-deficient strains would be able
242 to utilize WT chitinases to enhance invasion if they are available during infection. We used the
243 streptomycin-pretreatment mouse model to explore the invasive capabilities of the *Salmonella*
244 strain lacking both chitinases during co-infection with WT *Salmonella*. After 48 h of co-infection,
245 there was no difference in the ability of either strain to invade the colon or ileum (Fig 5A-B). WT
246 *Salmonella* still showed higher colonization in the lumen of the ileum (Fig. 5B). However, the

247 competitive advantage for WT (2-fold) was drastically reduced compared to the difference in
248 colonization observed during single-infection (39-fold) (Fig 2B). Analyzing organ colonization also
249 did not reveal a competitive advantage for WT *Salmonella* (Fig. 5C). These data demonstrate that
250 the presence of WT *Salmonella* can rescue the invasion and colonization defect of the chitinase-
251 deficient strain during infection. The secretion of chitinases would explain the lack of an invasion
252 defect during co-infection, as the chitinase-deficient strain would still be able to utilize secreted
253 WT chitinases.

254

255 ***Salmonella* chitinases induce specific changes to the surface glycome of infected cells.**

256 To examine if *Salmonella* chitinases directly interact with surface glycoproteins of small intestinal
257 epithelial cells during infection, we analyzed the abundance of glycan species during *in vitro*
258 infection with WT *Salmonella* and the chitinase-deficient strains. Infection was performed at an
259 MOI of 1000 to ensure that any glycomic changes would be detectable. We simultaneously
260 performed an invasion assay to confirm that the chitinase-deficient strains also demonstrated the
261 previously observed invasion defect at this higher MOI (Fig. S6). Fig. 6A shows a common *N*-
262 linked glycan species and its saccharide components. Principal component analysis (PCA)
263 revealed distinct groupings for the glycome of uninfected, WT infected, and the chitinase-deficient
264 strain infected cells, indicating that *Salmonella* chitinases induce specific glycomic changes during
265 infection (Fig. 6B). Closer inspection of the changes in the relative abundance of glycans revealed
266 an increase in the abundance of specific glycans when epithelial cells were challenged with the
267 chitinase-deficient strains compared to WT infection. These included various glycans containing
268 GlcNAc, LacNAc, or NeuAc-LacNAc as terminal residues (HexNAc₄Hex₃DeoxyHex₁,
269 HexNAc₄Hex₅DeoxyHex₁, HexNAc₃Hex₃, HexNAc₄Hex₄, HexNAc₃Hex₄NeuAc₁,
270 HexNAc₅Hex₅NeuAc₂) (Fig. 6C). We therefore hypothesized that *Salmonella* chitinases might
271 indeed cleave GlcNAc-containing residues on these glycans. However, other GlcNAc-containing

272 glycans were unchanged in relative abundance when chitinases were deleted (Table S4, [39]:
273 GPST000225). *Salmonella* chitinases may therefore be interacting with specific glycan species
274 instead of broadly interacting with all GlcNAc-containing glycans. Surprisingly, ChiA and
275 STM0233 seem to share similar activity towards specific glycan residues, as there are only minor
276 differences in the abundances of individual glycans during infection with the single-deletion strains
277 (Fig. 6C, Table S4, [39]: GPST000225).

278 Interestingly, we also found multiple glycans that increased in abundance upon infection with WT
279 *Salmonella*, but not during infection with the chitinase-deficient strains (Fig. 6D-E). Many of these
280 are high molecular-weight complex or hybrid glycans (HexNAc₅Hex₃DeoxyHex₁,
281 HexNAc₄Hex₆DeoxyHex₁NeuAc₁, HexNAc₅Hex₆NeuAc₄, HexNAc₅Hex₆DeoxyHex₁,
282 HexNAc₃Hex₆DeoxyHex₁, HexNAc₅Hex₈DeoxyHex₁, HexNAc₅Hex₆DeoxyHex₁NeuAc₂,
283 HexNAc₅Hex₆DeoxyHex₁NeuAc₃) (Fig. 6D), including many glycans that contain Lewis X
284 structures (HexNAc₅Hex₅DeoxyHex₁NeuAc₁, HexNAc₅Hex₇DeoxyHex₁,
285 HexNAc₆Hex₆DeoxyHex₁, HexNAc₆Hex₇DeoxyHex₁, HexNAc₆Hex₇DeoxyHex₁NeuAc₂) (Fig. 6E-
286 F). The upregulation of these glycans during WT *Salmonella* infection indicates a modulation of
287 the expression of glycans by host cells. Since these changes do not occur during infection with
288 chitinase-deficient strains, the detection of *Salmonella* chitinases or their enzymatic activity by
289 host cells may drive these glycomic changes. Overall, this data suggests that *Salmonella*
290 chitinases modulate the surface glycome during infection via direct enzymatic activity or indirect
291 induction of host cell glycan expression to enhance adhesion and invasion of intestinal epithelial
292 cells (Fig. 7).

293

294 **Discussion**

295 Bacterial chitinases have recently been recognized as virulence factors for various pathogenic
296 species [40]. However, studies of *Salmonella* chitinases have been mostly limited to the
297 enzymatic activity of ChiA, which was found to cleave chitin, LacNAc, and LacdiNAc molecules
298 [22,23]. A functional role for *Salmonella* chitinases during infection had been suggested based on
299 the observations that *chiA* is upregulated during the infection of epithelial cells, murine
300 macrophages, and the chicken gastrointestinal system [19–21]. One study therefore investigated
301 ChiA's role for host cell invasion and pathogenicity [41]. Deletion of ChiA resulted in only slightly
302 reduced invasion of non-intestinal epithelial cells and no competitive advantage of wild type
303 *Salmonella* over ChiA-deficient *Salmonella* in a mixed infection mouse model, questioning the
304 relevance of *Salmonella* chitinases for pathogenicity. Our study corroborates these results, as we
305 also show that the role of chitinases is cell-type specific and not apparent in mixed infections.
306 However, using different experimental conditions, we were able to elucidate a role for *Salmonella*
307 chitinases during infection.

308 One role that has been identified for chitinases in other pathogens is the facilitation of binding to
309 intestinal epithelial cells. ChiA of AIEC is known to enhance the adhesion to intestinal epithelial
310 cells [16]. Chitin-binding proteins of *Serratia marcescens* (Cbp21) and *Vibrio cholera* (GbpA) have
311 also been shown to promote adherence to intestinal epithelial cells [17,42]. Here, we demonstrate
312 that both *Salmonella* chitinases are involved in adhesion to intestinal epithelial cells (Fig 1 D-E).
313 This role in adhesion likely explains the invasion defect of the chitinase-deficient strains (Fig 1B-
314 C, 2C), as adhesion is a prerequisite of *Salmonella* invasion [30]. Interestingly, *Salmonella*
315 chitinases may play a greater role in the adhesion to small intestinal tissue than colonic tissue,
316 based on the larger adhesion/invasion defect *in vitro* and the lack of a colonic invasion defect *in*
317 *vivo* (Fig. 1B-E, 2D). Previous literature has indicated that the binding of *Salmonella* to a variety
318 of epithelial cell lines is mediated by fimbriae specific to each cell type [43]. This suggests a
319 potential role for chitinases as mediators for the binding of fimbriae specific to the small intestines,

320 such as Pef [44]. Prior to this study, STM0233 has not been studied experimentally. Our data
321 suggest that STM0233 may play a more significant role in adhesion and invasion than ChiA (Fig.
322 1B-E).

323 Based on the function of chitinases from other bacterial pathogens, there are a variety of possible
324 explanations as to why *Salmonella* chitinases enhance adhesion. For one, chitinases could be
325 degrading mucins to provide access to the epithelial layer. *Legionella pneumophila* produces a
326 chitinase (ChiA), which is not homologous to *Salmonella* ChiA, that degrades mucins present in
327 the lungs to enhance colonization [10,11]. It is now known that the binding of GbpA of *Vibrio*
328 *cholerae* to intestinal mucins is responsible for enhanced adhesion to epithelial cells [15]. While
329 interactions with intestinal mucins could potentially contribute to the *in vivo* colonization and
330 invasion defect (Fig. 2C), it does not explain our *in vitro* results (Fig. 1C, E) as the IPEC-1 cell line
331 is not known to be a mucin-producing cell line [45]. Therefore, we focused our study on the N-
332 linked glycans present on IPEC-1 cells and did not explore possible interactions with the O-linked
333 glycosylation of mucins.

334 One possible role for chitinases is the liberation of nutritional resources from intestinal glycans to
335 enhance luminal colonization. *Vibrio cholerae* produces a chitinase (ChiA2) that can degrade
336 mucins, releasing saccharides that can be used as a carbon source [14]. Members of the
337 commensal microbiota can also use intestinal glycans as a source of nutrients by producing
338 various types of glycosyl hydrolases [46,47]. *Salmonella* could be using glycans as a nutrient
339 source. However, this seems unlikely since the invasion assays were performed in rich media
340 (Fig 1 B-D), where *Salmonella* would not require an alternative carbon source to replicate
341 efficiently.

342 Some bacterial chitinases are known to interact with the host immune system to promote infection.
343 For example, one chitinase produced by *Listeria monocytogenes* (ChiA) was found to down-
344 regulate nos2 expression during murine infection [12]. *L. monocytogenes* strains lacking ChiA

345 showed decreased colonization of the spleen and liver during murine infection [12,13]. This
346 observation indicated an extraintestinal role for *L. monocytogenes* chitinases in modulating
347 inflammation. In our mouse model of *Salmonella* infection, we detected a minor increase in *Il17*
348 expression in chitinase-deficient strain infected mice, but no changes in the expression of *nos2*
349 or other innate immune genes (Fig. 4A-L). Even though chitinase-deficient strains displayed a
350 colonization defect for the spleen and liver with an intestinal infection model (Fig 3A), there was
351 no colonization defect when *Salmonella* was delivered directly to the peritoneal cavity (Fig. 3B).
352 With this consideration, *Salmonella* chitinases are likely specifically required for small intestinal
353 infection through a mechanism that does not involve innate immune modulation.

354 Another possible mechanism for enhanced adhesion is through interactions between bacterial
355 chitinases and the host protein Chitinase 3 like 1 (CH3L1). CH3L1 is a chitin-binding protein
356 expressed by various cell types, such as intestinal epithelial cells [18] and macrophages [48], and
357 is associated with inflammatory bowel disease [49,50]. Both CBP21 of *Serratia marcescens* and
358 ChiA of AIEC exploit intestinal CH3L1 expression to adhere to epithelial cells [16,17]. CH3L1
359 appears to play a role in *Salmonella* infection, as the expression of CH3L1 by colonic epithelial
360 cells was found to enhance *Salmonella* adhesion and invasion [18]. Our study has not explored
361 the possibility that *Salmonella* chitinases promote adhesion by interacting with CH3L1 in a similar
362 manner as CBP21 and ChiA of AIEC.

363 A likely target for bacterial chitinases are the *N*-linked surface glycoproteins expressed by host
364 cells. *Salmonella* is already known to trigger the removal of sialic acid during infection of colonic
365 cells, which is likely to be mediated by sialidases expressed by *Salmonella* [26,51]. Several other
366 glycosyl hydrolases expressed by *Salmonella* have also been implicated in the modulation of
367 specific glycan species [25]. Importantly, the glycomic changes induced by *Salmonella* infection
368 were not dependent on invasion [26]. Even though ChiA has demonstrated activity towards
369 LacNAc residues [22,23], we did not detect broad removal of LacNAc residues during infection

370 (Table S4, [39]: GPST000225). Instead, we saw the abundance of specific GlcNAc-containing
371 glycans increase during infection with the chitinase-deficient strains (Fig. 6C). This pattern
372 indicates that chitinases expressed by WT *Salmonella* remove these residues, while other
373 GlcNAc-containing glycans are unaffected. Chitinases may only be required for the removal of
374 GlcNAc residues on specific glycoproteins to facilitate invasion. This hypothesis is supported by
375 previous observations that the type 1 fimbria, FimH, promotes *Salmonella* adhesion and invasion
376 of M cells by specifically binding mannose-containing N-linked glycans of surface Glycoprotein 2
377 (GP2) [52,53]. It has also been shown that the binding of AIEC ChiA to CH3L1 is specifically
378 dependent on the N-glycosylation of CH3L1 [16]. So chitinases may not be required to have broad
379 activity towards all GLcNAc residues. Instead, they could specifically target glycan species that
380 would markedly contribute to invasion.

381 Furthermore, our data also indicates that host cells are potentially detecting the activity of
382 *Salmonella* chitinases and are modulating their glycome to compensate. We observed an
383 increase in high molecular-weight complex glycans during infection with WT *Salmonella*,
384 potentially driven by host cell regulation (Fig. 6C). Specifically, there was an increase in additional
385 fucose subunits on terminal LacNAc residues forming Lewis X structures (Fig. 6D). Increased
386 fucosylation has been observed in a previous glycomic analysis of *Salmonella* infection, which
387 also identified increased expression of the host cell fucosyltransferases that would be responsible
388 for this fucosylation [25]. It seems that this upregulation of fucosylation is dependent on
389 *Salmonella* chitinase activity, as the relative abundance of Lewis X-containing glycans during
390 chitinase-deficient strain infection is comparable to uninfected cells (Fig. 6E-F). It is important to
391 note that *Salmonella* expresses a fimbrial adhesin, Pef, that binds Lewis X structures and is
392 specifically required for small intestinal adhesion [44,54]. *Salmonella* may therefore exploit this
393 upregulation of Lewis X structures as an alternative binding site, which would explain the tissue
394 tropism of chitinase-mediated invasion of the small intestines (Fig. 2C).

395 Here we elucidated novel roles for *Salmonella* chitinases (ChiA and STM0233) in promoting
396 infection by enhancing small intestinal invasion. We have demonstrated that chitinases promote
397 the adhesion to epithelial cells, which likely drives the enhanced invasion. We also showed that
398 chitinases are required for optimal early small intestinal infection and promote increased
399 dissemination of *Salmonella* into systemic circulation. Increased invasion is linked to modulations
400 of the epithelial cell glycome induced by *Salmonella* chitinases. Chitinases cause alterations in
401 the abundance of specific GlcNAc-containing glycans that would indicate chitinase-mediated
402 cleavage and increase the abundance of Lewis X-containing glycans, likely by stimulating host
403 cell expression.

404

405 **Materials and Methods**

406 **Bacterial Strains**

407 All strains were grown while shaking at 200 rpm in 5 mL of Luria-Bertani (LB) broth (BD Diagnostic
408 Systems) for 16 h at 37 °C unless otherwise stated (Table S1).

409 **Table S1- Bacterial strains and plasmids used**

Designation	Genotype	Source or Reference
<i>Salmonella enterica</i> serovar Typhimurium strains		
IR715	ATCC 14028, spontaneous Nal ^R derivative	[55]
BL212	IR715 Δ invA::Cm	This study
BL114	IR715 Δ STM0233::Cm	This study
BL122	IR715 Δ chiA::Kan	This study

BL130	IR715 $\Delta STM0233::Cm$, $\Delta chiA::Kan$	This study
BL2	IR715 +pHP45Ω	Vladimir E. Diaz-Ochoa
BL118	IR715 $\Delta STM0233::Cm$ +pHP45Ω	This study
BL229	IR715 $\Delta chiA::Kan$ +pHP45Ω	This study
BL168	IR715 $\Delta STM0233::Cm$, $\Delta chiA::Kan$ +pHP45Ω	This study
BL298	IR715 $\Delta STM0233::Cm$, $glmS::STM0233$ (-344 to +1783)	This study
BL300	IR715 $\Delta STM0233::Cm$, $\Delta chiA::Kan$, $glmS::STM0233$ (-344 to +1783)	This study
BL302	IR715 $\Delta STM0233::Cm$, $\Delta chiA::Kan$, $glmS::chiA$ (-350 to +2124)	This study
BL304	IR715 $\Delta chiA::Kan$, $glmS::chiA$ (-350 to +2124)	This study

***Escherichia coli* strains**

S17-1 λpir	<i>recA thi pro hsdR^r M^r RP4::2-Tc::Mu::Km Tn7 Tp^r</i> Sm ^r λpir	[56]
One Shot TOP10 Electrocompetent cells	F- <i>mcrA Δ(mrr-hsdRMS-mcrBC) φ80lacZΔM15</i> Δ <i>lacX74 recA1 araD139 Δ(ara-leu)7697 galU</i> <i>galK rpsL (Str^R) endA1 nupG λ-</i>	Invitrogen

Bacteriophages

P22 HT105/1 <i>int-</i> 201	HT105/1 <i>int</i> -201	[57]
P22 H5		[58]
Plasmids		
pGP704	Carb ^R , ori/R6K, mob/RP4. Suicide vector for homologous recombination	[59]
pHP45Ω	Strep ^R , Carb ^R	[60]
pKD3	Cm ^R , Carb ^R , ori/R6K	[61]
pKD4	Kan ^R , Carb ^R , ori/R6K	[61]
pGP704- STM0233::Cm	Cm ^R , Carb ^R , ori/R6K, mob/RP4. Suicide vector containing the deletion construct for homologous recombination	This study
pGP704- <i>chiA</i> ::Kan	Cm ^R , Carb ^R , ori/R6K, mob/RP4. Suicide vector containing the deletion construct for homologous recombination	This study
pGP704- <i>invA</i> ::Cm	Kan ^R , Carb ^R , ori/R6K, mob/RP4. Suicide vector containing the deletion construct for homologous recombination	This study

pGRG36	<i>araC</i> , P_{BAD} , <i>tnsABCD</i> , <i>rrnD</i> , <i>bla</i> (Carb ^R), <i>oriT</i> , pSC101 <i>ori^{ts}</i> . Temperature-sensitive plasmid expressing Tn7 transposon machinery.	Nancy Craig (Addgene plasmid #16666; http://n2t.net/addgene:16666 ; RRID:Addgene_16666) [62]
pGRG36-STM0233	<i>araC</i> , P_{BAD} , <i>tnsABCD</i> , <i>rrnD</i> , <i>bla</i> (Carb ^R), <i>oriT</i> , pSC101 <i>ori^{ts}</i> , <i>STM0233</i> . Temperature-sensitive plasmid expressing Tn7 transposon machinery and STM0233.	This study
pGRG36-chiA	<i>araC</i> , P_{BAD} , <i>tnsABCD</i> , <i>rrnD</i> , <i>bla</i> (Carb ^R), <i>oriT</i> , pSC101 <i>ori^{ts}</i> , <i>chiA</i> . Temperature sensitive plasmid expressing Tn7 transposon machinery and chiA.	This study
pCR-BluntII-TOPO	P_{lac} , <i>lacZ</i> - α / <i>ccdB</i> , <i>Kan^R</i> , <i>Zeocin^R</i> , <i>pUC</i> ori. Vector for subcloning	Invitrogen

410

411 **Mutant Generation**

412 Wild-type *Salmonella* IR715 was used to generate all deletion strains. Deletion constructs
413 containing an antibiotic resistance cassette flanked by sequences homologous to 1kb upstream
414 and downstream of the target gene on a pGP704 suicide vector backbone were generated by
415 Gibson assembly (Table S1). Q5 High-Fidelity DNA Polymerase (New England Biolabs) was used
416 for all cloning PCR reactions. The genome of IR715 was used to generate the homologous

417 flanking regions for each gene. The primers used to generate the flanking regions of *chiA* were
418 *chiA_FR1_fwd*, *chiA_FR1_rev*, *chiA_FR2_fwd#2*, and *chiA_FR2_rev#2*. The flanking region for
419 *STM0233* was generated with the primers *STM0233_FR1_fwd*, *STM0233_FR1_rev*,
420 *STM0233_FR2_fwd*, and *STM0233_FR2_rev*. The flanking region for *invA* was generated with
421 the primers *invA-LB_FW*, *invA-LB_RV*, *invA-RB_FW*, and *invA-RB_RV*. The *STM0233* and *invA*
422 deletion constructs contained a chloramphenicol resistance cassette, while the *chiA* deletion
423 construct contained a kanamycin resistance cassette. The chloramphenicol resistance cassette
424 was generated by PCR using pKD3 as a template and primers *CmR_fwd* and *CmR_rev* for the
425 *STM0223* deletion construct and *invA-CmR_FW* and *invA-CmR_RV* for the *invA* deletion
426 construct. The kanamycin resistance cassette was generated by PCR using pKD4 as the template
427 and the primers *chiA_KanR_fwd* and *chiA_KanR_rev#2*. pGP704 was digested with the restriction
428 enzymes *Sall* and *EcoRV*. The two flanking regions, the antibiotic resistance cassette and the
429 vector backbone, were ligated together using the Gibson Assembly Master Mix (NEBuilder),
430 generating the plasmids pGP704-*STM0233*::Cm, pGP704-*chiA*::Kan, and pGP704-*invA*::Cm.
431 *Escherichia coli* S17 λpir cells were transformed with either pGP704-*STM0233*::Cm, pGP704-
432 *chiA*::Kan, or pGP704-*invA*::Cm and selected for on LB agar with carbenicillin (0.1 mg/mL). The
433 transformation was done by electroporation (Gene Pulser II, Biorad) using 1 μL of a 1:3 dilution
434 of the assembly reaction (in ultrapure H₂O). Single colonies of the resulting *E. coli* S17 λpir cells
435 containing either pGP704-*STM0233*::Cm, pGP704-*chiA*::Kan, or pGP704-*invA*::Cm were grown
436 in LB broth with carbenicillin (0.1 mg/mL). These *E. coli* cultures were plated on LB agar with a
437 culture of IR715 at a 1:1 ratio for conjugation. Plates were incubated at 37 °C for 16 h, allowing
438 deletion constructs to be transferred to IR715 and the target genes to be replaced with the
439 antibiotic resistance cassette by homologous recombination. The bacterial lawns were harvested,
440 and the resulting deletion strains, Δ *STM0233* and Δ *invA*, were selected for on LB agar with
441 nalidixic acid (0.05 mg/mL) and chloramphenicol (0.03 mg/mL). The Δ *chiA* strain was selected for

442 on LB agar with nalidixic acid (0.05 mg/mL) and kanamycin (0.1 mg/mL). Two PCR reactions
443 were used to confirm the antibiotic resistance cassettes inserted into the correct location. The
444 primer sets used for these reactions were C2 and STM0233_FR1_out_Fw, and C1 and
445 STM0233_FR2_out_Rv for Δ STM0233. The primer sets used for Δ chiA were chiA_out_Fw and
446 K1_(Kan_Rv), and chiA_out_Rv and K3_(Kan_Fw). The primer sets used for Δ invA were
447 invA_LB_chk_FW and C3, and C1 and invA_RB_chk_RV. The chitinase deletion strains were
448 further examined to confirm that the target genes were deleted. The presence of STM0233 was
449 detected with the primer pair STM0233_pres_Fw and STM0233_pres_Rv, and chiA was detected
450 with the primer pair chiA_pres_Fw and chiA_pres_Rv (Table S2).

451 **Table S2- Primers used for cloning**

Primer	Sequence
chiA_FR1_fwd	5'-AAAGTGCCACCTGCAGATCTGCAGGCGTAGGCTTCAGCGTGGG-3'
chiA_FR1_rev	5'-CCGGTTCGCTTGCTTCAAATTCCCTTTACGTTCAAAATTGTCG-3'
chiA_KanR_fwd	5'-AGGAAATTGAAAGCAAGCGAACCGGAATTG-3'
chiA_KanR_rev#2	5'- ATGAAGCCCAATAGAGTCCCCTCAGAAGAAC-3'
chiA_FR2_fwd#2	5'- CTGAGCGGGACTCTATTGGGCTTCATGATTCAAGCCCCGGTTAC-3'
chiA_FR2_rev#2	5'- GATCGAATTCCCGGGAGAGCTCGATGCCGGTTCGCCGGCA -3'
STM0233_FR1_fwd	5'-AAAGTGCCACCTGCAGATCTGCAGGCGTAGAACTGACGCGAAAATC-3
STM0233_FR1_rev	5'-TCCGTCACAGGTAAATTCTCCTGAAGGGTAGTC-3'
CmR_fwd	5'-CAAGGAGAAAATTACCTGTGACGGAAGATCACTTCGCAG-3'

CmR_rev	5'-AGGATTATCTTACTTACGCCCGCCCTGCC-3'
STM0233_FR2_fwd	5'-GGCGGGCGTAAGTAAGATAAATCCTGTCGGTG-3'
STM0233_FR2_rev	5'-GATCGAATTCCCGGGAGAGCTCGATCGTAAGTCGAATTGGTGATAAC-3'
invA-LB_FW	5'-AAAGTGCCACCTGCAGATCTGCAGGACGGCCTGTTACCGATAAG-3'
invA-LB_RV	5'-TCCGTCACAGGTAGGGCTTAATTAAGGAAAAGATCTATGCAAC-3'
invA-CmR_FW	5'-CTTAATTAAGCCCTACCTGTGACGGAAGATCACTTCGCAG-3'
invA-CmR_RV	5'-CAGGATACCTATACTTACGCCCGCCCTGCC-3'
invA-RB_FW	5'-GGCGGGCGTAAGTATAGGTATCCTGTTAATATTAAATTAAG-3'
invA-RB_RV	5'-GATCGAATTCCCGGGAGAGCTCGATACAAAAATTGTCAGTCG-3'
C2	5'-GATCTCCGTACAGGTAGG-3'
STM0233_FR1_out_FW	5'-AGGTGGAACTGGAGTTG-3'
C1	5'-TTATACGCAAGGCGACAAGG-3'
STM0233_FR2_out_Rv	5'-GAAATGGGTATAGGTACCC-3'
STM0233_pres_Fw	5'-CCCTGGCTACTATGTTGC-3'
STM0233_pres_Rv	5'-GGTAGCTGGTGGTCTTATC-3'
chiA_out_Fw	5'-GAGATGACGTAAAACCTGGT-3'
K1_(Kan_Rv)	5'-CAGTCATAGCCGAATAGCCT-3'

chiA_out_Rv	5'-GGCGCGATTGCATCTCATC-3'
K3_(Kan_Fw)	5'-CTCGTGCTTACGGTATC-3'
chiA_pres_Fw	5'-AGGCAATATGTCCCAACCGG-3'
chiA_pres_Rv	5'-CGCCGTTGCCTGATCGATA-3'
invA_LB_chk_FW	5'-CCACTTACTTCCAGTGCAGG-3'
invA_RB_chk_Rv	5'-CAGAACAGCGTCGTACTATTG-3
STM0233_Tn7Com_FW	5'-CCCGGGTCGATTCCATCATTCCGGAG-3'
STM0233_Tn7Com_RV	5'-CTCGAGATGCAAAGCACCGACAGGGAT-3'
chiA_Tn7Com_FW	5'-CCCGGGCCTGGTTGTCTGTGGTGAC-3'
chiA_Tn7Com_RV	5'-CTCGAGATGAAGCCAATACATCGGC-3'
Tn7_ck_FW	5'-GCCAGGGCCTAAAGAAGAG-3'
Tn7_ck_RV	5'-GCCGCGTAACCTGGCGAAAT-3'

452

453 The *Salmonella* IR715 Δ STM0233 Δ chiA strain was generated by transduction using the P22
454 HT105/1 *int*-201 bacteriophage (Table S1). A culture of the IR715 Δ chiA strain was infected with
455 P22 HT105/1 *int*-201 for 8 h at 37 °C. The phage was isolated by the centrifugation of the infected
456 culture, and chloroform was added to the collected supernatant. Bacteriophage transduction was
457 performed by plating 200 μ L of a 16 h IR715 Δ STM0233 culture and 1-20 μ L of the isolated P22
458 phage onto LB agar with kanamycin (0.1 mg/mL). Plates were incubated at 37 °C overnight, and

459 the resulting colonies of transductants were cross-streaked against the P22 H5 phage on Evans
460 blue-Uranine (EBU) agar to isolate phage-free true lysogens.

461 Complementation of the chitinase deletion strains was done by transposon-mediated insertion of
462 the full chitinase gene and endogenous promoter into the Tn7 locus [62]. Chitinase genes and
463 their endogenous promoters were amplified using Q5 High-Fidelity DNA Polymerase (New
464 England Biolabs) with wild-type *Salmonella* IR715 as the template and the primer sets
465 STM0233_Tn7Com_FW and STM0233_Tn7Com_RV or chiA_Tn7Com_FW and
466 chiA_Tn7Com_RV, which carry restriction sites for either XmaI or XbaI on their 5' end. The gene
467 fragments were sub-cloned into Zero Blunt TOPO PCR vector (Invitrogen) and electroporated into
468 One Shot Top10 cells (Invitrogen). The plasmid containing the cloned chitinase gene was isolated
469 using the Qiaprep spin miniprep kit (Qiagen). Restriction digestion of the plasmid was done with
470 XbaI and XmaI, and the chitinase gene fragment was isolated via gel extraction with the QIAQuick
471 Gel Extraction kit (Qiagen). pGRG36 was also digested with XbaI and XmaI and extracted via gel
472 extraction using the QIAEX II gel extraction kit (Qiagen). The digested pGRG36 and cloned
473 chitinase gene were ligated together using ElectroLigase (New England Biolabs) and used to
474 transform One Shot Electrocompetent cells. Transformants were selected for by growing at 32 °C
475 on LB agar with carbenicillin (0.1 mg/mL). pGRG36-STM0233 and pGRG36-chiA were isolated
476 using the Plasmid Midi kit (Qiagen), and Sanger sequencing was performed to confirm that the
477 cloned chitinase genes had the correct sequence. Sanger sequencing was performed by the
478 Genome Research core at the University of Illinois Chicago. The chitinase deletion strains
479 (BL114, BL122, and BL130) were transformed with pGRG36-STM0233 or pGRG36-chiA.
480 Transformants were isolated and grown in an LB culture at 32 °C overnight. Overnight cultures
481 were serially diluted in PBS and plated for single colonies on LB agar plates. Plates were
482 incubated at 42 °C overnight to block plasmid replication (pGRG36 has a temperature-sensitive
483 origin of replication). Single colonies were streaked on LB agar and incubated at 42 °C overnight

484 to ensure plasmid loss. Insertion of the chitinase genes in the Tn7 locus was confirmed by colony
485 PCR. The presence of *STM0233* was detected with the primer pair *STM0233_pres_Fw* and
486 *STM0233_pres_Rv*, and *chiA* was detected with the primer pair *chiA_pres_Fw* and
487 *chiA_pres_Rv*. A primer set that flanks the Tn7 insertion site (*Tn7_ck_FW* and *Tn7_ck_RV*) was
488 used to confirm the insertion site.

489 **Tissue Culture**

490 The T84 colonic epithelial cell line (ATCC Cat# CCL-248; RRID:CVCL_0555) and IPEC-1 small
491 intestinal epithelial cell line (DSMZ Cat# ACC-705, RRID:CVCL_2245) were grown in T75 flasks
492 using 20 mL DMEM/F12 + 10% FBS + 1x antibiotic/antimycotic (Gibco). Cultures were incubated
493 at 37 °C with 5% CO₂. Media was replaced every other day. Cell cultures were split with 0.25%
494 trypsin + EDTA (Gibco) when cells reached 80% confluence.

495 **Invasion assay**

496 T84 or IPEC-1 cells were seeded onto a 24-well plate at a density of 5x10⁵ cells/well with media
497 lacking antibiotics/antimycotics and incubated overnight at 37 °C. *Salmonella* strains were grown
498 for 16 h in liquid LB without shaking at 37 °C. Bacterial cell number was quantified by measuring
499 the OD₆₀₀ of the cultures. 1x10⁹ cells of each strain were centrifuged, resuspended in DMEM/F12,
500 and serially diluted. Epithelial cells were infected with 5x10⁵ cells of *Salmonella* (multiplicity of
501 infection (MOI) =1). Infected cells were incubated at 37 °C for 1 h. The inoculum was serially
502 diluted and plated on LB agar to confirm bacterial numbers. After infection, the media was
503 removed via vacuum, and wells were washed 3 times with 500 µL phosphate-buffered saline
504 (PBS). 500 µL of DMEM/F12 + 10% FBS + 0.1 mg/mL gentamicin was added to the wells and
505 incubated at 37 °C for 1 h to kill extracellular bacteria. After incubation, the wells were washed
506 with PBS and lysed by incubation with 1% Triton X-100 for 5 mins. Cells were disrupted and
507 harvested by scraping wells and pipetting, were serially diluted, and plated on LB agar to quantify

508 bacterial cells that invaded. The percentage of cells recovered relative to the inoculum was
509 calculated.

510 **Adhesion Assay**

511 This assay was adapted from a previous study [63]. T84 cells were seeded onto a 24-well plate
512 at a density of 2×10^6 cells/well to achieve confluence and prevent nonspecific binding of
513 *Salmonella* to the bottom of the well. IPEC-1 cells were seeded at a density of 5×10^5 cells/well,
514 which was sufficient to achieve confluence. The media used lacked antibiotics/antimycotics, and
515 the cells were incubated overnight at 37 °C. *Salmonella* strains were grown in liquid LB without
516 shaking for 16 h at 37 °C. T84 and IPEC-1 cells were incubated in DMEM/F12 + 10% FBS + 2
517 µg/ml Cytochalasin D (Sigma-Aldrich) at 37 °C for 1 h to block actin-dependent invasion. The
518 OD₆₀₀ was measured for each *Salmonella* culture, and 1×10^9 cells of each strain were centrifuged,
519 resuspended in DMEM/F12, and serially diluted. While in the presence of Cytochalasin D,
520 epithelial cells were infected at a MOI=1. Infection was carried out for 30 minutes, and epithelial
521 cells were washed 4 times with PBS and lysed with 1 mL 1% Triton X-100. Cells were disrupted
522 and harvested by scraping wells and pipetting, serially diluted, and plated on LB agar to quantify
523 adherent bacterial cells. The percentage of cells recovered relative to the inoculum was
524 calculated.

525 ***In vitro* Growth Curve**

526 Colloidal chitin was made based on a previous study [64]. Crab shell flakes were ground by mortar
527 and pestle and sieved through a 130 mm two-piece polypropylene Büchner filter. 20 g of sieved
528 crab shell flakes were placed in a beaker, and 150 mL of 12 M HCl was added slowly with
529 continuous stirring. The chitin-HCl mixture was stirred every 5 min over the course of an hour.
530 The mixture was then passed through 8 layers of cheesecloth to remove large chunks into a 2 L
531 plastic beaker. 2 L of ice-cold MilliQ water was added and incubated at 4 °C for 16 h. After

532 incubation, 3 L of tap water was passed through the colloidal chitin cake on two layers of coffee
533 filter paper in a Büchner funnel connected to a vacuum filtration flask until the pH of the filtrate
534 was 7.0. Excess moisture was removed by pressing the colloidal chitin cake between coffee filter
535 paper. The colloidal chitin cake was sterilized in an autoclave and used to make M9 + 0.4%
536 colloidal chitin medium (M9 + chitin). The bacterial concentrations of 16 h *Salmonella* cultures
537 grown in LB were determined by measuring OD₆₀₀. 20 mL of LB or M9 + chitin was inoculated
538 with 1 x 10⁵ cells of *Salmonella*. Cultures were incubated shaking at 37 °C, and samples were
539 taken at indicated time points, serially diluted in PBS, and plated on LB agar.

540 **Mouse Infection**

541 A streptomycin-pretreatment mouse model was used for the *in vivo* infections [33], where each
542 mouse is considered an experimental unit. Single infection experiments were repeated twice with
543 3-5 mice per treatment group. 8 week-old female C57BL/6 mice were purchased from a maximum
544 barrier facility at Jackson Laboratory and were free of *Enterobacteriaceae* (tested by plating fecal
545 samples on MacConkey agar). Mice were housed for 1 week after arrival to allow for their
546 acclimation and given water and food *ad libitum* (mice were fed Teklad Irradiated LM-485 mouse
547 diet 7912). Mice were treated with 100 µL of 200 mg/mL streptomycin (Calbiochem) in water by
548 oral gavage. 24 h after treatment, mice were infected by oral gavage with 100 µL of 1x10¹⁰
549 cells/mL of *Salmonella* in LB broth from a 16 h culture. For co-infections, mice were infected with
550 a 1:1 ratio of both *Salmonella* strains. The *Salmonella* strains used carry plasmid pHP45Ω, which
551 confers resistance to streptomycin and carbenicillin. Fecal samples were collected at 8 hpi and
552 24 hpi and either snap-frozen or plated on LB agar + carbenicillin (0.1 mg/mL). At 48 hpi (or 96
553 hpi), mice were euthanized by CO₂ asphyxiation and subsequent cervical dislocation. Immediately
554 after euthanasia, the Peyer's patches, mesenteric lymph nodes, spleen, liver, and luminal
555 samples from the colon and ileum were collected, homogenized, and plating on LB agar with the
556 appropriate antibiotic. Colony-forming units were normalized to the weight of each sample (mg).

557 Cecum and luminal colon samples were snap-frozen. Ileum and cecum samples were collected
558 and fixed in formalin for histological analysis. Tissue was collected from the terminal ileum and
559 proximal colon, and a gentamicin protection assay was performed. The tissue was incubated in
560 PBS + 0.1 mg/mL gentamicin for 30 mins, washed with PBS, homogenized, and plated on LB
561 agar + carbenicillin (0.1 mg/mL). For co-infection, the mutant strain was quantified by plating on
562 LB agar + chloramphenicol (0.03 mg/mL). WT colonization was calculated by subtracting the
563 mutant CFUs from the CFUs appearing on LB agar + carbenicillin. A competitive index was
564 calculated by dividing CFU/mg of recovered WT by CFU/mg of recovered mutant. This
565 competitive index was corrected based on the ratio of each strain in the inoculum, determined by
566 serial dilution followed by plating on LB agar. Corrected CI= (WT colonization/mutant
567 colonization)/ (WT inoculum/mutant inoculum).

568 For intraperitoneal infection, 9 week-old female C57BL/6 mice were infected via intraperitoneal
569 injection with 100 μ L of 1×10^5 cells/ml of *Salmonella* in LB broth from a 16 h culture. Mice were
570 sacrificed at 48 hpi, and the spleen and liver were collected. Samples were homogenized and
571 plated on LB agar and the appropriate antibiotic to quantify colonization.

572 Mouse experiments were performed in accordance with protocols and guidelines approved by the
573 Institutional Animal Care Committee (20-016) of the University of Illinois Chicago.

574 **Histopathology**

575 Tissue sections were fixed with formalin and embedded in paraffin wax. Embedding was done by
576 the Research Histology core at the University of Illinois Chicago. The tissue was then sectioned
577 via microtome and transferred to slides. Before staining, deparaffinization was performed. The
578 tissue slides were immersed in xylene for 10 min, 100% ethanol for 10 min, 90% ethanol for 2
579 min, 70% ethanol for 2 min, and PBS for 5 min. The tissue slides were then stained with
580 hematoxylin for 30 seconds, washed with tap water, then stained with eosin for 10 min. Slides

581 were dehydrated by immersion in serial increases of ethanol concentrations (50%-100%), then
582 immersed in xylene. Coverslips were then mounted to the tissue slides and allowed to dry.

583 Tissue sections were scored for pathology by a board-certified pathologist in a blinded fashion
584 following an approach established by Barthel and colleagues [33] as summarized below.

585 Submucosal edema was scored as follows: 0 = no pathological changes; 1 = mild edema (submucosa accounts for <50% of the diameter of the entire intestinal wall [tunica muscularis to epithelium]); 2 = moderate edema; the submucosa accounts for 50 to 80% of the diameter of the entire intestinal wall; and 3 = profound edema (the submucosa accounts for >80% of the diameter of the entire intestinal wall).

590 Polymorphonuclear granulocytes (PMN) in the lamina propria were enumerated in 10 high-power fields (x400 magnification), and the average number of PMN/high-power fields was calculated.

592 The scores were defined as follows: 0 = <5 PMN/high-power field; 1 = 5 to 20 PMN/high-power field; 2 = 21 to 60/high-power field; 3 = 61 to 100/high-power field; and 4 = >100/high-power field.

594 Transmigration of PMN into the intestinal lumen was consistently observed when the number of PMN was >60 PMN/high-power field.

596 The average number of goblet cells per high-power field (magnification, x400) was determined from 10 different regions of the cecal epithelium. Scoring was as follows: 0 = >28 goblet cells/high-power field (magnification, x400); 1 = 11 to 28 goblet cells/high-power field; 2 = 1 to 10 goblet cells/high-power field; and 3 = <1 goblet cell/high-power field.

600 Epithelial integrity was scored as follows: 0 = no pathological changes detectable in 10 high-power fields (x400 magnification); 1 = epithelial desquamation; 2 = erosion of the epithelial surface (gaps of 1 to 10 epithelial cells/lesion); and 3 = epithelial ulceration (gaps of >10 epithelial cells/lesion).

603 Two independent scores for submucosal edema, PMN infiltration, goblet cells, and epithelial integrity were averaged for each tissue sample. The combined pathological score for each tissue

605 sample was determined as the sum of these averaged scores. It ranges between 0 and 13
606 arbitrary units and covers the following levels of inflammation: 0 intestine intact without any signs
607 of inflammation; 1 to 2 minimal signs of inflammation ; 3 to 4 slight inflammation; 5 to 8 moderate
608 inflammation; and 9 to 13 profound inflammation.

609 **RNA Extraction**

610 *In vivo*: Cecum samples collected from mice 48 hpi were homogenized by mortar and pestle and
611 liquid nitrogen. Because mice are treated with streptomycin 24 h prior to infection, we collected
612 cecum samples from uninfected mice 72 h after streptomycin treatment as a control. The
613 homogenate was transferred to 1 mL of Tri-Reagent (Molecular Research Center) for RNA
614 extraction. RNA was extracted with 0.1 mL of bromo-3-chloropropane, centrifuged, and the upper
615 phase was precipitated with 0.5 mL isopropanol. After centrifugation, pellets were washed twice
616 with 1 mL of 75% ethanol in RNase-free water. The RNA pellet was then resuspended in RNase-
617 free water. RNA was treated with DNase using the Turbo DNA-free kit (Invitrogen). For fecal
618 samples, RNA was extracted from snap-frozen luminal colon samples collected during the single
619 infection mouse experiments. RNA extraction was performed using the Qiagen RNeasy
620 PowerMicrobiome kit, and DNase treatment was performed with the Turbo DNA-free kit.

621 *In vitro*: A 16 h culture of WT *Salmonella* was sub-cultured (1:100) into LB or DMEM/12 +10%
622 FBS. Cultures were incubated for 3 h at 37 °C, shaking at 200 rpm. Culture cell concentration was
623 measured by OD₆₀₀, and 1x10⁹ cells were pelleted by centrifugation. RNA extraction was
624 performed on the pellet using the Invitrogen RiboPure Bacteria kit. RNA extraction was followed
625 by DNase treatment using the Turbo DNA-free kit.

626 **RT-qPCR**

627 Reverse transcription was performed with the High Capacity cDNA Reverse Transcription Kit
628 (Applied Biosystems). For *Salmonella* RNA, reactions were also performed without the addition

629 of reverse transcriptase to confirm that there was no amplification of DNA in qPCR reactions.
630 1000 ng of RNA was used for the reverse transcription reaction. The reverse transcription cycle
631 consisted of 10 minutes at 25 °C followed by 120 minutes at 37 °C and 5 minutes at 85 °C. qPCR
632 was performed using the Fast SYBR Green Master Mix (Applied Biosystems) on the ViiA7 Real-
633 time PCR system at the Genome Research core at the University of Illinois at Chicago. The qPCR
634 reaction cycle consisted of 20 seconds at 95 °C followed by 40 cycles of 3 seconds at 95 °C and
635 30 seconds at 60 °C. Reactions were performed in duplicate. Relative expression was calculated
636 based on the ΔCT values. For the analysis of chitinase expression, the CT value of the house-
637 keeping gene (*gmk*) was subtracted from the CT value of the gene of interest, giving the ΔCT
638 value. Relative expression = $2^{(-\Delta CT)}$. For analysis of murine immune gene expression, the CT value
639 of the housekeeping gene (*actb*) was subtracted from the CT value of the gene of interest, giving
640 the ΔCT value. The ΔCT value of uninfected mice was subtracted from the ΔCT value of infected
641 mice, giving the $\Delta\Delta CT$ value. Relative expression = $2^{(-\Delta\Delta CT)}$ (Table S3).

642 **Table S3- Primers used for RT-qPCR**

Primers			
Species	Target	Primer pairs	Reference
<i>Salmonella</i> <i>enterica</i> serovar Typhimurium	<i>gmk</i>	5'-TTGGCAGGGAGGCGTTT-3'	[65]
		5'-GCGCGAAGTGCCGTAGTAAT-3'	
<i>Salmonella</i> <i>enterica</i> serovar Typhimurium	STM0233	5'-ATCAGGTTCGGCGTCACTA-3'	This study
		5'-CCGGCACTTCAGGTAGTTG-3'	

<i>Salmonella enterica</i> serovar Typhimurium	<i>chiA</i>	5'-TGATACGCCAGCAGATGACA-3' 5'-AACGGTAGAAGCATCCCACT-3'	This study
<i>Mus Musculus</i>	<i>Actb</i>	5'-GGCTGTATTCCCTCCATCG-3'	[66]
		5'-CCAGTTGGTAACAATGCCATGT-3'	
<i>Mus Musculus</i>	<i>Duox2</i>	5'-GCACTGTGCAGAACAGCTAGGACAAC-3'	[66]
		5'-ACCTCATCACCTTCTGCGGGAG-3'	
<i>Mus Musculus</i>	<i>Cxcl1</i>	5'-TGCACCCAAACCGAAGTCAT-3'	[66]
		5'-TTGTCAGAACGCCAGCGTTCAC-3'	
<i>Mus Musculus</i>	<i>IL17a</i>	5'- GCTCCAGAACGCCCTCAGA-3'	[66]
		5'-AGCTTCCCTCCGCATTGA-3'	
<i>Mus Musculus</i>	<i>Ifng</i>	5'-TCAAGTGGCATAGATGTGGAAGAA-3'	[66]
		5'-TGGCTCTGCAGGATTTCATG-3'	
<i>Mus Musculus</i>	<i>Nos2</i>	5'-TTGGGTCTTGTTCACTCCACGG-3'	[66]
		5'-CCTCTTCAGGTCACTTGGTAGG-3'	
<i>Mus Musculus</i>	<i>Il22</i>	5'-GGCCAGCCTGCAGATAACA-3'	[66]
		5'-GCTGATGTGACAGGGAGCTGA-3'	
		5'-GCAACTGTTCTGAACACTCAACT-3'	

<i>Mus Musculus</i>	<i>Il1b</i>	5'-ATCTTTGGGGTCCGTCCA-3'	[67]
<i>Mus Musculus</i>	<i>S100a9</i>	5'-GGTGGAAGCACAGTTGGCA-3'	[66]
		5'-GTGTCCAGGTCCCTCCATGATG-3'	
<i>Mus Musculus</i>	<i>Il23</i>	5'-ATGCTGGATTGCAGAGCAGTA-3'	Primer Bank ID: 13752579a1 [68]
		5'-ACGGGGCACATTATTTTAGTCT-3'	
<i>Mus Musculus</i>	<i>Tnf</i>	5'-ATGGCCTCCCTCTCATCAGT-3'	[69]
		5'-CTTGGTGGTTGCTACGACG-3'	
<i>Mus Musculus</i>	<i>Il6</i>	5'-CTGCAAGAGACTTCCATCCAG-3'	Primer Bank ID: 13624310c1 [68]
		5'-AGTGGTATAGACAGGTCTGTTGG-3'	
<i>Mus Musculus</i>	<i>Lcn2</i>	5'-ACATTGTTCCAAGCTCCAGGGC-3'	[66]
		5'-CATGGCGAACTGGTTGTAGTCCG-3'	

643

644 **Glycome analysis**

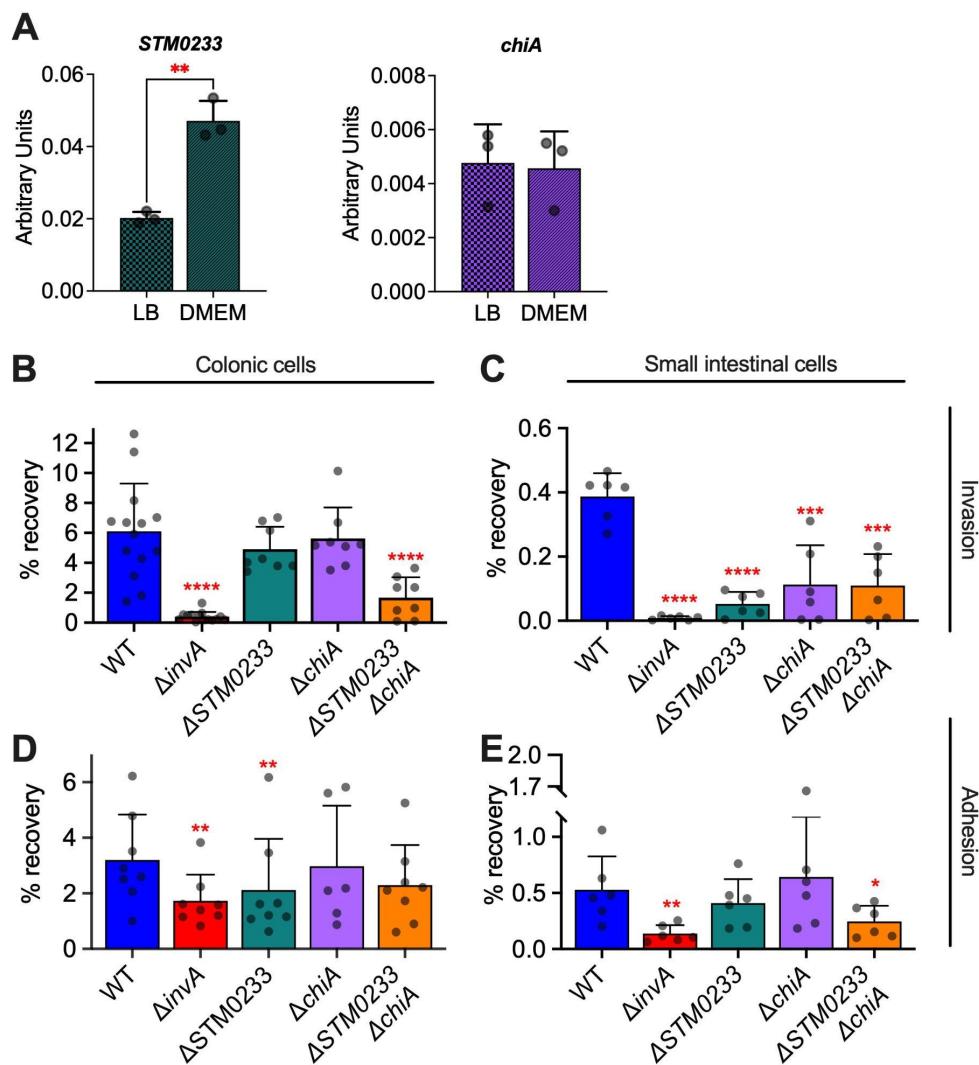
645 Infection of IPEC-1 cells was carried out similar to the invasion assays at an MOI of 1:1000. After
 646 infection, wells were washed twice with PBS, and cells were frozen at -80 °C. Cells were thawed
 647 and washed twice with PBS to remove the lysed cell debris and cytoplasmic proteins. Next, 200
 648 µL PBS and 3 µL PNGase F were added to each well and incubated at 37 °C for 18 hrs to release
 649 surface *N*-glycans. A sealing film (Axygen™ PCRSPS) was employed to cover the well plate to

650 prevent evaporation. The released *N*-glycans solution was collected, and the well was washed
651 with 200 μ L PBS. The wash solution was collected and combined with the previously released *N*-
652 glycan solution, dried, and redissolved in 100 μ L water. *N*-glycans were then dialyzed against a
653 500-1000 MWCO dialysis membrane to remove salts and small molecules. The dialyzed sample
654 was then reduced and permethylated prior to LC-MS/MS analysis, as previously reported [70–
655 72]. Briefly, the dried sample was dissolved in 10 μ L borane-ammonia complex solution (10
656 mg/mL) and incubated in a 60 °C water bath for 1h. After reduction, 1 mL of methanol was added
657 to each sample and dried. The methanol addition-dry cycle was repeated 3 times to remove
658 borates. Next, a spin column was packed with sodium hydroxyl beads (suspended in DMSO) and
659 washed twice with 200 μ L DMSO. Reduced glycans were resuspended in 30 μ L DMSO, 1.2 μ L
660 water, and 20 μ L iodomethane. The sample was loaded on the column and incubated for 25 min.
661 Then, 20 μ L iodomethane was added to each column and incubated for 15 min. After incubation,
662 permethylated glycan solution was collected by centrifuging at 1,800 rpm. The column was then
663 washed with 30 μ L acetonitrile (ACN), and the ACN solution was combined with permethylated
664 glycan solution and dried. The reduced and permethylated sample was ready for LC-MS/MS
665 analysis.

666 Samples were analyzed using an UltiMate 3000 nanoLC system coupled to an LTQ Orbitrap
667 Velos mass spectrometer. The samples were resuspended in 8 μ L solution (20% ACN, 80%
668 water, 0.1% formic acid) and injected 6 μ L. A PepMap trap column (75 μ m* 2 cm, C18, 3 μ m,
669 Thermo) was used for online purification. The *N*-glycomic analysis was performed on a PepMap
670 column (75 μ m * 15 cm, C18, 2 μ m, Thermo) at 55 °C at 0.35 μ L/min flow rate. A gradient of mobile
671 phase solvents A (98% water with 0.1% FA) and B (98% ACN with 0.1% FA) was used as follows:
672 0 - 10 min, 20% B; 10 - 11 min, 20% - 42% B; 11 - 48 min, 42% - 55% B; 48 - 49 min, 55% - 90%
673 B; 49 - 54 min, 90% B; 54 - 55 min, 90% - 20% B; 55 - 60 min, 20% B. The MS was performed in
674 positive mode. The full MS scan had a range of 700–2000 *m/z* at a mass resolution of 100,000.

675 The CID (collision-induced dissociation) was used for MS² at a normalized collision energy of 35,
676 activation Q of 0.25, and activation time of 10 ms. The data were first processed by MultiGlycan
677 software [73], then manually checked via full MS and MS² to remove false positives.

678 **Statistical Analysis**


679 Statistical analysis was performed with Graphpad Prism software v9 (RRID:SCR_002798). Data
680 were tested for normality using the Shapiro-Wilk test and confirmed visually via QQ plot. For data
681 found to follow a lognormal distribution, data were transformed to their natural log values before
682 analysis. Unless otherwise specified, all multiple comparisons analyses compared samples to the
683 WT control. For invasion assays, the percent recovery was analyzed with a one-way ANOVA with
684 Dunnett's multiple comparison test. For adhesion assays, the percent recovery was analyzed with
685 a mixed-effect analysis with Dunnett's multiple comparison test. For mouse single infection
686 experiments, a one-way ANOVA with Dunnett's multiple comparison test (Intragastric) or an
687 unpaired *t*-test was performed (Intraperitoneal). For mouse co-infection experiments, a paired *t*-
688 test was performed with the absolute values and the competitive index was analyzed with a one-
689 sample *t*-test against our null hypothesis that the competitive index equaled one. For *in vitro*
690 chitinase gene expression analysis, an unpaired *t*-test was performed. *In vivo* relative expression
691 of chitinase expression was analyzed with a one-sample *t*-test against our null hypothesis (relative
692 expression=1). For murine gene expression, a one-way ANOVA with Dunnett's multiple
693 comparison test was performed. Analysis of growth curves was done with a mixed-effect analysis
694 and Tukey's multiple comparisons test. For the glycome analysis, the relative abundance for each
695 glycan was calculated by dividing the individual glycan abundance by the total glycan abundance.
696 A Mann-Whitney *U* test was then performed comparing samples to WT or uninfected. The relative
697 abundance of Lewis X structures was calculated by dividing the total number of glycans that
698 contain these structures by the total glycan abundance of each sample. A one-way ANOVA with

699 Dunnett's multiple comparison test was then performed. For all statistical tests, significance was
700 set at $\alpha=0.05$.

701 **Acknowledgements**

702 We thank Clayton Wollner and Kristen Lednovich for technical assistance in initial experiments.
703 We thank Dara Kiani, Amisha Rana, Kelly Perfecto, Kanchan Jaswal, and Olivia Todd for their
704 careful review of this manuscript. The model was created using biorender.com.

705

706

707 **Fig. 1. *Salmonella* chitinases contribute to intestinal epithelial cell adhesion and**

708 **invasion *in vitro*.**

709 (A) mRNA expression of *Salmonella* chitinases during mid-log phase of growth in LB or

710 DMEM/F12 + 10% FBS measured by RT-qPCR. Expression is normalized to the housekeeping

711 gene *gmk*. n=3. (B) Gentamicin protection assay of *Salmonella* infected (MOI:1) colonic epithelial

712 cells (T84). WT n=14, $\Delta invA$ n=14, $\Delta STM0233$ n=8, $\Delta chiA$ n=8, $\Delta STM0233 \Delta chiA$ n=8. (C)

713 Gentamicin protection assay of *Salmonella* infected (MOI:1) small intestinal epithelial cells (IPEC-1). n=6. (D) Adhesion assay of Cytochalasin D treated (2 μ g/mL), *Salmonella* infected (MOI:1)

715 colonic epithelial cells (T84). WT n=8, $\Delta invA$ n=8, $\Delta STM0233$ n=8, $\Delta chiA$ n=6, $\Delta STM0233 \Delta chiA$
716 n=8. (E) Adhesion assay of Cytochalasin D treated (2 μ g/mL), *Salmonella* infected (MOI:1) small
717 intestinal epithelial cells (IPEC-1). n=6. Bars represent mean \pm SD. Statistics: (A) unpaired *t*-test.
718 (B-E) Stars indicate significance compared to the WT control by (B,D) one-way ANOVA with
719 Dunnett's multiple comparison test or (C,E) mixed-effect analysis with Dunnett's multiple
720 comparison test. *= $p<0.05$, **= $p<0.01$.

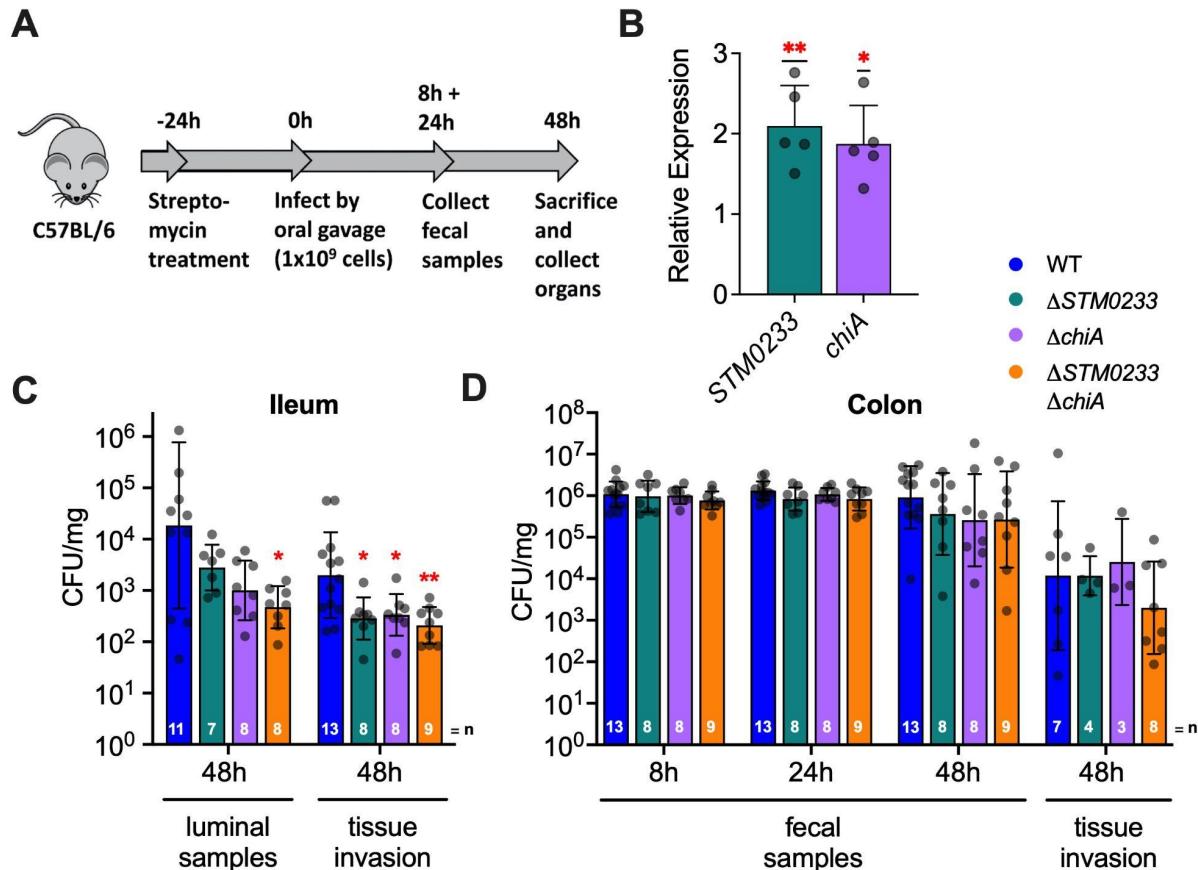
721

722

723

724

725


726

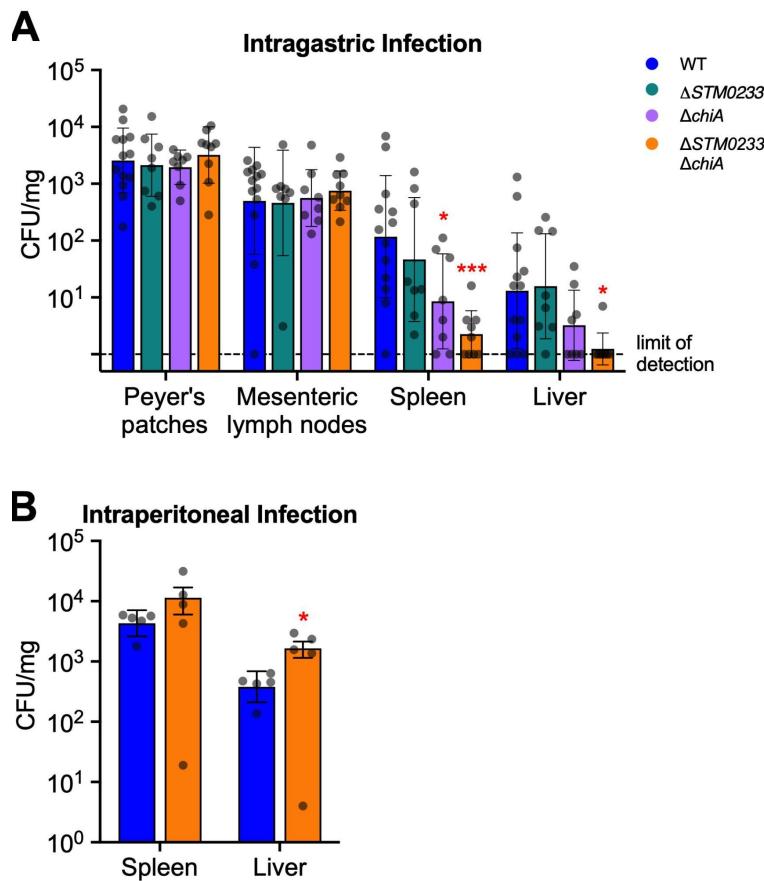
727

728

729

730

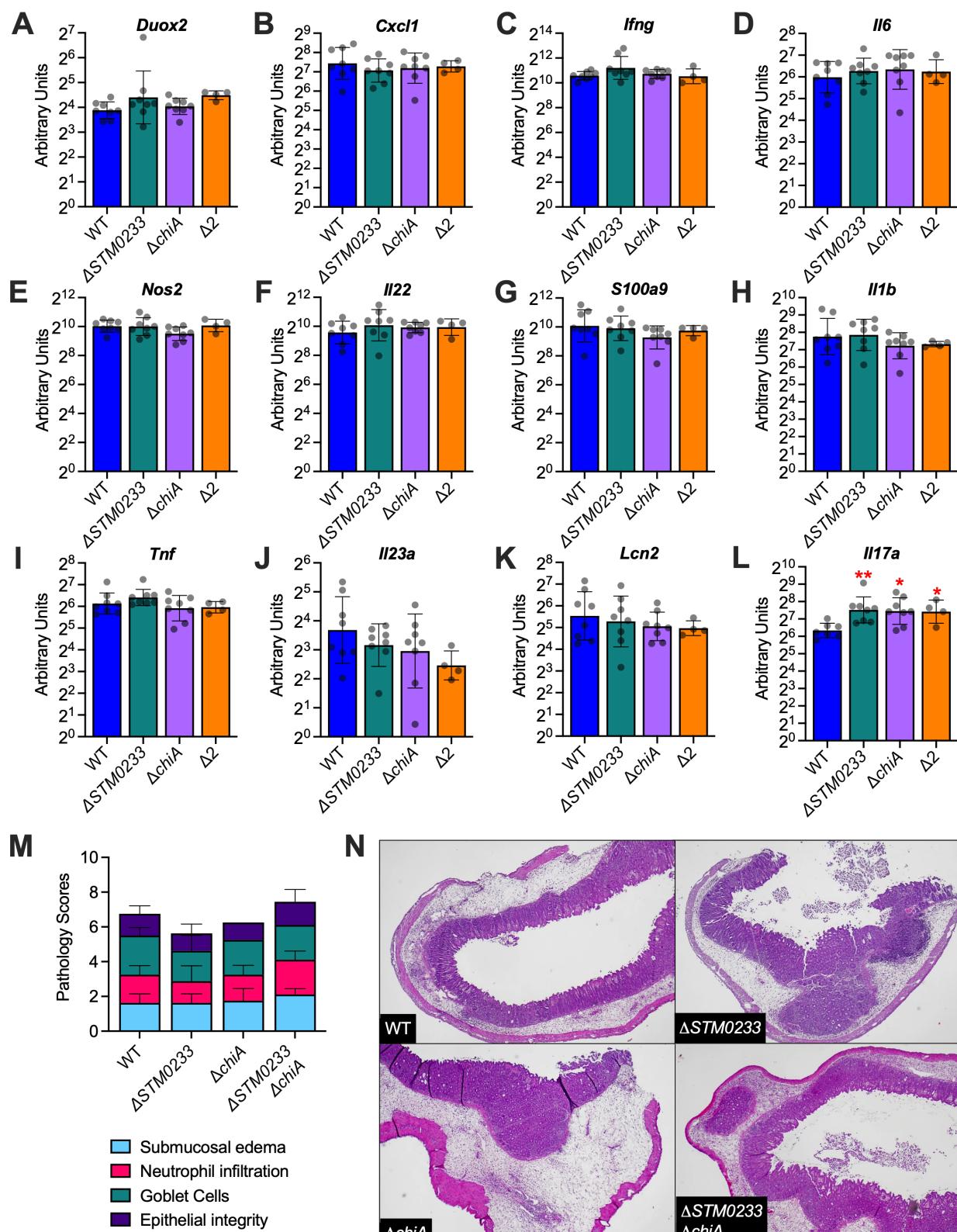
731


732 **Fig. 2. *Salmonella* chitinases are required for the colonization and invasion of small**
733 **intestinal epithelial cells *in vivo*.**

734 (A) Streptomycin pre-treatment mouse model of *Salmonella* infection. (B) mRNA expression of
735 *Salmonella* chitinases extracted from colonic luminal samples collected 48 hpi. Expression is
736 normalized to the housekeeping gene *gmk*. Expression is represented relative to mid-log
737 expression in LB. n= 5. Bars represent mean \pm SD. (C) Luminal samples from the terminal ileum
738 were collected 48 hpi to determine *Salmonella* colonization. Invasion was determined with a
739 gentamicin protection assay performed on the terminal ileum. (D) *Salmonella* colonies recovered
740 from fecal samples collected at 8 and 24 hpi. Fecal samples at 48 hpi were collected directly from
741 the lumen of the colon. Invasion of colonic tissue was determined with a gentamicin protection
742 assay. Bars represent geometric mean \pm geometric SD. Statistics: (B) one-sample t-test against

743 our null hypothesis (relative expression=1) (C-D) Stars indicate significance compared to the WT
744 control by one-way ANOVA with Dunnett's multiple comparison test. *= $p<0.05$, **= $p<0.01$.

745

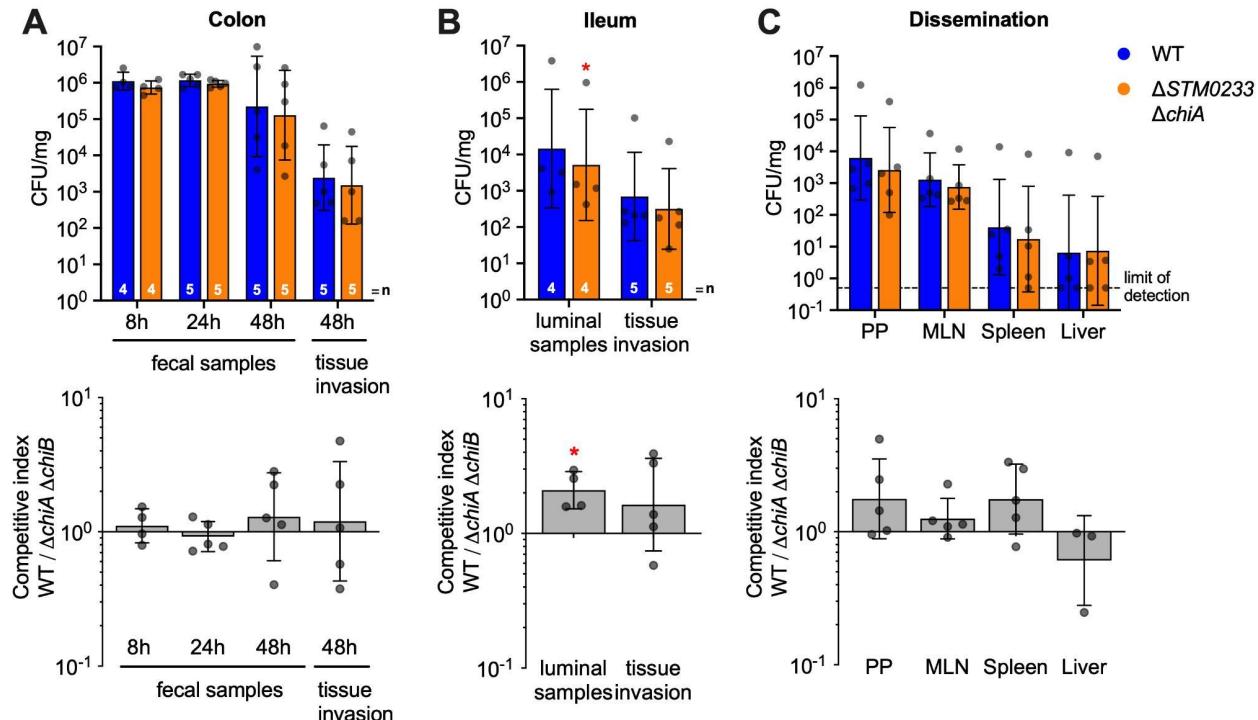

746

747

748 **Fig. 3. Chitinase-mediated invasion of intestinal tissue contributes to *Salmonella*
749 dissemination.**

750 (A) Colonization of the Peyer's patches, mesenteric lymph nodes, spleen, and liver 48 h after
751 intragastric infection. WT n=13, $\Delta STM0233$ n=8, $\Delta chiA$ n=8, $\Delta STM0233 \Delta chiA$ n=9. (B)
752 Colonization of the spleen and liver 48 h after intraperitoneal infection. n= 5. Bars represent
753 geometric mean \pm geometric SD. Statistics: Stars indicate significance compared to the WT
754 control by one-way ANOVA with Dunnett's multiple comparison test. *= $p<0.05$, **= $p<0.01$.

756 **Fig. 4. *Salmonella* chitinases do not modulate the innate immune response *in***
757 ***vivo*.**


758 (A-L) mRNA expression of innate immune genes extracted from cecal tissue of *Salmonella*
759 infected mice 48 hpi. Expression is normalized to the housekeeping gene *actb* as well as gene
760 expression in uninfected mice. WT n=8, Δ STM0233 n=8, Δ chiA n=8, Δ STM0233 Δ chiA n=4. Bars
761 represent geometric mean \pm geometric SD. (M) Histopathological scoring of cecal tissue from
762 *Salmonella* infected mice 48 hpi. WT n=8, Δ STM0233 n=8, Δ chiA n=8, Δ STM0233 Δ chiA n=9.
763 Tissues were scored for submucosal edema, neutrophil infiltration, goblet cells, and epithelial
764 integrity. Bar represents mean \pm SD. (N) Representative images of hematoxylin & eosin stained
765 cecal tissue from *Salmonella* infected mice 48 hpi. 400x magnification used for WT and
766 Δ STM0233 Δ chiA images, 200x magnification used for Δ chiA and Δ STM0233 images. Statistics:
767 (A-M) Stars indicate significance compared to the WT control by one-way ANOVA with Dunnett's
768 multiple comparison test. *=p<0.05, **=p<0.01.

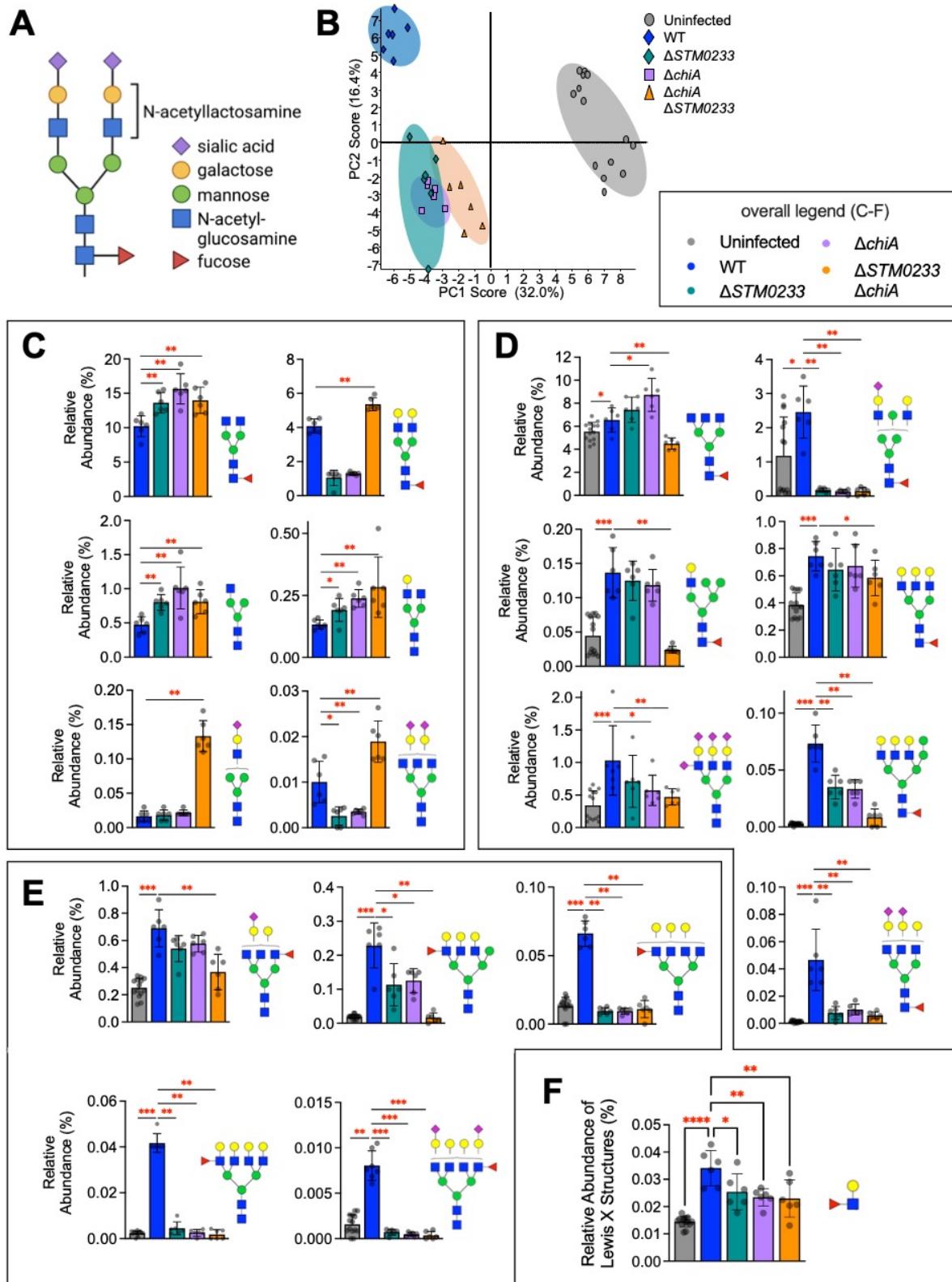
769

770

771

772

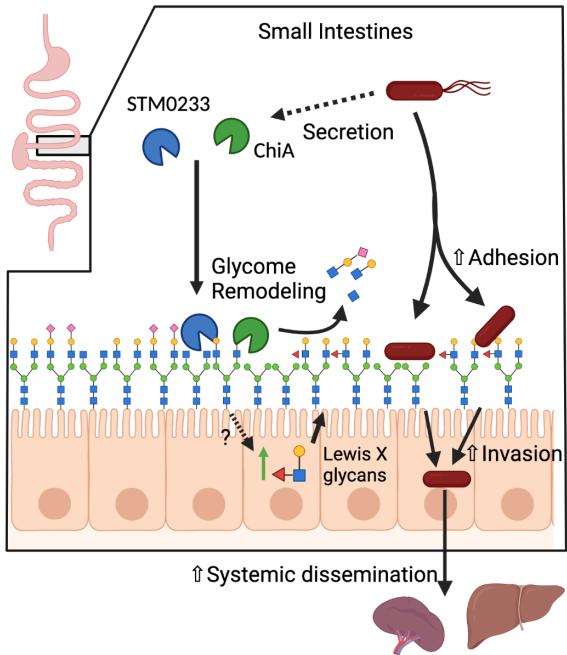
773


774 **Fig. 5. The presence of WT *Salmonella* rescues the invasion of chitinase-deficient**
 775 ***Salmonella***

776 Mice infected by oral gavage with a 1:1 ratio of WT and chitinase-deficient *Salmonella*. (A)
 777 *Salmonella* colonies recovered from fecal samples collected at 8 and 24 hpi. Fecal samples at 48
 778 hpi were collected directly from the lumen of the colon. Invasion of colonic tissue was determined
 779 with a gentamicin protection assay. (B) Luminal samples from the terminal ileum were collected
 780 48 hpi to determine *Salmonella* colonization. Invasion was determined with a gentamicin
 781 protection assay performed on the terminal ileum. (C) Colonization of the Peyer's patches (PP),
 782 mesenteric lymph nodes (MLN), spleen, and liver 48 h after intragastric infection. n=5. Top panels
 783 A-C: CFU/mg recovered for WT and chitinase-deficient *Salmonella*. Bars represent geometric
 784 mean \pm geometric SD. Bottom panels A-C: the same data expressed as a competitive index, CI=
 785 (WT colonization/mutant colonization)/ (WT inoculum/mutant inoculum). Bars represent
 786 geometric mean \pm geometric SD. Statistics: (Top Row) Paired t-test was performed with the

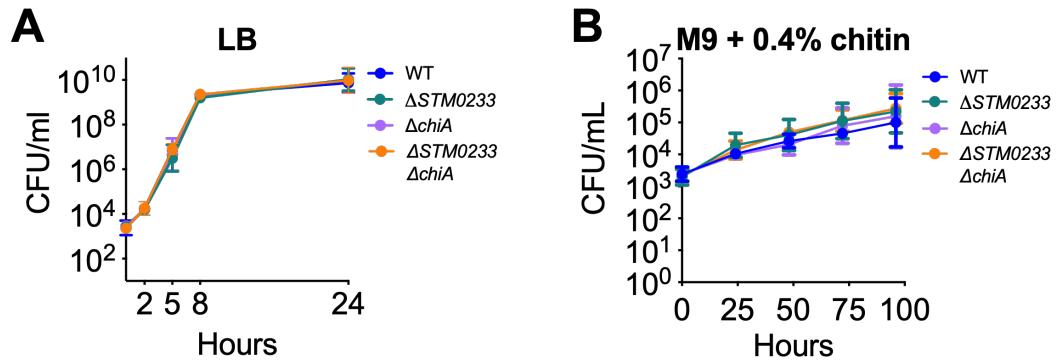
787 absolute values (Bottom Row) the competitive index was analyzed with a one-sample *t*-test

788 against our null hypothesis (competitive index=1). *=p<0.05.


789

791 **Fig. 6. *Salmonella* chitinases induce specific changes in the intestinal glycome**
792 **during infection.**

793 (A) Common N-linked glycan structure. (B) Principal component analysis of the surface glycome
794 composition of uninfected IPEC-1 cells and cells infected with WT *Salmonella* or the chitinase-
795 deficient strains. Uninfected n=14, WT n=6, $\Delta STM0233$ n=6, $\Delta chiA$ n=6, $\Delta STM0233 \Delta chiA$ n=6.
796 (C) Relative abundance of glycan species that increase during infection with $\Delta STM0233 \Delta chiA$
797 compared to WT *Salmonella*. (D) Relative abundance of selected glycans species that increase
798 during WT infection compared to uninfected, but do not increase during $\Delta STM0233 \Delta chiA$
799 infection (E) Relative abundance of selected Lewis X-containing glycans species that increase
800 during WT infection compared to uninfected, but do not increase during $\Delta STM0233 \Delta chiA$
801 infection. (F) Overall relative abundance of Lewis X structures on all glycans. Bars represent
802 mean \pm SD. Statistics: (C-D) Mann-Whitney *U* test (F) One-way ANOVA with Dunnett's multiple
803 comparison test. *= $p<0.05$, **= $p<0.01$, ***= $p<0.001$.


804
805

806

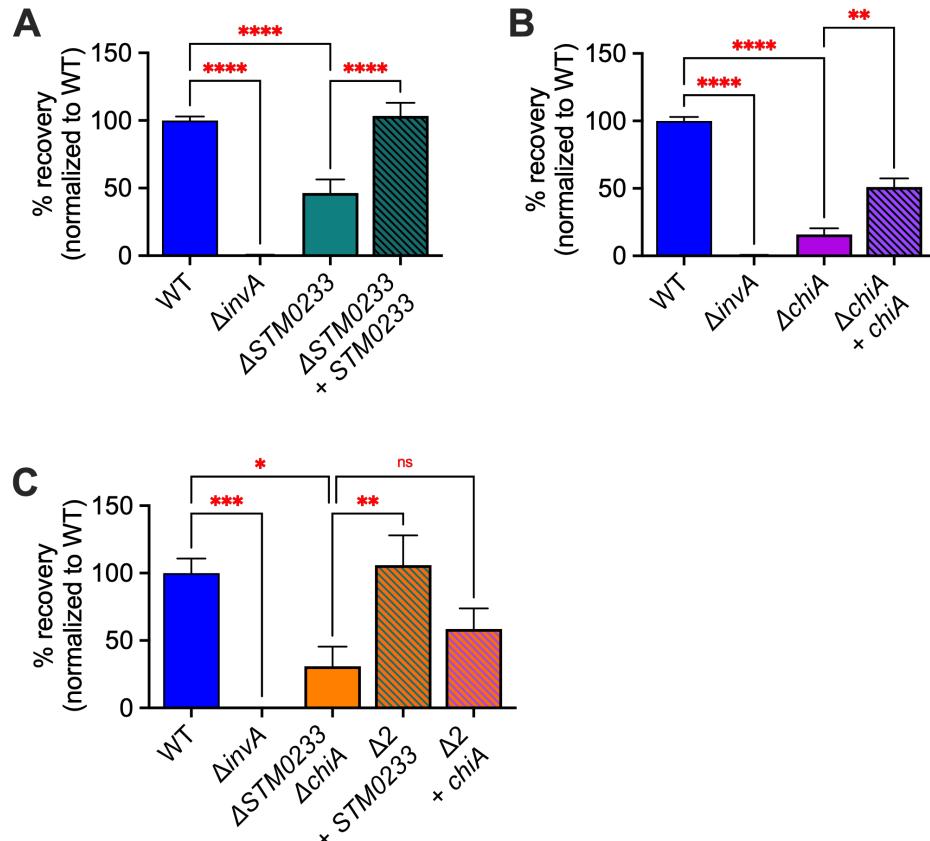
807 **Fig. 7. Proposed Model**

808 STM0233 and ChiA are likely secreted into the small intestinal lumen during infection. STM0233
809 and ChiA remodel the surface glycome through the removal of GlcNAc residues of *N*-linked
810 glycans. STM0233 and ChiA also stimulate the upregulation of Lewis X-containing glycans by
811 host cells through an unknown mechanism. STM0233 and ChiA enhance *Salmonella* adhesion
812 to epithelial cells likely due to the exposure of mannose and increase in Lewis X binding residues.
813 Increased adhesion leads to increased invasion of intestinal epithelial cells and increased
814 dissemination to the spleen and liver.

815

816 **Fig. S1. Deletion of *Salmonella* chitinases does not affect growth characteristics.**

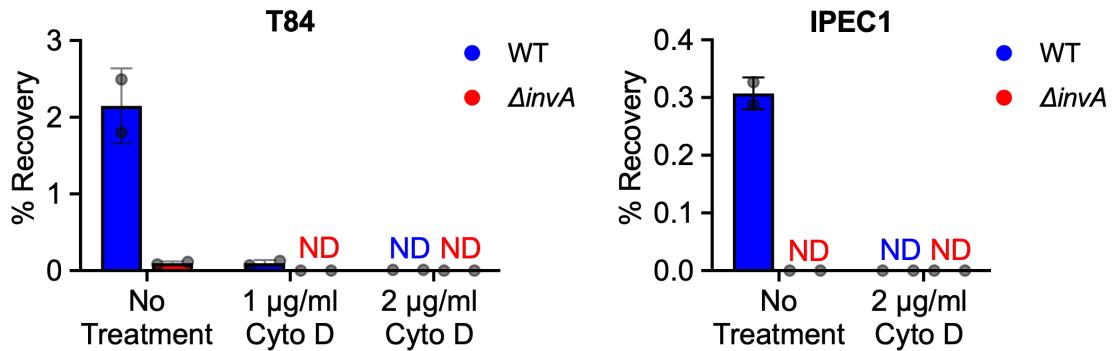
817 (A) Growth of *Salmonella* strains in LB broth at 37 °C. WT n=5, chitinase-deficient strains n=3.


818 Points represent geometric mean \pm geometric SD. (B) Growth of *Salmonella* strains in M9 minimal

819 medium +0.4% colloidal chitin at 37 °C. n=3. Points represent geometric mean \pm geometric SD.

820 Statistics: Mixed-effect analysis and Tukey's multiple comparisons test.

821

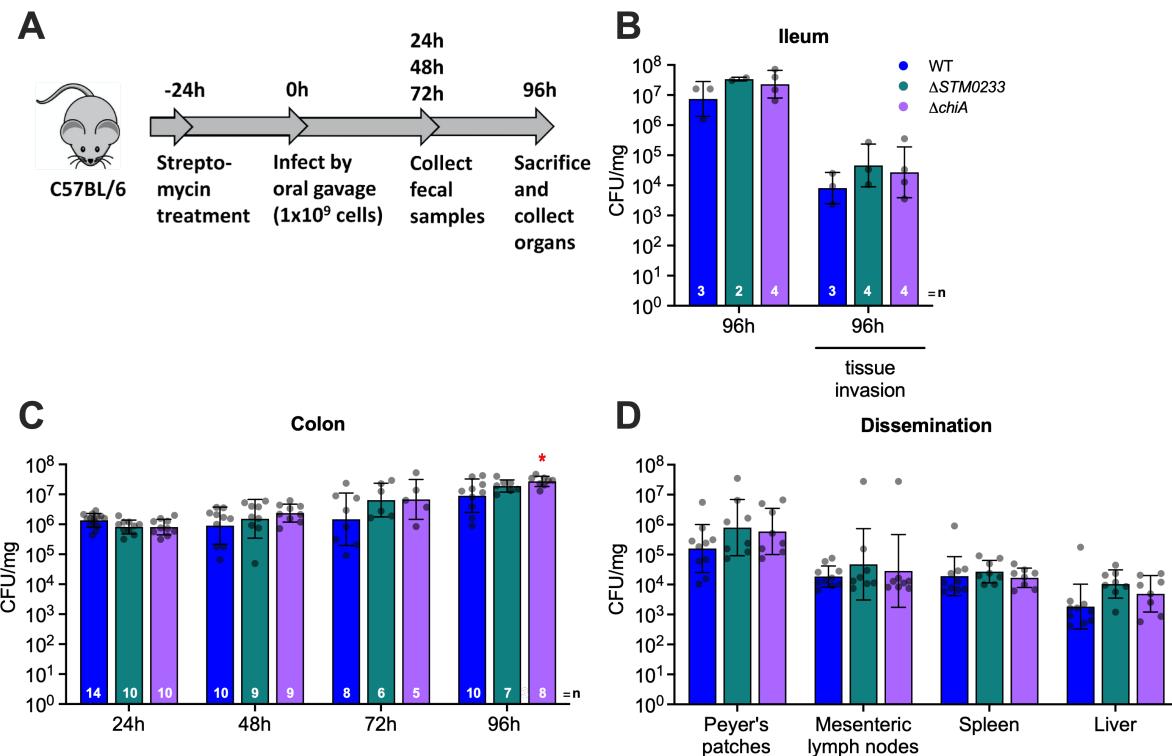

822

823

824 **Fig. S2. Complementation of chitinase-deficient strains restores invasion.**

825 Chitinase genes were inserted into the Tn7 locus of chitinase-deficient *Salmonella*. Gentamicin
826 protection assay of *Salmonella* infected (MOI:1) small intestinal epithelial cells (IPEC-1). (A)
827 Invasion of ΔchiA and *chiA* complemented strain. n=8. (B) Invasion of $\Delta\text{STM0233}$ and *STM0233*
828 complemented strain. n=8. (C) Invasion of $\Delta\text{STM0233} \Delta\text{chiA}$ (Δ2) and Δ2 strain complemented
829 with *chiA* or *STM0233*. n=6. Percent recovery of each strain was normalized to WT recovery. Bars
830 represent mean \pm SEM. Statistics: One-way ANOVA with Dunnett's multiple comparison test

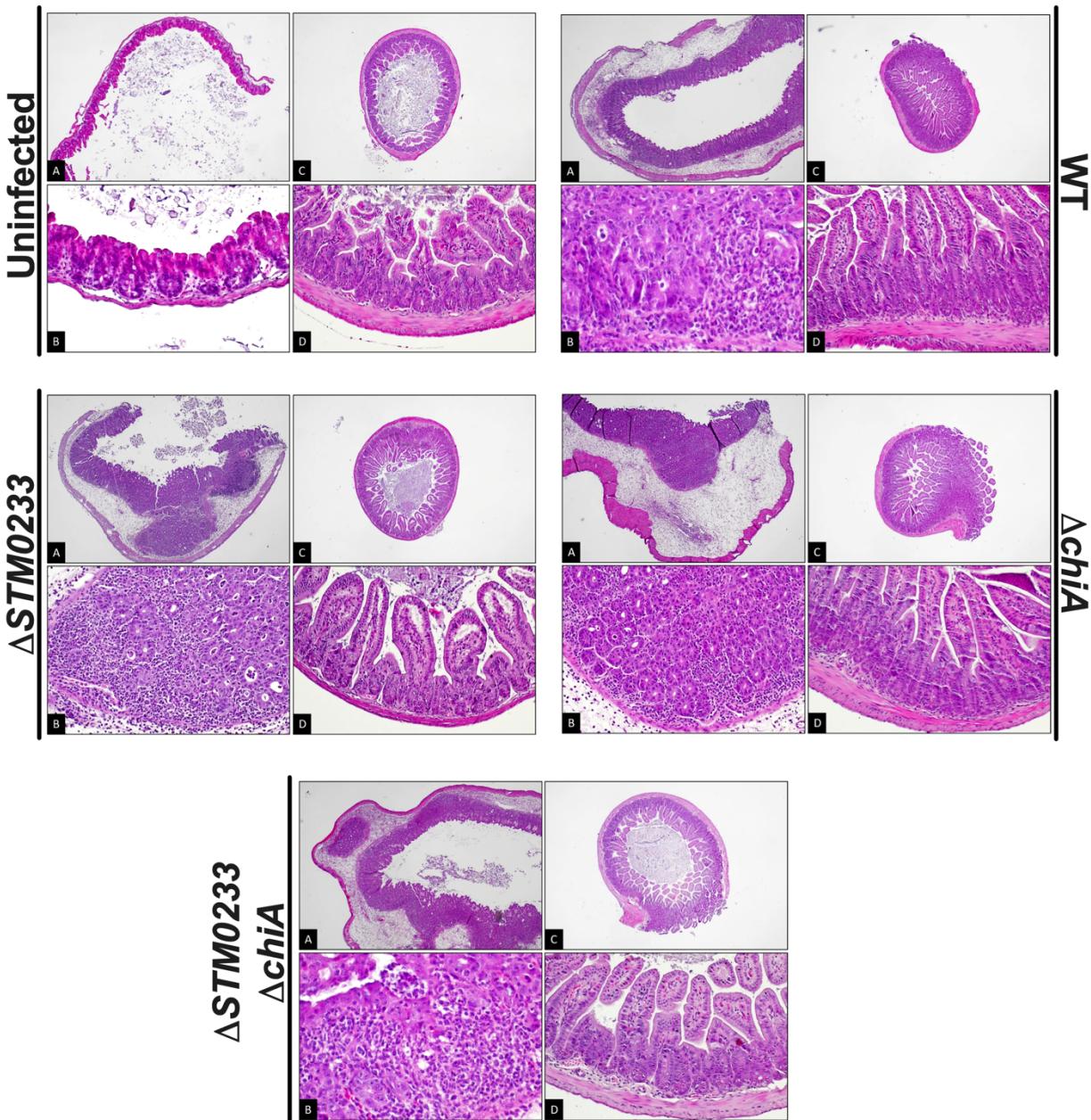
831


832 **Fig. S3. Cytochalasin D treatment completely blocks *Salmonella* invasion.**

833 (A) Gentamicin protection assay of *Salmonella* infected (MOI:1) colonic epithelial cells (T84) after
834 treatment of epithelial cells with cytochalasin D (1-2 µg/mL). (B) Gentamicin protection assay of
835 *Salmonella* infected (MOI:1) small intestinal epithelial cells (IPEC-1) after treatment of epithelial
836 cells with cytochalasin D (2 µg/mL). n=2. Bars represent mean ± SD.

837

838


839

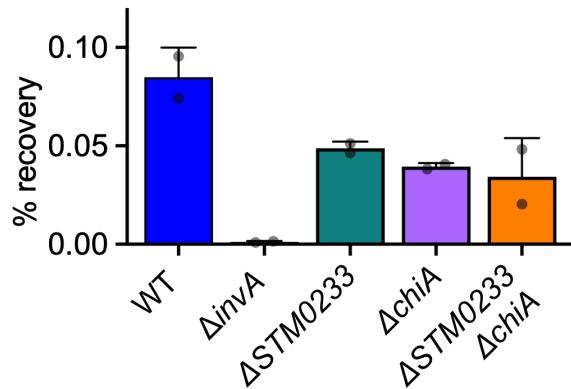
840

841 **Fig. S4. *Salmonella* chitinases are not required for late-stage infection.**

842 (A) Streptomycin pre-treatment mouse model of 96 h *Salmonella* infection. (B) Luminal samples
843 from the terminal ileum were collected at 96 hpi to determine *Salmonella* colonization. Invasion
844 was determined with a gentamicin protection assay performed on the terminal ileum. WT n=3,
845 **ΔSTM0233** n=3, **ΔchiA** n=4. (C) *Salmonella* colonies recovered from fecal samples collected at
846 24, 48, and 72 hpi. Fecal samples at 96 hpi were collected directly from the lumen of the colon.
847 Invasion of colonic tissue was determined with a gentamicin protection assay. WT n=10,
848 **ΔSTM0233** n=8, **ΔchiA** n=8. (D) Colonization of the Peyer's patches, mesenteric lymph nodes,
849 spleen, and liver after 96 h of intragastric infection. WT n=10, **ΔSTM0233** n=8, **ΔchiA** n=8. Bars
850 represent geometric mean ± geometric SD. Statistics: (B-D) Stars indicate significance compared
851 to the WT control by one-way ANOVA with Dunnett's multiple comparison test. * = p < 0.05.

852

853 **Fig. S5. Representative images of cecum and ileum histology.**


854 **Uninfected:** (A) & (B) Cecum – intestine intact without any signs of inflammation [A: low power,
855 hematoxylin eosin, original magnification 40x; B: intermediate power, hematoxylin-eosin, original
856 magnification 200x]. (C) & (D) Ileum – intestine intact without any signs of inflammation [C: low
857 power, hematoxylin eosin, original magnification 40x; D: intermediate power, hematoxylin eosin,
858 original magnification 200x].

859 **WT:** (A) & (B) Cecum – moderate inflammation (moderate submucosal edema with lamina propria
860 neutrophilic infiltration with cryptitis, crypt abscess and decrease in goblet cells) [A: low power,
861 hematoxylin-eosin, original magnification 40x; B: high power, hematoxylin-eosin, original
862 magnification 400x]. (C) & (D) Ileum – intestine intact without any signs of inflammation [C: low
863 power, hematoxylin-eosin, original magnification 40x; D: intermediate power, hematoxylin-eosin,
864 original magnification 200x].

865 **ΔSTM0233:** (A) & (B) Cecum – moderate inflammation (moderate submucosal edema with lamina
866 propria neutrophilic infiltration with cryptitis, crypt abscess and decrease in goblet cells) [A: low
867 power, hematoxylin-eosin, original magnification 40x; B: intermediate power, hematoxylin-eosin,
868 original magnification 200x]. (C) & (D) Ileum – intestine intact without any signs of inflammation
869 [C: low power, hematoxylin-eosin, original magnification 40x; D: intermediate power, hematoxylin-
870 eosin, original magnification 200x].

871 **ΔchiA:** (A) & (B) Cecum – moderate inflammation (profound submucosal edema with lamina
872 propria neutrophilic infiltration with cryptitis, crypt abscess and decrease in goblet cells) [A: low
873 power, hematoxylin-eosin, original magnification 40x; B: intermediate power, hematoxylin-eosin,
874 original magnification 200x]. (C) & (D) Ileum – intestine intact without any signs of inflammation
875 [C: low power, hematoxylin-eosin, original magnification 40x; D: intermediate power, hematoxylin-
876 eosin, original magnification 200x].

877 **ΔSTM0233 ΔchiA:** (A) & (B) Cecum – moderate inflammation (moderate submucosal edema with
878 lamina propria neutrophilic infiltration with cryptitis, crypt abscess and decrease in goblet cells)
879 [A: low power, hematoxylin-eosin, original magnification 40x; B: high power, hematoxylin- eosin,
880 original magnification 400x]. (C) & (D) Ileum – intestine intact without any signs of inflammation
881 [C: low power, hematoxylin-eosin, original magnification 40x; D: intermediate power, hematoxylin-
882 eosin, original magnification 200x].

883

884 **Fig. S6. Chitinase-deficient strains maintained invasion defects for glycome analysis.**

885 Gentamicin protection assay of *Salmonella* infected IPEC-1 cells (MOI:1000) done concurrently
886 with infection for the glycome analysis. n=2. Bars represent mean ± SD.

887

888 **Table S4. Relative abundance of all glycan species identified in glycome analysis.**

889 Average relative abundance of glycan species after infecting IPEC-1 cells with *Salmonella* for 1
890 h (MOI:1000). Uninfected n=14, WT n=6, ΔSTM0233 n=6, ΔchiA n=6, ΔSTM0233 ΔchiA n=6.
891 Relative abundance is calculated by dividing glycan species abundance by total glycan
892 abundance. Raw data has been uploaded to GlycoPOST database [39], accession number
893 GPST000225.

894

895

896 **References**

897

898 1. Zhang S, Kingsley RA, Santos RL, Andrews-Polymenis H, Raffatellu M, Figueiredo J, et al.
899 Molecular pathogenesis of *Salmonella enterica* serotype typhimurium-induced diarrhea.
900 *Infect Immun.* 2003;71: 1–12. doi:10.1128/IAI.71.1.1-12.2003

901 2. Knodler LA, Vallance BA, Celli J, Winfree S, Hansen B, Montero M, et al. Dissemination of
902 invasive *Salmonella* via bacterial-induced extrusion of mucosal epithelia. *Proc Natl Acad
903 Sci U S A.* 2010;107: 17733–17738. doi:10.1073/pnas.1006098107

904 3. Gordon MA. *Salmonella* infections in immunocompromised adults. *J Infect.* 2008;56: 413–
905 422. doi:10.1016/j.jinf.2008.03.012

906 4. López FE, de las Mercedes Pescaretti M, Morero R, Delgado MA. *Salmonella Typhimurium*
907 general virulence factors: A battle of David against Goliath? *Food Res Int.* 2012;45: 842–
908 851. doi:10.1016/j.foodres.2011.08.009

909 5. Ibarra JA, Steele-Mortimer O. *Salmonella*—the ultimate insider. *Salmonella* virulence factors
910 that modulate intracellular survival. *Cell Microbiol.* 2009;11: 1579–1586. doi:10.1111/j.1462-
911 5822.2009.01368.x

912 6. Broz P, Ohlson MB, Monack DM. Innate immune response to *Salmonella typhimurium*, a
913 model enteric pathogen. *Gut Microbes.* 2012;3: 62–70. doi:10.4161/gmic.19141

914 7. Arabyan N, Huang BC, Weimer BC. Draft Genome Sequences of *Salmonella enterica*
915 Serovar *Typhimurium* LT2 with Deleted Chitinases That Are Emerging Virulence Factors.
916 *Genome Announc.* 2017;5. doi:10.1128/genomeA.00659-17

917 8. Hamid R, Khan MA, Ahmad M, Ahmad MM, Abdin MZ, Musarrat J, et al. Chitinases: An
918 update. *J Pharm Bioallied Sci.* 2013;5: 21–29. doi:10.4103/0975-7406.106559

919 9. Bokma E, van Koningsveld GA, Jeronimus-Stratingh M, Beintema JJ. Hevamine, a
920 chitinase from the rubber tree *Hevea brasiliensis*, cleaves peptidoglycan between the C-1
921 of N-acetylglucosamine and C-4 of N-acetylmuramic acid and therefore is not a lysozyme.
922 *FEBS Letters.* 1997. pp. 161–163. doi:10.1016/s0014-5793(97)00682-0

923 10. Rehman S, Grigoryeva LS, Richardson KH, Corsini P, White RC, Shaw R, et al. Structure
924 and functional analysis of the *Legionella pneumophila* chitinase ChiA reveals a novel
925 mechanism of metal-dependent mucin degradation. *PLoS Pathog.* 2020;16: e1008342.
926 doi:10.1371/journal.ppat.1008342

927 11. DebRoy S, Dao J, Söderberg M, Rossier O, Cianciotto NP. *Legionella pneumophila* type II
928 secretome reveals unique exoproteins and a chitinase that promotes bacterial persistence
929 in the lung. *Proc Natl Acad Sci U S A.* 2006;103: 19146–19151.
930 doi:10.1073/pnas.0608279103

931 12. Chaudhuri S, Gantner BN, Ye RD, Cianciotto NP, Freitag NE. The *Listeria monocytogenes*
932 ChiA chitinase enhances virulence through suppression of host innate immunity. *MBio.*
933 2013;4: e00617-12. doi:10.1128/mBio.00617-12

934 13. Chaudhuri S, Bruno JC, Alonzo F, Xayarath B, Cianciotto NP, Freitag NE. Contribution of
935 Chitinases to *Listeria monocytogenes* Pathogenesis. *Applied and Environmental*
936 *Microbiology.* 2010. pp. 7302–7305. doi:10.1128/aem.01338-10

937 14. Mondal M, Nag D, Koley H, Saha DR, Chatterjee NS. The *Vibrio cholerae* extracellular
938 chitinase ChiA2 is important for survival and pathogenesis in the host intestine. *PLoS One.*
939 2014;9: e103119. doi:10.1371/journal.pone.0103119

940 15. Bhowmick R, Ghosal A, Das B, Koley H, Saha DR, Ganguly S, et al. Intestinal adherence of
941 *Vibrio cholerae* involves a coordinated interaction between colonization factor GbpA and
942 mucin. *Infect Immun.* 2008;76: 4968–4977. doi:10.1128/IAI.01615-07

943 16. Low D, Tran HT, Lee I-A, Dreux N, Kamba A, Reinecker H-C, et al. Chitin-binding domains
944 of *Escherichia coli* ChiA mediate interactions with intestinal epithelial cells in mice with
945 colitis. *Gastroenterology*. 2013;145: 602–12.e9. doi:10.1053/j.gastro.2013.05.017

946 17. Kawada M, Chen C-C, Arihiro A, Nagatani K, Watanabe T, Mizoguchi E. Chitinase 3-like-1
947 enhances bacterial adhesion to colonic epithelial cells through the interaction with bacterial
948 chitin-binding protein. *Laboratory Investigation*. 2008. pp. 883–895.
949 doi:10.1038/labinvest.2008.47

950 18. Mizoguchi E. Chitinase 3-like-1 exacerbates intestinal inflammation by enhancing bacterial
951 adhesion and invasion in colonic epithelial cells. *Gastroenterology*. 2006;130: 398–411.
952 doi:10.1053/j.gastro.2005.12.007

953 19. Hautefort I, Thompson A, Eriksson-Ygberg S, Parker ML, Lucchini S, Danino V, et al.
954 During infection of epithelial cells *Salmonella enterica* serovar *Typhimurium* undergoes a
955 time-dependent transcriptional adaptation that results in simultaneous expression of three
956 type 3 secretion systems. *Cell Microbiol*. 2008;10: 958–984. doi:10.1111/j.1462-
957 5822.2007.01099.x

958 20. Eriksson S, Lucchini S, Thompson A, Rhen M, Hinton JCD. Unravelling the biology of
959 macrophage infection by gene expression profiling of intracellular *Salmonella enterica*. *Mol
960 Microbiol*. 2003;47: 103–118. doi:10.1046/j.1365-2958.2003.03313.x

961 21. Harvey PC, Watson M, Hulme S, Jones MA, Lovell M, Berchieri A Jr, et al. *Salmonella*
962 *enterica* serovar *typhimurium* colonizing the lumen of the chicken intestine grows slowly
963 and upregulates a unique set of virulence and metabolism genes. *Infect Immun*. 2011;79:
964 4105–4121. doi:10.1128/IAI.01390-10

965 22. Larsen T, Petersen BO, Storgaard BG, Duus JØ, Palcic MM, Leisner JJ. Characterization
966 of a novel *Salmonella* *Typhimurium* chitinase which hydrolyzes chitin, chitooligosaccharides
967 and an N-acetyllactosamine conjugate. *Glycobiology*. 2011;21: 426–436.
968 doi:10.1093/glycob/cwq174

969 23. Frederiksen RF, Yoshimura Y, Storgaard BG, Paspaliari DK, Petersen BO, Chen K, et al. A
970 Diverse Range of Bacterial and Eukaryotic Chitinases Hydrolyzes the LacNAc (Gal β 1–
971 4GlcNAc) and LacdiNAc (GalNAc β 1–4GlcNAc) Motifs Found on Vertebrate and Insect
972 Cells. *Journal of Biological Chemistry*. 2015. pp. 5354–5366. doi:10.1074/jbc.m114.607291

973 24. Kavanaugh D, O'Callaghan J, Kilcoyne M, Kane M, Joshi L, Hickey RM. The intestinal
974 glycome and its modulation by diet and nutrition. *Nutr Rev*. 2015;73: 359–375.
975 doi:10.1093/nutrit/nuu019

976 25. Arabyan N, Park D, Foutouhi S, Weis AM, Huang BC, Williams CC, et al. *Salmonella*
977 Degrades the Host Glycocalyx Leading to Altered Infection and Glycan Remodeling.
978 *Scientific Reports*. 2016. doi:10.1038/srep29525

979 26. Park D, Arabyan N, Williams CC, Song T, Mitra A, Weimer BC, et al. *Salmonella*
980 *typhimurium* enzymatically landscapes the host intestinal epithelial cell (IEC) surface
981 glycome to increase invasion. *Mol Cell Proteomics*. 2016;15: 3653–3664.
982 doi:10.1074/mcp.m116.063206

983 27. Thankavel K, Shah AH, Cohen MS, Ikeda T, Lorenz RG, Curtiss R 3rd, et al. Molecular

984 basis for the enterocyte tropism exhibited by *Salmonella typhimurium* type 1 fimbriae. *J Biol*
985 *Chem.* 1999;274: 5797–5809. doi:10.1074/jbc.274.9.5797

986 28. Galán JE, Curtiss R 3rd. Cloning and molecular characterization of genes whose products
987 allow *Salmonella typhimurium* to penetrate tissue culture cells. *Proc Natl Acad Sci U S A.*
988 1989;86: 6383–6387. doi:10.1073/pnas.86.16.6383

989 29. Lou L, Zhang P, Piao R, Wang Y. *Salmonella Pathogenicity Island 1 (SPI-1) and Its*
990 *Complex Regulatory Network.* *Front Cell Infect Microbiol.* 2019;9: 270.
991 doi:10.3389/fcimb.2019.00270

992 30. Wagner C, Hensel M. Adhesive mechanisms of *Salmonella enterica*. *Adv Exp Med Biol.*
993 2011;715: 17–34. doi:10.1007/978-94-007-0940-9_2

994 31. Lara-Tejero M, Galán JE. *Salmonella enterica* serovar *typhimurium* pathogenicity island 1-
995 encoded type III secretion system translocases mediate intimate attachment to
996 nonphagocytic cells. *Infect Immun.* 2009;77: 2635–2642. doi:10.1128/IAI.00077-09

997 32. Misselwitz B, Kreibich SK, Rout S, Stecher B, Periaswamy B, Hardt W-D. *Salmonella*
998 *enterica* serovar *Typhimurium* binds to HeLa cells via Fim-mediated reversible adhesion
999 and irreversible type three secretion system 1-mediated docking. *Infect Immun.* 2011;79:
1000 330–341. doi:10.1128/IAI.00581-10

1001 33. Barthel M, Hapfelmeier S, Quintanilla-Martínez L, Kremer M, Rohde M, Hogardt M, et al.
1002 Pretreatment of mice with streptomycin provides a *Salmonella enterica* serovar
1003 *Typhimurium* colitis model that allows analysis of both pathogen and host. *Infect Immun.*
1004 2003;71: 2839–2858. doi:10.1128/iai.71.5.2839-2858.2003

1005 34. Jepson MA, Clark MA. The role of M cells in *Salmonella* infection. *Microbes Infect.* 2001;3:
1006 1183–1190. doi:10.1016/s1286-4579(01)01478-2

1007 35. Watson KG, Holden DW. Dynamics of growth and dissemination of *Salmonella* in vivo. *Cell*
1008 *Microbiol.* 2010;12: 1389–1397. doi:10.1111/j.1462-5822.2010.01511.x

1009 36. Hurley D, McCusker MP, Fanning S, Martins M. *Salmonella*-host interactions - modulation
1010 of the host innate immune system. *Front Immunol.* 2014;5: 481.
1011 doi:10.3389/fimmu.2014.00481

1012 37. Almagro Armenteros JJ, Tsirigos KD, Sønderby CK, Petersen TN, Winther O, Brunak S, et
1013 al. SignalP 5.0 improves signal peptide predictions using deep neural networks. *Nat*
1014 *Biotechnol.* 2019;37: 420–423. doi:10.1038/s41587-019-0036-z

1015 38. Bendtsen JD, Kiemer L, Fausbøll A, Brunak S. Non-classical protein secretion in bacteria.
1016 *BMC Microbiol.* 2005;5: 58. doi:10.1186/1471-2180-5-58

1017 39. Watanabe Y, Aoki-Kinoshita KF, Ishihama Y, Okuda S. GlycoPOST realizes FAIR
1018 principles for glycomics mass spectrometry data. *Nucleic Acids Res.* 2021;49: D1523–
1019 D1528. doi:10.1093/nar/gkaa1012

1020 40. Tran HT, Barnich N, Mizoguchi E. Potential role of chitinases and chitin-binding proteins in
1021 host-microbial interactions during the development of intestinal inflammation. *Histol*
1022 *Histopathol.* 2011;26: 1453–1464. doi:10.14670/HH-26.1453

1023 41. Frederiksen RF, Leisner JJ. Effects of *Listeria monocytogenes* EGD-e and *Salmonella*
1024 *enterica* ser. *Typhimurium* LT2 chitinases on intracellular survival in *Dictyostelium*
1025 *discoideum* and mammalian cell lines. *FEMS Microbiol Lett.* 2015;362.
1026 doi:10.1093/femsle/fnv067

1027 42. Kirn TJ, Jude BA, Taylor RK. A colonization factor links *Vibrio cholerae* environmental
1028 survival and human infection. *Nature.* 2005;438: 863–866. doi:10.1038/nature04249

1029 43. Bäumler AJ, Tsolis RM, Heffron F. Contribution of fimbrial operons to attachment to and
1030 invasion of epithelial cell lines by *Salmonella typhimurium*. *Infect Immun.* 1996;64: 1862–
1031 1865. doi:10.1128/iai.64.5.1862-1865.1996

1032 44. Bäumler AJ, Tsolis RM, Bowe FA, Kusters JG, Hoffmann S, Heffron F. The pef fimbrial
1033 operon of *Salmonella typhimurium* mediates adhesion to murine small intestine and is
1034 necessary for fluid accumulation in the infant mouse. *Infect Immun.* 1996;64: 61–68.
1035 doi:10.1128/iai.64.1.61-68.1996

1036 45. Costa J, Ahluwalia A. Advances and Current Challenges in Intestinal Model Engineering: A
1037 Digest. *Front Bioeng Biotechnol.* 2019;7: 144. doi:10.3389/fbioe.2019.00144

1038 46. Sonnenburg JL, Xu J, Leip DD, Chen C-H, Westover BP, Weatherford J, et al. Glycan
1039 foraging in vivo by an intestine-adapted bacterial symbiont. *Science.* 2005;307: 1955–1959.
1040 doi:10.1126/science.1109051

1041 47. Pickard JM, Maurice CF, Kinnebrew MA, Abt MC, Schenten D, Golovkina TV, et al. Rapid
1042 fucosylation of intestinal epithelium sustains host–commensal symbiosis in sickness.
1043 *Nature.* 2014;514: 638–641. doi:10.1038/nature13823

1044 48. Renkema GH, Herma Renkema G, Boot RG, Au FL, Donker-Koopman WE, Strijland A, et
1045 al. Chitotriosidase, a chitinase, and the 39-kDa human cartilage glycoprotein, a chitin-
1046 binding lectin, are homologues of family 18 glycosyl hydrolases secreted by human
1047 macrophages. *European Journal of Biochemistry.* 1998. pp. 504–509. doi:10.1046/j.1432-
1048 1327.1998.2510504.x

1049 49. Aomatsu T, Imaeda H, Matsumoto K, Kimura E, Yoden A, Tamai H, et al. Faecal chitinase
1050 3-like-1: a novel biomarker of disease activity in paediatric inflammatory bowel disease.
1051 *Alimentary Pharmacology & Therapeutics.* 2011. pp. 941–948. doi:10.1111/j.1365-
1052 2036.2011.04805.x

1053 50. Buisson A, Vazeille E, Minet-Quinard R, Goutte M, Bouvier D, Goutorbe F, et al. Faecal
1054 chitinase 3-like 1 is a reliable marker as accurate as faecal calprotectin in detecting
1055 endoscopic activity in adult patients with inflammatory bowel diseases. *Aliment Pharmacol
1056 Ther.* 2016;43: 1069–1079. doi:10.1111/apt.13585

1057 51. Arabyan N, Weis AM, Huang BC, Weimer BC. Implication of Sialidases in Infection:
1058 Genome Release of Sialidase Knockout Strains from Serovar *Typhimurium* LT2. *Genome
1059 Announc.* 2017;5. doi:10.1128/genomeA.00341-17

1060 52. Hase K, Kawano K, Nochi T, Pontes GS, Fukuda S, Ebisawa M, et al. Uptake through
1061 glycoprotein 2 of FimH bacteria by M cells initiates mucosal immune response. *Nature.*
1062 2009. pp. 226–230. doi:10.1038/nature08529

1063 53. Kolenda R, Burdukiewicz M, Schiebel J, Rödiger S, Sauer L, Szabo I, et al. Adhesion of
1064 *Salmonella* to Pancreatic Secretory Granule Major Glycoprotein GP2 of Human
1065 and Porcine Origin Depends on FimH Sequence Variation. *Frontiers in Microbiology*. 2018.
1066 doi:10.3389/fmicb.2018.01905

1067 54. Chessa D, Dorsey CW, Winter M, Baümler AJ. Binding specificity of *Salmonella* plasmid-
1068 encoded fimbriae assessed by glycomics. *J Biol Chem*. 2008;283: 8118–8124.
1069 doi:10.1074/jbc.M710095200

1070 55. Stojiljkovic I, Bäumler AJ, Heffron F. Ethanolamine utilization in *Salmonella typhimurium*:
1071 nucleotide sequence, protein expression, and mutational analysis of the *cchA cchB eutE*
1072 *eutJ eutG eutH* gene cluster. *J Bacteriol*. 1995;177: 1357–1366. doi:10.1128/jb.177.5.1357-
1073 1366.1995

1074 56. de Lorenzo V, Cases I, Herrero M, Timmis KN. Early and late responses of TOL promoters
1075 to pathway inducers: identification of postexponential promoters in *Pseudomonas putida*
1076 with *lacZ*-tet bicistronic reporters. *J Bacteriol*. 1993;175: 6902–6907.
1077 doi:10.1128/jb.175.21.6902-6907.1993

1078 57. Schmieger H. Phage P22-mutants with increased or decreased transduction abilities. *Mol*
1079 *Gen Genet*. 1972;119: 75–88. doi:10.1007/BF00270447

1080 58. Schmieger H. The molecular structure of the transducing particles of *Salmonella* phage
1081 P22. II. Density gradient analysis of DNA. *Mol Gen Genet*. 1970;109: 323–337.
1082 doi:10.1007/BF00267702

1083 59. Miller VL, Mekalanos JJ. A novel suicide vector and its use in construction of insertion
1084 mutations: osmoregulation of outer membrane proteins and virulence determinants in *Vibrio*
1085 *cholerae* requires *toxR*. *J Bacteriol*. 1988;170: 2575–2583. doi:10.1128/jb.170.6.2575-
1086 2583.1988

1087 60. Prentki P, Krisch HM. In vitro insertional mutagenesis with a selectable DNA fragment.
1088 *Gene*. 1984;29: 303–313. doi:10.1016/0378-1119(84)90059-3

1089 61. Datsenko KA, Wanner BL. One-step inactivation of chromosomal genes in *Escherichia coli*
1090 K-12 using PCR products. *Proceedings of the National Academy of Sciences*. 2000. pp.
1091 6640–6645. doi:10.1073/pnas.120163297

1092 62. McKenzie GJ, Craig NL. Fast, easy and efficient: site-specific insertion of transgenes into
1093 enterobacterial chromosomes using *Tn7* without need for selection of the insertion event.
1094 *BMC Microbiol*. 2006;6: 39. doi:10.1186/1471-2180-6-39

1095 63. Elhadad D, Desai P, Grassl GA, McClelland M, Rahav G, Gal-Mor O. Differences in Host
1096 Cell Invasion and *Salmonella* Pathogenicity Island 1 Expression between *Salmonella*
1097 *enterica* Serovar Paratyphi A and Nontyphoidal S. *Typhimurium*. *Infection and Immunity*.
1098 2016. pp. 1150–1165. doi:10.1128/iai.01461-15

1099 64. Murthy N, Bleakley B. Simplified method of preparing colloidal chitin used for screening of
1100 chitinase-producing microorganisms. *Internet J Microbiol*. 2012;10: e2bc3. Available:
1101 <https://print.ispub.com/api/0/ispub-article/14186>

1102 65. Botteldoorn N, Van Coillie E, Grijspeerdt K, Werbrouck H, Haesebrouck F, Donné E, et al.

1103 Real-time reverse transcription PCR for the quantification of the *mntH* expression of
1104 *Salmonella enterica* as a function of growth phase and phagosome-like conditions. *J*
1105 *Microbiol Methods*. 2006;66: 125–135. doi:10.1016/j.mimet.2005.11.003

1106 66. Behnson J, Jellbauer S, Wong CP, Edwards RA, George MD, Ouyang W, et al. The
1107 cytokine IL-22 promotes pathogen colonization by suppressing related commensal bacteria.
1108 *Immunity*. 2014;40: 262–273. doi:10.1016/j.immuni.2014.01.003

1109 67. Hamers AAJ, Uleman S, van Tiel CM, Kruiswijk D, van Stalborch A-M, Huvaneers S, et al.
1110 Limited role of nuclear receptor Nur77 in *Escherichia coli*-induced peritonitis. *Infect Immun*.
1111 2014;82: 253–264. doi:10.1128/IAI.00721-13

1112 68. Spandidos A, Wang X, Wang H, Seed B. PrimerBank: a resource of human and mouse
1113 PCR primer pairs for gene expression detection and quantification. *Nucleic Acids Res*.
1114 2010;38: D792-9. doi:10.1093/nar/gkp1005

1115 69. Aquilano K, Ceci V, Gismondi A, De Stefano S, Iacobelli F, Faraonio R, et al. Adipocyte
1116 metabolism is improved by TNF receptor-targeting small RNAs identified from dried nuts.
1117 *Communications Biology*. 2019. doi:10.1038/s42003-019-0563-7

1118 70. Dong X, Zhou S, Mechref Y. LC-MS/MS analysis of permethylated free oligosaccharides
1119 and N-glycans derived from human, bovine, and goat milk samples. *Electrophoresis*.
1120 2016;37: 1532–1548. doi:10.1002/elps.201500561

1121 71. Gautam S, Peng W, Cho BG, Huang Y, Banazadeh A, Yu A, et al. Glucose unit index (GUI)
1122 of permethylated glycans for effective identification of glycans and glycan isomers. *Analyst*.
1123 2020;145: 6656–6667. doi:10.1039/d0an00314j

1124 72. Peng W, Goli M, Mirzaei P, Mechref Y. Revealing the Biological Attributes of N-Glycan
1125 Isomers in Breast Cancer Brain Metastasis Using Porous Graphitic Carbon (PGC) Liquid
1126 Chromatography-Tandem Mass Spectrometry (LC-MS/MS). *J Proteome Res*. 2019;18:
1127 3731–3740. doi:10.1021/acs.jproteome.9b00429

1128 73. Yu C-Y, Mayampurath A, Hu Y, Zhou S, Mechref Y, Tang H. Automated annotation and
1129 quantification of glycans using liquid chromatography-mass spectrometry. *Bioinformatics*.
1130 2013;29: 1706–1707. doi:10.1093/bioinformatics/btt190