

1 **Selective representations of texture and motion in mouse higher visual areas**

2 Yiyi Yu, Jeffrey N. Stirman, Christopher R. Dorsett, Spencer L. Smith

3
4 Dept. of Electrical & Computer Engineering
5 Center for BioEngineering
6 Neuroscience Research Institute
7 University of California Santa Barbara
8 Santa Barbara, CA
9

10

11 **Abstract**

12 Mice have a constellation of higher visual areas, but their functional specializations are
13 unclear. Here, we used a data-driven approach to examine neuronal representations of
14 complex visual stimuli across mouse higher visual areas, measured using large field-of-view
15 two-photon calcium imaging. Using specialized stimuli, we found higher fidelity
16 representations of texture in area LM, compared to area AL. Complementarily, we found
17 higher fidelity representations of motion in area AL, compared to area LM. We also observed
18 this segregation of information in response to naturalistic videos. Finally, we explored how
19 popular models of visual cortical neurons could produce the segregated representations of
20 texture and motion we observed. These selective representations could aid in behaviors such
21 as visually guided navigation.

22 **Introduction**

23 Visual systems evolved to extract behaviorally relevant information from complex natural
24 scenes. Visual stimuli contain information about texture, motion, objects, and other features of
25 the environment around the animal. These components of visual stimuli have unequal relevance
26 across behaviors. For example, optic flow and parallax motion information can help guide
27 navigation behavior, but object recognition is often invariant to motion. The ventral stream of
28 cortical areas in rodents function as object detection circuitry, as they do in primates. As expected,
29 these areas exhibit neural representations (spatiotemporal patterns of neuronal activity, a.k.a.
30 population codes) that are increasingly invariant in their responses with changes in the
31 appearance of recognized objects^{1–3}.

32 In mice, axons from neurons in primary visual cortex (**V1**) extend out to an array of higher
33 visual areas (**HVAs**), seven of which share a border with V1, and all of which have characteristic
34 interconnectivity with other brain regions. Mouse visual cortical areas exhibit a level of hierarchical
35 structure, and form two subnetworks^{4–9}. HVAs receive functionally distinctive afferents from V1
36 (ref. ¹⁰). At least nine HVAs exhibit retinotopic topology^{8,11–13} and neurons in HVAs have larger
37 receptive fields than neurons in V1 (ref. ⁸). This organization and connectivity of mouse visual
38 areas may have evolved to selectively propagate specific visual information to other brain regions,
39 but the functional specializations of HVAs require further elucidation.

40 Gratings are classic visual stimuli for characterizing responses in visual cortical areas^{14–16}. In
41 mice, HVAs exhibit biases in their preferred spatial and temporal frequencies of gratings, but
42 overall, their frequency passbands largely overlap^{10,17–19}. Similar studies using alternative visual
43 stimuli have produced additional insights: spectral noise stimuli revealed further details of
44 spatiotemporal preferences among HVAs²⁰; plaid stimuli (two superimposed gratings with
45 different angles) revealed pattern cells in LM and RL²¹; naturalistic texture stimuli were better
46 discriminated from scrambled versions in LM than in V1²², and random dot kinematograms
47 highlighted motion-coherent modulation in putative dorsal areas AL, PM, and AM^{15,23}. One could
48 hypothesize texture and motion to be key components of any visual stimuli. How are
49 representations of texture and motion features in visual stimuli segregated among HVAs in mice?
50 Representation of texture relies on the encoding of local features²⁴. Experimental and theoretical
51 studies suggested that HVAs may encode a combination of local features, such as multiple edges
52 to detect curves and shapes^{25–27}.

53 In the current study, we have examined the visual feature selectivity of multiple visual areas
54 to three classes of visual stimuli: drifting textures, random dot kinematograms, and naturalistic
55 videos. We have examined how the texture and motion components of a naturalistic video are
56 represented, and found that high fidelity representations of these stimulus classes are segregated
57 to different HVAs. We then explored how a range of popular Gabor filter-based models of visual
58 cortical neurons can produce similar segregations of stimulus representations. The results from
59 these experiments reveal new aspects of the tuning properties of mouse HVAs.

60 **Results**

61 **Multi-area calcium imaging to distinguish tuning properties of HVAs**

62 To survey the tuning properties of multiple visual cortical areas, we performed population
63 calcium imaging of L2/3 neurons in V1 and four HVAs (lateromedial, **LM**; laterointermediate, **LI**;
64 anterolateral, **AL**; posteromedial, **PM** or anteromedial, **AM**) of awake mice using a multiplexing,
65 large field-of-view two-photon microscope with subcellular resolution developed in-house²⁸, and
66 transgenic mice expressing the genetically encoded calcium indicator GCaMP6s^{29,30}. We located
67 V1 and HVAs of each mouse using retinotopic maps obtained by intrinsic signal optical
68 imaging^{18,31} (**Supplementary Fig. 1a**). Borders of HVAs were reliably delineated in most cases,
69 with the exception being some experiments where the AM and PM boundary was not clearly
70 defined (for those cases, neurons were pooled as AM/PM). We imaged neuronal activity in 2 – 4
71 cortical visual areas simultaneously (**Fig. 1a, b**). Calcium signals were used to infer probable
72 spike trains for each neuron (*Methods*; **Supplementary Fig. 1b**). During visual stimulation, the
73 average and maximal firing rates inferred were similar across cortical areas, and were typically
74 around 0.5 spikes/s average, and ranged up to 15-30 spikes/s maximal (**Fig. 1c**).

75 We characterized the neuronal responses to three types of visual stimuli: scrolling textures
76 (hereafter “texture stimuli”), random dot kinematograms (**RDK**), and a naturalistic video mimicking
77 home cage navigation (*For experiment details see Table 1*). Neurons that fired on 60% of trials
78 were considered “reliably responsive”, if not otherwise stated. In general, half of all recorded
79 neurons responded to at least one visual stimulus reliably (texture: 55%; RDK: 54%; naturalistic
80 video: 50%). For each stimulus type, we characterized the tuning properties of individual neurons
81 using an encoder model (*Methods*). We also measured neuronal selectivity to texture family,
82 motions direction, or joint selectivity using mutual information analysis. Higher bit values for a
83 neuron-stimulus parameter pair means that the activity from that neuron provides more
84 information about that stimulus parameter (or combination of stimulus parameters).

85

86 **Information about texture and RDK were encoded in separate HVAs**

87 We tested the selectivity of neurons in V1, LM, LI, AL and PM to texture stimuli using a set of
88 naturalistic textures that drifting in one of the four cardinal directions (**Supplementary Fig. 2a**).
89 We generated four families of texture images based on parametric models of naturalistic texture
90 patterns (*Methods*). These stimuli allowed us to characterize the representation of both texture
91 pattern information and drift direction information, and thus test the tolerance of a texture selective
92 neuron to motion direction.

93 We observed reliable responses to drifting textures in V1, LM, LI and PM, while AL was barely
94 responsive to these stimuli (**Supplementary Fig. 2b**). About 43% of reliably responsive neurons
95 were modulated by the texture stimuli (i.e., texture-tuned neurons) (*Methods*; **Supplementary**
96 **Fig. 2c-e**). Texture-tuned neurons exhibited various selectivity patterns, suggesting a variety of
97 encoding properties (**Fig. 1d**). For example, about 13%-38% (varied across HVAs) of neurons
98 were strictly selective to one texture family drifting in one direction (**Supplementary Fig. 2f**), and
99 a different group of neurons (about 30%) were also selective to one texture family but responded
100 to more than one motion direction of that texture family (**Supplementary Fig. 2f**). This latter group
101 of tuned neurons could be called *tolerant* to motion direction, with the implication that it is selective

102 for the other stimulus parameter (texture family, in this case). In general, we observed neurons
103 tolerant to either texture family or motion direction in V1 and HVAs.

104 Using mutual information analysis, we then characterized the selectivity of individual neurons
105 in HVAs. Overall, neurons in V1 and LI were more informative about the texture stimuli, followed
106 by LM. By contrast, neurons in areas AL and PM were not informative about the texture stimuli
107 (**Fig. 1e**; $p = 5.8 \times 10^{-8}$; one-way ANOVA). To examine the tolerance of texture encoding neurons
108 to the translational direction, we computed the mutual information between neuronal responses
109 and texture families (refer the statistical pattern of a texture image). LI was the most informative
110 about texture family out of all tested visual areas, followed by V1 and LM (**Supplementary Fig. 3a**;
111 $p = 0.0006$; one-way ANOVA). Meanwhile, V1 and LI also carried more information about the
112 motion direction of the texture stimuli, compared to areas AL and PM (**Supplementary Fig. 3b**;
113 $p = 0.0006$, one-way ANOVA). Examining the information encoding of individual neurons, we
114 found an increasing fraction of neurons that jointly encoded texture family and texture drift
115 direction along the putative ventral pathway (V1: 13%, LM: 17%, LI: 30%, **Supplementary Fig. 3c**;
116 AL: 0%, PM: 0%), suggesting increasing joint coding along the putative visual hierarchy.

117 These results for texture encoding contrast with results for standard drifting gratings. For
118 gratings, we found motion direction information to be encoded broadly, differing <10% among
119 HVAs (**Supplementary Fig. 3d**), while texture motion information did not propagate to visual
120 areas outside the putative ventral pathway, differing >250% among HVAs (**Supplementary Fig. 3a, b**). The drift speeds were similar (32 degrees/s for the textures and 40 degrees/s for the
121 gratings), so it is unclear which spatial structural differences between these stimuli drove the
122 differences in encoding. Thus, we next examined responses to a stimulus with less spatial
123 structure and greater focus on motion.

124 We examined the encoding of random dot kinematograms (**RDK**), which are salient white dots
125 on a dark background with 40-90% motion coherence (remaining dots move in random directions
126 (**Fig. 1f**; **Supplementary Fig. 4a**). The RDK stimuli elicited responses in 40-80% of neurons in
127 V1, LM and AL, and V1 and AL were more responsive to and generated more reliable
128 representations of the RDK stimuli (**Supplementary Fig. 4b**). Among reliably responsive neurons
129 (responding on at least 60% of trials), about 32-60% of neurons were modulated by the RDK
130 stimuli (i.e., exhibited tuning) (V1: 59%, LM: 32%, AL: 43%; **Supplementary Fig. 4c, d**). RDK-
131 tuned neurons exhibited selectivity to motion directions and were modulated by the motion
132 coherence (**Supplementary Fig. 4e**). To characterize the direction selectivity, we computed the
133 mutual information between neuronal responses and the motion direction at each coherence level
134 (**Supplementary Fig. 4f**). We found that V1 and AL were more informative than LM about the
135 motion direction of the RDK at all coherence levels (**Fig. 1g**; $p = 0.0006$, one-way ANOVA).

136 In summary, texture family selective neurons were found in V1, LM, LI and PM, while RDK
137 direction selectivity neurons were more abundant in AL. Thus, information about drifting textures
138 and RDK motion are segregated to distinct HVAs (**Fig. 1h**).

140

141 **Features of naturalistic videos were encoded in separate HVAs**

142 To determine whether this segregation of texture and motion information among HVAs could
143 be detected within a more complex stimulus, we characterized the cortical representation of a
144 naturalistic video (**Fig. 2a**). The 64-second-long naturalistic video stimulus contained time-varying

145 visual features such as contrast³², luminance, edge density²⁶, difference of Gaussian (**DOG**)
146 entropy³³, and optic flow (**OF**) speed and direction²³ (*Methods*; **Supplementary Fig. 5**). About 40%
147 of neurons in the four areas responded to the naturalistic video reliably (trail-to-trial correlation >
148 0.08; **Supplementary Fig. 6a, b**). Our results thus far suggested that activity in AL would be
149 modulated by motion information in the naturalistic video, and activity in LM would be modulated
150 by texture information in the same video. We tested this hypothesis.

151 Neurons in the four imaged visual areas (V1, AL, LM, and PM) exhibited highly selective
152 responses to the naturalistic video. Individual neurons responded to ~ 3% of stimulus video
153 frames, corresponding to a high lifetime sparseness (0.83 ± 0.09 (mean \pm SD); **Fig. 2b**). Unbiased
154 clustering (Gaussian mixture model, **GMM**) partitioned neurons into 25 tuning classes to the
155 naturalistic video, and 20 of these classes exhibited unique sparse response patterns, responding
156 at specific time points of the naturalistic video (**Supplementary Fig. 6d**). All naturalistic-video-
157 tuning classes were observed in V1, and most were observed in HVAs (1-2 classes were missing
158 in AL and PM). However, the relative abundance of tuning classes varied among V1 and HVAs
159 (**Supplementary Fig. 6e, f**).

160 Next, we examined the collective effects of the biased distributions of tuning classes among
161 HVAs. We reasoned that if a time-varying feature of the naturalistic video strongly modulates
162 neuronal activity in an HVA (**Fig. 2c**), we should be able to detect that by regressing the visual
163 feature dynamics (**Fig. 2d**) with the average neural activity in an HVA. The average response of
164 a cortical area neuron population converged with several hundreds of neurons (about 500 from
165 V1, about 200 from HVAs; **Supplementary Fig. 6c**). We examined a set of visual features that
166 were previously implied to modulate visual system, including contrast^{32,34}, luminance, edge
167 density²⁶, DOG entropy³³, and OF speed and direction²³ (**Supplementary Fig. 5**). The visual
168 features were computed at multiple spatial scales, and qualitatively similar results were observed
169 across a wide range of scales. Here we present representative results: edge density maps with a
170 Gaussian kernel of 2.35° (full width at half maximum, **FWHM**), and DOG entropy maps with a
171 Gaussian kernel of 11.75° (FWHM, inner kernel; the outer kernel is two-fold larger in FWHM) (**Fig.**
172 **2d**).

173 Regressing these visual features with the average neuronal responses per HVA suggested
174 that V1, LM, AL and PM are distinctly modulated by naturalistic video features. We defined the
175 modulation coefficients as the coefficients of the linear model, and modulation power of each
176 feature as the variance of responses explained by the model (*i.e.*, the r^2 of a linear fit to a particular
177 visual feature and the neural activity; **Fig. 2e**). The feature modulation analysis suggested that
178 the average responses of AL populations but not the other three areas was correlated with OF
179 speed entropy (**Fig. 2f**). In PM, activity was correlated with contrast and edge density but not
180 DOG entropy (**Fig. 2f**). In both V1 and LM, but neither AL nor PM, activity was correlated with
181 both contrast and DOG entropy (**Fig. 2f**). These results suggested that AL activity represents
182 motion components in the naturalistic video, while LM and PM activity represents spatial
183 components in the same naturalistic video.

184 Next, we returned to the tuning class analysis (**Supplementary Fig. 6**), and determined
185 whether the segregation of motion and spatial representations we observed was consistent with
186 the biased distribution of tuning classes across HVAs. Tuning classes were indeed differentially
187 modulated by contrast, DOG entropy, edge density and optical flow speed entropy of the
188 naturalistic video (**Supplementary Fig. 7a**). As expected, we found that overrepresented tuning
189 classes within an HVA could explain the superior representation of a feature. Similarly, the

190 underrepresented tuning classes explained the inferior representation of a feature within an HVA
191 (**Supplementary Fig. 7b**). Together, these results indicate that motion information and spatial
192 information are differentially represented among HVAs due to the distribution of tuning classes
193 between them. Neurons in AL provided superior representations of motion features in a
194 naturalistic video, and neurons in LM and PM provided superior representations of spatial features
195 in the same naturalistic video.

196

197 **DOG entropy can support texture family encoding**

198 While V1 and LM also provided high fidelity representations of texture, PM did not (**Fig. 1d**).
199 However, with the naturalistic video, all three areas were modulated by several spatial features.
200 PM was distinct in that it was relatively well modulated by edge density and poorly modulated by
201 DOG entropy, compared to V1 and LM. Thus, we hypothesized that DOG entropy could facilitate
202 texture encoding. We generated DOG entropy and edge density feature maps for texture stimuli
203 (**Fig. 1c, Supplementary Fig. 8a**). Then, we asked whether these feature maps were sufficient
204 to discriminate texture images from different classes, while also being tolerant to differences
205 among textures from the same class. We examined these questions by training a linear classifier
206 to discriminate textures within and across texture classes using DOG entropy features or edge
207 density features (*Methods*, **Supplementary Fig. 8b**). As expected, we found that DOG entropy
208 indeed performed better for discriminating texture images by classes. The linear classifier using
209 the DOG entropy feature successfully classified 83.3% of inter- and intra-class texture image pairs
210 with $9 \pm 4\%$ miss-classification rate, while the classifier using the edge density feature classified
211 67% of these pairs with $12 \pm 4\%$ error rate. Thus, we concluded that the superior representation
212 of texture by V1 and LM (compared to PM) could be due to their modulation by DOG entropy
213 features.

214

215 **Gabor models exhibited biased feature representations**

216 To this point, the evidence indicates a distributed representation of visual features among
217 HVAs. Could these differences be due to subtle biases in preferred temporal or spatial
218 frequencies? Or are they indicative of more fundamental differences in the underlying tuning of
219 neurons in HVAs? To address these questions, we examined neuron models that would
220 reproduce the diverse encoding functions we observed in mouse visual cortex. We simulated
221 neurons using a base model of a linear-nonlinear (**LNL**) cascade with Gabor filter-based linear
222 kernels (**Fig. 3a**; *Methods*). The LNL cascade with Gabor filter is a classic model for visual cortical
223 neurons³⁵. However, recent studies suggested that multiple Gabor kernels are required for
224 predicting V1 neuron responses in mice³⁶ and generating tolerances to rotation, translation, and
225 scale^{24,37}. Separately, dimensionality analysis suggested that normalization is critical for capturing
226 the diverse response profiles of V1 neurons to naturalistic stimuli³⁸. Inspired by these findings, we
227 designed several variations of the base model for testing.

228 Models were grouped into three groups: 2D Gabor models, 3D Gabor models and 3D Gabor
229 models with normalization. For 2D Gabor filter-based models, we examined both linear and
230 energy models. These are similar to models of complex cells in which input from multiple simple
231 cells with similar orientation preferences but varying phase are integrated¹⁴. Other combinations
232 were used as well (cross-orientation, cross-scale, etc.; **Fig. 3b**). For 3D Gabor filter-based models,

233 we also examined motion models (**Fig. 3b**). In addition, we also examined a version of the 3D
234 Gabor model with subtractive normalization (**Fig. 3b**). All the simulations were carried out at
235 multiple spatial and temporal (for 3D Gabor filter-based models) scales and sampled uniformly in
236 space.

237 Using these three model classes (2D Gabor, 3D Gabor, and 3D Gabor with normalization),
238 we simulated neuronal responses to the texture, RDK, and naturalistic video stimuli. We
239 characterized the mutual information and feature selectivity of simulated responses to the texture
240 and RDK stimuli (**Supplementary Fig. 9, 10**), and measured the feature encoding of simulated
241 responses to the naturalistic video (**Supplementary Fig. 11**). Different neuron models varied in
242 the encoding power of different types of stimuli or visual features. We noted that 2D Gabor models
243 exhibited specific tuning to the texture family while remaining tolerant to motion directions,
244 especially the cross-orientation and linear cross-position models (**Supplementary Fig. 9b**), which
245 are the best models for texture family encoding. On the other hand, 2D Gabor models performed
246 badly in representing the RDK stimuli (**Supplementary Fig. 10a**), while 3D Gabor models with
247 normalization performed the best in encoding the RDK moving direction (**Supplementary Fig.**
248 **10a**). 3D Gabor models with untuned normalization captured both the information about the
249 motion direction, but also exhibited tolerance to various coherence levels (**Supplementary Fig.**
250 **10b**). In representing the naturalistic videos, 2D Gabor models exhibited better sensitivity to the
251 contrast, edge density, and the DOG entropy, while the 3D Gabor models with untuned
252 normalization exhibited better modulation by the OF entropy (**Fig. 3c**). This represents an
253 apparent trade-off in representation fidelity between 3D Gabor kernels with normalization and 2D
254 Gabor kernels. In summary, the subtractive untuned normalization is important for the
255 representation of motion, such as RDK and OF entropy, while Gabor kernels without the time
256 domain provide better representations of spatial features.

257

258 **Gabor models reproduced specific feature representation of mouse visual cortex**

259 With the model results in hand, we sought to determine how well they could account for our
260 observations of neuronal activity *in vivo* (**Figs. 1,2**). We fit individual neuronal responses with the
261 Gabor-based models (*Methods*). For each model class (2D Gabor, 3D Gabor, and 3D Gabor with
262 normalization), one best linear model was fit by minimizing the cross-validation error of a linear
263 regression between the simulated model response and neuron response (**Fig. 4a**).

264 Next, we took these pools of fits (three fits per neuron, one fit for each model class) and
265 characterized how they represented features in the naturalistic videos. Consistent with the prior
266 findings in this study (**Fig. 3**), we found that 2D Gabor models reproduced the neuronal
267 information encoding about texture stimuli the best (**Supplementary Fig. 12**), while the 3D Gabor
268 model with normalization reproduced the information encoding about the RDK stimuli the best
269 (**Supplementary Fig. 13**).

270 The three classes of models were differentially involved in encoding of spatial and temporal
271 features of naturalistic videos (**Supplementary Fig. 14**). We examined how well the three model
272 classes could account for the characteristic neuronal activity modulations to visual features we
273 observed in each HVA *in vivo*. We took a subset of the model responses, those that were fit to
274 neurons that belonged to over-represented tuning classes within an HVA (**Supplementary Fig.**
275 **6d, f**), as these neurons accounted for unique spatiotemporal feature representations of HVAs
276 (**Supplementary Fig. 7**). For the DOG entropy modulation in area LM, we found that the 3D

277 Gabor model class best fit the modulation we observed *in vivo* (**Fig. 4b, c**). For the optic flow
278 speed entropy modulation in area AL, model fits to AL neurons that were in the 3D Gabor with
279 normalization class were the best fit to the *in vivo* data (**Fig. 4b, c**). For the contrast and edge
280 density modulations observed in area PM, both 2D and 3D Gabor model classes provided good
281 fits. However, the fits for the contrast modulation were a better match to the *in vivo* data than the
282 edge density modulation (**Fig. 4b, c**). Overall, this analysis reveals that unique model classes are
283 required to reproduce the visual feature modulation observed in HVAs: 3D Gabor filter-based
284 models for area LM neurons, 3D Gabor filters with normalization for area AL neurons, and both
285 2D and 3D Gabor filter-based models for area PM neurons (**Fig. 4d**).

286 **Discussion**

287 In the current study, we have revealed unique encoding properties of V1 and multiple HVAs
288 in representing textures, RDK, and naturalistic videos. From our results, it appears as though V1
289 establishes a representation of various visual features, LM and LI are specialized for encoding of
290 spatial features, and AL is specialized for the encoding of motion features. The encoding function
291 of area PM was less obvious, as it seems that activity in that HVA was driven mostly by the density
292 of visual edges, which are a spatial feature, but since PM is so poorly modulated by the DOG
293 entropy feature, it is difficult to group it with LM and LI. Finally, we determined that unique model
294 classes are required to reproduce the modulations we observed in these. Parameter variations
295 within a model class were not sufficient. Instead, different model classes were required for
296 reproducing the *in vivo* results in separate HVAs. These findings provide new insights into the
297 neural circuitry that can generate distributed representations of visual stimuli in HVAs.

298 In our analysis, we found discrete neuron classes that had unique response profiles to a
299 naturalistic video stimulus. These classes formed a non-uniform distribution among V1 and HVAs,
300 and appropriately, were found to contribute to the biases in feature encoding among HVAs. It is
301 unclear whether neurons with different tuning profiles play similar computational roles. Overall,
302 these results determined that mouse visual cortical neurons can represent complementary
303 features of visual scenes, and each HVA can exhibit unique biases towards specific visual
304 features that are consistent across stimulus types, including naturalistic videos. Coupled with their
305 downstream connectivity, these distinguishing biases among HVAs can provide insights into their
306 involvement in visual processing and behavior.

307 The rodent visual system evolved in response to the ecological niche mice found themselves
308 in. We do not expect such a process to result in neural circuitry that performs neat, absolute
309 segregations of information about visual scenes. Instead, we expect neural circuitry that efficiently
310 supports adaptive behavior for the mouse's ecological niche. The principles of that efficient
311 circuitry are likely quite different from those of any systematic, mathematically compact approach
312 for parsing a visual scene in terms of known receptive field properties of visual cortical neurons.
313 Thus, here we used a data-driven approach to gain a conservative foothold into complex visual
314 scene processing in mice. We explored how segregated representations might emerge using a
315 modeling approach based on known receptive field properties of visual cortical neurons, or at
316 least popular models thereof. This analysis showed that 2D and 3D Gabor models provided
317 accurate accounts for distinguishing texture and form features. By contrast, 3D Gabor models
318 with subtractive normalization were key for distinguishing motion stimuli.

319 The enrichment of specific representations of motion or texture in areas AL and LM
320 respectively, could arise from specific connectivity from other brain regions (e.g., V1) that
321 preserves selectivity¹⁰, or from converging inputs that result in enhanced selectivity (or more
322 invariant selectivity) for a visual feature^{14,36,39}. We generally cannot distinguish those two
323 possibilities with this data set. However, in area LI, neurons exhibited selectivity that surpassed
324 that of neurons in V1, so it appears as though preserved selectivity from V1 projecting to LI would
325 be insufficient to produce such selectivity. However, we cannot rule out thresholding effects which
326 could play a role in increasing apparent selectivity.

327 Altogether, this study reveals new segregations of visual encoding or representations among
328 HVAs in mice, many of which are reminiscent of the primate visual system. Studies have
329 suggested macaque V2 exhibited selectivity to texture families and tolerance to local feature

330 differences between images from the same texture class^{24,26}. In macaque V4, neurons are highly
331 selective to texture patterns, which are well predicted using combination of 2D Gabor models³⁷.
332 Famously, macaque dorsal visual areas such as MT exhibit selectivity to RDK motion direction⁴⁰.
333 The functional similarities between mouse LM and LI and macaque V2 and V4, and between
334 mouse AL and macaque MT are perhaps superficial, but could also indicate that the dual stream
335 framework for visual pathways in primates could have an analog in mice^{5,41}. Earlier anatomical
336 and receptive field mapping studies suggest that mouse LM and AL likely serve as the ventral
337 and dorsal gateways in the mouse visual hierarchy^{6,8,31}. Anatomical evidence including
338 connectivity with downstream brain regions support functional distinctions between putative
339 ventral and dorsal areas of mouse visual cortical areas, e.g. ventral areas were strongly
340 connected to temporal and parahippocampal cortices, while putative dorsal areas were
341 preferentially connected to parietal, motor and limbic areas⁵. Recent large scale multi-region
342 electrode recordings from mouse visual cortex revealed an inter-area functional connectivity
343 hierarchy, but did not group mouse HVAs into separate streams or subnetworks⁹. The study
344 further showed that both LM and AL were similarly recruited by a visual recognition task, in which
345 AM and PM were strongly involved⁹. Together, we conclude that both anatomical and functional
346 studies suggest that mouse HVAs likely play distinct roles in visual behaviors, and may comprise
347 dual processing streams analogous to primates. However, well designed behavioral tasks are
348 required to further reveal the circuits and mechanisms.

349 **Methods**

350 **Animal and surgery**

351 All animal procedures and experiments were approved by the Institutional Animal Care and
352 Use Committee of the University of North Carolina at Chapel Hill or the University of California
353 Santa Barbara and performed in accordance with the regulation of the US Department of Health
354 and Human Services. GCaMP6s-expressing transgenic adult mice of both sexes were used in
355 this study. Mice were 110 – 300 days old for data collection. GCaMP6s-expressing mice were
356 induced by triple crossing of the following mouse lines: TITL-GCaMP6s (Allen Institute Ai94),
357 Emx1-Cre (Jackson Labs #005628), and ROSA:LNL:tTA (Jackson Labs #011008)²⁹. Mice were
358 housed under a 12 h light / 12 h dark cycle, and experiments were performed during the dark
359 cycle of mice. For cranial window implantation, mice were anesthetized with isoflurane (1.5 – 1.8%
360 in oxygen) and acepromazine (1.5 – 1.8 mg/kg body weight). Carprofen (5 mg/kg body weight)
361 was administered prior to surgery. Body temperature was maintained using physically activated
362 heat packs or homeothermic heat pads during surgery. Eyes were kept moist with ophthalmic
363 ointment during surgery. The scalp overlaying the right visual cortex was removed, and a custom
364 steel headplate with a 5 mm diameter opening was mounted to the skull with cyanoacrylate glue
365 (Oasis Medical) and dental acrylic (Lang Dental). A 4 mm diameter craniotomy was performed
366 over visual cortex and covered with a #1 thickness coverslip, which was secured with
367 cyanoacrylate glue.

368 **Locating visual areas with intrinsic signal optical imaging (ISOI)**

369 Prior to two-photon imaging, the locations of primary and higher visual area were mapped
370 using ISOI, as previously reported^{28,31,42}. Pial vasculature images and intrinsic signal images were
371 collected using a CCD camera (Teledyne DALSA 1M30) and a tandem lens microscope. A 4.7
372 × 4.7 mm² cortical area was imaged at 9.2 μm/pixel spatial resolution and at 30 Hz frame rate.
373 The pial vasculature was illuminated and captured through green filters (550 ± 50 nm and 560 ±
374 5 nm, Edmund Optics). The ISO images were collected after focusing 600 μm down into the brain
375 from the pial surface. The intrinsic signals were illuminated and captured through red filters (700
376 ± 38 nm, Chroma and 700 ± 5 nm, Edmund Optics). Custom ISOI instrumentation were adapted
377 from Kalatsky and Stryker¹². Custom acquisition software for ISOI imaging collection was adapted
378 from David Ferster²⁸. During ISOI, mice were 20 cm from a flat monitor (60 × 34 cm²), which
379 covered the visual field (110° × 75°) of the left eye. Mice were lightly anesthetized with isoflurane
380 (0.5%) and acepromazine (1.5 – 3 mg/kg). The body temperature was maintained at 37 °C using
381 a custom electric heat pad²⁸. Intrinsic signal responses to vertical and horizontal drifting bars were
382 used to generate retinotopic maps for azimuth and elevation. The retinotopic maps were then
383 used to locate V1 and HVAs (**Supplementary Fig. 1a**). Borders between these areas were drawn
384 using features of the elevation and azimuth retinotopic maps, such as reversals, manually^{18,31}.
385 The vasculature map provided landmarks to identify visual areas in two-photon imaging.

386 ***In vivo* two-photon imaging**

387 Two-photon imaging was performed using a custom Trepan2p microscope controlled by
388 custom LabView software²⁸. Two regions were imaged simultaneously using temporal
389 multiplexing²⁸. Two-photon excitation light from an ultrafast Ti:Sapph laser tuned to 910 nm
390 (MaiTai DeepSee; Newport Spectra-Physics) laser was split into two beams through polarization
391 optics, and one path was delayed 6.25 ns relative to the other. The two beams were steered
392 independently from each other using custom voice coil steering mirrors and tunable lenses. This

393 way, the X, Y, Z plane of the two paths can be independently positioned anywhere in the full field
394 (4.4 mm diameter). The two beams were raster scanned synchronously about their independently
395 positioned centers by a 4 kHz resonant scanner and a linear scanner (Cambridge Technologies).
396 Photons were detected (H7422P-40, Hamamatsu) and demultiplexed using fast electronics. For
397 four-region scanning, the steering of the two beams was alternated every other frame.

398 In the current study, two-photon imaging of $500 \times 500 \mu\text{m}^2$ was collected at 13.3 Hz for two-
399 region imaging, or 6.67 Hz for quad-region imaging. We typically imaged neurons in V1 and one
400 or more HVAs simultaneously. Up to 500 neurons (V1: 129 ± 92 ; HVAs: 94 ± 72 ; mean \pm SD)
401 were recorded per imaging region ($500 \times 500 \mu\text{m}^2$). Imaging was performed with typically <80 mW
402 of 910 nm excitation light out of the front of the objective (0.45 NA), including both multiplexed
403 beams together. Mice were head-fixed about 11 cm from a flat monitor, with their left eye facing
404 the monitor, during imaging. The stimulus display monitor covered $70^\circ \times 45^\circ$ the left visual field.
405 Two-photon images were recorded from awake mice. During two-photon imaging, we monitored
406 the pupil position and diameter using a custom-controlled CMOS camera (GigE, Omron) at 20 –
407 25 fps. No additional illumination was used for pupil imaging.

408 Calcium imaging and imaging processing

409 Calcium imaging processing was carried out using custom MATLAB codes. Two-photon
410 calcium imaging was motion corrected using Suite2p subpixel registration module⁴³. Neuron ROIs
411 and cellular calcium traces were extracted from imaging stacks using custom code adapted from
412 Suit2p modules⁴³. Neuropil contamination was corrected by subtracting the common time series
413 (1st principal component) of a spherical surrounding mask of each neuron from the cellular calcium
414 traces^{17,44}. Neuropil contamination corrected calcium traces were then deconvolved using a
415 Markov chain Monte Carlo (**MCMC**) methods^{44,45}. For each calcium trace, we repeated the MCMC
416 simulation for 400 times, and measured the signal-to-noise of MCMC spike train inference for
417 each cell (**Supplementary Fig. 1b**). Neurons in V1 and HVAs exhibited similar instantaneous
418 firing rates (**Fig. 1c**). For all subsequent analysis, only cells that reliable spike train inference
419 results were included (correlations between MCMC simulations is greater than 0.2).

420 Visual stimuli

421 Visual stimuli were displayed on a 60 Hz LCD monitor ($9.2 \times 15 \text{ cm}^2$). All stimuli were displayed
422 in full contrast.

423 The texture stimuli (**Supplementary Fig. 2a**) were generated by panning a window over a
424 large synthesized naturalistic texture image at one of the cardinal directions at the speed of $32^\circ/\text{s}$.
425 We generated the large texture image by matching the statistics of naturally occurring texture
426 patterns⁴⁶. The texture pattern families were: animal fur, mouse chow, rocks, and tree trunk. Each
427 texture stimulus ran for 4 s and were interleaved by a 4 s gray screen.

428 The random dot kinematogram (**RDK**) stimuli contained a percentage (i.e., coherence) of
429 white dots that move in the same direction (i.e., global motion direction) on a black background
430 (**Supplementary Fig. 4a**). We presented the animal with RDK at three coherence levels (40%,
431 70%, and 90%) and four cardinal directions. The dot diameter was 3.8° and the dot speed was
432 $48^\circ/\text{s}$. White dots covered about 12.5% of the screen. The lifetime of individual dots were about
433 10 frames (1/6 s). These parameters were selected based on mouse behavior in a psychometric
434 RDK task⁴⁷. Each RDK stimulus ran for 3 – 7 s (responses in the first 3 s were used for analysis)
435 and interleaved with 3 s gray screen. The same RDK pattern was looped over trials.

436 Two naturalistic videos (**Fig. 2a**) were taken by navigating a mouse home cage, with or without
437 a mouse in the cage. Each video had a duration of 32 s and were presented with interleaved 8 s
438 long periods with a gray screen. For the convenience of analysis, we concatenated the responses
439 to the two videos (total 64 s).

440 **Visual features of the naturalistic video**

441 We characterized various visual features of the naturalistic video (**Supplementary Fig. 5**).

442 *Average luminance*: The average pixel value of each frame.

443 *Global contrast*: The ratio between the standard deviation of pixel values in a frame, and the
444 average luminance of that same frame.

445 *Edge density*: The local edges were detected by a Canny edge detector⁴⁸. The algorithm finds
446 edges by the local intensity gradient and guarantees to keep the maximum edge in a
447 neighborhood while suppressing non-maximum edges. We applied the Canny edge detector after
448 Gaussian blurring of the original image at multiple scales (1°-10°). A binary edge map was
449 generated as the result of edge detection (**Supplementary Fig. 5a**). The edge density was
450 computed as the sum of positive pixels in the binary edge map of each frame.

451 *Difference of Gaussian (DOG) entropy*: We characterized local luminance features following
452 difference of Gaussian filtering at multiple scales, and then computed the entropy of these
453 features within a local neighborhood (**Supplementary Fig. 5b**).

454 *Optical flow entropy*: We estimated the direction and speed of salient features (e.g., moving
455 objects) using the Horn-Schunck method at multiple spatial scales. Then we computed the
456 entropy of the OF direction and speed at each frame. Since the OF estimation relies on the
457 saliency of visual features, the moving texture and RDK stimuli resulted in distinct OF entropies,
458 with the latter being larger (**Supplementary Fig. 5c**).

459 Visual features were computed either by average over space or by computing a spatial
460 variance value (i.e. entropy). These measurements were inspired by the efficient coding theory⁴⁹,
461 which suggested that the neuron population coding is related to the abundance or the variance of
462 visual features in the natural environment.

463

464 **Reliability and sparseness**

465 The reliability of responses to naturalistic videos was defined as the trial-to-trial Pearson
466 correlation between inferred spike trains of each neuron binned in 500 ms bins. The reliability of
467 responses to texture stimuli and RDK were computed as the fraction of trials that a neuron fired
468 to its preferred stimulus within a time window (2 s for texture stimuli and 3 s for RDK). These
469 definitions were commonly used in previous studies^{39,50}. Only reliably responsive neurons were
470 included in the latter analysis (Pearson correlation > 0.08 to naturalistic video; fired on > 60%
471 trials to the texture and RDK stimuli). The qualitative results were not acutely sensitive to the
472 selection criteria.

473 The sparseness was computed as (eq. 1)⁵¹:

474

$$S = \frac{1 - \frac{1}{N} * \frac{(\sum_i r_i)^2}{\sum_i r_i^2}}{1 - \frac{1}{N}} \quad (eq. 1)$$

475 For lifetime sparseness, r_i is trial-averaged response to i^{th} stimulus and N is the length of the
476 stimuli. The sparseness to naturalistic videos was computed using 500 ms bins. The qualitative
477 results of reliability and sparseness were not acutely sensitive to the bin size.

478

479 Gaussian mixture model

480 To characterize the tuning properties in an unbiased manner, neurons were clustered using a
481 Gaussian mixture model⁵² (**GMM**) based on the trial-averaged responses to the naturalistic video.
482 Only reliably responsive neurons were included for GMM analysis (trial-to-trial Pearson correlation
483 of the inferred spike trains > 0.08 , after spike trains were binned in 500 ms bins). Neuronal
484 responses of the whole population, pooled over all cortical areas imaged, were first denoised and
485 reduced in dimension by minimizing the prediction error of the trial-averaged response using
486 principle component (PC) analysis. 55 PCs were kept for population responses to the naturalistic
487 videos. We also tested a wide range of PCs (20 – 70) to see how this parameter affected
488 clustering, and we found that the tuning group clustering was not acutely affected by the number
489 of PCs used. Neurons collected from different visual areas and different animals were pooled
490 together in training the GMM (3527 neurons). GMMs were trained using the MATLAB build
491 function *fitgmdist* with a range of numbers of clusters. A model of 25 classes was selected based
492 on the Bayesian information criterion (BIC). We also examined models with different numbers of
493 classes (20, 30, 45, or 75), and found that the main results held regardless of the number of GMM
494 classes. Neurons with similar response patterns were clustered into the same class.
495 **Supplementary Fig. 6** shows the response pattern of GMM classes to the naturalistic video. The
496 size of the naturalistic video classes are shown in **Supplementary Fig. 6d**. To examine the
497 reproducibility of the GMM classification, we performed GMM clustering on 10 random subsets of
498 neurons (90% of all neurons). We found the center of the Gaussian profile of each class was
499 consistent (Pearson correlation of class centers, $0.74 +/- 0.12$). About 65% of all neurons were
500 correctly (based on the full data set) classified, while 72% of neurons in classes that are over-
501 represented in HVAs were correctly classified. Among misclassifications, about 78% were due to
502 confusion between the three untuned classes with tuned classes. Thus, most of the classes to
503 come out of the GMM analysis appear to be reproducible, and are not sensitive to specific subsets
504 of the data.

505 Information analysis

506 Mutual information (**MI**) evaluates the information the neuronal response (r) has about certain
507 aspects of the stimulus, and it is computed in units of bits. It was computed using the following
508 equation.

509

$$MI(r, s) = \sum_r \sum_s p_{r,s}(r, s) * \log_2 \frac{p_{r,s}(r, s)}{p_r(r) * p_s(s)} \quad (eq. 2)$$

510 We computed the MI between neuron responses and the visual stimulus (s has 16 categories for
511 texture stimuli, $p_s(s) = 1/16$; s has 12 categories for RDK, $p_s(s) = 1/12$). We also computed the
512 MI between neuron responses and the texture family (s has 4 categories for texture stimuli,
513 $p_s(s) = 1/4$), and the MI between neuron responses and the moving directions (s has 4 categories

514 for both texture stimuli and RDK, $p_s(s) = 1/4$). The probability of neuron responses were
515 computed from spike count distributions within a stimulus window (2 s for texture stimulus and 3
516 s for RDK). Reliable RDK and texture responsive neurons (reliability > 0.6), which fired for more
517 than 60% of the trials to the preferred stimulus, were included for the MI analysis.

518 **Regularized encoder model**

519 To estimated the encoding pattern of texture responsive neurons and RDK responsive
520 neurons, i.e. which texture pattern one neuron responded to, or how many texture patterns one
521 neuron responded to, we decomposed the neuronal responses into motion direction components,
522 and texture family or RDK coherence components using singular value decomposition (**SVD**). To
523 be more robust, instead of using trial-averaged response, we first estimated the neuronal
524 responses by linearly regressing with a unit encoding space (**Supplementary Fig. 2c-e, 4c-d**).
525 Lasso regularization was applied to minimize overfitting. The regularization hyper-parameters
526 were selected by minimizing the cross-validation error in predicting single trial neuronal responses.
527 The linear regression model performance was measured by the Pearson correlation between the
528 trial-averaged neuron response and the model. Only well-fit neurons were included for the
529 following analysis (model performance > 0.6; about 70% of the whole population). The model
530 selection criteria did not affect the qualitative results.

531 We then characterized the SVD components of well-fit neurons. Well-fit neurons exhibited
532 either zero, one, or multiple significant SVD components (eigenvalue > 1). Neurons with zero
533 significant SVD component were untuned neurons, while neurons with multiple significant SVD
534 components suggested complicated tuning properties. We went on to characterize neurons which
535 had single significant SVD components, as for which the neuronal responses were decomposed
536 into a motion directions vectors, and a texture pattern vector or a motion coherence vector
537 unambiguously (**Supplementary Fig. 2d, 4c**).

538 About 40-70% of well-fit texture neurons and about 50 – 60% of well-fit RDK neurons had only
539 one significant SVD component. We define positive motion directions, or texture patterns for each
540 neuron, when its corresponding vector value (singular vector of SVD) is greater than 0.2 (for
541 texture responses) or 0.3 (for RDK responses) (the threshold value did not affect qualitative
542 results; **Supplementary Fig. 2d, 4c**). In the results section, we report the distributions for neurons
543 with different numbers of positive motion directions, texture patterns, and coherence levels for
544 HVAs (**Supplementary Fig. 2f, 4e**).

545 **Modulation power of naturalistic visual features**

546 For each cortical area, neuronal activity in response to the video was pooled and averaged,
547 after binning into 500 ms bins. Then, separately for each cortical area, a linear regression model
548 was fit to the average population response with individual features. These features are described
549 above in the section (*Visual features of the naturalistic video*). We then evaluated a feature's
550 contribution in modulating the average population responses by the variance explained (r-squared)
551 of each model (**Fig. 2d, f**). Features were computed over multiple spatial scales. The spatial
552 scales that best modulated (highest r-squared) the neuronal response was used for this analysis.

553 To evaluate the significance of neuron classes, we repeated this process using different
554 source data. Instead of using a pool of neurons from a cortical area, we used a pool of neurons
555 from a specific class (200 neurons per pool with permutation). Again, we averaged activity over
556 the pool, and then determined which features modulated activity of the class (**Supplementary**

557 **Fig. 7a).** This process was repeated for classes that were either over-represented in an HVA or
558 under-represented in an HVA (**Supplementary Fig. 7b**).

559 **SVM discrimination of texture images**

560 We computed the pairwise distance between texture images (**Supplementary Fig. 8a**) within
561 the same class or from different classes (**Supplementary Fig. 8b**). The Euclidean distance was
562 computed using of DOG entropy (11.75° spatial filter size) or edge density (2.35° spatial filter size)
563 feature maps. We then trained a support vector machine (**SVM**) classifier to discriminate texture
564 images within and across classes, based on this pairwise distance (using the Matlab built-in
565 function *classify*). We reported the cross-validation classification error rate (**Supplementary Fig.**
566 **8b**).

567 **Simulation of Gabor-based models**

568 The neuron models used the structure of a linear-nonlinear (**LNL**) cascade. The spiking of
569 model neurons was simulated following a nonhomogeneous Poisson process with a time varying
570 Poisson rate. The rate was calculated by convolving visual stimuli with a linear kernel or a
571 combination of linear kernels, followed by an exponential nonlinearity (**Fig. 3a**). Linear kernels
572 were modeled by 2D (XY spatial) or 3D Gabor (XYT spatiotemporal) filters defined over a wide
573 range of spatiotemporal frequencies and orientations. We simulated neurons with simple cells,
574 complex cells and speed cells models⁵³ (**Fig. 3b**). The three differed in the linear components of
575 the LNL cascade: simple cells (called *linear model*, or *spectral model* for the 2D Gabor kernels)
576 used the linear response of a Gabor filter; complex cells (called *energy model*) used the sum of
577 the squared responses from a quadrature pair of Gabor filters (90° phase shifted Gabor filter
578 pairs); speed cells (called *motion model*) used the arithmetic difference between the energy
579 responses from an opponent pair of complex cells. We also modeled neurons based on the cross
580 product of the linear or energy responses from two 2D Gabor filters (called *combination model*).
581 In particular, we simulated the following three combination models: 1. 2D Gabor filters matched
582 in spatial scale and location but tuned to different orientations (*cross-orientation model*); 2. 2D
583 Gabor filters tuned to the same orientation and location with different spatial scales (*cross-scale*
584 *model*); 3. 2D Gabor filters with matched tuning properties but offset in visual space (*cross-*
585 *position model*) (**Fig. 3b**). In addition, we included a subtractive normalization before taking the
586 nonlinearity in some models. A total of 13 neuron model types were used (**Fig. 3b**).

587 To examine feature encoding by these neuron model types, we performed 10 – 20 repeats of
588 simulation for each neuron model to each stimulus. Either the simulated spike trains or
589 peristimulus time histograms (**PSTH**) were used for characterizing the feature encoding. We
590 analyzed the model responses in the same way as we had done for the mouse experimental data.
591 We computed the mutual information between simulated neuron responses and texture stimuli or
592 RDK stimuli, and characterized the selectivity of simulated neurons to texture families or RDK
593 directions (**Supplementary Fig. 9, 10**). Next, we examined the modulation of simulated
594 population responses by visual features of the naturalistic video. Neuron models were located in
595 the feature space by how much of the population response variance was explained by individual
596 features (**Supplementary Fig. 11**).

597 **Reproducing neuron responses to stimuli with Gabor-based models**

598 To reproduce the feature representation of HVAs with neuron models, we fit individual
599 neuronal responses with models following a linear regression equation (eq. 3). The linear

600 coefficients were optimized by minimizing the cross-validation error. We also tested a sigmoidal
601 nonlinear fitting (eq. 4). Sigmoidal parameters were optimized through gradient descent. As
602 sigmoidal nonlinearity did not significantly improve the modeling performance, we reported the
603 results from the linear fitting.

604
$$\text{neuron response} = a * x; \quad (eq. 3)$$

605
$$\text{neuron response} = \frac{a}{1 + \exp(-b * x + c)}; \quad (eq. 4)$$

606 x: simulated responses

607 Neuron models were grouped into three categories: 2D Gabor models, 3D Gabor models, and
608 3D Gabor models with normalization. One model of each category, which minimize the cross-
609 validation error, was selected for each neuron. The feature representation was then characterized
610 on the model neuron responses.

611

612 **Data availability**

613 All source data generating main figures will be available online upon publishing. All raw data are
614 available upon request.

615

616 **Author contributions**

617 All experiments and analysis were performed by YY. The imaging system was built by JNS.
618 Animal handling was assisted by CRD. Study design and supervision by SLS. YY and SLS wrote
619 the paper.

620

621 **Acknowledgements**

622 Funding was provided by grants from the NIH (R01EY024294, R01NS091335), the NSF
623 (1707287, 1450824), the Simons Foundation (SCGB325407), and the McKnight Foundation to
624 SLS; a Helen Lyng White Fellowship to YY; a career award from Burroughs Wellcome to JNS;
625 and training grant support for CRD (T32NS007431).

626 **References**

- 627 1. Park, J., Lee, G. & Chung, J. The PINK1-Parkin pathway is involved in the regulation of
628 mitochondrial remodeling process. *Biochem. Biophys. Res. Commun.* **378**, 518–23
629 (2009).
- 630 2. Tafazoli, S. *et al.* Emergence of transformation-tolerant representations of visual objects
631 in rat lateral extrastriate cortex. *Elife* **6**, 1–39 (2017).
- 632 3. Chang, L. & Tsao, D. Y. The Code for Facial Identity in the Primate Brain. *Cell* **169**, 1013–
633 1028.e14 (2017).
- 634 4. Baloh, R. H., Schmidt, R. E., Pestronk, A. & Milbrandt, J. Altered axonal mitochondrial
635 transport in the pathogenesis of Charcot-Marie-Tooth disease from mitofusin 2 mutations.
636 *J. Neurosci.* **27**, 422–30 (2007).
- 637 5. Wang, Q., Sporns, O. & Burkhalter, A. Network Analysis of Corticocortical Connections
638 Reveals Ventral and Dorsal Processing Streams in Mouse Visual Cortex. *J. Neurosci.* **32**,
639 4386–4399 (2012).
- 640 6. Wang, Q., Gao, E. & Burkhalter, A. Gateways of Ventral and Dorsal Streams in Mouse
641 Visual Cortex. *J. Neurosci.* **31**, 1905–1918 (2011).
- 642 7. Berezovskii, V. K., Nassi, J. J. & Born, R. T. Segregation of feedforward and feedback
643 projections in mouse visual cortex. *J. Comp. Neurol.* **519**, 3672–3683 (2011).
- 644 8. Wang, Q. & Burkhalter, A. Area Map of Mouse Visual Cortex. *J. Comp. Neurol.* **502**, 339–
645 357 (2007).
- 646 9. Siegle, J. H. *et al.* Survey of spiking in the mouse visual system reveals functional
647 hierarchy. *Nature* 11–16 (2021).
- 648 10. Glickfeld, L. L., Andermann, M. L., Bonin, V. & Reid, R. C. Cortico-cortical projections in
649 mouse visual cortex are functionally target specific. *Nat. Neurosci.* **16**, 219–26 (2013).
- 650 11. Garrett, M. E., Nauhaus, I., Marshel, J. H. & Callaway, E. M. Topography and Areal
651 Organization of Mouse Visual Cortex. *J. Neurosci.* **34**, 12587–12600 (2014).
- 652 12. Kalatsky, V. A., Stryker, M. P. & Foundation, W. M. K. New paradigm for optical imaging:
653 Temporally encoded maps of intrinsic signal. *Neuron* **38**, 529–545 (2003).
- 654 13. Schuett, S., Bonhoeffer, T. & Hübener, M. Mapping retinotopic structure in mouse visual
655 cortex with optical imaging. *J. Neurosci.* **22**, 6549–6559 (2002).
- 656 14. Hubel, D. H. & Wiesel, T. AND FUNCTIONAL ARCHITECTURE IN THE CAT ' S VISUAL
657 CORTEX From the Neurophysiology Laboratory , Department of Pharmacology central
658 nervous system is the great diversity of its cell types and inter- receptive fields of a more
659 complex type (Part I) and to. *J. Physiol.* **160**, 106–154 (1962).
- 660 15. Jin, M. & Glickfeld, L. L. Mouse Higher Visual Areas Provide Both Distributed and
661 Specialized Contributions to Visually Guided Behaviors. *Curr. Biol.* **30**, 4682-4692.e7
662 (2020).
- 663 16. Stringer, C., Michaelos, M., Tsybouski, D., Lindo, S. E. & Pachitariu, M. High-precision
664 coding in visual cortex. *Cell* **184**, 2767-2778.e15 (2021).
- 665 17. Andermann, M. L., Kerlin, A. M., Roumis, D. K., Glickfeld, L. L. & Reid, R. C. Functional

666 Specialization of Mouse Higher Visual Cortical Areas. *Neuron* **72**, 1025–1039 (2011).

667 18. Marshel, J. H., Garrett, M. E., Nauhaus, I. & Callaway, E. M. Functional specialization of
668 seven mouse visual cortical areas. *Neuron* **72**, 1040–1054 (2011).

669 19. Goltstein, P. M., Reinert, S., Bonhoeffer, T. & Hübener, M. Mouse visual cortex areas
670 represent perceptual and semantic features of learned visual categories. *Nat. Neurosci.*
671 **24**, (2021).

672 20. Han, X., Vermaercke, B. & Bonin, V. Cellular organization of visual information
673 processing channels in the mouse visual cortex. *BioRxiv* (2020).

674 21. Juavinett, A. L. L., Callaway, E. M. M., Information, S., Juavinett, A. L. L. & Callaway, E.
675 M. M. Pattern and Component Motion Responses in Mouse Visual Cortical Areas. *Curr.*
676 *Biol.* **25**, 1759–1764 (2015).

677 22. Bolaños, F., Orlandi, J. G., Jagadeesh, A. V., Gardner, J. L. & Benucci, A. Processing of
678 visual textures in the primary and secondary visual cortex of the mouse Non-human
679 primate work. in *Society for Neuroscience Annual Meeting* 1–12 (2021).

680 23. Sit, K. K. & Goard, M. J. Distributed and retinotopically asymmetric processing of
681 coherent motion in mouse visual cortex. *Nat. Commun.* **11**, 1–14 (2020).

682 24. Freeman, J., Ziemba, C. M., Heeger, D. J., Simoncelli, E. P. & Movshon, J. A. A
683 functional and perceptual signature of the second visual area in primates. *Nat. Neurosci.*
684 **16**, 974–981 (2013).

685 25. DiCarlo, J. J., Zoccolan, D. & Rust, N. C. How does the brain solve visual object
686 recognition? *Neuron* **73**, 415–434 (2012).

687 26. Ziemba, C. M., Freeman, J., Movshon, J. A. & Simoncelli, E. P. Selectivity and tolerance
688 for visual texture in macaque V2. *Proc. Natl. Acad. Sci.* **113**, E3140-3149 (2016).

689 27. Khawaja, F. A., Liu, L. D. & Pack, C. C. Responses of MST neurons to plaid stimuli. *J.*
690 *Neurophysiol.* **110**, 63–74 (2013).

691 28. Jeffrey N. Stirman, Ikuko T. Smith, Michael W. Kudenov, S. L. S. Wide field-of-view,
692 multi-region two-photon imaging of neuronal activity. *Nat. Biotechnol.* **34**, 857–862
693 (2016).

694 29. Madisen, L. *et al.* Transgenic Mice for Intersectional Targeting of Neural Sensors and
695 Effectors with High Specificity and Performance. *Neuron* **85**, 942–958 (2015).

696 30. Chen, T. W. *et al.* Ultrasensitive fluorescent proteins for imaging neuronal activity. *Nature*
697 **499**, 295–300 (2013).

698 31. Smith, I. T., Townsend, L. B., Huh, R., Zhu, H. & Smith, S. L. Stream-dependent
699 development of higher visual cortical areas. *Nat. Neurosci.* **20**, 200–208 (2017).

700 32. Prusky, G. T. & Douglas, R. M. Characterization of mouse cortical spatial vision. *Vision*
701 *Res.* **44**, 3411–3418 (2004).

702 33. Duan, H. & Wang, X. Visual attention model based on statistical properties of neuron
703 responses. *Sci. Rep.* **5**, 8873 (2015).

704 34. Goldbach, H. C., Akitake, B., Leedy, C. E. & Histed, M. H. Performance in even a simple
705 perceptual task depends on mouse secondary visual areas. *Elife* **10**, 1–39 (2021).

706 35. Carandini, M., Heeger, D. J. & Movshon, J. A. Linearity and Normalization in Simple Cells
707 of the Macaque Primary Visual Cortex. *J. Neurosci.* **17**, 8621–8644 (1997).

708 36. Yoshida, T. & Ohki, K. Natural images are reliably represented by sparse and variable
709 populations of neurons in visual cortex. *Nat. Commun.* **11**, (2020).

710 37. Okazawa, G., Tajima, S. & Komatsu, H. Image statistics underlying natural texture
711 selectivity of neurons in macaque V4. *Proc. Natl. Acad. Sci.* **112**, E351-360 (2014).

712 38. Cowley, B. R., Smith, M. A., Kohn, A. & Yu, B. M. Stimulus-Driven Population Activity
713 Patterns in Macaque Primary Visual Cortex. *PLoS Comput. Biol.* **12**, 1–31 (2016).

714 39. de Vries, S. E. J. *et al.* A large-scale standardized physiological survey reveals functional
715 organization of the mouse visual cortex. *Nat. Neurosci.* **23**, 138–151 (2020).

716 40. Britten, K. H., Newsome, W. T., Shadlen, M. N., Celebrini, S. & Movshon, J. A. A
717 relationship between behavioral choice and the visual responses of neurons in macaque
718 MT. *Vis. Neurosci.* **13**, 87–100 (1996).

719 41. Saleem, A. B. Two stream hypothesis of visual processing for navigation in mouse. *Curr.*
720 *Opin. Neurobiol.* **64**, 70–78 (2020).

721 42. Smith, S. L. & Häusser, M. Parallel processing of visual space by neighboring neurons in
722 mouse visual cortex. *Nat. Neurosci.* **13**, 1144–1149 (2010).

723 43. Pachitariu, M. *et al.* Suite2p: beyond 10,000 neurons with standard two-photon
724 microscopy. *bioRxiv* 061507 (2017).

725 44. Harris, K. D., Quiroga, R. Q., Freeman, J. & Smith, S. L. Improving data quality in
726 neuronal population recordings. *Nat. Neurosci.* **19**, 1165–1174 (2016).

727 45. Pnevmatikakis, E. A., Merel, J., Pakman, A. & Paninski, L. Bayesian spike inference from
728 calcium imaging data. *Adv. Neural Inf. Process. Syst.* **26**, 1250–1258 (2013).

729 46. Portilla, J. & Simoncelli, E. P. Parametric texture model based on joint statistics of
730 complex wavelet coefficients. *Int. J. Comput. Vis.* **40**, 49–71 (2000).

731 47. Stirman, J. N., Townsend, L. B. & Smith, S. L. A touchscreen based global motion
732 perception task for mice. *Vision Res.* **127**, 74–83 (2016).

733 48. Canny, J. A Computational Approach to Edge Detection. *IEEE Trans. Pattern Anal.*
734 *Mach. Intell.* **PAMI-8**, 679–698 (1986).

735 49. Hermundstad, A. M. *et al.* Variance predicts salience in central sensory processing. *Elife*
736 **3**, 1–28 (2014).

737 50. Yu, Y., Burton, S. D., Tripathy, S. J. & Urban, N. N. Postnatal development attunes
738 olfactory bulb mitral cells to highfrequency signaling. *J. Neurophysiol.* **114**, 2830–2842
739 (2015).

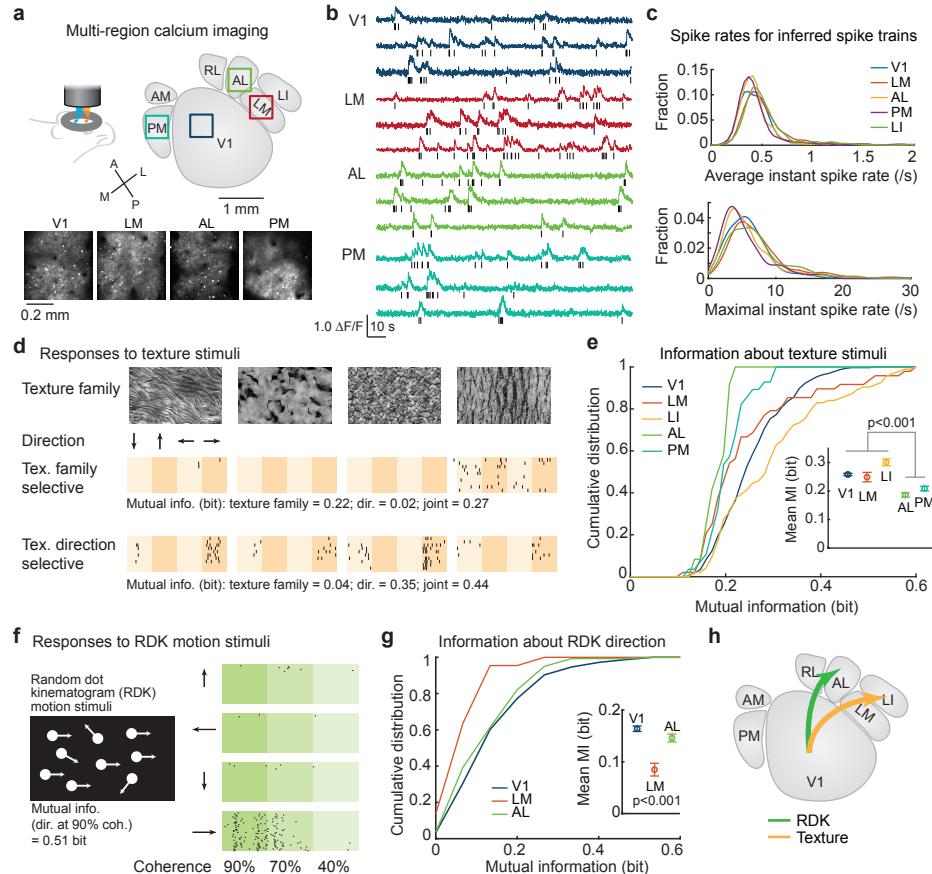
740 51. Froudarakis, E. *et al.* Population code in mouse V1 facilitates readout of natural scenes
741 through increased sparseness. *Nat. Neurosci.* **17**, 851–857 (2014).

742 52. Baden, T. *et al.* The functional diversity of retinal ganglion cells in the mouse. *Nature* **529**,
743 345–350 (2016).

744 53. Adelson, E. H. & Bergen, J. R. Spatiotemporal energy models for the perception of

745 motion. *J. Opt. Soc. Am. A* **2**, 284 (1985).

746



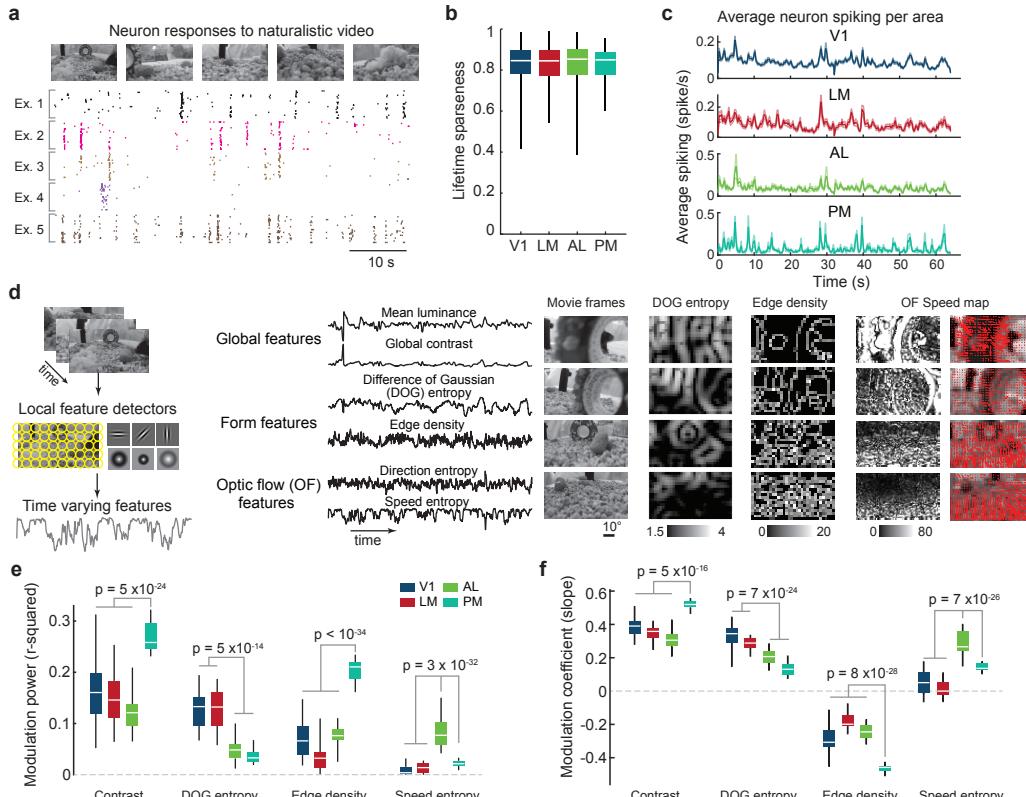
747

748 **Figure 1. Segregated representations of textures and random dot kinematogram (RDK)**
749 **motion in HVAs.** (a) Neural activity was imaged in multiple HVAs simultaneously using large
750 field-of-view, multiplexed two-photon calcium imaging. In an example experiment, layer 2/3
751 excitatory neurons were imaged in V1, LM, AL, and PM simultaneously. Squares indicate the
752 imaged regions, and projections of raw image stacks are shown below. (b) Image stacks were
753 analyzed to extract calcium dynamics from cell bodies, after neuropil subtraction. These traces
754 were used to inferred spike activity, as shown in raster plots below each trace. (c) Statistics of
755 inferred spiking were similar to those of prior reports, indicating accurate inference. The mean
756 and maximal instantaneous firing rates of neurons in V1 and HVAs are similar (mean, 0.5 ± 0.5
757 spike/s; max, 7 ± 11 spike/s; $p = 0.055$; one-way ANOVA with Bonferroni correction). (d) Mice
758 were shown texture stimuli, each of which was from one of four families, and which drifted in one
759 of four directions. Spike raster plots from two example neurons (10 trials shown for each) show
760 that one neuron is selective for texture family, and the other is more selective for texture direction.
761 The amount of mutual information (MI, in bits) for the two stimulus parameters (texture family and
762 panning direction) are written below each raster, along with the overall or joint (family and direction)
763 MI. (e) V1, LM, and LI provide higher MI for texture stimuli than AL or PM ($p = 5.8 \times 10^{-8}$; one-way
764 ANOVA, Bonferroni multiple comparison). Error bars in inset indicate SE. (f) Mice were shown
765 random dot kinematogram (RDK) motion stimuli, which drifted in one of four directions with up to
766 90% coherence (fraction of dots moving in the same direction). A raster for an example neuron
767 (30 trials) shows that it fires during rightward motion, with 0.51 bits of MI for motion direction at
768 90% coherence. (g) V1 and AL provide higher MI for the RDK motion direction than LM ($p =$
769 0.0006; one-way ANOVA, Bonferroni multiple comparison). (h) These results indicate a

770 segregation of visual stimulus representations: texture stimuli to LM, and RDK motion stimuli to
771 AL.

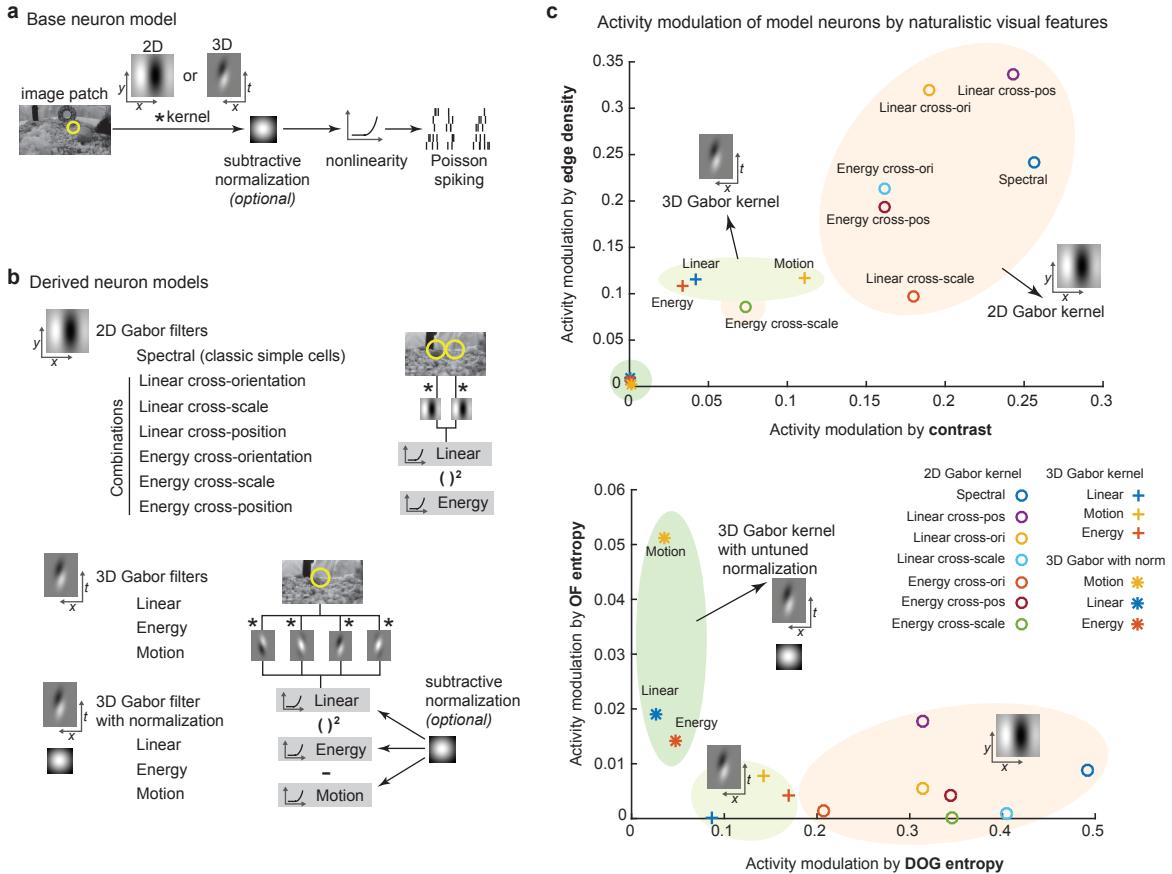
772

773



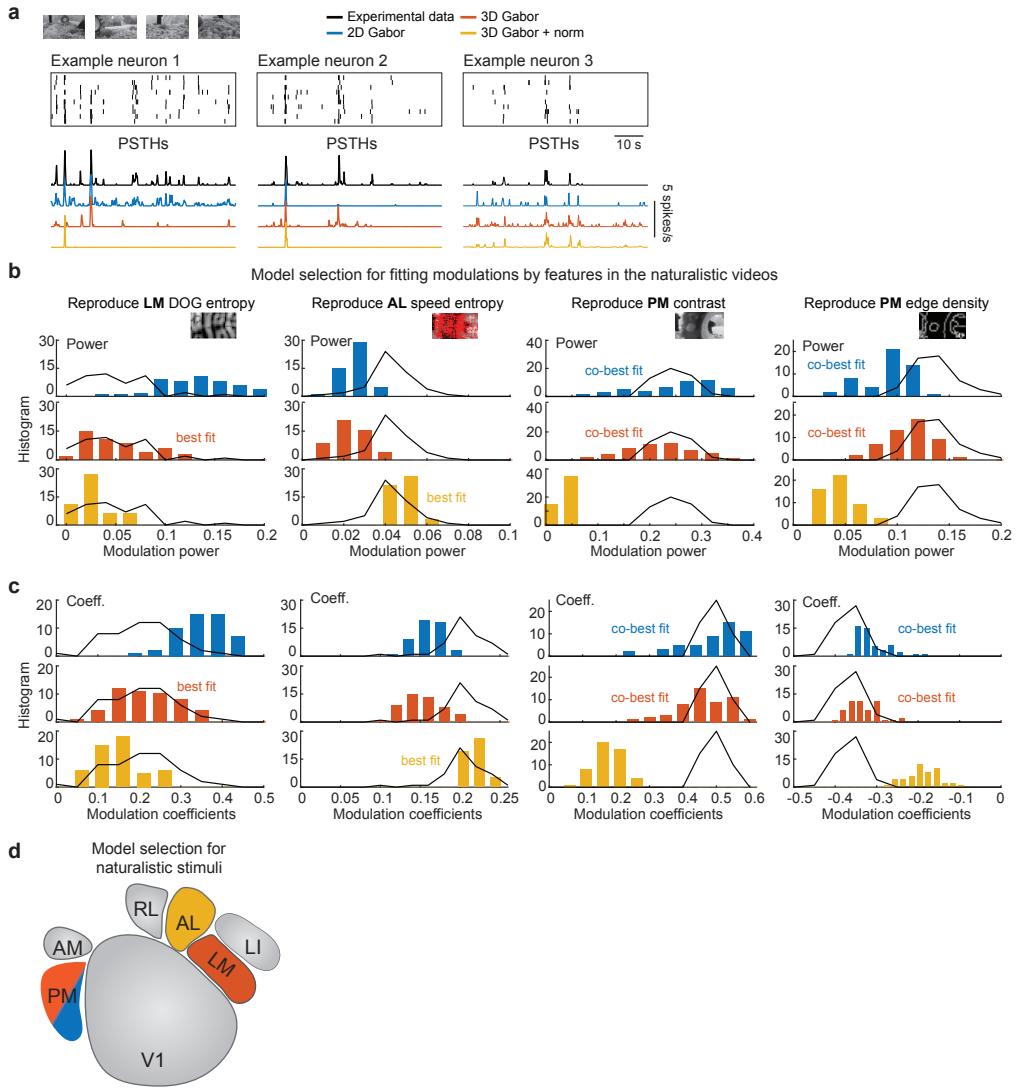
774

775 **Figure 2. Segregated representations of spatial and motion features in naturalistic videos.**
776 (a) Five example neurons show reliable, yet diverse, spike responses during a naturalistic video
777 stimulus. (b) Neurons in all four tested areas exhibited similarly high response sparseness to the
778 naturalistic video (one-way ANOVA, $p = 0.8$). (c) Average spike responses varied across cortical
779 areas (traces are averages, across reliable neurons). For example, neurons in area AL tended to
780 show a spike in activity about 5 s into the video, whereas neurons in LM did not. Shaded area
781 indicates SEM computed across multiple animals. (d) Form and motion components of the
782 naturalistic video were extracted using a bank of linear filters with various sizes and locations (left).
783 This provided time-varying signals correlated with global, form, and motion features, such as
784 contrast, difference-of-Gaussian (DOG) entropy, and speed entropy (middle). To provide an
785 intuitive feel for these features, example naturalistic video frames with the corresponding DOG
786 entropy maps, edge density maps, and optical flow speed maps are shown (also see
787 **Supplementary Fig. 5a, b**). (e) The time-varying features were weighted to best match the
788 average neuronal activity for a cortical area ($N = 200$ with permutation). The linear weights are
789 modulation coefficients and the goodness-of-linear fitting, or r^2 , is the modulation power.
790 Areas V1 and LM were strongly modulated by DOG entropy, but AL and PM were not. Area LM
791 was the only area modulated by speed entropy. Area PM was modulated by contrast and edge
792 density. (f) The modulation coefficients were typically positive, but were negative for edge density.
793 Thus, area PM is positively modulated by contrast, but negatively modulated by edge density. (p -
794 values are from one-way ANOVAs with the Tukey-Kramer correction for multiple comparison).



795

796 **Figure 3. Spatial and motion feature encoding by variants of Gabor filter-based models. (a)**
797 The general architecture is a linear-nonlinear-Poisson (LNP) cascade neuron model. Neurons
798 were simulated by various 2D and 3D Gabor-like linear kernels, with or without an untuned
799 subtractive normalization. **(b)** From the base LNP model, variations were derived, organized into
800 three classes: 2D Gabor-based, 3D Gabor-based without normalization, and 3D Gabor-based
801 with normalization. Both linear and energy responses (akin to simple cells and complex cells)
802 were computed from combinations of 2D Gabor filters. Linear, energy and motion responses (akin
803 to simple cells, complex cells, and speed cells) were computed from 3D Gabor filters. **(c)** These
804 three classes of models varied in how much their activity was modulated by global, form, and
805 motion features in naturalistic videos. The neuron models are plotted by their modulation in
806 feature spaces. The local of a neuron model was defined by the modulation power (same as **Fig.**
807 **2e**).



808

809 **Figure 4. Segregated processing of spatial and motion features by visual neuron models.**
810 (a) Data from example neurons are shown in raster plots (top) and PSTHs (bottom), along with
811 the best fits (as PSTHs) from each of the three model classes: 2D Gabor, 3D Gabor, and 3D
812 Gabor with normalization. These three model fits, for each neuron, were used in the next analysis.
813 (b, c) The three model neuron classes were characterized in terms of their modulation to global,
814 form, and motion components of the naturalistic video. The distributions of (b) modulation power
815 and (c) modulation coefficients for the three model classes were compared to those of the actual
816 data, for neurons in specific HVAs and features those HVAs were well modulated by (see also,
817 **Supplementary Fig. 7, 14**). The pool of model neurons for each pair of graphs (power and
818 coefficient) for a cortical area were drawn from model fits to neurons in that same cortical area.
819 (d) The diagram summarizes the model classes that best reproduce the modulation in three HVAs,
820 LM, AL, and PM to global, form, and motion components in the naturalistic video.

821

Table I: Summary of recording sessions

Texture stimuli				
animal ID	recording areas		numbers of neurons	
281	'V1'	'LM'	169	69
281	'V1'	'LI'	85	114
281	'V1'	'PM'	114	52
281	'V1'	'AL'	71	61
284	'V1'	'PM'	52	87
284	'V1'	'AL'	71	36
286	'V1'	'LM'	92	49
286	'V1'	'AL'	119	103
388	'LM'	'LI'	46	34
426	'V1'	'LI'	38	5
382	'LM'	'LI'	58	60
493	'V1'	'LI'	156	157
493	'V1'	'LM'	96	150

			Reliable responding
Totals	V1:	1063	325
	LM:	372	48
	AL:	200	12
	LI:	370	96
	PM:	139	28

RDK stimuli				
animal ID	recording areas		numbers of neurons	
167	'V1 (upper)	'V1 (lower)	157	120
167	'V1'	'AL'	63	86
167	'V1 (deep)	'AL (deep)	40	112
170	'V1'	'AL'	215	187
224	'V1'	'AL'	168	138
224	'V1'	'LM'	87	72
226	'V1'	'AL'	160	99
226	'V1'	'LM'	132	69
222	'V1'	'LM'	160	85
222	'V1'	'AL'	76	91
222	'AL'	'LM'	24	26

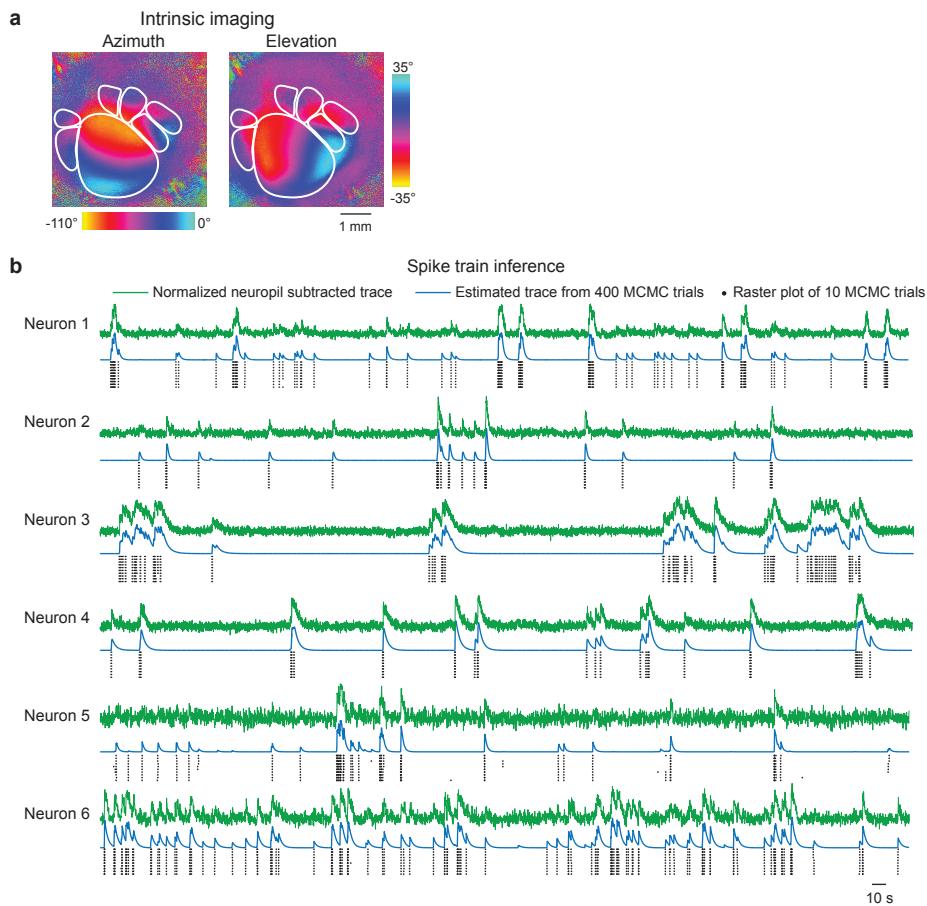
			Reliable responding
Totals	V1:	1378	392
	LM:	252	22
	AL:	737	140
	LI:	NA	NA
	PM:	NA	NA

Naturalistic video				
animal ID	recording areas		numbers of neurons	
143	'V1'	'LM'	121	57
143	'V1'	'LM'	116	36
143	'V1'	'LM'	66	47
144	'V1'	'LM'	114	86
144	'V1'	'LM'	119	3
144	'V1'	'AM/PM'	53	65
154	'V1'	'AM/PM'	247	118
154	'V1'	'AM/PM'	145	107
154	'V1'	'AM/PM'	121	164
154	'V1'	'V1'	135	134
156	'V1'	'LM'	129	87
156	'V1'	'AL'	171	38
166	'V1'	'AL'	304	162
167	'V1'	'AL'	161	117
170	'V1'	'AL'	352	163
171	'V1'	'AL'	119	19
171	'V1_upper'	'V1_lower'	161	123
211	'V1'	'V1'	100	169
633	'V1'	'LM'	85	150
633	'V1'	'V1'	144	100
635	'V1'	'LM'	94	141
657	'V1'	'LM'	37	47
657	'V1'	'LM'	37	79
635	'V1'	'AL'	400	275
635	'V1'	'V1'	287	343
175	'V1'	'AL'	125	39
190	'V1'	'LM'	95	102
222	'AL'	'LM'	49	40
222	'V1'	'AL'	119	64
211	'V1'	'LM'	32	79
363	'V1'	'AL'	85	23
363	'V1'	'AM/PM'	88	64
363	'V1'	'LM'	99	162
421	'LM'	'LM'	62	18
351	'V1'	'AL'	247	161
351	'V1'	'AM/PM'	197	45
388	'V1'	'LM'	50	43
388	'V1'	'AL'	44	27
388	'V1'	'AM/PM'	15	3
493	'V1'	'V1'	24	16
382	'V1'	LM	61	30
382	'V1'	'AM/PM'	44	1
500	'V1'	'AM/PM'	121	39
490	'V1'	'LM'	28	129
490	'V1'	'AL'	77	66

			Reliable responding
Totals	V1:	6254	2634
	LM:	1336	395
	AL:	1203	393
	LI:	NA	NA
	PM:	606	105

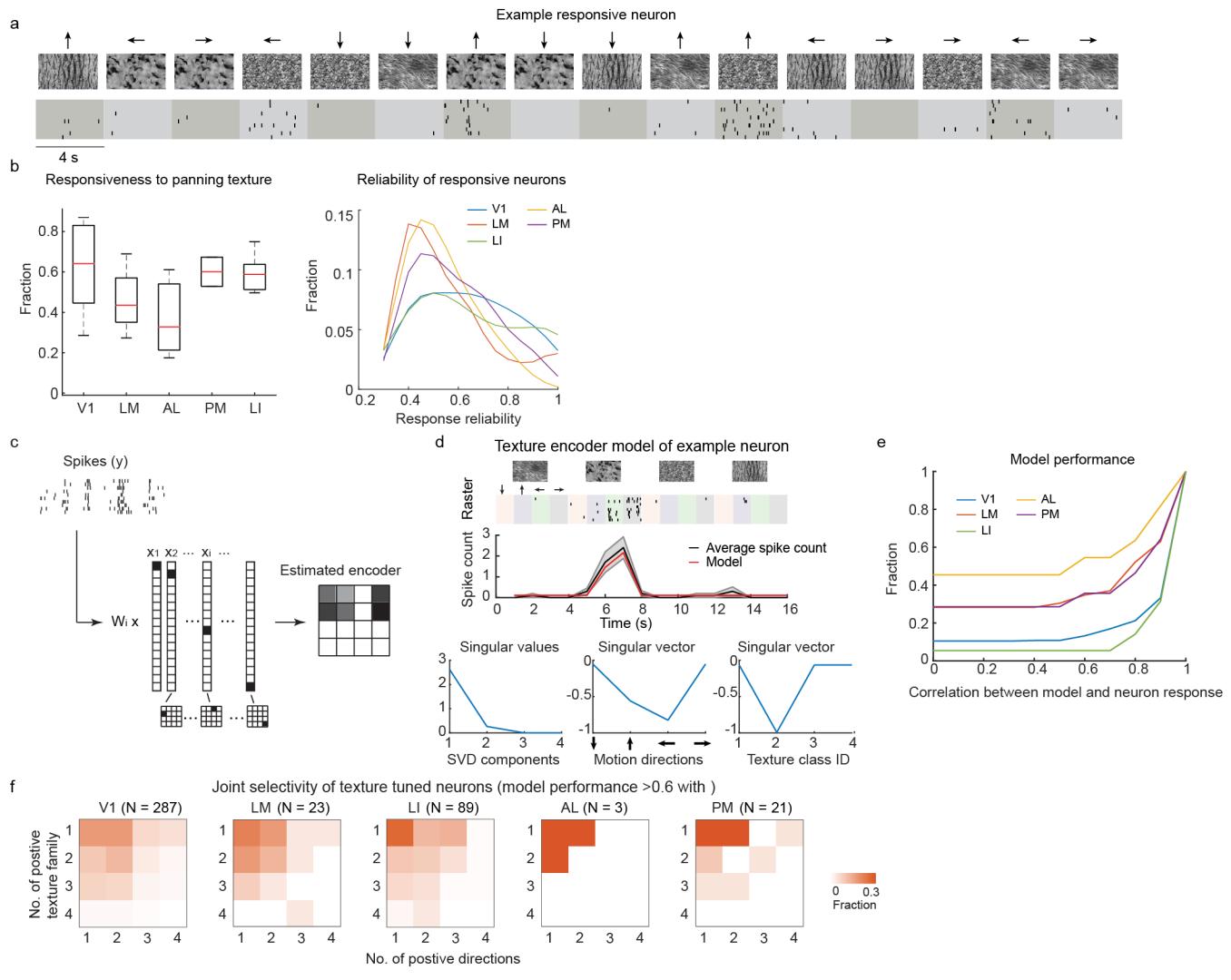
824 **Supplementary Figures**

825



826

827 **Supplementary Figure 1. Multi-region two-photon calcium imaging processing** (a) Example
828 intrinsic signal imaging of mouse visual areas. (b) Spike train inference of example neurons by
829 Markov chain Monte Carlo (MCMC) methods.

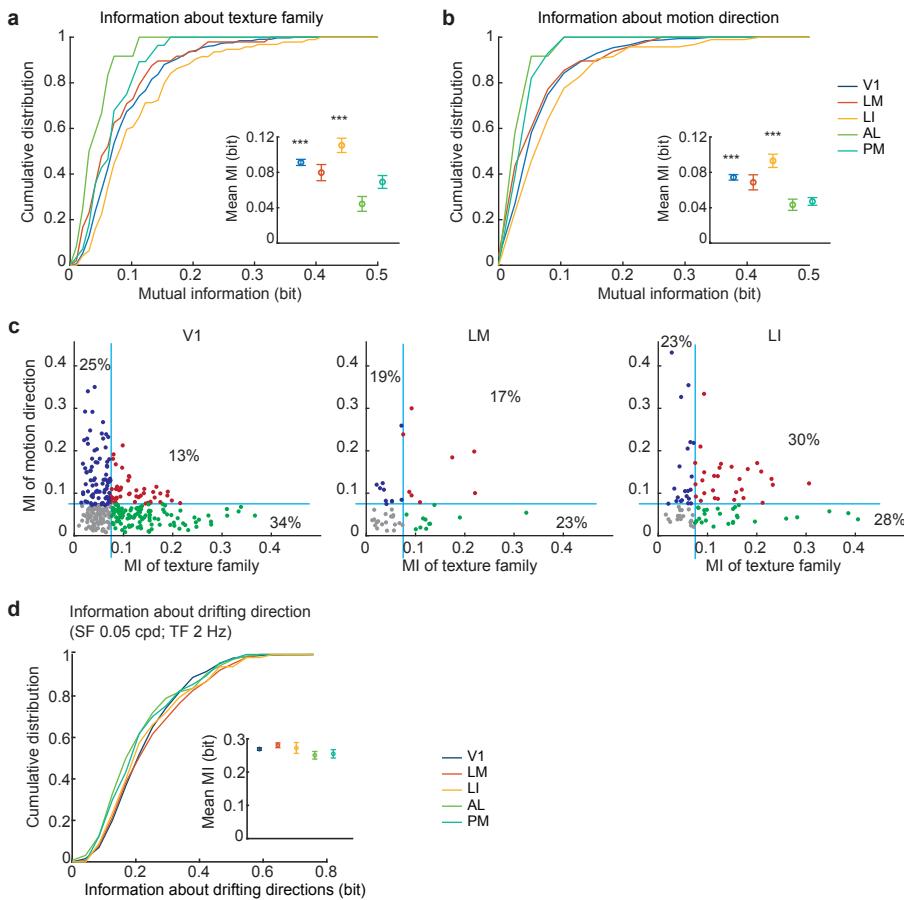


830

831 **Supplementary Figure 2. Defining tuning groups for neuronal responses to texture stimuli.**
832 (a) Example raster of a responsive neurons to moving texture stimuli with four texture families
833 and four moving directions. (b) The responsiveness of V1 and HVAs to the texture stimuli
834 (responsive neuron fires on more than 30% of the trials to the preferred stimulus). Left: the fraction
835 of responsive neurons in HVAs are not significantly differed (one-way ANOVA, $p = 0.2$). Right:
836 distribution of neuron firing reliability (firing probability over trials) to the preferred texture stimulus.
837 Only responsive neuron was considered. V1 and LI were more reliable to the texture stimuli (one-
838 way ANOVA with Bonferroni multiple comparison, $p = 4 \times 10^{-10}$). (c) Fit neuronal response (spike
839 count) to an encoder model using least-square regression with lasso regularization. (d) Model
840 performance of an example neurons. Top: raster plot and average spike count of the example
841 neuron, overlaid with the estimated spike count from the model. The model spike count was highly
842 correlated with the average spike count of the example neuron (Pearson correlation, $r = 0.98$).
843 Bottom: SVD decomposition of the estimated encoder model. The left and right singular vectors
844 corresponding to the motion direction and the texture family components, respectively. (e)
845 Cumulative fraction of encoder model performance, which was defined as the Pearson correlation
846 between model spike count and the trail-averaged spike count of neurons. (f) Joint distribution of

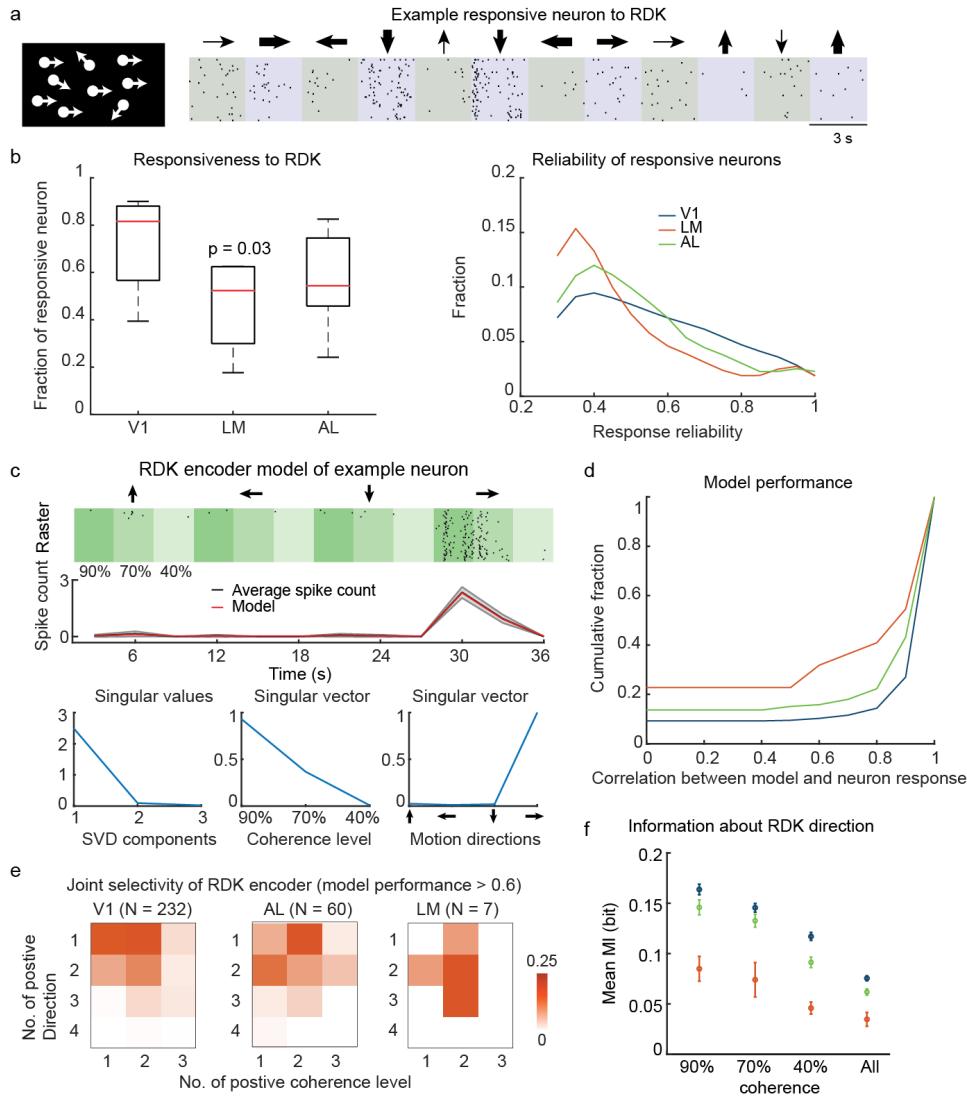
847 the number of texture families and the number of directions that a texture neuron encoder was
848 responsive to. Color hue indicate the fraction of neurons in each bin.

849



850

851 **Supplementary Figure 3. Information about texture stimuli is strongest in area LI. (a-b)**
852 Cumulative distribution of information each neuron has about the texture family (a) and the moving
853 direction (b). Inserts are the mean information. Error bars indicate SE. V1 and LI carries
854 significantly more information about the texture family ($p = 0.0006$) and the moving direction ($p =$
855 0.0006) (one-way ANOVA, Bonferroni multiple comparison). (a-b) Neurons reliably response
856 (response to >60% of trials) to at least one texture stimuli were included for information analysis
857 and encoder modeling (Number of neurons included (No. of experiments): V1, 325 (11); LM, 48
858 (5); LI, 96 (5); AL, 12 (3); PM, 28 (2)). (c) Relation between information about the moving direction
859 and information about the texture family carried by individual neuron in V1, LM and LI. Each dot
860 indicates one neuron. Blue line indicates the threshold of significant amount of information, which
861 was defined by shuffled data (Mean + 3*SD). (d) Information about drifting grating directions were
862 not striking differed among HVAs ($p = 0.12$; one-way ANOVA).

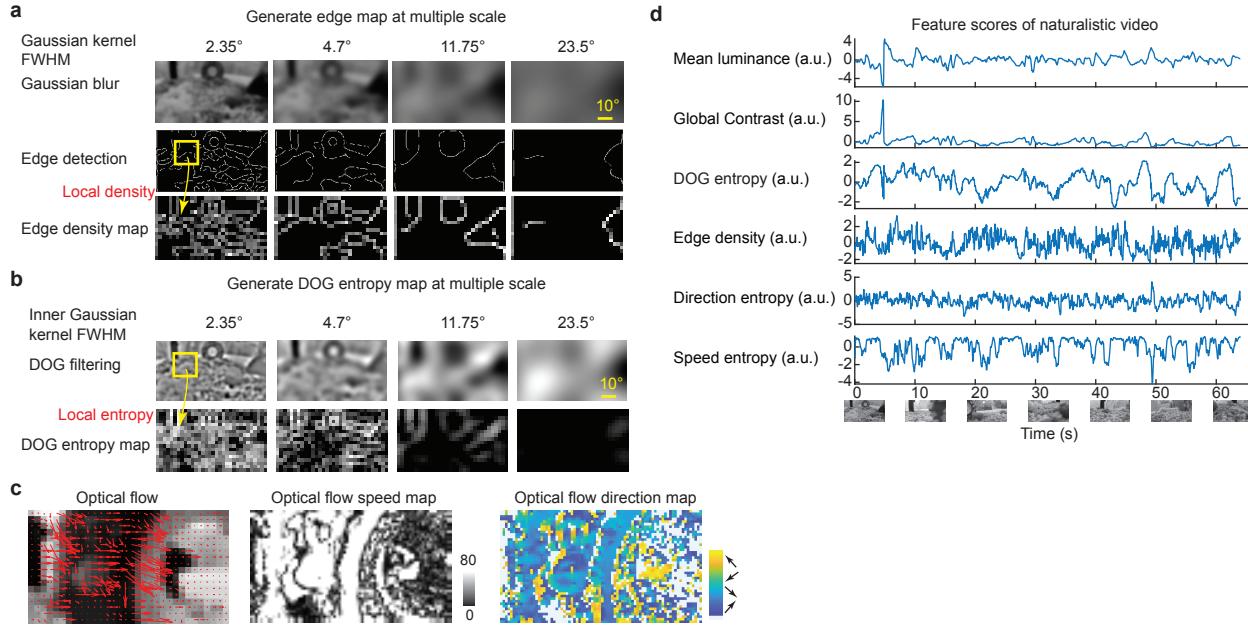


863

864 **Supplementary Figure 4. Defining tuning groups of neuronal responses to RDK stimuli. (a)**
 865 Raster plots of an example neuron to RDK at four global motion directions and three coherence
 866 (indicated by the thickness of arrows). **(b)** The responsiveness of V1 and HVAs to the RDK stimuli
 867 (responsive neuron fires on more than 30% of the trials to the preferred stimulus). Left: the fraction
 868 of responsive neurons in LM was significantly smaller compare to V1 and AL (T-test, $p = 0.03$).
 869 Right: distribution of neuron firing reliability (firing probability on multiple trials) to the preferred
 870 RDK stimulus. Only responsive neuron was considered. V1 and AL were more reliable to the
 871 texture stimuli (one-way ANOVA with Bonferroni multiple comparison, $p = 3 \times 10^{-5}$). **(c)** RDK
 872 encoder model performance of an example neurons. Top: raster plot and average spike count of
 873 the example neuron, overlaid with the estimated spike count from the model (Pearson correlation,
 874 $r = 0.99$). Bottom: SVD decomposition of the estimated encoder model. The left and right singular
 875 vectors corresponding to the coherence level and the motion direction components, respectively.
 876 **(d)** Cumulative fraction of encoder model performance (Pearson correlation between model and
 877 the trail-averaged spike count of neurons). **(e)** Joint distribution of the number of directions and
 878 the number of coherence levels that an RDK neuron encoder was responsive to. V1 and AL has
 879 larger fraction of tuned neurons that were selectively response to one motion direction (V1, 52%;

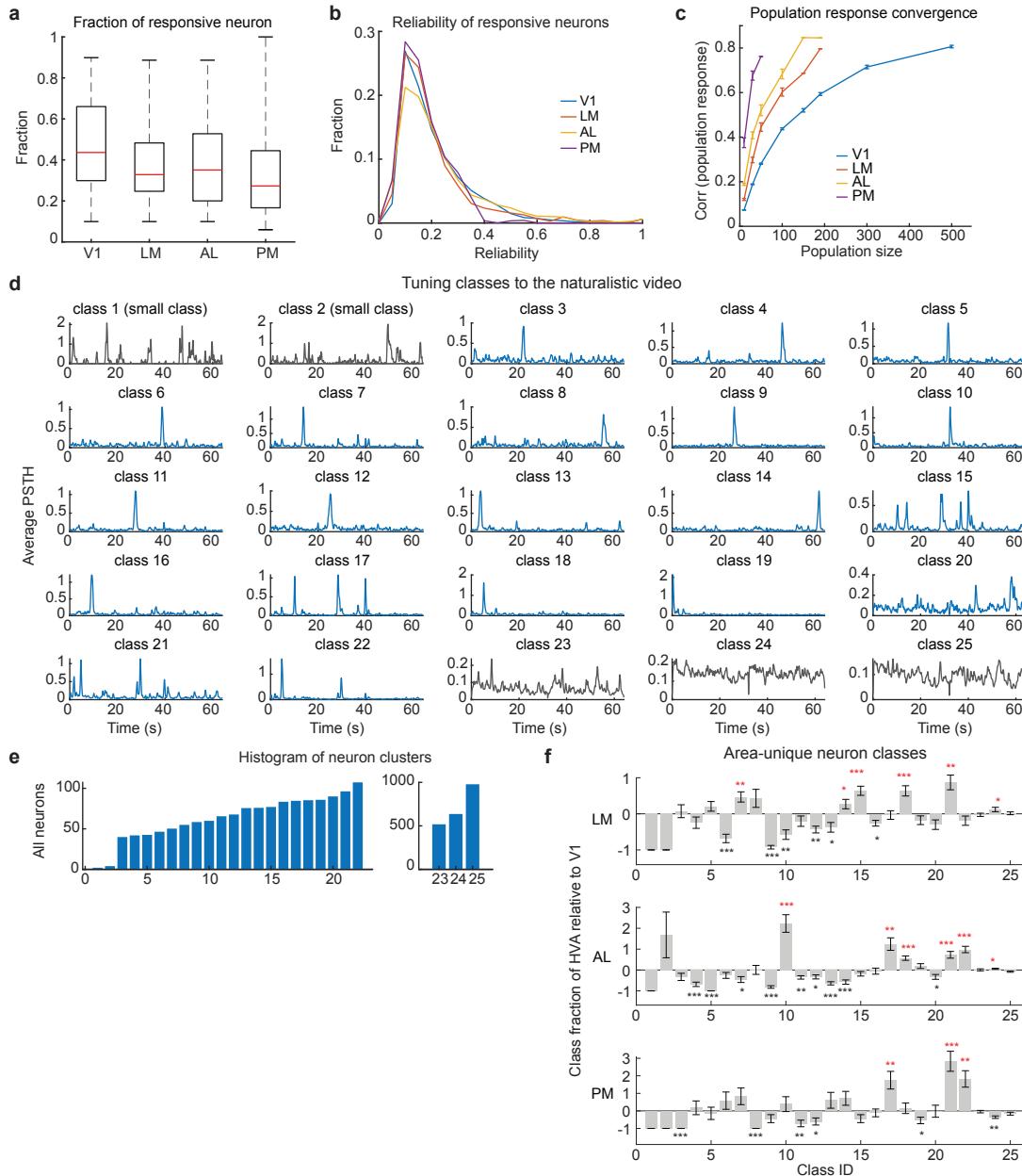
880 AL, 43% and LM, 14%). Color hue indicate the fraction of neurons in each bin. (f) The mean
881 information about global moving direction at different coherence level.

882



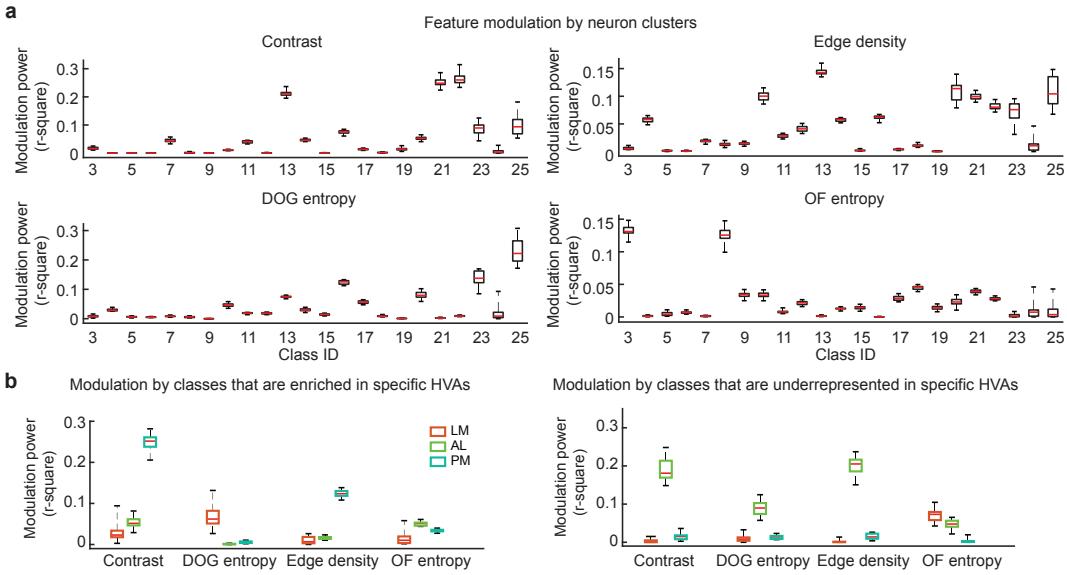
883

884 **Supplementary Figure 5. Feature space of naturalistic videos.** (a) Example edge density
885 maps at multiple spatial scales. Edge detection by Canny edge detector after Gaussian blur with
886 defined kernel size (top). Edge density was computed by sum up the edge number within a local
887 neighborhood (10×10 pixel, a wide range ($10\sim100$ pixel 2) of neighborhood size was tested). (b)
888 Example Difference of Gaussian (DOG) entropy maps at multiple spatial scales. The inner
889 Gaussian kernel size was shown (top), and outer Gaussian filter size was double the inner filter
890 size. The entropy after DOG filtering was computed at a local neighborhood (10×10 pixel, a wide
891 range ($10\sim100$ pixel 2) of neighborhood size was tested). (c) Example optical flow map for a
892 naturalistic video frame. The OF direction and speed of each pixel was estimated using Horn-
893 Schunck method. The OF feature entropy was computed at a local neighborhood. (d) The time-
894 varying visual features of the naturalistic videos.



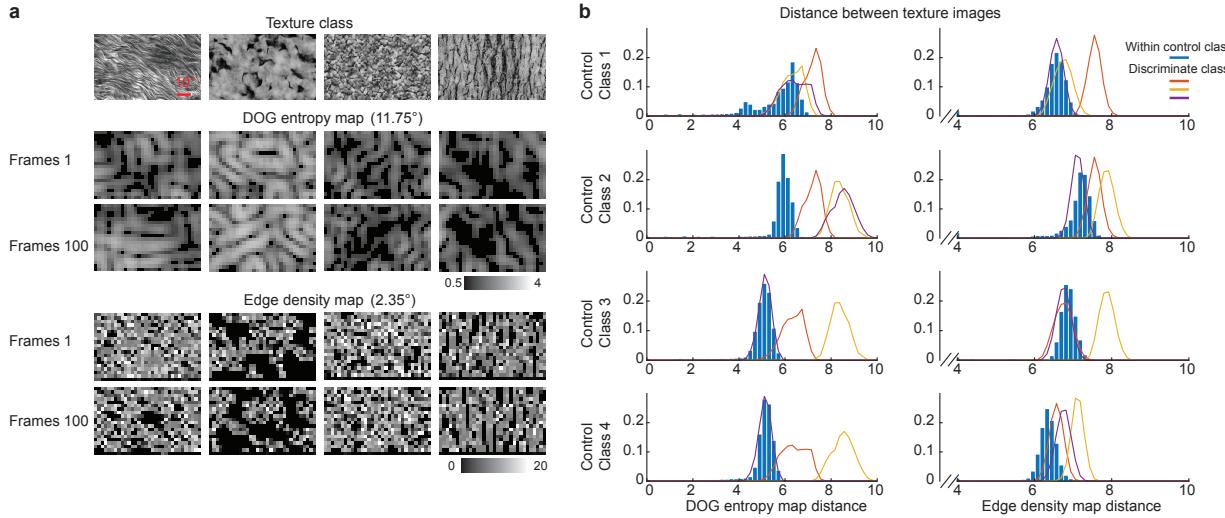
895

896 **Supplementary Figure 6. Selective response to a naturalistic video reveal classes that are**
 897 **enriched in specific HVAs.** (a) The fraction of responsive neurons to the naturalistic video in V1,
 898 LM, AL and PM were similar (trial-to-trial Pearson correlation > 0.08 ; one-way ANOVA, $p = 0.13$).
 899 (b) The distribution of neuron firing reliability (trial-to-trial Pearson correlation) to the naturalistic
 900 video were not differed in V1, LM and AL, and slightly lower in PM (one-way ANOVA with
 901 Bonferroni multiple comparison, $p = 0.0006$). Only responsive neuron was considered. (c)
 902 Pearson correlation of the average population responses computed from non-overlapping
 903 subpopulations with certain number of neurons. (d) Average responses of 25 GMM classes to the
 904 naturalistic video. (e) Number of neurons in each GMM class to the naturalistic video. (f) Fraction
 905 difference of classes between HVA and V1 ($(HVA - V1) / V1$). Zero means the HVA and V1
 906 weighted the same on this class. Stars indicate significantly 10% more (red) or less (black) than
 907 V1 (T-test). The error bars indicate SE computed from permutation.



908

909 **Supplementary Figure 7. Parametric features of naturalistic video stimuli differentially**
910 **modulate activity in the tuning groups.** (a) The modulation power of the average responses of
911 neurons in each class ($N = 200$ with permutation) by visual features of the naturalistic video. The
912 modulation power is characterized by the r-squared values (variance explained) of the linear
913 regression of the average population responses with individual features. (b) The modulation
914 power of the average responses of a neuron population from selected classes ($N = 200$ with
915 permutation) by visual features of the naturalistic video. Left, classes that are ENRICHED (more
916 common than average of all HVAs) in specific HVAs (classes with red star in **Supplementary**
917 **figure 6f**). Right, Classes that are UNDERREPRESENTED in specific HVAs (classes with black
918 star in **Supplementary figure 6f**).

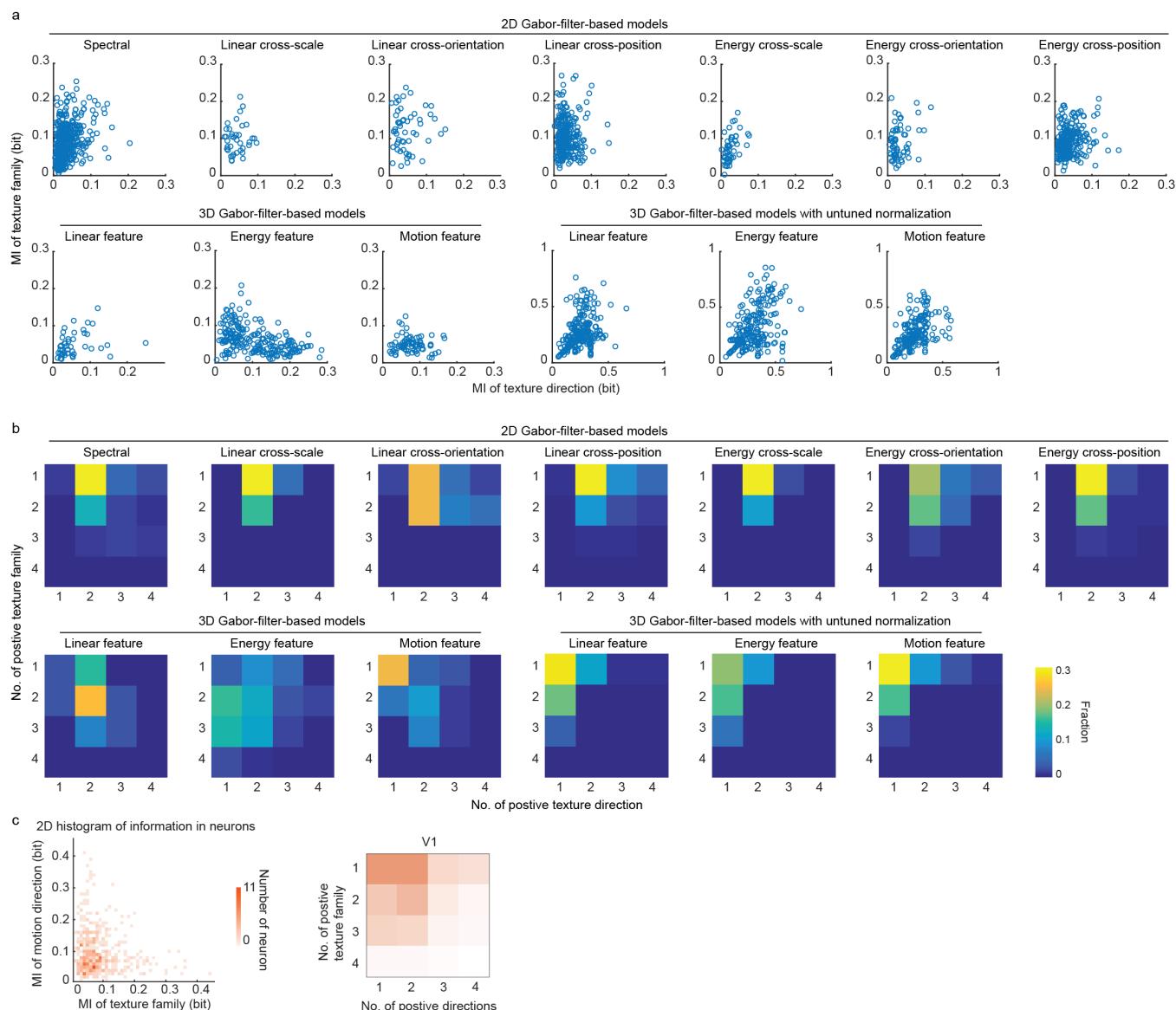


919

920 **Supplementary Figure 8. DOG entropy facilitated texture family encoding.** (a) DOG entropy
921 map and edge density map for example images from four texture classes. The Gaussian kernel
922 size (standard deviation) is indicated in degrees. (b) Histogram of pairwise distances between
923 texture images, from the same (blue bars) or different classes (colored curves). The distance was
924 computed from the Euclidian distance between DOG entropy maps (left) or the edge density maps
925 (right).

926

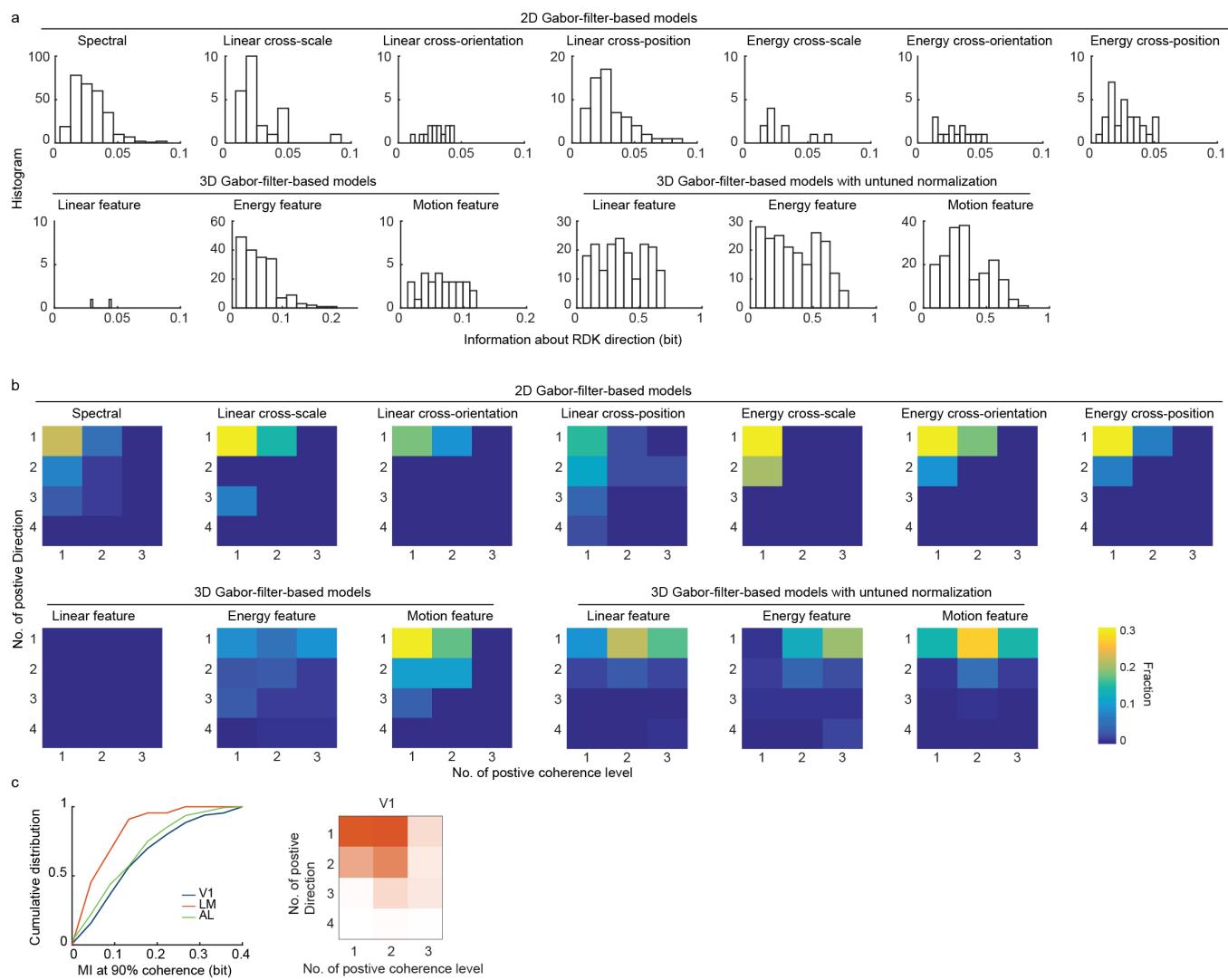
927

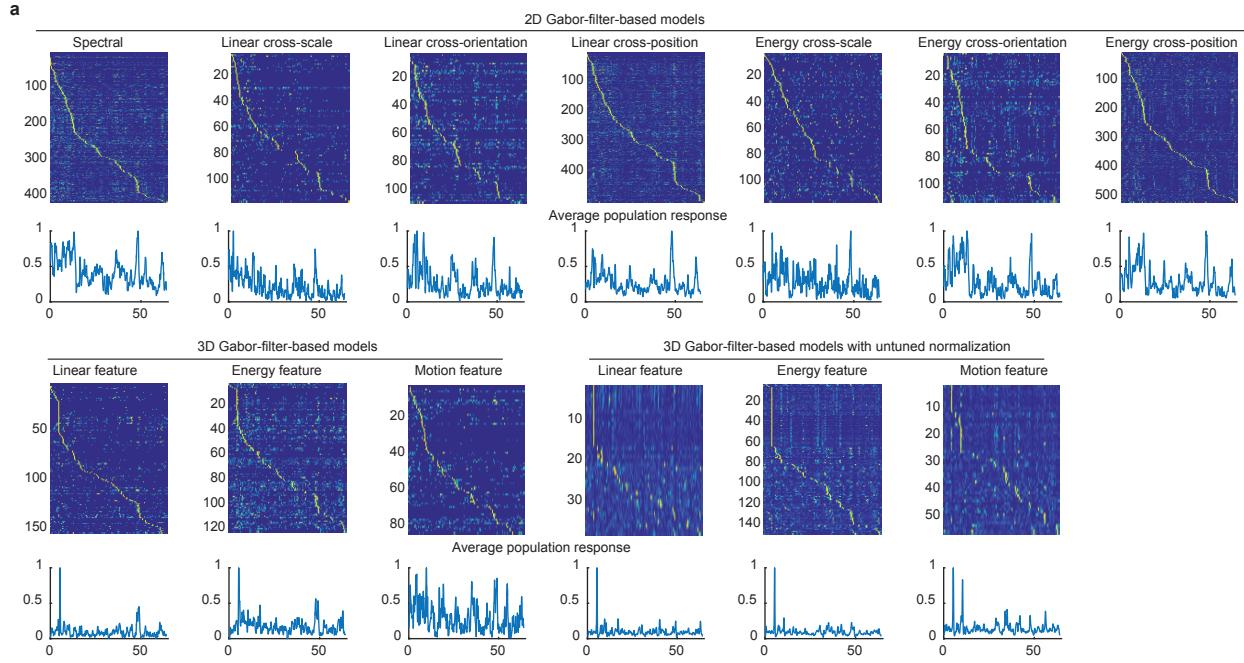


928

929 **Supplementary Figure 9. Encoding of texture stimuli by neuron models.** (a) Plots of
930 information about the texture family and information about the texture motion direction. Open
931 circle indicates individual simulated neurons. 2D Gabor and 3D Gabor models without
932 normalization exhibited unimodal encoding of the moving texture stimuli, that the former carried
933 information about texture family and the latter carried information about texture motion direction.
934 3D Gabor models with untuned normalization generated joint encoding of both the texture family
935 and the texture motion direction. (b) Joint distribution of the number of texture families and the
936 number of texture moving directions that a simulated neuron was responsive to. (c) Left, the joint
937 distribution of information about texture family and texture direction of mouse visual cortical
938 neurons (reproduce **Supplementary Fig. 3c**, combined all regions). Right, Joint selectivity of
939 texture families and texture moving directions mouse visual cortical responses (reproduce
940 **Supplementary Fig. 2f**).

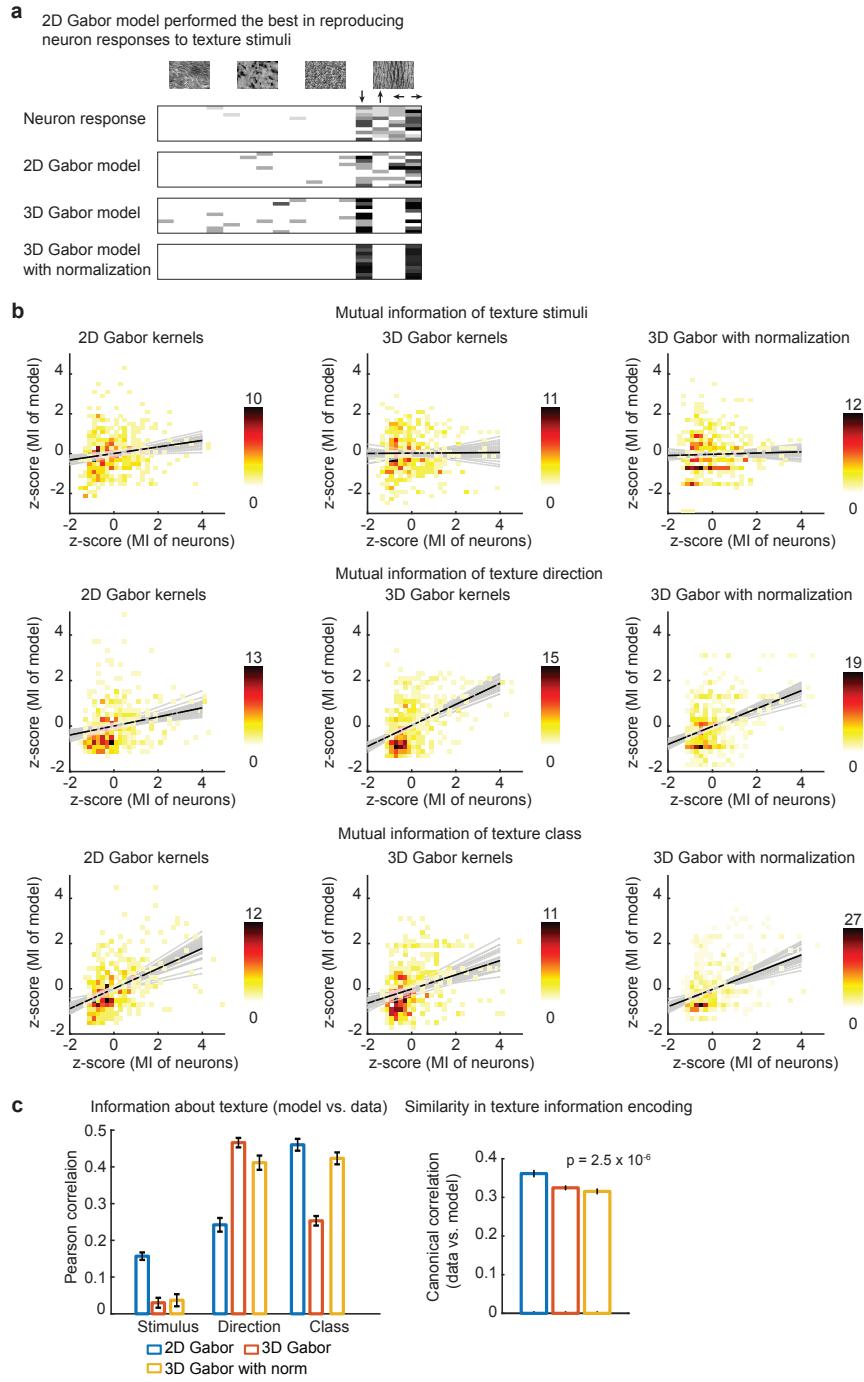
941





950

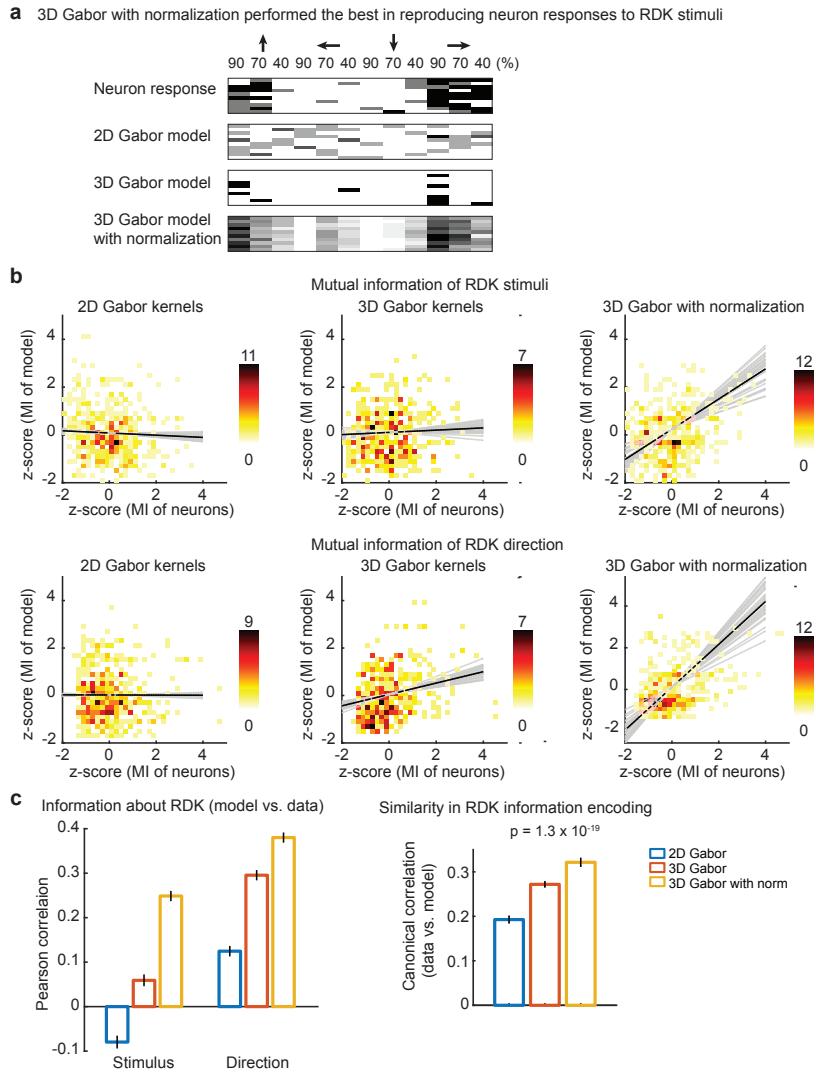
951 **Supplementary Figure 11. Encoding visual features of the naturalistic video using model**
952 **neuron responses.** (a) Simulated neuronal responses (PSTH) to the naturalistic video. The
953 neurons were sorted by the timing of the strongest response. The color hue indicates the
954 normalized value. The normalized average population response of each model was shown at the
955 bottom.



956

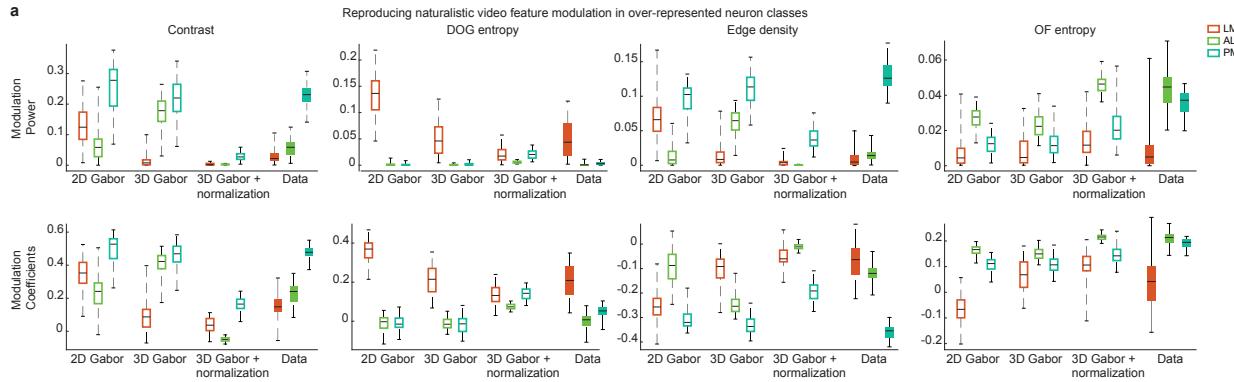
957 **Supplementary Figure 12. 2D Gabor model performed the best in reproducing neuron**
958 **responses to texture stimuli.** (a) Model neuronal responses to texture stimuli. Binned spike
959 count of a neuron, and its best 2G Gabor model, 3D Gabor model and 3D Gabor model with
960 normalization. (b) Information about texture stimuli (top), texture direction (middle) and texture
961 family (bottom) carried by neuron model vs. recorded neuronal responses. (c) Left, information
962 about visual stimuli carried by neuron vs. model. Right, the similarity, measured by canonical
963 correlation, of information encoding of texture stimuli between neuron models and neurons.

964 Reported p-values are from a one-way ANOVA of mean canonical correlation values over all
965 dimensions.



966

967 **Supplementary Figure 13. 2D Gabor model performed the best in reproducing neuron**
968 **responses to RDK stimuli.** (a) Model neuronal responses to RDK stimuli. Binned spike count of
969 a neuron, and its best 2G Gabor model, 3D Gabor model and 3D Gabor model with normalization.
970 (b) Information about RDK stimuli (top), and RDK direction (bottom) carried by neuron model vs.
971 recorded neuronal responses. (c) Left, information about visual stimuli carried by neuron vs.
972 model. Right, the similarity, measured by canonical correlation, of information encoding of RDK
973 stimuli between neuron models and neurons. Reported p-values are from a one-way ANOVA of
974 mean canonical correlation values over all dimensions.



975

976 **Supplementary Figure 14. Reproducing the modulation of neuronal responses by visual**
977 **features of naturalistic videos. (a)** Boxplot of feature modulation power (upper) and modulation
978 coefficients (down) of Gabor models for over-represented classes in HVAs (also, **Supplementary**
979 **Fig. 7**).

980