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Abstract

Mice have a constellation of higher visual areas, but their functional specializations are
unclear. Here, we used a data-driven approach to examine neuronal representations of
complex visual stimuli across mouse higher visual areas, measured using large field-of-view
two-photon calcium imaging. Using specialized stimuli, we found higher fidelity
representations of texture in area LM, compared to area AL. Complementarily, we found
higher fidelity representations of motion in area AL, compared to area LM. We also observed
this segregation of information in response to naturalistic videos. Finally, we explored how
popular models of visual cortical neurons could produce the segregated representations of
texture and motion we observed. These selective representations could aid in behaviors such
as visually guided navigation.
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Introduction

Visual systems evolved to extract behaviorally relevant information from complex natural
scenes. Visual stimuli contain information about texture, motion, objects, and other features of
the environment around the animal. These components of visual stimuli have unequal relevance
across behaviors. For example, optic flow and parallax motion information can help guide
navigation behavior, but object recognition is often invariant to motion. The ventral stream of
cortical areas in rodents function as object detection circuitry, as they do in primates. As expected,
these areas exhibit neural representations (spatiotemporal patterns of neuronal activity, a.k.a.
population codes) that are increasingly invariant in their responses with changes in the
appearance of recognized objects’>.

In mice, axons from neurons in primary visual cortex (V1) extend out to an array of higher
visual areas (HVAs), seven of which share a border with V1, and all of which have characteristic
interconnectivity with other brain regions. Mouse visual cortical areas exhibit a level of hierarchical
structure, and form two subnetworks*®. HVAs receive functionally distinctive afferents from V1
(ref. 1°). At least nine HVAs exhibit retinotopic topology®'"=*®* and neurons in HVAs have larger
receptive fields than neurons in V1 (ref. ). This organization and connectivity of mouse visual
areas may have evolved to selectivity propagate specific visual information to other brain regions,
but the functional specializations of HVAs require further elucidation.

Gratings are classic visual stimuli for characterizing responses in visual cortical areas' . In

mice, HVAs exhibit biases in their preferred spatial and temporal frequencies of gratings, but
overall, their frequency passbands largely overlap'®'"~"°. Similar studies using alternative visual
stimuli have produced additional insights: spectral noise stimuli revealed further details of
spatiotemporal preferences among HVAs?’; plaid stimuli (two superimposed gratings with
different angles) revealed pattern cells in LM and RL?'; naturalistic texture stimuli were better
discriminated from scrambled versions in LM than in V1?2, and random dot kinematograms
highlighted motion-coherent modulation in putative dorsal areas AL, PM, and AM'>?*. One could
hypothesize texture and motion to be key components of any visual stimuli. How are
representations of texture and motion features in visual stimuli segregated among HVAs in mice?
Representation of texture relies on the encoding of local features®*. Experimental and theoretical
studies suggested that HVAs may encode a combination of local features, such as multiple edges
to detect curves and shapes®%'.

In the current study, we have examined the visual feature selectivity of multiple visual areas
to three classes of visual stimuli: drifting textures, random dot kinematograms, and naturalistic
videos. We have examined how the texture and motion components of a naturalistic video are
represented, and found that high fidelity representations of these stimulus classes are segregated
to different HVAs. We then explored how a range of popular Gabor filter-based models of visual
cortical neurons can produce similar segregations of stimulus representations. The results from
these experiments reveal new aspects of the tuning properties of mouse HVAs.
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60 Results
61  Multi-area calcium imaging to distinguish tuning properties of HVAs

62 To survey the tuning properties of multiple visual cortical areas, we performed population
63 calcium imaging of L2/3 neurons in V1 and four HVAs (lateromedial, LM; laterointermediate, LI;
64  anterolateral, AL; posteromedial, PM or anteromedial, AM) of awake mice using a multiplexing,
65 large field-of-view two-photon microscope with subcellular resolution developed in-house®, and
66  transgenic mice expressing the genetically encoded calcium indicator GCaMP6s?>*. We located
67 V1 and HVAs of each mouse using retinotopic maps obtained by intrinsic signal optical
68 imaging'®*' (Supplementary Fig. 1a). Borders of HVAs were reliably delineated in most cases,
69  with the exception being some experiments where the AM and PM boundary was not clearly
70  defined (for those cases, neurons were pooled as AM/PM). We imaged neuronal activity in 2 — 4
71  cortical visual areas simultaneously (Fig. 1a, b). Calcium signals were used to infer probable
72 spike trains for each neuron (Methods; Supplementary Fig. 1b). During visual stimulation, the
73  average and maximal firing rates inferred were similar across cortical areas, and were typically
74 around 0.5 spikes/s average, and ranged up to 15-30 spikes/s maximal (Fig. 1c).

75 We characterized the neuronal responses to three types of visual stimuli: scrolling textures
76  (hereafter “texture stimuli”’), random dot kinematograms (RDK), and a naturalistic video mimicking
77  home cage navigation (For experiment details see Table 1). Neurons that fired on 60% of trials
78  were considered “reliably responsive”, if not otherwise stated. In general, half of all recorded
79  neurons responded to at least one visual stimulus reliably (texture: 55%; RDK: 54%; naturalistic
80  video: 50%). For each stimulus type, we characterized the tuning properties of individual neurons
81 using an encoder model (Methods). We also measured neuronal selectivity to texture family,
82  motions direction, or joint selectivity using mutual information analysis. Higher bit values for a
83  neuron-stimulus parameter pair means that the activity from that neuron provides more
84  information about that stimulus parameter (or combination of stimulus parameters).

85
86 Information about texture and RDK were encoded in separate HVAs

87 We tested the selectivity of neurons in V1, LM, LI, AL and PM to texture stimuli using a set of
88  naturalistic textures that drifting in one of the four cardinal directions (Supplementary Fig. 2a).
89  We generated four families of texture images based on parametric models of naturalistic texture
90 patterns (Methods). These stimuli allowed us to characterize the representation of both texture
91 pattern information and drift direction information, and thus test the tolerance of a texture selective
92  neuron to motion direction.

93 We observed reliable responses to drifting textures in V1, LM, LI and PM, while AL was barely
94  responsive to these stimuli (Supplementary Fig. 2b). About 43% of reliably responsive neurons
95  were modulated by the texture stimuli (i.e., texture-tuned neurons) (Methods; Supplementary
96 Fig. 2c-e). Texture-tuned neurons exhibited various selectivity patterns, suggesting a variety of
97 encoding properties (Fig. 1d). For example, about 13%-38% (varied across HVAs) of neurons
98  were strictly selective to one texture family drifting in one direction (Supplementary Fig. 2f), and
99 adifferent group of neurons (about 30%) were also selective to one texture family but responded
100  to more than one motion direction of that texture family (Supplementary Fig. 2f). This latter group
101  of tuned neurons could be called tolerant to motion direction, with the implication that it is selective
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102  for the other stimulus parameter (texture family, in this case). In general, we observed neurons
103  tolerant to either texture family or motion direction in V1 and HVAs.

104 Using mutual information analysis, we then characterized the selectivity of individual neurons
105 in HVAs. Overall, neurons in V1 and LI were more informative about the texture stimuli, followed
106 by LM. By contrast, neurons in areas AL and PM were not informative about the texture stimuli
107  (Fig. 1e; p = 5.8 x 10%; one-way ANOVA). To examine the tolerance of texture encoding neurons
108 to the translational direction, we computed the mutual information between neuronal responses
109  and texture families (refer the statistical pattern of a texture image). LI was the most informative
110  about texture family out of all tested visual areas, followed by V1 and LM (Supplementary Fig.
111 3a; p = 0.0006; one-way ANOVA). Meanwhile, V1 and LI also carried more information about the
112 motion direction of the texture stimuli, compared to areas AL and PM (Supplementary Fig. 3b;
113 p = 0.0006, one-way ANOVA). Examining the information encoding of individual neurons, we
114  found an increasing fraction of neurons that jointly encoded texture family and texture drift
115  direction along the putative ventral pathway (V1: 13%, LM: 17%, LI: 30%, Supplementary Fig.
116  3c; AL: 0%, PM: 0%), suggesting increasing joint coding along the putative visual hierarchy.

117 These results for texture encoding contrast with results for standard drifting gratings. For
118  gratings, we found motion direction information to be encoded broadly, differing <10% among
119 HVAs (Supplementary Fig. 3d), while texture motion information did not propagate to visual
120  areas outside the putative ventral pathway, differing >250% among HVAs (Supplementary Fig.
121 3a, b). The drift speeds were similar (32 degrees/s for the textures and 40 degrees/s for the
122 gratings), so it is unclear which spatial structural differences between these stimuli drove the
123 differences in encoding. Thus, we next examined responses to a stimulus with less spatial
124  structure and greater focus on motion.

125 We examined the encoding of random dot kinematograms (RDK), which are salient white dots
126  on a dark background with 40-90% motion coherence (remaining dots move in random directions
127  (Fig. 1f; Supplementary Fig. 4a). The RDK stimuli elicited responses in 40-80% of neurons in
128 V1, LM and AL, and V1 and AL were more responsive to and generated more reliable
129  representations of the RDK stimuli (Supplementary Fig. 4b). Among reliably responsive neurons
130 (responding on at least 60% of trials), about 32-60% of neurons were modulated by the RDK
131 stimuli (i.e., exhibited tuning) (V1: 59%, LM: 32%, AL: 43%; Supplementary Fig. 4c, d). RDK-
132 tuned neurons exhibited selectivity to motion directions and were modulated by the motion
133 coherence (Supplementary Fig. 4e). To characterize the direction selectivity, we computed the
134  mutual information between neuronal responses and the motion direction at each coherence level
135  (Supplementary Fig. 4f). We found that V1 and AL were more informative than LM about the
136  motion direction of the RDK at all coherence levels (Fig. 1g; p = 0.0006, one-way ANOVA).

137 In summary, texture family selective neurons were found in V1, LM, LI and PM, while RDK
138  direction selectivity neurons were more abundant in AL. Thus, information about drifting textures
139  and RDK motion are segregated to distinct HVAs (Fig. 1h).

140
141  Features of naturalistic videos were encoded in separate HVAs

142 To determine whether this segregation of texture and motion information among HVAs could
143  be detected within a more complex stimulus, we characterized the cortical representation of a
144  naturalistic video (Fig. 2a). The 64-second-long naturalistic video stimulus contained time-varying
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145  visual features such as contrast®?, luminance, edge density?®, difference of Gaussian (DOG)
146 entropy®®, and optic flow (OF) speed and direction® (Methods; Supplementary Fig. 5). About 40%
147  of neurons in the four areas responded to the naturalistic video reliably (trail-to-trial correlation >
148  0.08; Supplementary Fig. 6a, b). Our results thus far suggested that activity in AL would be
149  modulated by motion information in the naturalistic video, and activity in LM would be modulated
150 by texture information in the same video. We tested this hypothesis.

151 Neurons in the four imaged visual areas (V1, AL, LM, and PM) exhibited highly selective
152  responses to the naturalistic video. Individual neurons responded to ~ 3% of stimulus video
153  frames, corresponding to a high lifetime sparseness (0.83 + 0.09 (mean * SD); Fig. 2b). Unbiased
154  clustering (Gaussian mixture model, GMM) partitioned neurons into 25 tuning classes to the
155  naturalistic video, and 20 of these classes exhibited unique sparse response patterns, responding
156  at specific time points of the naturalistic video (Supplementary Fig. 6d). All naturalistic-video-
157  tuning classes were observed in V1, and most were observed in HVAs (1-2 classes were missing
158 in AL and PM). However, the relative abundance of tuning classes varied among V1 and HVAs
159  (Supplementary Fig. 6e, f).

160 Next, we examined the collective effects of the biased distributions of tuning classes among
161  HVAs. We reasoned that if a time-varying feature of the naturalistic video strongly modulates
162  neuronal activity in an HVA (Fig. 2c¢), we should be able to detect that by regressing the visual
163  feature dynamics (Fig. 2d) with the average neural activity in an HVA. The average response of
164  a cortical area neuron population converged with several hundreds of neurons (about 500 from
165 V1, about 200 from HVAs; Supplementary Fig. 6¢). We examined a set of visual features that
166  were previously implied to modulate visual system, including contrast®*3*, luminance, edge
167  density®®, DOG entropy®®, and OF speed and direction®® (Supplementary Fig. 5). The visual
168 features were computed at multiple spatial scales, and qualitatively similar results were observed
169  across a wide range of scales. Here we present representative results: edge density maps with a
170  Gaussian kernel of 2.35° (full width at half maximum, FWHM), and DOG entropy maps with a
171  Gaussian kernel of 11.75° (FWHM, inner kernel; the outer kernel is two-fold larger in FWHM) (Fig.
172 2d).

173 Regressing these visual features with the average neuronal responses per HVA suggested
174  that V1, LM, AL and PM are distinctly modulated by naturalistic video features. We defined the
175 modulation coefficients as the coefficients of the linear model, and modulation power of each
176  feature as the variance of responses explained by the model (i.e., the r* of a linear fit to a particular
177  visual feature and the neural activity; Fig. 2e). The feature modulation analysis suggested that
178  the average responses of AL populations but not the other three areas was correlated with OF
179  speed entropy (Fig. 2f). In PM, activity was correlated with contrast and edge density but not
180 DOG entropy (Fig. 2f). In both V1 and LM, but neither AL nor PM, activity was correlated with
181  both contrast and DOG entropy (Fig. 2f). These results suggested that AL activity represents
182  motion components in the naturalistic video, while LM and PM activity represents spatial
183  components in the same naturalistic video.

184 Next, we returned to the tuning class analysis (Supplementary Fig. 6), and determined
185  whether the segregation of motion and spatial representations we observed was consistent with
186  the biased distribution of tuning classes across HVAs. Tuning classes were indeed differentially
187 modulated by contrast, DOG entropy, edge density and optical flow speed entropy of the
188  naturalistic video (Supplementary Fig. 7a). As expected, we found that overrepresented tuning
189  classes within an HVA could explain the superior representation of a feature. Similarly, the
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190 underrepresented tuning classes explained the inferior representation of a feature within an HVA
191  (Supplementary Fig. 7b). Together, these results indicate that motion information and spatial
192  information are differentially represented among HVAs due to the distribution of tuning classes
193  between them. Neurons in AL provided superior representations of motion features in a
194  naturalistic video, and neurons in LM and PM provided superior representations of spatial features
195 in the same naturalistic video.

196
197 DOG entropy can support texture family encoding

198 While V1 and LM also provided high fidelity representations of texture, PM did not (Fig. 1d).
199  However, with the naturalistic video, all three areas were modulated by several spatial features.
200 PM was distinct in that it was relatively well modulated by edge density and poorly modulated by
201  DOG entropy, compared to V1 and LM. Thus, we hypothesized that DOG entropy could facilitate
202  texture encoding. We generated DOG entropy and edge density feature maps for texture stimuli
203 (Fig. 1c, Supplementary Fig. 8a). Then, we asked whether these feature maps were sufficient
204  to discriminate texture images from different classes, while also being tolerant to differences
205 among textures from the same class. We examined these questions by training a linear classifier
206  to discriminate textures within and across texture classes using DOG entropy features or edge
207  density features (Methods, Supplementary Fig. 8b). As expected, we found that DOG entropy
208 indeed performed better for discriminating texture images by classes. The linear classifier using
209 the DOG entropy feature successfully classified 83.3% of inter- and intra-class texture image pairs
210  with 9 + 4% miss-classification rate, while the classifier using the edge density feature classified
211 67% of these pairs with 12 + 4% error rate. Thus, we concluded that the superior representation
212 of texture by V1 and LM (compared to PM) could be due to their modulation by DOG entropy
213 features.

214
215  Gabor models exhibited biased feature representations

216 To this point, the evidence indicates a distributed representation of visual features among
217 HVAs. Could these differences be due to subtle biases in preferred temporal or spatial
218  frequencies? Or are they indicative of more fundamental differences in the underlying tuning of
219 neurons in HVAs? To address these questions, we examined neuron models that would
220 reproduce the diverse encoding functions we observed in mouse visual cortex. We simulated
221  neurons using a base model of a linear-nonlinear (LNL) cascade with Gabor filter-based linear
222 kernels (Fig. 3a; Methods). The LNL cascade with Gabor filter is a classic model for visual cortical
223 neurons®. However, recent studies suggested that multiple Gabor kernels are required for
224  predicting V1 neuron responses in mice® and generating tolerances to rotation, translation, and
225  scale®*® . Separately, dimensionality analysis suggested that normalization is critical for capturing
226  the diverse response profiles of V1 neurons to naturalistic stimuli*®. Inspired by these findings, we
227  designed several variations of the base model for testing.

228 Models were grouped into three groups: 2D Gabor models, 3D Gabor models and 3D Gabor
229  models with normalization. For 2D Gabor filter-based models, we examined both linear and
230 energy models. These are similar to models of complex cells in which input from multiple simple
231 cells with similar orientation preferences but varying phase are integrated'*. Other combinations
232 were used as well (cross-orientation, cross-scale, etc.; Fig. 3b). For 3D Gabor filter-based models,
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233  we also examined motion models (Fig. 3b). In addition, we also examined a version of the 3D
234 Gabor model with subtractive normalization (Fig. 3b). All the simulations were carried out at
235  multiple spatial and temporal (for 3D Gabor filter-based models) scales and sampled uniformly in
236  space.

237 Using these three model classes (2D Gabor, 3D Gabor, and 3D Gabor with normalization),
238 we simulated neuronal responses to the texture, RDK, and naturalistic video stimuli. We
239  characterized the mutual information and feature selectivity of simulated responses to the texture
240 and RDK stimuli (Supplementary Fig. 9, 10), and measured the feature encoding of simulated
241  responses to the naturalistic video (Supplementary Fig. 11). Different neuron models varied in
242 the encoding power of different types of stimuli or visual features. We noted that 2D Gabor models
243  exhibited specific tuning to the texture family while remaining tolerant to motion directions,
244 especially the cross-orientation and linear cross-position models (Supplementary Fig. 9b), which
245  are the best models for texture family encoding. On the other hand, 2D Gabor models performed
246 badly in representing the RDK stimuli (Supplementary Fig. 10a), while 3D Gabor models with
247  normalization performed the best in encoding the RDK moving direction (Supplementary Fig.
248 10a). 3D Gabor models with untuned normalization captured both the information about the
249  motion direction, but also exhibited tolerance to various coherence levels (Supplementary Fig.
250 10b). In representing the naturalistic videos, 2D Gabor models exhibited better sensitivity to the
251 contrast, edge density, and the DOG entropy, while the 3D Gabor models with untuned
252 normalization exhibited better modulation by the OF entropy (Fig. 3c). This represents an
253  apparent trade-off in representation fidelity between 3D Gabor kernels with normalization and 2D
254  Gabor kernels. In summary, the subtractive untuned normalization is important for the
255  representation of motion, such as RDK and OF entropy, while Gabor kernels without the time
256  domain provide better representations of spatial features.

257
258 Gabor models reproduced specific feature representation of mouse visual cortex

259 With the model results in hand, we sought to determine how well they could account for our
260  observations of neuronal activity in vivo (Figs. 1,2). We fit individual neuronal responses with the
261  Gabor-based models (Methods). For each model class (2D Gabor, 3D Gabor, and 3D Gabor with
262  normalization), one best linear model was fit by minimizing the cross-validation error of a linear
263  regression between the simulated model response and neuron response (Fig. 4a).

264 Next, we took these pools of fits (three fits per neuron, one fit for each model class) and
265  characterized how they represented features in the naturalistic videos. Consistent with the prior
266  findings in this study (Fig. 3), we found that 2D Gabor models reproduced the neuronal
267  information encoding about texture stimuli the best (Supplementary Fig. 12), while the 3D Gabor
268  model with normalization reproduced the information encoding about the RDK stimuli the best
269  (Supplementary Fig. 13).

270 The three classes of models were differentially involved in encoding of spatial and temporal
271  features of naturalistic videos (Supplementary Fig. 14). We examined how well the three model
272 classes could account for the characteristic neuronal activity modulations to visual features we
273  observed in each HVA in vivo. We took a subset of the model responses, those that were fit to
274  neurons that belonged to over-represented tuning classes within an HVA (Supplementary Fig.
275  6d, f), as these neurons accounted for unique spatiotemporal feature representations of HVAs
276  (Supplementary Fig. 7). For the DOG entropy modulation in area LM, we found that the 3D
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277  Gabor model class best fit the modulation we observed in vivo (Fig. 4b, ¢). For the optic flow
278  speed entropy modulation in area AL, model fits to AL neurons that were in the 3D Gabor with
279  normalization class were the best fit to the in vivo data (Fig. 4b, c¢). For the contrast and edge
280  density modulations observed in area PM, both 2D and 3D Gabor model classes provided good
281 fits. However, the fits for the contrast modulation were a better match to the in vivo data than the
282  edge density modulation (Fig. 4b, c). Overall, this analysis reveals that unique model classes are
283  required to reproduce the visual feature modulation observed in HVAs: 3D Gabor filter-based
284  models for area LM neurons, 3D Gabor filters with normalization for area AL neurons, and both
285 2D and 3D Gabor filter-based models for area PM neurons (Fig. 4d).
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286 Discussion

287 In the current study, we have revealed unique encoding properties of V1 and multiple HVAs
288 in representing textures, RDK, and naturalistic videos. From our results, it appears as though V1
289  establishes a representation of various visual features, LM and LI are specialized for encoding of
290 spatial features, and AL is specialized for the encoding of motion features. The encoding function
291  of area PM was less obvious, as it seems that activity in that HVA was driven mostly by the density
292  of visual edges, which are a spatial feature, but since PM is so poorly modulated by the DOG
293  entropy feature, it is difficult to group it with LM and LI. Finally, we determined that unique model
294  classes are required to reproduce the modulations we observed in these. Parameter variations
295 within a model class were not sufficient. Instead, different model classes were required for
296  reproducing the in vivo results in separate HVAs. These findings provide new insights into the
297  neural circuitry that can generate distributed representations of visual stimuli in HVAs.

298 In our analysis, we found discrete neuron classes that had unique response profiles to a
299  naturalistic video stimulus. These classes formed a non-uniform distribution among V1 and HVAs,
300 and appropriately, were found to contribute to the biases in feature encoding among HVAs. It is
301 unclear whether neurons with different tuning profiles play similar computational roles. Overall,
302 these results determined that mouse visual cortical neurons can represent complementary
303 features of visual scenes, and each HVA can exhibit unique biases towards specific visual
304 features that are consistent across stimulus types, including naturalistic videos. Coupled with their
305 downstream connectivity, these distinguishing biases among HVAs can provide insights into their
306 involvement in visual processing and behavior.

307 The rodent visual system evolved in response to the ecological niche mice found themselves
308 in. We do not expect such a process to result in neural circuitry that performs neat, absolute
309 segregations of information about visual scenes. Instead, we expect neural circuitry that efficiently
310 supports adaptive behavior for the mouse’s ecological niche. The principles of that efficient
311  circuitry are likely quite different from those of any systematic, mathematically compact approach
312 for parsing a visual scene in terms of known receptive field properties of visual cortical neurons.
313  Thus, here we used a data-driven approach to gain a conservative foothold into complex visual
314  scene processing in mice. We explored how segregated representations might emerge using a
315 modeling approach based on known receptive field properties of visual cortical neurons, or at
316  least popular models thereof. This analysis showed that 2D and 3D Gabor models provided
317  accurate accounts for distinguishing texture and form features. By contrast, 3D Gabor models
318  with subtractive normalization were key for distinguishing motion stimuli.

319 The enrichment of specific representations of motion or texture in areas AL and LM
320 respectively, could arise from specific connectivity from other brain regions (e.g., V1) that
321 preserves selectivity'®, or from converging inputs that result in enhanced selectivity (or more
322 invariant selectivity) for a visual feature'*3° We generally cannot distinguish those two
323  possibilities with this data set. However, in area LI, neurons exhibited selectivity that surpassed
324  that of neurons in V1, so it appears as though preserved selectivity from V1 projecting to LI would
325  be insufficient to produce such selectivity. However, we cannot rule out thresholding effects which
326  could play a role in increasing apparent selectivity.

327 Altogether, this study reveals new segregations of visual encoding or representations among
328 HVAs in mice, many of which are reminiscent of the primate visual system. Studies have
329  suggested macaque V2 exhibited selectivity to texture families and tolerance to local feature
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330 differences between images from the same texture class®*?®. In macaque V4, neurons are highly
331  selective to texture patterns, which are well predicted using combination of 2D Gabor models®’.
332 Famously, macaque dorsal visual areas such as MT exhibit selectivity to RDK motion direction*°.
333  The functional similarities between mouse LM and LI and macaque V2 and V4, and between
334 mouse AL and macaque MT are perhaps superficial, but could also indicate that the dual stream
335  framework for visual pathways in primates could have an analog in mice®*'. Earlier anatomical
336  and receptive field mapping studies suggest that mouse LM and AL likely serve as the ventral
337 and dorsal gateways in the mouse visual hierarchy®®3'. Anatomical evidence including
338 connectivity with downstream brain regions support functional distinctions between putative
339 ventral and dorsal areas of mouse visual cortical areas, e.g. ventral areas were strongly
340 connected to temporal and parahippocampal cortices, while putative dorsal areas were
341  preferentially connected to parietal, motor and limbic areas®. Recent large scale multi-region
342  electrode recordings from mouse visual cortex revealed an inter-area functional connectivity
343 hierarchy, but did not group mouse HVAs into separate streams or subnetworks®. The study
344  further showed that both LM and AL were similarly recruited by a visual recognition task, in which
345  AM and PM were strongly involved®. Together, we conclude that both anatomical and functional
346  studies suggest that mouse HVAs likely play distinct roles in visual behaviors, and may comprise
347  dual processing streams analogous to primates. However, well designed behavioral tasks are
348 required to further reveal the circuits and mechanisms.
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349 Methods
350 Animal and surgery

351 All animal procedures and experiments were approved by the Institutional Animal Care and
352  Use Committee of the University of North Carolina at Chapel Hill or the University of California
353  Santa Barbara and performed in accordance with the regulation of the US Department of Health
354 and Human Services. GCaMP6s-expressing transgenic adult mice of both sexes were used in
355  this study. Mice were 110 — 300 days old for data collection. GCaMP6s-expressing mice were
356 induced by triple crossing of the following mouse lines: TITL-GCaMP6s (Allen Institute Ai94),
357 Emx1-Cre (Jackson Labs #005628), and ROSA:LNL:tTA (Jackson Labs #011008)%°. Mice were
358 housed under a 12 h light / 12 h dark cycle, and experiments were performed during the dark
359  cycle of mice. For cranial window implantation, mice were anesthetized with isoflurane (1.5 -1.8%
360 in oxygen) and acepromazine (1.5 — 1.8 mg/kg body weight). Carprofen (56 mg/kg body weight)
361 was administered prior to surgery. Body temperature was maintained using physically activated
362  heat packs or homeothermic heat pads during surgery. Eyes were kept moist with ophthalmic
363  ointment during surgery. The scalp overlaying the right visual cortex was removed, and a custom
364  steel headplate with a 5 mm diameter opening was mounted to the skull with cyanoacrylate glue
365 (Oasis Medical) and dental acrylic (Lang Dental). A 4 mm diameter craniotomy was performed
366 over visual cortex and covered with a #1 thickness coverslip, which was secured with
367 cyanoacrylate glue.

368 Locating visual areas with intrinsic signal optical imaging (ISOI)

369 Prior to two-photon imaging, the locations of primary and higher visual area were mapped
370  using ISOI, as previously reported?®*'#2, Pial vasculature images and intrinsic signal images were
371  collected using a CCD camera (Teledyne DALSA 1M30) and a tandem lens macroscope. A 4.7
372 x 4.7 mm? cortical area was imaged at 9.2 ym/pixel spatial resolution and at 30 Hz frame rate.
373  The pial vasculature was illuminated and captured through green filters (550 £ 50 nm and 560 *
374 5 nm, Edmund Optics). The ISO images were collected after focusing 600 um down into the brain
375  from the pial surface. The intrinsic signals were illuminated and captured through red filters (700
376 £ 38 nm, Chroma and 700 + 5 nm, Edmund Optics). Custom ISOI instrumentation were adapted
377  from Kalatsky and Stryker'?. Custom acquisition software for ISOI imaging collection was adapted
378  from David Ferster?®. During ISOI, mice were 20 cm from a flat monitor (60 x 34 cm?), which
379  covered the visual field (110° x 75°) of the left eye. Mice were lightly anesthetized with isoflurane
380 (0.5%) and acepromazine (1.5 — 3 mg/kg). The body temperature was maintained at 37 °C using
381  acustom electric heat pad?. Intrinsic signal responses to vertical and horizontal drifting bars were
382  used to generate retinotopic maps for azimuth and elevation. The retinotopic maps were then
383  usedtolocate V1 and HVAs (Supplementary Fig. 1a). Borders between these areas were drawn
384  using features of the elevation and azimuth retinotopic maps, such as reversals, manually'®3’.
385  The vasculature map provided landmarks to identify visual areas in two-photon imaging.

386  In vivo two-photon imaging

387 Two-photon imaging was performed using a custom Trepan2p microscope controlled by
388 custom LabView software®®. Two regions were imaged simultaneously using temporal
389  multiplexing®®. Two-photon excitation light from an ultrafast Ti:Sapph laser tuned to 910 nm
390 (MaiTai DeepSee; Newport Spectra-Physics) laser was split into two beams through polarization
391 optics, and one path was delayed 6.25 ns relative to the other. The two beams were steered
392  independently from each other using custom voice coil steering mirrors and tunable lenses. This
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393  way, the X, Y, Z plane of the two paths can be independently positioned anywhere in the full field
394 (4.4 mm diameter). The two beams were raster scanned synchronously about their independently
395  positioned centers by a 4 kHz resonant scanner and a linear scanner (Cambridge Technologies).
396  Photons were detected (H7422P-40, Hamamatsu) and demultiplexed using fast electronics. For
397  four-region scanning, the steering of the two beams was alternated every other frame.

398 In the current study, two-photon imaging of 500 x 500 um? was collected at 13.3 Hz for two-
399 region imaging, or 6.67 Hz for quad-region imaging. We typically imaged neurons in V1 and one
400 or more HVAs simultaneously. Up to 500 neurons (V1: 129 + 92; HVAs: 94 + 72; mean = SD)
401  were recorded per imaging region (500 x 500 um?). Imaging was performed with typically <80 mW
402  of 910 nm excitation light out of the front of the objective (0.45 NA), including both multiplexed
403  beams together. Mice were head-fixed about 11 cm from a flat monitor, with their left eye facing
404  the monitor, during imaging. The stimulus display monitor covered 70° x 45° the left visual field.
405  Two-photon images were recorded from awake mice. During two-photon imaging, we monitored
406  the pupil position and diameter using a custom-controlled CMOS camera (GigE, Omron) at 20 —
407 25 fps. No additional illumination was used for pupil imaging.

408 Calcium imaging and imaging processing

409 Calcium imaging processing was carried out using custom MATLAB codes. Two-photon
410  calcium imaging was motion corrected using Suite2p subpixel registration module*®. Neuron ROIs
411  and cellular calcium traces were extracted from imaging stacks using custom code adapted from
412 Suit2p modules**. Neuropil contamination was corrected by subtracting the common time series
413 (1%'principal component) of a spherical surrounding mask of each neuron from the cellular calcium
414  traces'*. Neuropil contamination corrected calcium traces were then deconvolved using a
415  Markov chain Monte Carlo (MCMC) methods***°. For each calcium trace, we repeated the MCMC
416  simulation for 400 times, and measured the signal-to-noise of MCMC spike train inference for
417  each cell (Supplementary Fig. 1b). Neurons in V1 and HVAs exhibited similar instantaneous
418  firing rates (Fig. 1c). For all subsequent analysis, only cells that reliable spike train inference
419  results were included (correlations between MCMC simulations is greater than 0.2).

420 Visual stimuli

421 Visual stimuli were displayed on a 60 Hz LCD monitor (9.2 x 15 cm?). All stimuli were displayed
422 in full contrast.

423 The texture stimuli (Supplementary Fig. 2a) were generated by panning a window over a
424  large synthesized naturalistic texture image at one of the cardinal directions at the speed of 32 °/s.
425  We generated the large texture image by matching the statistics of naturally occurring texture
426  patterns®®. The texture pattern families were: animal fur, mouse chow, rocks, and tree trunk. Each
427  texture stimulus ran for 4 s and were interleaved by a 4 s gray screen.

428 The random dot kinematogram (RDK) stimuli contained a percentage (i.e., coherence) of
429  white dots that move in the same direction (i.e., global motion direction) on a black background
430 (Supplementary Fig. 4a). We presented the animal with RDK at three coherence levels (40%,
431  70%, and 90%) and four cardinal directions. The dot diameter was 3.8° and the dot speed was
432 48 °/s. White dots covered about 12.5% of the screen. The lifetime of individual dots were about
433 10 frames (1/6 s). These parameters were selected based on mouse behavior in a psychometric
434  RDK task*’. Each RDK stimulus ran for 3 — 7 s (responses in the first 3 s were used for analysis)
435 and interleaved with 3 s gray screen. The same RDK pattern was looped over trials.
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436 Two naturalistic videos (Fig. 2a) were taken by navigating a mouse home cage, with or without
437  a mouse in the cage. Each video had a duration of 32 s and were presented with interleaved 8 s
438 long periods with a gray screen. For the convenience of analysis, we concatenated the responses
439  to the two videos (total 64 s).

440 Visual features of the naturalistic video

441 We characterized various visual features of the naturalistic video (Supplementary Fig. 5).
442 Average luminance: The average pixel value of each frame.
443 Global contrast: The ratio between the standard deviation of pixel values in a frame, and the

444  average luminance of that same frame.

445 Edge density: The local edges were detected by a Canny edge detector*®. The algorithm finds
446  edges by the local intensity gradient and guarantees to keep the maximum edge in a
447  neighborhood while suppressing non-maximum edges. We applied the Canny edge detector after
448  Gaussian blurring of the original image at multiple scales (1°-10°). A binary edge map was
449 generated as the result of edge detection (Supplementary Fig. 5a). The edge density was
450 computed as the sum of positive pixels in the binary edge map of each frame.

451 Difference of Gaussian (DOG) entropy: We characterized local luminance features following
452  difference of Gaussian filtering at multiple scales, and then computed the entropy of these
453  features within a local neighborhood (Supplementary Fig. 5b).

454 Optical flow entropy: We estimated the direction and speed of salient features (e.g., moving
455  objects) using the Horn-Schunck method at multiple spatial scales. Then we computed the
456  entropy of the OF direction and speed at each frame. Since the OF estimation relies on the
457  saliency of visual features, the moving texture and RDK stimuli resulted in distinct OF entropies,
458  with the latter being larger (Supplementary Fig. 5¢).

459 Visual features were computed either by average over space or by computing a spatial
460  variance value (i.e. entropy). These measurements were inspired by the efficient coding theory*®,
461  which suggested that the neuron population coding is related to the abundance or the variance of
462  visual features in the natural environment.

463
464  Reliability and sparseness

465 The reliability of responses to naturalistic videos was defined as the trial-to-trial Pearson
466  correlation between inferred spike trains of each neuron binned in 500 ms bins. The reliability of
467  responses to texture stimuli and RDK were computed as the fraction of trials that a neuron fired
468  to its preferred stimulus within a time window (2 s for texture stimuli and 3 s for RDK). These
469  definitions were commonly used in previous studies®*°. Only reliably responsive neurons were
470  included in the latter analysis (Pearson correlation > 0.08 to naturalistic video; fired on > 60%
471  trials to the texture and RDK stimuli). The qualitative results were not acutely sensitive to the
472  selection criteria.

473 The sparseness was computed as (eq. 1)°':
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1 1 (Zl rl)z
_ Ny
474 S= T (eq-1)
-
475 For lifetime sparseness, 7; is trial-averaged response to i" stimulus and N is the length of the

476  stimuli. The sparseness to naturalistic videos was computed using 500 ms bins. The qualitative
477  results of reliability and sparseness were not acutely sensitive to the bin size.

478

479  Gaussian mixture model

480 To characterize the tuning properties in an unbiased manner, neurons were clustered using a
481  Gaussian mixture model® (GMM) based on the trial-averaged responses to the naturalistic video.
482  Only reliably responsive neurons were included for GMM analysis (trial-to-trial Pearson correlation
483  of the inferred spike trains > 0.08, after spike trains were binned in 500 ms bins). Neuronal
484  responses of the whole population, pooled over all cortical areas imaged, were first denoised and
485 reduced in dimension by minimizing the prediction error of the trial-averaged response using
486  principle component (PC) analysis. 55 PCs were kept for population responses to the naturalistic
487  videos. We also tested a wide range of PCs (20 — 70) to see how this parameter affected
488  clustering, and we found that the tuning group clustering was not acutely affected by the number
489  of PCs used. Neurons collected from different visual areas and different animals were pooled
490 together in training the GMM (3527 neurons). GMMs were trained using the MATLAB build
491  function fitgmdist with a range of numbers of clusters. A model of 25 classes was selected based
492  on the Bayesian information criterion (BIC). We also examined models with different numbers of
493  classes (20, 30, 45, or 75), and found that the main results held regardless of the number of GMM
494 classes. Neurons with similar response patterns were clustered into the same class.
495  Supplementary Fig. 6 shows the response pattern of GMM classes to the naturalistic video. The
496  size of the naturalistic video classes are shown in Supplementary Fig. 6d. To examine the
497  reproducibility of the GMM classification, we performed GMM clustering on 10 random subsets of
498 neurons (90% of all neurons). We found the center of the Gaussian profile of each class was
499  consistent (Pearson correlation of class centers, 0.74 +/- 0.12). About 65% of all neurons were
500 correctly (based on the full data set) classified, while 72% of neurons in classes that are over-
501 represented in HVAs were correctly classified. Among misclassifications, about 78% were due to
502  confusion between the three untuned classes with tuned classes. Thus, most of the classes to
503 come out of the GMM analysis appear to be reproducible, and are not sensitive to specific subsets
504  of the data.

505 Information analysis

506 Mutual information (MI) evaluates the information the neuronal response (r) has about certain
507 aspects of the stimulus, and it is computed in units of bits. It was computed using the following
508 equation.

Pr,s(1,5)
509 MI(r,s) = ZZp”(r s) xlog, ——~——— o () * o) (eq.2)

510 We computed the MI between neuron responses and the visual stimulus (s has 16 categories for
511  texture stimuli, p;(s) = 1/16; s has 12 categories for RDK, ps(s) = 1/12). We also computed the
512  MI between neuron responses and the texture family (s has 4 categories for texture stimuli,
513  ps(s) = 1/4), and the MI between neuron responses and the moving directions (s has 4 categories
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514  for both texture stimuli and RDK, ps(s) = 1/4). The probability of neuron responses were
515 computed from spike count distributions within a stimulus window (2 s for texture stimulus and 3
516 s for RDK). Reliable RDK and texture responsive neurons (reliability > 0.6), which fired for more
517  than 60% of the trials to the preferred stimulus, were included for the MI analysis.

518 Regularized encoder model

519 To estimated the encoding pattern of texture responsive neurons and RDK responsive
520 neurons, i.e. which texture pattern one neuron responded to, or how many texture patterns one
521 neuron responded to, we decomposed the neuronal responses into motion direction components,
522  and texture family or RDK coherence components using singular value decomposition (SVD). To
523  be more robust, instead of using trial-averaged response, we first estimated the neuronal
524  responses by linearly regressing with a unit encoding space (Supplementary Fig. 2c-e, 4c¢c-d).
525 Lasso regularization was applied to minimize overfitting. The regularization hyper-parameters
526  were selected by minimizing the cross-validation error in predicting single trial neuronal responses.
527  The linear regression model performance was measured by the Pearson correlation between the
528 trial-averaged neuron response and the model. Only well-fit neurons were included for the
529  following analysis (model performance > 0.6; about 70% of the whole population). The model
530 selection criteria did not affect the qualitative results.

531 We then characterized the SVD components of well-fit neurons. Well-fit neurons exhibited
532  either zero, one, or multiple significant SVD components (eigenvalue > 1). Neurons with zero
533  significant SVD component were untuned neurons, while neurons with multiple significant SVD
534  components suggested complicated tuning properties. We went on to characterize neurons which
535  had single significant SVD components, as for which the neuronal responses were decomposed
536 into a motion directions vectors, and a texture pattern vector or a motion coherence vector
537  unambiguously (Supplementary Fig. 2d, 4c).

538 About 40-70% of well-fit texture neurons and about 50 — 60% of well-fit RDK neurons had only
539  one significant SVD component. We define positive motion directions, or texture patterns for each
540 neuron, when its corresponding vector value (singular vector of SVD) is greater than 0.2 (for
541  texture responses) or 0.3 (for RDK responses) (the threshold value did not affect qualitative
542  results; Supplementary Fig. 2d, 4¢). In the results section, we report the distributions for neurons
543  with different numbers of positive motion directions, texture patterns, and coherence levels for
544  HVAs (Supplementary Fig. 2f, 4e).

545  Modulation power of naturalistic visual features

546 For each cortical area, neuronal activity in response to the video was pooled and averaged,
547  after binning into 500 ms bins. Then, separately for each cortical area, a linear regression model
548  was fit to the average population response with individual features. These features are described
549  above in the section (Visual features of the naturalistic video). We then evaluated a feature’s
550 contribution in modulating the average population responses by the variance explained (r-squared)
551 of each model (Fig. 2d, f). Features were computed over multiple spatial scales. The spatial
552  scales that best modulated (highest r-squared) the neuronal response was used for this analysis.

553 To evaluate the significance of neuron classes, we repeated this process using different
554  source data. Instead of using a pool of neurons from a cortical area, we used a pool of neurons
555  from a specific class (200 neurons per pool with permutation). Again, we averaged activity over
556  the pool, and then determined which features modulated activity of the class (Supplementary
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557  Fig. 7a). This process was repeated for classes that were either over-represented in an HVA or
558 under-represented in an HVA (Supplementary Fig. 7b).

559  SVM discrimination of texture images

560 We computed the pairwise distance between texture images (Supplementary Fig. 8a) within
561 the same class or from different classes (Supplementary Fig. 8b). The Euclidean distance was
562  computed using of DOG entropy (11.75° spatial filter size) or edge density (2.35° spatial filter size)
563 feature maps. We then trained a support vector machine (SVM) classifier to discriminate texture
564 images within and across classes, based on this pairwise distance (using the Matlab built-in
565  function classify). We reported the cross-validation classification error rate (Supplementary Fig.
566  8b).

567 Simulation of Gabor-based models

568 The neuron models used the structure of a linear-nonlinear (LNL) cascade. The spiking of
569  model neurons was simulated following a nonhomogeneous Poisson process with a time varying
570 Poisson rate. The rate was calculated by convolving visual stimuli with a linear kernel or a
571  combination of linear kernels, followed by an exponential nonlinearity (Fig. 3a). Linear kernels
572 were modeled by 2D (XY spatial) or 3D Gabor (XYT spatiotemporal) filters defined over a wide
573  range of spatiotemporal frequencies and orientations. We simulated neurons with simple cells,
574  complex cells and speed cells models®® (Fig. 3b). The three differed in the linear components of
575 the LNL cascade: simple cells (called linear model, or spectral model for the 2D Gabor kernels)
576  used the linear response of a Gabor filter; complex cells (called energy model) used the sum of
577 the squared responses from a quadrature pair of Gabor filters (90° phase shifted Gabor filter
578 pairs); speed cells (called motion model) used the arithmetic difference between the energy
579  responses from an opponent pair of complex cells. We also modeled neurons based on the cross
580 product of the linear or energy responses from two 2D Gabor filters (called combination model).
581 In particular, we simulated the following three combination models: 1. 2D Gabor filters matched
582  in spatial scale and location but tuned to different orientations (cross-orientation model); 2. 2D
583  Gabor filters tuned to the same orientation and location with different spatial scales (cross-scale
584  model); 3. 2D Gabor filters with matched tuning properties but offset in visual space (cross-
585  position model) (Fig. 3b). In addition, we included a subtractive normalization before taking the
586  nonlinearity in some models. A total of 13 neuron model types were used (Fig. 3b).

587 To examine feature encoding by these neuron model types, we performed 10 — 20 repeats of
588 simulation for each neuron model to each stimulus. Either the simulated spike trains or
589  peristimulus time histograms (PSTH) were used for characterizing the feature encoding. We
590 analyzed the model responses in the same way as we had done for the mouse experimental data.
591  We computed the mutual information between simulated neuron responses and texture stimuli or
592  RDK stimuli, and characterized the selectivity of simulated neurons to texture families or RDK
593 directions (Supplementary Fig. 9, 10). Next, we examined the modulation of simulated
594  population responses by visual features of the naturalistic video. Neuron models were located in
595 the feature space by how much of the population response variance was explained by individual
596 features (Supplementary Fig. 11).

597 Reproducing neuron responses to stimuli with Gabor-based models

598 To reproduce the feature representation of HVAs with neuron models, we fit individual
599  neuronal responses with models following a linear regression equation (eq. 3). The linear
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600 coefficients were optimized by minimizing the cross-validation error. We also tested a sigmoidal
601 nonlinear fitting (eq. 4). Sigmoidal parameters were optimized through gradient descent. As
602  sigmoidal nonlinearity did not significantly improve the modeling performance, we reported the
603  results from the linear fitting.

604 neuronresponse = a * Xx; (eq.3)
a
605 meuron response = exp(—brx T c); (eq.4)
606 X: simulated responses
607 Neuron models were grouped into three categories: 2D Gabor models, 3D Gabor models, and

608 3D Gabor models with normalization. One model of each category, which minimize the cross-
609  validation error, was selected for each neuron. The feature representation was then characterized
610 on the model neuron responses.

611
612  Data availability

613  All source data generating main figures will be available online upon publishing. All raw data are
614  available upon request.

615
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748  Figure 1. Segregated representations of textures and random dot kinematogram (RDK)
749  motion in HVAs. (a) Neural activity was imaged in multiple HVAs simultaneously using large
750 field-of-view, multiplexed two-photon calcium imaging. In an example experiment, layer 2/3
751  excitatory neurons were imaged in V1, LM, AL, and PM simultaneously. Squares indicate the
752  imaged regions, and projections of raw image stacks are shown below. (b) Image stacks were
753  analyzed to extract calcium dynamics from cell bodies, after neuropil subtraction. These traces
754  were used to inferred spike activity, as shown in raster plots below each trace. (c) Statistics of
755 inferred spiking were similar to those of prior reports, indicating accurate inference. The mean
756  and maximal instantaneous firing rates of neurons in V1 and HVAs are similar (mean, 0.5 £ 0.5
757  spike/s; max, 7 £ 11 spike/s; p = 0.055; one-way ANOVA with Bonferroni correction). (d) Mice
758  were shown texture stimuli, each of which was from one of four families, and which drifted in one
759  of four directions. Spike raster plots from two example neurons (10 trials shown for each) show
760  that one neuron is selective for texture family, and the other is more selective for texture direction.
761  The amount of mutual information (MI, in bits) for the two stimulus parameters (texture family and
762  panning direction) are written below each raster, along with the overall or joint (family and direction)
763 MI. (e) V1, LM, and LI provide higher M for texture stimuli than AL or PM (p = 5.8 x 10°%; one-way
764  ANOVA, Bonferroni multiple comparison). Error bars in inset indicate SE. (f) Mice were shown
765 random dot kinematogram (RDK) motion stimuli, which drifted in one of four directions with up to
766  90% coherence (fraction of dots moving in the same direction). A raster for an example neuron
767 (30 trials) shows that it fires during rightward motion, with 0.51 bits of Ml for motion direction at
768  90% coherence. (g) V1 and AL provide higher MI for the RDK motion direction than LM (p =
769  0.0006; one-way ANOVA, Bonferroni multiple comparison). (h) These results indicate a
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770  segregation of visual stimulus representations: texture stimuli to LM, and RDK motion stimuli to
771 AL.

772

773
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775  Figure 2. Segregated representations of spatial and motion features in naturalistic videos.
776  (a) Five example neurons show reliable, yet diverse, spike responses during a naturalistic video
777  stimulus. (b) Neurons in all four tested areas exhibited similarly high response sparseness to the
778  naturalistic video (one-way ANOVA, p = 0.8). (c¢) Average spike responses varied across cortical
779  areas (traces are averages, across reliable neurons). For example, neurons in area AL tended to
780  show a spike in activity about 5 s into the video, whereas neurons in LM did not. Shaded area
781  indicates SEM computed across multiple animals. (d) Form and motion components of the
782  naturalistic video were extracted using a bank of linear filters with various sizes and locations (left).
783  This provided time-varying signals correlated with global, form, and motion features, such as
784  contrast, difference-of-Gaussian (DOG) entropy, and speed entropy (middle). To provide an
785 intuitive feel for these features, example naturalistic video frames with the corresponding DOG
786  entropy maps, edge density maps, and optical flow speed maps are shown (also see
787  Supplementary Fig. 5a, b). (e) The time-varying features were weighted to best match the
788  average neuronal activity for a cortical area (N = 200 with permutation). The linear weights are
789  modulation coefficients and the goodness-of-linear fitting, or r-squared, is the modulation power.
790  Areas V1 and LM was strongly modulated by DOG entropy, but AL and PM were not. Area LM
791  was the only area modulated by speed entropy. Area PM was modulated by contrast and edge
792  density. (f) The modulation coefficients were typically positive, but were negative for edge density.
793  Thus, area PM is positively modulated by contrast, but negatively modulated by edge density. (p-
794  values are from one-way ANOVAs with the Tukey-Kramer correction for multiple comparison).
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Figure 3. Spatial and motion feature encoding by variants of Gabor filter-based models. (a)
The general architecture is a linear-nonlinear-Poisson (LNP) cascade neuron model. Neurons
were simulated by various 2D and 3D Gabor-like linear kernels, with or without an untuned
subtractive normalization. (b) From the base LNP model, variations were derived, organized into
three classes: 2D Gabor-based, 3D Gabor-based without normalization, and 3D Gabor-based
with normalization. Both linear and energy responses (akin to simple cells and complex cells)
were computed from combinations of 2D Gabor filters. Linear, energy and motion responses (akin
to simple cells, complex cells, and speed cells) were computed from 3D Gabor filters. (¢) These
three classes of models varied in how much their activity was modulated by global, form, and
motion features in naturalistic videos. The neuron models are plotted by their modulation in
feature spaces. The local of a neuron model was defined by the modulation power (same as Fig.
2e).
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Figure 4. Segregated processing of spatial and motion features by visual neuron models.
(a) Data from example neurons are shown in raster plots (top) and PSTHs (bottom), along with
the best fits (as PSTHs) from each of the three model classes: 2D Gabor, 3D Gabor, and 3D
Gabor with normalization. These three model fits, for each neuron, were used in the next analysis.
(b, ¢) The three model neuron classes were characterized in terms of their modulation to global,
form, and motion components of the naturalistic video. The distributions of (b) modulation power
and (¢) modulation coefficients for the three model classes were compared to those of the actual
data, for neurons in specific HVAs and features those HVAs were well modulated by (see also,
Supplementary Fig. 7, 14). The pool of model neurons for each pair of graphs (power and
coefficient) for a cortical area were drawn from model fits to neurons in that same cortical area.
(d) The diagram summarizes the model classes that best reproduce the modulation in three HVAs,
LM, AL, and PM to global, form, and motion components in the naturalistic video.
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Table I: Summary of recording sessions

Texture stimuli Naturalistic video

animal ID| recording areas numbers of neurons animal ID| recording areas | numbers of neurons
281 |'V1' LM 169 69 143 |'V1' LM 121 57
281 |'V1' LI 85 114 143 |'V1' LM’ 116 36
281  |'V1' 'PM' 114 52 143 |'V1' LM’ 66 47
281 |'V1' ‘AL 71 61 144 |'V1' LM’ 114 86
284 |'V1' PM' 52 87 144  ['V1' LM’ 119 3
284 |'V1' AL' 71 36 144 |'V1' AM/PM' 53 65
286 ['V1' ‘LM’ 92 49 154 |'V1' 'AM/PM' 247 118
286 |'V1' 'AL’ 119 103 154  |'V1' 'AM/PM' 145 107
388 [LM' ‘LI 46 34 154 |'V1' 'AM/PM' 121 164
426 |'V1' LI 38 5 154  ['V1' 'V1' 135 134
382 [LM' LI 58 60 156 |'V1' 'LM' 129 87
493 |'V1' LI 156 157 156 |'V1' ‘AL’ 171 38
493 |'V1' ‘LM’ 96 150 166  |'V1' ‘AL’ 304 162
167 ['V1' ‘AL’ 161 117
Reliable responding 170 |'V1' ‘AL’ 352 163
Totals V1: 1063 325 171 |'V1' ‘AL’ 119 19
LM: 372 48 171 'V1_upper|'V1_lower,| 161 123
AL: 200 12 211 ['V1' 'V1' 100 169
LI: 370 96 633 ['V1' LM’ 85 150
PM: 139 28 633 ['V1' 'V1' 144 100
635 ['V1' ‘LM’ 94 141
657 ['V1' LM’ 37 47
RDK stimuli 657 |'V1' ‘LM 37 79
animal ID| recording areas numbers of neurons 635 ['V1' ‘AL’ 400 275
167 |'V1 (upper'V1 (lower 157 120 635 ['V1' 'V1' 287 343
167 |'V1' ‘AL 63 86 175 |'V1' ‘AL’ 125 39
167 |'V1 (deep)'AL (deep 40 112 190 |'V1' LM’ 95 102
170 |'V1' ‘AL 215 187 222 ['AL ‘LM’ 49 40
224 |'V1' 'AL’ 168 138 222 ['V1' ‘AL’ 119 64
224 |'V1' LM’ 87 72 211 ['vT1 LM’ 32 79
226 |'V1' ‘AL 160 99 363 |'V1' ‘AL’ 85 23
226 |'V1' ‘LM’ 132 69 363 |'V1' 'AM/PM' 88 64
222 |'V1' ‘LM’ 160 85 363 |'V1' ‘LM’ 99 162
222 |'V1' ‘AL 76 91 421 ['LM' LM’ 62 18
222  |'AL’ LM 24 26 351 |'V1' ‘AL’ 247 161
351 |'V1' 'AM/PM' 197 45
Reliable responding 388 |'V1' LM’ 50 43
Totals V1: 1378 392 388 |'V1' ‘AL’ 44 27
LM: 252 22 388 |'V1' AM/PM' 15 3
AL: 737 140 493 ['V1' V1! 24 16
LI: NA NA 382 |'V1' LM 61 30
PM: NA NA 382 |'V1' 'AM/PM' 44 1
500 |'V1' 'AM/PM' 121 39
490 ['V1' ‘LM’ 28 129
490 ['V1' ‘AL’ 77 66
Reliable responding

Totals V1: 6254 2634

LM: 1336 395

AL: 1203 393

LI: NA NA
PM: 606 105

822

823  Table 1. Summary of recording sessions.
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824  Supplementary Figures

825
a Intrinsic imaging
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b Spike train inference
Normalized neuropil subtracted trace Estimated trace from 400 MCMC trials < Raster plot of 10 MCMC trials
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826 105

827  Supplementary Figure 1. Multi-region two-photon calcium imaging processing (a) Example
828 intrinsic signal imaging of mouse visual areas. (b) Spike train inference of example neurons by
829  Markov chain Monte Carlo (MCMC) methods.
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Supplementary Figure 2. Defining tuning groups for neuronal responses to texture stimuli.
(a) Example raster of a responsive neurons to moving texture stimuli with four texture families
and four moving directions. (b) The responsiveness of V1 and HVAs to the texture stimuli
(responsive neuron fires on more than 30% of the trials to the preferred stimulus). Left: the fraction
of responsive neurons in HVAs are not significantly differed (one-way ANOVA, p = 0.2). Right:
distribution of neuron firing reliability (firing probability over trials) to the preferred texture stimulus.
Only responsive neuron was considered. V1 and LI were more reliable to the texture stimuli (one-
way ANOVA with Bonferroni multiple comparison, p = 4 x 10'%). (¢) Fit neuronal response (spike
count) to an encoder model using least-square regression with lasso regularization. (d) Model
performance of an example neurons. Top: raster plot and average spike count of the example
neuron, overlaid with the estimated spike count from the model. The model spike count was highly
correlated with the average spike count of the example neuron (Pearson correlation, r = 0.98).
Bottom: SVD decomposition of the estimated encoder model. The left and right singular vectors
corresponding to the motion direction and the texture family components, respectively. (e)
Cumulative fraction of encoder model performance, which was defined as the Pearson correlation
between model spike count and the trail-averaged spike count of neurons. (f) Joint distribution of
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847  the number of texture families and the number of directions that a texture neuron encoder was
848  responsive to. Color hue indicate the fraction of neurons in each bin.
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Supplementary Figure 3. Information about texture stimuli is strongest in area LI. (a-b)
Cumulative distribution of information each neuron has about the texture family (a) and the moving
direction (b). Inserts are the mean information. Error bars indicate SE. V1 and LI carries
significantly more information about the texture family (p = 0.0006) and the moving direction (p =
0.0006) (one-way ANOVA, Bonferroni multiple comparison). (a-b) Neurons reliably response
(response to >60% of trials) to at least one texture stimuli were included for information analysis
and encoder modeling (Number of neurons included (No. of experiments): V1, 325 (11); LM, 48
(5); LI, 96 (5); AL, 12 (3); PM, 28 (2)). (c) Relation between information about the moving direction
and information about the texture family carried by individual neuron in V1, LM and LI. Each dot
indicates one neuron. Blue line indicates the threshold of significant amount of information, which
was defined by shuffled data (Mean + 3*SD). (d) Information about drifting grating directions were
not striking differed among between HVAs (p = 0.12; one-way ANOVA).
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864  Supplementary Figure 4. Defining tuning groups of neuronal responses to RDK stimuli. (a)
865  Raster plots of an example neuron to RDK at four global motion directions and three coherence
866  (indicated by the thickness of arrows). (b) The responsiveness of V1 and HVAs to the RDK stimuli
867  (responsive neuron fires on more than 30% of the trials to the preferred stimulus). Left: the fraction
868  of responsive neurons in LM was significantly smaller compare to V1 and AL (T-test, p = 0.03).
869  Right: distribution of neuron firing reliability (firing probability on multiple trials) to the preferred
870  RDK stimulus. Only responsive neuron was considered. V1 and AL were more reliable to the
871 texture stimuli (one-way ANOVA with Bonferroni multiple comparison, p = 3 x 10°). (¢) RDK
872  encoder model performance of an example neurons. Top: raster plot and average spike count of
873  the example neuron, overlaid with the estimated spike count from the model (Pearson correlation,
874  r=0.99). Bottom: SVD decomposition of the estimated encoder model. The left and right singular
875  vectors corresponding to the coherence level and the motion direction components, respectively.
876  (d) Cumulative fraction of encoder model performance (Pearson correlation between model and
877  the trail-averaged spike count of neurons). (e) Joint distribution of the number of directions and
878  the number of coherence levels that an RDK neuron encoder was responsive to. V1 and AL has
879 larger fraction of tuned neurons that were selectively response to one motion direction (V1, 52%;
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880 AL, 43% and LM, 14%). Color hue indicate the fraction of neurons in each bin. (f) The mean
881 information about global moving direction at different coherence level.

882
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883

884  Supplementary Figure 5. Feature space of naturalistic videos. (a) Example edge density
885  maps at multiple spatial scales. Edge detection by Canny edge detector after Gaussian blur with
886  defined kernel size (top). Edge density was computed by sum up the edge number within a local
887  neighborhood (10 x 10 pixel, a wide range (10~100 pixel?) of neighborhood size was tested). (b)
888 Example Difference of Gaussian (DOG) entropy maps at multiple spatial scales. The inner
889  Gaussian kernel size was shown (top), and outer Gaussian filter size was double the inner filter
890  size. The entropy after DOG filtering was computed at a local neighborhood (10 x 10 pixel, a wide
891 range (10~100 pixel?) of neighborhood size was tested). (¢) Example optical flow map for a
892  naturalistic video frame. The OF direction and speed of each pixel was estimated using Horn-
893  Schunck method. The OF feature entropy was computed at a local neighborhood. (d) The time-
894  varying visual features of the naturalistic videos.

35


https://doi.org/10.1101/2021.12.05.471337
http://creativecommons.org/licenses/by-nc-nd/4.0/

895

896
897
898
899
900
901
902
903
904
905
906
907

bioRxiv preprint doi: https://doi.org/10.1101/2021.12.05.471337; this version posted December 7, 2021. The copyright holder for this preprint
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY-NC-ND 4.0 International license.

c Population response convergence

o
o

o
o

o
)

Corr (population response)
o
i

0
0 100 200 300 400 500
Population size

a Fraction of responsive neuron b 03 Reliability of responsive neurons
- .
— |
TT \ i
0.8r | | |
| [ | £ 02 —V1
5 06 ‘ | = —LM
.% ! | § AL
© —PM
L 04 Q * o1
T
0.2 | |
£ L £ n 0 - ,
0 0 0.2 0.4 0.6 0.8 1
V1 LM AL PM Reliability
d Tuning classes to the naturalistic video

class 1 (small class)

o = N

0 20 40 60
class 6
0.5
0
0 20 40 60
E class 11
o 1
o
o 05
(o))
s 0
¢ O 20 40 60
>
< class 16

[
ot =

0 20 40 60
class 21
1
0.5
0
0 20 40 60
Time (s)
e
» 100
<
o
3
2 50
<
0
0 5 10

2 class 2 (small class) 1 class 3 class 4 class 5
1 1
1 [ h 0.5 0.5 0.5
0 0 0 0
0 20 40 60 0 20 40 60 0 20 40 60 0 20 40 60
class 7 1 class 8 class 9 class 10
1 1 1
05 0.5 0,5| ﬂ 0.5l_ L
0 0 0 0
0 20 40 60 0 20 40 60 0 20 40 60 0 20 40 60
class 12 class 13 class 14 class 15
1 1
0.5 05 05 0.5
0 0 0 0
0 20 40 60 0 20 40 60 0 20 40 60 0 20 40 60
class 17 class 18 class 19 class 20
1 2 2 0.4
Al Ll ol 1
0 Lab Na A 0 A 0 b 0
0 20 40 60 0 20 40 60 20 40 60 0 20 40 60
class 22 class 23 class 24 class 25
1 0.2 0.2
UL L 0.1 MWWMA 01 MMWW o
0 ~ 0 0 0
0 20 40 60 0 20 40 60 0 20 40 60 0 20 40 60
Time (s) Time (s) Time (s) Time (s)
Histogram of neuron clusters f Area-unique neuron classes .
1000 1 .
2 Sor I
olemt 2 B8 __ &8 B N .
500 LM T T,y = Iz T
T I o=
. S A e A ‘ ‘ ‘
15 20 232425 2 0 5 10 15 20 25
=
g 3
I
L T o
ZAL! &
ks O s e § i | S
c AP s T E
i<l \ \ . .
§ 0 10 15 20 25
© 3r - -
S 3 I
I I
PM 1+ I 1t 1 LI
ol gggr il gyt gy R A
il _ TT T =
0 5 10 15 20 25
Class ID

Supplementary Figure 6. Selective response to a naturalistic video reveal classes that are
enriched in specific HVAs. (a) The fraction of responsive neurons to the naturalistic video in V1,
LM, AL and PM were similar (trial-to-trial Pearson correlation > 0.08; one-way ANOVA, p = 0.13).
(b) The distribution of neuron firing reliability (trial-to-trial Pearson correlation) to the naturalistic
video were not differed in V1, LM and AL, and slightly lower in PM (one-way ANOVA with
Bonferroni multiple comparison, p = 0.0006). Only responsive neuron was considered. (c)
Pearson correlation of the average population responses computed from non-overlapping
subpopulations with certain number of neurons. (d) Average responses of 25 GMM classes to the
naturalistic video. (e) Number of neurons in each GMM class to the naturalistic video. (f) Fraction
difference of classes between HVA and V1 ( (HVA — V1) / V1). Zero means the HVA and V1
weighted the same on this class. Stars indicate significantly 10% more (red) or less (black) than
V1 (T-test). The error bars indicate SE computed from permutation.
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909 Supplementary Figure 7. Parametric features of naturalistic video stimuli differentially
910 modulate activity in the tuning groups. (a) The modulation power of the average responses of
911  neurons in each class (N = 200 with permutation) by visual features of the naturalistic video. The
912  modulation power is characterized by the r-squared values (variance explained) of the linear
913  regression of the average population responses with individual features. (b) The modulation
914  power of the average responses of a neuron population from selected classes (N = 200 with
915  permutation) by visual features of the naturalistic video. Left, classes that are ENRICHED (more
916 common than average of all HVAs) in specific HVAs (classes with red star in Supplementary
917  figure 6f). Right, Classes that are UNDERREPRESENTED in specific HVAs (classes with black
918  star in Supplementary figure 6f).
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920 Supplementary Figure 8. DOG entropy facilitated texture family encoding. (a) DOG entropy
921  map and edge density map for example images from four texture classes. The Gaussian kernel
922  size (standard deviation) is indicated in degrees. (b) Histogram of pairwise distances between
923  texture images, from the same (blue bars) or different classes (colored curves). The distance was
924  computed from the Euclidian distance between DOG entropy maps (left) or the edge density maps
925  (right).
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929  Supplementary Figure 9. Encoding of texture stimuli by neuron models. (a) Plots of
930 information about the texture family and information about the texture motion direction. Open
931 circle indicates individual simulated neurons. 2D Gabor and 3D Gabor models without
932  normalization exhibited unimodal encoding of the moving texture stimuli, that the former carried
933 information about texture family and the latter carried information about texture motion direction.
934 3D Gabor models with untuned normalization generated joint encoding of both the texture family
935 and the texture motion direction. (b) Joint distribution of the number of texture families and the
936 number of texture moving directions that a simulated neuron was responsive to. (c) Left, the joint
937  distribution of information about texture family and texture direction of mouse visual cortical
938 neurons (reproduce Supplementary Fig. 3c, combined all regions). Right, Joint selectivity of
939 texture families and texture moving directions mouse visual cortical responses (reproduce
940  Supplementary Fig. 2f).
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Supplementary Figure 10. Encoding of RDK stimuli by neuron models. (a) Histogram of
information about the RDK moving direction. (b) Joint distribution of the number of directions and
the number of coherence levels that a simulated neuron was responsive to. (c) Left, the
distribution of information about RDK motion direction of visual cortical neurons (reproduce Fig.
1f). Right, the selectivity of RDK directions of mouse visual cortical neurons (reproduce

Supplementary Fig. 4e)
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Supplementary Figure 11. Encoding visual features of the naturalistic video using model
neuron responses. (a) Simulated neuronal responses (PSTH) to the naturalistic video. The
neurons were sorted by the timing of the strongest response. The color hue indicates the
normalized value. The normalized average population response of each model was shown at the
bottom.
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a 2D Gabor model performed the best in reproducing
neuron responses to texture stimuli
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Supplementary Figure 12. 2D Gabor model performed the best in reproducing neuron
responses to texture stimuli. (a) Model neuronal responses to texture stimuli. Binned spike
count of a neuron, and its best 2G Gabor model, 3D Gabor model and 3D Gabor model with
normalization. (b) Information about texture stimuli (top), texture direction (middle) and texture
family (bottom) carried by neuron model vs. recorded neuronal responses. (¢) Left, information
about visual stimuli carried by neuron vs. model. Right, the similarity, measured by canonical
correlation, of information encoding of texture stimuli between neuron models and neurons.
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964  Reported p-values are from a one-way ANOVA of mean canonical correlation values over all
965 dimensions.
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a 3D Gabor with normalization performed the best in reproducing neuron responses to RDK stimuli
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Supplementary Figure 13. 2D Gabor model performed the best in reproducing neuron
responses to RDK stimuli. (a) Model neuronal responses to RDK stimuli. Binned spike count of
a neuron, and its best 2G Gabor model, 3D Gabor model and 3D Gabor model with normalization.
(b) Information about RDK stimuli (top), and RDK direction (bottom) carried by neuron model vs.
recorded neuronal responses. (¢) Left, information about visual stimuli carried by neuron vs.
model. Right, the similarity, measured by canonical correlation, of information encoding of RDK
stimuli between neuron models and neurons. Reported p-values are from a one-way ANOVA of
mean canonical correlation values over all dimensions.
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a Reproducing naturalistic video feature modulation in over-represented neuron classes
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976  Supplementary Figure 14. Reproducing the modulation of neuronal responses by visual
977  features of naturalistic videos. (a) Boxplot of feature modulation power (upper) and modulation
978  coefficients (down) of Gabor models for over-represented classes in HVAs (also, Supplementary
979  Fig. 7).
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