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Abstract  11 

Mice have a constellation of higher visual areas, but their functional specializations are 12 
unclear. Here, we used a data-driven approach to examine neuronal representations of 13 
complex visual stimuli across mouse higher visual areas, measured using large field-of-view 14 
two-photon calcium imaging. Using specialized stimuli, we found higher fidelity 15 
representations of texture in area LM, compared to area AL. Complementarily, we found 16 
higher fidelity representations of motion in area AL, compared to area LM. We also observed 17 
this segregation of information in response to naturalistic videos. Finally, we explored how 18 
popular models of visual cortical neurons could produce the segregated representations of 19 
texture and motion we observed. These selective representations could aid in behaviors such 20 
as visually guided navigation.  21 
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Introduction  22 

Visual systems evolved to extract behaviorally relevant information from complex natural 23 
scenes. Visual stimuli contain information about texture, motion, objects, and other features of 24 
the environment around the animal. These components of visual stimuli have unequal relevance 25 
across behaviors. For example, optic flow and parallax motion information can help guide 26 
navigation behavior, but object recognition is often invariant to motion. The ventral stream of 27 
cortical areas in rodents function as object detection circuitry, as they do in primates. As expected, 28 
these areas exhibit neural representations (spatiotemporal patterns of neuronal activity, a.k.a. 29 
population codes) that are increasingly invariant in their responses with changes in the 30 
appearance of recognized objects1–3.   31 

In mice, axons from neurons in primary visual cortex (V1) extend out to an array of higher 32 
visual areas (HVAs), seven of which share a border with V1, and all of which have characteristic 33 
interconnectivity with other brain regions. Mouse visual cortical areas exhibit a level of hierarchical 34 
structure, and form two subnetworks4–9. HVAs receive functionally distinctive afferents from V1 35 
(ref. 10). At least nine HVAs exhibit retinotopic topology8,11–13 and neurons in HVAs have larger 36 
receptive fields than neurons in V1 (ref. 8). This organization and connectivity of mouse visual 37 
areas may have evolved to selectivity propagate specific visual information to other brain regions, 38 
but the functional specializations of HVAs require further elucidation.  39 

Gratings are classic visual stimuli for characterizing responses in visual cortical areas14–16. In 40 
mice, HVAs exhibit biases in their preferred spatial and temporal frequencies of gratings, but 41 
overall, their frequency passbands largely overlap10,17–19. Similar studies using alternative visual 42 
stimuli have produced additional insights: spectral noise stimuli revealed further details of 43 
spatiotemporal preferences among HVAs20; plaid stimuli (two superimposed gratings with 44 
different angles) revealed pattern cells in LM and RL21; naturalistic texture stimuli were better 45 
discriminated from scrambled versions in LM than in V122, and random dot kinematograms 46 
highlighted motion-coherent modulation in putative dorsal areas AL, PM, and AM15,23. One could 47 
hypothesize texture and motion to be key components of any visual stimuli. How are 48 
representations of texture and motion features in visual stimuli segregated among HVAs in mice? 49 
Representation of texture relies on the encoding of local features24. Experimental and theoretical 50 
studies suggested that HVAs may encode a combination of local features, such as multiple edges 51 
to detect curves and shapes25–27.  52 

In the current study, we have examined the visual feature selectivity of multiple visual areas 53 
to three classes of visual stimuli: drifting textures, random dot kinematograms, and naturalistic 54 
videos. We have examined how the texture and motion components of a naturalistic video are 55 
represented, and found that high fidelity representations of these stimulus classes are segregated 56 
to different HVAs. We then explored how a range of popular Gabor filter-based models of visual 57 
cortical neurons can produce similar segregations of stimulus representations. The results from 58 
these experiments reveal new aspects of the tuning properties of mouse HVAs.  59 
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Results 60 

Multi-area calcium imaging to distinguish tuning properties of HVAs 61 

To survey the tuning properties of multiple visual cortical areas, we performed population 62 
calcium imaging of L2/3 neurons in V1 and four HVAs (lateromedial, LM; laterointermediate, LI; 63 
anterolateral, AL; posteromedial, PM or anteromedial, AM) of awake mice using a multiplexing, 64 
large field-of-view two-photon microscope with subcellular resolution developed in-house28, and 65 
transgenic mice expressing the genetically encoded calcium indicator GCaMP6s29,30. We located 66 
V1 and HVAs of each mouse using retinotopic maps obtained by intrinsic signal optical 67 
imaging18,31 (Supplementary Fig. 1a). Borders of HVAs were reliably delineated in most cases, 68 
with the exception being some experiments where the AM and PM boundary was not clearly 69 
defined (for those cases, neurons were pooled as AM/PM). We imaged neuronal activity in 2 – 4 70 
cortical visual areas simultaneously (Fig. 1a, b). Calcium signals were used to infer probable 71 
spike trains for each neuron (Methods; Supplementary Fig. 1b). During visual stimulation, the 72 
average and maximal firing rates inferred were similar across cortical areas, and were typically 73 
around 0.5 spikes/s average, and ranged up to 15-30 spikes/s maximal (Fig. 1c). 74 

We characterized the neuronal responses to three types of visual stimuli: scrolling textures 75 
(hereafter “texture stimuli”), random dot kinematograms (RDK), and a naturalistic video mimicking 76 
home cage navigation (For experiment details see Table 1). Neurons that fired on 60% of trials 77 
were considered “reliably responsive”, if not otherwise stated. In general, half of all recorded 78 
neurons responded to at least one visual stimulus reliably (texture: 55%; RDK: 54%; naturalistic 79 
video: 50%). For each stimulus type, we characterized the tuning properties of individual neurons 80 
using an encoder model (Methods). We also measured neuronal selectivity to texture family, 81 
motions direction, or joint selectivity using mutual information analysis. Higher bit values for a 82 
neuron-stimulus parameter pair means that the activity from that neuron provides more 83 
information about that stimulus parameter (or combination of stimulus parameters). 84 

 85 

Information about texture and RDK were encoded in separate HVAs  86 

We tested the selectivity of neurons in V1, LM, LI, AL and PM to texture stimuli using a set of 87 
naturalistic textures that drifting in one of the four cardinal directions (Supplementary Fig. 2a). 88 
We generated four families of texture images based on parametric models of naturalistic texture 89 
patterns (Methods). These stimuli allowed us to characterize the representation of both texture 90 
pattern information and drift direction information, and thus test the tolerance of a texture selective 91 
neuron to motion direction. 92 

We observed reliable responses to drifting textures in V1, LM, LI and PM, while AL was barely 93 
responsive to these stimuli (Supplementary Fig. 2b). About 43% of reliably responsive neurons 94 
were modulated by the texture stimuli (i.e., texture-tuned neurons) (Methods; Supplementary 95 
Fig. 2c-e). Texture-tuned neurons exhibited various selectivity patterns, suggesting a variety of 96 
encoding properties (Fig. 1d). For example, about 13%-38% (varied across HVAs) of neurons 97 
were strictly selective to one texture family drifting in one direction (Supplementary Fig. 2f), and 98 
a different group of neurons (about 30%) were also selective to one texture family but responded 99 
to more than one motion direction of that texture family (Supplementary Fig. 2f). This latter group 100 
of tuned neurons could be called tolerant to motion direction, with the implication that it is selective 101 
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for the other stimulus parameter (texture family, in this case). In general, we observed neurons 102 
tolerant to either texture family or motion direction in V1 and HVAs.  103 

Using mutual information analysis, we then characterized the selectivity of individual neurons 104 
in HVAs. Overall, neurons in V1 and LI were more informative about the texture stimuli, followed 105 
by LM. By contrast, neurons in areas AL and PM were not informative about the texture stimuli 106 
(Fig. 1e; p = 5.8 x 10-8; one-way ANOVA). To examine the tolerance of texture encoding neurons 107 
to the translational direction, we computed the mutual information between neuronal responses 108 
and texture families (refer the statistical pattern of a texture image). LI was the most informative 109 
about texture family out of all tested visual areas, followed by V1 and LM (Supplementary Fig. 110 
3a; p = 0.0006; one-way ANOVA). Meanwhile, V1 and LI also carried more information about the 111 
motion direction of the texture stimuli, compared to areas AL and PM (Supplementary Fig. 3b; 112 
p = 0.0006, one-way ANOVA). Examining the information encoding of individual neurons, we 113 
found an increasing fraction of neurons that jointly encoded texture family and texture drift 114 
direction along the putative ventral pathway (V1: 13%, LM: 17%, LI: 30%, Supplementary Fig. 115 
3c; AL: 0%, PM: 0%), suggesting increasing joint coding along the putative visual hierarchy.  116 

These results for texture encoding contrast with results for standard drifting gratings. For 117 
gratings, we found motion direction information to be encoded broadly, differing <10% among 118 
HVAs (Supplementary Fig. 3d), while texture motion information did not propagate to visual 119 
areas outside the putative ventral pathway, differing >250% among HVAs (Supplementary Fig. 120 
3a, b). The drift speeds were similar (32 degrees/s for the textures and 40 degrees/s for the 121 
gratings), so it is unclear which spatial structural differences between these stimuli drove the 122 
differences in encoding. Thus, we next examined responses to a stimulus with less spatial 123 
structure and greater focus on motion.  124 

We examined the encoding of random dot kinematograms (RDK), which are salient white dots 125 
on a dark background with 40-90% motion coherence (remaining dots move in random directions 126 
(Fig. 1f; Supplementary Fig. 4a). The RDK stimuli elicited responses in 40-80% of neurons in 127 
V1, LM and AL, and V1 and AL were more responsive to and generated more reliable 128 
representations of the RDK stimuli (Supplementary Fig. 4b). Among reliably responsive neurons 129 
(responding on at least 60% of trials), about 32-60% of neurons were modulated by the RDK 130 
stimuli (i.e., exhibited tuning) (V1: 59%, LM: 32%, AL: 43%; Supplementary Fig. 4c, d). RDK-131 
tuned neurons exhibited selectivity to motion directions and were modulated by the motion 132 
coherence (Supplementary Fig. 4e). To characterize the direction selectivity, we computed the 133 
mutual information between neuronal responses and the motion direction at each coherence level 134 
(Supplementary Fig. 4f). We found that V1 and AL were more informative than LM about the 135 
motion direction of the RDK at all coherence levels (Fig. 1g; p = 0.0006, one-way ANOVA).  136 

In summary, texture family selective neurons were found in V1, LM, LI and PM, while RDK 137 
direction selectivity neurons were more abundant in AL. Thus, information about drifting textures 138 
and RDK motion are segregated to distinct HVAs (Fig. 1h).  139 

 140 

Features of naturalistic videos were encoded in separate HVAs  141 

To determine whether this segregation of texture and motion information among HVAs could 142 
be detected within a more complex stimulus, we characterized the cortical representation of a 143 
naturalistic video (Fig. 2a). The 64-second-long naturalistic video stimulus contained time-varying 144 
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visual features such as contrast32, luminance, edge density26, difference of Gaussian (DOG) 145 
entropy33, and optic flow (OF) speed and direction23 (Methods; Supplementary Fig. 5). About 40% 146 
of neurons in the four areas responded to the naturalistic video reliably (trail-to-trial correlation > 147 
0.08; Supplementary Fig. 6a, b). Our results thus far suggested that activity in AL would be 148 
modulated by motion information in the naturalistic video, and activity in LM would be modulated 149 
by texture information in the same video. We tested this hypothesis. 150 

Neurons in the four imaged visual areas (V1, AL, LM, and PM) exhibited highly selective 151 
responses to the naturalistic video. Individual neurons responded to ~ 3% of stimulus video 152 
frames, corresponding to a high lifetime sparseness (0.83 ± 0.09 (mean ± SD); Fig. 2b). Unbiased 153 
clustering (Gaussian mixture model, GMM) partitioned neurons into 25 tuning classes to the 154 
naturalistic video, and 20 of these classes exhibited unique sparse response patterns, responding 155 
at specific time points of the naturalistic video (Supplementary Fig. 6d). All naturalistic-video-156 
tuning classes were observed in V1, and most were observed in HVAs (1-2 classes were missing 157 
in AL and PM). However, the relative abundance of tuning classes varied among V1 and HVAs 158 
(Supplementary Fig. 6e, f).  159 

Next, we examined the collective effects of the biased distributions of tuning classes among 160 
HVAs. We reasoned that if a time-varying feature of the naturalistic video strongly modulates 161 
neuronal activity in an HVA (Fig. 2c), we should be able to detect that by regressing the visual 162 
feature dynamics (Fig. 2d) with the average neural activity in an HVA. The average response of 163 
a cortical area neuron population converged with several hundreds of neurons (about 500 from 164 
V1, about 200 from HVAs; Supplementary Fig. 6c). We examined a set of visual features that 165 
were previously implied to modulate visual system, including contrast32,34, luminance, edge 166 
density26, DOG entropy33, and OF speed and direction23 (Supplementary Fig. 5). The visual 167 
features were computed at multiple spatial scales, and qualitatively similar results were observed 168 
across a wide range of scales. Here we present representative results: edge density maps with a 169 
Gaussian kernel of 2.35° (full width at half maximum, FWHM), and DOG entropy maps with a 170 
Gaussian kernel of 11.75° (FWHM, inner kernel; the outer kernel is two-fold larger in FWHM) (Fig. 171 
2d).  172 

Regressing these visual features with the average neuronal responses per HVA suggested 173 
that V1, LM, AL and PM are distinctly modulated by naturalistic video features. We defined the 174 
modulation coefficients as the coefficients of the linear model, and modulation power of each 175 
feature as the variance of responses explained by the model (i.e., the r2 of a linear fit to a particular 176 
visual feature and the neural activity; Fig. 2e). The feature modulation analysis suggested that 177 
the average responses of AL populations but not the other three areas was correlated with OF 178 
speed entropy (Fig. 2f). In PM, activity was correlated with contrast and edge density but not 179 
DOG entropy (Fig. 2f). In both V1 and LM, but neither AL nor PM, activity was correlated with 180 
both contrast and DOG entropy (Fig. 2f). These results suggested that AL activity represents 181 
motion components in the naturalistic video, while LM and PM activity represents spatial 182 
components in the same naturalistic video.  183 

Next, we returned to the tuning class analysis (Supplementary Fig. 6), and determined 184 
whether the segregation of motion and spatial representations we observed was consistent with 185 
the biased distribution of tuning classes across HVAs. Tuning classes were indeed differentially 186 
modulated by contrast, DOG entropy, edge density and optical flow speed entropy of the 187 
naturalistic video (Supplementary Fig. 7a). As expected, we found that overrepresented tuning 188 
classes within an HVA could explain the superior representation of a feature. Similarly, the 189 
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underrepresented tuning classes explained the inferior representation of a feature within an HVA 190 
(Supplementary Fig. 7b). Together, these results indicate that motion information and spatial 191 
information are differentially represented among HVAs due to the distribution of tuning classes 192 
between them. Neurons in AL provided superior representations of motion features in a 193 
naturalistic video, and neurons in LM and PM provided superior representations of spatial features 194 
in the same naturalistic video. 195 

 196 

DOG entropy can support texture family encoding 197 

While V1 and LM also provided high fidelity representations of texture, PM did not (Fig. 1d). 198 
However, with the naturalistic video, all three areas were modulated by several spatial features. 199 
PM was distinct in that it was relatively well modulated by edge density and poorly modulated by 200 
DOG entropy, compared to V1 and LM. Thus, we hypothesized that DOG entropy could facilitate 201 
texture encoding. We generated DOG entropy and edge density feature maps for texture stimuli 202 
(Fig. 1c, Supplementary Fig. 8a). Then, we asked whether these feature maps were sufficient 203 
to discriminate texture images from different classes, while also being tolerant to differences 204 
among textures from the same class. We examined these questions by training a linear classifier 205 
to discriminate textures within and across texture classes using DOG entropy features or edge 206 
density features (Methods, Supplementary Fig. 8b). As expected, we found that DOG entropy 207 
indeed performed better for discriminating texture images by classes. The linear classifier using 208 
the DOG entropy feature successfully classified 83.3% of inter- and intra-class texture image pairs 209 
with 9 ± 4% miss-classification rate, while the classifier using the edge density feature classified 210 
67% of these pairs with 12 ± 4% error rate. Thus, we concluded that the superior representation 211 
of texture by V1 and LM (compared to PM) could be due to their modulation by DOG entropy 212 
features.  213 

 214 

Gabor models exhibited biased feature representations  215 

To this point, the evidence indicates a distributed representation of visual features among 216 
HVAs. Could these differences be due to subtle biases in preferred temporal or spatial 217 
frequencies? Or are they indicative of more fundamental differences in the underlying tuning of 218 
neurons in HVAs? To address these questions, we examined neuron models that would 219 
reproduce the diverse encoding functions we observed in mouse visual cortex. We simulated 220 
neurons using a base model of a linear-nonlinear (LNL) cascade with Gabor filter-based linear 221 
kernels (Fig. 3a; Methods). The LNL cascade with Gabor filter is a classic model for visual cortical 222 
neurons35. However, recent studies suggested that multiple Gabor kernels are required for 223 
predicting V1 neuron responses in mice36 and generating tolerances to rotation, translation, and 224 
scale24,37. Separately, dimensionality analysis suggested that normalization is critical for capturing 225 
the diverse response profiles of V1 neurons to naturalistic stimuli38. Inspired by these findings, we 226 
designed several variations of the base model for testing.  227 

Models were grouped into three groups: 2D Gabor models, 3D Gabor models and 3D Gabor 228 
models with normalization. For 2D Gabor filter-based models, we examined both linear and 229 
energy models. These are similar to models of complex cells in which input from multiple simple 230 
cells with similar orientation preferences but varying phase are integrated14. Other combinations 231 
were used as well (cross-orientation, cross-scale, etc.; Fig. 3b). For 3D Gabor filter-based models, 232 
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we also examined motion models (Fig. 3b). In addition, we also examined a version of the 3D 233 
Gabor model with subtractive normalization (Fig. 3b). All the simulations were carried out at 234 
multiple spatial and temporal (for 3D Gabor filter-based models) scales and sampled uniformly in 235 
space. 236 

Using these three model classes (2D Gabor, 3D Gabor, and 3D Gabor with normalization), 237 
we simulated neuronal responses to the texture, RDK, and naturalistic video stimuli. We 238 
characterized the mutual information and feature selectivity of simulated responses to the texture 239 
and RDK stimuli (Supplementary Fig. 9, 10), and measured the feature encoding of simulated 240 
responses to the naturalistic video (Supplementary Fig. 11). Different neuron models varied in 241 
the encoding power of different types of stimuli or visual features. We noted that 2D Gabor models 242 
exhibited specific tuning to the texture family while remaining tolerant to motion directions, 243 
especially the cross-orientation and linear cross-position models (Supplementary Fig. 9b), which 244 
are the best models for texture family encoding. On the other hand, 2D Gabor models performed 245 
badly in representing the RDK stimuli (Supplementary Fig. 10a), while 3D Gabor models with 246 
normalization performed the best in encoding the RDK moving direction (Supplementary Fig. 247 
10a). 3D Gabor models with untuned normalization captured both the information about the 248 
motion direction, but also exhibited tolerance to various coherence levels (Supplementary Fig. 249 
10b). In representing the naturalistic videos, 2D Gabor models exhibited better sensitivity to the 250 
contrast, edge density, and the DOG entropy, while the 3D Gabor models with untuned 251 
normalization exhibited better modulation by the OF entropy (Fig. 3c). This represents an 252 
apparent trade-off in representation fidelity between 3D Gabor kernels with normalization and 2D 253 
Gabor kernels. In summary, the subtractive untuned normalization is important for the 254 
representation of motion, such as RDK and OF entropy, while Gabor kernels without the time 255 
domain provide better representations of spatial features.  256 

 257 

Gabor models reproduced specific feature representation of mouse visual cortex  258 

With the model results in hand, we sought to determine how well they could account for our 259 
observations of neuronal activity in vivo (Figs. 1,2). We fit individual neuronal responses with the 260 
Gabor-based models (Methods). For each model class (2D Gabor, 3D Gabor, and 3D Gabor with 261 
normalization), one best linear model was fit by minimizing the cross-validation error of a linear 262 
regression between the simulated model response and neuron response (Fig. 4a).  263 

Next, we took these pools of fits (three fits per neuron, one fit for each model class) and 264 
characterized how they represented features in the naturalistic videos. Consistent with the prior 265 
findings in this study (Fig. 3), we found that 2D Gabor models reproduced the neuronal 266 
information encoding about texture stimuli the best (Supplementary Fig. 12), while the 3D Gabor 267 
model with normalization reproduced the information encoding about the RDK stimuli the best 268 
(Supplementary Fig. 13).  269 

The three classes of models were differentially involved in encoding of spatial and temporal 270 
features of naturalistic videos (Supplementary Fig. 14). We examined how well the three model 271 
classes could account for the characteristic neuronal activity modulations to visual features we 272 
observed in each HVA in vivo. We took a subset of the model responses, those that were fit to 273 
neurons that belonged to over-represented tuning classes within an HVA (Supplementary Fig. 274 
6d, f), as these neurons accounted for unique spatiotemporal feature representations of HVAs 275 
(Supplementary Fig. 7). For the DOG entropy modulation in area LM, we found that the 3D 276 
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Gabor model class best fit the modulation we observed in vivo (Fig. 4b, c). For the optic flow 277 
speed entropy modulation in area AL, model fits to AL neurons that were in the 3D Gabor with 278 
normalization class were the best fit to the in vivo data (Fig. 4b, c). For the contrast and edge 279 
density modulations observed in area PM, both 2D and 3D Gabor model classes provided good 280 
fits. However, the fits for the contrast modulation were a better match to the in vivo data than the 281 
edge density modulation (Fig. 4b, c). Overall, this analysis reveals that unique model classes are 282 
required to reproduce the visual feature modulation observed in HVAs: 3D Gabor filter-based 283 
models for area LM neurons, 3D Gabor filters with normalization for area AL neurons, and both 284 
2D and 3D Gabor filter-based models for area PM neurons (Fig. 4d).    285 
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Discussion  286 

In the current study, we have revealed unique encoding properties of V1 and multiple HVAs 287 
in representing textures, RDK, and naturalistic videos. From our results, it appears as though V1 288 
establishes a representation of various visual features, LM and LI are specialized for encoding of 289 
spatial features, and AL is specialized for the encoding of motion features. The encoding function 290 
of area PM was less obvious, as it seems that activity in that HVA was driven mostly by the density 291 
of visual edges, which are a spatial feature, but since PM is so poorly modulated by the DOG 292 
entropy feature, it is difficult to group it with LM and LI. Finally, we determined that unique model 293 
classes are required to reproduce the modulations we observed in these. Parameter variations 294 
within a model class were not sufficient. Instead, different model classes were required for 295 
reproducing the in vivo results in separate HVAs. These findings provide new insights into the 296 
neural circuitry that can generate distributed representations of visual stimuli in HVAs. 297 

In our analysis, we found discrete neuron classes that had unique response profiles to a 298 
naturalistic video stimulus. These classes formed a non-uniform distribution among V1 and HVAs, 299 
and appropriately, were found to contribute to the biases in feature encoding among HVAs. It is 300 
unclear whether neurons with different tuning profiles play similar computational roles. Overall, 301 
these results determined that mouse visual cortical neurons can represent complementary 302 
features of visual scenes, and each HVA can exhibit unique biases towards specific visual 303 
features that are consistent across stimulus types, including naturalistic videos. Coupled with their 304 
downstream connectivity, these distinguishing biases among HVAs can provide insights into their 305 
involvement in visual processing and behavior. 306 

The rodent visual system evolved in response to the ecological niche mice found themselves 307 
in. We do not expect such a process to result in neural circuitry that performs neat, absolute 308 
segregations of information about visual scenes. Instead, we expect neural circuitry that efficiently 309 
supports adaptive behavior for the mouse’s ecological niche. The principles of that efficient 310 
circuitry are likely quite different from those of any systematic, mathematically compact approach 311 
for parsing a visual scene in terms of known receptive field properties of visual cortical neurons. 312 
Thus, here we used a data-driven approach to gain a conservative foothold into complex visual 313 
scene processing in mice. We explored how segregated representations might emerge using a 314 
modeling approach based on known receptive field properties of visual cortical neurons, or at 315 
least popular models thereof. This analysis showed that 2D and 3D Gabor models provided 316 
accurate accounts for distinguishing texture and form features. By contrast, 3D Gabor models 317 
with subtractive normalization were key for distinguishing motion stimuli.  318 

The enrichment of specific representations of motion or texture in areas AL and LM 319 
respectively, could arise from specific connectivity from other brain regions (e.g., V1) that 320 
preserves selectivity10, or from converging inputs that result in enhanced selectivity (or more 321 
invariant selectivity) for a visual feature14,36,39. We generally cannot distinguish those two 322 
possibilities with this data set. However, in area LI, neurons exhibited selectivity that surpassed 323 
that of neurons in V1, so it appears as though preserved selectivity from V1 projecting to LI would 324 
be insufficient to produce such selectivity. However, we cannot rule out thresholding effects which 325 
could play a role in increasing apparent selectivity. 326 

Altogether, this study reveals new segregations of visual encoding or representations among 327 
HVAs in mice, many of which are reminiscent of the primate visual system. Studies have 328 
suggested macaque V2 exhibited selectivity to texture families and tolerance to local feature 329 
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differences between images from the same texture class24,26. In macaque V4, neurons are highly 330 
selective to texture patterns, which are well predicted using combination of 2D Gabor models37. 331 
Famously, macaque dorsal visual areas such as MT exhibit selectivity to RDK motion direction40. 332 
The functional similarities between mouse LM and LI and macaque V2 and V4, and between 333 
mouse AL and macaque MT are perhaps superficial, but could also indicate that the dual stream 334 
framework for visual pathways in primates could have an analog in mice5,41. Earlier anatomical 335 
and receptive field mapping studies suggest that mouse LM and AL likely serve as the ventral 336 
and dorsal gateways in the mouse visual hierarchy6,8,31. Anatomical evidence including 337 
connectivity with downstream brain regions support functional distinctions between putative 338 
ventral and dorsal areas of mouse visual cortical areas, e.g. ventral areas were strongly 339 
connected to temporal and parahippocampal cortices, while putative dorsal areas were 340 
preferentially connected to parietal, motor and limbic areas5. Recent large scale multi-region 341 
electrode recordings from mouse visual cortex revealed an inter-area functional connectivity 342 
hierarchy, but did not group mouse HVAs into separate streams or subnetworks9. The study 343 
further showed that both LM and AL were similarly recruited by a visual recognition task, in which 344 
AM and PM were strongly involved9. Together, we conclude that both anatomical and functional 345 
studies suggest that mouse HVAs likely play distinct roles in visual behaviors, and may comprise 346 
dual processing streams analogous to primates. However, well designed behavioral tasks are 347 
required to further reveal the circuits and mechanisms.   348 
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Methods 349 

Animal and surgery  350 

All animal procedures and experiments were approved by the Institutional Animal Care and 351 
Use Committee of the University of North Carolina at Chapel Hill or the University of California 352 
Santa Barbara and performed in accordance with the regulation of the US Department of Health 353 
and Human Services. GCaMP6s-expressing transgenic adult mice of both sexes were used in 354 
this study. Mice were 110 – 300 days old for data collection. GCaMP6s-expressing mice were 355 
induced by triple crossing of the following mouse lines: TITL-GCaMP6s (Allen Institute Ai94), 356 
Emx1-Cre (Jackson Labs #005628), and ROSA:LNL:tTA (Jackson Labs #011008)29. Mice were 357 
housed under a 12 h light / 12 h dark cycle, and experiments were performed during the dark 358 
cycle of mice. For cranial window implantation, mice were anesthetized with isoflurane (1.5 – 1.8% 359 
in oxygen) and acepromazine (1.5 – 1.8 mg/kg body weight). Carprofen (5 mg/kg body weight) 360 
was administered prior to surgery. Body temperature was maintained using physically activated 361 
heat packs or homeothermic heat pads during surgery. Eyes were kept moist with ophthalmic 362 
ointment during surgery. The scalp overlaying the right visual cortex was removed, and a custom 363 
steel headplate with a 5 mm diameter opening was mounted to the skull with cyanoacrylate glue 364 
(Oasis Medical) and dental acrylic (Lang Dental). A 4 mm diameter craniotomy was performed 365 
over visual cortex and covered with a #1 thickness coverslip, which was secured with 366 
cyanoacrylate glue.  367 

Locating visual areas with intrinsic signal optical imaging (ISOI) 368 

Prior to two-photon imaging, the locations of primary and higher visual area were mapped 369 
using ISOI, as previously reported28,31,42. Pial vasculature images and intrinsic signal images were 370 
collected using a CCD camera (Teledyne DALSA 1M30) and a tandem lens macroscope. A 4.7 371 
× 4.7 mm2 cortical area was imaged at 9.2 μm/pixel spatial resolution and at 30 Hz frame rate. 372 
The pial vasculature was illuminated and captured through green filters (550 ± 50 nm and 560 ± 373 
5 nm, Edmund Optics). The ISO images were collected after focusing 600 μm down into the brain 374 
from the pial surface. The intrinsic signals were illuminated and captured through red filters (700 375 
± 38 nm, Chroma and 700 ± 5 nm, Edmund Optics). Custom ISOI instrumentation were adapted 376 
from Kalatsky and Stryker12. Custom acquisition software for ISOI imaging collection was adapted 377 
from David Ferster28. During ISOI, mice were 20 cm from a flat monitor (60 × 34 cm2), which 378 
covered the visual field (110° x 75°) of the left eye. Mice were lightly anesthetized with isoflurane 379 
(0.5%) and acepromazine (1.5 – 3 mg/kg). The body temperature was maintained at 37 °C using 380 
a custom electric heat pad28. Intrinsic signal responses to vertical and horizontal drifting bars were 381 
used to generate retinotopic maps for azimuth and elevation. The retinotopic maps were then 382 
used to locate V1 and HVAs (Supplementary Fig. 1a). Borders between these areas were drawn 383 
using features of the elevation and azimuth retinotopic maps, such as reversals, manually18,31. 384 
The vasculature map provided landmarks to identify visual areas in two-photon imaging. 385 

In vivo two-photon imaging  386 

Two-photon imaging was performed using a custom Trepan2p microscope controlled by 387 
custom LabView software28. Two regions were imaged simultaneously using temporal 388 
multiplexing28. Two-photon excitation light from an ultrafast Ti:Sapph laser tuned to 910 nm 389 
(MaiTai DeepSee; Newport Spectra-Physics) laser was split into two beams through polarization 390 
optics, and one path was delayed 6.25 ns relative to the other. The two beams were steered 391 
independently from each other using custom voice coil steering mirrors and tunable lenses. This 392 
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way, the X, Y, Z plane of the two paths can be independently positioned anywhere in the full field 393 
(4.4 mm diameter). The two beams were raster scanned synchronously about their independently 394 
positioned centers by a 4 kHz resonant scanner and a linear scanner (Cambridge Technologies). 395 
Photons were detected (H7422P-40, Hamamatsu) and demultiplexed using fast electronics. For 396 
four-region scanning, the steering of the two beams was alternated every other frame. 397 

In the current study, two-photon imaging of 500 x 500 μm2 was collected at 13.3 Hz for two-398 
region imaging, or 6.67 Hz for quad-region imaging. We typically imaged neurons in V1 and one 399 
or more HVAs simultaneously. Up to 500 neurons (V1: 129 ± 92; HVAs: 94 ± 72; mean ± SD) 400 
were recorded per imaging region (500 x 500 μm2). Imaging was performed with typically <80 mW 401 
of 910 nm excitation light out of the front of the objective (0.45 NA), including both multiplexed 402 
beams together. Mice were head-fixed about 11 cm from a flat monitor, with their left eye facing 403 
the monitor, during imaging. The stimulus display monitor covered 70° x 45° the left visual field. 404 
Two-photon images were recorded from awake mice. During two-photon imaging, we monitored 405 
the pupil position and diameter using a custom-controlled CMOS camera (GigE, Omron) at 20 – 406 
25 fps. No additional illumination was used for pupil imaging.  407 

Calcium imaging and imaging processing 408 

Calcium imaging processing was carried out using custom MATLAB codes. Two-photon 409 
calcium imaging was motion corrected using Suite2p subpixel registration module43. Neuron ROIs 410 
and cellular calcium traces were extracted from imaging stacks using custom code adapted from 411 
Suit2p modules43. Neuropil contamination was corrected by subtracting the common time series 412 
(1st principal component) of a spherical surrounding mask of each neuron from the cellular calcium 413 
traces17,44. Neuropil contamination corrected calcium traces were then deconvolved using a 414 
Markov chain Monte Carlo (MCMC) methods44,45. For each calcium trace, we repeated the MCMC 415 
simulation for 400 times, and measured the signal-to-noise of MCMC spike train inference for 416 
each cell (Supplementary Fig. 1b). Neurons in V1 and HVAs exhibited similar instantaneous 417 
firing rates (Fig. 1c). For all subsequent analysis, only cells that reliable spike train inference 418 
results were included (correlations between MCMC simulations is greater than 0.2).  419 

Visual stimuli 420 

Visual stimuli were displayed on a 60 Hz LCD monitor (9.2 x 15 cm2). All stimuli were displayed 421 
in full contrast.  422 

The texture stimuli (Supplementary Fig. 2a) were generated by panning a window over a 423 
large synthesized naturalistic texture image at one of the cardinal directions at the speed of 32 °/s. 424 
We generated the large texture image by matching the statistics of naturally occurring texture 425 
patterns46. The texture pattern families were: animal fur, mouse chow, rocks, and tree trunk. Each 426 
texture stimulus ran for 4 s and were interleaved by a 4 s gray screen.  427 

The random dot kinematogram (RDK) stimuli contained a percentage (i.e., coherence) of 428 
white dots that move in the same direction (i.e., global motion direction) on a black background 429 
(Supplementary Fig. 4a). We presented the animal with RDK at three coherence levels (40%, 430 
70%, and 90%) and four cardinal directions. The dot diameter was 3.8° and the dot speed was 431 
48 °/s. White dots covered about 12.5% of the screen. The lifetime of individual dots were about 432 
10 frames (1/6 s). These parameters were selected based on mouse behavior in a psychometric 433 
RDK task47. Each RDK stimulus ran for 3 – 7 s (responses in the first 3 s were used for analysis) 434 
and interleaved with 3 s gray screen. The same RDK pattern was looped over trials.  435 
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Two naturalistic videos (Fig. 2a) were taken by navigating a mouse home cage, with or without 436 
a mouse in the cage. Each video had a duration of 32 s and were presented with interleaved 8 s 437 
long periods with a gray screen. For the convenience of analysis, we concatenated the responses 438 
to the two videos (total 64 s).   439 

Visual features of the naturalistic video 440 

We characterized various visual features of the naturalistic video (Supplementary Fig. 5).  441 

Average luminance: The average pixel value of each frame.  442 

Global contrast: The ratio between the standard deviation of pixel values in a frame, and the 443 
average luminance of that same frame.  444 

Edge density: The local edges were detected by a Canny edge detector48. The algorithm finds 445 
edges by the local intensity gradient and guarantees to keep the maximum edge in a 446 
neighborhood while suppressing non-maximum edges. We applied the Canny edge detector after 447 
Gaussian blurring of the original image at multiple scales (1°-10°). A binary edge map was 448 
generated as the result of edge detection (Supplementary Fig. 5a). The edge density was 449 
computed as the sum of positive pixels in the binary edge map of each frame.  450 

Difference of Gaussian (DOG) entropy: We characterized local luminance features following 451 
difference of Gaussian filtering at multiple scales, and then computed the entropy of these 452 
features within a local neighborhood (Supplementary Fig. 5b).  453 

Optical flow entropy: We estimated the direction and speed of salient features (e.g., moving 454 
objects) using the Horn-Schunck method at multiple spatial scales. Then we computed the 455 
entropy of the OF direction and speed at each frame. Since the OF estimation relies on the 456 
saliency of visual features, the moving texture and RDK stimuli resulted in distinct OF entropies, 457 
with the latter being larger (Supplementary Fig. 5c).      458 

Visual features were computed either by average over space or by computing a spatial 459 
variance value (i.e. entropy). These measurements were inspired by the efficient coding theory49, 460 
which suggested that the neuron population coding is related to the abundance or the variance of 461 
visual features in the natural environment.  462 

 463 

Reliability and sparseness 464 

The reliability of responses to naturalistic videos was defined as the trial-to-trial Pearson 465 
correlation between inferred spike trains of each neuron binned in 500 ms bins. The reliability of 466 
responses to texture stimuli and RDK were computed as the fraction of trials that a neuron fired 467 
to its preferred stimulus within a time window (2 s for texture stimuli and 3 s for RDK). These 468 
definitions were commonly used in previous studies39,50. Only reliably responsive neurons were 469 
included in the latter analysis (Pearson correlation > 0.08 to naturalistic video; fired on > 60% 470 
trials to the texture and RDK stimuli). The qualitative results were not acutely sensitive to the 471 
selection criteria.  472 

The sparseness was computed as (eq. 1)51: 473 
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𝑆 =
1 − 1

𝑁 ∗
(∑ 𝑟!! )"
∑ 𝑟!"!

1 − 1
𝑁

																																																																				(𝑒𝑞. 1)		 474 

For lifetime sparseness, 𝑟! is trial-averaged response to ith stimulus and N is the length of the 475 
stimuli. The sparseness to naturalistic videos was computed using 500 ms bins. The qualitative 476 
results of reliability and sparseness were not acutely sensitive to the bin size.  477 

 478 

Gaussian mixture model 479 
To characterize the tuning properties in an unbiased manner, neurons were clustered using a 480 

Gaussian mixture model52 (GMM) based on the trial-averaged responses to the naturalistic video. 481 
Only reliably responsive neurons were included for GMM analysis (trial-to-trial Pearson correlation 482 
of the inferred spike trains > 0.08, after spike trains were binned in 500 ms bins). Neuronal 483 
responses of the whole population, pooled over all cortical areas imaged, were first denoised and 484 
reduced in dimension by minimizing the prediction error of the trial-averaged response using 485 
principle component (PC) analysis. 55 PCs were kept for population responses to the naturalistic 486 
videos. We also tested a wide range of PCs (20 – 70) to see how this parameter affected 487 
clustering, and we found that the tuning group clustering was not acutely affected by the number 488 
of PCs used. Neurons collected from different visual areas and different animals were pooled 489 
together in training the GMM (3527 neurons). GMMs were trained using the MATLAB build 490 
function fitgmdist with a range of numbers of clusters. A model of 25 classes was selected based 491 
on the Bayesian information criterion (BIC). We also examined models with different numbers of 492 
classes (20, 30, 45, or 75), and found that the main results held regardless of the number of GMM 493 
classes. Neurons with similar response patterns were clustered into the same class. 494 
Supplementary Fig. 6 shows the response pattern of GMM classes to the naturalistic video. The 495 
size of the naturalistic video classes are shown in Supplementary Fig. 6d. To examine the 496 
reproducibility of the GMM classification, we performed GMM clustering on 10 random subsets of 497 
neurons (90% of all neurons). We found the center of the Gaussian profile of each class was 498 
consistent (Pearson correlation of class centers, 0.74 +/- 0.12). About 65% of all neurons were 499 
correctly (based on the full data set) classified, while 72% of neurons in classes that are over-500 
represented in HVAs were correctly classified. Among misclassifications, about 78% were due to 501 
confusion between the three untuned classes with tuned classes. Thus, most of the classes to 502 
come out of the GMM analysis appear to be reproducible, and are not sensitive to specific subsets 503 
of the data.   504 

Information analysis 505 

Mutual information (MI) evaluates the information the neuronal response (r) has about certain 506 
aspects of the stimulus, and it is computed in units of bits. It was computed using the following 507 
equation. 508 

𝑀𝐼(𝑟, 𝑠) =33𝑝#,%(𝑟, 𝑠) ∗ 𝑙𝑜𝑔"
𝑝#,%(𝑟, 𝑠)

𝑝#(𝑟) ∗ 𝑝%(𝑠)%#

																					(𝑒𝑞. 2) 509 

We computed the MI between neuron responses and the visual stimulus (s has 16 categories for 510 
texture stimuli, 𝑝%(𝑠) = 1/16; s has 12 categories for RDK, 𝑝%(𝑠) = 1/12). We also computed the 511 
MI between neuron responses and the texture family (s has 4 categories for texture stimuli, 512 
𝑝%(𝑠) = 1/4), and the MI between neuron responses and the moving directions (s has 4 categories 513 
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for both texture stimuli and RDK, 𝑝%(𝑠) = 1/4 ). The probability of neuron responses were 514 
computed from spike count distributions within a stimulus window (2 s for texture stimulus and 3 515 
s for RDK). Reliable RDK and texture responsive neurons (reliability > 0.6), which fired for more 516 
than 60% of the trials to the preferred stimulus, were included for the MI analysis.  517 

Regularized encoder model  518 

To estimated the encoding pattern of texture responsive neurons and RDK responsive 519 
neurons, i.e. which texture pattern one neuron responded to, or how many texture patterns one 520 
neuron responded to, we decomposed the neuronal responses into motion direction components, 521 
and texture family or RDK coherence components using singular value decomposition (SVD). To 522 
be more robust, instead of using trial-averaged response, we first estimated the neuronal 523 
responses by linearly regressing with a unit encoding space (Supplementary Fig. 2c-e, 4c-d). 524 
Lasso regularization was applied to minimize overfitting. The regularization hyper-parameters 525 
were selected by minimizing the cross-validation error in predicting single trial neuronal responses. 526 
The linear regression model performance was measured by the Pearson correlation between the 527 
trial-averaged neuron response and the model. Only well-fit neurons were included for the 528 
following analysis (model performance > 0.6; about 70% of the whole population). The model 529 
selection criteria did not affect the qualitative results.  530 

We then characterized the SVD components of well-fit neurons. Well-fit neurons exhibited 531 
either zero, one, or multiple significant SVD components (eigenvalue > 1). Neurons with zero 532 
significant SVD component were untuned neurons, while neurons with multiple significant SVD 533 
components suggested complicated tuning properties. We went on to characterize neurons which 534 
had single significant SVD components, as for which the neuronal responses were decomposed 535 
into a motion directions vectors, and a texture pattern vector or a motion coherence vector 536 
unambiguously (Supplementary Fig. 2d, 4c).  537 

About 40-70% of well-fit texture neurons and about 50 – 60% of well-fit RDK neurons had only 538 
one significant SVD component. We define positive motion directions, or texture patterns for each 539 
neuron, when its corresponding vector value (singular vector of SVD) is greater than 0.2 (for 540 
texture responses) or 0.3 (for RDK responses) (the threshold value did not affect qualitative 541 
results; Supplementary Fig. 2d, 4c). In the results section, we report the distributions for neurons 542 
with different numbers of positive motion directions, texture patterns, and coherence levels for 543 
HVAs (Supplementary Fig. 2f, 4e).  544 

Modulation power of naturalistic visual features  545 

For each cortical area, neuronal activity in response to the video was pooled and averaged, 546 
after binning into 500 ms bins. Then, separately for each cortical area, a linear regression model 547 
was fit to the average population response with individual features. These features are described 548 
above in the section (Visual features of the naturalistic video). We then evaluated a feature’s 549 
contribution in modulating the average population responses by the variance explained (r-squared) 550 
of each model (Fig. 2d, f). Features were computed over multiple spatial scales. The spatial 551 
scales that best modulated (highest r-squared) the neuronal response was used for this analysis.  552 

To evaluate the significance of neuron classes, we repeated this process using different 553 
source data. Instead of using a pool of neurons from a cortical area, we used a pool of neurons 554 
from a specific class (200 neurons per pool with permutation). Again, we averaged activity over 555 
the pool, and then determined which features modulated activity of the class (Supplementary 556 
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Fig. 7a). This process was repeated for classes that were either over-represented in an HVA or 557 
under-represented in an HVA (Supplementary Fig. 7b).  558 

SVM discrimination of texture images 559 

We computed the pairwise distance between texture images (Supplementary Fig. 8a) within 560 
the same class or from different classes (Supplementary Fig. 8b). The Euclidean distance was 561 
computed using of DOG entropy (11.75° spatial filter size) or edge density (2.35° spatial filter size) 562 
feature maps. We then trained a support vector machine (SVM) classifier to discriminate texture 563 
images within and across classes, based on this pairwise distance (using the Matlab built-in 564 
function classify). We reported the cross-validation classification error rate (Supplementary Fig. 565 
8b). 566 

Simulation of Gabor-based models 567 

The neuron models used the structure of a linear-nonlinear (LNL) cascade. The spiking of 568 
model neurons was simulated following a nonhomogeneous Poisson process with a time varying 569 
Poisson rate. The rate was calculated by convolving visual stimuli with a linear kernel or a 570 
combination of linear kernels, followed by an exponential nonlinearity (Fig. 3a). Linear kernels 571 
were modeled by 2D (XY spatial) or 3D Gabor (XYT spatiotemporal) filters defined over a wide 572 
range of spatiotemporal frequencies and orientations. We simulated neurons with simple cells, 573 
complex cells and speed cells models53 (Fig. 3b). The three differed in the linear components of 574 
the LNL cascade: simple cells (called linear model, or spectral model for the 2D Gabor kernels) 575 
used the linear response of a Gabor filter; complex cells (called energy model) used the sum of 576 
the squared responses from a quadrature pair of Gabor filters (90° phase shifted Gabor filter 577 
pairs); speed cells (called motion model) used the arithmetic difference between the energy 578 
responses from an opponent pair of complex cells. We also modeled neurons based on the cross 579 
product of the linear or energy responses from two 2D Gabor filters (called combination model). 580 
In particular, we simulated the following three combination models: 1. 2D Gabor filters matched 581 
in spatial scale and location but tuned to different orientations (cross-orientation model); 2. 2D 582 
Gabor filters tuned to the same orientation and location with different spatial scales (cross-scale 583 
model); 3. 2D Gabor filters with matched tuning properties but offset in visual space (cross-584 
position model) (Fig. 3b). In addition, we included a subtractive normalization before taking the 585 
nonlinearity in some models. A total of 13 neuron model types were used (Fig. 3b).  586 

To examine feature encoding by these neuron model types, we performed 10 – 20 repeats of 587 
simulation for each neuron model to each stimulus. Either the simulated spike trains or 588 
peristimulus time histograms (PSTH) were used for characterizing the feature encoding. We 589 
analyzed the model responses in the same way as we had done for the mouse experimental data. 590 
We computed the mutual information between simulated neuron responses and texture stimuli or 591 
RDK stimuli, and characterized the selectivity of simulated neurons to texture families or RDK 592 
directions (Supplementary Fig. 9, 10). Next, we examined the modulation of simulated 593 
population responses by visual features of the naturalistic video. Neuron models were located in 594 
the feature space by how much of the population response variance was explained by individual 595 
features (Supplementary Fig. 11). 596 

Reproducing neuron responses to stimuli with Gabor-based models 597 

To reproduce the feature representation of HVAs with neuron models, we fit individual 598 
neuronal responses with models following a linear regression equation (eq. 3). The linear 599 
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coefficients were optimized by minimizing the cross-validation error. We also tested a sigmoidal 600 
nonlinear fitting (eq. 4). Sigmoidal parameters were optimized through gradient descent. As 601 
sigmoidal nonlinearity did not significantly improve the modeling performance, we reported the 602 
results from the linear fitting.  603 

𝑛𝑒𝑢𝑟𝑜𝑛	𝑟𝑒𝑠𝑝𝑜𝑛𝑠𝑒 = 𝑎 ∗ 𝑥;																					(𝑒𝑞. 3)	 604 

𝑛𝑒𝑢𝑟𝑜𝑛	𝑟𝑒𝑠𝑝𝑜𝑛𝑠𝑒 =
𝑎

1 + exp(−𝑏 ∗ 𝑥 + 𝑐)
;																					(𝑒𝑞. 4) 605 

x: simulated responses 606 

Neuron models were grouped into three categories: 2D Gabor models, 3D Gabor models, and 607 
3D Gabor models with normalization. One model of each category, which minimize the cross-608 
validation error, was selected for each neuron. The feature representation was then characterized 609 
on the model neuron responses.  610 

 611 

Data availability  612 

All source data generating main figures will be available online upon publishing. All raw data are 613 
available upon request.  614 

  615 
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 747 

Figure 1. Segregated representations of textures and random dot kinematogram (RDK) 748 
motion in HVAs. (a) Neural activity was imaged in multiple HVAs simultaneously using large 749 
field-of-view, multiplexed two-photon calcium imaging. In an example experiment, layer 2/3 750 
excitatory neurons were imaged in V1, LM, AL, and PM simultaneously. Squares indicate the 751 
imaged regions, and projections of raw image stacks are shown below. (b) Image stacks were 752 
analyzed to extract calcium dynamics from cell bodies, after neuropil subtraction. These traces 753 
were used to inferred spike activity, as shown in raster plots below each trace. (c) Statistics of 754 
inferred spiking were similar to those of prior reports, indicating accurate inference. The mean 755 
and maximal instantaneous firing rates of neurons in V1 and HVAs are similar (mean, 0.5 ± 0.5 756 
spike/s; max, 7 ± 11 spike/s; p = 0.055; one-way ANOVA with Bonferroni correction). (d) Mice 757 
were shown texture stimuli, each of which was from one of four families, and which drifted in one 758 
of four directions. Spike raster plots from two example neurons (10 trials shown for each) show 759 
that one neuron is selective for texture family, and the other is more selective for texture direction. 760 
The amount of mutual information (MI, in bits) for the two stimulus parameters (texture family and 761 
panning direction) are written below each raster, along with the overall or joint (family and direction) 762 
MI. (e) V1, LM, and LI provide higher MI for texture stimuli than AL or PM (p = 5.8 x 10-8; one-way 763 
ANOVA, Bonferroni multiple comparison). Error bars in inset indicate SE. (f) Mice were shown 764 
random dot kinematogram (RDK) motion stimuli, which drifted in one of four directions with up to 765 
90% coherence (fraction of dots moving in the same direction). A raster for an example neuron 766 
(30 trials) shows that it fires during rightward motion, with 0.51 bits of MI for motion direction at 767 
90% coherence. (g) V1 and AL provide higher MI for the RDK motion direction than LM (p = 768 
0.0006; one-way ANOVA, Bonferroni multiple comparison). (h) These results indicate a 769 

a b

M

L
A

P 1 mm

V1
PM

AM

RL
AL

LILM

Multi-region calcium imaging V1

PM

AL

LM

c

Tex. family
selective

Tex. direction
selective

Direction

Texture family

d
V1
LM

AL
PM

LI

0

0.1

0.2

0.3

M
ea

n 
M

I (
bi

t)

V1 LM
ALPM

LI

0 0.2 0.4 0.6
0

0.2

0.4

0.6

0.8

1

C
um

ul
at

iv
e 

di
st

rib
ut

io
n

Mutual information (bit)

Information about texture stimuli

p<0.001

90% 70% 40%Coherence

V1
LM
AL

e

f

Random dot
kinematogram (RDK)
motion stimuli

Responses to RDK motion stimuli Information about RDK direction

M
ea

n 
M

I (
bi

t)

0

0.1

0.2 V1

LM

AL

V1

PM

AM

RL
AL

LILM

g

Texture
RDK

Responses to texture stimuli

Mutual info. (bit): texture family = 0.22; dir. = 0.02; joint = 0.27

0 0.2 0.4 0.6
0

0.2

0.4

0.6

0.8

1

C
um

ul
at

iv
e 

di
st

rib
ut

io
n

Mutual information (bit)

Mutual info.
(dir. at 90% coh.) 
= 0.51 bit

10 s1.0 ∆F/F

Mutual info. (bit): texture family = 0.04; dir. = 0.35; joint = 0.44

0 0.5 1 1.5 2
0

0.05
0.10
0.15

0 10 20 30
0

0.02

0.04

V1
LM
AL
PM
LI

Average instant spike rate (/s)

Maximal instant spike rate (/s)

Fr
ac

tio
n

Fr
ac

tio
n

h

Spike rates for inferred spike trains

p<0.001

0.2 mm

LM PMALV1

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted December 7, 2021. ; https://doi.org/10.1101/2021.12.05.471337doi: bioRxiv preprint 

https://doi.org/10.1101/2021.12.05.471337
http://creativecommons.org/licenses/by-nc-nd/4.0/


24 
 

segregation of visual stimulus representations: texture stimuli to LM, and RDK motion stimuli to 770 
AL. 771 

 772 
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 774 

Figure 2. Segregated representations of spatial and motion features in naturalistic videos. 775 
(a) Five example neurons show reliable, yet diverse, spike responses during a naturalistic video 776 
stimulus. (b) Neurons in all four tested areas exhibited similarly high response sparseness to the 777 
naturalistic video (one-way ANOVA, p = 0.8). (c) Average spike responses varied across cortical 778 
areas (traces are averages, across reliable neurons). For example, neurons in area AL tended to 779 
show a spike in activity about 5 s into the video, whereas neurons in LM did not. Shaded area 780 
indicates SEM computed across multiple animals. (d) Form and motion components of the 781 
naturalistic video were extracted using a bank of linear filters with various sizes and locations (left). 782 
This provided time-varying signals correlated with global, form, and motion features, such as 783 
contrast, difference-of-Gaussian (DOG) entropy, and speed entropy (middle). To provide an 784 
intuitive feel for these features, example naturalistic video frames with the corresponding DOG 785 
entropy maps, edge density maps, and optical flow speed maps are shown (also see 786 
Supplementary Fig. 5a, b). (e) The time-varying features were weighted to best match the 787 
average neuronal activity for a cortical area (N = 200 with permutation). The linear weights are 788 
modulation coefficients and the goodness-of-linear fitting, or r-squared, is the modulation power. 789 
Areas V1 and LM was strongly modulated by DOG entropy, but AL and PM were not. Area LM 790 
was the only area modulated by speed entropy. Area PM was modulated by contrast and edge 791 
density. (f) The modulation coefficients were typically positive, but were negative for edge density. 792 
Thus, area PM is positively modulated by contrast, but negatively modulated by edge density. (p-793 
values are from one-way ANOVAs with the Tukey-Kramer correction for multiple comparison).   794 
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 795 

Figure 3. Spatial and motion feature encoding by variants of Gabor filter-based models. (a) 796 
The general architecture is a linear-nonlinear-Poisson (LNP) cascade neuron model. Neurons 797 
were simulated by various 2D and 3D Gabor-like linear kernels, with or without an untuned 798 
subtractive normalization. (b) From the base LNP model, variations were derived, organized into 799 
three classes: 2D Gabor-based, 3D Gabor-based without normalization, and 3D Gabor-based 800 
with normalization. Both linear and energy responses (akin to simple cells and complex cells) 801 
were computed from combinations of 2D Gabor filters. Linear, energy and motion responses (akin 802 
to simple cells, complex cells, and speed cells) were computed from 3D Gabor filters. (c) These 803 
three classes of models varied in how much their activity was modulated by global, form, and 804 
motion features in naturalistic videos. The neuron models are plotted by their modulation in 805 
feature spaces. The local of a neuron model was defined by the modulation power (same as Fig. 806 
2e).    807 
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  808 

Figure 4. Segregated processing of spatial and motion features by visual neuron models. 809 
(a) Data from example neurons are shown in raster plots (top) and PSTHs (bottom), along with 810 
the best fits (as PSTHs) from each of the three model classes: 2D Gabor, 3D Gabor, and 3D 811 
Gabor with normalization. These three model fits, for each neuron, were used in the next analysis. 812 
(b, c) The three model neuron classes were characterized in terms of their modulation to global, 813 
form, and motion components of the naturalistic video. The distributions of (b) modulation power 814 
and (c) modulation coefficients for the three model classes were compared to those of the actual 815 
data, for neurons in specific HVAs and features those HVAs were well modulated by (see also, 816 
Supplementary Fig. 7, 14). The pool of model neurons for each pair of graphs (power and 817 
coefficient) for a cortical area were drawn from model fits to neurons in that same cortical area. 818 
(d) The diagram summarizes the model classes that best reproduce the modulation in three HVAs, 819 
LM, AL, and PM to global, form, and motion components in the naturalistic video. 820 
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 822 

Table 1. Summary of recording sessions.  823 

animal ID animal ID
281 'V1' 'LM' 169 69 143 'V1' 'LM' 121 57
281 'V1' 'LI' 85 114 143 'V1' 'LM' 116 36
281 'V1' 'PM' 114 52 143 'V1' 'LM' 66 47
281 'V1' 'AL' 71 61 144 'V1' 'LM' 114 86
284 'V1' PM' 52 87 144 'V1' 'LM' 119 3
284 'V1' AL' 71 36 144 'V1' AM/PM' 53 65
286 'V1' 'LM' 92 49 154 'V1' 'AM/PM' 247 118
286 'V1' 'AL' 119 103 154 'V1' 'AM/PM' 145 107
388 'LM' 'LI' 46 34 154 'V1' 'AM/PM' 121 164
426 'V1' 'LI' 38 5 154 'V1' 'V1' 135 134
382 'LM' 'LI' 58 60 156 'V1' 'LM' 129 87
493 'V1' 'LI' 156 157 156 'V1' 'AL' 171 38
493 'V1' 'LM' 96 150 166 'V1' 'AL' 304 162

167 'V1' 'AL' 161 117
Reliable responding 170 'V1' 'AL' 352 163

Totals V1: 1063 325 171 'V1' 'AL' 119 19
LM: 372 48 171 'V1_uppermodel''V1_lowermodel'161 123
AL: 200 12 211 'V1' 'V1' 100 169
LI: 370 96 633 'V1' 'LM' 85 150
PM: 139 28 633 'V1' 'V1' 144 100

635 'V1' 'LM' 94 141
657 'V1' 'LM' 37 47
657 'V1' 'LM' 37 79

animal ID 635 'V1' 'AL' 400 275
167 'V1 (upper left)''V1 (lower)' 157 120 635 'V1' 'V1' 287 343
167 'V1' 'AL' 63 86 175 'V1' 'AL' 125 39
167 'V1 (deep)''AL (deep)' 40 112 190 'V1' 'LM' 95 102
170 'V1' 'AL' 215 187 222 'AL' 'LM' 49 40
224 'V1' 'AL' 168 138 222 'V1' 'AL' 119 64
224 'V1' 'LM' 87 72 211 'V1' 'LM' 32 79
226 'V1' 'AL' 160 99 363 'V1' 'AL' 85 23
226 'V1' 'LM' 132 69 363 'V1' 'AM/PM' 88 64
222 'V1' 'LM' 160 85 363 'V1' 'LM' 99 162
222 'V1' 'AL' 76 91 421 'LM' 'LM' 62 18
222 'AL' 'LM' 24 26 351 'V1' 'AL' 247 161

351 'V1' 'AM/PM' 197 45
Reliable responding 388 'V1' 'LM' 50 43

Totals V1: 1378 392 388 'V1' 'AL' 44 27
LM: 252 22 388 'V1' AM/PM' 15 3
AL: 737 140 493 'V1' 'V1' 24 16
LI: NA NA 382 'V1' LM 61 30
PM: NA NA 382 'V1' 'AM/PM' 44 1

500 'V1' 'AM/PM' 121 39
490 'V1' 'LM' 28 129
490 'V1' 'AL' 77 66

Reliable responding 
Totals V1: 6254 2634

LM: 1336 395
AL: 1203 393
LI: NA NA
PM: 606 105

Table I: Summary of recording sessions 

recording areas numbers of neurons

recording areas numbers of neurons
Naturalistic video

RDK stimuli

Texture stimuli
recording areas numbers of neurons
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Supplementary Figures 824 

 825 

 826 

Supplementary Figure 1. Multi-region two-photon calcium imaging processing (a) Example 827 
intrinsic signal imaging of mouse visual areas. (b) Spike train inference of example neurons by 828 
Markov chain Monte Carlo (MCMC) methods.   829 
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 830 

Supplementary Figure 2. Defining tuning groups for neuronal responses to texture stimuli. 831 
(a) Example raster of a responsive neurons to moving texture stimuli with four texture families 832 
and four moving directions. (b) The responsiveness of V1 and HVAs to the texture stimuli 833 
(responsive neuron fires on more than 30% of the trials to the preferred stimulus). Left: the fraction 834 
of responsive neurons in HVAs are not significantly differed (one-way ANOVA, p = 0.2). Right: 835 
distribution of neuron firing reliability (firing probability over trials) to the preferred texture stimulus. 836 
Only responsive neuron was considered. V1 and LI were more reliable to the texture stimuli (one-837 
way ANOVA with Bonferroni multiple comparison, p = 4 x 10-10). (c) Fit neuronal response (spike 838 
count) to an encoder model using least-square regression with lasso regularization. (d) Model 839 
performance of an example neurons. Top: raster plot and average spike count of the example 840 
neuron, overlaid with the estimated spike count from the model. The model spike count was highly 841 
correlated with the average spike count of the example neuron (Pearson correlation, r = 0.98). 842 
Bottom: SVD decomposition of the estimated encoder model. The left and right singular vectors 843 
corresponding to the motion direction and the texture family components, respectively. (e) 844 
Cumulative fraction of encoder model performance, which was defined as the Pearson correlation 845 
between model spike count and the trail-averaged spike count of neurons. (f) Joint distribution of 846 
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the number of texture families and the number of directions that a texture neuron encoder was 847 
responsive to. Color hue indicate the fraction of neurons in each bin.  848 
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 849 

 850 

Supplementary Figure 3. Information about texture stimuli is strongest in area LI. (a-b) 851 
Cumulative distribution of information each neuron has about the texture family (a) and the moving 852 
direction (b). Inserts are the mean information. Error bars indicate SE. V1 and LI carries 853 
significantly more information about the texture family (p = 0.0006) and the moving direction (p = 854 
0.0006) (one-way ANOVA, Bonferroni multiple comparison). (a-b) Neurons reliably response 855 
(response to >60% of trials) to at least one texture stimuli were included for information analysis 856 
and encoder modeling (Number of neurons included (No. of experiments): V1, 325 (11); LM, 48 857 
(5); LI, 96 (5); AL, 12 (3); PM, 28 (2)). (c) Relation between information about the moving direction 858 
and information about the texture family carried by individual neuron in V1, LM and LI. Each dot 859 
indicates one neuron. Blue line indicates the threshold of significant amount of information, which 860 
was defined by shuffled data (Mean + 3*SD). (d) Information about drifting grating directions were 861 
not striking differed among between HVAs (p = 0.12; one-way ANOVA).   862 
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 863 

Supplementary Figure 4. Defining tuning groups of neuronal responses to RDK stimuli. (a) 864 
Raster plots of an example neuron to RDK at four global motion directions and three coherence 865 
(indicated by the thickness of arrows). (b) The responsiveness of V1 and HVAs to the RDK stimuli 866 
(responsive neuron fires on more than 30% of the trials to the preferred stimulus). Left: the fraction 867 
of responsive neurons in LM was significantly smaller compare to V1 and AL (T-test, p = 0.03). 868 
Right: distribution of neuron firing reliability (firing probability on multiple trials) to the preferred 869 
RDK stimulus. Only responsive neuron was considered. V1 and AL were more reliable to the 870 
texture stimuli (one-way ANOVA with Bonferroni multiple comparison, p = 3 x 10-5). (c) RDK 871 
encoder model performance of an example neurons. Top: raster plot and average spike count of 872 
the example neuron, overlaid with the estimated spike count from the model (Pearson correlation, 873 
r = 0.99). Bottom: SVD decomposition of the estimated encoder model. The left and right singular 874 
vectors corresponding to the coherence level and the motion direction components, respectively. 875 
(d) Cumulative fraction of encoder model performance (Pearson correlation between model and 876 
the trail-averaged spike count of neurons). (e) Joint distribution of the number of directions and 877 
the number of coherence levels that an RDK neuron encoder was responsive to. V1 and AL has 878 
larger fraction of tuned neurons that were selectively response to one motion direction (V1, 52%; 879 
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AL, 43% and LM, 14%). Color hue indicate the fraction of neurons in each bin. (f) The mean 880 
information about global moving direction at different coherence level.  881 

882 
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 883 

Supplementary Figure 5. Feature space of naturalistic videos. (a) Example edge density 884 
maps at multiple spatial scales. Edge detection by Canny edge detector after Gaussian blur with 885 
defined kernel size (top). Edge density was computed by sum up the edge number within a local 886 
neighborhood (10 x 10 pixel, a wide range (10~100 pixel2) of neighborhood size was tested). (b) 887 
Example Difference of Gaussian (DOG) entropy maps at multiple spatial scales. The inner 888 
Gaussian kernel size was shown (top), and outer Gaussian filter size was double the inner filter 889 
size. The entropy after DOG filtering was computed at a local neighborhood (10 x 10 pixel, a wide 890 
range (10~100 pixel2) of neighborhood size was tested). (c) Example optical flow map for a 891 
naturalistic video frame. The OF direction and speed of each pixel was estimated using Horn-892 
Schunck method. The OF feature entropy was computed at a local neighborhood. (d) The time-893 
varying visual features of the naturalistic videos. 894 
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 895 

Supplementary Figure 6. Selective response to a naturalistic video reveal classes that are 896 
enriched in specific HVAs. (a) The fraction of responsive neurons to the naturalistic video in V1, 897 
LM, AL and PM were similar (trial-to-trial Pearson correlation > 0.08; one-way ANOVA, p = 0.13). 898 
(b) The distribution of neuron firing reliability (trial-to-trial Pearson correlation) to the naturalistic 899 
video were not differed in V1, LM and AL, and slightly lower in PM (one-way ANOVA with 900 
Bonferroni multiple comparison, p = 0.0006). Only responsive neuron was considered. (c) 901 
Pearson correlation of the average population responses computed from non-overlapping 902 
subpopulations with certain number of neurons. (d) Average responses of 25 GMM classes to the 903 
naturalistic video. (e) Number of neurons in each GMM class to the naturalistic video. (f) Fraction 904 
difference of classes between HVA and V1 ( (HVA – V1) / V1). Zero means the HVA and V1 905 
weighted the same on this class. Stars indicate significantly 10% more (red) or less (black) than 906 
V1 (T-test). The error bars indicate SE computed from permutation.   907 
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 908 

Supplementary Figure 7. Parametric features of naturalistic video stimuli differentially 909 
modulate activity in the tuning groups. (a) The modulation power of the average responses of 910 
neurons in each class (N = 200 with permutation) by visual features of the naturalistic video. The 911 
modulation power is characterized by the r-squared values (variance explained) of the linear 912 
regression of the average population responses with individual features. (b) The modulation 913 
power of the average responses of a neuron population from selected classes (N = 200 with 914 
permutation) by visual features of the naturalistic video. Left, classes that are ENRICHED (more 915 
common than average of all HVAs) in specific HVAs (classes with red star in Supplementary 916 
figure 6f). Right, Classes that are UNDERREPRESENTED in specific HVAs (classes with black 917 
star in Supplementary figure 6f).  918 
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 919 

Supplementary Figure 8. DOG entropy facilitated texture family encoding. (a) DOG entropy 920 
map and edge density map for example images from four texture classes. The Gaussian kernel 921 
size (standard deviation) is indicated in degrees. (b) Histogram of pairwise distances between 922 
texture images, from the same (blue bars) or different classes (colored curves). The distance was 923 
computed from the Euclidian distance between DOG entropy maps (left) or the edge density maps 924 
(right).  925 
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 928 

Supplementary Figure 9. Encoding of texture stimuli by neuron models. (a) Plots of 929 
information about the texture family and information about the texture motion direction. Open 930 
circle indicates individual simulated neurons. 2D Gabor and 3D Gabor models without 931 
normalization exhibited unimodal encoding of the moving texture stimuli, that the former carried 932 
information about texture family and the latter carried information about texture motion direction. 933 
3D Gabor models with untuned normalization generated joint encoding of both the texture family 934 
and the texture motion direction. (b) Joint distribution of the number of texture families and the 935 
number of texture moving directions that a simulated neuron was responsive to. (c) Left, the joint 936 
distribution of information about texture family and texture direction of mouse visual cortical 937 
neurons (reproduce Supplementary Fig. 3c, combined all regions). Right, Joint selectivity of 938 
texture families and texture moving directions mouse visual cortical responses (reproduce 939 
Supplementary Fig. 2f). 940 
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 942 

Supplementary Figure 10. Encoding of RDK stimuli by neuron models. (a) Histogram of 943 
information about the RDK moving direction. (b) Joint distribution of the number of directions and 944 
the number of coherence levels that a simulated neuron was responsive to. (c) Left, the 945 
distribution of information about RDK motion direction of visual cortical neurons (reproduce Fig. 946 
1f). Right, the selectivity of RDK directions of mouse visual cortical neurons (reproduce 947 
Supplementary Fig. 4e) 948 
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 950 

Supplementary Figure 11. Encoding visual features of the naturalistic video using model 951 
neuron responses. (a) Simulated neuronal responses (PSTH) to the naturalistic video. The 952 
neurons were sorted by the timing of the strongest response. The color hue indicates the 953 
normalized value. The normalized average population response of each model was shown at the 954 
bottom.  955 
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 956 

Supplementary Figure 12. 2D Gabor model performed the best in reproducing neuron 957 
responses to texture stimuli. (a) Model neuronal responses to texture stimuli. Binned spike 958 
count of a neuron, and its best 2G Gabor model, 3D Gabor model and 3D Gabor model with 959 
normalization. (b) Information about texture stimuli (top), texture direction (middle) and texture 960 
family (bottom) carried by neuron model vs. recorded neuronal responses. (c) Left, information 961 
about visual stimuli carried by neuron vs. model. Right, the similarity, measured by canonical 962 
correlation, of information encoding of texture stimuli between neuron models and neurons. 963 
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Reported p-values are from a one-way ANOVA of mean canonical correlation values over all 964 
dimensions.  965 
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 966 

Supplementary Figure 13. 2D Gabor model performed the best in reproducing neuron 967 
responses to RDK stimuli. (a) Model neuronal responses to RDK stimuli. Binned spike count of 968 
a neuron, and its best 2G Gabor model, 3D Gabor model and 3D Gabor model with normalization. 969 
(b) Information about RDK stimuli (top), and RDK direction (bottom) carried by neuron model vs. 970 
recorded neuronal responses. (c) Left, information about visual stimuli carried by neuron vs. 971 
model. Right, the similarity, measured by canonical correlation, of information encoding of RDK 972 
stimuli between neuron models and neurons. Reported p-values are from a one-way ANOVA of 973 
mean canonical correlation values over all dimensions.   974 
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 975 

Supplementary Figure 14. Reproducing the modulation of neuronal responses by visual 976 
features of naturalistic videos. (a) Boxplot of feature modulation power (upper) and modulation 977 
coefficients (down) of Gabor models for over-represented classes in HVAs (also, Supplementary 978 
Fig. 7).  979 
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