

1 **Endogenous *Syngap1* Alpha Splice Forms Promote Cognitive
2 Function and Seizure Protection**

3 Murat Kilinc^{1,2}, Vineet Arora², Thomas K. Creson², Camilo Rojas², Aliza A. Le⁴, Julie
4 Lauterborn⁴, Brent Wilkinson⁵, Nicolas Hartel⁶, Nicholas Graham⁶, Adrian Reich³,
5 Gemma Gou^{7,8}, Yoichi Araki⁹, Àlex Bayés^{7,8}, Marcelo P. Coba⁵, Gary Lynch⁴, Courtney
6 A. Miller^{1,2}, Gavin Rumbaugh^{1,2#}

7
8
9 ¹*Graduate School of Chemical and Biological Sciences, ²Departments of Neuroscience and
10 Molecular Medicine, ³Bioinformatics and Statistics Core, The Scripps Research Institute, The
11 Scripps Research Institute, Jupiter, FL, USA*

12 ⁴*Department of Anatomy and Neurobiology, The University of California, Irvine, CA, USA*

13 ⁵*Zilkha Neurogenetic Institute, Keck School of Medicine, University of Southern California, Los
14 Angeles, CA, USA.*

15 ⁶*Mork Family Department of Chemical Engineering and Materials Science, University of
16 Southern California, Los Angeles, California*

17 ⁷*Molecular Physiology of the Synapse Laboratory, Biomedical Research Institute Sant Pau (IIB
18 Sant Pau), Barcelona, Spain.*

19 ⁸*Universitat Autònoma de Barcelona, 08193 Bellaterra (Cerdanyola del Vallès), Spain*

20 ⁹*Department of Neuroscience, Johns Hopkins University School of Medicine, Baltimore,
21 MD 21205, USA.*

22
23
24 #Correspondence and Lead Contact: Gavin Rumbaugh, Ph.D.
25 The Scripps Research Institute
26 120 Scripps Way, #3B3
27 Jupiter, FL 33458
28 561-228-3461
29 gavin@scripps.edu

32 **Summary**

33 Loss-of-function variants in *SYNAGP1* cause a developmental encephalopathy defined by
34 cognitive impairment, autistic features, and epilepsy. *SYNGAP1* splicing leads to expression of
35 distinct functional protein isoforms. Splicing imparts multiple cellular functions of SynGAP
36 proteins through coding of distinct C-terminal motifs. However, it remains unknown how these
37 different splice sequences function *in vivo* to regulate neuronal function and behavior. Reduced
38 expression of SynGAP- α 1/2 C-terminal splice variants in mice caused severe phenotypes,
39 including reduced survival, impaired learning, and reduced seizure latency. In contrast,
40 upregulation of α 1/2 expression improved learning and increased seizure latency. Mice
41 expressing α 1-specific mutations, which disrupted SynGAP cellular functions without altering
42 protein expression, promoted seizure, disrupted synapse plasticity, and impaired learning.
43 These findings demonstrate that endogenous SynGAP isoforms with α 1/2 spliced sequences
44 promote cognitive function and impart seizure protection. Regulation of SynGAP- α expression
45 or function may be a viable therapeutic strategy to broadly improve cognitive function and
46 mitigate seizure.

47

48 **Key Words:** *Syngap1*, SynGAP, Synapse, Plasticity, PSD95, PDZ domain, Long-term
49 potentiation, Intellectual disability, Autism spectrum disorder, Epilepsy, Learning, Behavior

50 **Introduction**

51 Pathogenic variation in *SYNGAP1*, the gene encoding SynGAP proteins, is a leading cause of
52 sporadic neurodevelopmental disorders (NDDs) defined by impaired cognitive function, seizure,
53 autistic features, and challenging behaviors [1-8]. *De novo* loss-of-function variants leading to
54 *SYNGAP1* haploinsufficiency cause a genetically-defined developmental encephalopathy (IDC-
55 10 code: F78.A1) that overlaps substantially with diagnoses of generalized epilepsy, global
56 developmental delay, intellectual disability, and autism [4-6, 9, 10]. *SYNGAP1* is completely
57 intolerant of loss-of-function (LOF) variants [11]. Thus, the presence of a clear LOF variant in a
58 patient will lead to the diagnosis of a *SYNGAP1*-mediated developmental encephalopathy. The
59 range of neuropsychiatric disorders causally linked to *SYNGAP1* pathogenicity, combined with
60 the complete penetrance of LOF variants in humans, demonstrate the crucial role that this gene
61 plays in the development and function of neural circuits that promote cognitive abilities,
62 behavioral adaptations, and balanced excitability.

63
64 SynGAP proteins have diverse cellular functions [11-13]. The best characterized of these is the
65 regulation of excitatory synapse structure and function located on forebrain glutamatergic
66 projection neurons. In these synapses, SynGAP is predominately localized within the
67 postsynaptic density (PSD), where it exists in protein complexes with synapse-associated-
68 protein (SAP) family proteins [14, 15]. Within these complexes, SynGAP proteins regulate
69 signaling through NMDARs, where they constrain the activity of various small GTPases through
70 non-canonical activity of a RasGAP domain [12, 13]. This regulation of GTPase activity is
71 required for excitatory synapse plasticity [16, 17]. Reduced expression of SynGAP in both
72 human and rodent neurons causes enhanced excitatory synapse function during early brain
73 development and is a process thought to impair cognitive functioning [11, 18, 19]. SynGAP also
74 regulates dendritic arborization. Reduced SynGAP protein expression impairs the development
75 of dendritic arborization in neurons derived from both rodent and human tissues [11, 20, 21],
76 which disrupts the function and excitability of neural networks from both species. While reduced
77 SynGAP expression enhances postsynaptic function regardless of glutamatergic projection
78 neuron subtype, this same perturbation has an unpredictable impact on dendritic arborization,
79 with some neurons undergoing precocious dendritic morphogenesis [11, 20], while others
80 displaying stunted morphogenesis [21]. This is an example of pleiotropy, where *Syngap1* gene
81 products have unique functions depending on the neuronal subtype, or possibly within distinct
82 subcellular compartments of the same type of neuron.

83
84 How SynGAP performs diverse cellular functions remains unclear. One potential mechanism is
85 through alternative splicing. Indeed, the last three exons of *Syngap1* undergo alternative
86 splicing[22-24], which results in four distinct C-termini ($\alpha 1$, $\alpha 2$, β , γ). These SynGAP C-terminal
87 protein isoforms are expressed in both rodents and humans, and they are spatially and
88 temporally regulated across mammalian brain development [22, 23]. Moreover, protein motifs
89 present within these differentially expressed C-termini impart SynGAP with distinct cellular
90 functions, with α -derived motifs shown to regulate post-synapse structure and function[25, 26],
91 while the β -derived sequences linked to *in vitro* dendritic morphogenesis [22]. *Syngap1*
92 heterozygous mice, which model the genetic impact of *SYNGAP1* haploinsufficiency in humans,
93 express a robust endophenotype characterized by increased horizontal activity, poor
94 learning/memory, and seizure [12, 16, 18, 27, 28]. Currently, it remains unknown to what extent
95 endogenous *in vivo* expression of alternatively spliced isoforms contribute to systems-level
96 endophenotypes expressed in animal models.

97
98 **Results**

99 The last three exons of *Syngap1* undergo alternative splicing (**Fig. 1A**), which results in four
100 distinct C-termini (**Fig. 1B**). Exon 19 is spliced into two reading frames (e19b/e19a) (**Fig. 1C**).

101 Because e19b lacks a stop codon, coding sequences from e20 and e21 are also included in
102 mature transcripts. This leads to expression of α 1, α 2, or γ C-terminal isoforms (**Fig. 1C-D**). γ
103 isoforms arise from inclusion e20, while α 1 and α 2 arise from the absence of e20, but inclusion
104 of e21. e21 itself has two reading frames, with one leading to expression of α 1 while the other
105 codes for α 2 (**Fig. 1E**). SynGAP- β arises from splicing of e19 into the “a” reading frame, which
106 contains an internal stop codon (**Fig. 1C**). To address how expression or function of isoforms
107 contribute to cognitive function, behavior, and seizure latency, we created three distinct mouse
108 lines, each with targeted modifications within the final three exons of the *Syngap1* gene. Each
109 line expressed a unique signature with respect to C-terminal SynGAP protein variant expression
110 or function. For example, in the *Syngap1*^{td/td} line, α isoform expression was disrupted while β
111 forms were upregulated (**Fig. 1F-G**). In contrast, *Syngap1* ^{β/β^*} mice were opposite with respect to
112 expression of α and β isoforms, with the former upregulated and the latter disrupted (**Fig. 1H**).
113 Finally, the *Syngap1*^{PBM/PBM} line, which expressed point mutations that selectively disrupted an
114 essential function of SynGAP- α 1 (**Fig. 1I**), was useful for determining to what extent phenotypes
115 in the other two lines may have been driven by upregulated or downregulated isoforms.
116

117 Reduced α 1/2 C-Terminal Isoform Expression is Associated with Enhanced Seizure Latency
118 and Cognitive impairment

119 We previously reported the generation of a *Syngap1* mouse line with an insertion of an IRES-
120 TDtomato (IRES-TD) cassette within the 3'-UTR to facilitate endogenous reporting of active
121 *Syngap1* mRNA translation in cells [29]. The cassette was placed within the last *Syngap1* exon
122 (e21) between the stop codons of α 1 and α 2 coding sequences (**Fig. 1E; Fig. 2A**). Our prior
123 study reported neuronal expression of fluorescent protein and normal total SynGAP (t-SynGAP)
124 protein expression as measured by antibodies that recognize all splice forms. Due to our
125 interest in understanding how *in vivo* expression of C-terminal variants impacts brain systems
126 and behavior, we performed an in-depth characterization of behavioral phenotypes and
127 SynGAP isoform expression in IRES-TD mice. Heterozygous (*Syngap1*^{+/td}) breeding of IRES-TD
128 animals resulted in offspring of expected mendelian ratios (**Fig. 2B**). However, while all WT
129 (*Syngap1*⁺⁺) mice survived during the 100-day observation period, significant post-weaning
130 death occurred in IRES-TD mice, with approximately two-thirds of homozygous mice
131 (*Syngap1*^{td/td}) failing to survive past PND 50 (**Fig. 2B**). It is well established that complete loss of
132 t-SynGAP protein stemming from homozygous inclusion of null alleles leads to early postnatal
133 death [27, 30]. However, ~50% t-SynGAP expression, like that occurring in heterozygous KO
134 mice (*Figure 2 -supplement 1A*), has no impact on survival [27, 30]. Given the unexpectedly
135 poor survival of *Syngap1*^{td/td} animals, we thoroughly examined SynGAP C-terminal isoform
136 protein expression in this line. At PND21, when all three genotypes are abundant (**Fig. 2B**), t-
137 SynGAP protein in mouse cortex homogenate was reduced in *Syngap1*^{+/td} and *Syngap1*^{td/td} mice
138 compared to WT controls (**Fig. 2C**). Reduced t-SynGAP levels appeared to be largely driven by
139 near-complete disruption of α 1/2 protein expression from the targeted allele. Reduced α isoform
140 expression coincided with increased protein levels of β -containing C-terminal isoforms. Even
141 with β compensation, *Syngap1*^{td/td} mice expressed only ~50% of t-SynGAP at PND21. Whole
142 exome sequencing was carried out in each genotype. Differential gene expression (DGE)
143 analysis revealed only a single mRNA, *Syngap1*, was abnormally expressed (*Supplemental
144 Table 1*). There was a ~25% reduction in mRNA levels in both *Syngap1*^{+/td} and *Syngap1*^{td/td} mice
145 (*Figure 2 -supplement 1B*). While the IRES-TD cassette destabilized a proportion of *Syngap1*
146 mRNAs, the similarity in mRNA levels from both *Syngap1*^{+/td} and *Syngap1*^{td/td} samples indicated
147 that other mechanisms must also contribute to reduced protein expression of α 1/2 isoforms.
148 Indeed, a recent study identified 3'UTR-dependent regulation of α isoform protein expression
149 [31], suggesting that the IRES-TD cassette is also disrupting translation of these C-terminal
150 variants. We next addressed expression of SynGAP isoforms in adulthood. In this additional

151 experiment, only *Syngap1^{+/+}* and *Syngap1^{+/td}* mice were used because of limited survival and
152 poor health of homozygous mice in the post-weaning period (**Fig. 2B**). The general pattern of
153 abnormal SynGAP levels persisted into adulthood, with both α isoforms reduced by ~50%
154 compared to WT levels, while β isoforms were significantly enhanced (*Figure 2 -supplement*
155 **1C**). However, the effect on t-SynGAP was less pronounced in older animals and did not rise to
156 significance. This finding highlights the importance of measuring the expression of individual
157 isoforms in addition to total levels of SynGAP protein in samples derived from animal or cellular
158 models.

159
160 *Syngap1* heterozygous KO mice, which have 50% reduction of t-SynGAP and 50% reduction of
161 all isoforms (*Figure 2 -supplement 1A*), have normal post-weaning survival rates [27, 30].
162 However, survival data from *Syngap1^{td/td}* mice above, which also expressed a ~50% reduction
163 of t-SynGAP, but loss of α isoform expression (**Fig. 2C; Fig. 1G**), suggest that expression of
164 these isoforms is required for survival. α isoforms are highly enriched in brain [22], suggesting
165 that reduced survival stems from altered brain function. Therefore, we next sought to
166 understand how reduced $\alpha 1/2$ expression (but in the context of β compensation) impacted
167 behaviors known to be sensitive to reduced t-SynGAP expression in mice. We obtained minimal
168 data from adult *Syngap1^{td/td}* mice because they exhibit poor health and survival in the post-
169 weaning period. However, two animals were successfully tested in the open field, and they
170 exhibited very high levels of horizontal activity (**Fig. 2D**). A more thorough characterization of
171 behavior was carried out in adult *Syngap1^{+/td}* mice, which have significantly reduced α isoforms,
172 enhanced β expression, but relatively normal t-SynGAP levels (*Figure 2 -supplement 1A*).
173 *Syngap1^{+/td}* mice exhibited significantly elevated open field activity, seized more quickly in
174 response to flurothyl, and froze less during remote contextual fear memory recall (**Fig. 2E-G**).
175 These phenotypes are all present in conventional *Syngap1^{+/−}* mice [16, 18, 20, 32], which again
176 express ~50% reduction of all isoforms (*Figure 2 -supplement 1A*). In contrast, Morris water
177 maze acquisition, which is also impaired in *Syngap1^{+/−}* mice [27, 30], was unchanged in
178 *Syngap1^{+/td}* mice (**Fig. 2H**). Thus, certain behaviors, including horizontal activity, freezing in
179 response to conditioned fear, and behavioral seizure, are sensitive to reduced levels of α
180 isoforms, but not necessarily t-SynGAP levels.
181

182 Enhanced $\alpha 1/2$ C-Terminal Isoform Expression is Associated with Seizure Protection and 183 Improved Cognitive Function

184 The results in IRES-TD mice suggested that certain core *Syngap1*-sensitive behavioral
185 phenotypes are caused, at least in part, by reduced $\alpha 1/2$ isoform expression. If α isoforms
186 directly contribute to behavioral phenotypes in mice, then increasing their expression may drive
187 phenotypes in the opposite direction. To test this idea, we created a new mouse line designed
188 to upregulate SynGAP- α expression *in vivo*. This line, called *Syngap1^{+/β*}*, contained a point
189 mutation that prevented use of the e19a spliced reading frame (**Fig. 3A-B**), the mechanism
190 leading to expression of the SynGAP- β C-terminal variant (**Fig. 1C**). This design was expected
191 to force all mRNAs to use the e19b reading frame, leading to an increase in α variants (and loss
192 of β expression). This line appeared healthy, bred normally, and resulting offspring were of
193 expected Mendelian ratios (*Figure 3 - supplement 1C*). The CRISPR-engineered point mutation
194 had the predicted impact on SynGAP isoform expression. While there was no change in t-
195 SynGAP expression, there was a copy-number-dependent decrease in β expression, and a
196 modest, but significant, increase in $\alpha 2$ expression in neonatal mice and $\alpha 1$ in young adult mice
197 (**Fig. 3C; Fig. 1H; Figure 3 -supplement 1A**). These animals were then evaluated in behavioral
198 paradigms sensitive to *Syngap1* haploinsufficiency. Homozygous *Syngap1^{β*/β*}* mice exhibited
199 significantly less horizontal activity in the open field (**Fig. 3D**), and also took longer to express
200 behavioral evidence of seizure (**Fig. 3E**). Further, they expressed no change in freezing levels

201 during remote contextual memory recall (**Fig. 3F**). Unexpectedly, homozygous β^* mice exhibited
202 improved learning in the Morris water maze (**Fig. 3G**), with normal memory expression during
203 the probe test (*Figure 3 -supplement 1B*). Thus, a significant increase in α isoform expression
204 (*in the presence of nearly absent β ; Fig. 1H*) protected against seizure and improved behavioral
205 measures associated with cognitive function, such as learning during spatial navigation.
206

207 Given the observation of seizure protection and improved learning in *Syngap1* $^{\beta^*/\beta^*}$ mice, we
208 were curious if the impact of the β allele was penetrant in a *Syngap1* heterozygous (*Syngap1* $^{+/-}$)
209 background. This is important given that *Syngap1* heterozygous mice, which model genetic
210 impacts of SYNGAP1 haploinsufficiency in humans, have seizures and significant cognitive
211 impairments. To test this idea, we crossed *Syngap1* $^{+/\beta^*}$ and *Syngap1* $^{+/-}$ lines, which yielded
212 offspring with four distinct genotypes: *Syngap1* $^{++}$, *Syngap1* $^{+/\beta^*}$, *Syngap1* $^{+/-}$, *Syngap1* $^{-/\beta^*}$ (**Fig.**
213 **4A**). We first measured SynGAP protein in each of the four genotypes. In general terms,
214 offspring from this cross expressed changes in SynGAP protein levels that were predicted by
215 the known impact of each allele. For example, the effect of the *Syngap1* null allele (by
216 comparing *Syngap1* $^{++}$ to *Syngap1* $^{+/-}$ samples) was to cause a significant reduction in t-SynGAP,
217 and each of the measured C-terminal isoforms compared to *Syngap1* $^{++}$ (WT) animals (**Fig. 4B-C**,
218 *Figure 4 - supplement*). The effect of the *Syngap1* β^* allele was to increase both $\alpha 1$ and $\alpha 2$
219 expression, and decrease β expression, whether the *Syngap1* null allele was present or absent,
220 and these effects were also present at two developmental time points (**Fig. 4B-C**, *Figure 4 -*
221 *supplement*). Given these results, we next performed behavioral analyses on all four
222 genotypes. Results on behavioral endophenotypes were consistent with changes in SynGAP
223 protein. For example, the *Syngap1* null allele impaired performance in each of the three
224 behavioral tests performed. Comparing *Syngap1* $^{+/-}$ to *Syngap1* $^{-/\beta^*}$ animals revealed an increase
225 in horizontal distance in the open field, faster time to seizure, and reduced freezing during
226 remote contextual fear recall (**Fig. 4D-F**; two-way ANOVA; null (-) allele, $p<0.05$). These results
227 replicate many past studies demonstrating the sensitivity of these behaviors to *Syngap1*
228 haploinsufficiency in mice [12, 18, 20, 21, 27, 32, 33]. Interestingly, for both open field and
229 seizure threshold tests, the presence of β^* allele significantly improved measures in both WT
230 (*Syngap1* $^{++}$) and *Syngap1* heterozygous (*Syngap1* $^{+/-}$) backgrounds (**Fig. 4D-E**; two-way
231 ANOVA; β^* allele, $p<0.01$; interaction of null and β alleles, $p>0.5$). These findings were
232 consistent with behavioral results from homozygous β^* mice in the prior study (**Fig. 3F-G**) and
233 demonstrated that these two behavioral tests are sensitive to the presence of a single β^* allele.
234 Also consistent with the prior study in *Syngap1* $^{\beta^*/\beta^*}$ mice, the β^* allele had no impact on freezing
235 during remote contextual fear recall in either WT or *Syngap1* heterozygous backgrounds (**Fig.**
236 **4F**). Thus, the β^* allele partially rescued phenotypes caused by *Syngap1* heterozygosity.
237

238 *Alpha 1 C-Terminal Isoform Function is Required for Cognitive Function and Seizure Protection*
239 The results obtained from *Syngap1* IRES-TD and β^* mouse lines indicated that a respective
240 decrease, or increase, in $\alpha 1/2$ isoform expression impaired, or improved, behavioral phenotypes
241 known to be sensitive to *Syngap1* heterozygosity. However, it is also possible that
242 compensatory changes in β expression underlies these phenotypes. This alternative is unlikely,
243 given that α and β expression is anticorrelated in both mouse lines. Thus, for β to drive
244 phenotypes, its expression would need to be both anti-cognitive and pro-seizure, which is
245 inconsistent with isoform expression patterns in *Syngap1* $^{+/-}$ mice (*Figure 2 -supplement 1A*),
246 where all protein variants are reduced by half. To directly test the hypothesis that behavioral
247 phenotypes are sensitive to the presence of α isoforms, we attempted to create a third mouse
248 line with point mutations that selectively impacted α isoforms, with minimal effect to SynGAP- β .
249 We took advantage of a known molecular function exclusive to SynGAP- $\alpha 1$. This C-terminal

250 variant is the only isoform that expresses a PDZ-binding motif (PBM). Importantly, cell-based
251 studies have shown that the $\alpha 1$ -exclusive PBM imparts unique cellular functions to this isoform
252 [17, 34], such as the ability to become enriched at the post-synaptic density through liquid-liquid
253 phase separation (LLPS). Past studies have shown that mutating the PBM disrupts the ability of
254 SynGAP to regulate synapse structural and functional properties [25, 26], including
255 glutamatergic synapse transmission and dendritic spine size. Before this mouse could be
256 engineered, we had to first identify PBM-disrupting point mutations within the $\alpha 1$ coding
257 sequence that were silent within the open reading frames of the remaining C-terminal isoforms.
258 *In silico* predictions and prior studies [25, 34] suggested that a double point mutation within the
259 $\alpha 1$ PBM could meet these requirements (**Fig. 5A-B**). To test this prediction, we introduced these
260 point mutations into a cDNA that encoded the PBM and then tested how this impacted PDZ
261 binding. Using an established cell-based assay that reports PDZ binding between the SynGAP
262 PBM and PSD95 [34], we found that these point mutations had a large effect on SynGAP-PDZ
263 binding. When expressed individually in HeLa cells, PSD95-tRFP localized to the cytoplasm,
264 while a SynGAP fragment containing the coiled-coil domain and $\alpha 1$ C-tail (EGFP-CC $\alpha 1$) was
265 enriched in the nucleus (**Fig. 5C-E**). The co-expression of these two proteins led to SynGAP
266 localization into the cytoplasm. However, this shift in localization did not occur when PBM point
267 mutations were present (**Fig. 5D-E**), indicating that the selected amino acid substitutions
268 severely impaired binding to the PDZ domains. Moreover, co-immunoprecipitation in
269 heterologous cells indicated that the point mutations in the PBM disrupted the direct association
270 of full-length SynGAP- $\alpha 1$ with PSD95 (*Figure 5 -supplement 1A-B*). Finally, these point
271 mutations also reduced synaptic enrichment of exogenously expressed SynGAP- $\alpha 1$ fragments
272 in cultured forebrain neurons (*Figure 5 -supplement 1C-E*).
273

274 Based on this evidence, we introduced the PBM-disrupting point mutations into the final exon of
275 the mouse *Syngap1* gene through homologous recombination (**Fig. 5A, F-H**). Both
276 heterozygous and homozygous PBM mutant animals (hereafter *Syngap1*^{+/PBM} or
277 *Syngap1*^{PBM/PBM}) were viable, appeared healthy, and had no obvious dysmorphic features. We
278 observed Mendelian ratios after interbreeding *Syngap1*^{+/PBM} animals (*Figure 5 -supplement 1F*),
279 demonstrating that disrupting the PBM had no impact on survival. Western blot analysis of
280 forebrain homogenates isolated from *Syngap1*^{+/PBM} or *Syngap1*^{PBM/PBM} mutant animals
281 demonstrated no difference in t-SynGAP protein levels using antibodies that detect all SynGAP
282 splice variants (**Fig. 5I-J**). Moreover, using isoform-selective antibodies [35], we observed
283 normal expression of SynGAP- β and SynGAP- $\alpha 2$ isoforms (**Fig. 5I-J**). A reduced signal of
284 ~60% was observed in samples probed with $\alpha 1$ -specific antibodies. However, we also observed
285 a similarly reduced signal in heterologous cells expressing a cDNA encoding the mutant PBM
286 (*Figure 5 -supplement 1G-I*), indicating that these antibodies have reduced affinity for the
287 mutated $\alpha 1$ motif. Together, these data strongly suggest that the $\alpha 1$ variant is expressed
288 normally in *Syngap1*^{PBM/PBM} animals. This interpretation was supported by RNA-seq data, where
289 normal levels of mRNA containing the $\alpha 1$ reading frame were observed in brain samples (*Figure*
290 *5 -supplement 1J*). These data, combined with the observation of no change in total SynGAP
291 protein expression in *Syngap1*^{PBM/PBM} samples (**Fig. 5I-J**), strongly support the conclusion that
292 the PBM-disrupting point mutations do not change the expression levels of the major SynGAP
293 C-terminal splice variants, including those containing the PBM. Thus, this animal model is
294 suitable for understanding the putative biological functions mediated by $\alpha 1$ -specific splicing.
295

296 Given the disruption to SynGAP- $\alpha 1$ PBM, we sought to understand how disrupting this
297 functional motif impacted previously defined features of SynGAP at excitatory postsynapses. $\alpha 1$
298 is believed to be anchored within the PSD in part through PBM binding to PDZ domain
299 containing proteins. However, SynGAP molecules multimerize in vivo and it is currently

300 unknown if this results in homo- or hetero-multimerization. Thus, it is unclear how a functional
301 disruption to one isoform generally impacts native SynGAP complexes at synapses. t-SynGAP
302 levels were reduced in PSD fractions prepared from the hippocampus of *Syngap1*^{PBM/PBM} mice
303 (**Fig. 6A**). Importantly, a corresponding increase in t-SynGAP was observed in the triton soluble
304 synaptosomal fraction in these mice, further supporting the observation of reduced t-SynGAP
305 levels in the PSD. We observed similar reductions in t-SynGAP levels within the PSD and
306 ERK1/2 signaling was elevated in neurons cultured from *Syngap1*^{PBM/PBM} mice (**Fig. 6B**). Acute
307 treatment with the NMDAR antagonist APV normalized SynGAP levels in both PSD
308 preparations and normalized ERK1/2 phosphorylation (**Fig. 6B**). Similar treatments also
309 normalized enrichment of SynGAP in dendritic spines and surface expression of GluA1 in
310 neurons derived from *Syngap1*^{PBM/PBM} mice (**Fig. 6 C, D**). These results indicate that
311 endogenous PBM binding regulates an NMDAR-dependent process within excitatory synapses.
312

313 Blocking NMDAR activity in *Syngap1*^{PBM/PBM} neurons prevented alterations in SynGAP levels at
314 postsynapses (**Fig. 6A-D**). This suggested that the PBM regulates SynGAP-specific functions in
315 the PSD. However, SynGAP- α 1 undergoes LLPS and this mechanism is thought to facilitate the
316 organization of the PSD [34]. Thus, disrupted SynGAP post-synaptic levels could also be
317 attributable to altered structural organization of the PSD. To determine if the PBM contributes to
318 the organization of macromolecular complexes within excitatory synapses, we
319 immunoprecipitated PSD95 from neurons obtained from either WT or *Syngap1*^{PBM/PBM} mutant
320 neurons. These neurons were treated with APV to avoid the confounds of elevated NMDAR
321 signaling. These samples were then analyzed by mass spectrometry to determine how
322 disrupting SynGAP-PDZ binding impacted the composition of PSD95 macromolecular
323 complexes. In general, we found only minor differences in the abundance of proteins that
324 comprise PSD95 complexes when comparing samples from each genotype (**Fig. 7A**). Only 1
325 out of ~161 proteins (from 133 distinct genes) known to be present within PSD95 complexes
326 [36] met our threshold for significance, although there were modest changes in proteins with
327 structurally homologous PBMs (Type-1 PDZ ligands), such as Iqseq2 and Dlgap3 (**Fig. 7B**).
328 However, the vast majority of related PBM-containing proteins were not different in mutant
329 neurons, including NMDAR subunits and TARPs (**Fig. 7C**). Consistent with the mass
330 spectrometry analysis, immunoblot analyses found no changes in TARPs or LRRTM2 in
331 isolated PSDs from *Syngap1*^{PBM/PBM} mice (**Fig. 7D-G**). Although PDZ binding was disrupted,
332 SynGAP protein levels were also unchanged within PSD95 complexes, a result consistent with
333 PSD and synapse localization measurements in APV-treated neurons derived from
334 *Syngap1*^{PBM/PBM} mice (**Fig. 6B-C**). These results indicate that SynGAP interacts with PSD95 in a
335 non-PDZ-dependent manner. In support of this interpretation, there is significant overlap
336 between the interactomes of PSD95 [36] and SynGAP [37] macromolecular complexes (**Fig.**
337 **7H**). Thus, within intact postsynapses, SynGAP and PSD95 interact, as part of a
338 macromolecular complex, through binding to common protein intermediaries. Together, these
339 data suggest that SynGAP PBM binding to PDZ domains is not a major factor promoting the
340 organization of PSD95 macromolecular complexes or the PSD. Rather, the PBM appears to
341 regulate SynGAP-specific mechanisms that control signaling through NMDARs.
342

343 Given that altering the SynGAP PBM disrupts signaling through NMDARs, we hypothesized that
344 hippocampal CA1 LTP would be disrupted in *Syngap1*^{PBM/PBM} mice. The within-train facilitation of
345 responses across the seven theta bursts used to induce LTP did not differ between genotypes
346 (**Fig. 8A**), indicating that standard measures of induction, including NMDAR channel activation,
347 were not impacted by PBM mutations. However, short-term plasticity (STP; **Fig. 8C, D**) and LTP
348 (**Fig. 8B, E**) were both reduced in *Syngap1*^{PBM/PBM} mice. The ratio of LTP/STP was no different
349 between genotypes (**Fig. 8F**). Blocking NMDAR channel function is known to disrupt both STP
350 and LTP [38]. However, a key measure of NMDA channel function was normal in PBM mutant

351 mice (**Fig. 8A**). Thus, these data are consistent with the idea that disrupting SynGAP-PDZ
352 binding impairs signaling normally induced downstream of synaptic NMDAR activation. Synaptic
353 plasticity, such as LTP, is thought to contribute importantly to multiple forms of learning and
354 memory. As such, we next measured performance of WT and *Syngap1*^{PBM/PBM} mice in a variety
355 of learning and memory paradigms that have previously shown sensitivity in *Syngap1* mouse
356 models, including IRES-TD and β^* lines. Behavioral analysis in this line revealed a significant
357 increase in horizontal locomotion in the open field test (**Fig. 8G**), a significantly reduced seizure
358 threshold (**Fig. 8H**), and significantly reduced freezing during retrieval of a remote contextual
359 fear memory (**Fig. 8I**). Moreover, we also observed impaired acquisition during Morris water
360 maze learning (**Fig. 8J**). Together, these behavioral data indicate that the PBM within SynGAP-
361 α 1 splice forms is critical for learning and memory, as well as protecting against seizure.
362

363 *Alpha1/2 C-Terminal Isoform expression or function predicts changes in excitatory synapse*
364 *function*

365 Behavioral results from IRES-TD and PBM mice were consistent with each other, and also
366 consistent with a reduction in all SynGAP isoforms occurring in *Syngap1* conventional
367 heterozygous KO mice. These three mouse lines share a common molecular feature – reduced
368 expression or function of SynGAP- α 1 isoforms (**Fig. 1F-I**). Prior studies have shown that
369 exogenously expressed SynGAP- α 1 is a negative regulator excitatory synapse function [25, 39].
370 Thus, we hypothesized that IRES-TD and PBM mouse lines would express elevated excitatory
371 synapse function, while *Syngap1* ^{β^*/β^*} mice, which have enhanced α 1 expression, would express
372 reduced synapse function. To test this idea, we performed whole-cell voltage clamp recordings
373 in acute somatosensory cortex slices derived from all three of these lines because these
374 neurons have been shown to be sensitive to *Syngap1* heterozygosity in *ex vivo* slice
375 preparations [21]. PBM mice exhibited a modest increase in *mEPSCs* amplitude and a more
376 substantial increase in *mEPSC* frequency, two measures consistent with enhanced postsynaptic
377 function (**Fig. 9A-C**). We also observed increased excitatory synapse function (both *mEPSC*
378 amplitude and frequency distributions) in IRES-TD mice (**Fig. 9D-F**). The effects on synapse
379 function from L2/3 SSC neurons observed in these two lines are similar to what has been
380 reported previously in *Syngap1* ^{$^{+/-}$} mice [21]. In contrast, *Syngap1* ^{β^*/β^*} mice, which have
381 significantly elevated α 1 expression, expressed reduced *mEPSC* amplitude and frequency
382 measurements relative to littermate control slices (**Fig. 9G-I**), a phenotype consistent with
383 SynGAP- α 1 overexpression in excitatory neurons [25, 39].
384

385 **Discussion**

386 In this study, we created three distinct mouse lines, each regulating the expression or function
387 of SynGAP protein isoforms (**Fig. 1F-I**), without appreciable change in total SynGAP expression
388 levels. The overall conclusion from this study is that α -containing SynGAP isoforms promote
389 cognitive functions that support learning/memory, while also protecting against seizure. It is
390 important to understand the relationship between SynGAP isoform function and systems-level
391 manifestations of the different isoforms, such as behavioral expression related to cognitive
392 function and seizure. It has been shown previously that *Syngap1* C-terminal splicing imparts
393 distinct cellular functions of SynGAP proteins [22, 24-26]. Thus, targeting endogenous isoform
394 expression in animal models presents an opportunity to determine to what extent distinct cellular
395 functions of SynGAP could contribute to various intermediate phenotypes present in *Syngap1*
396 mouse models. Given that *SYNGAP1* is a well-established NDD gene and LOF mutations are
397 highly penetrant in the human population [1-3, 5, 6, 8, 40, 41], studying these relationships have
398 the potential to provide much needed insight into the neurobiology underlying human cognitive
399 and behavioral disorders that first manifest during development. Second, there is increasing
400 interest in targeted treatments for patients with *SYNGAP1* disorders due to the penetrance of

401 LOF variants, the relatively homogenous manifestations of the disorder (e.g., cognitive
402 impairment and epilepsy), and the growing number of patients identified with this disorder [42].
403 Restoring SynGAP protein expression in brain cells is the most logical targeted treatment for
404 this disorder because most known patients have *de novo* variants that cause genetic
405 haploinsufficiency [9]. The most logical therapeutic approach would be to reactivate native
406 expression of the endogenous gene. However, the findings from this study indicate that targeted
407 therapies for *SYNGAP1* disorders that enhance expression of α isoforms may be sufficient to
408 provide a benefit to patients. Indeed, only a modest upregulation of α 1/2 expression within a
409 *Syngap1* heterozygous background was sufficient to improve behavioral deficits commonly
410 observed in that mouse line (Fig. 4). Third, the discovery that SynGAP- α 1/2 expression/function
411 is pro-cognitive and provides protection from seizure suggests that these isoforms, and the
412 cellular mechanisms that they regulate, could be harnessed to intervene in idiopathic cognitive
413 and excitability disorders, such as neurodegenerative disorders and/or epilepsies with unknown
414 etiology.
415

416 Several lines of evidence from this study support the conclusion that SynGAP- α isoform
417 expression or function promotes cognition and seizure protection. IRES-TD and PBM mouse
418 lines each had similar learning/memory and seizure threshold phenotypes, with both mouse
419 lines exhibiting impaired phenotypes related to these two types of behavioral analyses. Indeed,
420 these two mouse lines also shared a common molecular perturbation - reduced expression or
421 function of alpha isoform(s). For example, IRES-TD homozygous mice lacked expression of
422 both α 1 and α 2 isoforms and these animals exhibited severe phenotypes, including reduced
423 post-weaning survival and dramatically elevated horizontal activity in the open field. Additional
424 phenotypes were also present in heterozygous IRES-TD mice, which underwent more
425 comprehensive testing because of better survival in the post-weaning period. These additional
426 phenotypes included reduced seizure threshold and impaired freezing during a remote
427 contextual fear expression test. PBM homozygous mice had normal expression of SynGAP
428 protein, but lacked a functional domain present exclusively in α 1 isoforms, a type-1 PDZ binding
429 domain. PBM homozygous mice shared phenotypes with IRES-TD mice, including impaired
430 remote contextual fear expression, elevated horizontal activity in the open field, and a reduced
431 seizure threshold. These mice also expressed impaired learning during Morris water maze
432 acquisition. Importantly, these behavioral phenotypes are well established in *Syngap1*
433 heterozygous mice [16, 18, 20, 32, 33], indicating that SynGAP protein loss-of-function
434 underlies these abnormalities. Thus, it reasonable to speculate that α isoform LOF is one
435 potential mechanism underlying these behavioral abnormalities. Dysregulation of excitatory
436 synapse function in cortical circuits is one of many possible cellular mechanisms underlying
437 common phenotypes in IRES-TD and PBM mutant mice lines. Whole cell electrophysiology
438 experiments from developing cortical neurons *in situ* from each line revealed evidence of
439 elevated excitatory synapse strength during the known *Syngap1* mouse critical period. Indeed,
440 elevated excitatory synapse strength in developing forebrain glutamatergic neurons is a major
441 cellular outcome present in *Syngap1* heterozygous knockout mice [16, 18, 19, 21]. Moreover,
442 elevated excitatory synapse strength is consistent with impaired cognitive function and reduced
443 seizure threshold.
444

445 Studies in the *Syngap1* β^* line also support this interpretation. These mice were devoid of
446 SynGAP- β protein expression, yet we did not observe cellular or behavioral phenotypes
447 consistent with *Syngap1* heterozygosity. Rather surprisingly, mice lacking SynGAP- β
448 expression had intermediate phenotypes that opposed what was commonly observed in
449 *Syngap1* heterozygous KO mice (and shared by IRES-TD/PBM lines). For example, β^* mice
450 exhibited improved spatial learning in the Morris water maze, reduced horizontal activity in the

451 open field, and an elevated seizure threshold (evidence of seizure protection). These
452 phenotypes were modest in effect size, but highly significant. These phenotypes were
453 reproducible because open field and seizure phenotypes were also present in a separate series
454 of experiments performed in the *Syngap1* heterozygous background. This demonstrates that the
455 impact of the β^* allele is penetrant even when expression of isoforms is reduced by half
456 compared to WT mice. As a result, the β^* allele partially rescued open field and seizure
457 phenotypes present in *Syngap1^{+/−}* mice. For impaired β expression to drive phenotypes,
458 expression of this isoform would be anticorrelated with cognitive function and seizure protection.
459 Put another way, reduced β expression would need to enhance phenotypes and increased
460 expression of these isoforms would need to disrupt them. This outcome is unlikely given that it
461 is inconsistent with phenotypes observed in *Syngap1^{+/−}* mice, which have reduced expression of
462 all isoforms, including SynGAP- β .
463

464 Phenotypes in β^* mice are likely driven by significantly elevated SynGAP- α expression rather
465 than reduced SynGAP- β . Electrophysiological studies in these mice revealed reduced excitatory
466 neuron synaptic strength, a finding consistent with exogenously elevated SynGAP- $\alpha 1$
467 expression [25, 39]. Moreover, these synapse-level results are consistent with seizure
468 protection observed in β^* mice. Phenotypes in PBM mice also support this hypothesis. This
469 model does not have altered t-SynGAP expression, or a change in β expression. Yet, the
470 behavioral- and synapse-level phenotypes are consistent with those observed in IRES-TD and
471 *Syngap1^{+/−}* mice. The observation that α isoforms promote cognitive function and seizure
472 protection are consistent with known molecular functions of these isoforms, at least with respect
473 to regulation of synapse strength and resultant impacts on neural circuit function. For example,
474 $\alpha 1$ imparts SynGAP with the ability to undergo liquid-liquid phase transitions [34]. This
475 biophysical process is associated with regulation of Ras signaling in dendritic spines required
476 for AMPA receptor trafficking that supports use-dependent synapse plasticity [17, 22]. Input-
477 specific plasticity is crucial during development to sculpt the assembly of neural circuits [43],
478 while also being important in mature circuits to promote experience-dependent changes in
479 already-established circuitry [44].
480

481 A consensus is emerging that baseline synaptic phenotypes related to *Syngap1* gene
482 expression are dominated by the ability of both $\alpha 1$ and $\alpha 2$ isoforms to suppress excitatory
483 synapse function. Studies from several research groups have shown that SynGAP- $\alpha 1$ is a
484 negative regulator of excitatory synapse structure and function [17, 22, 25, 26, 39]. In contrast,
485 the role of $\alpha 2$ isoform protein function on excitatory synapse structure/function is less clear. One
486 study suggested that $\alpha 2$ has an opposing function relative to $\alpha 1$ within excitatory synapses, with
487 the former acting as an enhancer, rather than a suppresser, of excitatory synapse function [24].
488 However, a more recent study demonstrated that $\alpha 2$ has a similar, albeit less robust ability to
489 suppress AMPA receptor content within dendritic spines [22], indicating that it too can act as a
490 negative regulator of synapse function. Our results here support the view that both $\alpha 1$ and $\alpha 2$
491 can act as suppressors of excitatory synapse function. In our studies, $\alpha 1$ and $\alpha 2$ were both co-
492 regulated in the IRES-TD and β^* lines, with both isoforms downregulated in the former and
493 upregulated in the latter. In both mouse lines, baseline excitatory synapse strength was
494 inversely proportional to expression levels of $\alpha 1/2$ isoforms. If $\alpha 1$ and $\alpha 2$ had opposing functions
495 at the synapse level, then co-regulation of both isoforms would be expected to lead to no
496 significant differences in synapse function.
497

498 It is important to note that our interpretation that β^* mouse phenotypes are most likely driven by
499 changes in α isoforms does not preclude a fundamental role of β in sculpting neural systems, or

500 that reduced expression of this isoform in *Syngap1*^{+/−} mice has no role in disease pathobiology.
501 Rather, our results highlight the importance of endogenous α isoforms in regulating excitatory
502 synapse function and associated behavioral outcomes. What is known about the function of
503 other C-terminal protein variants, such as β and γ ? A recent study suggested that β and γ
504 isoforms lack the ability to regulate excitatory synapse function, further strengthening the idea
505 that α isoforms account for *Syngap1*-dependent regulation of excitatory synapse function [22].
506 However, *Syngap1* is known to regulate additional cellular process beyond regulation of
507 excitatory synapse function, such as dendritic morphogenesis and patterning *in vivo* [18, 20, 21].
508 Evidence suggests that all isoforms can regulate dendritic morphogenesis *in vitro*, though
509 SynGAP- β was shown to be a stronger regulator of this process relative to the other C-terminal
510 isoforms [22]. *In vivo*, β was found to be expressed earlier in development and to be less
511 enriched in the postsynaptic density compared to other variants [23]. Thus, β is well positioned
512 to regulate non-synapse related neuronal processes. Future studies will be required to elucidate
513 the specific cellular functions of non-alpha isoforms and how they contribute to the development
514 of neural function and behavior. Given the complexities of *Syngap1* regulation on dendritic
515 morphogenesis [20, 21], and the direct linkage between dendritic morphogenesis and circuit
516 function in cortex in *Syngap1* mutant animals [21], future studies on the function of individual
517 isoforms would ideally be carried out *in vivo* in developing animals.

518
519
520
521
522
523
524
525

526 **Acknowledgements**

527 This work was supported in part by NIH grants from the National Institute of Mental Health
528 (MH096847 and MH108408 to G.R., MH115005 and MH113949 to M.P.C, and MH105400 to
529 C.A.M.), the National Institute for Neurological Disorders and Stroke (NS064079 to G.R.), the
530 Eunice Kennedy Shriver National Institute of Child Health and Human Development (HD089491
531 to G.L.), the National Institute for Drug Abuse (DA034116 and DA036376 to C.A.M.), the
532 Spanish Ministerio de Ciencia, Innovación y Universidades (BFU2012-34398, BFU2015-69717-
533 P, RTI2018-097037-B-100, RYC-2011-08391p and IEDI-2017-00822) and the Catalan
534 Government (AGAUR SGR14-297 and 2017SGR1776). M.K. was supported by Autism Speaks
535 Weatherstone Pre-Doctoral fellowship (10646). G.G. was supported by a predoctoral fellowship
536 from the Spanish Ministerio de Educación (BES-2013-063720). V.A. was supported by a
537 training Fellowship from Leon and Friends.

538

539 **Author Contributions**

540 M.K. performed experiments, designed experiments, analyzed data, co-wrote the manuscript,
541 and edited the manuscript. V.A performed experiments, designed experiments, analyzed data,
542 and edited the manuscript. T.K.C. performed experiments, designed experiments, analyzed
543 data, and edited the manuscript. C.R. performed experiments, designed experiments and
544 analyzed data. A.A.L performed experiments, designed experiments, and analyzed data. J.L
545 designed experiments and analyzed data. B.W. performed experiments, designed experiments,
546 and analyzed data. N.H. performed experiments and designed experiments. N.G. performed
547 experiments and designed experiments. A.R. analyzed data. G.G. performed experiments.
548 Y.A. performed experiments. A.B. designed experiments, analyzed data, and interpreted data.
549 M.P.K. designed experiments, analyzed data, and interpreted data. G.L. designed experiments,
550 analyzed data, and interpreted data. C.A.M. designed experiments, interpreted data, and edited
551 the manuscript. G.R. conceived the study, designed experiments, interpreted data, co-wrote the
552 manuscript, and edited the manuscript.

553

554 **Declaration of Interests**

555 The authors declare no competing financial interests.

556

557

558

559

560 **Materials & Methods**

561

562 **Animals**

563 This study was performed in strict accordance with the recommendations in the Guide for the
564 Care and Use of Laboratory Animals of the National Institutes of Health. All of the animals were
565 handled according to approved institutional animal care and use committee (IACUC) protocols
566 of The Scripps Research Institute.

567

568 *Syngap1*^{PBM} and *Syngap1*^{Td} mice were constructed in collaboration with genOway (France). The
569 targeting vector was electroporated into ES cells derived from the inner cell mass of 3.5 days
570 old C57BL/6N embryos. Cells were then subjected to negative and/or positive selection(s)
571 before the presence of the correct recombination event was validated by PCR and Southern
572 blot. ES cell clones with verified mutations were injected into blastocysts which were implanted
573 into pseudo-pregnant females to obtain chimeras. Chimeric mice were bred with C57BL/6 Cre-
574 deleter mice to excise the Neomycin selection cassette and to generate heterozygous mice
575 carrying the Neo-excised knock-in allele. Progeny were genotyped by PCR. The recombinase-
576 mediated excision event was further validated by Southern blot using 5' external probes. Knock-
577 in lines were maintained on C57BL/6J background and bred for 3 generations prior to
578 experimental use. *Syngap1*^{PBM} animals were genotyped using the following primers, which
579 amplified the locus spanning the LoxP site: Fwd: 5'-ctggttcaaaggctcctggta-3' Rev: 5'-
580 ctgtttgttctcacctccaggaa-3'. This combination yielded a 61bp product in WT and 120bp product
581 in knock-in alleles. *Syngap1*^{Td} line were genotyped using the primers amplifying the locus
582 including the TdTomato cassette: Fwd: 5'-AGATCCACCAGGCCCTGAA-3' Rev: 5'-
583 GTCTTGAACCTCCACCAGGTAGTG-3'

584

585 *Syngap1*- β^* mice were constructed in collaboration with the Scripps Research Genetics core
586 facility. To selectively disrupt SynGAP- β expression, exon19a splice acceptor site "AAG" was
587 mutated into "ACG". To introduce the point mutation, purified CRISPR/Cas9 protein combined
588 with gRNA and donor DNA was injected to ~100 zygotes and implanted into surrogate mice. A
589 200 bp PAGE purified ss-oligo repair template centering the CRISPR cut site was used as
590 donor DNA. Recombination events were detected by PCR and Sanger sequencing of the DNA
591 isolated from tails of F0 potential founders. This process identified 2 chimeric mice with
592 evidence of the targeted nucleotide variants. Chimeras were then bred with C57BL6/J and
593 resultant heterozygous F1 mice were used to start the colony. Because CRISPR carries a risk
594 of off-target genomic effects, prior to any downstream experiments, this line was further crossed
595 into C57BL6/J for >3 generations.

596

597 **Transcriptomics**

598 PND7 mice forebrains (Cortex + hippocampus) were immediately removed and stored in
599 RNAlater (Thermo, AM7020). mRNA was isolated with RNeasy mini kit (74104, Qiagen). RNA
600 integrity was measured using Agilent 2100 Bioanalyzer (RIN value \geq 9.2 for each sample).
601 Library preparation and sequencing on the Illumina NextSeq 500 were performed by the Scripps
602 Florida Genomics Core. De-multiplexed and quality filtered raw reads (fastq) were trimmed
603 (adaptor sequences) using Flexbar 2.4 and aligned to the reference genome using TopHat
604 version 2.0.9 (Trapnell et al., 2009). HT seqcount version 0.6.1 was used to generate gene
605 counts and differential gene expression analysis was performed using Deseq2 (Anders and
606 Huber, 2010). Deseq2 identified differentially expressed genes (DEGs) with a cutoff of 1.5 fold
607 change and an adjusted p-value of less than 0.05 (Love et al., 2014). Paired end reads mapped

608 to the first 30 bases of Exon21 was used to determine the ratio of Exon21a (results in SynGAP-
609 $\alpha 2$) vs Exon21b (results in SynGAP- $\alpha 1$) splicing events.
610

611 **Cell Culture**

612 Cell lines: HeLa Cells (Kind gift of Michael Farzan) and HEK293T Cells (Kind gift of Joseph
613 Kissil) were cultured in DMEM media containing 10% fetal bovine serum and
614 penicillin/streptomycin.
615

616 Primary forebrain cultures: Dissociated forebrain cultures were prepared from newborn WT and
617 homozygous littermates of the PBM line as previously described (Bedouin 2012). Briefly,
618 forebrains were isolated and incubated with a digestion solution containing papain for 25 min at
619 37 °C. Tissues were washed and triturated in Neurobasal medium containing 5% FBS. Cells
620 were plated on poly-D-lysine at a density of 1,000 cells per mm². Cultures were maintained in
621 Neurobasal A media (Invitrogen) supplemented with B-27 (Invitrogen) and Glutamax
622 (Invitrogen). At DIV4 cells were treated with FuDR to prevent glial expansion. The cells were
623 sparsely labeled by administration of AAVs (CamKII.Cre, 10⁴vg/ml, Addgene # 105558-AAV9
624 and CAG.Flex.EGFP, 10⁸vg/ml, Addgene #28304-PHPeB) at DIV 9-10 and processed for
625 experiments 10-11 days later.
626

627 ***In situ* Colocalization Assay**

628 HeLa cells were plated on glass coverslips and transfected with PSD95-tRFP (Plasmid #52671,
629 Addgene) and/or EGFP-tagged SynGAP C-terminal constructs (EGFP-CC $\alpha 1$ or EGFP-CCPBM
630 plasmids (made in house) were co-transfected into HeLa cells using lipofectamine 2000
631 according to manufacturer instructions. Cells were then fixed with 4% PFA and washed multiple
632 times with PBS prior to mounting with Prolong Gold with DAPI (P36931, Thermo). Confocal
633 stacks spanning entire cells were obtained using UPlanSApo 100 \times 1.4 NA oil-immersion
634 objective mounted on Olympus FV1000 laser-scanning confocal microscope using Nyquist
635 criteria for digital imaging. Maximum intensity projections were used for the analysis. Nuclei of
636 cells were defined by DAPI staining, and the EGFP-CC nuclear localization was calculated as
637 the EGFP (colocalized with nucleus) / EGFP (within entire cell perimeter).
638

639 **PSD95-SynGAP Co-IP Assay**

640 PSD95-tRFP (Plasmid #52671, Addgene) and/or full length EGFP-SynGAP $\alpha 1$ /PBM (made in
641 house) plasmids were transfected in HEK293T cells using Lipofectamine 2000. Cells were
642 homogenized with Pierce IP Lysis buffer (87787, Thermo) containing protease & phosphatase
643 inhibitors. Lysates were then incubated for 2hrs at RT with 1.5mg Dynabeads (10004D,
644 Thermo) functionalized with 10ug of anti-PSD95 (Thermo, MA1-045) or IgG control (ab18415,
645 Abcam). After extensive washing, immunoprecipitated proteins were eluted with Leammeli
646 buffer at 70C for 10min with agitation. Eluted proteins were detected via western blot using
647 PSD-95 (Thermo, MA1-045) and SynGAP (D20C7, CST) antibodies. 10% of the input and 20%
648 of IP elute were used for each sample.
649

650 ***In Vitro* Treatments**

651 To silence neuronal activity and block NMDAR signaling, cultures were treated for 3hrs with 1
652 μ M TTX and 200 μ M APV. To induce chemical LTP, Cells were thoroughly washed and perfused
653 with basal ECS (143 mM NaCl, 5 mM KCl, 10 mM HEPES (pH 7.42), 10 mM Glucose, 2 mM
654 CaCl₂, 1 mM MgCl₂, 0.5 μ M TTX, 1 μ M Strychnine, and 20 μ M Bicuculline) for 10 min. Then
655 magnesium free ECS containing 200 μ M Glycine (or 10 μ M Glycine for weak cLTP) was applied
656 for 10 min. Cells were then washed with and incubated in basal ECS for additional 10 min prior
657 to downstream application.
658

659 **Subcellular Fractionation**

660 From tissue: Frozen hippocampi or cortex were homogenized using a Teflon-glass homogenizer
661 in ice-cold isotonic solution (320 mM sucrose, 50 mM Tris pH 7.4, phosphatase & protease
662 inhibitors). The homogenate was then centrifuged at 1,000g for 10min at 4 °C. The supernatant
663 (S1) was centrifuged at 21,000g for 30min. The pellet (P2) was resuspended in isotonic buffer
664 and layered on top of a discontinuous sucrose density gradient (0.8M, 1.0M or 1.2M sucrose in
665 50mM Tris pH 7.4, +inhibitors) and centrifuged at 82,500g for 2hr at 4°C. The interface of 1.0M
666 and 1.2M sucrose was collected as a synaptosomal fraction. Synaptosomes were diluted using
667 50mM Tris pH7.4 (+inhibitors) to bring the sucrose concentration to 320mM. The diluted
668 synaptosomes were then pelleted by centrifugation at 21000g for 30min at 4°C. The
669 synaptosome pellet was then resuspended in 50mM Tris pH 7.4 and then mixed with an equal
670 part 2% Triton-X (+inhibitors). This mixture was incubated at 4 °C with rotation for 10min
671 followed by centrifugation at 21,000xg for 20min to obtain a supernatant (Syn/Tx) and a pellet
672 (PSD).

673

674 From primary culture: Cultured neurons (DIV 18-21), were homogenized by passage through
675 22G needle 10 times in ice-cold isotonic buffer (320 mM sucrose, 50 mM Tris, protease &
676 phosphatase inhibitor mix). Homogenates were centrifuged at 1,000 × g for 10 min at 4 °C. The
677 supernatant (S1) was centrifuged at 15,000 × g for 20 min at 4 °C to obtain the crude
678 membrane (P2 fraction). The P2 pellet was resuspended with ice-cold hypotonic buffer (50 mM
679 Tris, protease & phosphatase inhibitor mix) and was incubated for 30 min at 4C. Then the
680 sample was centrifuged 21,000 x g for 30min to obtain synaptic plasma membrane (SPM)
681 fraction. SPM is reconstituted in hypotonic buffer then equal volume of hypotonic buffer with 2%
682 Triton-X was added and the mixture was incubated 15min on ice. Lysates were centrifuged at
683 21,000g for 30 min at 4 °C to obtain a soluble fraction (Syn/Tx) and a pellet (PSD), which was
684 resuspended in 50 mM Tris containing 0.5% SDS. To completely solubilize PSD fraction, we've
685 briefly sonicated and heated samples to 95 °C for 5min.

686

687 **Immunoblotting**

688 Protein lysates were extracted from the hippocampi or cortices of adult mice and dissected in
689 ice-cold PBS containing Phosphatase Inhibitor Cocktails 2 and 3 (Sigma-Aldrich, St. Louis, MO)
690 and Mini-Complete Protease Inhibitor Cocktail (Roche Diagnostics) and immediately
691 homogenized in RIPA buffer (Cell Signaling Technology, Danvers, MA), and stored at -80 °C.
692 Sample protein concentrations were measured (Pierce BCA Protein Assay Kit, Thermo
693 Scientific, Rockford, IL), and volumes were adjusted to normalize microgram per microliter
694 protein content. For phospho-protein analysis, *in vitro* cultures were directly lysed with laemmeli
695 sample buffer, sonicated and centrifuged to minimize DNA contamination. 10 µg of protein per
696 sample were loaded and separated by SDS-PAGE on 4-15 % gradient stain-free tris-glycine
697 gels (Mini Protean TGX, BioRad, Hercules, CA), transferred to low fluorescence PVDF
698 membranes (45 µm) with the Trans-Blot Turbo System (BioRad). Membranes were blocked with
699 5% powdered milk (BSA for phospho-proteins) in TBST and probed overnight at 4 °C with the
700 following primary antibodies: Pan-SynGAP (Thermo, PA1-046), SynGAP-α1 (Millipore, 06-900),
701 SynGAP-α2 (abcam, ab77235), SynGAP-β (Kind gift of Rick Huganir), PSD-95 (Thermo, MA1-
702 045), Synaptophysin (Novus, NB300-653), pERK (CST, 9106), ERK (CST, 4696), GluA1
703 (Millipore, MAB2263), phospho-serine845 GluA1 (Millipore, AB5847), TARP (Millipore,
704 Ab9876), LRRTM2 (Thermo Pierce, PA521097).

705

706 **Immunocytochemistry**

707 For SynGAP – PSD95 colocalization, neurons were fixed in 4% PFA, 4% sucrose for 5 min at
708 RT and treated with MetOH for 15min at -20°C. The cells were then washed with PBS and
709 permeabilized in PBS 0.2% TritonX-100 for 10 min. Samples were then blocked for 1 hr and

710 probed for SynGAP (D20C7, CST) and PSD95 (MA1-045, Abcam) overnight. After PBS
711 washes, samples were probed with appropriate secondary antibodies for 1 hr in the dark at
712 room temperature. The coverslips were then washed, mounted (Prolong Glass) and cured.
713 Confocal stacks were obtained. For analysis, maximum intensity Z projection was obtained from
714 each confocal image. Individual synapses were traced as PSD95 positive puncta selected using
715 an arbitrary threshold which was kept constant across all images. Mean SynGAP and PSD95
716 signals were measured from individual synapses. *For surface GluA1 staining*, neurons were
717 immediately fixed in ice-cold pH 7.2 4% PFA, 4% sucrose for 20 min on ice. Then, samples
718 were washed three times with ice-cold PBS and blocked for 1 hr min in PBS containing 10%
719 NGS. Cells were then incubated overnight with a primary antibody targeting the extracellular N
720 terminus of GluA1 (MAB2263, Millipore) and then washed with 10% goat serum twice to remove
721 excess primary antibody. After PBS washes, Alexa dye-conjugated secondary antibodies were
722 added for 1 hr in the dark at room temperature. The coverslips were then washed, mounted
723 (Prolong Glass) and cured. Surface GluA1 levels were measured from manually traced
724 individual dendritic spines from maximum intensity Z projection images using EGFP channel
725 (cell fill). All confocal stacks were obtained for 6–12 individual fields from multiple coverslips per
726 culture with UPlanSApo 100 \times 1.4 NA oil-immersion objective mounted on Olympus FV1000
727 laser-scanning confocal microscope using Nyquist criteria for digital imaging. 40-80 μ m
728 stretches of secondary dendrites in neurons with pyramidal morphology were imaged.

729 **PSD95 Immunoprecipitation and Mass Spectrometry**

730 Harvested neurons were lysed in DOC lysis buffer (50 mM Tris (pH 9), 30 mM NaF, 5 mM
731 sodium orthovanadate, 20 mM β -glycerol phosphate, 20 μ M ZnCl₂, Roche complete, and 1%
732 sodium deoxycholate). The lysate was then centrifuged at 35,000 RPM for 30 minutes at 4°C
733 and lysate containing 1 mg of protein was incubated with 2 μ g Psd95 antibody (Neuromab,
734 catalog # 75-048) at 4°C overnight with rotation. The following day, IPs were incubated with
735 Dynabeads protein G (Thermo Fisher Scientific, catalog # 10004D) for 2 hours at 4 degrees
736 Celsius. IPs were then washed three times with IP wash buffer (25 mM Tris (pH 7.4), 150 mM
737 NaCl, 1 mM EDTA, and 1% Triton X-100). Dynabeads were re-suspended in 2X LDS sample
738 buffer and incubated at 95 degrees Celsius for 15 minutes for elution. The eluate was
739 incubated with DTT at a final concentration of 1 mM at 56°C for 1 hour followed by a 45-minute
740 room temperature incubation with Iodoacetamide at a final concentration of 20 mM.

741 Samples were loaded onto 4 – 12% Bis-Tris gels and separated at 135V for 1.5 hours. Gels
742 were stained with InstantBlue (Expedeon, catalog # 1SB1L) to visualize bands. The heavy and
743 light chains of Immunoglobulin were manually removed. Gels were then destained using 25%
744 ethanol overnight. Gel lanes were cut, individual gel slices were placed into 96 well plates for
745 destaining, and peptide digestion was completed at 37 degrees Celsius overnight. Peptides
746 were extracted with acetonitrile, dried down, and then desalted using stage tips. All LC-MS
747 experiments were performed on a nanoscale UHPLC system (EASY-nLC1200, Thermo
748 Scientific) connected to an Q Exactive Plus hybrid quadrupole-Orbitrap mass spectrometer
749 equipped with a nanoelectrospray source (Thermo Scientific). Samples were resuspended in
750 10uL of Buffer A (0.1% FA) and 2uL were injected. Peptides were separated by a reversed-
751 phase analytical column (PepMap RSLC C18, 2 μ m, 100 \AA , 75 μ m X 25 cm) (Thermo
752 Scientific). Flow rate was set to 300 nL/min at a gradient starting with 3% buffer B (0.1% FA,
753 80% acetonitrile) to 38% B in 110 minutes, then ramped to 75% B in 1 minute, then ramped to
754 85% B over 10 minutes and held at 85% B for 9 minutes. Peptides separated by the column
755 were ionized at 2.0 kV in the positive ion mode. MS1 survey scans for DDA were acquired at
756 resolution of 70k from 350 to 1,800 m/z, with maximum injection time of 100 ms and AGC target
757 of 1e6. MS/MS fragmentation of the 10 most abundant ions were analyzed at a resolution of
758 17.5k, AGC target 5e4, maximum injection time 65 ms, and an NCE of 26. Dynamic exclusion
759

760 was set to 30 s and ions with charge 1 and >6 were excluded. The maximum pressure was set
761 to 1,180 bar and column temperature was constant at 50°C. Proteome Discoverer 2.2 (Thermo
762 Fisher Scientific) was used to process MS data and analyzed using Sequest HT against Uniprot
763 mouse databases combined with its decoy database. With respect to analysis settings, the
764 mass tolerance was set 10 parts per million for precursor ions and 0.02 daltons for fragment
765 ions, no more than two missed cleavage sites were allowed, static modification was set as
766 cysteine carbamidomethylation, and oxidation of methionine was set as a dynamic modification.
767 False discovery rates (FDRs) were automatically calculated by the Percolator node of Proteome
768 Discoverer with a peptide and protein FDR cutoff of 0.01. Label free quantification was
769 performed using Minora node in Proteome Discoverer. Abundances of identified PSD95
770 interacting proteins in WT and mutant neurons were compared using relative abundances such
771 that proteins with a fold change in abundance ratio of > 2.0 or < 0.5 were considered to be
772 differentially associated to PSD95.

773 **Hippocampal LTP and Extracellular Recordings**

774 Acute transverse hippocampal slices (350 μ m) were prepared using a Leica Vibroslicer (VT
775 1000S), as described previously (Babayan et al., 2012). Slices were cut into ice cold, choline
776 chloride artificial cerebral spinal fluid (ACSF) containing (in mM) 110 choline chloride, 2.5 KCl,
777 1.25 NaH₂PO₄, 5 MgSO₄, 25 NaHCO₃, 25 glucose, 11.6 ascorbic acid, and 3.1 pyruvic acid
778 and rinsed at room temperature for ~3 min in a high magnesium aCSF solution containing: 124
779 NaCl, 3 KCl, 1.25 KH₂PO₄, 5 MgSO₄, 26 NaHCO₃, and 10 dextrose. Slices were then
780 transferred to an interface recording chamber maintained at 31±1°C, oxygenated in 95% O₂/
781 5% CO₂ and constantly perfused (60-80 ml/h) with normal ACSF (in mM; 124 NaCl, 3 KCl, 1.25
782 KH₂PO₄, 1.5 MgSO₄, 2.5 CaCl₂, 26 NaHCO₃, and 10 dextrose). Slices equilibrated in the
783 chamber for approximately 2 hours before experimental use. Field excitatory postsynaptic
784 potentials (fEPSPs) were recorded from CA1b stratum radiatum using a single glass pipette (2-3
785 M Ω). Bipolar stainless-steel stimulation electrodes (25 μ m diameter, FHC) were positioned at
786 two sites (CA1a and CA1c) in the apical Schaffer collateral-commissural projections to provide
787 activation of separate converging pathways of CA1b pyramidal cells. Pulses were administered
788 in an alternating fashion to the two electrodes at 0.05 Hz using a current that elicited a 50%
789 maximal response. After establishing a 10-20 min stable baseline, long-term potentiation (LTP)
790 was induced in the experimental pathway by delivering 7 'theta' bursts, with each burst
791 consisting of four pulses at 100 Hz and the bursts themselves separated by 200 msec (i.e.,
792 theta burst stimulation or TBS). The stimulation intensity was not increased during TBS. The
793 control pathway received baseline stimulation (0.05Hz) to monitor the health of the slice. The
794 fEPSP slope was measured at 10–90% fall of the slope and all values pre- and post- TBS
795 normalized to mean values for the last 10 min of baseline recording. Baseline measures for all
796 groups included paired-pulse facilitation and input/output curves.

797

798 **Ex vivo whole-cell electrophysiology**

799 Acute coronal slices (350 μ m) were prepared from 10-14 days old mice for 3 mouse lines. Ice-
800 cold cutting solution was used for slice preparation and contained the following (in mM): 119
801 NaCl, 2.5 KCl, 1.3 MgSO₄, 2.5 CaCl₂, 1 NaH₂PO₄, 11 D-glucose and 26.3 NaHCO₃, pH 7.4,
802 300-310 mOsm bubbled with 95%CO₂ and 5%O₂. The slices were then warmed to 37°C for an
803 hour approximately in standard artificial cerebrospinal fluid (aCSF), composed of (mM): 125
804 NaCl, 2.5 KCl, 24 NaHCO₃, 2 CaCl₂, 1.25 NaH₂PO₄, 2 MgSO₄, and 10 D-Glucose, and
805 equilibrated with 95 % O₂ and 5 % CO₂ (pH 7.4, ~300 mOsm). Following this, slices were
806 maintained in bubbled aCSF at room temperature until transferred to a submerged-type
807 recording chamber (Warner Instruments, Hamden, CT). All experiments were performed at
808 32°C±2 (perfusion rate of 2-3 mL/min). Whole-cell patch clamp experiments were conducted
809 from visually identified L2/3 neurons using infrared DIC optics. L2/3 excitatory cells were

810 identified by their soma shape and their location ~ 150 μ M below the L1-L2 boundary. Regular
811 spiking was confirmed in current clamp and miniature excitatory postsynaptic current (mEPSC)
812 were recorded from identified cells for 5 sweeps each lasting a minute, using the following
813 internal solution (in mM): 120 CsCl, 10 K-HEPES, 10 EGTA, 5 QX314-Br, 4 Mg-ATP, 0.3 Na-
814 GTP, 4 MgCl₂ (pH 7.3, 290-295 mOsm). Perfusion solution aCSF was supplemented with 100
815 μ M picrotoxin and 1 μ M TTX. Cells with access resistance >20 M Ω or were unstable (>20 %
816 change) were discarded from further analysis. Recordings were made using borosilicate glass
817 pipettes (3-6 M Ω ; 0.6 mm inner diameter; 1.2 mm outer diameter; Harvard Apparatus). All
818 signals were amplified using Multiclamp 700B (Molecular Devices, Sunnyvale, CA), filtered at 4
819 KHz, digitized (10 KHz), and stored on a personal computer for off-line analysis. Analog to
820 digital conversion was performed using the Digidata 1440A system (Molecular Devices). Data
821 acquisition and analyses were performed using pClamp 11.2software package (Clampex and
822 Clampfit programs; Molecular Devices) and minianalysis (Synaptosoft). The events were
823 considered mini-EPSCs if the peak of an event was >5 pA.

824

825 **Behavior**

826 At weaning, four mice were randomly allocated to one cage with respect to genotype with males
827 and females being housed separately. Randomization of cage allocation was restricted in that,
828 as much as possible, mice from the same litter were placed in different cages so that no single
829 litter was overrepresented in any single experiment. Cages utilized for behaviors contained
830 cardboard pyramidal-shaped huts with two square openings on opposing sides of the hut for the
831 purposes of environmental enrichment and to assist with transfers from home cages to
832 behavioral apparatuses. All mice were handled for several minutes on three consecutive days
833 prior to commencement of behavioral testing. Tails were marked for easy identification and
834 access from home cages during testing. Experimenters were blind to mouse genotype while
835 conducting all tests.

836

837 **Flurothyl-induced seizures:** Flurothyl-induced seizure studies were performed based on prior
838 studies with some modifications [16, 18, 45]. Briefly, experiments were conducted in a chemical
839 fume hood. Mice were brought to the experimental area at least 1 h before testing. To elicit
840 seizures, individual mice were placed in a closed 2.4-L Plexiglas chamber and exposed to 99%
841 Bis (2,2,2-trifluoroethyl) ether (Catalog# 287571, Sigma-Aldrich, St. Louis, MO). The flurothyl
842 compound was infused onto a filter paper pad, suspended at the top of the Plexiglas chamber
843 through a 16G hypodermic needle and tube connected to a 1 ml BD glass syringe fixed to an
844 infusion pump (KD Scientific, Holliston, MA, USA, Model: 780101) at a rate of 0.25 ml/min. The
845 infusion was terminated after the onset of a hind limb extension that usually resulted in death.
846 Cervical dislocation was performed subsequently to ensure death of the animal. Seizure
847 threshold was measured as latency (s) from the beginning of the flurothyl infusion to the
848 beginning of the first myoclonic jerk.

849

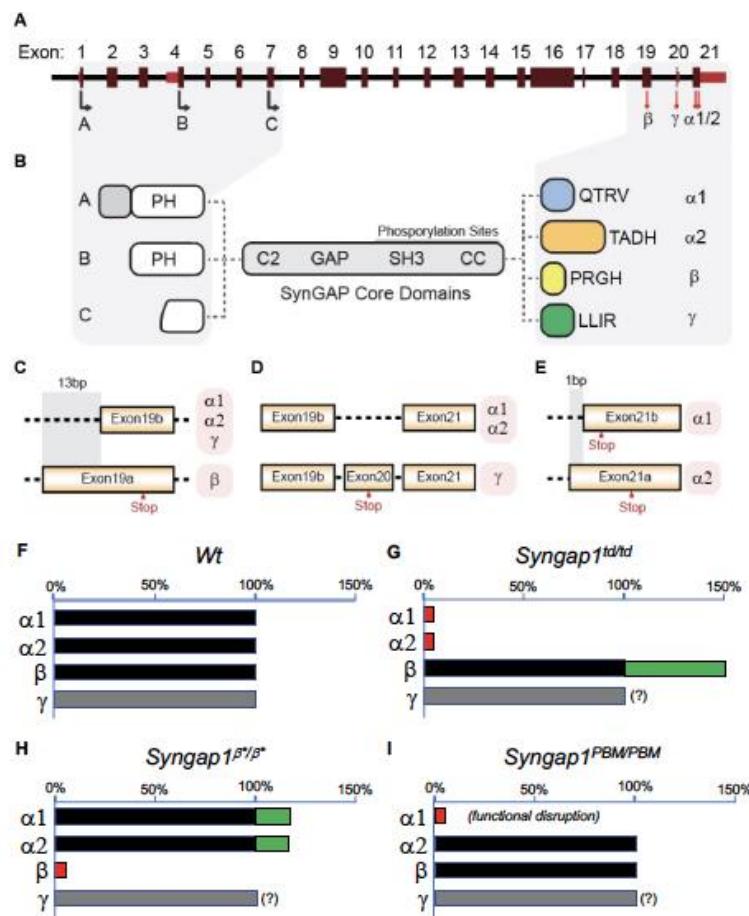
850 **Morris water maze:** Mice were run in a standard comprehensive Morris water maze paradigm
851 including a cue test with a visual platform and an acquisition protocol with a hidden platform. All
852 phases of the paradigm were run in a dedicated water maze room in the Scripps Florida Mouse
853 Behavior Core. A water maze system including a plastic white opaque pool (Cat# ENV-594M-W,
854 Med Associates), measuring ~122cm diameter at the water surface, supported by a stand
855 (ENV-593M-C) and equipped with a floor insert (ENV-595M-FL) covering a submerged heater
856 was utilized for all water maze experimentation. An adjustable textured platform (17.8 cm
857 diameter, ENV-596M) was placed atop the floor insert in one of two different quadrants,
858 depending on the specific phase of the paradigm (NW quadrant for initial training and probe test
859 and SE quadrant for reversal training and probe tests), for mice to escape the water. Water
860 temperatures were controlled to 22.5 ± 0.5 °C using a built-in heater and monitored with a digital

861 temperature probe. This water temperature motivated the mice to escape the water without
862 eliciting hypothermic conditions. The tank was emptied, cleaned and refilled once every three
863 days to avoid unsafe accumulation of bacteria. Water was made opaque by the addition of a
864 white opaque non-toxic paint (Crayola) forcing mice to utilize extra-maze cues when locating the
865 hidden platform (0.5 cm beneath the surface of the water). These spatial cues (large black
866 cardboard circle, star, square, white X on black background) were placed on the walls of the
867 room at different distances from the pool. The pool edge was demarcated with directional units
868 (W, N, E, S) to aid assignment of invisible platform “quadrants” to the pool arena outlined by the
869 video tracking system. Various strip lights were positioned on the walls near the ceiling to allow
870 for a moderate level of lighting (200 lux), enough for the mice to see the extra-maze cues
871 adequately without eliciting undue anxiety. Thirty minutes prior to commencement of daily trials,
872 the lights and heater were turned on, and mouse home cages were placed on heating pads on a
873 rack in the water maze room to provide a warm place for the mice between trials. Cage nestlets
874 were replaced with strips of paper towels to better facilitate drying after trials. Mice were
875 monitored during trials for signs of distress and swimming competence. None of the mice tested
876 had swimming issues, and floating was discouraged with gentle nudges. Mice received four
877 trials per day during cue and acquisition phases and one trial per day for probe trials. Three
878 cages (12 mice) were run at a time such that ITIs for each day lasted about 20 minutes with trial
879 duration lasting until the mouse found the platform or a maximum of 60 s. Each trial commenced
880 when the mouse was automatically detected in the pool by the tracking system (Ethovision,
881 Noldus). Each mouse was lowered into the pool facing its edge at one of the four directional
882 units (W, N, E, S) in a clockwise manner, with the first of the four trials starting closest to the
883 platform (“NW quadrant”), which was positioned in the central area of the quadrant dictated by
884 the tracking system. This same series of daily trial commencements were followed for all mice
885 for each of the cue tests, acquisition protocol, and reversal protocol. If the mouse did not locate
886 the platform in 60 s, the experimenter’s hand guided them to the platform. Because the mice are
887 eager to escape the water, the mice quickly learned to follow hand direction to the platform,
888 minimizing physical manipulation of the animals during the trials. Mice were allowed 15 seconds
889 on the platform at the end of each trial before being picked up, dried with absorbent wipes, and
890 placed back into their warmed home cage.

891
892 On the first day of testing, mice were given a cue test with the platform positioned just above the
893 surface of the water and a metal blue flag placed upon it for easy visual location of the platform.
894 This test allows for detection of individual visual and swimming-related motor deficits and allows
895 the mice to habituate to the task (climbing on the platform to escape the water). The platform
896 was placed in a different location for each of the four trials with spatial cues removed by
897 encirclement of the pool with a white plastic curtain.

898
899 On the next day, acquisition trials began with the hidden platform remaining in the same location
900 (“NW quadrant”) for all trials/days and the curtain drawn back for visibility of the spatial cues.
901 Several measures (distances to platform) and criteria to reach the platform (approximately 90%
902 success rate, approximately 20 second latency to find platform) during the acquisition phases
903 were recorded and achieved before mice were deemed to have learned the task. The
904 performances of the four trials were averaged for each animal per day until criteria were met.
905

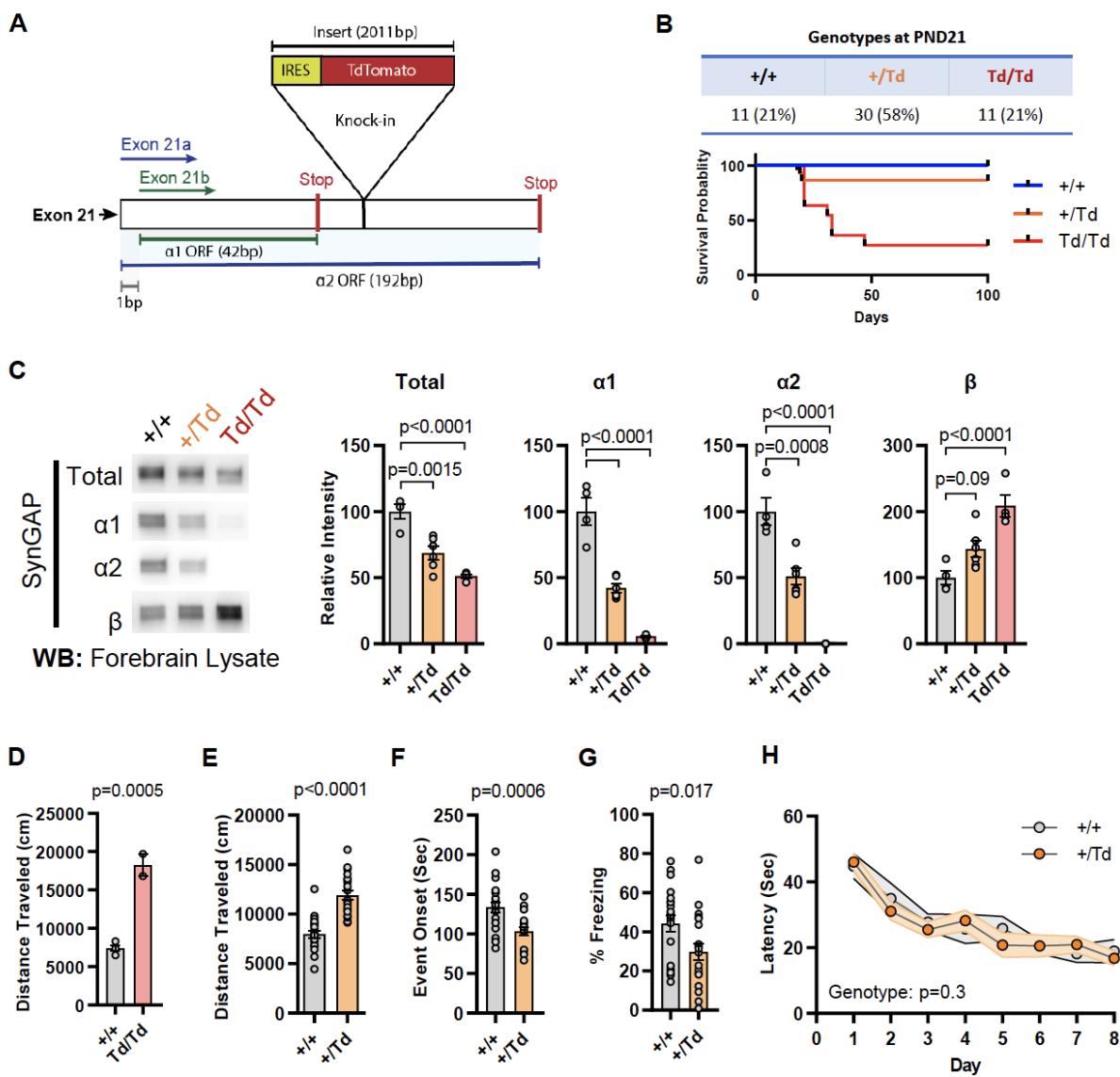
906 Open field test: Naive mice were individually introduced into one of eight adjacent open field
907 arenas for 30 min and allowed to explore. Open field arenas consisted of custom made clear
908 acrylic boxes (43 x 43 x 32h cm) with opaque white acrylic siding surrounding each box 45 x 45
909 x 21.5h cm to prevent distractions from activities in adjacent boxes. Activity was monitored with
910 two CCTV cameras (Panasonic WV-BP334) feeding into a computer equipped with Ethovision
911 XT 11.5 for data acquisition and analyses. A white noise generator (2325-0144, San Diego


912 Instruments) was set at 65 dB to mask external noises and provide a constant noise level.
913 Fluorescent linear strip lights placed on each of the four walls of the behavioral room adjacent to
914 the ceiling provided a lower lighting (200 lux) environment than ceiling lighting to encourage
915 exploration.

916
917 *Contextual fear conditioning:* A dedicated fear conditioning room in the TSRI Florida Mouse
918 Behavior Core contains four fear conditioning devices that can be used in parallel. Each
919 apparatus was an acrylic chamber measuring approximately 30 x 30 cm (modified Phenotyper
920 chambers, Noldus, Leesburg, VA). The top of the chamber is covered with a unit that includes a
921 camera and infrared lighting arrays (Noldus, Ethovision XT 11.5, Leesburg, VA) for monitoring
922 of the mice. The bottom of the chamber is a grid floor that receives an electric shock from a
923 shock scrambler that is calibrated to 0.40 mA prior to experiments. The front of the chamber has
924 a sliding door that allows for easy access to the mouse. The chamber is enclosed in a sound-
925 attenuating cubicle (Med Associates) equipped with a small fan for ventilation. Black circular,
926 rectangular and white/black diagonal patterned cues were placed outside each chamber on the
927 inside walls of the cubicles for contextual enhancement. A strip light attached to the ceilings of
928 the cubicles provided illumination. A white noise generator (~65 dB) was turned on and faced
929 toward the corner of the room between the cubicles. The fear conditioning paradigm consisted
930 of two phases, training, followed by testing 1 and 26, or 30 d thereafter. The 4.5 min training
931 phase consisted of 2.5 min of uninterrupted exploration. Two shocks (0.40 mA, 2 s) were
932 delivered, one at 2 min 28 s, the other at 3 min and 28 s from the beginning of the trial. During
933 testing, mice were placed into their designated chambers and allowed to roam freely for 5 min.
934 Immobility durations (s) and activity (distances moved (cm)) during training and testing were
935 obtained automatically from videos generated by Ethovision software. Activity suppression ratio
936 levels were calculated: 0-2 min activity during testing/0-2 min activity during training + testing.

937
938

939 **Figure Legends**


940

941
942

943 **Figure 1 – Schematic of *Syngap1* alternative splicing and summary of isoform expression**
944 **in three new *Syngap1* mutant mouse lines.** (A) Map showing alternative use of exons in N-
945 and C-terminal isoforms. N-terminal variants are constituted via use of different start codons in
946 exon 1, 4 or 7. Exon 4 is present only in B-SynGAP. C-terminal isoforms originate from use of
947 different splice acceptors in exon 19 and 21. SynGAP-α1 contains a type-1 PDZ ligand (QTRV).
948 Structure/function relationships of α2, β, γ isoforms remain largely unknown. (B) Schematics of
949 SynGAP isoforms & protein domains. α and β isoforms include full Pleckstrin Homology (PH)
950 domain. In C-SynGAP, this domain is truncated. Core regions common to all isoforms include
951 C2, GAP (GTPase Activating Protein), Src Homology 3 (SH3)-binding, and coiled-coil (CC)
952 domains. Multiple phosphorylation sites are present downstream of the GAP domain. (C-E)
953 Schematics describing C-terminal splicing events producing distinct isoforms. (F-I) Summary of
954 Wt and three new *Syngap1* mutant mouse lines each with distinct targeted alleles that disrupt
955 the function or expression of SynGAP C-terminal isoforms. Bars represent expression levels of
956 each C-terminal protein isoform relative to each Wt littermate control. Primary data for
957 expression levels can be found in subsequent figures.

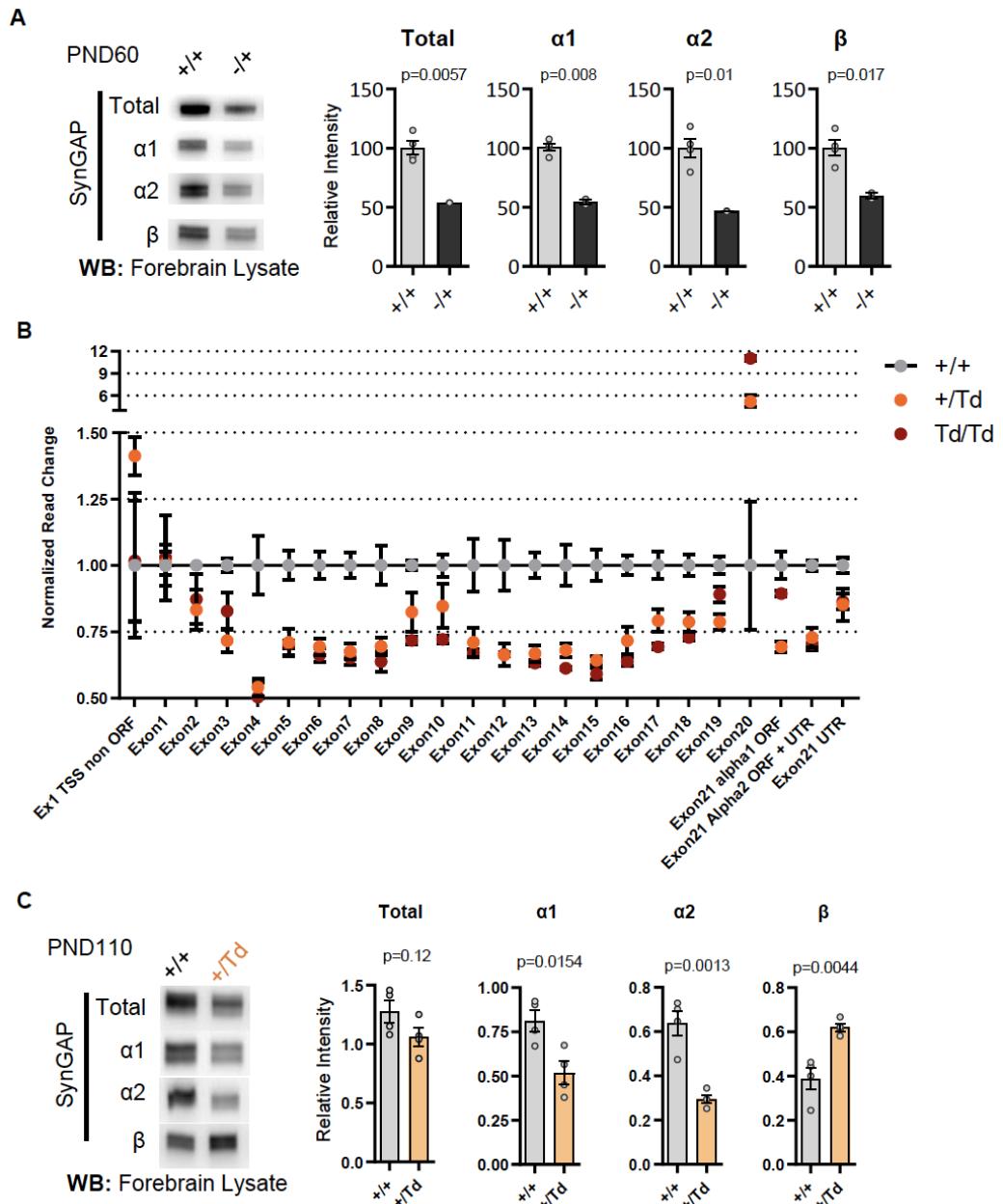
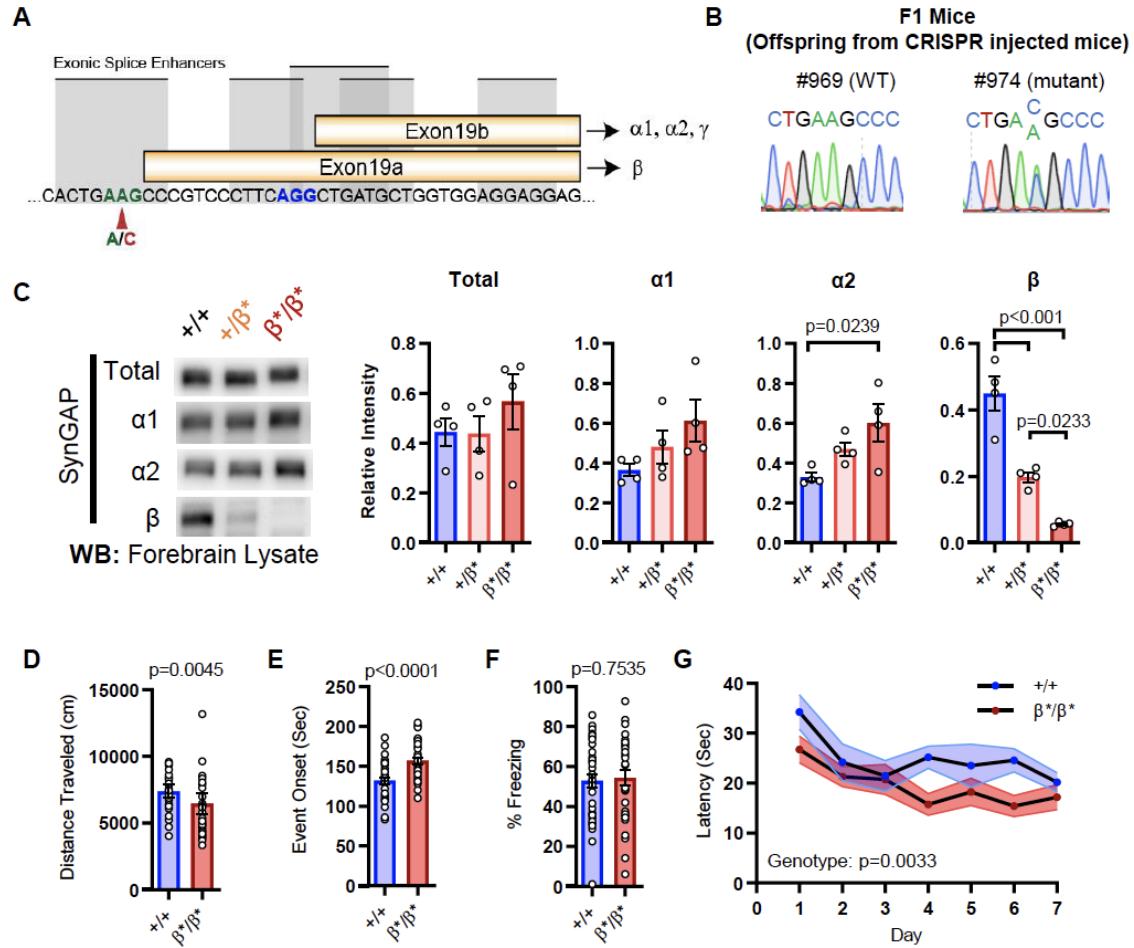

958
959

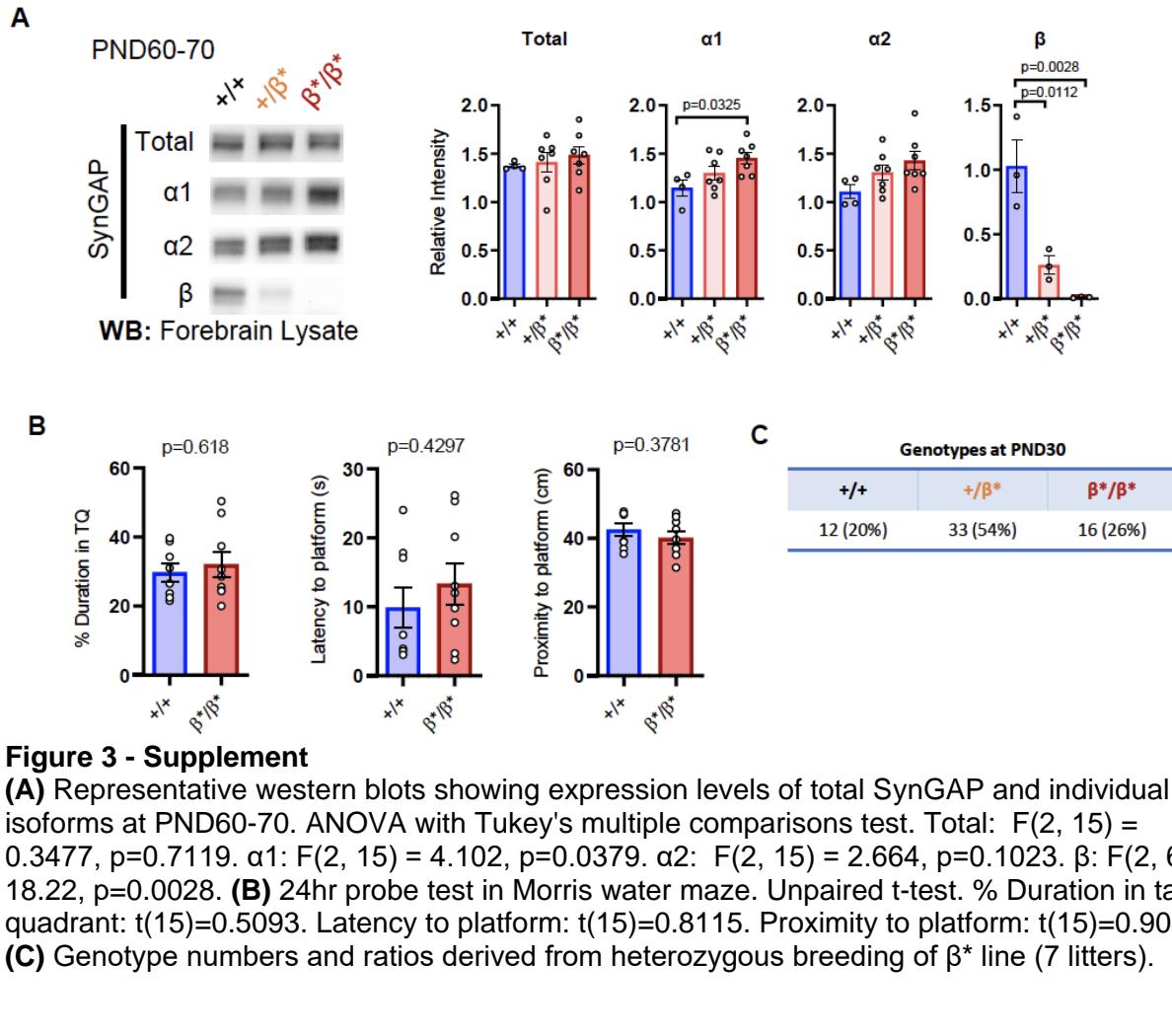
Figure 2 – Design and characterization of *Syngap1* IRES-TdTomato knock-in mice.

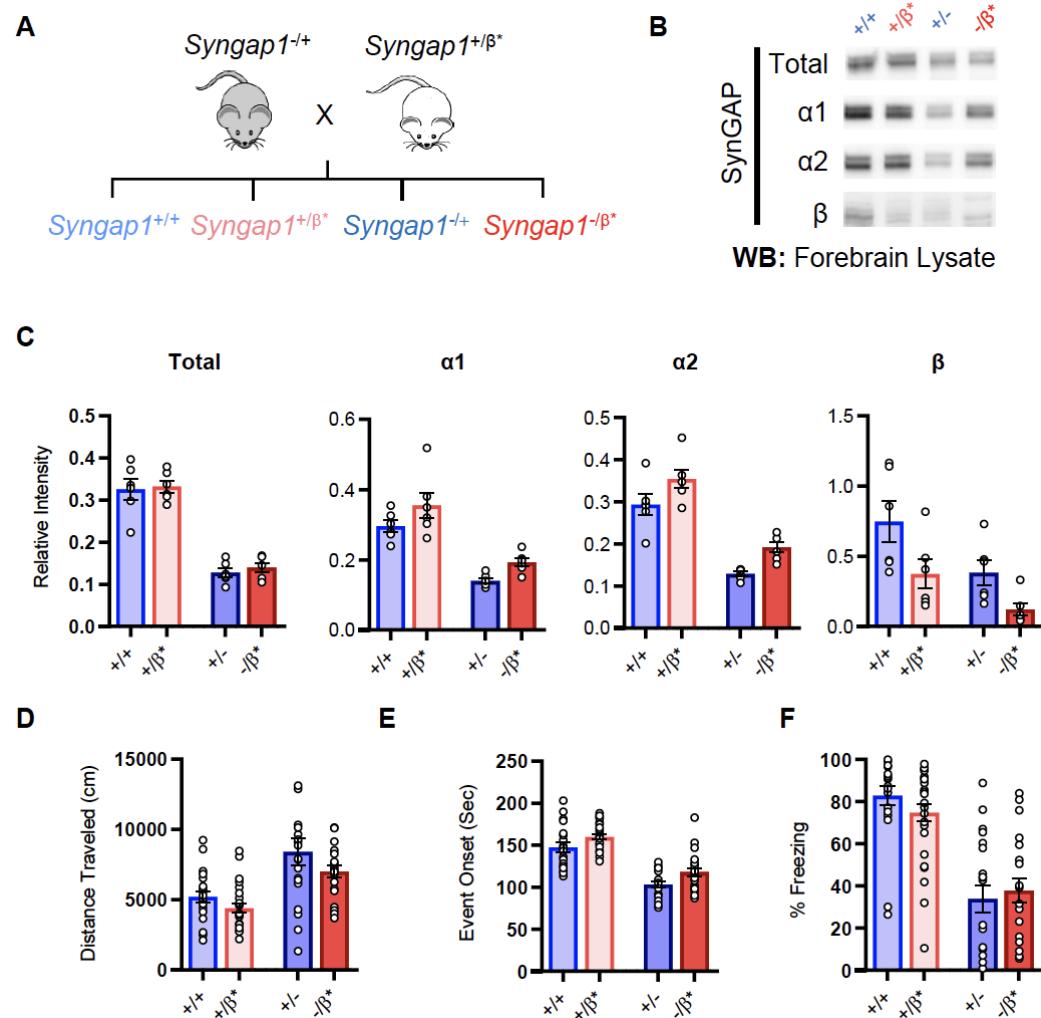
(A) IRES-Tdtomato insertion site in relation to α1 and α2 open reading frames. **(B)** Genotype ratios and survival probability following heterozygous breeding. **(C)** Representative western blots showing expression levels of total SynGAP and individual isoforms. Quantification of forebrain expression levels measured by western blot analysis. Relative intensity of bands normalized to total protein signal. Only α1 signal is significantly changed. ANOVA with Tukey's multiple comparisons test, $F(2, 14) = 24.86$, $n=5$, $p<0.0001$ **(D)** Quantification of total distance traveled in open field test in adult WT or Td/Td mice. Unpaired t-test $t(4)=10.42$. Note that very few homozygous Td/Td mouse survived through adulthood. **(E)** Quantification of total distance traveled in open field test in adult WT or +/Td mice. Unpaired t-test $t(18)=9.007$ **(F)** Latency of event onset was measured as the time taken to 1st clonus (seizure onset). Unpaired t-test: $t(18)=2.588$. **(G)** Percent freezing in remote contextual fear memory paradigm. Unpaired t-test: $t(41)=2.49$ **(H)** Plots demonstrating latency to find platform across days in Morris Water Maze training. Linear mixed model for repeated measures. $n=9-12$, +/+ vs +/Td, $p=0.3$


960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976

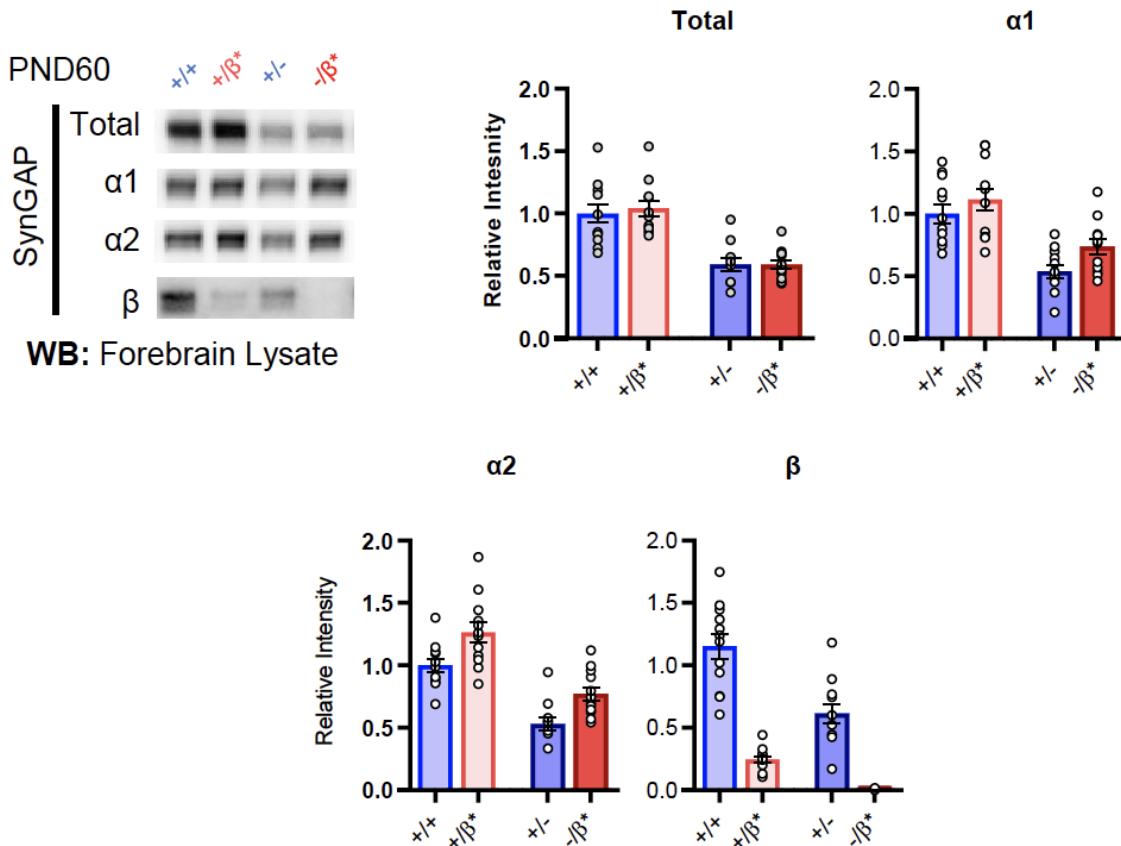
977
978
979
980
981
982
983
984
985
986
987

Figure 2 - Supplement


(A) Representative western blots demonstrating total SynGAP and isoform expression level in forebrain lysates from *Syngap1*^{+/+} and *Syngap1*^{+/-} mice. Relative intensity of bands normalized to total protein signal. Statistical significance is determined by unpaired t-test. Total: $t(4)=5.403$, $\alpha 1$: $t(4)=9.044$, $\alpha 2$: $t(4)=4.473$, β : $t(4)=3.931$ **(B)** *Syngap1* exon usage in +/+, +/Td, and Td/Td mice. **(C)** Representative western blots showing expression levels of total SynGAP and individual isoforms at PND110 from in +/+ and +/Td mice. Unpaired t-test. Total: $t(6)=1.784$, $\alpha 1$: $t(6)=3.351$, $\alpha 2$: $t(6)=5.678$, β : $t(6)=4.425$



988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008


Figure 3 - Design and characterization of *Syngap1^{β*}* knock-in mice.

(A) Alternative use of exon19 in distinct splicing events. Exon19 can be spliced into 2 frames shifted by 13 bp. Use of early splice acceptor (green) results in a frameshift and expresses β isoform. Use of the late splice acceptor (blue) allows expression of all other SynGAP C-terminal variants. To specifically disrupt SynGAP-β, a point mutation (A to C) was introduced to the early splice acceptor (indicated with red arrow). **(B)** Sequence trace of *Syngap1^{β*/+}* mice obtained via crossing F0 founders to wild-type mice. Mutation site exhibits equal levels of A and C signal in sequence trace indicating heterozygosity. **(C)** Representative western blots showing expression levels of total SynGAP and individual isoforms at PND7. Relative intensity of bands normalized to total protein signal. ANOVA with Tukey's multiple comparisons test. Total: $F(2, 9) = 0.7427$, $p=0.5029$. α1: $F(2, 9) = 2.391$, $p=0.147$. α2: $F(2, 9) = 5.333$, $p=0.0297$. β: $F(2, 9) = 42.53$, $p<0.0001$. **(D)** Quantification of total distance traveled in OFT. $+/+$ (n=36), $β/β$ (n=32); Mann-Whitney U=346, $p=0.0045$. **(E)** Seizure threshold was measured as the time taken to reach three separate events of 1st clonus (event onset) during the procedure. Unpaired t-test: $t(66)=4.237$. **(F)** Percent freezing in remote contextual fear memory paradigm. % Freezing: $t(66)=0.3153$. **(G)** Plots demonstrating latency to find platform across days in Morris Water Maze training session. Statistical significance was determined by using linear mixed model for repeated measures. Genotype: $F(1, 15)=12.22$, $p=0.0033$

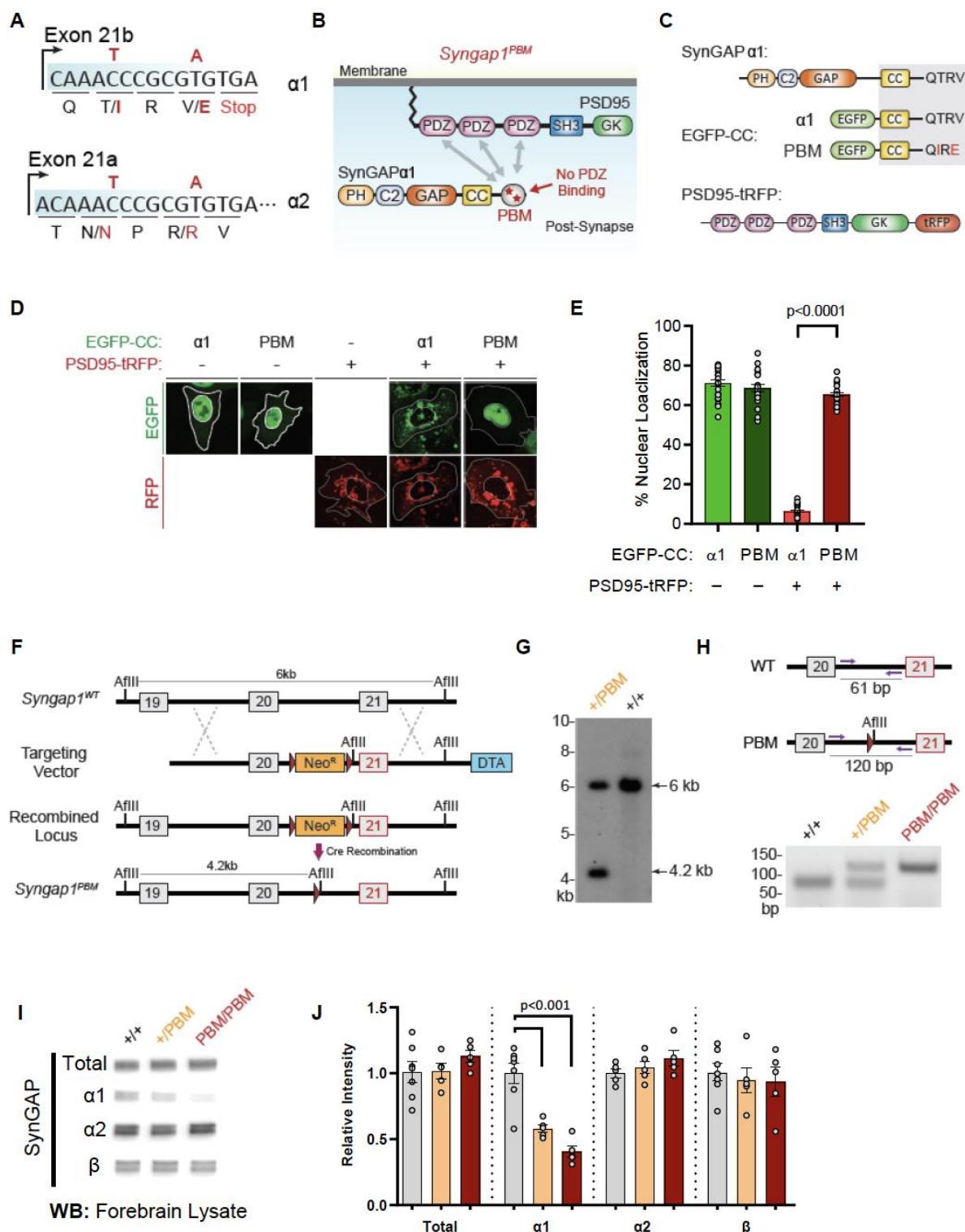
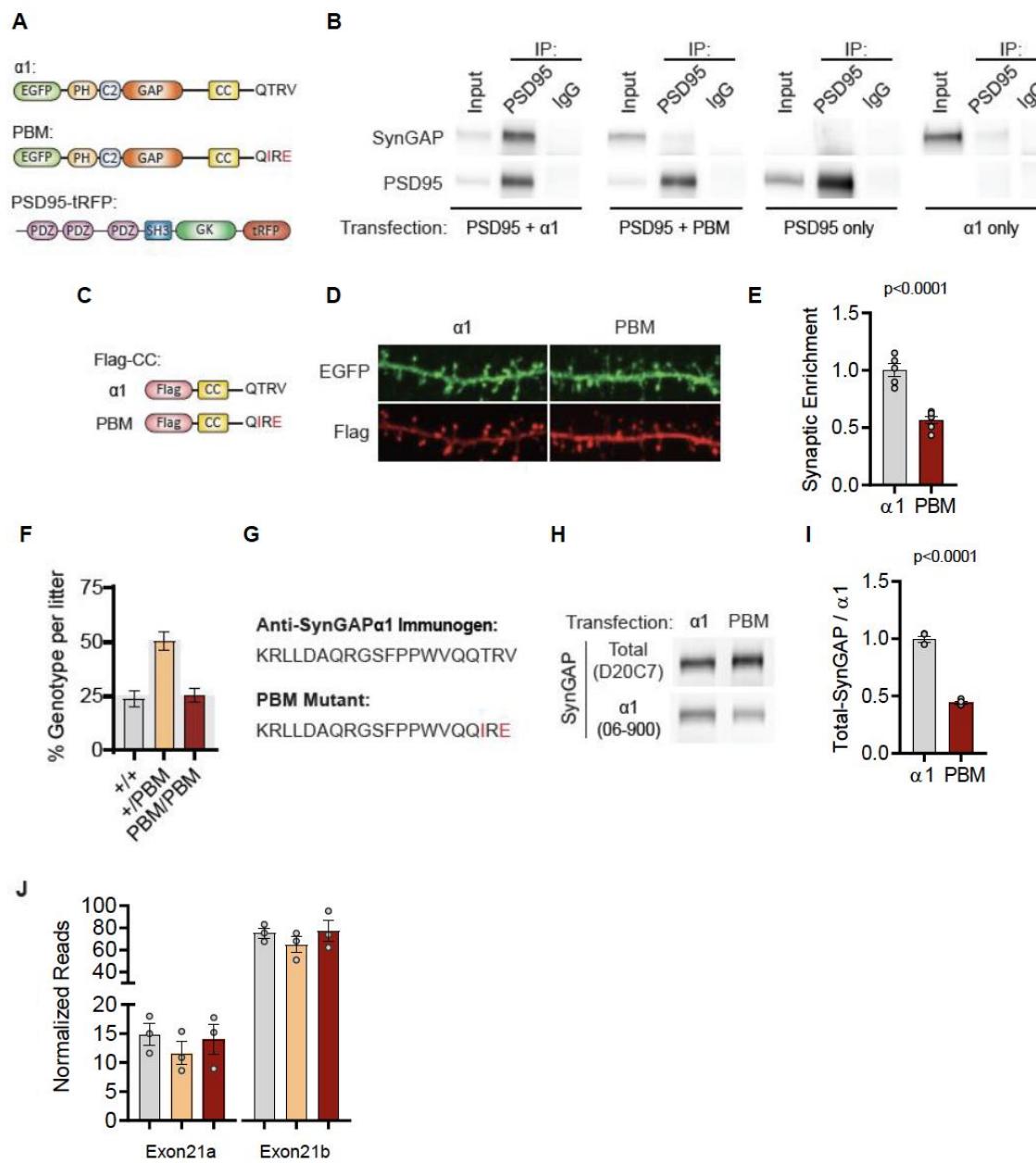

1019
1020 **Figure 4 –Characterization of offspring derived from *Syngap1^{+/-}* and *Syngap1^{β^{+/}}* cross-
1021 breeding. (A) Breeding scheme for offspring genotypes for *Syngap1^{+/-}* and *Syngap1^{+/β⁺}* lines.
1022 (B) Representative western blots showing expression levels of total SynGAP and individual
1023 isoforms at PND7 for all genotypes. (C) Quantification of B. Two-way ANOVA with Tukey's
1024 multiple comparison test. **Total:** (-) allele F(1, 20)=146.3, p<0.0001; β* allele F(1, 20)=0.3344,
1025 p=0.5696. Allelic Interaction F(1, 20)=0.03191, p=0.8600. **α1:** (-) allele F(1, 20)=56.01,
1026 p<0.0001; β* allele F(1, 20)=7.009, p=0.0155; Allelic Interaction F(1, 20)=0.02397, p=0.8785.
1027 **α2:** (-) allele F(1, 20)=81.79, p<0.0001; β* allele F(1, 20)=11.92, p=0.0025; Allelic Interaction
1028 F(1, 20)=0.0044, p=0.9479. **β:** (-) allele F(1, 20)=9.149, p=0.0067; β* allele F(1, 20)=9.676,
1029 p=0.0055; Allelic Interaction F(1, 20)=0.3027, p=0.5883. (D) Quantification of total distance
1030 traveled in open field test. Two-way ANOVA with Tukey's multiple comparison test. (-) allele F(1,
1031 86)=28.85, p<0.0001; β* allele F(1, 86)=4.132, p=0.0452; Allelic Interaction F(1, 86)=0.2951,
1032 p=0.5884 (E) Latency of event onset was measured as the time taken to 1st clonus (seizure
1033 onset). Two-way ANOVA with Tukey's multiple comparison test. (-) allele F(1, 82)=91.71,
1034 p<0.0001; β* allele F(1, 82)=8.967, p=0.0036; Allelic Interaction F(1, 82)=0.07333, p=0.7872 (F)
1035 Percent freezing in remote contextual fear memory paradigm. Two-way ANOVA with Tukey's
1036 multiple comparison test. (-) allele F(1, 86)=69.37, p<0.0001; β* allele F(1, 86)=0.1544,
1037 p=0.6953; Allelic Interaction F(1, 86)=1.392, p=0.2414.
1038
1039**

Figure 4 - Supplement

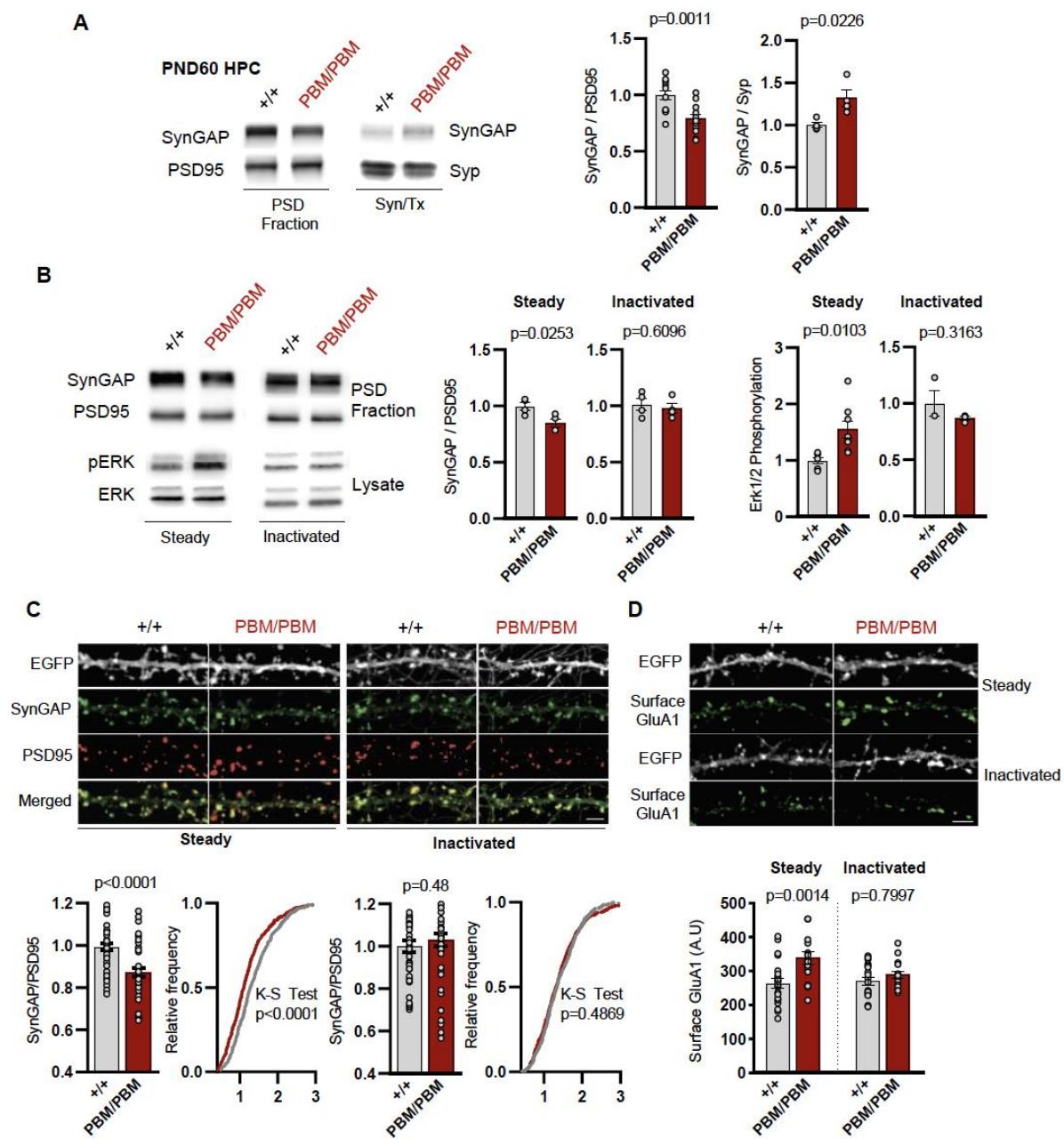
Representative western blots showing expression levels of total SynGAP and individual isoforms at PND60 for all genotypes. Two-way ANOVA with Tukey's multiple comparison test.


Total: (-) allele F(1, 44)=58.57, p<0.0001; β^* allele F(1, 44)=0.1181, p=0.7327. Allelic Interaction F(1, 244)=0.1839, p=0.6701. **α1:** (-) allele F(1, 44)=35.37, p<0.0001; β^* allele F(1, 44)=4.932, p=0.031; Allelic Interaction F(1, 44)=0.3615, p=0.5508. **α2:** (-) allele F(1, 44)=63.95, p<0.0001; β^* allele F(1, 44)=18.00, p<0.0001; Allelic Interaction F(1, 44)=0.03486, p=0.8527. **β:** (-) allele F(1, 20)=9.149, p=0.0067; β^* allele F(1, 20)=9.676, p=0.0055; Allelic Interaction F(1, 20)=0.3027, p=0.5883.

1052
1053
1054
1055
1056
1057

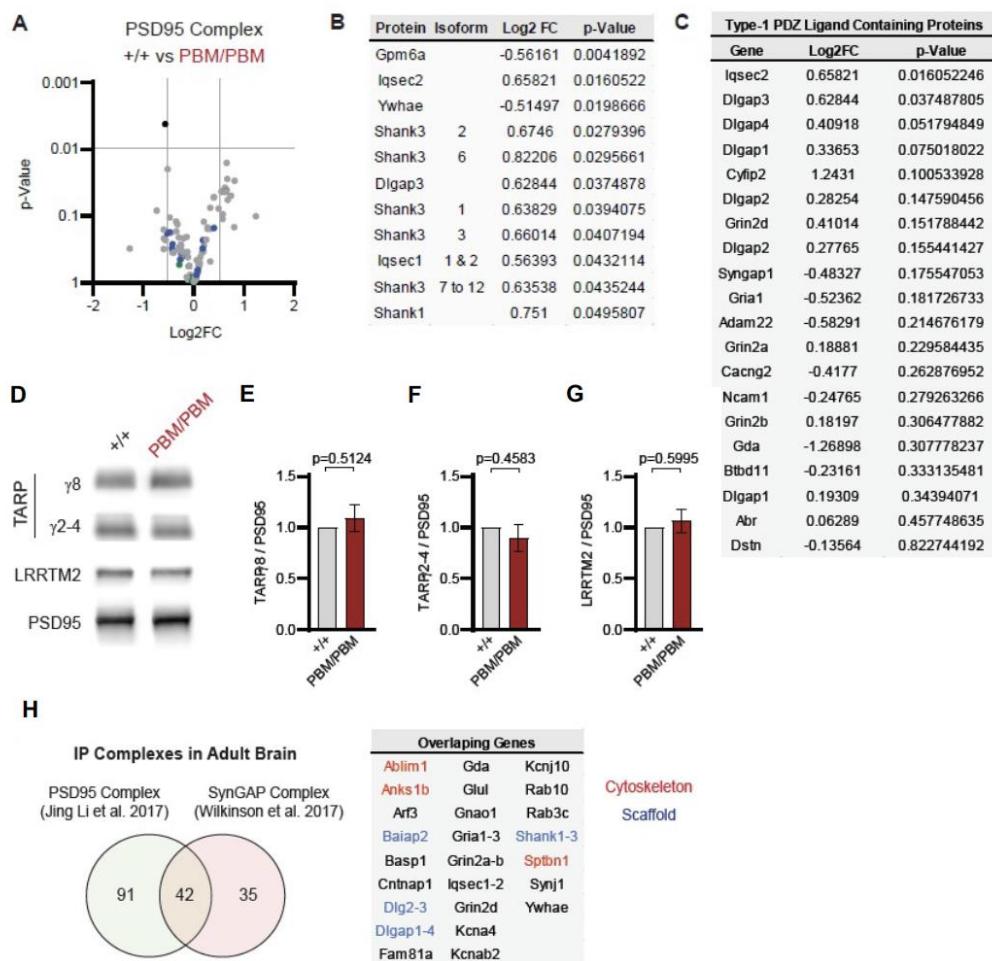
Figure 5 – Validation of SynGAP PDZ binding motif (PBM) mutations and construction of the *Syngap1*^{PBM} mouse line. (A) Schematic diagram for exon map and alternative use of Exon21 in *Syngap1* gene. Exon21b encodes for α1 isoform. Exon 21a encodes for α2 isoform. Point mutations indicated in red alter exon 21b coding sequence without influencing exon21a open reading frame. **(B)** Schematics of SynGAPα1 and PSD95 domain structure and the

1058 location of point mutations. **(C)** Illustrations of constructs expressed in HeLa cells to study PDZ-
1059 dependent interaction between SynGAP and PSD95. EGFP-CC constructs are homologous to
1060 SynGAP α 1 C-terminus. **(D)** Co-localization of EGFP-CC α 1 and PSD95-tRFP in HeLa Cells.
1061 Representative images showing subcellular localizations of WT or PDZ-binding mutant (PBM)
1062 EGFP-CC α 1 and PSD95-tRFP in HeLa cells when expressed individually or together. **(E)**
1063 Quantification of (D). Nuclear localization is calculated as the ratio of EGFP signal colocalized
1064 with DAPI vs total EGFP intensity in within an individual cell. ANOVA with Tukey's multiple
1065 comparisons test, $F(3, 96) = 531.4$. $p < 0.0001$ **(F)** Schematics of the targeting strategy. The
1066 targeting vector was spanning Exon20 & 21. The vector included point mutations in Exon21, a
1067 neomycin resistance selection cassette flanked by Cre recombination sites and diphtheria toxin
1068 selection cassette (DTA). **(G)** Southern blot analysis showing the genomic DNA of the tested
1069 heterozygous mice compared to C57BL/6J wild-type DNA. The AflIII digested DNAs were blotted
1070 on nylon membrane and hybridized with external 5' probe spanning exon19. **(H)** PCR based
1071 genotyping strategy. Primers flanking leftover LoxP site yields 61bp product in WT and 120bp
1072 product in mutated allele. **(I)** Representative western blots showing expression levels of total
1073 SynGAP and individual isoforms in forebrain lysates. **(J)** Quantification of I. Relative intensity of
1074 bands normalized to total protein signal. Only α 1 signal is significantly changed.
1075 ANOVA with Tukey's multiple comparisons test, $F(2, 14) = 24.86$, $n=5$.
1076
1077



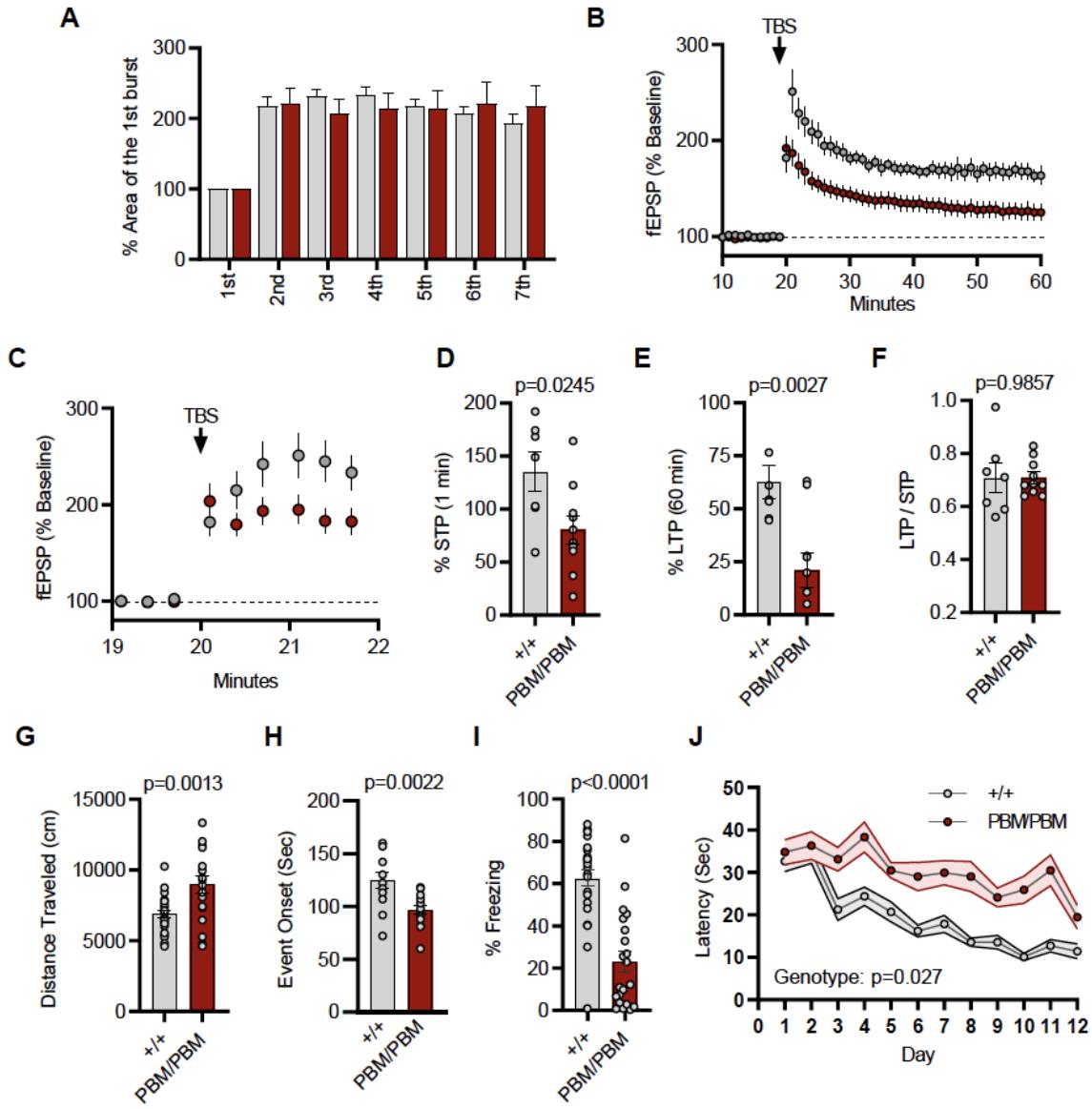
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091

Figure 5 - Supplementary


(A) Illustrations of constructs expressed in H293T cells to study PDZ-dependent interaction between SynGAP and PSD95. **(B)** Coimmunoprecipitation of PSD-95 and SynGAP $\alpha 1$ from transfected H293T cells. PSD95-tRFP coprecipitates with SynGAP $\alpha 1$. This Interaction was disrupted by PBM mutations. **(C)** Illustrations of Flag-tagged SynGAP C-terminal constructs expressed in primary cortical neurons. **(D)** Subcellular localization of wild-type or PBM mutated Flag-CC $\alpha 1$ in primary forebrain neurons. Note that Flag-CC $\alpha 1$ is heavily enriched in dendritic spines compared to Flag-CC PBM. Height of the image is 5 μ m. **(E)** Quantification of synaptic enrichment of Flag-CC constructs. Enrichment in dendritic spines were calculated as the ratio of Flag signal in spines vs dendrites over ratio of EGFP signal in spines vs dendrites. Unpaired t-test, $t(9)=6.982$ $p < 0.0001$. Introduced point mutations impeded the enrichment of Flag-tagged SynGAP $\alpha 1$ C-terminal construct in primary forebrain neurons. **(F)** Genotype frequencies observed from 15 litters following heterozygous crosses. Expected mendelian ratio is

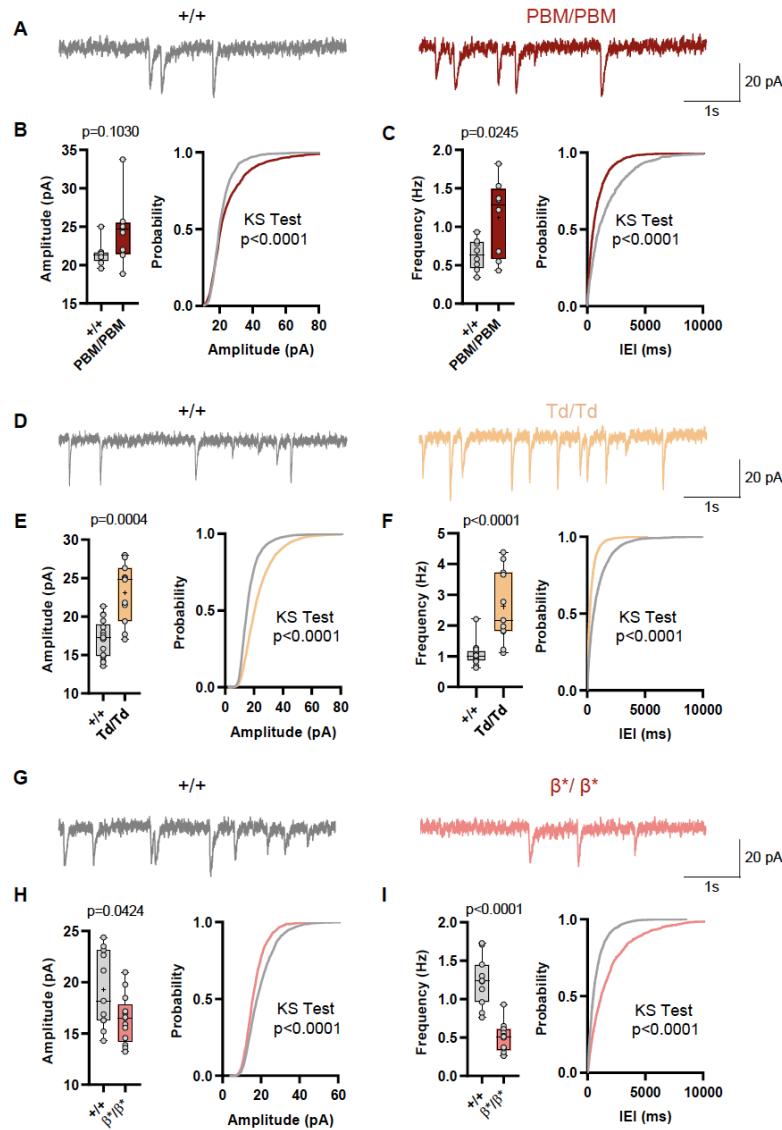
1092 highlighted with gray. **(G)** Antigen for $\alpha 1$ -specific antibody in comparison to PBM mutant C-tail.
1093 **(H)** Reduced antigenicity of $\alpha 1$ antibody against PBM mutant C-terminus. H293T cells were
1094 transfected with either wild-type or PDZ-binding mutant form of EGFP-SynGAP $\alpha 1$. Lysates were
1095 probed for both Pan-SynGAP (D20C7) and $\alpha 1$ -specific (06-800) antibody. Relative reduction in
1096 $\alpha 1$ to Pan-SynGAP signal demonstrates ~50% reduction in antigenicity. **(I)** Quantification of (D)
1097 Unpaired t-test. $t(6)=19.16$, $n=4$, $p<0.0001$. **(J)** SynGAP $\alpha 1$ mRNA levels in forebrain
1098 transcriptome. Normalized reads of Exon21b (specific to $\alpha 1$) were shown in linear scale.
1099 ANOVA $F(2,6)=0.3009$, $n=3$, $p=0.7507$. No significant changes were found across genotypes
1100 indicating that point mutations do not influence the mRNA expression levels.
1101
1102

1103
1104 **Figure 6 – SynGAP synapse localization in *Syngap1^{PBM}* mouse line.** (A) Western blots
1105 showing relative distribution of SynGAP in PSD and Syn/Tx fractions from adult hippocampi.
1106 Quantification of western blots probing total SynGAP, Synaptophysin and PSD95. For PSD
1107 fractions PSD95 and for Syn/Tx fractions Synaptophysin (Syp) were used as loading control.
1108 PSD fractions: $t(22)=3.733$, $p=0.0011$ $n=12$ (3 technical replicates for each sample), Syn/TX
1109 fractions: $t(6)=3.049$, $p=0.0226$, $n=4$. Each sample represents hippocampi pooled from 2 mice.
1110 (B) Western blots showing relative enrichment of (i) SynGAP and PSD95 in PSD fractions
1111 isolated from DIV18-21 cultures, (ii) phospho and total-ERK1/2 levels in whole cell lysates in
1112 steady or inactivated state. Synaptic enrichment of SynGAP in (i) steady-state: Unpaired t-test,
1113 $t(12)=3.040$ $p=0.0103$. (ii) inactivated state: Unpaired t-test, $t(6)=0.5385$ $p=0.6096$. Erk1/2
1114 phosphorylation is calculated as ratio of phospho- Erk1/2 to total-Erk1/2 in homogenates. Erk1/2
1115 phosphorylation in (i) steady-state: Unpaired t-test, $t(6)=2.961$ $p=0.0253$. (ii) inactivated state:


1116 Unpaired t-test, $t(4)=1.144$ $p=0.3163$ **(C)** Synaptic enrichment of total SynGAP in WT and PBM
1117 mutants in steady or inactivated state. Levels of SynGAP relative to PSD95 signal in dendritic
1118 spines. Left, bar graphs demonstrate mean enrichment in an individual dendritic segment.
1119 Steady-state: $t(90)=4.393$ $p<0.0001$. Inactivated: $t(78)=0.6982$ $p=0.48$. Cumulative distribution
1120 of SynGAP to PSD95 ratios in individual synapses. Kolmogorov-Smirnov test, Steady-state:
1121 $p<0.0001$, Inactivated: $p=0.4869$. **(D)** Surface GluA1 expression in primary forebrain cultures in
1122 steady or inactivated state. Quantification of mean surface GluA1 levels coincident with PSD95
1123 puncta. Two-way ANOVA with Tukey's multiple comparisons test. Interaction: $F(1,74)=4.112$,
1124 $p=0.0462$, Genotype: $F(1,74)=11.09$, $p=0.0014$. Treatment: $F(1,74)=2.329$, $p=0.1313$. Each n
1125 represents an average of 25-30 spines from a dendritic segment belonging to distinct neurons.
1126
1127

1128
1129

1130 **Figure 7 – Characterization of native PSD95 complexes from *Syngap1^{PBM}* animals. (A)**
1131 Volcano plot demonstrating the label-free quantitative mass-spectrometry profile of the
1132 logarithmic difference in protein levels in the immunoprecipitated PSD95 complexes derived
1133 from DIV21 +/+ and PBM/PBM cultures in inactivated state. Only Gpm6a (shown in black) was
1134 significantly altered beyond $p>0.001$ cutoff. Blue dots represent proteins with type 1 PDZ-
1135 ligands. Green dots represent DLG family proteins. P values were calculated via t-test for each
1136 protein. Samples were derived from individual cultures (4 per genotype) which are
1137 immunoprecipitated separately. Log2FC was calculated as ratio of PBM/PBM over +/+. (B) List
1138 of proteins that are differentially expressed beyond $p>0.05$ cutoff. Note that Iqsec2 and Dlgap3
1139 are PDZ-binding proteins. (C) Mass-spectrometry profile of type-1 PDZ binding motif containing
1140 proteins in immunoprecipitated PSD95 complex in +/+ vs PBM/PBM inactivated cultures. (D)
1141 Western blots showing relative expression of TARPs and Lrrtm2 in PSD fractions from adult
1142 hippocampi in +/+ vs PBM/PBM. (E-G) Quantifications of (D). (E) TARPg8 t(6)=0.6961,
1143 p=0.5124. (F) TARPg2-4 t(6)=0.7924, p=0.4583 (G) Lrrtm2 t(6)=0.5542, p=0.5995. Each
1144 sample represents hippocampi pooled from 2 mice. (H) Comparison of PSD95 and SynGAP IP
1145 complexes as reported by (Li et al. 2017 and Wilkinson et al. 2017). Note that PSD95 and
1146 SynGAP complexes share diverse range of components involving cytoskeletal and scaffolding
1147 proteins.


1148
1149

1150
1151

1152 **Figure 8 – Plasticity and behavior deficits in the *Syngap1PBM* mouse line. (A)** Facilitation of
1153 burst responses was calculated by expressing the area of the composite fEPSP corresponding
1154 to the 2nd theta burst within each train as a fraction of the 1st burst response. No statistically
1155 significant difference was found between genotypes. **(B)** Magnitude of long-term potentiation
1156 (LTP) following delivery of a single train of five theta bursts. The slope of the fEPSP was
1157 normalized to the mean value for a 20 min baseline period; shown are group means and
1158 standard errors. The control path, to the same site at which LTP was recorded, received 3/min
1159 pulses throughout the session. **(C)** Percent fEPSP during and immediately after the LTP
1160 induction. Note that homozygous mutants reach to peak potential immediately following TBS.
1161 **(D)** Bar graph shows % potentiation in 1 min after stimulus. $t(15)=2.499$, $p=0.0245$ **(E)** Bar graph
1162 shows % potentiation in 60 min after stimulus. $t(15)=3.594$, $p=0.0027$ **(F)** LTP to STP ratio of
1163 individual slices. Note that the level of LTP is proportional to the degree of acute potentiation
1164 (1min after stimulus). $t(15)=0.01818$, $p=0.9857$. **(G)** Quantification of total distance traveled in
1165 OFT. $t(45)=3.427$, $p=0.0013$. **(H)** Seizure threshold was measured as the time taken to reach
1166 three separate events of 1st clonus (event onset) during the procedure. Unpaired t-test

1167 t(25)=3.420 p=0.0022. **(I)** Percent freezing in remote contextual fear memory paradigm. %
1168 Freezing: t(45)=6.463, p<0.0001. **(J)** Plots demonstrating latency to find platform across days in
1169 Morris Water Maze training session. Statistical significance was determined by using linear
1170 mixed model for repeated measures. n=14, +/+ vs PBM/PBM, p=0.027
1171
1172

1173
1174

1175 **Figure 9 – Analysis of excitatory synapse function in $Syngap1^{PBM}$, $Syngap1^{\beta^*}$, and**
1176 **$Syngap1^{td}$ mouse lines. (A)** Representative mEPSCs traces from L2/3 SSC in $+/+$ vs
1177 PBM/PBM **(B)** Scatter plots and cumulative histograms showing trend towards increase but no
1178 significant difference in Amplitudes of mEPSCs $+/+$ vs PBM/PBM **(C)** Scatter plots and
1179 cumulative histograms showing significant increase in frequency of mEPSCs $+/+$ vs PBM/PBM.
1180 Unpaired t test: $p=0.0245$, $n=8$ for each genotype. **(D)** Representative mEPSCs traces from
1181 L2/3 SSC in $+/+$ vs Td/Td. **(E)** Scatter plots and cumulative histograms showing significantly
1182 increased amplitudes of mEPSCs in $+/+$ vs Td/Td. Unpaired t test: $p=0.0004$, $n=17$ cells for $+/+$,
1183 $n=11$ cells for Td/Td mice. **(F)** Scatter plots and cumulative histograms showing significant
1184 increase in frequency of mEPSCs in $+/+$ vs Td/Td. Unpaired t test: $p<0.0001$, $n=17$ cells for $+/+$,
1185 $n=11$ cells for Td/Td mice. **(G)** Representative mEPSCs traces from L2/3 SSC in $+/+$ vs β^*/β^* .
1186 **(H)** Scatter plots and cumulative histograms showing significantly decreased amplitudes of
1187 mEPSCs in L2/3 SSC for $+/+$ vs β^*/β^* . Unpaired t test: $p=0.0424$, $n=11$ cells for $+/+$, $n=13$ cells
1188 for β^*/β^* . **(I)** Scatter plots and cumulative histograms showing significant decrease in frequency
1189 of mEPSCs in $+/+$ vs β^*/β^* . Unpaired t test: $p<0.0001$, $n=11$ cells for $+/+$, $n=13$ cells for β^*/β^* .

1190

1191 **References**

1192
1193

- 1194 1. Deciphering Developmental Disorders, S., *Large-scale discovery of novel genetic*
1195 *causes of developmental disorders*. *Nature*, 2015. **519**(7542): p. 223-8.
- 1196 2. Deciphering Developmental Disorders, S., *Prevalence and architecture of de novo*
1197 *mutations in developmental disorders*. *Nature*, 2017. **542**(7642): p. 433-438.
- 1198 3. Hamdan, F.F., et al., *Mutations in SYNGAP1 in autosomal nonsyndromic mental*
1199 *retardation*. *N Engl J Med*, 2009. **360**(6): p. 599-605.
- 1200 4. Vlaskamp, D.R.M., et al., *SYNGAP1 encephalopathy: A distinctive generalized*
1201 *developmental and epileptic encephalopathy*. *Neurology*, 2019. **92**(2): p. e96-e107.
- 1202 5. Parker, M.J., et al., *De novo, heterozygous, loss-of-function mutations in SYNGAP1*
1203 *cause a syndromic form of intellectual disability*. *Am J Med Genet A*, 2015. **167a**(10): p.
1204 2231-7.
- 1205 6. Mignot, C., et al., *Genetic and neurodevelopmental spectrum of SYNGAP1-associated*
1206 *intellectual disability and epilepsy*. *J Med Genet*, 2016. **53**(8): p. 511-22.
- 1207 7. Iossifov, I., et al., *The contribution of de novo coding mutations to autism spectrum*
1208 *disorder*. *Nature*, 2014. **515**(7526): p. 216-21.
- 1209 8. Satterstrom, F.K., et al., *Large-Scale Exome Sequencing Study Implicates Both*
1210 *Developmental and Functional Changes in the Neurobiology of Autism*. *Cell*, 2020.
1211 **180**(3): p. 568-584 e23.
- 1212 9. Holder, J.L., Jr., F.F. Hamdan, and J.L. Michaud, *SYNGAP1-Related Intellectual*
1213 *Disability*, in *GeneReviews((R))*, M.P. Adam, et al., Editors. 1993: Seattle (WA).
- 1214 10. Weldon, M., et al., *The first international conference on SYNGAP1-related brain*
1215 *disorders: a stakeholder meeting of families, researchers, clinicians, and regulators*. *J*
1216 *Neurodev Disord*, 2018. **10**(1): p. 6.
- 1217 11. Llamosas, N., et al., *SYNGAP1 Controls the Maturation of Dendrites, Synaptic Function,*
1218 *and Network Activity in Developing Human Neurons*. *J Neurosci*, 2020. **40**(41): p. 7980-
1219 7994.
- 1220 12. Kilinc, M., et al., *Species-conserved SYNGAP1 phenotypes associated with*
1221 *neurodevelopmental disorders*. *Molecular and Cellular Neuroscience*, 2018. **91**: p. 140-
1222 150.
- 1223 13. Gamache, T.R., Y. Araki, and R.L. Huganir, *Twenty Years of SynGAP Research: From*
1224 *Synapses to Cognition*. *J Neurosci*, 2020. **40**(8): p. 1596-1605.
- 1225 14. Kim, J.H., et al., *SynGAP: a synaptic RasGAP that associates with the PSD-95/SAP90*
1226 *protein family*. *Neuron*, 1998. **20**(4): p. 683-91.
- 1227 15. Chen, H.J., et al., *A synaptic Ras-GTPase activating protein (p135 SynGAP) inhibited by*
1228 *CaM kinase II*. *Neuron*, 1998. **20**(5): p. 895-904.
- 1229 16. Ozkan, E.D., et al., *Reduced cognition in Syngap1 mutants is caused by isolated*
1230 *damage within developing forebrain excitatory neurons*. *Neuron*, 2014. **82**(6): p. 1317-
1231 33.
- 1232 17. Araki, Y., et al., *Rapid dispersion of SynGAP from synaptic spines triggers AMPA*
1233 *receptor insertion and spine enlargement during LTP*. *Neuron*, 2015. **85**(1): p. 173-89.
- 1234 18. Clement, J.P., et al., *Pathogenic SYNGAP1 mutations impair cognitive development by*
1235 *disrupting maturation of dendritic spine synapses*. *Cell*, 2012. **151**(4): p. 709-23.
- 1236 19. Clement, J.P., et al., *SYNGAP1 links the maturation rate of excitatory synapses to the*
1237 *duration of critical-period synaptic plasticity*. *J Neurosci*, 2013. **33**(25): p. 10447-52.
- 1238 20. Aceti, M., et al., *Syngap1 Haploinsufficiency Damages a Postnatal Critical period of*
1239 *Pyramidal Cell Structural Maturation Linked to Cortical Circuit Assembly*. *Biological*
1240 *Psychiatry*, 2015.

1241 21. Michaelson, S.D., et al., *SYNGAP1 heterozygosity disrupts sensory processing by*
1242 *reducing touch-related activity within somatosensory cortex circuits*. *Nature*
1243 *Neuroscience*, 2018. **21**(12): p. 1-13.

1244 22. Araki, Y., et al., *SynGAP isoforms differentially regulate synaptic plasticity and dendritic*
1245 *development*. *Elife*, 2020. **9**.

1246 23. Gou, G., et al., *SynGAP splice variants display heterogeneous spatio-temporal*
1247 *expression and subcellular distribution in the developing mammalian brain*. *J*
1248 *Neurochem*, 2020. **154**(6): p. 618-634.

1249 24. McMahon, A.C., et al., *SynGAP isoforms exert opposing effects on synaptic strength*.
1250 *Nat Commun*, 2012. **3**: p. 900.

1251 25. Rumbaugh, G., et al., *SynGAP regulates synaptic strength and mitogen-activated*
1252 *protein kinases in cultured neurons*. *Proceedings of the National Academy of Sciences*
1253 *of the United States of America*, 2006. **103**(12): p. 4344-4351.

1254 26. Vazquez, L.E., et al., *SynGAP regulates spine formation*. *J Neurosci*, 2004. **24**(40): p.
1255 8862-72.

1256 27. Komiya, N.H., et al., *SynGAP regulates ERK/MAPK signaling, synaptic plasticity, and*
1257 *learning in the complex with postsynaptic density 95 and NMDA receptor*. *J Neurosci*,
1258 2002. **22**(22): p. 9721-32.

1259 28. Sullivan, B.J., et al., *Low-Dose Perampanel Rescues Cortical Gamma Dysregulation*
1260 *Associated With Parvalbumin Interneuron GluA2 Upregulation in Epileptic Syngap1(+-)*
1261 *Mice*. *Biol Psychiatry*, 2020. **87**(9): p. 829-842.

1262 29. Spicer, T.P., et al., *Improved Scalability of Neuron-Based Phenotypic Screening Assays*
1263 *for Therapeutic Discovery in Neuropsychiatric Disorders*. *Mol Neuropsychiatry*, 2018.
1264 **3**(3): p. 141-150.

1265 30. Kim, J.H., et al., *The role of synaptic GTPase-activating protein in neuronal development*
1266 *and synaptic plasticity*. *J Neurosci*, 2003. **23**(4): p. 1119-24.

1267 31. Yokoi, S., et al., *3'UTR Length-Dependent Control of SynGAP Isoform alpha2 mRNA by*
1268 *FUS and ELAV-like Proteins Promotes Dendritic Spine Maturation and Cognitive*
1269 *Function*. *Cell Rep*, 2017. **20**(13): p. 3071-3084.

1270 32. Creson, T.K., et al., *Re-expression of SynGAP protein in adulthood improves*
1271 *translatable measures of brain function and behavior*. *eLife*, 2019. **8**: p. e46752.

1272 33. Guo, X., et al., *Reduced expression of the NMDA receptor-interacting protein SynGAP*
1273 *causes behavioral abnormalities that model symptoms of Schizophrenia*.
1274 *Neuropsychopharmacology*, 2009. **34**(7): p. 1659-72.

1275 34. Zeng, M., et al., *Phase Transition in Postsynaptic Densities Underlies Formation of*
1276 *Synaptic Complexes and Synaptic Plasticity*. *Cell*, 2016. **166**(5): p. 1163-1175.e12.

1277 35. Gou, G., et al., *SynGAP Splice Variants Display Heterogeneous Spatio-Temporal*
1278 *Expression And Subcellular Distribution In The Developing Mammalian Brain*. *bioRxiv*,
1279 2019: p. 681148.

1280 36. Li, J., et al., *Spatiotemporal profile of postsynaptic interactomes integrates components*
1281 *of complex brain disorders*. *Nature Neuroscience*, 2017. **20**: p. 1150.

1282 37. Wilkinson, B., J. Li, and M.P. Coba, *Synaptic GAP and GEF Complexes Cluster Proteins*
1283 *Essential for GTP Signaling*. *Scientific Reports*, 2017. **7**(1): p. 5272.

1284 38. Volianskis, A., et al., *Different NMDA receptor subtypes mediate induction of long-term*
1285 *potentiation and two forms of short-term potentiation at CA1 synapses in rat*
1286 *hippocampus in vitro*. *The Journal of Physiology*, 2013. **591**(4): p. 955-972.

1287 39. Wang, C.-C., R.G. Held, and B.J. Hall, *SynGAP Regulates Protein Synthesis and*
1288 *Homeostatic Synaptic Plasticity in Developing Cortical Networks*. *PLoS ONE*, 2013.
1289 **8**(12): p. e83941.

1290 40. Hamdan, F.F., et al., *De novo SYNGAP1 mutations in nonsyndromic intellectual*
1291 *disability and autism*. *Biol Psychiatry*, 2011. **69**(9): p. 898-901.

1292 41. Berryer, M.H., et al., *Mutations in SYNGAP1 cause intellectual disability, autism, and a*
1293 *specific form of epilepsy by inducing haploinsufficiency*. *Hum Mutat*, 2013. **34**(2): p. 385-
1294 94.

1295 42. Lim, K.H., et al., *Antisense oligonucleotide modulation of non-productive alternative*
1296 *splicing upregulates gene expression*. *Nat Commun*, 2020. **11**(1): p. 3501.

1297 43. Zhang, L.I. and M.M. Poo, *Electrical activity and development of neural circuits*. *Nature*
1298 *Neuroscience*, 2001. **4**: p. 1207-1214.

1299 44. Lynch, G., C.S. Rex, and C.M. Gall, *LTP consolidation: substrates, explanatory power,*
1300 *and functional significance*. *Neuropharmacology*, 2007. **52**(1): p. 12-23.

1301 45. Dravid, S.M., et al., *Subunit-specific mechanisms and proton sensitivity of NMDA*
1302 *receptor channel block*. *J Physiol*, 2007. **581**(Pt 1): p. 107-28.

1303