

Title: Sleep Dependent Changes of Lactate Concentration in Human Brain

Authors: Selda Yildiz^{1,2}, Miranda M. Lim^{2,3,4,5,6}, Manoj K. Sammi^{1,7}, Katherine Powers¹, Charles F. Murchison^{2,8}, Jeffrey J. Iliff^{9,10,11,12}, *William D. Rooney^{1,2,5,10}

Affiliations:

¹Advanced Imaging Research Center, Oregon Health & Science University, Portland, OR, 97239, USA

²Department of Neurology, Oregon Health & Science University, Portland, OR, 97239, USA

³VA Portland Health Care System, Portland, OR, 97239, USA

⁴Department of Medicine, Division of Pulmonary and Critical Care Medicine; Oregon Health & Science University, Portland, OR, 97239, USA

⁵Department of Behavioral Neuroscience; Oregon Health & Science University, Portland, OR, 97239, USA

⁶Oregon Institute of Occupational Health Sciences; Oregon Health & Science University, Portland, OR, 97239, USA

⁷BENFRA Botanical Dietary Supplements Research Center; Oregon Health & Science University, Portland, OR, 97239, USA.

⁸Department of Biostatistics, University of Alabama at Birmingham, AL, 35233, USA

⁹Department of Anesthesiology and Perioperative Medicine, Oregon Health & Science University, Portland, OR, 97239, USA

¹⁰Knight Cardiovascular Institute, Oregon Health & Science University, Portland, OR, 97239, USA

¹¹VISN 20 Mental Illness Research, Education and Clinical Center (MIRECC), VA Puget Sound Health Care System, Seattle, WA, 98108, USA.

¹²Department of Psychiatry and Behavioral Sciences, ¹²Department of Neurology, University of Washington School of Medicine, Seattle, WA, 98195, USA.

***Corresponding author.** William D. Rooney, Advanced Imaging Research Center, Oregon Health & Science University, 3181 S.W. Sam Jackson Park Road, Portland, OR, 97239, USA
Email: rooneyw@ohsu.edu

Abstract

Lactate is an important cellular metabolite that is present at high concentrations in the brain, both within cells and in the extracellular space between cells. Small animal studies demonstrated high extracellular concentrations of lactate during wakefulness with reductions during sleep and/or anesthesia with a recent study suggesting the glymphatic activity as the mechanism for the reduction of lactate concentrations. We have recently developed a rigorous non-invasive imaging approach combining simultaneous magnetic resonance spectroscopy (MRS) and polysomnography (PSG) measurements, and here, we present the first *in-vivo* evaluation of brain lactate levels during sleep-wake cycles in young healthy humans. First, we collected single voxel proton MRS (¹H-MRS) data at the posterior cingulate with high temporal resolution (every 7.5 sec), and simultaneously recorded PSG data while temporally registering with ¹H-MRS time-series. Second, we evaluated PSG data in 30 s epochs, and classified into four stages Wake (W), Non-REM sleep stage 1 (N1), Non-REM sleep stage 2 (N2), and Non-REM sleep stage 3 (N3). Third, we determined lactate signal intensity from each 7.5-s spectrum, normalized to corresponding water signal, and averaged over 30-s for each PSG epoch. In examinations of nine healthy participants (four females, five males; mean age 24.2 (± 2 ; SD) years; age range: 21-27 years) undergoing up to 3-hour simultaneous MRS/PSG recordings, we observed a group mean reduction of [4.9 \pm 4.9] % in N1, [10.4 \pm 5.2] % in N2, and [24.0 \pm 5.8] % in N3 when compared to W. Our finding is consistent with more than 70 years of invasive lactate measurements from small animal studies. In addition, reduced brain lactate was accompanied by a significant reduction the apparent diffusion coefficient of brain lactate. Taken together, these findings are consistent with the loss of lactate from the extracellular space during sleep while suggesting

lactate metabolism is altered and/or lactate clearance via glymphatic exchange is increased during sleep.

Significance Statement

This study describes a non-invasive magnetic resonance spectroscopy/polysomnography technique that allows rigorous measurement of brain metabolite levels together with simultaneous characterization of brain arousal state as either wakeful or one of the several sleep states. The results provide the first *in-vivo* demonstration of reductions in brain lactate concentration and diffusivity during sleep versus wakefulness in young healthy human brain. These findings are consistent with invasive small-animal studies showing the loss of extracellular lactate during sleep, and support the notion of altered lactate metabolism and/or increased glymphatic activity in sleeping human brain.

Keywords: human brain, lactate, glymphatic function, sleep-wake, MR spectroscopy, polysomnography

Introduction

While fundamental aspects of sleep physiology remain incompletely understood, it is clear that sleep is crucial to sustain brain health across the lifespan. Acute sleep deprivation results in impaired performance on attention and working memory tasks while chronic sleep disruption has profound impacts on overall daytime mood, motor, creative thinking, and cognitive performance.¹⁻⁵ Emerging epidemiological evidence further demonstrates the significance of sleep as sleep disruption is shown to be associated both with dementia and Alzheimer's diagnosis^{6,7} as well as the development of amyloid plaques prior to the onset of clinical symptoms.^{8,9} Despite the clear importance of sleep for acute and long-term brain health, underlying mechanisms associated with this increased risk remain poorly understood.

The potential metabolic benefits and restorative aspects of sleep have long been discussed, including reduced catabolic activity and increased anabolic activity.^{10,11} Lactate is an important cerebral metabolite that is present at high concentrations both within cells and also in the extracellular space between cells, the interstitial space. Cellular mechanisms underlying changes in brain lactate concentrations have been investigated in animal studies for more than 70 years,¹² demonstrating sharp reductions in lactate concentration (12-35%) during sleep or anesthesia relative to wakefulness.¹²⁻¹⁷ In human brain, metabolic activity associated with cellular energy production is reduced during sleep with individual sleep stages associated with differing regional effects on brain metabolism,¹⁸ although gene expression indicating anabolic processes such as macromolecular synthesis is strongly increased.¹⁹

Along with its known dynamic profile in cerebral metabolism, lactate levels have also been used as a surrogate marker for clearance of brain interstitial fluid (ISF). ¹³ Such markers are relevant for the assessment of glymphatic activity, a physiology which supports the interchange of extracellular space fluids; cerebrospinal fluid (CSF) and ISF along perivascular pathways and facilitates the clearance of solutes and metabolic wastes from the brain interstitium.^{20,21} In rodent models, sleep and arousal state regulate glymphatic activity, as CSF tracer influx and interstitial solute clearance are increased during both sleep and some anesthesia conditions compared to the waking states.²²

To our knowledge, alterations in human cerebral lactate concentrations across sleep-wake cycles, including different sleep stages, have not been reported. Given the important role of lactate in cerebral metabolism and its potential as a surrogate of glymphatic physiology, improved understanding of brain lactate dynamics across sleep-wake cycles is important for assessment of fundamental sleep-associated physiology and metabolism. Our primary goals in this study were to investigate cerebral lactate concentration across natural sleep-wake cycles and evaluate the potential of lactate as a sleep biomarker in human brain. To realize these goals, we successfully developed and applied a novel non-invasive experimental methodology combining rigorous and simultaneous magnetic resonance spectroscopy (MRS) and polysomnography (PSG) measurements in young healthy humans.

Materials and Methods

The study was performed at a single site with all procedures approved by the Institutional Review Board of the Oregon Health & Science University (OHSU). All subjects provided verbal and written informed consent prior to study procedures.

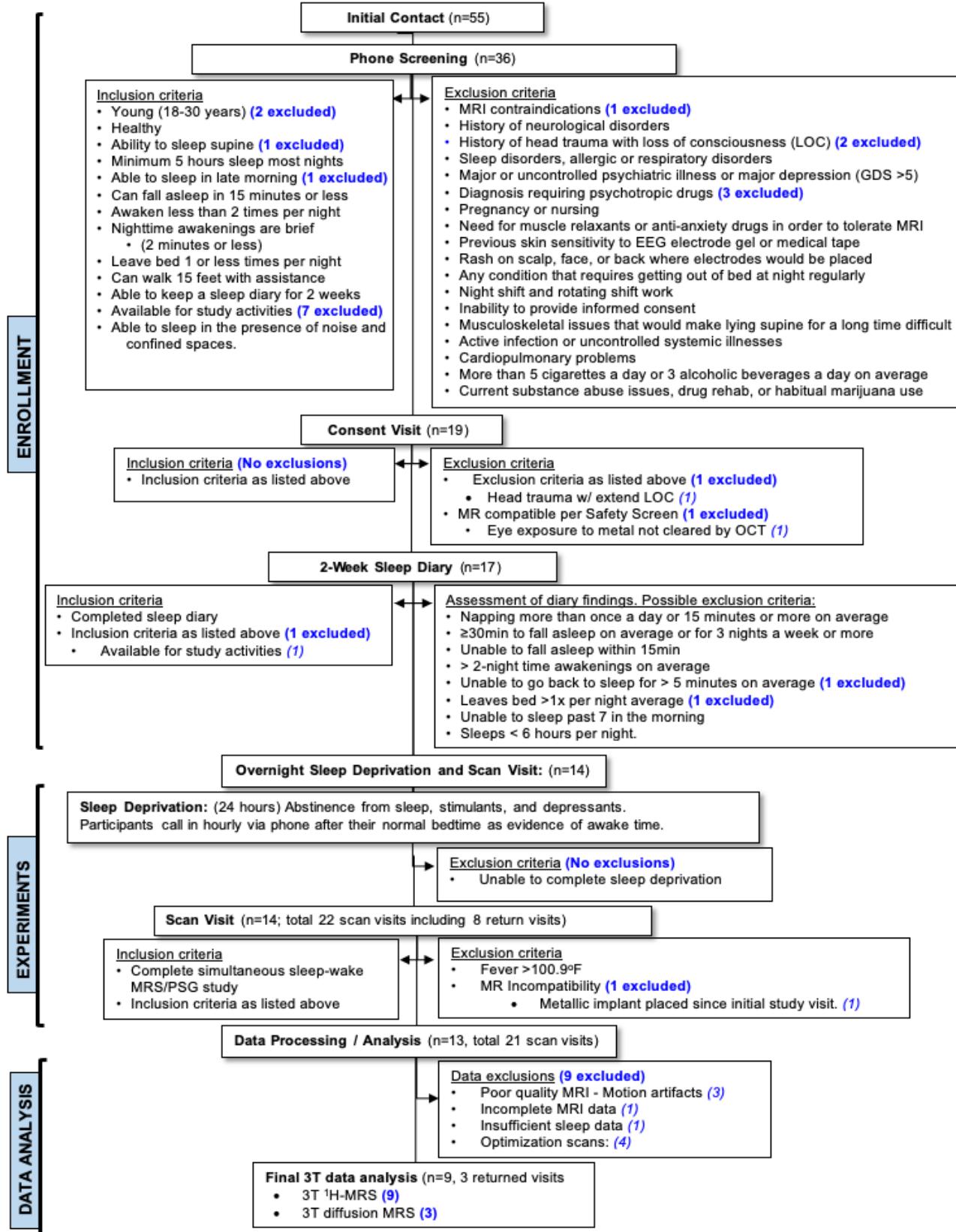


Figure 1. Study flow chart

Study Subjects

To examine human brain lactate levels across sleep-wake cycles, we recruited young healthy subjects for the sleep-wake study experiments in a 3T MRI instrument. We recruited healthy subjects from the Portland metropolitan area using OHSU's study participation opportunities website, Oregon Center for Clinical and Translational Research Institute (OCTRI) research match for recruitment, and flyers throughout the OHSU campus and communities in Portland.

Fig. 1 shows the study flow chart with the details of subject recruitment and enrollment procedures including a comprehensive screening with a list of inclusion and exclusion criteria. Of the 55 participants contacted for the study, 36 were phone screened, 19 were eligible for an initial visit for detailed screening, 14 were enrolled for sleep-wake experiments, and 9 subjects (four females, five males; mean age 24.2 ± 2 (SD) years; age range: 21-27 years) successfully completed the study and were included in the final data analysis.

The MRI environment is not conducive of restful sleep, as it is a confined space which can be acoustically noisy, with subjects restricted to the supine position, and passive restraints to reduce motion can increase discomfort. To increase the likelihood of sleep within the MRI environment, i) a 2-week sleep diary screening was utilized to enroll participants that are likely to sleep in the MRI environment, and ii) all enrolled subjects were sleep-deprived overnight, and were instructed to refrain from sleep, daytime napping, and caffeine and alcohol consumption for 24-hours prior to the study. The MRS study visits took place between 5:45 am-11:00 am after an overnight sleep deprivation, and included 1.5-hour subject PSG head cap preparation and up to 3-hour simultaneous MRI/MRS and PSG sessions. To ensure overnight sleep-deprivation, subjects were instructed to call-in every ~60 min and record a message throughout the night until their scheduled transportation arrived.

All subjects underwent sleep-wake experiments consisting of simultaneous recordings of MRS and PSG measurements in a 3T Siemens Prisma MRI instrument (*Siemens Healthineers, Erlangen, Germany*) using a 64-channel head/neck coil. PSG data were recorded using an MR compatible system (*Brain Products Inc, GmbH, Munich, Germany*) which involved (1) a customized 15-channel head-cap with 12 electroencephalogram (EEG) electrodes, two electrooculography (EOG) electrodes, and one drop-down electrocardiogram (ECG) electrode positioned on the back of the subject, (2) a respiration belt (*Respiration Belt MR*) placed on the chest to measure breathing and (3) a 3D acceleration sensor (*3D Acceleration Sensor MR*) positioned on subject's left calf muscle to measure limb movements. Note that per vendor compatibility with MRI, PSG measurements did not include electromyogram (EMG) data collection.

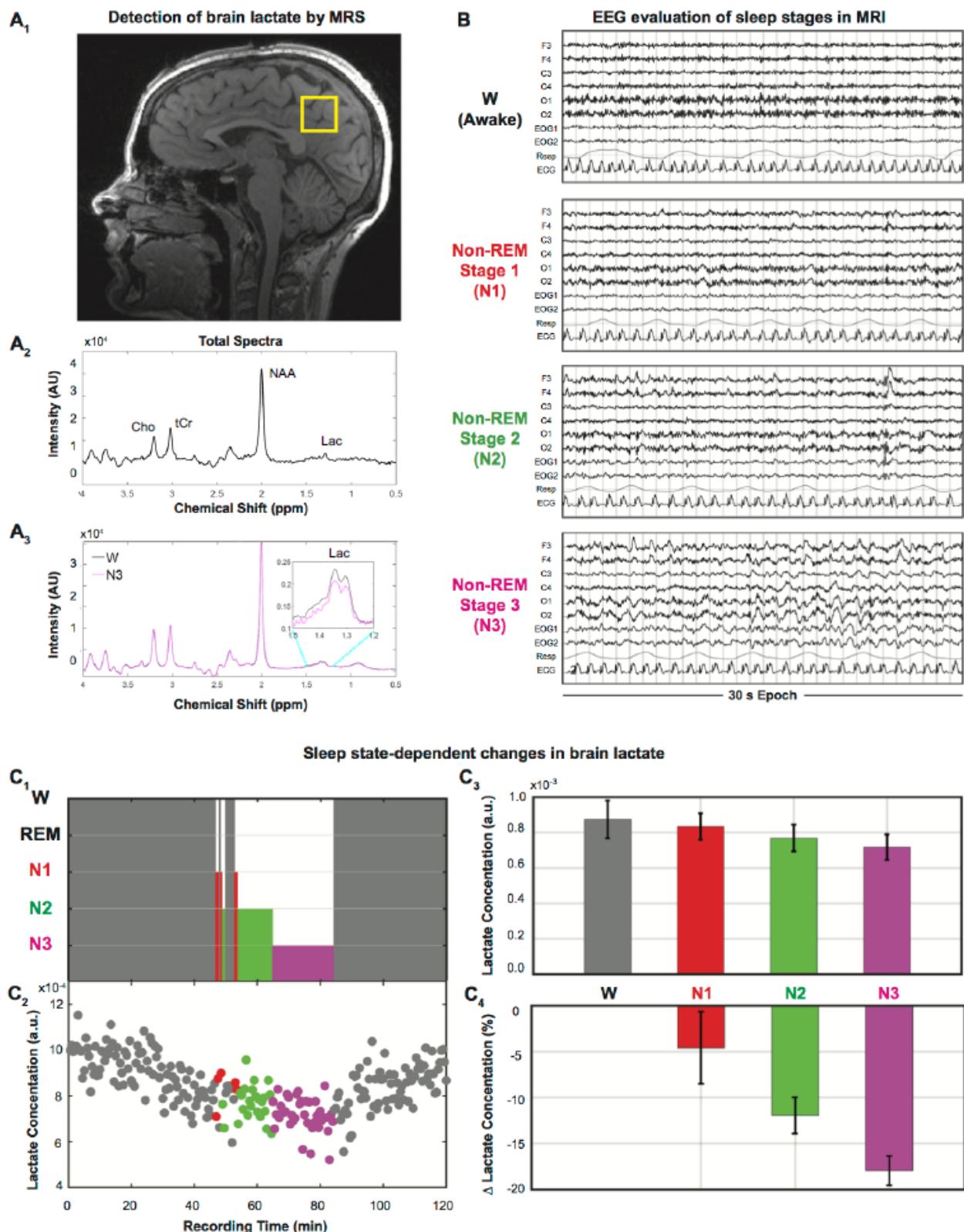
Subject PSG preparation

Prior to positioning in the MR instrument, each subject was prepared for PSG recording by study team members. Two different sized head-caps (*Brain Products Inc, GmbH, Munich, Germany*), with circumference of 56 cm or 58 cm, were used with the cap selected to best fit the subject's head size. After placement of the head-cap, all electrodes were filled with an electrolyte gel (*AbraLyte HiCl, Easycap GmbH*) to ensure consistent low electrode impedance throughout the experiment. Electrode impedances were displayed on BrainVision Recorder software: EEG and EOG: < 3kΩ and ECG: < 20 kΩ. A physiologic calibration test was performed to verify that all data channels delivered a physiologic signal before and after positioning the subject in the MR unit. Electrode impedance checks were performed every 30-60 min throughout the study and adjusted as needed to ensure subject safety.

Subject positioning in the MR instrument

Prior to data acquisition, subjects were instructed to lie still in the supine position during the entire MR-PSG data acquisition. Subjects were provided with earplugs and headphones to attenuate acoustic noise and ease communication with the study team. Sufficient padding was provided to secure the head to reduce motion artifacts and prevent discomfort from occipitally-placed electrodes. Subjects were also provided with a bolster placed under the knees, foam pads placed under the elbows, and blankets for warmth during the MR-PSG session. The lights in the magnet bore and magnet room were off for the duration of the MRS study.

Data Acquisition and Processing


Polysomnography. PSG measurements were continuously recorded with a sampling frequency of 5 kHz using *BrainVision Recorder* software, and temporally registered with ¹H-MRS time-series using time-stamps - generated by the MR instrument and recorded with PSG. Due to coupling between the PSG system and the MR scanner during its normal operation, the raw sleep EEG, EOG, and ECG signals ranged from slightly to markedly obscured. In order to visualize real-time polysomnograms, *BrainVision RecView* software was used during the study, and *BrainVision Analyzer2* software for the post data-processing. In both cases, data processing included: 1) removing MRI coupled signals and cardioballistic artifacts, 2) down-sampling the data by a factor of 5 with a low-pass frequency of 100 Hz, 3) further band-passing the filtered signals as follows: EEG and EOG: [0.3 -20 Hz], EEG: [0.3-10Hz], respiration: [0.05-10 Hz], acceleration: [10-70 Hz] for visual inspection of each physiologic component.

Post-processed PSG data were evaluated in 30 s epochs. Sleep stages were visually scored by three experts based on modified criteria from the American Academy of Sleep Medicine (AASM), substituting EMG with a 3D accelerometer^{23,24} and classified into one of four stages by at least two independent experimenters (**Fig. 2B**): i. Wake (W), ii. Non-REM sleep stage 1 (N1), iii. Non-REM sleep stage 2 (N2), and iv. Non-REM sleep stage 3 (N3). Any discrepancies in sleep staging (<5% of all epochs) were discussed in person with a board-certified sleep neurologist (M.M.L.) through adjudication sessions, and resolved upon consensus. PSG epochs were carefully examined for motion artifacts, which were used to eliminate potentially corrupt MRS data.

MRI and ¹H-MRS. Anatomical images were acquired using a T₂-weighted fast spin echo (HASTE, repetition time (TR) 1500 ms, echo time (TE) 80 ms) and 3D T₁-weighted gradient echo sequence (MPRAGE; TR 1900 ms; TE 2.52ms). For accurate non-invasive detection of brain lactate with high temporal resolution, we used a single voxel ¹H-MRS technique that acquired signals from a fixed volume of interest (VOI) within a subject, with VOIs ranging from 12-24 cm³ across subjects with a focus on avoiding CSF spaces. See **Fig. 2A₁** for a representative VOI position (Subject 1, 27 y female) located within the posterior cingulate cortex, a major node of the default network and area affected early in Alzheimer's disease²⁵. The ¹H MRS protocol consisted of point-resolved spectroscopy sequence (PRESS) collected with TR 1875 ms, TE 270 ms and 4 signal averages with phase cycling, spectral width 1300 Hz, sampling points 1024, and total acquisition time ranged from 88 min to 180 min depending on the subject/experiment. Typical water line widths at full-width half maximum were between 12.2 - 14.3 Hz. MR spectra were collected every 7.5 s (**Fig. 2 A₂**;

Subject 1), which allowed the detection of several brain metabolites including choline (Cho), creatine (Cr), *N*-acetyl-aspartate (NAA), and lactate.

Three of the subjects (two females and one male; mean age 25.6 (\pm 2.8; SD) years; age range 24-29 years) returned for a follow-up visit to collect diffusion-sensitized PRESS MRS sequence for up to 180 min sleep/wake studies. For the diffusion sensitized MRS acquisition, diffusion weighting was achieved by simultaneously applying gradients along all three laboratory axes (δ =25 ms, Δ =36.5 ms, b =500 s/mm²) prior to and after the initial refocusing pulse of the PRESS sequence. The diffusion weighting was interleaved with no diffusion weighting at every TR value of 1875 ms, resulting in a complete pair (diffusion and non-diffusion MRS) being acquired every 3750 ms. For apparent diffusion coefficients (ADC) comparisons, MRS spectra from all sleep states (N1, N2, and N3) were averaged separately for diffusion weighted and non-diffusion weighted acquisitions.

Figure 2. Lactate concentration in human brain is reduced during sleep relative to wake. A₁,

Measured single voxel (22 cm³, yellow square) on a sagittal T1-w MR image of a 27-year-old healthy

young female subject. **A₂**, A 7.5 sec 3T single voxel ¹H-MR spectrum showing metabolites including lactate, **A₃**, ¹H MR spectra, averaged over wake and non-REM stage 3 sleep (N3) (intensity in normalized absolute units). Lactate concentrations are calculated as area of spectra within [1.23-1.48 ppm]. **B**, Representative sleep stages are visually scored for 30 s epochs. **C₁**, Hypnogram and **C₂**, corresponding lactate concentration for 30 s intervals. **C₃**, Average lactate concentration in arbitrary units were: **0.87x10⁻³** during W (86 min), **0.83x10⁻³** during N1 (2.5 min), **0.76x10⁻³** during N2 (12 min), and **0.71x10⁻³** during N3 (19.5 min) present a decrease in sleep relative to awake with a decline of **C₄**, 4.6 % during N1, 12.0 % during N2, and 18.0 % during N3 when compared to W.

Non-parametric analyses were performed to better appreciate how rapidly the lactate signal changed across sleep stages. This was accomplished using jMRUI ²⁶ and MATLAB software packages [R2017b; Mathworks, Natick, Mass]. The MRS pre-prepossessing steps in jMRUI included post-acquisition water suppression, line broadening (Lorentzian, 5 Hz), automatic frequency shift and phase correction. Spectra were then imported to MATLAB to calculate the alterations in mean metabolite concentrations over the entire sleep-wake cycles. In order to determine and compare mean lactate signals for each sleep state across the recording duration, we averaged ¹H MRS signals over a period of 30 s that coincided with every epoch of the PSG scoring. Lactate intensities were determined from non-parametric signal integrals over a defined spectral range [1.23 - 1.48 ppm], normalized to the peak area of non-suppressed water signals [calculated over 4.3 - 5.1 ppm]. Processing of the ¹H-MRS data was done in a blinded fashion with respect to the PSG data and motion artifacts based on PSG recordings were used to eliminate potentially corrupt MRS data for each subject. Mean lactate concentration in each stage (W, N1, N2, N3), as well as relative percent change in lactate concentration (%) from Wake to each sleep stage (N1, N2, N3) were calculated.

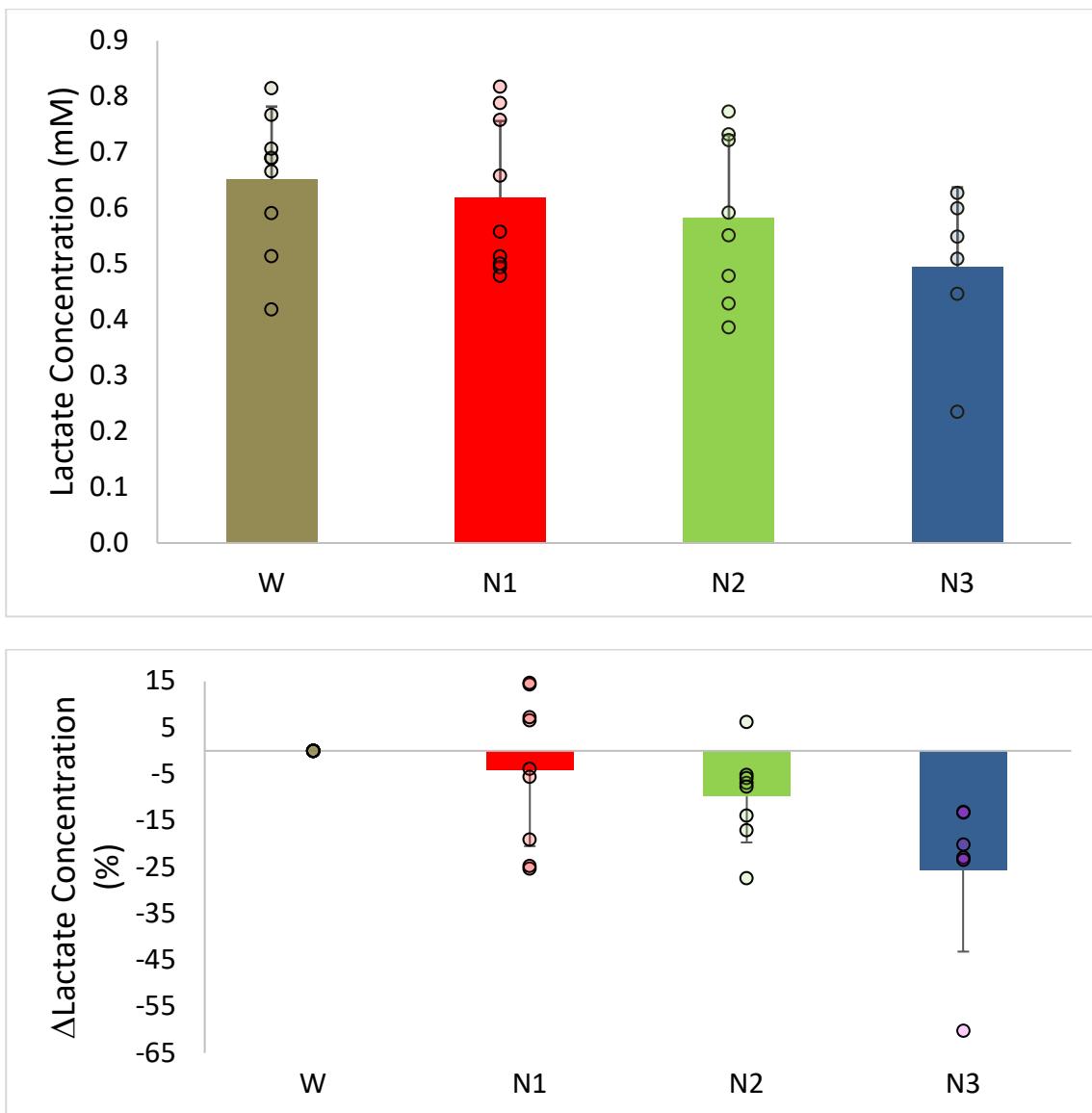
In order to examine group average arousal state dependent brain lactate concentration, we quantified mean lactate levels for each sleep stage across the nine subjects using LCModel.²⁷ Each spectrum was zero-filled to 3072 points, line broadened (Lorentzian, 2.0 Hz) and frequency shifted to NAA peak and phase corrected. After digital water suppression by using HLSVD Propack filter (jMRUI-5.1 package),²⁸ parametric fittings from LCModel were used to extract normalized signal intensities for lactate (Lac), total creatine (tCr), choline (Cho), and *N*-acetyl-aspartate (NAA). These concentration values were corrected for T₁ and T₂ relaxation effects.²⁹⁻³¹ For NAA, tCr, Cho and Lac, T₁ values of 1860, 1740, 1320 and 1340 ms; and T₂ values of 262, 151, 199 and 239 ms were used respectively. A reference tCr metabolite concentration of 11.85 mM was assumed and signal ratios relative to tCr values obtained from LCModel fitting were corrected by dividing by transverse relaxation ($\exp(-TE/T_2)$) and longitudinal relaxation ($1-\exp(-TR/T_1)$) factors. For diffusion-weighted PRESS data, spectra corresponding to wake and sleep stages (N1, N2, and N3) were binned and averaged separately into diffusion weighted and non-diffusion weighted scans after the described pre-processing steps. Water suppressed spectra were fit using LCModel software. The ADC (apparent diffusion coefficient, mm²/s) values for all metabolites (m) in different sleep stages were calculated using the fitted signal values from non-diffusion weighted MRS acquisitions (S0_m) and diffusion weighted acquisitions (S1_m) by using the following relation:

$$ADC_m = 1/b * \ln(S0_m/S1_m)$$

where b corresponds to a value of 500 s/mm².

Statistical Analysis

Statistical analysis of MRS data used linear mixed-effects models to assess the association between sleep stages and change in species concentration within subjects. The fixed-effects


component used sleep staging as a four-level factor with the wake (W) state as the baseline reference while random-effects blocked on individual subjects with random intercepts to account for repeated measures and serial correlation. Prior to analysis, metabolite concentration outcomes were first normalized to the water signal at the individual subject level. Both absolute concentration and relative (fractional) differences were assessed, with models of fractional change including mean concentration at baseline as an additional covariate. No difference was observed between models using either outcome. Normality assumptions and model diagnostics evaluating influence and leverage used a combination of inspection of studentized residuals and formal fit criteria including Cook's distance and the standardized difference of the betas. No outliers or excessive leverage points were identified for either specific mean concentration observations nor for specific subjects. Paired t-tests were used to compare metabolite ADC values between sleep and wake. All statistical analyses were conducted using R 3.5³² with additional utility using the lme4 package for linear mixed effects modeling.³³

Results

A representative hypnogram, depicting Subject 1's sleep-wake cycles across the 120 min experiment time, is plotted with corresponding normalized lactate levels for each 30 s interval (**Fig. 2C₁₋₂**) which demonstrates a decrease in brain lactate from baseline wakefulness (W: 50 min) through different sleep stages. To determine and compare mean lactate levels for each state across the duration of the recording, we averaged lactate levels for each arousal state (**Fig. 2C₃**). Note that all wake stages were averaged regardless of pre-sleep or wake after sleep onset. For this subject, when compared to state W (86 min), normalized lactate levels were 4.6 % lower in N1 (2.5 min), 12.0 % lower in N2 (12 min), and 18.0 % lower in N3

(19.5 min) (**Fig. 2C₄**). Averaged spectra from W and N3 sleep stages are plotted for a comparison with an inset showing the lactate doublet peak region (**Fig. 2A₃**). Despite the brevity of N1 (brevity consistent with that expected in healthy subjects), lactate levels were still determined to be lower during N1 relative to W.

To examine group averaged, arousal state-dependent lactate concentration, we quantified mean lactate signal for each arousal state across the subjects using LCModel;²⁷ a parametric spectral modeling software program. All nine subjects cycled through W (mean duration 48.8 \pm 34.7 min) and N1 (mean duration: 9.1 \pm 5.2 min); eight subjects cycled into N2 (mean duration: 36.5. \pm 23.4 min, N=8), and six subjects cycled into N3 (mean duration: 19.3 \pm 13.2 min, N=6). Because only three of the subjects achieved REM sleep, data from their REM epochs were not included in the analyses. Cerebral metabolite concentration across each arousal state is summarized in **Table 1A**. The brain MRS lactate signal originates from all tissue spaces (intracellular, extracellular, blood) and across all subjects averaged 0.65 (0.14) mM in the wake (W) state, a value consistent with literature reports³⁴. When compared to W, average lactate concentrations within each sleep stage showed a reduction of [4.9 \pm 4.9] % in N1, [10.4 \pm 5.2] % in N2, and [24.0 \pm 5.8] % in N3 (**Fig. 3, Table 1B**). These results are consistent with the previous rodent studies¹²⁻¹⁷ also reporting reduced brain lactate levels during sleep when compared to wakefulness ranging from 12-35 %. Note that we did not observe significant changes in the ¹H₂O, Cho, Cr, or NAA signals across the time series or arousal levels (see **Table 2**).

Figure 3. Group average brain lactate concentrations (N=9). A. Total lactate concentrations: **0.62 (0.05) mM**, mean (SD), during W (mean duration 48.8 ± 34.7 min, nine subjects), **0.58 (0.05) mM** during N1 (mean duration: 9.1 ± 5.2 min, nine subjects), **0.58 (0.05) mM** during N2 (mean duration: $36.5. \pm 23.4$ min, eight subjects), and **0.49 (0.06) mM** during N3 (mean duration: 19.3 ± 13.2 min, six subjects). **B.** The change in lactate concentration between sleep states and awake; N1 not significantly different than W; N2 decreased 11% ($P < 0.05$) compared to W; N3 decreased 24% compared to W ($P < 0.001$). Individual measurements are indicated by circles.

Table 1A. Group Average Metabolite Concentration in Each Arousal State

MRS Signal	Arousal State			
	W	N1	N2	N3
Lac	0.65 (0.13)	0.62 (0.14)	0.58 (0.15)*	0.49 (0.14)**
NAA	16.26 (4.10)	16.04 (4.19)	15.65 (4.15)	15.98 (3.63)
tCr	11.85 (2.71)	11.72 (2.81)	11.41 (2.87)	11.85 (2.42)
Cho	1.95 (0.53)	1.98 (0.56)	1.90 (0.55)	1.87 (0.31)

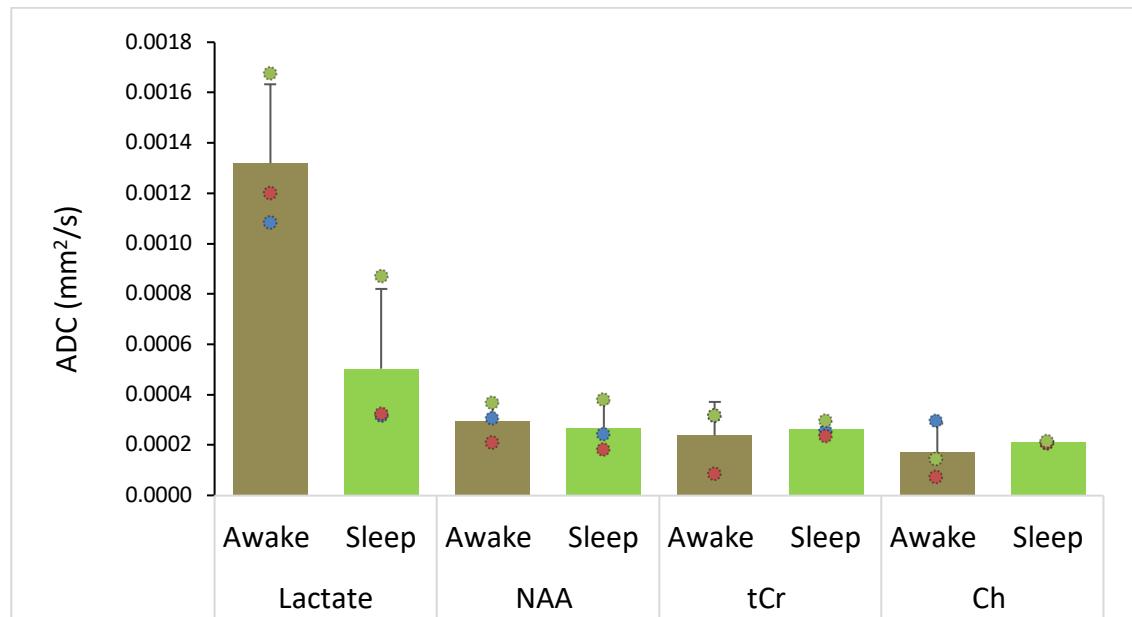
Values are presented as mean (SD) with units of mM

* P = 0.05; ** P< 0.001 for lactate decrease relative to W

Table 1B. Group Average Changes in Metabolite Concentration

MRS Signal	Δ Concentration from W to N1 (%)	Δ Concentration from W to N2 (%)	Δ Concentration from W to N3 (%)
Lac	-4.93	-10.43*	-24.04**
NAA	1.54	-2.88	-4.22
tCr	-1.12	-3.73	-0.01
Cho	-1.37	-3.75	-1.71
¹ H ₂ O	0.76	0.04	-0.50

* P = 0.05; ** P< 0.001 for lactate decrease relative to W


Table 2. Group MRS ADC Values in Wake and Sleep

	Lactate	NAA	tCreatine	Choline	H ₂ O
Awake	1.32 (0.31)	0.29 (0.08)	0.24 (0.13)	0.17 (0.11)	1.80 (0.10)
Sleep	0.50 (0.32)*	0.27 (0.10)	0.26 (0.03)	0.21 (0.01)	1.79 (0.12)

Values are presented as mean (SD) with units of 10⁻³ mm²/s

P< 0.002 for lactate ADC decrease relative to W

The ADC of lactate differs between intracellular and extracellular (interstitial) compartments, with lactate in the extracellular space reporting a substantially larger ADC relative to intracellular space.³⁵ If the lactate signal decrease during sleep is associated with the selective loss of extracellular lactate, lactate diffusivity would be expected to differ markedly between wake and sleep. To investigate this, we quantified the ADC of lactate by averaging across wake (W) and combined sleep (N1, N2, N3) epochs (Fig. 4). The average time for wake state was 40 ± 19 (mean \pm SD) min, and sleep was 96 ± 39 min. We observed a significant decrease in lactate ADC accompanied by a decreased brain lactate concentration in sleep compared to wake ($P < 0.002$). There were no differences in ADC values between wake and sleep for H₂O, NAA, tCr, or Cho.

Figure 4. Metabolite Apparent Diffusion Coefficient (ADC) between sleep and wake states.

Measurements from three subjects averaged for wake and sleep (N1, N2, and N3) states show marked reduction in lactate ADC in sleep compared to wake ($P < 0.002$). ADC values in Wake were significantly greater for lactate than NAA, tCR, or Ch ($P < 0.006$). ADC values in Sleep were not different between lactate and NAA, tCr, or Ch ($P > 0.18$). No significant changes in ADC between

wake and sleep states were observed for NAA, tCr, or Ch signals ($P > 0.35$). Mean values are plotted and error bars represent one standard deviation. Individual measurements are indicated by circles.

Discussion

The combination of ^1H MRS and PSG provided high quality quantifiable signals across several hours for each, and was safe and well-tolerated by all subjects. Substantial sleep durations in the scanner were realized by all of our study subjects with the majority of subjects experiencing prolonged N3 periods. The principal finding is a marked reduction in brain lactate concentration during sleep compared to wakefulness, with no change in NAA, tCr, or Cho signal levels. This observation is consistent with, and extends results from invasive small animal brain studies first reported more than 70 years ago.¹² Additionally, we find a decrease in lactate ADC value that accompanied decreased brain lactate concentration in sleep compared to wake. Taken together, these findings suggest a sleep-dependent loss in brain lactate, predominantly from the extracellular pool, in agreement with prior small animal studies.^{13,15}

There are three mechanisms that could explain decreased brain lactate levels during sleep relative to wakefulness: i) lactate production relative to consumption is reduced during sleep, ii) lactate consumption relative to production is increased during sleep, or iii) lactate clearance from the brain is increased during sleep. The first two mechanisms are metabolic in nature, and the third is physiologic and consistent with the studies of glymphatic function reporting increased CSF-ISF interchange during deep sleep.^{20,22}

First, we acknowledge the challenge and the opportunity of using MRS to quantify brain lactate. MRS provides a high-fidelity approach to quantify small molecules within tissue, and

while present at high concentration within brain from a biochemical perspective, lactate concentration under normal conditions is on the lower end of MRS detectability. Our measurements had the advantages of MRS signal collection over extended times (2-3 hours total for 4 arousal states) and from a large volume of brain tissue with excellent magnetic field homogeneity. We find an average lactate concentration of 0.65 mM in the awake state, a value in good agreement with values reported from cerebral ^1H MRS studies spanning three decades.^{34,36} Brain extracellular volume fractions are approximately 20% in the awake state³⁷ and average lactate concentration in the extracellular space is higher than the overall average brain lactate concentrations.^{34,38,39} During normal physiology in a wakeful state, the extracellular lactate pool may account for 50% of the MRS brain lactate signal, and offers the potential for detecting physiological changes associated with this space.^{29,40}

Small animal studies report a marked loss of extracellular lactate during sleep.^{13,15} Our observation of decreased lactate ADC during sleep (**Fig. 3**), with values approaching that of other intracellular metabolites supports the interpretation of a selective loss of the more diffusible extracellular lactate, which would result in a decreased ADC due to a proportionately larger contribution of lactate signal from less diffusible intracellular lactate pools during sleep. No difference in ADC values were observed between wake and sleep for NAA, tCr, or Cho, which all are considered intracellular metabolites. No difference in $^1\text{H}_2\text{O}$ ADC was observed between wake and sleep; an observation supporting the notion that convective flow during sleep if increased, is increased to a small extent.⁴¹ Brain lactate concentration change across sleep-wake cycles is not instantaneous, and in small animal studies a time constant of approximately 15 min is found.¹⁵ We observed similar kinetics for lactate concentration change across sleep-wake cycles in human brain. Since many of the

subjects displayed some degree of sleep fragmentation while in the MR scanner, it is unlikely that our group average lactate concentrations represented true steady-state levels for any sleep state, which would have required prolonged (~45 min) continuity in each sleep state.

Glucose is the brain's preferred energy source and is directly utilized by neurons and glia. Quantitative ¹⁸F-fluorodeoxyglucose PET studies in young adults report large decreases in cerebral glucose utilization in deep sleep compared to wakeful states.⁴² Astrocytes support glucose uptake from plasma, convert some of this via aerobic glycolysis to lactate, which can be released into the interstitial space,^{43,44} or stored in a glycogen pool.^{45,46} The interstitial lactate may be taken up by neurons for aerobic energy production.⁴⁷ Lactate may be oxidized in preference to glucose in neurons, particularly during times of intense neuronal activation, even when glucose is readily available.⁴⁸ Extracellular brain lactate level decreased during SWS compared to wakefulness in freely behaving rats.¹⁴ Similar to natural sleep, anesthesia reduces astrocytic glycolysis and brain lactate concentration.⁴⁹ Interestingly, lactate concentration measured from cortical brain slices harvested from young adult rats in wake (dark) and sleep (light) periods, was reduced 25% in sleep compared to wake states⁴⁹, and the administration of anesthetic agents dynamically reduced extracellular lactate despite a preparation that must disrupt key components important in glymphatic physiology.^{13,49}

Unlike muscle or liver, the brain does not possess large stores of glycogen to provide a reserve carbon source and extracellular lactate might partially fulfill this need. Glycogen stores within the brain (~7.8 umol/g brain about 1/4 that found for muscle⁵⁰) are localized primarily within astrocytes and these stores can serve as a reservoir for lactate.^{46,51,52}

Astrocytic glycogen is depleted throughout the day and replenished during sleep,⁴⁵ and it has been argued that glycogen restoration is a primary sleep function.⁴⁵ During sleep or anesthesia, interstitial lactate may be taken up by astrocytes and converted back to glycogen; a metabolic pathway essentially running in reverse in sleep compared to wakeful states. Reduced cerebral blood flow^{18,53} and glucose utilization⁴² observed in sleep and during SWS in particular supports the notion that sleep associated lactate decline is at least partially due to decreased metabolic demand.

Brain lactate decline during sleep may also result from increased glymphatic activity.²⁰⁻²² Lundgaard and colleagues¹³ used extracellular lactate as a surrogate marker for interstitial fluid clearance in brain, and argued that increased clearance plays a critical role in sleep-wake state-dependent alterations brain lactate levels in mice. During periods of increased interstitial clearance associated with sleep or anesthesia, lactate levels in the cortex declined while lactate levels in deep cervical lymph nodes increased, suggesting that interstitial lactate is transported out of the brain, at least partially, via glymphatic-lymphatic coupling.¹³ While our finding that brain H₂O ADC did not differ between sleep and wake argues against more rapid interstitial convective flow and glymphatic function during sleep, changes in other elements of water diffusion (e.g. metabolically driven transcytolemmal water flux⁵⁴) could potentially obscure the sleep-wake effects on slow interstitial convection. Current estimates of interstitial convective flow based on measurements made on the microscopic scale are low, and it is predicted that for small molecules such as lactate (molecular weight 90 g/mol) local thermal diffusion dominates the influence of convection.^{37,41,55} A recent extended time-series (24-48 h) analysis of contrast agent distribution across the human brain cortex, following intrathecal injection, estimated a larger gadobutrol (558 g/mol) ADC than ¹H₂O ADC

measured by conventional (instantaneous) diffusion tensor imaging.⁵⁶ This indicates that paravascular and perhaps interstitial convective flows, particularly across the large anatomical structures of the human brain, remain incompletely understood and warrants further investigation.⁵⁷

Limitations

Despite the novelty of the measurements and results presented above, there were limitations associated with this study. Only a single anatomical location was investigated and it is unclear how generalizable our findings are to the whole brain. The measured metabolite signal levels represent volume weighted averages from intracellular, extracellular, and even blood spaces (albeit quite small weighting), so a clear picture of changes within specific spaces is not directly available. ADC values reported here were determined from two b-values at long echo-times, and while trends are likely valid, ADC accuracy based on a two-point calculation is a concern, especially for low intensity signals such as lactate. Baseline brain lactate concentration during wakefulness could be affected by an overnight sleep deprivation, but this may be unlikely since others⁵⁸ have reported that 40-hours of sleep deprivation does not change baseline brain lactate concentration in either young (19-24 y) or older (60-68 y) healthy subjects while awake. Due to vendor compatibility with MRI, the PSG measurements did not include EMG, and instead EMG was substituted with a 3D accelerometer. Finally, the number of subjects in the study was limited and a larger study needs to be performed to replicate the findings presented.

In conclusion, we have developed a novel non-invasive approach combining synchronized ¹H MRS and PSG to investigate metabolic differences across sleep-wake cycles in human brain.

Our observation of reduced lactate concentration during sleep, together with reduced lactate ADC, suggests a selective loss of the extracellular lactate pool. The merits of the metabolic and glymphatic mechanisms to explain decreased lactate concentration during sleep were considered, and it should be appreciated that these mechanisms are not mutually exclusive. Further studies are required to elucidate mechanistic details associated with changes in brain lactate concentration and dynamics during sleep. Nevertheless, the findings from the lactate measurements across sleep-wake cycles in human brain presented here provide a novel non-invasive approach to investigate fundamental aspects of sleep physiology.

Competing interests

S.Y., M.M.L, M.K.S, K.P., C.M., and W.D.R. declare no known competing financial interests.

Research in J.J.I.'s lab was funded in part through a Sponsored Collaborative Agreement with GlaxoSmithKline.

Funding

This study was funded by the Paul G. Allen Family Foundation. S.Y. is supported by the National Institutes of Health - National Center for Complementary & Integrative Health (NIH-NCCIH, Award Number K99AT010158).

Author contributions

W.D.R., M.M.L., and J.J.I. obtained funding and conceptualized overall study design. W.D.R and M.K.S. developed the magnetic resonance spectroscopy (MRS) techniques. S.Y., M.M.L., and K.P. developed the polysomnography data collection, processing and analysis protocol. S.Y., K.P., M.K.S., and W.D.R carried out the experiments. S.Y. and M.K.S. processed the MRS data. S.Y. performed the non-parametric and M.K.S. preformed the parametric MRS data analysis. S.Y. and K.P. scored sleep stages and M.M.L. supervised. C.M. assisted in the statistical analysis. S.Y. and W.D.R wrote the manuscript, and all authors edited the manuscript.

Acknowledgments

We thank study participants for their participation in the study, senior MR technologist William Woodward for conducting the MR scans, Brain Products GmbH and BrainVision for providing technical assistance, and numerous staff and colleagues for their support of the study.

References

1. Pilcher JJ, Huffcutt AI. Effects of sleep deprivation on performance: a meta-analysis. *Sleep*. 1996; 19 (4): 318-326.
2. Alhola P, Polo-Kantola P. Sleep deprivation: Impact on cognitive performance. *Neuropsychiatr Dis Treat*. 2007; 3 (5): 553-567.
3. Kamdar BB, Needham DM, Collop NA. Sleep deprivation in critical illness: its role in physical and psychological recovery. *J Intensive Care Med*. 2012; 27 (2): 97-111.
4. Kamdar BB, Kaplan KA, Kezirian EJ, Dement WC. The impact of extended sleep on daytime alertness, vigilance, and mood. *Sleep Med*. 2004; 5 (5): 441-448.
5. Horne JA. A Review of: "Why We Sleep: the Function of Sleep in Humans and Other Mammals". By JAMES HORNE. (Oxford: Oxford University Press, 1988.) £22.50. ISBN 019 261682 X. *Ergonomics*. 1988; 31 (10): 1494-1495.
6. Lutsey PL, Misialek JR, Mosley TH, et al. Sleep characteristics and risk of dementia and Alzheimer's disease: The Atherosclerosis Risk in Communities Study. *Alzheimers Dement*. 2017.
7. Bubu OM, Brannick M, Mortimer J, et al. Sleep, Cognitive impairment, and Alzheimer's disease: A Systematic Review and Meta-Analysis. *Sleep*. 2017; 40 (1).
8. Sprecher KE, Koscik RL, Carlsson CM, et al. Poor sleep is associated with CSF biomarkers of amyloid pathology in cognitively normal adults. *Neurology*. 2017; 89 (5): 445-453.
9. Spira AP, Ju YS. Self-reported sleep and Alzheimer disease CSF biomarkers: A wake-up call. *Neurology*. 2017; 89 (5): 419-420.
10. Maquet P. Sleep function(s) and cerebral metabolism. *Behav Brain Res*. 1995; 69 (1-2): 75-83.
11. Dworak M, McCarley RW, Kim T, Kalinchuk AV, Basheer R. Sleep and brain energy levels: ATP changes during sleep. *J Neurosci*. 2010; 30 (26): 9007-9016.
12. Richter DD, R. M. Brain metabolism in emotional excitement and in sleep. *Am J Physiol* 1948; 154: 73-79
13. Lundgaard I, Lu ML, Yang E, et al. Glymphatic clearance controls state-dependent changes in brain lactate concentration. *J Cereb Blood Flow Metab*. 2017; 37 (6): 2112-2124.
14. Shram N, Netchiporuk L, Cespuglio R. Lactate in the brain of the freely moving rat: voltammetric monitoring of the changes related to the sleep-wake states. *European Journal of Neuroscience*. 2002; 16 (3): 461-466.
15. Naylor E, Aillon DV, Barrett BS, et al. Lactate as a biomarker for sleep. *Sleep*. 2012; 35 (9): 1209-1222.
16. Cocks JA. Change in the concentration of lactic acid in the rat and hamster brain during natural sleep. *Nature*. 1967; 215 (5108): 1399-1400.
17. Van den Noort S, Brine K. Effect of sleep on brain labile phosphates and metabolic rate. *Am J Physiol*. 1970; 218 (5): 1434-1439.
18. Madsen PL, Schmidt JF, Wildschiodtz G, et al. Cerebral O₂ metabolism and cerebral blood flow in humans during deep and rapid-eye-movement sleep. *J Appl Physiol* (1985). 1991; 70 (6): 2597-2601.
19. Mackiewicz M, Shockley KR, Romer MA, et al. Macromolecule biosynthesis: a key function of sleep. *Physiol Genomics*. 2007; 31 (3): 441-457.

20. Iliff JJ, Wang M, Liao Y, et al. A paravascular pathway facilitates CSF flow through the brain parenchyma and the clearance of interstitial solutes, including amyloid beta. *Sci Transl Med.* 2012; 4 (147): 147ra111.
21. Iliff JJ, Lee H, Yu M, et al. Brain-wide pathway for waste clearance captured by contrast-enhanced MRI. *J Clin Invest.* 2013; 123 (3): 1299-1309.
22. Xie L, Kang H, Xu Q, et al. Sleep drives metabolite clearance from the adult brain. *Science.* 2013; 342 (6156): 373-377.
23. Iber C, Medicine AAoS. *The AASM Manual for the Scoring of Sleep and Associated Events: Rules, Terminology and Technical Specifications.* American Academy of Sleep Medicine; 2017.
24. <AASM Manual for the Scoring of Sleep and Associated Events 2.5.pdf>.
25. Leech R, Sharp DJ. The role of the posterior cingulate cortex in cognition and disease. *Brain.* 2014; 137 (Pt 1): 12-32.
26. Stefan D, Cesare FD, Andrasescu A, et al. Quantitation of magnetic resonance spectroscopy signals: the jMRUI software package. *Measurement Science and Technology.* 2009; 20 (10).
27. Provencher SW. Estimation of metabolite concentrations from localized in vivo proton NMR spectra. *Magn Reson Med.* 1993; 30 (6): 672-679.
28. Laudadio T, Mastronardi N, Vanhamme L, Van Hecke P, Van Huffel S. Improved Lanczos algorithms for blackbox MRS data quantitation. *J Magn Reson.* 2002; 157 (2): 292-297.
29. Madan A, Ganji SK, An Z, et al. Proton T2 measurement and quantification of lactate in brain tumors by MRS at 3 Tesla in vivo. *Magn Reson Med.* 2015; 73 (6): 2094-2099.
30. Baker EH, Basso G, Barker PB, Smith MA, Bonekamp D, Horska A. Regional apparent metabolite concentrations in young adult brain measured by (1)H MR spectroscopy at 3 Tesla. *J Magn Reson Imaging.* 2008; 27 (3): 489-499.
31. Zaaraoui W, Fleysher L, Fleysher R, Liu S, Soher BJ, Gonon O. Human brain-structure resolved T(2) relaxation times of proton metabolites at 3 Tesla. *Magn Reson Med.* 2007; 57 (6): 983-989.
32. *R: A language and environment for statistical computing* [computer program]. Vienna, Austria: R Foundation for Statistical Computing, ; 2018.
33. Bates D, Mächler M, Bolker B, Walker S. Fitting Linear Mixed-Effects Models Using lme4. *Journal of Statistical Software, Articles.* 2015; 67: 1-48.
34. Prichard J, Rothman D, Novotny E, et al. Lactate rise detected by 1H NMR in human visual cortex during physiologic stimulation. *Proc Natl Acad Sci U S A.* 1991; 88 (13): 5829-5831.
35. Pfeuffer J, Tkac I, Gruetter R. Extracellular-intracellular distribution of glucose and lactate in the rat brain assessed noninvasively by diffusion-weighted 1H nuclear magnetic resonance spectroscopy in vivo. *J Cereb Blood Flow Metab.* 2000; 20 (4): 736-746.
36. Boillat Y, Xin L, van der Zwaag W, Gruetter R. Metabolite concentration changes associated with positive and negative BOLD responses in the human visual cortex: A functional MRS study at 7 Tesla. *J Cereb Blood Flow Metab.* 2020; 40 (3): 488-500.
37. Nicholson C, Hrabetova S. Brain Extracellular Space: The Final Frontier of Neuroscience. *Biophys J.* 2017; 113 (10): 2133-2142.
38. Gardiner M, Smith ML, Kagstrom E, Shohami E, Siesjo BK. Influence of blood glucose concentration on brain lactate accumulation during severe hypoxia and subsequent recovery of brain energy metabolism. *J Cereb Blood Flow Metab.* 1982; 2 (4): 429-438.

39. Harada M, Okuda C, Sawa T, Murakami T. Cerebral extracellular glucose and lactate concentrations during and after moderate hypoxia in glucose- and saline-infused rats. *Anesthesiology*. 1992; 77 (4): 728-734.

40. Abi-Saab WM, Maggs DG, Jones T, et al. Striking differences in glucose and lactate levels between brain extracellular fluid and plasma in conscious human subjects: effects of hyperglycemia and hypoglycemia. *J Cereb Blood Flow Metab*. 2002; 22 (3): 271-279.

41. Ray L, Iliff JJ, Heys JJ. Analysis of convective and diffusive transport in the brain interstitium. *Fluids Barriers CNS*. 2019; 16 (1): 6.

42. Nofzinger EA, Buysse DJ, Miewald JM, et al. Human regional cerebral glucose metabolism during non-rapid eye movement sleep in relation to waking. *Brain*. 2002; 125 (Pt 5): 1105-1115.

43. Pellerin L, Magistretti PJ. Glutamate uptake into astrocytes stimulates aerobic glycolysis: a mechanism coupling neuronal activity to glucose utilization. *Proc Natl Acad Sci U S A*. 1994; 91 (22): 10625-10629.

44. Petit JM, Magistretti PJ. Regulation of neuron-astrocyte metabolic coupling across the sleep-wake cycle. *Neuroscience*. 2016; 323: 135-156.

45. Kong J, Shepel PN, Holden CP, Mackiewicz M, Pack AI, Geiger JD. Brain glycogen decreases with increased periods of wakefulness: implications for homeostatic drive to sleep. *J Neurosci*. 2002; 22 (13): 5581-5587.

46. Gruetter R. Glycogen: the forgotten cerebral energy store. *J Neurosci Res*. 2003; 74 (2): 179-183.

47. Pellerin L, Bouzier-Sore AK, Aubert A, et al. Activity-dependent regulation of energy metabolism by astrocytes: an update. *Glia*. 2007; 55 (12): 1251-1262.

48. Gladden LB. Lactate metabolism: a new paradigm for the third millennium. *J Physiol*. 2004; 558 (Pt 1): 5-30.

49. Hadjihambi A, Karagiannis A, Theparambil SM, Ackland GL, Gourine AV. The effect of general anaesthetics on brain lactate release. *Eur J Pharmacol*. 2020; 881: 173188.

50. Oz G, DiNuzzo M, Kumar A, Moheet A, Seaquist ER. Revisiting Glycogen Content in the Human Brain. *Neurochem Res*. 2015; 40 (12): 2473-2481.

51. Brown AM. Brain glycogen re-awakened. *J Neurochem*. 2004; 89 (3): 537-552.

52. Brown AM, Ransom BR. Astrocyte glycogen and brain energy metabolism. *Glia*. 2007; 55 (12): 1263-1271.

53. Tushaus L, Omlin X, Tuura RO, et al. In human non-REM sleep, more slow-wave activity leads to less blood flow in the prefrontal cortex. *Sci Rep*. 2017; 7 (1): 14993.

54. Springer CS, Jr. Using $(1)\text{H}_2\text{O}$ MR to measure and map sodium pump activity in vivo. *J Magn Reson*. 2018; 291: 110-126.

55. Cserr HF, Cooper DN, Suri PK, Patlak CS. Efflux of radiolabeled polyethylene glycols and albumin from rat brain. *Am J Physiol*. 1981; 240 (4): F319-328.

56. Valnes LM, Mitusch SK, Ringstad G, Eide PK, Funke SW, Mardal KA. Apparent diffusion coefficient estimates based on 24 hours tracer movement support glymphatic transport in human cerebral cortex. *Sci Rep*. 2020; 10 (1): 9176.

57. Abbott NJ, Pizzo ME, Preston JE, Janigro D, Thorne RG. The role of brain barriers in fluid movement in the CNS: is there a 'glymphatic' system? *Acta Neuropathol*. 2018; 135 (3): 387-407.

58. Urrila AS, Hakkarainen A, Heikkinen S, et al. Stimulus-induced brain lactate: effects of aging and prolonged wakefulness. *J Sleep Res*. 2004; 13 (2): 111-119.