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Abstract

The accumulation of multisite large-sample MRI datasets collected by large brain research projects
in the last decade has provided a critical resource for understanding the neurobiological mechanisms
underlying cognitive functions and brain disorders. However, the significant site effects, observed in
the imaging data and their derived structural and functional features, has prevented the derivation of
consistent findings across different studies. The development of harmonization methods that can
effectively eliminate complex site effects while maintaining biological characteristics in
neuroimaging data has become a vital and urgent requirement for multisite imaging studies. Here, we
proposed a deep learning-based framework to harmonize imaging data from pairs of sites, in which
site factors and brain features can be disentangled and encoded. We trained the proposed framework
with a publicly available traveling-subject dataset from SRPBS and harmonized the gray matter
volume maps from eight source sites to a target site. The proposed framework significantly
eliminated inter-site differences in gray matter volume. The embedded encoders successfully
captured both the abstract texture of site factors and the concrete brain features. Moreover, the
proposed framework exhibited outstanding performance relative to conventional statistical
harmonization methods in site effect removal, data distribution homogenization, and intra-subject
similarity improvement. Together, the proposed method offers a powerful and interpretable deep
learning-based harmonization framework for multisite neuroimaging data that could enhance
reliability and reproducibility in multisite studies for brain development and brain disorders.
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1 Introduction

Advances in magnetic resonance imaging (MRI) in the recent decades have offered potent techniques
for noninvasively exploring the structures and functions of the human brain in vivo, leveraging our
understanding for the neurobiological mechanisms underlying the development of complex
cognitions and the clinical impairments related to brain disorders (Cao et al., 2017a; Fornito et al.,
2015; Park and Friston, 2013). The practice of multisite MRI data acquisition in recently launched
large brain research projects, such as the IMAGEN (Schumann et al., 2010) and ABCD (Casey et al.,
2018), has accumulated critical neuroimaging resources to facilitate brain investigation with
impressive statistical power (Laird, 2021; Poldrack and Gorgolewski, 2014; Xia and He, 2017).
However, considerable heterogeneity among imaging datasets collected from different sites, that is,
the site effect, has been widely documented, in both the raw structural and functional imaging data
(Li et al., 2020; Radua et al., 2020) and image-derived brain characteristics, such as gray matter
volume (GMV) (Melzer et al., 2020) and functional connectivity (Noble et al., 2017a; Yamashita et
al., 2019). The site effect predominantly results from both the sampling of divergent populations and
the different scan equipment across different sites and is a major source of the inconsistencies in the
findings reported from different studies on the same topic. Therefore, developing methods for
harmonizing imaging data across different scan sites has become a fundamental and urgent
requirement for multisite imaging studies.

To correct for the site effect in multisite imaging data, several harmonization strategies have been
proposed, which can be summarized into two major categories: conventional statistics-based
harmonization methods and recently developed deep learning (DL)-based harmonization methods.
Conventional statistical methods are usually applied in a linear regression manner on univariate
metrics with sites indexed as a categorical covariate, for example, the least squares-based general
linear model (Rao et al., 2017) and Bayesian estimation-based ComBat (Fortin et al., 2018; Fortin et
al., 2017). These methods have been utilized in multisite imaging studies and have shown a powerful
capacity for removing linear site effects in brain metrics (Pomponio et al., 2020; Xia et al., 2019; Yu
et al., 2018). However, noticeable limitations have been observed for this type of harmonization
method. First, the site effect is mathematically assumed to be linear, while the actual effect may be
much more complex. Second, brain characteristics are considered independently in these models,
largely neglecting the spatial and topological relationships among brain regions. To overcome these
defects, recently proposed DL-based harmonization methods, including U-net (Dewey et al., 2019),
cycle-generative adversarial network (Modanwal et al., 2020), or three-dimensional convolutional
neural network (Tong et al., 2020), allow for mapping the complex abstract representations of the
nonlinear spatial pattern of the site effects in MRI data. These models have been primarily applied to
the harmonization of diffusion tensor images (Moyer et al., 2020), structural images (Zuo et al.,
2021), and morphological measurements (Zhao et al., 2019), successfully eliminating the site effect
in such data with complex spatial or topological information. However, the interpretability is
relatively low for most of these established DL-based harmonization methods, for which high-
dimensional representations are difficult to delineate. Additionally, the model training strategy of site
pairing is a common approach for DL-based methods, and the fusion of data from multiple sites in a
single model will greatly increase the model’s complexity and require much more training data.
Designing a harmonization framework with high expandability will facilitate the application of DL-
based methods.

Another critical factor for establishing reliable multisite image harmonization models is the selection
of training data. The core objectives of multisite harmonization are the elimination of non-biological
factors, such as MRI equipment and scan protocols, while simultaneously retaining the biological
factors of the participants across different sites. Therefore, the innovative traveling-subject dataset, in
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which each participant is scanned at all different sites, has become a valuable resource for the
training of harmonization models, as it can minimize the bias of population sampling across sites and
ensure that the established models only learn non-biological factors (Noble et al., 2017b; Tong et al.,
2019; Yamashita et al., 2019). Although existing multisite imaging studies have shown that
harmonization models based on nontraveling-subject datasets, be they conventional statistics or DL-
based models, can efficiently remove the site effect (Garcia-Dias et al., 2020), it is unknown whether
the inter-site differences in biological factors are over eliminated. Benefiting from the publicly
available traveling-subject dataset, several recent studies have established harmonization methods
that can separate and protect biological factors from complex site effects and have achieved
outstanding performance with a small training sample (Yamashita et al., 2019). However, DL-based
harmonization models for brain measurements using traveling-subject dataset are still lacking.

Here, we proposed a DL-based harmonization framework that can disentangle both site-factor and
brain-factor representations from site effects based on a publicly available traveling-subject dataset.
Taking the widely used GMV measurement as an illustration, we first examined whether this
framework can significantly eliminate site effects in the GMV maps of nine scan sites. Then, we
investigated whether the site-factor and brain-factor encoders embedded in the framework can
capture inter-site and inter-subject variability, respectively. Finally, we compared proposed methods
with several conventional statistical harmonization methods in terms of site effect removal, data
distribution homogenization, and intra-subject similarity improvement.

2 Methods

2.1 The deep learning-based representation disentanglement (DeRed) framework for multisite
imaging data harmonization

We proposed a DL-based bidirectional framework (Fig. 1a) for neuroimaging data harmonization,
which enables the transfer of imaging data from a given site to a target site, and vice versa.
Specifically, this framework contains four encoders for disentangling site-factors and brain-factors in
imaging data of the source and target sites, and two decoders for synthesizing the harmonized images
for the encoders. This design allows harmonized imaging data to contain both target site information
and natural brain features. This framework was inspired by a disentangled unsupervised cycle-
consistent adversarial network (DUNCAN) (Liu et al., 2021), which was developed to remove MRI
artefacts based on representation disentanglement. As shown in Fig. 2a, the site-factor encoder in
DeRed is designed to have three residual blocks which can avoid the convergence performance
degradation caused by structure redundancy (He et al., 2016a, b). Each residual block includes a set
of 2D-Convonlution Layer, and leaky rectified linear unit (LeakyReLU) activation (Fig. 2b). When
the feature maps pass through the residual block, the size is reduced by half, and the output of each
residual block can be used as image features at different scales. Notably, each input slice of the site-
factor encoder must undergo an average pooling process before the residual blocks because the
representation related to the scanning site or equipment should be abstract, regardless of anatomical
details, and should not be extracted from the shallower layer. Similar to the site-factor encoder, the
brain-factor encoder is composed of four residual blocks. The difference is that the brain-factor
encoder lacks the average pooling process and each residual block contains the instance
normalization operation (Huang and Belongie, 2017) after LeakyReL U activation to capture
independent features across imaging data of the same subject.

The decoder (Fig. 2¢) contains a two-step synthesis structure, integrating features extracted by the
encoders. First, the site-factor features at different scales are mixed through a series of upsampling
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processes and residual blocks, it should be noted that the size of each feature map is not be reduced
by half when passing through the residual block. Similarly, the mixing process for brain-factor
features also involves brain-factor residual blocks and an upsampling process. After the first stage of
the mixing process, the decoder produces two feature maps, one for the site-factors and the other for
the brain-factors. Second, the mean, maximum and minimum feature maps are calculated, and these
feature maps are concatenated and input into a brain-factor residual block with a 2D-convonlution
operation. The input data of the site-factor encoder and the brain-factor encoder are two-dimensional
images obtained by slicing along a certain direction of within three-dimensional data, and the output
results of the decoder maintain a consistent shape with the input data.

Based on the DeRed framework, we established a flexible harmonization network as shown in Fig.
1b. The different sites can be understood as different nodes in this harmonization network, connected
by edges played by DeRed. The harmonization network possesses a center-spoke topology, with the
target site, whose scanned images have the best data quality, at the center, and the data of th other
sites are harmonized to this center site. Notably, the scanning data from any site can be transferred to
another site through the network edges. Furthermore, if a new site establishes a relationship with a
site belonging to this harmonization network, it can also be transferred to any other site along the
network edges.

2.2 Materials and T1 data processing

To minimize sampling bias across sites, we trained our harmonization framework using a traveling-
subject dataset from the DecNef Project Brain Data Repository (https://bicr-resource.atr.jp/srpbsts/),
which was gathered by the Japanese Strategic Research Program for the Promotion of Brain Science
(SRPBS) (Tanaka et al., 2021; Yamashita et al., 2019). This dataset included nine healthy participants
(all male, ages 24-32 years), each of whom underwent T1-weighted MRI scans at 12 different
centers. All of these sites used 3T scanners but with different manufacturers (Siemens, GE, and
Philips), scanner types (Verio, Tim Trio, Spectra, Skyra, and Achieva), phase encoding directions
(posterior to anterior and anterior to posterior), and numbers of channels per coil (8, 12, and 32).
Data from three sites were excluded (ATT, UTO, YC2) due to duplicate data. The detailed scanning
parameters at each site are listed in Table S1.

In the current study, we selected the widely used GMV measurement (Grieve et al., 2013;
Smallwood et al., 2013) derived from T1-weighted images as an example to examine the feasibility
of the proposed harmonization method. The calculation of the GMV was carried out by using
Statistical Parametric Mapping (SPM12, https://www.fil.ion.ucl.ac.uk/spm/) (Ashburner, 2012) and
the Computational Anatomy Toolbox (CAT12, http://dbm.neuro.uni-jena.de/cat12/) (Iglesias et al.,
2015). Briefly, for each T1 scan, an N4 bias field inhomogeneity correction was first performed, and
an adaptive maximum a posteriori (AMAP) approach was then used in tissue segmentation.
Optimized shooting approach-based spatial registration was further performed to normalize all
images into the standard Montreal Neurological Institute (MNI) space. Modulated normalization was
then implemented to compensate for GMV changes caused by affine transformation and nonlinear
warping. Finally, all GMV maps were smoothed with an 8§-mm full-width at half-maximum (FWHM)
Gaussian kernel.

2.3 Training and harmonization processes

ATV was selected as the target site (¢;) in the harmonization process mainly for the following two
reasons. First, the equipment manufacturer and number of channels per coil of ATV were the most
frequently used among all the sites. Second, the imaging data from ATV showed better quality with
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less noise than those from other sites according to the visual screening. Other sites were regarded as
the source sites (¢;), resulting in 8 independent inter-site harmonization pairs with ATV.

Prior to the training process, we cropped all the GMV maps from a matrix size of (181, 217, 181) to
(176, 208, 176), which guaranteed that the sliced images could can be restored to their original size
after multiple average pooling and upsampling operations. Moreover, to ensure the harmonization
process within the gray matter regions and reduce the computational burden, we constrained the data
training process within a gray matter mask, which was determined by averaging the GMV maps of
all scans and further applying a threshold of 0.2 mm?>.

The inputs of the training model were obtained by slicing along a certain anatomical direction
(coronal, sagittal, or transverse); slices that did not intersect with the gray matter mask were not
included in the subsequent training process. A section position was then randomly determined during
each epoch to ensure uncertainty during the training process, and slices of imaging data of all
subjects at ¢, and @g were extracted at this position. Notably, we hold that spatially adjacent slices
assist in capturing brain-factor representation information, so we set the spatial resolution of the
training slices to (176, 208, 3) for the transverse orientation, (176, 176, 3) for the coronal orientation,
and (208, 176, 3) for the sagittal orientation. Thus, the i-t4 individual slice can be predicted
repetitively at different channels for the (i-1)-th, i-th and (i+1)-th slice inputs. The images resulted
from the three channels were averaged to obtain the final harmonized single slice.

Furthermore, if the harmonization process is simply based on a single slicing direction, it cannot
fully summarize the global spatial information of 3D-images. Therefore, we independently trained
three models. The training set of each model was obtained by slicing the image data from different
anatomical directions, and then the output was averaged as the final harmonization result of the 3D
image.

We defined four convergence constraint losses for the harmonization procedure:

First, we expect the site-factor encoder to extract the same representation at the same site across
different subjects:

Losssite—COnsiStency
= By, || E_sitel (x;) — E_sitel(x.),l, (1
+ Exo-g || E_sitef (x;) — E_site{ (),

where x; and x, denote the images from ¢, and ¢, respectively. E_sitel(.) and E_site}(.)
denote the i-th feature map outputs of the i-#4 residual block in the site-factor encoders of ¢, and

@y, respectively. E_sitel(xs), = %Zka(ps E_sitel(xy) and E_sitef(x;), = %Zkat E _site}(x;)
denote the average i-th site-factor residual block outputs of n subjects from ¢g and ¢, respectively.

Second, we expect the brain-factor encoders of ¢ and ¢, to extract the same representation from
imaging data acquired from the same person but at different sites:

LOSSbrain—Consistency = IExs~gos,xt~got”E_brainé(xs) - E_brainé(xt)”l (2)

where E_braini(.) and E_braint(.) denote the i-th feature map outputs of the i-th residual block
in the brain-factor encoders from ¢, and ¢;, respectively.
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Third, we encourage the decoders to reconstruct the images by merging the site-factor representation
and the brain-factor representation from their own sites. This self-reconstruction loss can be
formulated as:

LOSSself—Reconstruction = ]Exs~<p5”xs - f5“2 + Ext~<pt”xt - ft:”Z (3)

Fourth, the site-factor representation from ¢, is necessary for the decoder in ¢, to reconstruct the
images, even if the brain-factor representation belongs to ¢,. In the same way, the decoder of ¢
can reconstruct images according to the site-factor representation from ¢ and the brain-factor
representation from ¢,. The cross-reconstruction loss can be formulated as

L0SScross—Reconstruction = IIE':xs~<p5||xs - 555”2 + IExt~<pt”xt - ft”z 4)

where %, = Ds(E_braing(x;), E_sites(xs),) and X5 = Ds(E_brain,(x,), E_siteg(x;),) denote
the reconstructed images, both of which contain the site-factor representation from ¢ but the brain-
factor representation from ¢, and ¢, respectively. In contrast, X, =
Dt(E_braint(xt),E_sitet(xt)“) and X, = Dt(E_brainS(xs),E_sitet(xt)“) denote the
reconstructed images, both of which contain site-factor representation from ¢, but the brain-factor
representation from ¢, and ¢, respectively.

2.4 Evaluation of harmonization outcome

We trained the DeRed harmonization network with a total of 81 images from all subjects scanning
across all sites and obtained the corresponding harmonization results, which were used to quantify
the inter-site differences and explain the representation captured by DeRed.

2.4.1 Correction for site effects

We adopted two methods to examine whether the proposed framework can reduce the site effects on
the GMV maps. First, we performed linear discriminant analysis (LDA), a classic dimensionality
reduction technique, to project the GMV measurement into two coordinates with the scanning site as
a prior classification label. LDA is commonly used to project features into a lower dimension space
by maximizing the distance between classes and minimizing the variation within each class. In this
study, the site effect was reflected by the clustering of data from the same site. Second, we used one-
way analysis of variance (ANOVA) to quantitatively test for significant site differences in the GMV.
The significance level of the voxel-wise comparison was set to a voxel-level p <0.001 with a cluster-
level Gaussian random field (GRF)-corrected p < 0.05.

2.4.2 Interpretability of the encoders

To assess whether each kind of encoder (i.e., site-factor and brain-factor) captured the corresponding
features, we examined the output images by blocking their opposite input of the decoder in turn. To
interpret the site-factor encoder, we set all values of the brain-factor feature maps to zero, and feed
them into the decoder. The image synthesized in this case can be understood to contain only the site-
factor representation (i.e., Ig;t.). Assuming that each site-factor encoder captures the characteristics
of the scanner, the inter-site variance of Ig;;, should be spatially similar to the inter-site variance in
the original GMV images. Thus, we first calculated the variance of each voxel of I, and averaged
the GMV variance maps of each subject across sites. We then applied Spearman’s correlation to
examine the spatial correlation of these two variance maps.

To interpret the brain-factor encoder, we fed the decoder with brain-factor feature maps and empty
site-factor feature maps (i.e., feature maps with 0 values), and the image synthesized in this case can
be understood to contain only the brain factor representation (i.e., Ip,qin)- To examine whether the
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brain-factor encoder truly captures these individual heterogeneity-related representations, we first
assessed Spearman’s correlation for each voxel between the original GMV and age across subjects,
preserving those voxel groups S, whose GMV was significantly correlated with age. Then, we also
preserved those voxel groups Sg with a significant correlation between lp,q;, and age. The overlap
SanSgp
SaUSgp
GMYV and I,,,;, was calculated for each subject according to the Spearman’s correlation
coefficient.

between S, and Sg was then calculated by . Second, the similarity between the original

2.5 Comparison between DeRed and other harmonization methods

Several harmonization methods have been proposed to remove site effect differences in recent
multicenter studies, including general linear model harmonization (GLM), global scaling
harmonization (GS), and ComBat harmonization (see SI for a detailed description of these methods).
To examine the advantages of our proposed methods, we compared DeRed with these harmonization
methods in terms of site effect removal, GMV distribution coherence, intra-subject similarity
improvement and inter-subject difference reservation. A leave-one-subject-out cross-validation
strategy was utilized for each method. Briefly, we excluded the data of the i-th subject at all sites,
trained the framework with the remaining 72 scanned images from the other subjects, and applied the
trained model to harmonize the data from the i-th subject. This procedure was repeated nine times to
select each subject as the test data in turn.

2.5.1 Site effect removal

To test whether site effects could be removed by all the methods, we used ANOVA on the
harmonized GMV maps for each method. The significance level of the voxel-wise comparison was
set to a voxel-level p < 0.001 with a cluster-level GRF-corrected p < 0.05. Furthermore, we used
Wilcoxon signed-rank tests to compare the F' values between the original and harmonized data, and
between harmonization results from different methods.

2.5.2 GMV distribution consistency

For the original data and harmonized data of each method, we first calculated the average GMV map
across subjects and estimated their probability distribution for each site. We then estimated the
averaged bidirectional KL divergence between each pair of probability distributions for different
sites. The KL divergence was further compared between the original and harmonized data and
between harmonization results from different methods with Wilcoxon signed-rank tests.

2.5.3 Inter-subject difference reservation

The difference across subjects was calculated using the Euclidean distance of the original GMV
maps within each site and further averaged across all sites to obtain a reference inter-subject
difference matrix. Then, for each harmonization results from different methods, we calculated the
inter-subject difference matrix within each site. Spearman’s correlation was further used to estimate
the correlation between each matrix and the reference matrix. A significant correlation coefficient
indicated the preservation of inter-subject differences.

2.5.4 Intra-subject similarity improvement

For each subject, we calculated the Spearman’s correlation coefficient between the GMV map of any
pair of sites among the nine sites as the intra-subject similarity. These correlation coefficients were
then compared using Wilcoxon signed-rank tests between the original and harmonized data and
between harmonization results from different methods.
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3 Results
3.1 Site effect removal of DeRed

We first visualized the heterogeneity in the original and harmonized GMV maps across nine sites by
projecting their dominant features into a 2D space using LDA decomposition. The site-clustered
distribution of the LDA features indicated noticeable inter-site heterogeneity for the original GMV
maps (Fig. 3a). Specifically, data from HUH and HKH were the most distant from other datasets,
which might essentially be due to their unique scanner models (GE Signa HDxt for HUH and
Siemens Sepctra for HKH). However, the harmonized data showed a relatively homogeneous
distribution, implying the effective removal of the site effect (Fig. 3b). Subsequent statistical analysis
confirmed this finding that one-way ANOVA revealed a significant site effect across the nine sites on
the original GMV maps, primarily in the medial temporal and occipital cortices, the insula, and the
cerebellum (Fig. 3¢, voxel-level p<0.001, GRF-corrected p<0.05). In contrast, no significant site
effect was observed in the harmonized GMV maps derived from our proposed DeRed framework
(Fig. 3d, voxel-level p<0.001, GRF-corrected p<0.05). To further illustrate the order of scan
properties (e.g., MRI manufacturer, scanner type, and phase coding) that contribute to the site effect,
we performed a hierarchical clustering on regions showing significant site effect across nine sites.
We found that the manufacturer of the scanner was the most distinguish factor for the site effect (Fig.
S1).

3.2 Interpretability of the encoders

We examined the feature representation of the site-factor and brain-factor encoders by blocking their
respective opposite outputs. As illustrated by randomly chosen data (e.g., sub-01 at YC1) in Fig. 4a,
the outputs from the site-factor encoders were decoded into a field map with abstract boundaries of
the brain and blurry texture on the background. In contrast, images decoded from the brain-factor
encoders showed the detailed structure of the gray matter anatomy, which was highly similar to that
of the original GMV maps. Further quantitative analysis showed that the inter-site variance of I,
was significantly spatially correlated with the inter-site variance of the original images in the log-log
coordinates (Fig. 4b, Spearman’s correlation, p=0.42, p<0.0001), suggesting that the site-factor
encoder captures the variance of actual physical factors across the scanner. For the 1p;4,, we first
found that they were significantly spatially correlated with the original GMV maps for each
individual in each site (Spearman’s correlation, p=0.993 £ 0.002, all p<0.0001). We then examined
the overlap of clusters showing significant correlations with those in the original data. In the original
data, we found that the GMV was significantly positively correlated with age in the right precuneus,
inferior frontal gyrus, and the left parahippocampus, and negatively correlated with age mainly in the
dorsolateral prefrontal, visual, and lateral temporal cortices (voxel-level p<0.001, GRF-corrected
p<0.05). The Ip,4;, showed similar distributed brain-age correlations at all nine sites (Fig. 4c,
overlap ratio of the significant voxels: 75.54% =+ 2.43%). Together, these results suggest that the
brain-factor encoders successfully captured the biological details of the individual GMV maps.

3.3 DeRed showed better harmonization performance than conventional methods

We compared the performance of the proposed DeRed harmonization framework to that of several
conventional methods, including GS, GLM, and ComBat. First, we found that the significant site
effects in the original data could be entirely eliminated by DeRed and ComBat but partly retained
significant in the data processed with GS and GLM (Fig. 5a, ANOVA, voxel-level p<0.001, GRF-
corrected p<0.05). Further between-method comparisons showed that the site effect (¥ value
estimated in ANOVA) was significantly lower in the harmonized data from DeRed than in those
from other methods (Fig. 5b, Wilcoxon signed-rank tests, p<0.001, Bonferroni-corrected).

Second, we found that the probability distributions of the averaged GMV maps were divergent across
the nine sites, and the distributions of the harmonized data tended to be more consistent (Fig. 6a).
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Quantitatively, the harmonized data derived from all methods showed a significantly lower KL
divergence than the original data, and data derived from DeRed exhibited the lowest KL divergence
among the harmonization methods (Fig. 6b, Wilcoxon signed-rank tests, p <0.001, Bonferroni-
corrected).

Finally, the inter-subject distance matrix for each site derived from the harmonized data for each
method was significantly correlated with the original averaged matrix (Fig. 7a and Fig. S2,
Spearman’s correlation, p=0.90 + 0.04, all p<0.0001), indicating that all harmonization methods
maintained the inter-subject differences in the GMV. Moreover, we found the intra-subject similarity
on the GMV was significantly increased for all harmonization methods (Wilcoxon signed-rank tests,
p <0.05, Bonferroni-corrected). Importantly, DeRed demonstrated the statistically highest intra-
subject similarity among all harmonization methods (Fig. 7b, Wilcoxon signed rank tests, p <0.05,
Bonferroni-corrected), indicating that the proposed framework has the greatest ability to increase
intra-subject consistency across sites.

4 Discussion

In this paper, we proposed a DL-based harmonization framework for multisite MRI data named
DeRed, which was further trained with a traveling-subject dataset. Taking the commonly used GMV
metric as an example, the proposed framework showed good performance in eliminating the
divergence in the GMV across different sites. Notably, the encoders embedded in the framework
successfully captured both the abstract textures of site factors and the concrete biologically related
brain features. Moreover, the proposed framework exhibited outstanding performance relative to
conventional harmonization methods in site effect removal, data distribution homogenization, and
intra-subject similarity improvement. Together, the proposed method offers a powerful and
extendable DL-based harmonization framework for multisite neuroimaging data with high
interpretability, facilitating the improvement of the reliability and reproducibility of multisite studies
for brain development and brain disorders.

Compared with traditional statistics-based harmonization methods, the advantages of the proposed
DL-based framework can be formulated from several perspectives. First, instead of taking a single
metric as an independent variable, the DL model comprehensively extracts the global and local
imaging information by integrating information from spatially neighboring units (e.g., voxels in a
brain map) through a series of convolution and pooling operations (Bau et al., 2020). Many studies
have suggested that adjacent voxels reflect closer correlations both in the anatomical structure and in
the physiological mechanism (Cao et al., 2017b; Cigdem et al., 2019). These individual-specific
anatomical details embodied within the MR images are repeatable across multisite measurements and
should not be ignored during the harmonization process. Second, both DL-based methods and
statistics-based methods attempt to explore the mapping relationship during the harmonization
process. However, harmonization processes guided by statistical strategies, such as GLM and GS,
seem to be limited in the ability to map linear polynomial functions. In our work, we employed the
residual block inside the proposed framework, which has been shown to be especially important for
fitting a more accurate function map mixed with a variety of high-dimensional and nonlinear
characteristics between the MR images and the site effect representations (Lusch et al., 2018). Third,
statistics-based harmonization frameworks scrupulously rely on the prior assumption. For example,
ComBat describes the site effect of each voxel via additive and multiplicative factors, which are
assumed to follow the normal distribution and inverse gamma distribution respectively (Johnson et
al., 2007). Nevertheless, the site effect reflected within the MR images can be understood as a
heterogeneous mixture caused by the action of an asymmetrical magnetic field and complex
neurophysiological activity (Vovk et al., 2007), which is difficult to generalize adequately with
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simple probability distributions. Compared with statistics-based methods, the proposed
harmonization framework driven by the pixel-to-pixel loss function, is not limited to the prior
distribution assumption, allowing the harmonization results of DeRed to demonstrate a better
probability consistency across sites.

In the current study, we mainly employed the voxel-based GMV, a commonly used structural brain
measurement to validate our proposed framework. It should be noted that the proposed DL-based
representation disentanglement and reconstruction strategy can be referenced to other multisite
harmonization processes for structural and functional brain metrics in diverse formats. Regarding the
volumetric images, our proposed framework can provide a robust contribution by fine tuning its
network architecture. Similar designs to the encoders and the decoders embedded in DeRed were
adopted to extract the latent representations and remove the artefacts in T1-w and T2-w MR images
in a previous study (Liu et al., 2021). For those data in a network format, such as the structural and
functional connectivity matrices, the graph convolutional network (GCN) can be integrated in the
proposed framework. Many studies have applied the GCN to reveal functional brain network
similarity, comprehensively considering its topological property (Ktena et al., 2018) and to more
efficiently predict the longitudinal development of cognitive performances (e.g., motor and cognitive
scores) of preterm infants by recognizing the local and global topology patterns of their structural
brain network (Kawahara et al., 2017). [lluminated by existing studies, the GCN can be used to
depict complex topological mechanisms and identify abstract high-dimensional information,
indicating that the application of the GCN may help to capture the site-specific topological effect,
from which multisite structural and functional brain network harmonization can be reasonably
performed.

Several issues should be further considered. First, the proposed framework was trained on a
traveling-subject dataset to minimize sampling bias across scan sites. However, the traveling-subject
MRI data collection design is generally lacking in many multisite databases. Therefore, we intend to
adopt random bootstrap sampling to produce a biological-matching dataset from each site (Kim et
al., 2021) and further expand the proposed framework for unpaired inter-site datasets. Second, the
traveling-subject dataset used in this work was acquired from a group of healthy participants aged
from 24 to 32 years and the biological validation was limited due to the lack of cognitive or clinical
evaluations; thus, the generalizability of DeRed to MRI data acquired from special populations (e.g.,
children and adolescents or patients with brain disorders) needs to be further validated. Studies have
revealed significant development effects and disorder-related disruptions in brain structure and
functions (Gilmore et al., 2018; van den Heuvel and Sporns, 2019). Therefore, the specific
optimization strategy for harmonization methods needs further investigation for these special
populations. Third, similar to most DL method, the proposed DeRed framework comprised several
convolution and pooling operations. Therefore, the harmonized data could be objectively smoothed
with neighboring information during encoding and decoding. Although this procedure overcomes
local noise during harmonization, further validations for data distribution and design optimization for
the DL network are required. Finally, in the current study, we preliminarily established a multisite
harmonization network based on the DeRed framework, and its expandability needs further
evaluation. Considering the bidirectional connectedness of this network, data can be harmonized to
any node (e.g., site) in the network. Moreover, a new site could be easily included in the
harmonization network by training a DeRed model between it and any existing sites.
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Figure legends
Figure 1
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Fig. 1 Architecture of the DeRed framework and center-spoke harmonization network. (a) The
DL-based representation disentanglement framework. The site-factor and brain-factor features are
extracted from original MR images by the encoders, and the decoder synthesizes harmonized MR
images by combining these two features. (b) Center-spoke harmonization network with the target site
located at the center. This harmonization network supports the bidirectional migration of MRI
between the target site and the source sites.


https://doi.org/10.1101/2021.12.05.471192
http://creativecommons.org/licenses/by-nc-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2021.12.05.471192; this version posted December 7, 2021. The copyright holder for this
preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in
perpetuity. It is made available under aCC-BY-NC-ND 4.0 International license.

Figure 2

(a) Encoders of site-factor and brain-factor
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(b) Residual blocks of site-factor and brain-factor
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Fig. 2 Architecture of the encoders and decoder. (a) Architecture of the site-factor encoder and
brain-factor encoder. The Soui and Bouti models represent the feature maps extracted by the i-t4 site-
factor and brain-factor residual block, respectively. (b) Architect of the site-factor residual block (S
Block) and brain-factor residual block (B Biock). (¢) Architecture of the decoder, which integrating the
outputs from both site-factor and brain-factor encoders.
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Figure 3
(@) LDA projection of original data (b) LDA projection of DeRed harmonized data
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Fig. 3 Site effect in data before and after harmonization. (a) and (b) illustrate LDA projection of
GMYV before and after harmonization. A datapoint represents a projected GMV measurement from a
subject, its color represents the site from which it originates and its shape represents the subject to
which it belongs. (c¢) and (d) illustrate the site effect identified by one-way ANOVA in the original
and harmonized GMYV respectively, sliced along the transverse anatomical orientation. There were no
significant differences across sites for all voxels after DeRed harmonization.
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Figure 4
(a) Appearance of site-factor and brain-factor feature map (b) Correlation between inter-site variance
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Fig. 4 Interpretability of site-factor and brain-factor encoders. (a) Appearance of site-factor and
brain-factor feature map. the first row represents the decoder outputs containing only site-factor
representations of YC1. The second row represents the decoder outputs containing only brain-factor
representations of subject-01. The last row represents the original GMV map of subject-01 from
YC1. (b) Log-log correlation plot between the original GMV variance and the variance of the site-
factor feature maps. Each variance measurement is transformed by natural logarithm conversion. The
color depth reflects the dot density within a single hexagon. (¢) Age-correlation overlap clusters
between brain-factor representation and the original GMV. The voxels in red (blue) regions indicate a
positive (negative) age correlation (p<0.05) in both the original GMV and the brain factor
representation. These voxels colored green indicate a single age correlation in either the original
GMYV or brain-factor representation.
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Figure 5
(a) Site-effect in original data and harmonized data (k) Comparison of site-effect removal
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Fig. 5 Site effect removal of different harmonization methods. (a) Site effect identified by ANOVA
in data before and after harmonization (voxel-level p<0.001, GRF-corrected p<0.05). (b) Comparison
of site effect (F value) in data before and after harmonization by different methods; all harmonization
results show a lower F values than the original state (Wilcoxon signed-rank tests, p<0.05, Bonferroni-
corrected, labeled by black asterisk), and the F values of DeRed harmonized data are significantly
lower relative to those of other methods (Wilcoxon signed-rank tests, p<0.05, Bonferroni-corrected,
labeled by red asterisk).
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Figure 6
(@) GMV distribution in each site before and after harmonization
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Fig. 6 Divergence in the GMYV distribution across different sites before and after
harmonization. (a) GMV distribution in different sites. Each curve represents the probability
distribution of the GMV measurement for all voxels averaged across subjects in a site. (b) Boxplots
of KL-divergence across sites before and after harmonization by different methods. All
harmonization data showed a lower JS-divergence compared with the original data (Wilcoxon
signed-rank tests, p<<0.05, Bonferroni-corrected, labeled by black asterisk). DeRed demonstrated a
significantly lower KL-divergence relative to the compared methods (Wilcoxon signed-rank tests,
p<0.05, Bonferroni-corrected, labeled by red asterisk).
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Figure 7
(@) Inter-subject difference matrices of original data and DeRed harmonized data
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Fig. 7 Inter-subject difference maintenance and intra-subject similarity improvement before
and after harmonization. (a) Inter-subject difference matrix before and after harmonization at each
site. The difference matrices were averaged across sites before harmonization. The color depth of i-th
row and j-th column grid for each matrix represents the Euclidean distance between the i-th and j-th
subjects. Spearman’s correlation coefficient is illustrated by p (»<0.001). (d) Boxplots of intra-
subject similarity across sites before and after harmonization by different methods. The
harmonization results with higher self-identifiability relative to the original data are labeled with
black asterisks. DeRed demonstrated a significantly improved intra-subject similarity (p<0.05) over
all comparison methods based on the paired Wilcoxon signed-rank test, with a red asterisk.
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Tables

Table 1. Details of the scanning parameters in the traveling-subject dataset

Site ATV Col HKH HUH KPM KUS KUT SWA YC1
Manufacturer Siemens Siemens Siemens GE Philips Siemens Siemens Siemens Philips
Platform Verio Verio Spectra Signa HDxt Achieva Skyra TimTrio Verio Achieva
Magnetic field strength (T) 3.0 3.0 3.0 3.0 3.0 3.0 3.0 3.0 3.0
Number of channels per coil 12 12 12 8 8 32 32 12 8

Phase encoding PA AP PA PA AP AP PA PA AP
Echo time (ms) 2.98 2.98 2.38 1.928 3.31 2.98 3.4 2.98 3.176
Repetition time (ms) 2300 2300 1900 6788 7.1 2300 2000 2300 6.99
Flip angle (°) 9 9 10 20 10 9 8 9 9

Image dimension 240x256x256  176x240x256  224x320%320 180%256%256  170%256%256  224x232x256  240%256x208 240x256x256  200x256x256
Pixel dimension Ix1x1 Ix1x1 0.81x0.75x0.75  1x1x1 Ix1x1 1x1x1 0.9375x0.9375x1  1x1x1 Ix1x1

Abbreviations: ATV, Siemens Verio scanner at the Advanced Telecommunications Research Institute International; COI, Center of Innovation at
Hiroshima University; HKH, Hiroshima Kajikawa Hospital; HUH, Hiroshima University Hospital; KPM, Kyoto Prefectural University of
Medicine; KUS, Siemens Skyra scanner at Kyoto University; KUT, Siemens Tim Trio scanner at Kyoto University; SWA, Showa University;
YCI1, Yaesu Clinic scanner 1; PA, posterior to anterior; AP, anterior to posterio
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