o (o] ONOO TP, WN-

N N N N N NN NN om0 =
o o0 A W N =2 O © 00 N O OO P> oww N -

27

28

bioRxiv preprint doi: https://doi.org/10.1101/2021.12.04.471239; this version posted December 5, 2021. The copyright holder for this preprint
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made

available under aCC-BY 4.0 International license.

TbasCO: Trait-based Comparative 'Omics Identifies Ecosystem-Level and Niche-
Differentiating Adaptations of an Engineered Microbiome

McDaniel, E.A."?#*" van Steenbrugge, J.J.M3*%* Noguera, D.R.6, McMahon, K.D."8,
Raaijmakers, J.M.*’, Medema, M.H.37, Oyserman, B.O.34*

" Department of Bacteriology, University of Wisconsin — Madison, Madison, WI, USA

2 Microbiology Doctoral Training Program, University of Wisconsin - Madison, Madison, WI, USA
3 Bioinformatics Group, Wageningen University and Research, Wageningen, The Netherlands

4 Microbial Ecology, Netherlands Institute of Ecological Research, Wageningen, The
Netherlands

® Laboratory of Nematology, Wageningen University, Wageningen, The Netherlands

¢ Department of Civil and Environmental Engineering, University of Wisconsin — Madison,
Madison WI USA

"Institute of Biology, Leiden University, Leiden, Netherlands

# = contributed equally

* = corresponding author

* Current address:

Department of Microbiology and Immunology, University of British Columbia, Vancouver, CA

Corresponding authors:

Elizabeth McDaniel elizabethmcd93@gmail.com

Joris van Steenbrugge jorisvansteebrugge@gmail.com

Ben Oyserman BenOyserman@gmail.com



https://doi.org/10.1101/2021.12.04.471239
http://creativecommons.org/licenses/by/4.0/

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

49

50

51

bioRxiv preprint doi: https://doi.org/10.1101/2021.12.04.471239; this version posted December 5, 2021. The copyright holder for this preprint
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made

available under aCC-BY 4.0 International license.

ABSTRACT

A grand challenge in microbial ecology is disentangling the traits of individual
populations within complex communities. Various cultivation-independent approaches
have been used to infer traits based on the presence of marker genes. However, marker
genes are not linked to traits with complete fidelity, nor do they capture important
attributes, such as the timing of expression or coordination among traits. To address this,
we present an approach for assessing the trait landscape of microbial communities by
statistically defining a trait attribute as shared transcriptional pattern across multiple
organisms. Leveraging the KEGG pathway database as a trait library and the Enhanced
Biological Phosphorus Removal (EBPR) model microbial ecosystem, we demonstrate
that a majority (65%) of traits present in 10 or more genomes have niche-differentiating
expression attributes. For example, while 14 genomes containing the high-affinity
phosphorus transporter pstABCS display a canonical attribute (e.g. up-regulation under
phosphorus starvation), we identified another attribute shared by 11 genomes where
transcription was highest under high phosphorus conditions. Taken together, we provide
a novel framework for revealing hidden metabolic versatility when investigating genomic
data alone by assigning trait-attributes through genome-resolved time-series

metatranscriptomics.
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INTRODUCTION

A longstanding cornerstone of deterministic ecological theory is that the
environment selects for traits. Traits may be defined as any physiological, morphological,
or genomic signature that affects the fitness or function of an individual [1]. Trait-based
approaches have become indispensable in macroecological systems to describe fitness
trade-offs and the effects of biodiversity on ecosystem functioning [2—-5]. Recently, trait-
based frameworks have been proposed as an alternative to taxonomy-based methods
for describing microbial ecosystem processes [6, 7]. Connecting microbial traits and their
phylogenetic distributions to ecosystem performance can provide powerful insights into
the ecological and evolutionary dynamics underpinning community assembly, microbial
biogeography, and organismal responses to changes in the environment [8-10].
Additionally, pinpointing the organismal distribution of traits and the selective pressures
that enrich them may be leveraged to reproducibly and rationally engineer stable,
functionally redundant ecosystems [11-15]. However, applying trait-based approaches to
microbial communities is challenging due to the difficulty in identifying and measuring
relevant ecological traits for a given ecosystem [16].

High-throughput sequencing technologies and multi-omics techniques have been
used to describe the diversity, activity, and functional potential of uncultivated microbial
lineages [17-20]. Improvements in bioinformatics algorithms, and in particular
metagenomic binning methods, have allowed for genome-resolved investigations of
microbial communities rather than gene-based analyses of assembled contigs [21].
These (meta) genomes are subsequently leveraged to detect the presence of key genes

or pathways and predict specific traits of the whole community [22, 23]. Integrating
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metatranscriptomics data addresses a key limitation, as expression patterns better reflect
the actual functional dynamics of a trait compared to gene presence alone. Here, we
present TbasCO, a software package and statistical framework for Trait-based
Comparative ‘Omics to identify expression attributes. We adopt the terminology attribute
as a hierarchically structured feature of a trait and assert that statistically similar
transcriptional patterns of traits across multiple organisms be treated as attributes (Figure
1). In this manner, the identification of expression-based attributes provides a high-
throughput and intuitive framework for extending trait-based methods to time-series
expression patterns in microbial communities. We implement this trait-based approach to
classify transcriptional attributes in a microbial community performing Enhanced
Biological Phosphorus Removal (EBPR), a globally important biotechnological process
implemented in numerous wastewater treatment plants (WWTPs).

The fundamental feature of the engineered EBPR ecosystem is the decoupled and
cyclic availability of an external carbon source and terminal electron acceptor. This cycling
is often referred to as “feast-famine” conditions and provides a strong selective pressure
for traits such as polymer cycling. Accumulation of intracellular polyphosphate through
cyclic anaerobic-aerobic conditions ultimately results in net phosphorus removal and
accomplishes the EBPR process [24, 25]. One of the most well-studied polyphosphate
accumulating organisms (PAOs) belongs to the uncultivated bacterial lineage
‘Candidatus Accumulibacter phosphatis’ (hereby referred to as Accumulibacter) [24, 26].
Numerous genome-resolved ‘omics methods have been used to investigate the
physiology and regulation of this model PAO enriched in engineered lab-scale enrichment

bioreactor systems [27-34]. However, novel and putative PAOs have been discovered
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98 that remove phosphorus without exhibiting the hallmark traits of Accumulibacter [35-39].
99 Additionally, although these lab-scale systems are designed to specifically enrich for
100  Accumulibacter, a diverse “flanking community” persists in these environments [27], and
101  their ecological roles have largely remained unexplored. As a result, the general
102 adaptations of microbial lineages inhabiting the EBPR community are not well
103 understood. Using genome-resolved metagenomics and metatranscriptomics, we
104 assembled 66 species-representative genomes spanning several significant EBPR
105 lineages and identified the distribution of expression-based attributes. Using our novel
106 trait-based comparative ‘omics approach, we show that while some expression attributes
107  are distributed in few genomes, many are redundant and shared across many lineages.
108 Furthermore, we find that a majority of core traits (as defined by the presence of marker
109 genes) have multiple attributes, suggesting that identifying niche-differentiating
110  expression attributes may be used to reveal a large hidden metabolic versatility when
111 investigating genomic data alone.

112

113 MATERIALS AND METHODS

114  Metagenomic Assembly, Annotation, and Metatranscriptomic Mapping

115 Three metagenomes sampled from an EBPR bioreactor with linked time-series
116  metatranscriptomics data [40] were collected for metagenomic sequencing and
117 assembled into 66 species-representative bins as described in the Supplemental
118 Methods. All bins are greater than 75% complete and contain less than 10%
119 contamination, with a large majority (44/66) >95% complete and <5% redundant as

120 calculated by CheckM [41] (Table 1). Each bin was functionally annotated using the


https://doi.org/10.1101/2021.12.04.471239
http://creativecommons.org/licenses/by/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2021.12.04.471239; this version posted December 5, 2021. The copyright holder for this preprint
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY 4.0 International license.

121 KEGG database through an HMM-based approach under KEGG release 93.0 using the
122 command-line KofamKOALA pipeline [42, 43], selecting annotations that were significant
123  hits above the specific HMM threshold. This resulted in 117,657 total annotations with
124 5,228 unique annotations. We used a metatranscriptomic dataset of six timepoints
125 collected over a single EBPR cycle from Oyserman et al. 2016 [40], with three timepoints
126  from the anaerobic phase and three from the aerobic phase. Raw reads were quality
127 filtered using BBtools suite v38.07 [44] and ribosomal rRNA was removed from each
128 sample using SortMeRNA [45]. Reads from each sample were mapped against the
129 concatenated set of open reading frames from all 66 bins using kallisto v0.44.0 and
130 parsed using the R package tximport [46, 47].

131 TbasCO Method Implementation

132 The TbasCO package identifies expression-based attributes of predefined traits
133  using time-series (meta)transcriptomics data (Figure 1). In general, traits are defined by
134 the presence of a pathway or other collection of genes from an externally provided
135 database. A weighted distance metric between expression patterns for all genes that
136 define a trait is calculated, and statistically significant similarity is determined based on
137  the background distribution of a trait of equal size. Thereby, two or more organisms with
138 a statistically similar expression pattern for a trait share an attribute.

139 Input and Preprocessing

140 The input that is accepted by TbasCO is a table of RNAseq counts in csv format.
141 Each row is treated as gene that has columns for the gene/locus name, counts per
142 sample, the genome the gene belongs to, and the KEGG Orthology (KO) identifier. The

143 RNAseq counts table may be provided pre-normalized or can be normalized by the
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144  program. The default normalization method is designed to minimize compositional bias in
145 the differential abundance and activity of constituent populations in metatranscriptomics
146  studies. Raw RNA expression counts are therefore normalized by genomic bin and
147 sample [40]. These normalization factors are then applied to each sample for each bin
148 individually. Alternatively, custom normalization methods may be implemented. After
149 normalization, a pruning step is introduced to filter genes that have zero counts or a mean
150 absolute deviation of less than one. To make inter-organismal comparisons of the relative
151 contribution of a gene to total measured organismal RNA, an additional statistic is
152 calculated ranking the expression counts from each sample from highest to lowest. The
153 ranks for each sample are then normalized by dividing them by the maximum rank value
154 in that sample. This normalization is applied to make ranks comparable between
155 organisms with different genome sizes.

156 To assess the statistical significance of the calculated distances between the
157 expression patterns of all genes within a trait, random background distributions are
158 created for 1) individual genes and 2) traits of N genes. For individual genes, three
159 different distributions were calculated, based on the distances between randomly
160 sampled open reading frames, randomly sampled genes with an annotation (but not
161 necessarily the same annotation), and randomly sampled genes with the same
162 annotation. The background distribution for a trait of N genes is based on the distances
163 between randomly composed sets of genes. For each gene pair, two distances metrics
164 are calculated, the Pearson Correlation (PC) and the Normalized Rank Euclidean
165 Distance (NRED). In practice, it is often found that a certain annotation is assigned to

166  multiple genes in the same genome. If this occurs, there is an option to use either a
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167 random selection, or the highest scoring pair. In the latter case, a correction for multiple
168 testing is implemented. This process is repeated N-times, where N equals the number of
169 genes in any given trait. The background distribution for traits is determined by first
170 randomly sampling two genomes, identifying the overlap in annotations, and finally
171  artificially defining a trait containing N annotations. For each annotation in the trait, the
172  distances are calculated between genome A and genome B, as described in the previous
173  section. As modules vary in size, this process is repeated for traits of different sizes.

174  Identifying Attributes

175 TbasCO provides both a cluster-based and pair-wise approach to identify
176  attributes. In both methods, the distance between expression patterns of a trait between
177 two genomes is first calculated based on a composite Z score of the PC and NRED for
178 each gene composing the trait. In the cluster-based analysis, the distances are
179  subsequently clustered using the Louvain clustering algorithm to identify trait attributes.
180 To determine if an attribute is significantly similar or not, a one-sided T-test between the
181  attribute and the random background distribution of traits is conducted. This is done for
182 both cluster-based and model-based comparisons. Many traits are complex and
183 represented in databases such as KEGG by numerous alternative routes. To deal with
184  this complexity, each pathway is expanded into the Disjunctive Normative Form (DNF).
185 Due to the extremely high number of DNFs for some traits, attributes are pruned based
186  on a strict requirement of 100% completion.

187 Distance Calculations

188 To determine the similarity in expression patterns between genes, two distance

189 metrics are calculated: the PC between RNAseq counts across samples, and the NRED,
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190 where ranks are a measure of relative abundance of RNA in each sample, normalized
191 the abundance of RNA in the corresponding genome. These distance scores are
192 converted to Z scores using a background distribution of distances between randomly
193 sampled genes as previously described. To determine statistically significant similarities
194  between the expression patterns of a trait between two genomes, a composite distance
195 score is calculated based on the distance between genes in two different genomes. For
196 each of these genes the PC and NRED are calculated and transformed to Z scores and
197 combined as (-1*PC + NRED). The distance of the trait between two genomes is defined
198 as the average of these composite distance scores, and then normalized by the Jaccard
199 distance between these genomes.

200 (=PC + NRED) * (1 — dJ)

201 Statistical Assessment of Trait Attributes

202 In both model-based and pair-wise approaches, the distance is first calculated
203 between expression patterns of a trait between two genomes based on the composite Z
204 score of the PC and NRED for each gene composing the trait. In the clustering-based
205 analysis, the distances are subsequently clustered using the Louvain clustering algorithm
206 to identify trait-attributes. To determine if attributes are significantly similar, a one-sided
207 T-test is conducted between the attribute and a background distribution of randomly
208 sampled traits with the same number of genes. To derive the random background
209 distributions, multiple distributions are calculated ranging in gene numbers from the
210 smallest trait to the largest trait in the dataset as described previously. For each
211 background distribution, N (default: 10,000) traits are randomly composed. The distances

212  between these artificial traits are calculated in the same way as for the actual traits. In
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213 addition to a statistical pruning step, the attributes are pruned based on a strict
214 requirement of 100% completion of each DNF module. A benchmarking analysis to
215 examine the effects of different parameters was conducted to determine their influence
216  on the number of attributes identified and may be found in the supplementary materials
217  (Supplementary Table 1, Supplementary Figures 2-4).

218 Data and Code Availability

219 All supplementary files and figures including functional annotations and

220 transcriptome count files are available at htips://figshare.com/projects/EBPR_Trait-

221 Based Comparative _Omics/90437. All 64 flanking genomes have been deposited in

222 NCBI at Bioproject PRINA714686. The remaining two reassembled Accumulibacter

223 genomes have not been deposited in NCBI to not confuse between the original CAPIA
224 and CAPIIA assemblies [27, 28]. These contemporary assemblies are available at the
225 Figshare repository. The three metagenomes and six metatranscriptomes used in this
226 study are available on the JGI/IMG at accession codes 3300026302, 3300026286,
227 3300009517, and 3300002341-46, respectively. All code for performing metagenomic
228 assembly, binning, and annotation can be found at

229 https://github.com/elizabethmcd/EBPR-MAGs. The TbasCO method has been

230 implemented as a reproducible R package and can be accessed at

231 https://github.com/Jorisvansteenbrugge/TbasCO.

232

233

234
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236 RESULTS AND DISCUSSION

237 Reconstructing a Diverse EBPR SBR Community

238 To explore trait-based transcriptional dynamics of a semi-complex microbial
239 community, we applied genome-resolved metagenomics and metatranscriptomics to an
240 EBPR sequencing-batch reactor (SBR) ecosystem (Figure 2). We previously performed
241  a metatranscriptomics time-series experiment over the course of a normally operating
242 EBPR cycle to investigate the regulatory controls of Accumulibacter gene expression [40].
243 In this experiment, six samples were collected for RNA sequencing: three from the
244  anaerobic phase and three from the aerobic phase (Figure 2A). Additionally, three
245 metagenomes were collected from the same month of the metatranscriptomic
246  experiment, including a sample from the same date of the experiment. We reassembled
247  contemporary Accumulibacter clade IIA and IA genomes that were previously assembled
248 from the same bioreactor system [27, 28]. The genomes of Accumulibacter clades IA and
249 1lA are similar by approximately 85% average-nucleotide identity [28], and although this
250 is well below the common species-resolved cutoff of 95% [48], we refer to the clade
251 nomenclature defined based on polyphosphate kinase (ppk1) sequence identity [49, 50].
252 During the experiment, the bioreactor was highly enriched in Accumulibacter clade IIA,
253  accounting for approximately 50% of the mapped metagenomic reads and the highest
254  transcriptional counts (Figures 2B and 2C) [40]. Whereas Accumulibacter clade IA
255 exhibited low abundance patterns but was within the top 10 genomes with the highest
256  total transcriptional counts (Figure 2C).

257 Although this bioreactor system was highly enriched in Accumulibacter, a diverse

258 flanking community persisted and was active in this ecosystem (Figure 2B, C). We

11
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259 reconstructed representative population genomes of the microbial community of the SBR
260 system, resulting in 64 metagenome-assembled genomes (MAGs) of the flanking
261 community. Interestingly, we recovered genomes of experimentally verified and putative
262 PAOs, including two Tetrasphaera spp. (TET1 and TET2) ‘Candidatus Obscuribacter
263  phosphatis’ (OBS1), and Gemmatimonadetes (GEMMA1). Pure cultures of Tetrasphaera
264 have been experimentally shown to cycle polyphosphate without incorporating PHA [36],
265 deviating from the hallmark Accumulibacter PAO model. The first cultured representative
266 of the Gemmatimonadetes phylum Gemmatimonas aurantiaca was isolated from an SBR
267 simulating EBPR and was shown to accumulate polyphosphate through Neisser and
268 DAPI staining [51]. Additionally, Ca. Obscuribacter phosphatis has been hypothesized to
269 cycle phosphorus based on the presence of genes for phosphorus transport,
270 polyphosphate incorporation, and potential for both anaerobic and aerobic respiration
271 [37], and has also been enriched in photobioreactor EBPR systems [52]. Both
272  Tetrasphaera spp. TET1 and TET2, OBS1, and GEMMA1 groups exhibit higher relative
273 abundance patterns than CAPIA but have similar relative transcriptional levels (Figure 2B
274 and 2C, Table 1).

275 Numerous SBR MAGs among the Actinobacteria and Proteobacteria contain the
276 metabolic potential for phosphorus cycling based on the presence of the high-affinity
277 phosphorus transporter pstABCS system, polyphosphate kinase ppk7, and the low-
278  affinity pit phosphorus transporter (Supplementary Figure 5). Additionally, select MAGs
279 within the Alphaproteobacteria, Betaproteobacteria, and Gammaproteobacteria contain
280 all required subunits for polyhydroxyalkanoate synthesis (Supplementary Figure 5). Other

281 abundant and transcriptionally active groups in the SBR ecosystem that are not predicted

12
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282 to be PAOs are members of the Bacteroidetes such as CHIT1 within the
283  Chitinophagaceae, and Cytophagales members Runella sp. RUN1 and Leadbetterella sp.
284 LEAD1 (Figure 2B and 2C, Table 1). Interestingly, an uncharacterized group within the
285  Bacteroidetes BAC1 contributed the third most to the pool of transcripts (Figure 2C), and
286 did not show phylogenetic similarity to MAGs assembled from Danish full-scale
287  wastewater treatment systems [39] (Supplementary Figure 1). Other groups from which
288 we assembled MAGs for that do not exhibit clear roles in EBPR systems were Chloroflexi
289 ANAER1 and HERP1 MAGs, Armatimonadetes FIMBRI1, Firmicutes FUSI1, and
290 Patescibacteria SACCH1. Members of the Chloroflexi are filamentous bacteria that have
291 been associated with bulking and foaming events in full-scale WWTPS [53-55], but also
292 aidin forming the scaffolding around floc aggregates and degrade complex polymers [55—
293 57]. The Patescibacteria (formerly TM7) are widespread but low abundant members of
294 natural and engineered ecosystems, contain reduced genome sizes, and may contribute
295 to filamentous bulking in activated sludge [21, 58]. To summarize, lab-scale SBRs
296 designed to enrich for Accumulibacter contain diverse flanking community members [27,
297  32], but their ecological functions and putative interactions remain to be fully understood
298 in the context of the EBPR ecosystem.

299 Identifying Expression-Based Trait Attributes Among the EBPR SBR Community
300 with TbasCO

301 Current metatranscriptomics approaches often employ either a gene-centric [31,
302 59-61] or genome-centric approaches [40, 62-64]. In both approaches, highly,
303 differentially, or co-expressed genes are identified and tested for enrichment of specific

304 functions. Enrichment- or annotation-based approaches are employed in numerous

13
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305 metatranscriptomics tools such as MG-RAST, MetaTrans, SAMSA2, COMAN, IMP, and
306 Anvi'o [65-70]. Here, we expand on the use of molecular markers as traits by defining
307 expression attributes by leveraging a priori knowledge from predefined trait libraries, such
308 as the KEGG database [71], to statistically assess inter-species expression patterns of
309 genes that together form a trait (Figure 1). First, our results showed that there is
310 statistically significant transcriptional conservation of genes at the community level; genes
311  that share an annotation were significantly more similar than expected using two different
312 distance metrics (NRED: p-value < 2.2e-16, PC: p-value < 2.2e-16). Extending this
313  statistical analysis to the trait level, we identified 1674 attributes distributed across the 66
314 genomes. On average, we identified 9.12 genomes per attribute (SD - 5.22), with a
315  minimum of 3 genomes and a maximum of 35 (Figure 3A). Based on these statistics, we
316 defined redundant attributes as those two standard deviations above the mean (19
317 genomes). With this cutoff applied, we identified 79 redundant trait attributes mostly
318 belonging to pathways among carbohydrate metabolism, purine metabolism, and fatty
319 acid metabolism categories (Table 2). Of 290 traits, we identified 97 traits with two or
320 more attributes identified (33%). Of these, traits in 10 or more genomes were twice as
321 likely to have two or more attributes (65%), suggesting that divergent expression patterns
322 for a trait are common, and may represent a niche-differentiating feature (Figure 3A).
323  Henceforth, when multiple attributes are identified for a trait, we refer to these as niche-
324  differentiating attributes.

325 From the ecosystem perspective, a clear phylogenetic signal is observed in the
326  distribution of attributes, as genomes cluster together by shared trait attributes by phylum

327  with some exceptions, such as genomes belonging to the Bacteroidetes, Actinobacteria,

14
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328 and Proteobacteria clustering together, respectively (Figure 3B). For simplicity, we filtered
329 the network to only include nodes with more than 5 connections. Highly redundant trait
330 attributes belonged to modules in the lipid metabolism, energy metabolism, and
331 nucleotide metabolism KEGG functional categories. In contrast, more specialized trait
332  attributes on the periphery of the network or amongst group-specific clusters such as
333 within the Actinobacteria or subsets of the Proteobacteria belonged to amino acid
334 metabolism, biosynthesis of terpenoids and polyketides, metabolism of cofactors and
335 vitamins, and carbohydrate metabolism KEGG modules. Pathways of note that showed
336 a high level of redundancy include the TCA cycle, isoleucine biosynthesis, acyl-CoA
337 synthesis, threonine biosynthesis, and cytochrome ¢ oxidase activity (Table 2). Large
338 pathways with hundreds of possible routes such as glycolysis, the TCA cycle,
339 gluconeogenesis, and the pentose phosphate pathway are not included in the main
340 network and are displayed as individual networks (Supplementary Figure 6).

341 We next explored the distribution of non-redundant attributes (e.g. 3-18 genomes)
342  (Figure 3A). A total of 796 trait attributes with low redundancy were identified belonging
343 to pathways involved in carbohydrate cofactor and vitamin metabolism including
344  glycolysis, gluconeogenesis, parts of the TCA cycle, tetrahydrofolate biosynthesis,
345 tryptophan biosynthesis, and the pentose phosphate pathway (Table 3). Different sets of
346 low redundancy trait attributes were identified within respective phyla (Supplementary
347 Figure 7). Between genomes belonging to the Actinobacteria, Alphaproteobacteria,
348 Bacteroidetes, Betaproteobacteria, and Gammaproteobacteria, low redundancy
349 attributes (belonging to less than half of the total genomes within the phylum) include

350 carbohydrate metabolism, amino acid metabolism and metabolism of cofactors and

15


https://doi.org/10.1101/2021.12.04.471239
http://creativecommons.org/licenses/by/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2021.12.04.471239; this version posted December 5, 2021. The copyright holder for this preprint
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY 4.0 International license.

351 vitamins (Supplementary Figure 7). Redundant trait attributes within individual phyla
352 belong to core energy metabolism pathways, fatty acid biosynthesis, and carbohydrate
353 metabolism. However, even within individual phyla, non-redundant attributes include
354 different amino acids and cofactors (Extended Table 1 - available on Figshare

355 https://figshare.com/articles/dataset/Lineage-

356 Specific Core and Niche Differentiating Traits/15001200).

357 As noted previously, one of the most striking findings is that a majority, 65% of
358 traits presentin 10 or more genomes have multiple expression attributes. Thus, it seems
359 that while the presence of marker genes suggests many organisms share a particular
360 trait, the presence of niche-differentiating expression profiles suggest an alternative story,
361 thatthereis alevel of hidden metabolic diversity. For example, central carbon metabolism
362 and energy pathways such as the TCA cycle, glycolysis, gluconeogenesis, and the
363 pentose phosphate pathway are oftentimes considered core traits when only analyzing
364 the presence and/or absence of individual markers belonging to these pathways. Among
365 over 1000 high-quality MAGs assembled from full-scale Danish WWTPs, the TCA cycle
366 and pentose phosphate pathway are highly represented among the abundant
367 microorganisms, with glycolysis less so [39]. Whereas the TCA cycle and pentose
368 phosphate pathway are present among a high number of genomes in the EBPR SBR
369 community, different routes or parts of these pathways have niche-differentiating
370 distributions (Supplementary Figure 4, Tables 2 and 3). These finer-scale differences in
371 expression of “core” traits may explain the persistence of a diverse community when
372 solely fed acetate, as different lineages could employ similar carbon utilization pathways

373 differently or in more versatile ways. Another salient aspect of this analysis is the
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374  astonishingly high number of possible routes within individual pathways here represented
375 by their Disjunctive Normal Forms. For example, accounting for all alternative routes and
376 enzymes, the glycolysis pathway has 100s of possible routes. Layering upon this many
377 expression attributes reveals a large hidden metabolic versatility.

378 Dimensionality of the High-Affinity Phosphorus Transporter System PstABCS

379 The EBPR ecosystem is characterized by its highly dynamic phosphorus cycles.
380 To explore how different lineages respond to fluctuating phosphorus concentrations, we
381 explored the expression-based attributes for the KEGG module of the high-affinity
382 phosphorus transporter pstABCS (Figure 4). The pstABCS system is an ABC-type
383 transporter that strongly binds phosphate under phosphorus-limiting conditions;
384 therefore, it would be expected that the highest expression levels would be at the end of
385 the aerobic cycle [72]. In contrast, we found that expression of the pstABCS was
386 characterized by two different trait attributes. In the first attribute shared by 14 community
387 members, all components of pstABCS displayed the highest activity towards the end of
388 the aerobic cycle, when phosphorus concentrations were depleted (Figure 4, Attribute 1).
389 Conversely, 11 community members displayed an alternate attribute where the highest
390 activity of pstABCS was at the transition from anaerobic to aerobic phases when
391  phosphorus concentrations are highest (Figure 4, Attribute 2).

392 These results are in agreement with previous results showing that Accumulibacter
393 clade IIC has a canonical pstABCS expression pattern (as in Figure 4, Attribute 1) ,
394 whereas the Accumulibacter clade IA has a non-canonical expression (as in Figure 4,
395 Attribute 2) [31]. By assigning trait attributes, we are able to extend these findings beyond

396  Accumulibacter to other flanking community members in the SBR ecosystem suggesting
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397 that there are conserved ecological pressures driving niche differentiating expression
398 patterns in pstABCS within the EBPR community.

399 Distribution and Expression of Truncated Denitrification Steps Among EPBR
400 Community Members

401 Understanding the induction of denitrification is an important ecosystem property
402 linked to the redox status of an environment. In EBPR communities, there are many
403 diverse and incomplete denitrification pathways, distributed across many lineages
404 denitrification steps expected in denitrifying systems (Figure 5). Among all 66 MAGs, we
405 did not identify any single MAG with a complete denitrification pathway consisting of the
406 genetic repertoire necessary to fully reduce nitrate to nitrogen gas (Supplementary Figure
407 5). Instead, we identified multiple groups of organisms with truncated denitrification
408 pathways, with steps distributed among cohorts of community members (Figure 5).

409 For the first steps of reducing nitrate to nitrite, we explored expression attributes
410 of the napAB and narGH pathways (Figure 5B, C). For the narGH pathway, two attributes
411 were identified (Figure 5B). The first narGH attribute was characterized by high
412 expression in the anaerobic phase, with decreasing activity by the second time point of
413 the anaerobic phase. Genomes containing this attribute included the experimentally
414  verified and putative PAOs Tetrasphaera (TET1 and TET2) and Ca. Obscuribacter
415 (OBS1), respectively. The second attribute was exhibited among members of the
416  Actinobacteria (PROP2, PHYC2, PROP3, and NANO1), Proteobacteria (BEIJ4), and
417  Bacteroidetes (BAC1). The attribute identified for napAB was also more highly expressed
418 anaerobically and included CAPIA, CAPIIA, ALIC1, REYR2, RUBRI1, and BEIJ3.

419 Interestingly, this napAB attribute had expression patterns that quickly decreased in the
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420 first aerobic time point, suggesting a tighter regulation than Attribute 1 for narGH.
421 Together, this suggests that the regulation of denitrification within the EBPR ecosystem
422 is a niche-differentiating feature whereby the induction of denitrification pathways occurs
423 either anaerobically or only after anaerobic carbon contact.

424 A smaller cohort contained the genetic repertoire to reduce nitrite to nitrogen gas
425 and exhibited hallmark anaerobic-aerobic expression patterns (Figure 5E) These
426  members within the Proteobacteria (OTTO2, BEIJ3, VITREO1, and ZOO1) contained the
427  nirS nitrite reductase, the norBC nitric oxide reductase, and nosZ, and showed highest
428 expression of these subunits towards the beginning of the anaerobic cycle, slowly
429 decreasing over the aerobic period to their lowest in the end of the aerobic cycle. Although
430 BEIJ2 was lacking the norBC system, it contained the nirS nitrite reductase and nosZ
431 subunit, and exhibited similar expression patterns to others in this cohort. Other
432  Proteobacteria lineages only contained the norBC subunits but were expressed in similar
433 fashions (RHODO2, FLAVO1, RHIZO1, and LEAD1) (Figure 5D). Accumulibacter clades
434 1A and IIA as well as ALIC1 were the only lineages with near-complete denitrification
435 pathways. These lineages contained the napAB nitrate reductase system as mentioned
436 above, the nirS nitrite reductase, norB (missing a confident hit for the norC subunit), and
437 nosZ. These three lineages also exhibited hallmark upregulation of all steps in the
438 anaerobic phase, with decreased activity after aerobic contact (Figure 5F).

439 Interestingly, Accumulibacter clade IA exhibited a higher magnitude of expression
440 of denitrification steps when activity levels were normalized relative to clade IIA,
441 supporting the hypothesis that denitrification is a niche-differentiating feature among

442 clades [28, 31, 73], and possibly a strain-specific trait since denitrification traits cannot be
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443 predicted based on ppk1 clade designations [32]. For example, independent observations
444 in differences among denitrification activities among strains within Accumulibacter clade
445 IC are inconsistent [34, 74]. Within the same bioreactor environment, coexisting
446  Accumulibacter clades differ between denitrification abilities and expression profiles [31,
447 33, 75]. Truncated denitrification pathways have also been previously shown to be
448  distributed among community members, with the complete denitrification genetic
449 repertoire only present in few members [33, 75], which could be due to extensive
450 horizontal gene transfer of genes comprising denitrification steps [75, 76]. Although this
451 experiment was not conducted under denitrifying conditions, our approach could be
452 applied to denitrifying EBPR systems to further understand the distribution of
453 denitrification traits among community members and how to selectively enrich for diverse
454  DPAO:s.

455 Biosynthetic Potential and Expression Dynamics of Amino Acid and Vitamin
456 Synthesis Pathways

457 Although SBRs are designed to enrich for Accumulibacter by providing acetate as
458 the sole carbon source, a diverse flanking community persists in these setups [27, 75].
459  One hypothesis for the persistence of flanking community members may be cooperative
460 interactions due to underlying auxotrophies of amino acid and vitamin biosynthetic
461 pathways in Accumulibacter. Amino acids and vitamin cofactors are metabolically
462 expensive to synthesize, and widespread auxotrophies have been widely documented
463 among microbial communities [77, 78]. Specifically, auxotrophies of vitamin cofactors
464 have been shown to fuel bacterial and cross-kingdom interactions with de novo bacterial

465 and cross-kingdom interactions with de novo synthesizers [79, 80]. To explore this
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466 hypothesis in the EPBR SBR community, we analyzed the presence of amino acid and
467  vitamin biosynthetic pathways and their expression patterns among the top 15 genomes
468 based on transcript abundance (Figure 6).

469 Within Accumulibacter, there are a few key vitamin cofactor and amino acid
470 auxotrophies that could fuel potential interactions with flanking community members. Both
471  Accumulibacter clade genomes are missing the riboflavin pathway for FAD cofactor
472 synthesis, as well as the pathways for serine and aspartic acid (Figure 6A). The
473  biosynthetic pathway for aspartic acid is distributed among members of the Bacteroidetes
474  and Proteobacteria, whereas only TET2 contains the pathway for serine synthesis (Figure
475 5A). The lack of serine biosynthesis pathways in Accumulibacter and other flanking
476 genomes seems striking given that serine is one of the least metabolically costly amino
477 acids to synthesize [81]. Interestingly, Accumulibacter clade IIA does not contain the
478  biosynthetic machinery for thiamine and pantothenate synthesis, whereas clade |IA does
479  (Figure 6A). Only the CAULO1, HYPHO1, and PSEUDO1 genomes within the
480 Proteobacteria can synthesize thiamine, whereas several other members can synthesize
481 pantothenate (Figure 6A). The absence of the pantothenate biosynthetic pathway in
482  Accumulibacter CAP IIA is particularly interesting given that coenzyme A is essential for
483 polyhydroxyalkanoate biosynthesis, which fuels the polymer cycling PAO phenotype of
484  Accumulibacter [24].

485 In addition to flanking community members potentially supporting the growth of
486 Accumulibacter due to underlying auxotrophies, the reciprocal logic may be possible as
487  well. Both Accumulibacter clades contain the pathways for synthesizing tyrosine and

488 phenylalanine, which are missing in a majority of the top 15 active flanking genomes
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489  (Figure 6A). Only two other members within the Proteobacteria can synthesize tyrosine
490 and phenylalanine, where RAM1 can synthesize both and PSEUDO1 only phenylalanine.
491 Interestingly, phenylalanine and tyrosine are the second and third most metabolically
492  expensive amino acids to synthesize, respectively, with tryptophan the most costly [81].
493 Additionally, a few highly active flanking community members lack the biosynthetic
494  machinery for several vitamin cofactors and amino acids, such as FLAVO1 and BAC3
495 within the Bacteroidetes and the putative PAO Ca. Obscuribacter phosphatis OBS1
496 (Figure 6A). Particularly, RAM1 within the Proteobacteria is missing the biosynthetic
497  machinery for all vitamin cofactors but can synthesize most amino acids including the
498 most metabolically expensive as mentioned above.

499 We next analyzed the distribution of trait-attributes of vitamin and amino acid
500 pathways among these genomes to understand how these biosynthetic pathways are
501 expressed similarly or differently in the EBPR SBR ecosystem (Figure 6B and C).
502 Members of the Proteobacteria containing thiamine and cobalamin biosynthetic pathways
503 all express these traits similarly (Figure 6B). However, the pantothenate synthesis
504 pathway contains two trait-attributes and is expressed differently among two cohorts. In
505 the first attribute, RUN1, TET1, CAULO1, CAPIA, and PSEUDO1 express the
506 pantothenate pathway similarly. However, OBS1 and TET2 express the pantothenate
507 pathway differently (Figure 6B). Because tetrahydrofolate can be synthesized through
508 different metabolic routes, we analyzed the differences in trait attribute expression for all
509 routes in genomes that contained sufficient coverage of this trait. Members of the
510 Bacteroidetes and Proteobacteria mostly cluster together among tetrahydrofolate

511  attributes, whereas the TET1 and TET2 genomes are differentiated (Figure 6B).

22


https://doi.org/10.1101/2021.12.04.471239
http://creativecommons.org/licenses/by/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2021.12.04.471239; this version posted December 5, 2021. The copyright holder for this preprint
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY 4.0 International license.

512 Expression of various groups of amino acids show more differentiated patterns of
513 expression for genomes with these pathways. Several amino acids also contain different
514  metabolic routes for biosynthesis, and we analyzed all trait attributes for each amino acid
515 for all routes grouped by type (Figure 6C). For the charged amino acids arginine, histidine,
516 and lysine, members of the Proteobacteria and Bacteroidetes cluster within their
517 phylogenetic groups, respectively, with lysine and histidine expressed differently among
518 these groups (Figure 6C). In contrast, arginine is expressed similarly among all
519  Proteobacteria genomes. Among the polar charged amino acids, TET2 is the only
520 genome among the top 15 genomes that contains the metabolic pathway to synthesize
521 serine (Figure 6A). Several groups contain the pathway for threonine synthesis, and
522  expression of different threonine routes are differentiated among the Proteobacteria,
523  Bacteroidetes, and Tetrasphaera spp., but mostly clusters phylogenetically (Figure 6C).
524  Notably, the expression patterns for the cysteine and proline biosynthetic pathways do
525 not cluster phylogenetically, such as both Tetfrasphaera genomes expressing the proline
526 pathway more similarly to other Proteobacteria and Bacteroidetes (Figure 6C). The few
527 lineages that can synthesize tyrosine and phenylalanine (CAPIA, CAPIIA, RAM1,
528 PSEUDO1) show different patterns of expression. These results show that beyond the
529 presence or absence of key vitamin cofactor and amino acid biosynthetic pathways,
530 EBPR SBR organisms also display coherent and differentiated patterns of expression for
531 these traits, of which the functional consequences remain to be further understood.

532

533

534
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535 CONCLUSIONS AND FUTURE PERSPECTIVES

536 In this work, we applied a novel trait-based ‘omics pipeline to a semi-complex,
537 engineered bioreactor microbial community to explore ecosystem-level and niche-
538 differentiating traits. Through assembling high-quality MAGs of the EBPR SBR
539 community and using a time-series metatranscriptomics experiment, we were able to
540 extend functional predictions and ecosystem inferences beyond hypotheses made from
541 gene presence/absence data. Using our novel trait-based comparative ‘omics pipeline,
542  we identified how similarities and differences in the expression of significant EBPR traits
543 are conferred among community members such as phosphorus cycling, denitrification,
544 and amino acid metabolism. Specifically, we demonstrate that traits with similar
545  expression profiles may be clustered into attributes providing a new layer to trait-based
546  approaches.

547 We believe that identifying expression-based attributes will be a powerful tool to
548 explore microbial traits in natural, engineered, and host-associated microbiomes. Outside
549 of activated sludge systems, trait-based approaches could illuminate how similar
550 secondary metabolite clusters are expressed among different species in a community [82,
551  83], how auxotrophies for amino acid and vitamin cofactors govern interactions [84], how
552  rhizosphere microorganisms respond to day-night cycles, and identify putative traits that
553 universally exhibit ecosystem-level or niche-differentiating patterns across ecosystems
554 [19, 23]. Importantly, our trait-based approach can be used to screen for expected
555 expression patterns of a key trait compared to a model organism, and then prioritize
556  specific microbial lineages for downstream experimental verification with techniques such

557 as Raman-FISH [85, 86]. Overall, our trait-based comparative ‘omics pipeline is a novel
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558 and high-throughput approach to understand how microbial traits connect to ecosystem-
559 level processes in diverse microbiomes.

560

561 ACKNOWLEDGEMENTS

562 We thank Caitlin Singleton for providing early access to high-quality genomes from
563 a full-scale WWTP to compare our MAGs against. Metagenomic and metatranscriptomic
564 sequencing was provided through a Joint Genome Institute Community Science Proposal
565 (Proposal ID 873). This work was supported by funding from the National Science
566 Foundation (MCB-1518130) to K.D.M and D.R.N. Funding was provided to E.A.M. by a
567 fellowship through the Department of Bacteriology at the University of Wisconsin —
568 Madison. Funding for B.O.O was in part provided by the Technology Foundation of the
569 Dutch National Science Foundation (NWO-TTW). This research was performed in part
570 using the Wisconsin Energy Institute computing cluster, which is supported by the Great
571 Lakes Bioenergy Research Center as a part of the U.S. Department of Energy Office of
572  Science (DE-SC0018409).

573

574

575

576

577

578

579

580

25


https://doi.org/10.1101/2021.12.04.471239
http://creativecommons.org/licenses/by/4.0/

581

582

583

584

585

586

587

588

589

590

591

592

593

594

595

596

597

598

599

600

601

602

603

bioRxiv preprint doi: https://doi.org/10.1101/2021.12.04.471239; this version posted December 5, 2021. The copyright holder for this preprint
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made

available under aCC-BY 4.0 International license.

REFERENCES CITED

1.

Violle C, Navas M-L, Vile D, Kazakou E, Fortunel C, Hummel |, et al. Let the
concept of trait be functional! Oikos 2007; 116: 882—892.

Lavorel S, Garnier E. Predicting changes in community composition and
ecosystem functioning from plant traits: revisiting the Holy Grail. Funct Ecol 2002;
16: 545-556.

Hooper DU, Chapin FS, Ewel JJ, Hector A, Inchausti P, Lavorel S, et al.
EFFECTS OF BIODIVERSITY ON ECOSYSTEM FUNCTIONING: A
CONSENSUS OF CURRENT KNOWLEDGE. Ecol Monogr 2005; 75: 3—-35.
Pianka ER. On r-and K-Selection. Am Nat 1970.

Wright IJ, Reich PB, Westoby M, Ackerly DD, Baruch Z, Bongers F, et al. The
worldwide leaf economics spectrum. Nature 2004; 428: 821-827.

Krause S, Le Roux X, Niklaus PA, Van Bodegom PM, Lennon JT, Bertilsson S, et
al. Trait-based approaches for understanding microbial biodiversity and
ecosystem functioning. Front Microbiol 2014; 5: 251.

Malik AA, Martiny JBH, Brodie EL, Martiny AC, Treseder KK, Allison SD, et al.
Defining trait-based microbial strategies with consequences for soil carbon cycling
under climate change. bioRxiv 2019.

Guittar J, Shade A, Litchman E. Trait-based community assembly and succession
of the infant gut microbiome. Nat Commun 2019; 10: 512.

Wolfe BE, Button JE, Santarelli M, Dutton RJ. Cheese Rind Communities Provide
Tractable Systems for In Situ and In Vitro Studies of Microbial Diversity. Cell

2014; 158: 422-433.

26


https://doi.org/10.1101/2021.12.04.471239
http://creativecommons.org/licenses/by/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2021.12.04.471239; this version posted December 5, 2021. The copyright holder for this preprint
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY 4.0 International license.

604 10. Enke TN, Datta MS, Schwartzman J, Barrere J, Pascual-Garcia A, Cordero

605 Correspondence OX. Modular Assembly of Polysaccharide-Degrading Marine
606 Microbial Communities. Curr Biol 2019; 29.

607 11. Herrera Paredes S, Gao T, Law TF, Finkel OM, Mucyn T, Teixeira PJPL, et al.
608 Design of synthetic bacterial communities for predictable plant phenotypes. PLOS
609 Biol 2018; 16: €2003962.

610 12. Lindemann SR, Bernstein HC, Song H-S, Fredrickson JK, Fields MW, Shou W, et
611 al. Engineering microbial consortia for controllable outputs. ISME J 2016; 10:

612 2077-2084.

613 13. Oyserman BO, Medema MH, Raaijmakers JM. Road MAPs to engineer host

614 microbiomes. Curr Opin Microbiol 2018; 43: 46-54.

615 14. Lawson CE, Harcombe WR, Hatzenpichler R, Lindemann SR, Loffler FE,

616 O’Malley MA, et al. Common principles and best practices for engineering

617 microbiomes. Nat Rev Microbiol . 2019. Nature Publishing Group. , 17: 725-741
618 15. Gutierrez CF, Sanabria J, Raaijmakers JM, Oyserman BO. Restoring degraded
619 microbiome function with self-assembled communities. FEMS Microbiol Ecol

620 2020; 96.

621 16. Allison SD. A trait-based approach for modelling microbial litter decomposition.
622 Ecol Lett 2012; 15: 1058—1070.

623 17. Tringe SG, von Mering C, Kobayashi A, Salamov AA, Chen K, Chang HW, et al.
624 Comparative metagenomics of microbial communities. Science 2005; 308: 554-7.
625 18. Tyson GW, Chapman J, Hugenholtz P, Allen EE, Ram RJ, Richardson PM, et al.

626 Community structure and metabolism through reconstruction of microbial

27


https://doi.org/10.1101/2021.12.04.471239
http://creativecommons.org/licenses/by/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2021.12.04.471239; this version posted December 5, 2021. The copyright holder for this preprint
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY 4.0 International license.

627 genomes from the environment. Nature 2004; 428: 37—43.

628 19. Anantharaman K, Brown CT, Hug LA, Sharon |, Castelle CJ, Probst AJ, et al.
629 Thousands of microbial genomes shed light on interconnected biogeochemical
630 processes in an aquifer system. Nat Commun 2016; 7: 13219.

631 20. Woodcroft BJ, Singleton CM, Boyd JA, Evans PN, Emerson JB, Zayed AAF, et al.
632 Genome-centric view of carbon processing in thawing permafrost. Nature 2018;
633 560: 49-54.

634 21. Albertsen M, Hugenholtz P, Skarshewski A, Nielsen KL, Tyson GW, Nielsen PH.
635 Genome sequences of rare, uncultured bacteria obtained by differential coverage
636 binning of multiple metagenomes. Nat Biotechnol 2013; 31: 533-538.

637 22. Anantharaman K, Brown CT, Hug LA, Sharon |, Castelle CJ, Probst AJ, et al.
638 Thousands of microbial genomes shed light on interconnected biogeochemical
639 processes in an aquifer system. Nat Commun 2016; 7: 13219.

640 23. Wrighton KC, Thomas BC, Sharon I, Miller CS, Castelle CJ, VerBerkmoes NC, et
641 al. Fermentation, hydrogen, and sulfur metabolism in multiple uncultivated

642 bacterial phyla. Science 2012; 337: 1661-5.

643 24. Hesselmann RPX, Werlen C, Hahn D, van der Meer JR, Zehnder AJB.

644 Enrichment, Phylogenetic Analysis and Detection of a Bacterium That Performs
645 Enhanced Biological Phosphate Removal in Activated Sludge. Syst Appl Microbiol
646 1999; 22: 454-465.

647 25. Seviour RJ, Mino T, Onuki M. The microbiology of biological phosphorus removal
648 in activated sludge systems. FEMS Microbiol Rev 2003; 27: 99—-127.

649 26. Crocetti GR, Hugenholtz P, Bond PL, Schuler A, Ju™ J, Keller J, et al. Identification

28


https://doi.org/10.1101/2021.12.04.471239
http://creativecommons.org/licenses/by/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2021.12.04.471239; this version posted December 5, 2021. The copyright holder for this preprint
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY 4.0 International license.

650 of Polyphosphate-Accumulating Organisms and Design of 16S rRNA-Directed
651 Probes for Their Detection and Quantitation. APPLIED AND ENVIRONMENTAL
652 MICROBIOLOGY . 2000.

653 27. Martin HG, lvanova N, Kunin V, Warnecke F, Barry KW, McHardy AC, et al.
654 Metagenomic analysis of two enhanced biological phosphorus removal (EBPR)
655 sludge communities. Nat Biotechnol 2006; 24: 1263—1269.

656 28. Flowers JJ, He S, Malfatti S, del Rio TG, Tringe SG, Hugenholtz P, et al.

657 Comparative genomics of two ‘Candidatus Accumulibacter’ clades performing
658 biological phosphorus removal. ISME J 2013; 7: 2301-2314.

659 29. Oyserman BO, Moya F, Lawson CE, Garcia AL, Vogt M, Heffernen M, et al.

660 Ancestral genome reconstruction identifies the evolutionary basis for trait
661 acquisition in polyphosphate accumulating bacteria. ISME J 2016; 10: 2931—
662 2945.

663 30. Wilmes P, Andersson AF, Lefsrud MG, Wexler M, Shah M, Zhang B, et al.

664 Community proteogenomics highlights microbial strain-variant protein expression
665 within activated sludge performing enhanced biological phosphorus removal.
666 ISME J 2008; 2: 853—-864.

667 31. McDaniel E, Moya-Flores F, Keene Beach N, Oyserman B, Kizaric M, Hoe Khor

668 E, et al. Metabolic differentiation of co-occurring Accumulibacter clades revealed
669 through genome-resolved metatranscriptomics. bioRxiv 2020;
670 2020.11.23.394700.

671 32. GaoH,MaoY, Zhao X, Liu WT, Zhang T, Wells G. Genome-centric

672 metagenomics resolves microbial diversity and prevalent truncated denitrification

29


https://doi.org/10.1101/2021.12.04.471239
http://creativecommons.org/licenses/by/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2021.12.04.471239; this version posted December 5, 2021. The copyright holder for this preprint
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY 4.0 International license.

673 pathways in a denitrifying PAO-enriched bioprocess. Water Res 2019; 155: 275—
674 287.

675 33. WangY, Gao H, Wells G. Integrated Omics Analyses Reveal Differential Gene

676 Expression and Potential for Cooperation Between Denitrifying Polyphosphate
677 and Glycogen Accumulating Organisms. bioRxiv . 2020. bioRXxiv. ,
678 2020.01.10.901413

679 34. Camejo PY, Oyserman BO, McMahon KD, Noguera DR. Integrated Omic

680 Analyses Provide Evidence that a ‘Candidatus Accumulibacter phosphatis’ Strain
681 Performs Denitrification under Microaerobic Conditions. mSystems 2019; 4
682 e00193-18.

683 35. Kong, Nielsen JL, Nielsen PH. Identity and ecophysiology of uncultured

684 actinobacterial polyphosphate-accumulating organisms in full-scale enhanced
685 biological phosphorus removal plants. App! Environ Microbiol 2005; 71: 4076-85.
686 36. Kristiansen R, Nguyen HTT, Saunders AM, Nielsen JL, Wimmer R, Le VQ, et al.
687 A metabolic model for members of the genus Tetrasphaera involved in enhanced
688 biological phosphorus removal. ISME J 2013; 7: 543-54.

689 37. Soo R, Skennerton CT, Sekiguchi Y, Imelfort M, Paech S, Dennis P, et al. An

690 Expanded Genomic Representation of the Phylum Cyanobacteria. Genome
691 Biology and Evolution. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4040986/.
692 Accessed 11 Jul 2020.

693 38. Petriglieri F, Singleton C, Peces M, Petersen JF, Nierychlo M, Nielsen H.
694 ‘Candidatus Dechloromonas phosphatis’ and ‘Candidatus Dechloromonas

695 phosphovora’, two novel polyphosphate accumulating organisms abundant in

30


https://doi.org/10.1101/2021.12.04.471239
http://creativecommons.org/licenses/by/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2021.12.04.471239; this version posted December 5, 2021. The copyright holder for this preprint
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY 4.0 International license.

696 wastewater treatment systems. bioRxiv 2020.

697 39. Singleton CM, Petriglieri F, Kristensen JM, Kirkegaard RH, Michaelsen TY,

698 Andersen MH, et al. Connecting structure to function with the recovery of over
699 1000 high-quality metagenome-assembled genomes from activated sludge using
700 long-read sequencing. Nat Commun 2021; 12: 2009.

701 40. Oyserman BO, Noguera DR, del Rio TG, Tringe SG, McMahon KD.

702 Metatranscriptomic insights on gene expression and regulatory controls in

703 Candidatus Accumulibacter phosphatis. ISME J 2016; 10: 810-822.

704 41. Parks DH, Imelfort M, Skennerton CT, Hugenholtz P, Tyson GW. CheckM:

705 assessing the quality of microbial genomes recovered from isolates, single cells,
706 and metagenomes. Genome Res 2015; 25: 1043-55.

707 42. Kanehisa M, Sato Y, Morishima K. BlastKOALA and GhostKOALA: KEGG Tools
708 for Functional Characterization of Genome and Metagenome Sequences. J Mol
709 Biol 2016; 428: 726-731.

710 43. Aramaki T, Blanc-Mathieu R, Endo H, Ohkubo K, Kanehisa M, Goto S, et al.

711 KofamKOALA: KEGG ortholog assignment based on profile HMM and adaptive
712 score threshold. bioRxiv 2019; 602110.

713 44. Bushnell B, Rood J, Singer E. BBMerge — Accurate paired shotgun read merging
714 via overlap. PLoS One 2017; 12: e0185056.

715 45. Kopylova E, Noé L, Touzet H. SortMeRNA: fast and accurate filtering of ribosomal
716 RNAs in metatranscriptomic data. Bioinformatics 2012; 28: 3211-3217.

717 46. Bray NL, Pimentel H, Melsted P, Pachter L. Near-optimal probabilistic RNA-seq

718 quantification. Nat Biotechnol 2016; 34: 525-527.

31


https://doi.org/10.1101/2021.12.04.471239
http://creativecommons.org/licenses/by/4.0/

719

720

721

722

723

724

725

726

727

728

729

730

731

732

733

734

735

736

737

738

739

740

741

bioRxiv preprint doi: https://doi.org/10.1101/2021.12.04.471239; this version posted December 5, 2021. The copyright holder for this preprint
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made

47.

48.

49.

50.

51.

52.

53.

available under aCC-BY 4.0 International license.

Soneson C, Love MI, Robinson MD. Differential analyses for RNA-seq: transcript-
level estimates improve gene-level inferences. F1000Research 2015; 4: 1521.
Jain C, Rodriguez-R LM, Phillippy AM, Konstantinidis KT, Aluru S. High
throughput ANI analysis of 90K prokaryotic genomes reveals clear species
boundaries. Nat Commun 2018; 9: 5114.

He S, Gall DL, McMahon KD. ‘Candidatus accumulibacter’ population structure in
enhanced biological phosphorus removal sludges as revealed by polyphosphate
kinase genes. Appl Environ Microbiol 2007; 73: 5865-5874.

Camejo PY, Owen BR, Martirano J, Ma J, Kapoor V, Santo Domingo J, et al.
Candidatus Accumulibacter phosphatis clades enriched under cyclic anaerobic
and microaerobic conditions simultaneously use different electron acceptors.
Water Res 2016; 102: 125-137.

Zhang H, Sekiguchi Y, Hanada S, Hugenholtz P, Kim H, Kamagata Y, et al.
Gemmatimonas aurantiaca gen. nov., sp. nov., a Gram-negative, aerobic,
polyphosphate-accumulating micro-organism, the first cultured representative of
the new bacterial phylum Gemmatimonadetes phyl. nov. Int J Syst Evol Microbiol
2003; 53: 1155-1163.

McDaniel EA, Wever R, Oyserman BO, Noguera DR, McMahon KD. Genome-
Resolved Metagenomics of a Photosynthetic Bioreactor Performing Biological
Nutrient Removal. Microbiol Resour Announc 2021; 10.

Speirs LBM, Rice DTF, Petrovski S, Seviour RJ. The Phylogeny, Biodiversity, and
Ecology of the Chloroflexi in Activated Sludge. Front Microbiol . 2019. Frontiers

Media S.A. , 10: 2015

32


https://doi.org/10.1101/2021.12.04.471239
http://creativecommons.org/licenses/by/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2021.12.04.471239; this version posted December 5, 2021. The copyright holder for this preprint
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY 4.0 International license.

742 54. Andersen MH, Mcllroy SJ, Nierychlo M, Nielsen PH, Albertsen M. Genomic

743 insights into Candidatus Amarolinea aalborgensis gen. nov., sp. nov., associated
744 with settleability problems in wastewater treatment plants. Syst Appl Microbiol
745 2019; 42: 77-84.

746 55. Nierychlo M, Mitobedzka A, Petriglieri F, Mcllroy B, Nielsen PH, Mcliroy SJ. The
747 morphology and metabolic potential of the Chloroflexi in full-scale activated
748 sludge wastewater treatment plants. FEMS Microbiol Ecol 2019; 95.

749 56. Mcllroy SJ, Karst SM, Nierychlo M, Dueholm MS, Albertsen M, Kirkegaard RH, et

750 al. Genomic and in situ investigations of the novel uncultured Chloroflexi
751 associated with 0092 morphotype filamentous bulking in activated sludge. ISME J
752 2016; 10: 2223-2234.

753 57. Kragelund C, Levantesi C, Borger A, Thelen K, Eikelboom D, Tandoi V, et al.
754 Identity, abundance and ecophysiology of filamentous Chloroflexi species present
755 in activated sludge treatment plants. FEMS Microbiol Ecol 2007; 59: 671-682.
756 58. Kindaichi T, Yamaoka S, Uehara R, Ozaki N, Ohashi A, Albertsen M, et al.

757 Phylogenetic diversity and ecophysiology of Candidate phylum Saccharibacteria
758 in activated sludge. FEMS Microbiol Ecol 2016; 92: 1-11.

759 59. Mann E, Wetzels SU, Wagner M, Zebeli Q, Schmitz-Esser S. Metatranscriptome
760 Sequencing Reveals Insights into the Gene Expression and Functional Potential
761 of Rumen Wall Bacteria. Front Microbiol 2018; 9: 43.

762 60. Jiang, Xiong X, Danska J, Parkinson J. Metatranscriptomic analysis of diverse
763 microbial communities reveals core metabolic pathways and microbiome-specific

764 functionality. Microbiome 2016; 4: 2.

33


https://doi.org/10.1101/2021.12.04.471239
http://creativecommons.org/licenses/by/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2021.12.04.471239; this version posted December 5, 2021. The copyright holder for this preprint
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY 4.0 International license.

765 61. Linz AM, Aylward FO, Bertilsson S, McMahon KD. Time-series

766 metatranscriptomes reveal conserved patterns between phototrophic and

767 heterotrophic microbes in diverse freshwater systems. Limnol Oceanogr 2019.
768 62. Lawson CE, Wu S, Bhattacharjee AS, Hamilton JJ, McMahon KD, Goel R, et al.
769 Metabolic network analysis reveals microbial community interactions in anammox
770 granules. Nat Commun 2017; 8: 15416.

771  63. Aylward FO, Eppley JM, Smith JM, Chavez FP, Scholin CA, DeLong EF.

772 Microbial community transcriptional networks are conserved in three domains at
773 ocean basin scales. Proc Natl Acad Sci 2015; 112: 5443-5448.

774 64. Haol, Michaelsen TY, Singleton CM, Dottorini G, Kirkegaard RH, Albertsen M, et
775 al. Novel syntrophic bacteria in full-scale anaerobic digesters revealed by

776 genome-centric metatranscriptomics. ISME J 2020; 14: 906-918.

777 65. Glass EM, Meyer F. The Metagenomics RAST Server: A Public Resource for the
778 Automatic Phylogenetic and Functional Analysis of Metagenomes. Handb Mol
779 Microb Ecol | Metagenomics Complement Approaches 2011; 8: 325-331.

780 66. Martinez X, Pozuelo M, Pascal V, Campos D, Gut I, Gut M, et al. MetaTrans: an
781 open-source pipeline for metatranscriptomics. Sci Rep 2016; 6: 26447 .

782 67. Westreich ST, Treiber ML, Mills DA, Korf |, Lemay DG. SAMSA2: a standalone
783 metatranscriptome analysis pipeline. BMC Bioinformatics 2018; 19: 175.

784 68. NiY, LidJ, Panagiotou G. COMAN: a web server for comprehensive

785 metatranscriptomics analysis. BMC Genomics 2016; 17: 622.

786 69. Narayanasamy S, Jarosz Y, Muller EEL, Heintz-Buschart A, Herold M, Kaysen A,

787 et al. IMP: a pipeline for reproducible reference-independent integrated

34


https://doi.org/10.1101/2021.12.04.471239
http://creativecommons.org/licenses/by/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2021.12.04.471239; this version posted December 5, 2021. The copyright holder for this preprint
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY 4.0 International license.

788 metagenomic and metatranscriptomic analyses. Genome Biol 2016; 17: 260.
789 70. Eren AM, Esen OC, Quince C, Vineis JH, Morrison HG, Sogin ML, et al. Anvi'o:
790 an advanced analysis and visualization platform for ‘omics data. PeerJ 2015; 3:
791 e1319.

792 71. Kanehisa M, Sato Y, Kawashima M, Furumichi M, Tanabe M. KEGG as a

793 reference resource for gene and protein annotation. Nucleic Acids Res 2016; 44:
794 D457-D462.

795 72. Wanner BL. Gene regulation by phosphate in enteric bacteria. J Cell Biochem
796 1993; 51: 47-54.

797 73. Flowers JJ, He S, Yilmaz S, Noguera DR, McMahon KD. Denitrification

798 capabilities of two biological phosphorus removal sludges dominated by different
799 ‘Candidatus Accumulibacter’ clades. Environ Microbiol Rep 2009; 1: 583-588.

800 74. Rubio-Rincon FJ, Weissbrodt DG, Lopez-Vazquez CM, Welles L, Abbas B,

801 Albertsen M, et al. ‘Candidatus Accumulibacter delftensis’: A clade IC novel
802 polyphosphate-accumulating organism without denitrifying activity on nitrate.
803 Water Res 2019; 161: 136—151.

804 75. GaoH,Mao, Zhao X, Liu WT, Zhang T, Wells G. Genome-centric

805 metagenomics resolves microbial diversity and prevalent truncated denitrification
806 pathways in a denitrifying PAO-enriched bioprocess. Water Res 2019; 155: 275—
807 287.

808 76. Parsons C, Stieken EE, Rosen CJ, Mateos K, Anderson RE. Radiation of
809 nitrogen-metabolizing enzymes across the tree of life tracks environmental

810 transitions in Earth history. Geobiology 2020.

35


https://doi.org/10.1101/2021.12.04.471239
http://creativecommons.org/licenses/by/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2021.12.04.471239; this version posted December 5, 2021. The copyright holder for this preprint
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY 4.0 International license.

811 77. Gobémez-Consarnau L, Sachdeva R, Gifford SM, Cutter LS, Fuhrman JA, Sanudo-
812 Wilhelmy SA, et al. Mosaic patterns of B-vitamin synthesis and utilization in a
813 natural marine microbial community. Environ Microbiol 2018; 20: 2809-2823.

814 78. Hamilton JJ, Garcia SL, Brown BS, Oyserman BO, Moya-Flores F, Bertilsson S,

815 et al. Metabolic Network Analysis and Metatranscriptomics Reveal Auxotrophies
816 and Nutrient Sources of the Cosmopolitan Freshwater Microbial Lineage acl.
817 mSystems 2017; 2: e00091-17.

818 79. McClure RS, Overall CC, Hill EA, Song H-S, Charania M, Bernstein HC, et al.
819 Species-specific transcriptomic network inference of interspecies interactions.
820 ISME J 2018; 1.

821 80. Croft MT, Lawrence AD, Raux-Deery E, Warren MJ, Smith AG. Algae acquire
822 vitamin B12 through a symbiotic relationship with bacteria. Nature 2005; 438: 90—
823 93.

824 81. Akashi H, Gojobori T. Metabolic efficiency and amino acid composition in the

825 proteomes of Escherichia coli and Bacillus subtilis. Proc Natl Acad Sci U S A

826 2002; 99: 3695-3700.

827 82. Lozano GL, Bravo JI, Diago MFG, Park HB, Hurley A, Peterson SB, et al.

828 Introducing THOR, a Model Microbiome for Genetic Dissection of Community
829 Behavior. MBio 2019; 10: e02846-18.

830 83. Crits-Christoph A, Diamond S, Butterfield CN, Thomas BC, Banfield JF. Novel soil
831 bacteria possess diverse genes for secondary metabolite biosynthesis. Nature
832 2018; 558: 440—444.

833 84. Zengler K, Zaramela LS. The social network of microorganisms — how

36


https://doi.org/10.1101/2021.12.04.471239
http://creativecommons.org/licenses/by/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2021.12.04.471239; this version posted December 5, 2021. The copyright holder for this preprint
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY 4.0 International license.

834 auxotrophies shape complex communities. Nat Rev Microbiol 2018; 16: 383-390.
835 85. Fernando EY, Mcllroy SJ, Nierychlo M, Herbst FA, Petriglieri F, Schmid MC, et al.
836 Resolving the individual contribution of key microbial populations to enhanced
837 biological phosphorus removal with Raman—FISH. ISME J 2019; 13: 1933-1946.
838 86. Petriglieri F, Petersen JF, Peces M, Nierychlo M, Hansen K, Baastrand CE, et al.
839 Quantification of biologically and chemically bound phosphorus in activated

840 sludge from full-scale plants with biological P-removal. bioRxiv 2021.

841 87. Chaumeil P-A, Mussig AJ, Hugenholtz P, Parks DH. GTDB-Tk: a toolkit to classify
842 genomes with the Genome Taxonomy Database. Bioinformatics 2019.

843 88. Seemann T. Prokka: Rapid prokaryotic genome annotation. Bioinformatics 2014;
844 30.

845

846

847

848

849

850

851

852

853

854

855

856

37


https://doi.org/10.1101/2021.12.04.471239
http://creativecommons.org/licenses/by/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2021.12.04.471239; this version posted December 5, 2021. The copyright holder for this preprint
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY 4.0 International license.

857 FIGURE AND TABLE LEGENDS

858 Figure 1. Overview of Trait-based Comparative Transcriptomics Approach

859 In genome-resolved metagenomics approaches, representative MAGs are assembled
860 from a microbial community of interest, and the presence and/or absence of key metabolic
861 pathways are used to make inferences of metabolic potential and ecosystem processes.
862 However, metagenomic data alone can only assess the metabolic potential of a given
863 pathway, and do not provide other biologically relevant information such as the timing or
864 induction of these traits. Using time-series metatranscriptomics, we developed a trait-
865 based comparative ‘omics (TbasCO) pipeline that statistically assesses the inter-
866 organismal differences in gene expression pattern of a given trait to cluster into trait
867  attributes.

868

869 Figure 2. Genome-Resolved Metatranscriptomics Approach of an EBPR System
870 Application of a genome-resolved metatranscriptomics approach to a lab-scale
871 sequencing batch reactor (SBR) designed to enrich for Accumulibacter. 1A) Schematic
872 of the main cycle parameters and analyte dynamics of an SBR simulating EBPR. Six
873 samples were taken for RNA sequencing within the cycle at time-points denoted by
874 arrows. 1B) Phylogenetic identity and abundance patterns of 66 assembled MAGs from
875 the EBPR system. The phylogenetic tree was constructed from concatenated markers
876 contained in the GTDB-tk with muscle, calculated with RAXML, and visualized in iTOL. A
877 phylogenetic tree of all 66 MAGs with reference genomes and high-quality genomes from
878 Singleton et al. constructed with concatenated markers from GTDB-tk are provided in

879  Supplementary Figure 1. Sizes of circles represent abundance patterns of metagenomic
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880 reads mapping back to genomes from the same day as the metatranscriptomic
881 experiment and are not to scale. 1C) Transcriptional patterns of each MAG in the
882 anaerobic and aerobic phases of the EBPR cycle. RNA-seq reads from each time-point
883 were competitively mapped to all 66 assembled MAGs and counts normalized by
884  transcripts per million (TPM). Total counts in the anaerobic and aerobic phases for each
885 genome were averaged separately and plotted on a log scale. Order of MAGs from left to
886  right mirrors the order of MAGs in the phylogenetic tree in 1B from the top of the circle
887  going clockwise.

888

889 Figure 3. Clustering and Distribution of Trait Attributes Across EBPR SBR
890 Community Members. Using the TbasCO method, we identified expression-based trait
891  attributes from predefined trait modules in the KEGG library and explored the distribution
892 of these trait attributes across community members. A) Distribution of trait-attributes
893 among sets of genomes. Bars represent the number of trait-attributes present in a set
894 number of genomes and colored by KEGG module category. Among a total of 35
895 genomes, trait attributes present between 3-18 genomes are designated as niche
896 differentiating, whereas trait attributes present in 19 or greater genomes are designated
897 as core trait attributes. Inset figure demonstrates the maximum number of attributes for
898 the maximum number of genomes. B) Cytoscape network showing the connectedness of
899 genomes to trait attributes. The network was filtered to only include nodes with more than
900 5 connections, therefore filtering out both genomes with few trait attributes and trait
901 attributes connected to less than 5 genomes. Genomes are represented as squares

902 colored by phylum, and trait attributes are represented as circles colored by KEGG
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903 category. The size of both the squares and circles represents the number of connections
904 to that genome or trait attribute, respectively.

905

906 Figure 4. Trait Attributes of the High-Affinity Phosphorus Transporter System
907 pstABCS

908 Using the TbasCO method, two trait attributes of the high-affinity phosphorus transporter
909 system pstABCS were identified. The pstABCS system consists of a phosphate-binding
910 protein and ABC-type transporter, and the corresponding KEGG orthologs for each
911  subunit are shown. Timepoints 1-3 refer to the three anaerobic phase timepoints, and
912 timepoints 4-6 refer to the three anaerobic phase timepoints (Figure 1). Expression values
913 are log-transformed based on setting the lowest expression value within each genome
914  across the time-series to 0 for each subunit. Specific subunits for some genomes in both
915 attributes are missing to the high cutoff thresholds for annotations. However we kept
916 genomes with 2/4 subunits to show similarities in expression profiles. The first pstABCS
917 trait-attribute includes microbial lineages that exhibited the highest expression of all
918 subunits towards the end of the aerobic cycle, when phosphate concentrations are
919 expected to be lowest. This includes microbial lineages within the Actinobacteria,
920 Proteobacteria, Gemmatimonadetes, and Chloroflexi. The second pstABCS trait-attribute
921 includes lineages that exhibited highest expression of all subunits upon the switch from
922 anaerobic to aerobic phases, or when phosphate concentrations are expected to be the
923 highest. This includes lineages within the Actinobacteria and Proteobacteria.

924

925 Figure 5. Expression Dynamics of Distributed Denitrification Routes
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926  Expression of denitrification traits distributed among community members in the EBPR
927 SBR ecosystem. Timepoints 1-3 correspond to the anaerobic phase and timepoints 4-6
928 correspond to the aerobic phase as referenced in Figure 1. A) Complete denitrification
929 pathway and associated genetic repertoire with each sequential step. B) Trait attributes
930 of expression dynamics for community members with the narGH nitrate reductase
931 system. This trait was the only denitrification trait identified with more than one attribute.
932 C) Expression dynamics of the napAB nitrate reductase system. D) Expression dynamics
933 of the norBC nitrous oxide reductase system. E) Expression of all steps of denitrification
934 starting at nitrite reduction. F) Expression of the most complete denitrification route
935 among three community members, with the norC subunit for nitrous oxide reduction
936 missing. Note that OTTO1 only contains nirS but is included in this trait attribute because
937 the expression dynamics are similar to that of the other three genomes for this subunit.
938

939 Figure 6. Biosynthetic Potential Compared to Expression of Amino Acid and
940 Vitamin Synthesis Pathways for Top 15 Expressed MAGs

941  Biosynthetic potential and expression patterns of amino acid and vitamin pathways were
942  analyzed for the top 15 genomes with the highest transcriptional counts (Table 1). A) For
943 a pathway to be considered present for downstream analysis in the TbasCO pipeline,
944  80% of the pathway had to be present in a genome. Thus, we used this cutoff criterion to
945 discern whether a specific pathway was present or absent in a genome (with the
946  expectation of methionine, as all genomes did not contain at least 80% of the subunits in
947 the KEGG methionine synthase pathway, we inferred the presence of the methionine

948 synthase as presence of this pathway). Orange colored boxes for cofactor biosynthesis
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949 pathways represents the presence of that pathway, whereas grey infers absence. For
950 amino acid biosynthetic pathways, amino acids are listed by their side chain groups —
951 charged, polar, hydrophobic, and other. B) Mini-networks of vitamin co-factors. Squares
952 are genomes with the colors matching the color bar in A. Nodes are attributes, where the
953 colored nodes for the tetrahydrofolate attributes represent the different routes. C) Mini-
954 networks of amino acid biosynthesis pathways split by type. Colors of nodes for each
955 amino acid represent the different routes for that pathway. Squares represent genomes
956  with colors matching the color bar in A.

957

958 Table 1. Genome quality statistics and relative abundance calculations for all 66 EBPR
959 SBR MAGs. Genome code names match names used in all figures and within the text.
960 Classifications were assigned using the GTDB-tk [87] and confirmed by comparing
961 against select publicly available references and a subset of HQ MAGs from Singleton et
962 al. 2021 [39]. Completeness and redundancy estimates and GC content were calculated
963 by CheckM [41]. tRNA and rRNA predictions were performed with Barrnap as part of the
964 Prokka software [88]. Relative abundance estimates reflect the proportion of reads
965 mapped to the genome in that sample divided by the total number of reads mapped to all
966 genomes as performed with SingleM. Table available at

967 https://figshare.com/articles/dataset/EBPR SBR MAGs Metadata/13063874.

968
969 Table 2. KEGG Pathways for core trait-attributes present in greater than 19 genomes.
970 Table 3. KEGG Pathways for differentiating trait-attributes present between 3 and 18

971 genomes.
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Table 1.

AUSI GCA_020161845.1  d_ Bacteriaip__ > ) w . 99.45 501 439 82 712 0.261 0.720 0.124 255331 3 61
PHYCI  GCA 020161815.1  d_Bacteriap D 98.02 0.54 3.06 34 71 1355 3.007 0341 332509 1 49
PHYC2  GCA_020161155.1  d_Bacteriap_ > £_D u | 95.82 189 320 11 692 0.047 0.174 0.112 152031 1 52
TETI GCA_020160805.1  d_ Bacteriazp__ . . D = LA 98.42 0.54 375 57 619 0446 0436 0.507 1378316 2 47
TET2 GCA_020160795.1  d_ Bacteriazp__ . . D LA 98.92 005 3.96 66 693 0803 0236 1244 2538782 1 76
LEUI GCA_020161315.1 . 1 . Leucobacter:s _ 96.06 205 3.01 74 635 0272 0.083 0.093 99061 3 47
LEU2 GCA_020161175.1 > ] Leucobacter;s_ Leucobacter 83.22 148 231 140 648 0.065 0.101 0.092 22050 2 [
SALI GCA_020160915.1 - 3 = - 97.81 0 293 8 612 0335 0.142 0.559 178111 2 45
NANOI  GCA _020161245.1 . 99.14 3.68 429 95 727 0.106 0.047 0172 64510 1 52
PROPI  GCA_020161795.1  d_ Bacteriap_ : 91.04 091 347 67 693 0.063 0.108 0.206 100351 0 60
PROP2  GCA_020161755.1  d_Bacteriap_ 2 (1 L 93.63 302 408 61 707 0.094 0.046 0413 130384 3 52
PROP3  GCA _020161015.1  d_Bacteriap__ . ] | 94.14 3.15 3.67 65 716 0.074 0.176 0.249 96105 0 51
FIMBRII  GCA 0201615051 d_ Bacteria;p__ ) o | . Uphvl-Arlis_ 96.55 0 314 38 588 0.068 0234 0.009 27830 3 8
BACI GCA_020161835.1  d_ Bacteriazp_ Bacteroidotae_i0_if_; 94.52 0 440 36 416 0345 0.024 0.003 32140 4 42
BAC2  GCA 020162035.1 d_Bacteriap_Bacteroidotaic _Bacteroidico AKYHT67:f b-17BOg s 99.05 048 317 31 296 0.757 0010 0015 46346 3 2
CHITI  GCA 020161435.1  d_Bacteriap_| | C 99.01 0 4.19 10 463 0.183 0.174 3.613 3141341 0 34
CHIT2  GCA_020161535.1  d_ Bacteriap_| | L 100 123 403 px] 482 0.195 0383 0033 400 3 40
SAPI GCA_020160935.1  d_ Bacteriap s 96.53 0.99 584 51 503 0226 0.007 0.128 702648 3 36
SAP2 GCA_020160855.1  d_ Bacteriazp_| ] ;_OLBS;s__ 97.52 05 373 65 372 0290 0.167 0.016 10636 3 34
LEADI  GCA_020161355.1  d_Bacteriap_| | X 1 _ 99.11 0.6 481 17 377 0.136 0.002 0.858 1017458 2 36
RUNI GCA_020161055.1  d_ Bacteriazp_| i s Runella;s_ Runclla 100 0 744 60 44 0124 1088 1749 10725342 2 40
FLAVOl  GCA 020161455.1  d_Bacteriap | | | _ 99.29 035 3.08 18 325 0.030 0.002 0.742 3002991 3 36
CHRYSI  GCA_020161485.1 ] idiazo_| iales:f_ LAs_Cl 100 025 257 1 367 0.107 3917 0358 209940 2 35
BAC3 GCA_020162015.1 . Bacteroidiao_ NS11-12g:f UKLI3-3g_Blis__ 100 0 374 45 411 0445 0.892 0.693 9991372 0 34
IGNAVII  GCA_020161395.1 . Tgnavi i ] faceae Az UTCHB3:s__ 97.27 055 407 21 422 0.163 0.635 0.025 58496 3 4
RTHERMI GCA 020160835.1  d_| | ] | g s 98.36 138 325 36 67 0328 0,050 0.060 116472 3 52
ANAERI  GCA_020161935.1  d_Bacteriap_ Chloroflexotaic_ Anacrolineacio_ SBR1031:f_Adbg s 98.17 0 7.64 32 542 0375 0.190 0.153 910673 4 48
HERPI  GCA 020161265.1  d_Bacteriap_C C cl 99.09 091 6.04 13 502 0.774 0.025 0.008 7917 0 55
0BS1 GCA 0201612351 d_ Bacteriazp_C: 0 _ 0 o] ;_Obscuri .0 98.28 094 509 17 492 6272 0.681 0.197 1713299 6 a2
FUSII  GCA_020161295.1  d_Bacteriap_Firmicutes_A:c_Clostridia;o__Peptostreptococcales:f _Fusibacteraceaeig_ UBAS5201:s__ 96.5 1.75 3.08 41 28 0.001 0.580 0.001 11649 3 57
GEMMAI GCA_020161135.1  d_Bacteriap_( G G o s 98.35 33 455 8 70.1 0.004 0.031 0494 2624259 3 55
SACCHI  GCA _020160975.1  d_Bacteriapp_Patesci S o = ,_ 84.48 0 097 1 49.6 0.637 1437 0.035 65079 3 43
ALPHAI ~ GCA_020161965.1  d_Bacteriap_ Proteobacteria:c_ Alphaproteobacteriazo_:f g s 8243 265 394 581 646 0015 0.165 0.007 1283274 3 39
CAEDI  GCA _020161545.1  d_ Bacteriap @ {_UBA190S;g s 86.36 L1 1.88 96 528 0.034 0201 0.002 41264 3 35
BREVI  GCA 020161595.1 d_Bacteriap | . ,_C: e | u 97.51 341 3.07 155 672 0011 0254 0.004 27852 2 45
CAULOI  GCA_020161365.1  d_ Bacteriaip_| » e C ;_Caulobacterss__ 100 0 443 25 669 0.048 0.093 0.589 4627825 3 55
HYPHOI GCA_020161405.1  d_ Bacteriap_| . ,_C: » UBA1942;s__ 98.43 032 298 6 394 0844 0.006 2208 4138107 0 3
REYRI  GCA _020160955.1  d_Bacteriap_| . ] ] . Reyrancll 89.96 7.34 5.08 210 70 0.057 0.090 0238 224063 3 53
REYR2  GCA_020160995.1  d_ Bacteria;p_| 1 | £ . Reyranellais_ Reyranella 91.04 601 571 258 653 0074 0.102 0.134 62018 1 53
ANDERS1 GCA_020161855.1  d_Bacteriap_ Proteobacteriaic__ ] . PALSA-92Ts__ 97.64 04 3.36 19 616 0.187 0175 0.029 25238 2 46
BEU1 GCA_020161915.1  d_ Bacteriazp_| e | P . Boseass 8L6 848 444 7 663 0.156 0319 0423 338238 0 a3
BELI2 GCA_020161975.1  d_ Bacteriap_| : | ] . Aig_ 8118 525 3.99 465 625 0.042 0.157 0.018 28432 0 42
BEII3 GCA_020161475.1  d_ Bacteria;p_| ) | £ . A PARLs_ 7621 L72 3.08 320 633 0017 1744 0.099 77102 0 4
BEI4 GCA_020161575.1  d_ Bacteriap Aig_PARLs 97.89 0 3.19 17 632 0.176 0.538 0014 26820 0 47
PHREAI  GCA 020161695.1  d_Bacteriap | . | ] | . 98.35 3.96 4.69 38 61.1 0.022 0273 0.103 133243 1 50
RHIZOl  GCA_020161035.1  d_Bacteriap_| : | | _Ami __Aminob 94.26 55 5.50 80 638 0.136 0.095 0.095 219213 3 48
RHIZO2 ~ GCA_020161665.1  d_Bacteriap_| ) ] P . _QFOROLs__ 88.41 212 339 2 60.6 0,035 0335 0.003 24536 0 a7
RHIZO3  GCA 020161625.1  d_Bacteriap | . u | . Shinella:s_ Shinella 78.53 6.03 6.98 935 63.6 0.010 0.169 0.037 149921 0 48
RHODOI  GCA_020161655.1  d_ Bacteriaip_| . | ] i s 100 035 408 2% 655 0321 0.141 0.848 3645270 0 a4
RHODO2  GCA_020161615.1  d_Bacteriap_ Proteobacteriaic__ ] ] ] - 99.09 119 487 26 619 0.084 0.534 0.009 25807 1 49
RHODO3 GCA_020160875.1  d_Bacteriap_| e | _Cif_]  Aig_ 912 227 376 236 622 0.153 0.046 0.185 153017 1 39
RICKI  GCA_020160775.1  d_ Bacteriap : | ] . GCA-24021 75.59 158 118 82 345 0.085 0075 0.052 17671 2 2
SPHINGI  GCA_020160755.1  d_ Bacteriayp . s s = L 99.98 1.56 431 20 65.1 0026 0014 0.607 600695 3 a7
ALICI  GCA _020161945.1  d_ Bacteriap G / 99.64 104 383 33 663 0.166 2,959 0.738 770970 1 48
OTTOl  GCA_020161215.1  d_ Bacteriap_| . G | ] . Otiowiass__ 93.66 5.56 452 250 67.1 0011 0276 0.004 26717 1 I3
OTTO2  GCA_020161715.1  d_Bacteriap_Proteobacteriaic_ G ] ] . Otiowiass_Ottowia 99.26 0.62 340 35 69.1 0372 4140 0424 121379 1 50
RAMI  GCA 020161775.1  d_Bacteriap_| e ] (1 ] L 99.84 006 436 32 66.1 0.778 0.536 1814 1832037 1 45
RUBRII  GCA 0201610651  d_ Bacteria;p_| e | | . Rubrivivaxis__ 99.52 0.05 6.29 41 712 0236 0.347 0.306 1259737 1 73
VITREOI  GCA_020161145.1  d_ Bacteriap_| ;e | (] ,_Vitreoscilla Ais_ 100 07 351 13 689 0397 4498 0.530 382529 1 46
CAPIA  NA d_ Bacteriap G 100 0.03 459 61 638 18.797 10.533 0.106 2411395 0 46
CAPIIA  NA d_ Bacteriazp_| e | 1l » 99.84 024 464 81 643 33.479 26824 49334 102762132 0 44
7001 GCA_020161115.1  d_ Bacteria;p_| e | _Zoogloeass_ 91.62 351 499 501 65.7 0.090 0.026 0.106 913411 4 59
LEG1 GCA_020161725.1  d_ Bacteria;p_| e L B 92.74 107 258 182 36.1 0.094 0.126 0.006 19591 1 27
LUTEIl  GCA _020161335.1  d_ Bacteriap e » » Lut - 96.89 0.71 3.56 252 69.9 0.002 0.309 0.011 49418 1 39
PSEUDOI  GCA_020160895.1  d_ Bacteriaip_| . G » » | 99.95 089 367 28 678 0416 0.730 3125 3964795 2 50
PSEUDO2 _GCA 020161075.1 _d_Bacteriap P G 99.02 0 2.99 6 696 1750 6111 1228 515369, 3 52

File at https://figshare.com/account/projects/90437/articles/13063874
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Table 2.

Module Description

Citrate cycle, second carbon oxidation, 2-oxoglutarate => oxaloacetate [PATH:map00020 map01200 map01100]

Citrate cycle (TCA cycle, Krebs cycle) [PATH:map00020 map01200 map01100]

Shikimate pathway, phosphoenolpyruvate + erythrose-4P => chorismate [PATH:map00400 map01230 map01100 map01110]
Fatty acid biosynthesis, initiation [PATH:map00061 map01212 map01100]

Glycolysis, core module involving three-carbon compounds [PATH:map00010 map01200 map01230 map01100]

Adenine ribonucleotide biosynthesis, IMP => ADP,ATP [PATH:map00230 map01100]

Guanine ribonucleotide biosynthesis IMP => GDP,GTP [PATH:map00230 map01100]

Inosine monophosphate biosynthesis, PRPP + glutamine => IMP [PATH:map00230 map01100]

Isoleucine biosynthesis, threonine => 2-oxobutanoate => isoleucine [PATH:map00290 map01230 map01100]

NADH:quinone oxidoreductase, prokaryotes [PATH:map00190]

beta-Oxidation, acyl-CoA synthesis [PATH:map00061 map00071 map01212 map01100]

F-type ATPase, prokaryotes and chloroplasts [PATH:map00190 map00195]

Valine/isoleucine biosynthesis, pyruvate => valine / 2-oxobutanoate => isoleucine [PATH:map00290 map00770 map01210 map01230 map01100 map01110]
CAM (Crassulacean acid metabolism), dark [PATH:map00620 map00710 map01200 map01100 map01120]

Cytochrome c oxidase, cbb3-type [PATH:map00190]

Cytochrome c oxidase, prokaryotes [PATH:map00190]

dTDP-L-rhamnose biosynthesis [PATH:map00521 map00523 map01100 map01130]

Leucine biosynthesis, 2-oxoisovalerate => 2-oxoisocaproate [PATH:map00290 map01210 map01230 map01100 map01110]
Phosphatidylethanolamine (PE) biosynthesis, PA => PS => PE [PATH:map00564 map01100]

PRPP biosynthesis, ribose 5P => PRPP [PATH:map00030 map00230 map01200 map01230 map01100]

Pyruvate oxidation, pyruvate => acetyl-CoA [PATH:map00010 map00020 map00620 map01200 map01100]
Semi-phosphorylative Entner-Doudoroff pathway, gluconate => glycerate-3P [PATH:map00030 map01200 map01100 map01120]
Threonine biosynthesis, aspartate => homoserine => threonine [PATH:map00260 map01230 map01100 map01110]
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Table 3.

Module_description

Glycolysis (Embden-Meyerhof pathway), glucose => pyruvate [PATH:map00010 map01200 map01100]
Citrate cycle (TCA cycle, Krebs cycle) [PATH:map00020 map01200 map01100]

Gluconeogenesis, oxaloacetate => fructose-6P [PATH:map00010 map00020 map01100]

Inosine monophosphate biosynthesis, PRPP + glutamine => IMP [PATH:map00230 map01100]

Citrate cycle, second carbon oxidation, 2-oxoglutarate => oxaloacetate [PATH:map00020 map01200 map01100]
Heme biosynthesis, plants and bacteria, glutamate => heme [PATH:map00860 map01100 map01110]
Tetrahydrofolate biosynthesis, GTP => THF [PATH:map00790 map00670 map01100]

Tryptophan biosynthesis, chorismate => tryptophan [PATH:map00400 map01230 map01100 map01110]
Ornithine biosynthesis, glutamate => ornithine [PATH:map00220 map01210 map01230 map01100]
Histidine biosynthesis, PRPP => histidine [PATH:map00340 map01230 map01100 map01110]

Pentose phosphate pathway (Pentose phosphate cycle) [PATH:map00030 map01200 map01100 map01120]
Lysine biosynthesis, succinyl-DAP pathway, aspartate => lysine [PATH:map00300 map01230 map01100]
Uridine monophosphate biosynthesis, glutamine (+ PRPP) => UMP [PATH:map00240 map01100]

Number of Attributes

51
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11
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