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 2 

ABSTRACT 29 

A grand challenge in microbial ecology is disentangling the traits of individual 30 

populations within complex communities. Various cultivation-independent approaches 31 

have been used to infer traits based on the presence of marker genes. However, marker 32 

genes are not linked to traits with complete fidelity, nor do they capture important 33 

attributes, such as the timing of expression or coordination among traits. To address this, 34 

we present an approach for assessing the trait landscape of microbial communities by 35 

statistically defining a trait attribute as shared transcriptional pattern across multiple 36 

organisms. Leveraging the KEGG pathway database as a trait library and the Enhanced 37 

Biological Phosphorus Removal (EBPR) model microbial ecosystem, we demonstrate 38 

that a majority (65%) of traits present in 10 or more genomes have niche-differentiating 39 

expression attributes. For example, while 14 genomes containing the high-affinity 40 

phosphorus transporter pstABCS display a canonical attribute (e.g. up-regulation under 41 

phosphorus starvation), we identified another attribute shared by 11 genomes where 42 

transcription was highest under high phosphorus conditions. Taken together, we provide 43 

a novel framework for revealing hidden metabolic versatility when investigating genomic 44 

data alone by assigning trait-attributes through genome-resolved time-series 45 

metatranscriptomics. 46 

 47 

 48 

 49 
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 3 

INTRODUCTION  52 

 A longstanding cornerstone of deterministic ecological theory is that the 53 

environment selects for traits. Traits may be defined as any physiological, morphological, 54 

or genomic signature that affects the fitness or function of an individual [1]. Trait-based 55 

approaches have become indispensable in macroecological systems to describe fitness 56 

trade-offs and the effects of biodiversity on ecosystem functioning [2–5]. Recently, trait-57 

based frameworks have been proposed as an alternative to taxonomy-based methods 58 

for describing microbial ecosystem processes [6, 7]. Connecting microbial traits and their 59 

phylogenetic distributions to ecosystem performance can provide powerful insights into 60 

the ecological and evolutionary dynamics underpinning community assembly, microbial 61 

biogeography, and organismal responses to changes in the environment [8–10]. 62 

Additionally, pinpointing the organismal distribution of traits and the selective pressures 63 

that enrich them may be leveraged to reproducibly and rationally engineer stable, 64 

functionally redundant ecosystems [11–15]. However, applying trait-based approaches to 65 

microbial communities is challenging due to the difficulty in identifying and measuring 66 

relevant ecological traits for a given ecosystem [16].  67 

 High-throughput sequencing technologies and multi-omics techniques have been 68 

used to describe the diversity, activity, and functional potential of uncultivated microbial 69 

lineages [17–20]. Improvements in bioinformatics algorithms, and in particular 70 

metagenomic binning methods, have allowed for genome-resolved investigations of 71 

microbial communities rather than gene-based analyses of assembled contigs [21]. 72 

These (meta) genomes are subsequently leveraged to detect the presence of key genes 73 

or pathways and predict specific traits of the whole community [22, 23]. Integrating 74 
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metatranscriptomics data addresses a key limitation, as expression patterns better reflect 75 

the actual functional dynamics of a trait compared to gene presence alone. Here, we 76 

present TbasCO, a software package and statistical framework for Trait-based 77 

Comparative ‘Omics to identify expression attributes. We adopt the terminology attribute 78 

as a hierarchically structured feature of a trait and assert that statistically similar 79 

transcriptional patterns of traits across multiple organisms be treated as attributes (Figure 80 

1). In this manner, the identification of expression-based attributes provides a high-81 

throughput and intuitive framework for extending trait-based methods to time-series 82 

expression patterns in microbial communities. We implement this trait-based approach to 83 

classify transcriptional attributes in a microbial community performing Enhanced 84 

Biological Phosphorus Removal (EBPR), a globally important biotechnological process 85 

implemented in numerous wastewater treatment plants (WWTPs).  86 

The fundamental feature of the engineered EBPR ecosystem is the decoupled and 87 

cyclic availability of an external carbon source and terminal electron acceptor. This cycling 88 

is often referred to as “feast-famine” conditions and provides a strong selective pressure 89 

for traits such as polymer cycling. Accumulation of intracellular polyphosphate through 90 

cyclic anaerobic-aerobic conditions ultimately results in net phosphorus removal and 91 

accomplishes the EBPR process [24, 25]. One of the most well-studied polyphosphate 92 

accumulating organisms (PAOs) belongs to the uncultivated bacterial lineage 93 

‘Candidatus Accumulibacter phosphatis’ (hereby referred to as Accumulibacter) [24, 26]. 94 

Numerous genome-resolved ‘omics methods have been used to investigate the 95 

physiology and regulation of this model PAO enriched in engineered lab-scale enrichment 96 

bioreactor systems [27–34]. However, novel and putative PAOs have been discovered 97 
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that remove phosphorus without exhibiting the hallmark traits of Accumulibacter [35–39]. 98 

Additionally, although these lab-scale systems are designed to specifically enrich for 99 

Accumulibacter, a diverse “flanking community” persists in these environments [27], and 100 

their ecological roles have largely remained unexplored. As a result, the general 101 

adaptations of microbial lineages inhabiting the EBPR community are not well 102 

understood. Using genome-resolved metagenomics and metatranscriptomics, we 103 

assembled 66 species-representative genomes spanning several significant EBPR 104 

lineages and identified the distribution of expression-based attributes. Using our novel 105 

trait-based comparative ‘omics approach, we show that while some expression attributes 106 

are distributed in few genomes, many are redundant and shared across many lineages. 107 

Furthermore, we find that a majority of core traits (as defined by the presence of marker 108 

genes) have multiple attributes, suggesting that identifying niche-differentiating 109 

expression attributes may be used to reveal a large hidden metabolic versatility when 110 

investigating genomic data alone. 111 

 112 

MATERIALS AND METHODS 113 

Metagenomic Assembly, Annotation, and Metatranscriptomic Mapping 114 

Three metagenomes sampled from an EBPR bioreactor with linked time-series 115 

metatranscriptomics data [40] were collected for metagenomic sequencing and 116 

assembled into 66 species-representative bins as described in the Supplemental 117 

Methods. All bins are greater than 75% complete and contain less than 10% 118 

contamination, with a large majority (44/66) >95% complete and <5% redundant as 119 

calculated by CheckM [41] (Table 1). Each bin was functionally annotated using the 120 
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KEGG database through an HMM-based approach under KEGG release 93.0 using the 121 

command-line KofamKOALA pipeline [42, 43], selecting annotations that were significant 122 

hits above the specific HMM threshold. This resulted in 117,657 total annotations with 123 

5,228 unique annotations. We used a metatranscriptomic dataset of six timepoints 124 

collected over a single EBPR cycle from Oyserman et al. 2016 [40], with three timepoints 125 

from the anaerobic phase and three from the aerobic phase. Raw reads were quality 126 

filtered using BBtools suite v38.07 [44]  and ribosomal rRNA was removed from each 127 

sample using SortMeRNA [45]. Reads from each sample were mapped against the 128 

concatenated set of open reading frames from all 66 bins using kallisto v0.44.0 and 129 

parsed using the R package tximport [46, 47].  130 

TbasCO Method Implementation  131 

The TbasCO package identifies expression-based attributes of predefined traits 132 

using time-series (meta)transcriptomics data (Figure 1). In general, traits are defined by 133 

the presence of a pathway or other collection of genes from an externally provided 134 

database. A weighted distance metric between expression patterns for all genes that 135 

define a trait is calculated, and statistically significant similarity is determined based on 136 

the background distribution of a trait of equal size. Thereby, two or more organisms with 137 

a statistically similar expression pattern for a trait share an attribute.  138 

Input and Preprocessing 139 

The input that is accepted by TbasCO is a table of RNAseq counts in csv format. 140 

Each row is treated as gene that has columns for the gene/locus name, counts per 141 

sample, the genome the gene belongs to, and the KEGG Orthology (KO) identifier. The 142 

RNAseq counts table may be provided pre-normalized or can be normalized by the 143 
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program. The default normalization method is designed to minimize compositional bias in 144 

the differential abundance and activity of constituent populations in metatranscriptomics 145 

studies. Raw RNA expression counts are therefore normalized by genomic bin and 146 

sample [40]. These normalization factors are then applied to each sample for each bin 147 

individually. Alternatively, custom normalization methods may be implemented. After 148 

normalization, a pruning step is introduced to filter genes that have zero counts or a mean 149 

absolute deviation of less than one. To make inter-organismal comparisons of the relative 150 

contribution of a gene to total measured organismal RNA, an additional statistic is 151 

calculated ranking the expression counts from each sample from highest to lowest. The 152 

ranks for each sample are then normalized by dividing them by the maximum rank value 153 

in that sample. This normalization is applied to make ranks comparable between 154 

organisms with different genome sizes.  155 

To assess the statistical significance of the calculated distances between the 156 

expression patterns of all genes within a trait, random background distributions are 157 

created for 1) individual genes and 2) traits of N genes. For individual genes, three 158 

different distributions were calculated, based on the distances between randomly 159 

sampled open reading frames, randomly sampled genes with an annotation (but not 160 

necessarily the same annotation), and randomly sampled genes with the same 161 

annotation. The background distribution for a trait of N genes is based on the distances 162 

between randomly composed sets of genes. For each gene pair, two distances metrics 163 

are calculated, the Pearson Correlation (PC) and the Normalized Rank Euclidean 164 

Distance (NRED). In practice, it is often found that a certain annotation is assigned to 165 

multiple genes in the same genome. If this occurs, there is an option to use either a 166 
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random selection, or the highest scoring pair. In the latter case, a correction for multiple 167 

testing is implemented. This process is repeated N-times, where N equals the number of 168 

genes in any given trait. The background distribution for traits is determined by first 169 

randomly sampling two genomes, identifying the overlap in annotations, and finally 170 

artificially defining a trait containing N annotations. For each annotation in the trait, the 171 

distances are calculated between genome A and genome B, as described in the previous 172 

section. As modules vary in size, this process is repeated for traits of different sizes.  173 

Identifying Attributes  174 

 TbasCO provides both a cluster-based and pair-wise approach to identify 175 

attributes. In both methods, the distance between expression patterns of a trait between 176 

two genomes is first calculated based on a composite Z score of the PC and NRED for 177 

each gene composing the trait. In the cluster-based analysis, the distances are 178 

subsequently clustered using the Louvain clustering algorithm to identify trait attributes. 179 

To determine if an attribute is significantly similar or not, a one-sided T-test between the 180 

attribute and the random background distribution of traits is conducted. This is done for 181 

both cluster-based and model-based comparisons. Many traits are complex and 182 

represented in databases such as KEGG by numerous alternative routes. To deal with 183 

this complexity, each pathway is expanded into the Disjunctive Normative Form (DNF). 184 

Due to the extremely high number of DNFs for some traits, attributes are pruned based 185 

on a strict requirement of 100% completion.  186 

Distance Calculations 187 

To determine the similarity in expression patterns between genes, two distance 188 

metrics are calculated: the PC between RNAseq counts across samples, and the NRED, 189 
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where ranks are a measure of relative abundance of RNA in each sample, normalized 190 

the abundance of RNA in the corresponding genome. These distance scores are 191 

converted to Z scores using a background distribution of distances between randomly 192 

sampled genes as previously described. To determine statistically significant similarities 193 

between the expression patterns of a trait between two genomes, a composite distance 194 

score is calculated based on the distance between genes in two different genomes. For 195 

each of these genes the PC and NRED are calculated and transformed to Z scores and 196 

combined as (-1*PC + NRED). The distance of the trait between two genomes is defined 197 

as the average of these composite distance scores, and then normalized by the Jaccard 198 

distance between these genomes. 199 

(−#$	 + '()*) ∗ (1 − ./) 200 

Statistical Assessment of Trait Attributes 201 

In both model-based and pair-wise approaches, the distance is first calculated 202 

between expression patterns of a trait between two genomes based on the composite Z 203 

score of the PC and NRED for each gene composing the trait. In the clustering-based 204 

analysis, the distances are subsequently clustered using the Louvain clustering algorithm 205 

to identify trait-attributes. To determine if attributes are significantly similar, a one-sided 206 

T-test is conducted between the attribute and a background distribution of randomly 207 

sampled traits with the same number of genes. To derive the random background 208 

distributions, multiple distributions are calculated ranging in gene numbers from the 209 

smallest trait to the largest trait in the dataset as described previously. For each 210 

background distribution, N (default: 10,000) traits are randomly composed. The distances 211 

between these artificial traits are calculated in the same way as for the actual traits. In 212 
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addition to a statistical pruning step, the attributes are pruned based on a strict 213 

requirement of 100% completion of each DNF module. A benchmarking analysis to 214 

examine the effects of different parameters was conducted to determine their influence 215 

on the number of attributes identified and may be found in the supplementary materials 216 

(Supplementary Table 1, Supplementary Figures 2-4).  217 

Data and Code Availability  218 

 All supplementary files and figures including functional annotations and 219 

transcriptome count files are available at https://figshare.com/projects/EBPR_Trait-220 

Based_Comparative_Omics/90437. All 64 flanking genomes have been deposited in 221 

NCBI at Bioproject PRJNA714686. The remaining two reassembled Accumulibacter 222 

genomes have not been deposited in NCBI to not confuse between the original CAPIA 223 

and CAPIIA assemblies [27, 28]. These contemporary assemblies are available at the 224 

Figshare repository. The three metagenomes and six metatranscriptomes used in this 225 

study are available on the JGI/IMG at accession codes 3300026302, 3300026286, 226 

3300009517, and 3300002341-46, respectively. All code for performing metagenomic 227 

assembly, binning, and annotation can be found at 228 

https://github.com/elizabethmcd/EBPR-MAGs. The TbasCO method has been 229 

implemented as a reproducible R package and can be accessed at 230 

https://github.com/Jorisvansteenbrugge/TbasCO.  231 

 232 

 233 

 234 

 235 
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RESULTS AND DISCUSSION 236 

Reconstructing a Diverse EBPR SBR Community 237 

To explore trait-based transcriptional dynamics of a semi-complex microbial 238 

community, we applied genome-resolved metagenomics and metatranscriptomics to an 239 

EBPR sequencing-batch reactor (SBR) ecosystem (Figure 2). We previously performed 240 

a metatranscriptomics time-series experiment over the course of a normally operating 241 

EBPR cycle to investigate the regulatory controls of Accumulibacter gene expression [40]. 242 

In this experiment, six samples were collected for RNA sequencing: three from the 243 

anaerobic phase and three from the aerobic phase (Figure 2A). Additionally, three 244 

metagenomes were collected from the same month of the metatranscriptomic 245 

experiment, including a sample from the same date of the experiment. We reassembled 246 

contemporary Accumulibacter clade IIA and IA genomes that were previously assembled 247 

from the same bioreactor system [27, 28]. The genomes of Accumulibacter clades IA and 248 

IIA are similar by approximately 85% average-nucleotide identity [28], and although this 249 

is well below the common species-resolved cutoff of 95% [48], we refer to the clade 250 

nomenclature defined based on polyphosphate kinase (ppk1) sequence identity [49, 50]. 251 

During the experiment, the bioreactor was highly enriched in Accumulibacter clade IIA, 252 

accounting for approximately 50% of the mapped metagenomic reads and the highest 253 

transcriptional counts (Figures 2B and 2C) [40]. Whereas Accumulibacter clade IA 254 

exhibited low abundance patterns but was within the top 10 genomes with the highest 255 

total transcriptional counts (Figure 2C).  256 

Although this bioreactor system was highly enriched in Accumulibacter, a diverse 257 

flanking community persisted and was active in this ecosystem (Figure 2B, C). We 258 
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reconstructed representative population genomes of the microbial community of the SBR 259 

system, resulting in 64 metagenome-assembled genomes (MAGs) of the flanking 260 

community. Interestingly, we recovered genomes of experimentally verified and putative 261 

PAOs, including two Tetrasphaera spp. (TET1 and TET2) ‘Candidatus Obscuribacter 262 

phosphatis’ (OBS1), and Gemmatimonadetes (GEMMA1). Pure cultures of Tetrasphaera 263 

have been experimentally shown to cycle polyphosphate without incorporating PHA [36], 264 

deviating from the hallmark Accumulibacter PAO model. The first cultured representative 265 

of the Gemmatimonadetes phylum Gemmatimonas aurantiaca was isolated from an SBR 266 

simulating EBPR and was shown to accumulate polyphosphate through Neisser and 267 

DAPI staining [51]. Additionally, Ca. Obscuribacter phosphatis has been hypothesized to 268 

cycle phosphorus based on the presence of genes for phosphorus transport, 269 

polyphosphate incorporation, and potential for both anaerobic and aerobic respiration 270 

[37], and has also been enriched in photobioreactor EBPR systems [52]. Both 271 

Tetrasphaera spp. TET1 and TET2, OBS1, and GEMMA1 groups exhibit higher relative 272 

abundance patterns than CAPIA but have similar relative transcriptional levels (Figure 2B 273 

and 2C, Table 1).   274 

Numerous SBR MAGs among the Actinobacteria and Proteobacteria contain the 275 

metabolic potential for phosphorus cycling based on the presence of the high-affinity 276 

phosphorus transporter pstABCS system, polyphosphate kinase ppk1, and the low-277 

affinity pit phosphorus transporter (Supplementary Figure 5). Additionally, select MAGs 278 

within the Alphaproteobacteria, Betaproteobacteria, and Gammaproteobacteria contain 279 

all required subunits for polyhydroxyalkanoate synthesis (Supplementary Figure 5). Other 280 

abundant and transcriptionally active groups in the SBR ecosystem that are not predicted 281 
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to be PAOs are members of the Bacteroidetes such as CHIT1 within the 282 

Chitinophagaceae, and Cytophagales members Runella sp. RUN1 and Leadbetterella sp. 283 

LEAD1 (Figure 2B and 2C, Table 1). Interestingly, an uncharacterized group within the 284 

Bacteroidetes BAC1 contributed the third most to the pool of transcripts (Figure 2C), and 285 

did not show phylogenetic similarity to MAGs assembled from Danish full-scale 286 

wastewater treatment systems [39] (Supplementary Figure 1). Other groups from which 287 

we assembled MAGs for that do not exhibit clear roles in EBPR systems were Chloroflexi 288 

ANAER1 and HERP1 MAGs, Armatimonadetes FIMBRI1, Firmicutes FUSI1, and 289 

Patescibacteria SACCH1. Members of the Chloroflexi are filamentous bacteria that have 290 

been associated with bulking and foaming events in full-scale WWTPS [53–55], but also 291 

aid in forming the scaffolding around floc aggregates and degrade complex polymers [55–292 

57]. The Patescibacteria (formerly TM7) are widespread but low abundant members of 293 

natural and engineered ecosystems, contain reduced genome sizes, and may contribute 294 

to filamentous bulking in activated sludge [21, 58]. To summarize, lab-scale SBRs 295 

designed to enrich for Accumulibacter contain diverse flanking community members [27, 296 

32], but their ecological functions and putative interactions remain to be fully understood 297 

in the context of the EBPR ecosystem.   298 

Identifying Expression-Based Trait Attributes Among the EBPR SBR Community 299 

with TbasCO 300 

Current metatranscriptomics approaches often employ either a gene-centric [31, 301 

59–61] or genome-centric approaches [40, 62–64]. In both approaches, highly, 302 

differentially, or co-expressed genes are identified and tested for enrichment of specific 303 

functions. Enrichment- or annotation-based approaches are employed in numerous 304 
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metatranscriptomics tools such as MG-RAST, MetaTrans, SAMSA2, COMAN, IMP, and 305 

Anvi’o [65–70]. Here, we expand on the use of molecular markers as traits by defining 306 

expression attributes by leveraging a priori knowledge from predefined trait libraries, such 307 

as the KEGG database [71], to statistically assess inter-species expression patterns of 308 

genes that together form a trait (Figure 1). First, our results showed that there is 309 

statistically significant transcriptional conservation of genes at the community level; genes 310 

that share an annotation were significantly more similar than expected using two different 311 

distance metrics (NRED: p-value < 2.2e-16, PC: p-value < 2.2e-16). Extending this 312 

statistical analysis to the trait level, we identified 1674 attributes distributed across the 66 313 

genomes. On average, we identified 9.12 genomes per attribute (SD - 5.22), with a 314 

minimum of 3 genomes and a maximum of 35 (Figure 3A). Based on these statistics, we 315 

defined redundant attributes as those two standard deviations above the mean (19 316 

genomes). With this cutoff applied, we identified 79 redundant trait attributes mostly 317 

belonging to pathways among carbohydrate metabolism, purine metabolism, and fatty 318 

acid metabolism categories (Table 2). Of 290 traits, we identified 97 traits with two or 319 

more attributes identified (33%). Of these, traits in 10 or more genomes were twice as 320 

likely to have two or more attributes (65%), suggesting that divergent expression patterns 321 

for a trait are common, and may represent a niche-differentiating feature (Figure 3A). 322 

Henceforth, when multiple attributes are identified for a trait, we refer to these as niche-323 

differentiating attributes.  324 

From the ecosystem perspective, a clear phylogenetic signal is observed in the 325 

distribution of attributes, as genomes cluster together by shared trait attributes by phylum 326 

with some exceptions, such as genomes belonging to the Bacteroidetes, Actinobacteria, 327 
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and Proteobacteria clustering together, respectively (Figure 3B). For simplicity, we filtered 328 

the network to only include nodes with more than 5 connections. Highly redundant trait 329 

attributes belonged to modules in the lipid metabolism, energy metabolism, and 330 

nucleotide metabolism KEGG functional categories. In contrast, more specialized trait 331 

attributes on the periphery of the network or amongst group-specific clusters such as 332 

within the Actinobacteria or subsets of the Proteobacteria belonged to amino acid 333 

metabolism, biosynthesis of terpenoids and polyketides, metabolism of cofactors and 334 

vitamins, and carbohydrate metabolism KEGG modules. Pathways of note that showed 335 

a high level of redundancy include the TCA cycle, isoleucine biosynthesis, acyl-CoA 336 

synthesis, threonine biosynthesis, and cytochrome c oxidase activity (Table 2). Large 337 

pathways with hundreds of possible routes such as glycolysis, the TCA cycle, 338 

gluconeogenesis, and the pentose phosphate pathway are not included in the main 339 

network and are displayed as individual networks (Supplementary Figure 6).  340 

 We next explored the distribution of non-redundant attributes (e.g. 3-18 genomes) 341 

(Figure 3A). A total of 796 trait attributes with low redundancy were identified belonging 342 

to pathways involved in carbohydrate cofactor and vitamin metabolism including 343 

glycolysis, gluconeogenesis, parts of the TCA cycle, tetrahydrofolate biosynthesis, 344 

tryptophan biosynthesis, and the pentose phosphate pathway (Table 3). Different sets of 345 

low redundancy trait attributes were identified within respective phyla (Supplementary 346 

Figure 7). Between genomes belonging to the Actinobacteria, Alphaproteobacteria, 347 

Bacteroidetes, Betaproteobacteria, and Gammaproteobacteria, low redundancy 348 

attributes (belonging to less than half of the total genomes within the phylum) include 349 

carbohydrate metabolism, amino acid metabolism and metabolism of cofactors and 350 
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vitamins (Supplementary Figure 7). Redundant trait attributes within individual phyla 351 

belong to core energy metabolism pathways, fatty acid biosynthesis, and carbohydrate 352 

metabolism. However, even within individual phyla,  non-redundant attributes include 353 

different amino acids and cofactors (Extended Table 1 - available on Figshare 354 

https://figshare.com/articles/dataset/Lineage-355 

Specific_Core_and_Niche_Differentiating_Traits/15001200).  356 

 As noted previously, one of the most striking findings is that a majority, 65%  of 357 

traits present in 10 or more genomes have multiple expression attributes. Thus, it seems 358 

that while the presence of marker genes suggests many organisms share a particular 359 

trait, the presence of niche-differentiating expression profiles suggest an alternative story, 360 

that there is a level of hidden metabolic diversity. For example, central carbon metabolism 361 

and energy pathways such as the TCA cycle, glycolysis, gluconeogenesis, and the 362 

pentose phosphate pathway are oftentimes considered core traits when only analyzing 363 

the presence and/or absence of individual markers belonging to these pathways. Among 364 

over 1000 high-quality MAGs assembled from full-scale Danish WWTPs, the TCA cycle 365 

and pentose phosphate pathway are highly represented among the abundant 366 

microorganisms, with glycolysis less so [39]. Whereas the TCA cycle and pentose 367 

phosphate pathway are present among a high number of genomes in the EBPR SBR 368 

community, different routes or parts of these pathways have niche-differentiating 369 

distributions (Supplementary Figure 4, Tables 2 and 3). These finer-scale differences in 370 

expression of “core” traits may explain the persistence of a diverse community when 371 

solely fed acetate, as different lineages could employ similar carbon utilization pathways 372 

differently or in more versatile ways. Another salient aspect of this analysis is the 373 
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astonishingly high number of possible routes within individual pathways here represented 374 

by their Disjunctive Normal Forms. For example, accounting for all alternative routes and 375 

enzymes, the glycolysis pathway has 100s of possible routes. Layering upon this many 376 

expression attributes reveals a large hidden metabolic versatility.  377 

Dimensionality of the High-Affinity Phosphorus Transporter System PstABCS  378 

 The EBPR ecosystem is characterized by its highly dynamic phosphorus cycles. 379 

To explore how different lineages respond to fluctuating phosphorus concentrations, we 380 

explored the expression-based attributes for the KEGG module of the high-affinity 381 

phosphorus transporter pstABCS (Figure 4). The pstABCS system is an ABC-type 382 

transporter that strongly binds phosphate under phosphorus-limiting conditions; 383 

therefore, it would be expected that the highest expression levels would be at the end of 384 

the aerobic cycle [72]. In contrast, we found that expression of the pstABCS was 385 

characterized by two different trait attributes. In the first attribute shared by 14 community 386 

members, all components of pstABCS displayed the highest activity towards the end of 387 

the aerobic cycle, when phosphorus concentrations were depleted (Figure 4, Attribute 1). 388 

Conversely, 11 community members displayed an alternate attribute where the highest 389 

activity of pstABCS was at the transition from anaerobic to aerobic phases when 390 

phosphorus concentrations are highest (Figure 4, Attribute 2).   391 

These results are in agreement with previous results showing that Accumulibacter 392 

clade IIC has a canonical pstABCS expression pattern (as in Figure 4, Attribute 1) , 393 

whereas the Accumulibacter clade IA has a non-canonical expression (as in Figure 4, 394 

Attribute 2) [31]. By assigning trait attributes, we are able to extend these findings beyond 395 

Accumulibacter to other flanking community members in the SBR ecosystem suggesting 396 

.CC-BY 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted December 5, 2021. ; https://doi.org/10.1101/2021.12.04.471239doi: bioRxiv preprint 

https://doi.org/10.1101/2021.12.04.471239
http://creativecommons.org/licenses/by/4.0/


 18 

that there are conserved ecological pressures driving niche differentiating expression 397 

patterns in pstABCS within the EBPR community.  398 

Distribution and Expression of Truncated Denitrification Steps Among EPBR 399 

Community Members 400 

 Understanding the induction of denitrification is an important ecosystem property 401 

linked to the redox status of an environment. In EBPR communities, there are many 402 

diverse and incomplete denitrification pathways, distributed across many lineages 403 

denitrification steps expected in denitrifying systems (Figure 5). Among all 66 MAGs, we 404 

did not identify any single MAG with a complete denitrification pathway consisting of the 405 

genetic repertoire necessary to fully reduce nitrate to nitrogen gas (Supplementary Figure 406 

5). Instead, we identified multiple groups of organisms with truncated denitrification 407 

pathways, with steps distributed among cohorts of community members (Figure 5).   408 

 For the first steps of reducing nitrate to nitrite, we explored expression attributes 409 

of the napAB and narGH pathways (Figure 5B, C). For the narGH pathway, two attributes 410 

were identified (Figure 5B). The first narGH attribute was characterized by high 411 

expression in the anaerobic phase, with decreasing activity by the second time point of 412 

the anaerobic phase. Genomes containing this attribute included the experimentally 413 

verified and putative PAOs Tetrasphaera (TET1 and TET2) and Ca. Obscuribacter 414 

(OBS1), respectively. The second attribute was exhibited among members of the 415 

Actinobacteria (PROP2, PHYC2, PROP3, and NANO1), Proteobacteria (BEIJ4), and 416 

Bacteroidetes (BAC1). The attribute identified for napAB was also more highly expressed 417 

anaerobically and included CAPIA, CAPIIA, ALIC1, REYR2, RUBRI1, and BEIJ3. 418 

Interestingly, this napAB attribute had expression patterns that quickly decreased in the 419 
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first aerobic time point, suggesting a tighter regulation than Attribute 1 for narGH. 420 

Together, this suggests that the regulation of denitrification within the EBPR ecosystem 421 

is a niche-differentiating feature whereby the induction of denitrification pathways occurs 422 

either anaerobically or only after anaerobic carbon contact.  423 

 A smaller cohort contained the genetic repertoire to reduce nitrite to nitrogen gas 424 

and exhibited hallmark anaerobic-aerobic expression patterns (Figure 5E) These 425 

members within the Proteobacteria (OTTO2, BEIJ3, VITREO1, and ZOO1) contained the 426 

nirS nitrite reductase, the norBC nitric oxide reductase, and nosZ, and showed highest 427 

expression of these subunits towards the beginning of the anaerobic cycle, slowly 428 

decreasing over the aerobic period to their lowest in the end of the aerobic cycle. Although 429 

BEIJ2 was lacking the norBC system, it contained the nirS nitrite reductase and nosZ 430 

subunit, and exhibited similar expression patterns to others in this cohort. Other 431 

Proteobacteria lineages only contained the norBC subunits but were expressed in similar 432 

fashions (RHODO2, FLAVO1, RHIZO1, and LEAD1) (Figure 5D). Accumulibacter clades 433 

IA and IIA as well as ALIC1 were the only lineages with near-complete denitrification 434 

pathways. These lineages contained the napAB nitrate reductase system as mentioned 435 

above, the nirS nitrite reductase, norB (missing a confident hit for the norC subunit), and 436 

nosZ. These three lineages also exhibited hallmark upregulation of all steps in the 437 

anaerobic phase, with decreased activity after aerobic contact (Figure 5F).  438 

 Interestingly, Accumulibacter clade IA exhibited a higher magnitude of expression 439 

of denitrification steps when activity levels were normalized relative to clade IIA, 440 

supporting the hypothesis that denitrification is a niche-differentiating feature among 441 

clades [28, 31, 73], and possibly a strain-specific trait since denitrification traits cannot be 442 
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predicted based on ppk1 clade designations [32]. For example, independent observations 443 

in differences among denitrification activities among strains within Accumulibacter clade 444 

IC are inconsistent [34, 74]. Within the same bioreactor environment, coexisting 445 

Accumulibacter clades differ between denitrification abilities and expression profiles [31, 446 

33, 75]. Truncated denitrification pathways have also been previously shown to be 447 

distributed among community members, with the complete denitrification genetic 448 

repertoire only present in few members [33, 75], which could be due to extensive 449 

horizontal gene transfer of genes comprising denitrification steps [75, 76]. Although this 450 

experiment was not conducted under denitrifying conditions, our approach could be 451 

applied to denitrifying EBPR systems to further understand the distribution of 452 

denitrification traits among community members and how to selectively enrich for diverse 453 

DPAOs.  454 

Biosynthetic Potential and Expression Dynamics of Amino Acid and Vitamin 455 

Synthesis Pathways 456 

 Although SBRs are designed to enrich for Accumulibacter by providing acetate as 457 

the sole carbon source, a diverse flanking community persists in these setups [27, 75]. 458 

One hypothesis for the persistence of flanking community members may be cooperative 459 

interactions due to underlying auxotrophies of amino acid and vitamin biosynthetic 460 

pathways in Accumulibacter. Amino acids and vitamin cofactors are metabolically 461 

expensive to synthesize, and widespread auxotrophies have been widely documented 462 

among microbial communities [77, 78]. Specifically, auxotrophies of vitamin cofactors 463 

have been shown to fuel bacterial and cross-kingdom interactions with de novo bacterial 464 

and cross-kingdom interactions with de novo synthesizers [79, 80]. To explore this 465 
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hypothesis in the EPBR SBR community, we analyzed the presence of amino acid and 466 

vitamin biosynthetic pathways and their expression patterns among the top 15 genomes 467 

based on transcript abundance (Figure 6).  468 

 Within Accumulibacter, there are a few key vitamin cofactor and amino acid 469 

auxotrophies that could fuel potential interactions with flanking community members. Both 470 

Accumulibacter clade genomes are missing the riboflavin pathway for FAD cofactor 471 

synthesis, as well as the pathways for serine and aspartic acid (Figure 6A). The 472 

biosynthetic pathway for aspartic acid is distributed among members of the Bacteroidetes 473 

and Proteobacteria, whereas only TET2 contains the pathway for serine synthesis (Figure 474 

5A). The lack of serine biosynthesis pathways in Accumulibacter and other flanking 475 

genomes seems striking given that serine is one of the least metabolically costly amino 476 

acids to synthesize [81]. Interestingly, Accumulibacter clade IIA does not contain the 477 

biosynthetic machinery for thiamine and pantothenate synthesis, whereas clade IA does 478 

(Figure 6A). Only the CAULO1, HYPHO1, and PSEUDO1 genomes within the 479 

Proteobacteria can synthesize thiamine, whereas several other members can synthesize 480 

pantothenate (Figure 6A). The absence of the pantothenate biosynthetic pathway in 481 

Accumulibacter CAP IIA is particularly interesting given that coenzyme A is essential for 482 

polyhydroxyalkanoate biosynthesis, which fuels the polymer cycling PAO phenotype of 483 

Accumulibacter [24].    484 

 In addition to flanking community members potentially supporting the growth of 485 

Accumulibacter due to underlying auxotrophies, the reciprocal logic may be possible as 486 

well. Both Accumulibacter clades contain the pathways for synthesizing tyrosine and 487 

phenylalanine, which are missing in a majority of the top 15 active flanking genomes 488 
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(Figure 6A). Only two other members within the Proteobacteria can synthesize tyrosine 489 

and phenylalanine, where RAM1 can synthesize both and PSEUDO1 only phenylalanine. 490 

Interestingly, phenylalanine and tyrosine are the second and third most metabolically 491 

expensive amino acids to synthesize, respectively, with tryptophan the most costly [81]. 492 

Additionally, a few highly active flanking community members lack the biosynthetic 493 

machinery for several vitamin cofactors and amino acids, such as FLAVO1 and BAC3 494 

within the Bacteroidetes and the putative PAO Ca. Obscuribacter phosphatis OBS1 495 

(Figure 6A). Particularly, RAM1 within the Proteobacteria is missing the biosynthetic 496 

machinery for all vitamin cofactors but can synthesize most amino acids including the 497 

most metabolically expensive as mentioned above.  498 

 We next analyzed the distribution of trait-attributes of vitamin and amino acid 499 

pathways among these genomes to understand how these biosynthetic pathways are 500 

expressed similarly or differently in the EBPR SBR ecosystem (Figure 6B and C). 501 

Members of the Proteobacteria containing thiamine and cobalamin biosynthetic pathways 502 

all express these traits similarly (Figure 6B). However, the pantothenate synthesis 503 

pathway contains two trait-attributes and is expressed differently among two cohorts. In 504 

the first attribute, RUN1, TET1, CAULO1, CAPIA, and PSEUDO1 express the 505 

pantothenate pathway similarly. However, OBS1 and TET2 express the pantothenate 506 

pathway differently (Figure 6B). Because tetrahydrofolate can be synthesized through 507 

different metabolic routes, we analyzed the differences in trait attribute expression for all 508 

routes in genomes that contained sufficient coverage of this trait. Members of the 509 

Bacteroidetes and Proteobacteria mostly cluster together among tetrahydrofolate 510 

attributes, whereas the TET1 and TET2 genomes are differentiated (Figure 6B).  511 
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Expression of various groups of amino acids show more differentiated patterns of 512 

expression for genomes with these pathways. Several amino acids also contain different 513 

metabolic routes for biosynthesis, and we analyzed all trait attributes for each amino acid 514 

for all routes grouped by type (Figure 6C). For the charged amino acids arginine, histidine, 515 

and lysine, members of the Proteobacteria and Bacteroidetes cluster within their 516 

phylogenetic groups, respectively, with lysine and histidine expressed differently among 517 

these groups (Figure 6C). In contrast, arginine is expressed similarly among all 518 

Proteobacteria genomes. Among the polar charged amino acids, TET2 is the only 519 

genome among the top 15 genomes that contains the metabolic pathway to synthesize 520 

serine (Figure 6A). Several groups contain the pathway for threonine synthesis, and 521 

expression of different threonine routes are differentiated among the Proteobacteria, 522 

Bacteroidetes, and Tetrasphaera spp., but mostly clusters phylogenetically (Figure 6C). 523 

Notably, the expression patterns for the cysteine and proline biosynthetic pathways do 524 

not cluster phylogenetically, such as both Tetrasphaera genomes expressing the proline 525 

pathway more similarly to other Proteobacteria and Bacteroidetes (Figure 6C). The few 526 

lineages that can synthesize tyrosine and phenylalanine (CAPIA, CAPIIA, RAM1, 527 

PSEUDO1) show different patterns of expression. These results show that beyond the 528 

presence or absence of key vitamin cofactor and amino acid biosynthetic pathways, 529 

EBPR SBR organisms also display coherent and differentiated patterns of expression for 530 

these traits, of which the functional consequences remain to be further understood.  531 

 532 

 533 

 534 
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CONCLUSIONS AND FUTURE PERSPECTIVES  535 

In this work, we applied a novel trait-based ‘omics pipeline to a semi-complex, 536 

engineered bioreactor microbial community to explore ecosystem-level and niche-537 

differentiating traits. Through assembling high-quality MAGs of the EBPR SBR 538 

community and using a time-series metatranscriptomics experiment, we were able to 539 

extend functional predictions and ecosystem inferences beyond hypotheses made from 540 

gene presence/absence data. Using our novel trait-based comparative ‘omics pipeline, 541 

we identified how similarities and differences in the expression of significant EBPR traits 542 

are conferred among community members such as phosphorus cycling, denitrification, 543 

and amino acid metabolism. Specifically, we demonstrate that traits with similar 544 

expression profiles may be clustered into attributes providing a new layer to trait-based 545 

approaches.   546 

We believe that identifying expression-based attributes will be a powerful tool to 547 

explore microbial traits in natural, engineered, and host-associated microbiomes. Outside 548 

of activated sludge systems, trait-based approaches could illuminate how similar 549 

secondary metabolite clusters are expressed among different species in a community [82, 550 

83], how auxotrophies for amino acid and vitamin cofactors govern interactions [84], how 551 

rhizosphere microorganisms respond to day-night cycles, and identify putative traits that 552 

universally exhibit ecosystem-level or niche-differentiating patterns across ecosystems 553 

[19, 23]. Importantly, our trait-based approach can be used to screen for expected 554 

expression patterns of a key trait compared to a model organism, and then prioritize 555 

specific microbial lineages for downstream experimental verification with techniques such 556 

as Raman-FISH [85, 86]. Overall, our trait-based comparative ‘omics pipeline is a novel 557 
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and high-throughput approach to understand how microbial traits connect to ecosystem-558 

level processes in diverse microbiomes.    559 
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FIGURE AND TABLE LEGENDS 857 

Figure 1. Overview of Trait-based Comparative Transcriptomics Approach 858 

In genome-resolved metagenomics approaches, representative MAGs are assembled 859 

from a microbial community of interest, and the presence and/or absence of key metabolic 860 

pathways are used to make inferences of metabolic potential and ecosystem processes. 861 

However, metagenomic data alone can only assess the metabolic potential of a given 862 

pathway, and do not provide other biologically relevant information such as the timing or 863 

induction of these traits. Using time-series metatranscriptomics, we developed a trait-864 

based comparative ‘omics (TbasCO) pipeline that statistically assesses the inter-865 

organismal differences in gene expression pattern of a given trait to cluster into trait 866 

attributes.   867 

 868 

Figure 2. Genome-Resolved Metatranscriptomics Approach of an EBPR System 869 

Application of a genome-resolved metatranscriptomics approach to a lab-scale 870 

sequencing batch reactor (SBR) designed to enrich for Accumulibacter. 1A) Schematic 871 

of the main cycle parameters and analyte dynamics of an SBR simulating EBPR. Six 872 

samples were taken for RNA sequencing within the cycle at time-points denoted by 873 

arrows. 1B) Phylogenetic identity and abundance patterns of 66 assembled MAGs from 874 

the EBPR system. The phylogenetic tree was constructed from concatenated markers 875 

contained in the GTDB-tk with muscle, calculated with RAxML,  and visualized in iTOL. A 876 

phylogenetic tree of all 66 MAGs with reference genomes and high-quality genomes from 877 

Singleton et al. constructed with concatenated markers from GTDB-tk are provided in 878 

Supplementary Figure 1. Sizes of circles represent abundance patterns of metagenomic 879 
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reads mapping back to genomes from the same day as the metatranscriptomic 880 

experiment and are not to scale. 1C) Transcriptional patterns of each MAG in the 881 

anaerobic and aerobic phases of the EBPR cycle. RNA-seq reads from each time-point 882 

were competitively mapped to all 66 assembled MAGs and counts normalized by 883 

transcripts per million (TPM). Total counts in the anaerobic and aerobic phases for each 884 

genome were averaged separately and plotted on a log scale. Order of MAGs from left to 885 

right mirrors the order of MAGs in the phylogenetic tree in 1B from the top of the circle 886 

going clockwise.  887 

 888 

Figure 3. Clustering and Distribution of Trait Attributes Across EBPR SBR 889 

Community Members. Using the TbasCO method, we identified expression-based trait 890 

attributes from predefined trait modules in the KEGG library and explored the distribution 891 

of these trait attributes across community members. A) Distribution of trait-attributes 892 

among sets of genomes. Bars represent the number of trait-attributes present in a set 893 

number of genomes and colored by KEGG module category. Among a total of 35 894 

genomes, trait attributes present between 3-18 genomes are designated as niche 895 

differentiating, whereas trait attributes present in 19 or greater genomes are designated 896 

as core trait attributes. Inset figure demonstrates the maximum number of attributes for 897 

the maximum number of genomes. B) Cytoscape network showing the connectedness of 898 

genomes to trait attributes. The network was filtered to only include nodes with more than 899 

5 connections, therefore filtering out both genomes with few trait attributes and trait 900 

attributes connected to less than 5 genomes. Genomes are represented as squares 901 

colored by phylum, and trait attributes are represented as circles colored by KEGG 902 
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category. The size of both the squares and circles represents the number of connections 903 

to that genome or trait attribute, respectively.   904 

 905 

Figure 4. Trait Attributes of the High-Affinity Phosphorus Transporter System 906 

pstABCS 907 

Using the TbasCO method, two trait attributes of the high-affinity phosphorus transporter 908 

system pstABCS were identified. The pstABCS system consists of a phosphate-binding 909 

protein and ABC-type transporter, and the corresponding KEGG orthologs for each 910 

subunit are shown. Timepoints 1-3 refer to the three anaerobic phase timepoints, and 911 

timepoints 4-6 refer to the three anaerobic phase timepoints (Figure 1). Expression values 912 

are log-transformed based on setting the lowest expression value within each genome 913 

across the time-series to 0 for each subunit. Specific subunits for some genomes in both 914 

attributes are missing to the high cutoff thresholds for annotations. However we kept 915 

genomes with 2/4 subunits to show similarities in expression profiles. The first pstABCS 916 

trait-attribute includes microbial lineages that exhibited the highest expression of all 917 

subunits towards the end of the aerobic cycle, when phosphate concentrations are 918 

expected to be lowest. This includes microbial lineages within the Actinobacteria, 919 

Proteobacteria, Gemmatimonadetes, and Chloroflexi. The second pstABCS trait-attribute 920 

includes lineages that exhibited highest expression of all subunits upon the switch from 921 

anaerobic to aerobic phases, or when phosphate concentrations are expected to be the 922 

highest. This includes lineages within the Actinobacteria and Proteobacteria.  923 

 924 

Figure 5. Expression Dynamics of Distributed Denitrification Routes 925 
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Expression of denitrification traits distributed among community members in the EBPR 926 

SBR ecosystem. Timepoints 1-3 correspond to the anaerobic phase and timepoints 4-6 927 

correspond to the aerobic phase as referenced in Figure 1. A) Complete denitrification 928 

pathway and associated genetic repertoire with each sequential step. B) Trait attributes 929 

of expression dynamics for community members with the narGH nitrate reductase 930 

system. This trait was the only denitrification trait identified with more than one attribute. 931 

C) Expression dynamics of the napAB nitrate reductase system. D) Expression dynamics 932 

of the norBC nitrous oxide reductase system. E) Expression of all steps of denitrification 933 

starting at nitrite reduction. F) Expression of the most complete denitrification route 934 

among three community members, with the norC subunit for nitrous oxide reduction 935 

missing. Note that OTTO1 only contains nirS but is included in this trait attribute because 936 

the expression dynamics are similar to that of the other three genomes for this subunit.  937 

 938 

Figure 6. Biosynthetic Potential Compared to Expression of Amino Acid and 939 

Vitamin Synthesis Pathways for Top 15 Expressed MAGs 940 

Biosynthetic potential and expression patterns of amino acid and vitamin pathways were 941 

analyzed for the top 15 genomes with the highest transcriptional counts (Table 1). A) For 942 

a pathway to be considered present for downstream analysis in the TbasCO pipeline, 943 

80% of the pathway had to be present in a genome. Thus, we used this cutoff criterion to 944 

discern whether a specific pathway was present or absent in a genome (with the 945 

expectation of methionine, as all genomes did not contain at least 80% of the subunits in 946 

the KEGG methionine synthase pathway, we inferred the presence of the methionine 947 

synthase as presence of this pathway). Orange colored boxes for cofactor biosynthesis 948 
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pathways represents the presence of that pathway, whereas grey infers absence. For 949 

amino acid biosynthetic pathways, amino acids are listed by their side chain groups – 950 

charged, polar, hydrophobic, and other. B) Mini-networks of vitamin co-factors. Squares 951 

are genomes with the colors matching the color bar in A. Nodes are attributes, where the 952 

colored nodes for the tetrahydrofolate attributes represent the different routes. C) Mini-953 

networks of amino acid biosynthesis pathways split by type. Colors of nodes for each 954 

amino acid represent the different routes for that pathway. Squares represent genomes 955 

with colors matching the color bar in A.  956 

 957 

Table 1. Genome quality statistics and relative abundance calculations for all 66 EBPR 958 

SBR MAGs. Genome code names match names used in all figures and within the text. 959 

Classifications were assigned using the GTDB-tk [87] and confirmed by comparing 960 

against select publicly available references and a subset of HQ MAGs from Singleton et 961 

al. 2021 [39]. Completeness and redundancy estimates and GC content were calculated 962 

by CheckM [41]. tRNA and rRNA predictions were performed with Barrnap as part of the 963 

Prokka software [88]. Relative abundance estimates reflect the proportion of reads 964 

mapped to the genome in that sample divided by the total number of reads mapped to all 965 

genomes as performed with SingleM. Table available at 966 

https://figshare.com/articles/dataset/EBPR_SBR_MAGs_Metadata/13063874.  967 

 968 

Table 2. KEGG Pathways for core trait-attributes present in greater than 19 genomes.  969 

Table 3. KEGG Pathways for differentiating trait-attributes present between 3 and 18 970 

genomes. 971 
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Figure 1. 972 
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Figure 2. 983 
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Figure 3. 994 
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Figure 4. 996 
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Figure 5. 1006 
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Figure 6.1010 
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Table 1.  1011 

 1012 

 1013 
File at https://figshare.com/account/projects/90437/articles/13063874  1014 
  1015 
 1016 
 1017 
 1018 

Code Genbank Accession Classification Completeness Contamination Size (Mbp) Contigs GC Abundance 2013-5-13 Abundance 2013-5-23 Abundance 2013-5-28 Total Transcriptional Reads Mapped Total rRNAs Total tRNAs
AUS1 GCA_020161845.1 d__Bacteria;p__Actinobacteriota;c__Actinobacteria;o__Actinomycetales;f__Dermatophilaceae;g__Austwickia;s__ 99.45 5.01 4.39 82 71.2 0.261 0.720 0.124 255331 3 61
PHYC1 GCA_020161815.1 d__Bacteria;p__Actinobacteriota;c__Actinobacteria;o__Actinomycetales;f__Dermatophilaceae;g__Phycicoccus;s__ 98.02 0.54 3.06 34 71 1.355 3.007 0.341 332509 1 49
PHYC2 GCA_020161155.1 d__Bacteria;p__Actinobacteriota;c__Actinobacteria;o__Actinomycetales;f__Dermatophilaceae;g__Phycicoccus;s__Phycicoccus 95.82 1.89 3.20 111 69.2 0.047 0.174 0.112 152031 1 52
TET1 GCA_020160805.1 d__Bacteria;p__Actinobacteriota;c__Actinobacteria;o__Actinomycetales;f__Dermatophilaceae;g__Tetrasphaera_A;s__ 98.42 0.54 3.75 57 67.9 0.446 0.436 0.507 1378316 2 47
TET2 GCA_020160795.1 d__Bacteria;p__Actinobacteriota;c__Actinobacteria;o__Actinomycetales;f__Dermatophilaceae;g__Tetrasphaera_A;s__Tetrasphaera_A 98.92 0.05 3.96 66 69.3 0.803 0.236 1.244 2538782 1 76
LEU1 GCA_020161315.1 d__Bacteria;p__Actinobacteriota;c__Actinobacteria;o__Actinomycetales;f__Microbacteriaceae;g__Leucobacter;s__ 96.06 2.05 3.01 74 63.5 0.272 0.083 0.093 99061 3 47
LEU2 GCA_020161175.1 d__Bacteria;p__Actinobacteriota;c__Actinobacteria;o__Actinomycetales;f__Microbacteriaceae;g__Leucobacter;s__Leucobacter 83.22 1.48 2.31 140 64.8 0.065 0.101 0.092 22050 2 44
SAL1 GCA_020160915.1 d__Bacteria;p__Actinobacteriota;c__Actinobacteria;o__Actinomycetales;f__Microbacteriaceae;g__Salinibacterium;s__ 97.81 0 2.93 8 67.2 0.335 0.142 0.559 178111 2 45
NANO1 GCA_020161245.1 d__Bacteria;p__Actinobacteriota;c__Actinobacteria;o__Nanopelagicales;f__;g__;s__ 99.14 3.68 4.29 95 72.7 0.106 0.047 0.172 64510 1 52
PROP1 GCA_020161795.1 d__Bacteria;p__Actinobacteriota;c__Actinobacteria;o__Propionibacteriales;f__Propionibacteriaceae;g__;s__ 91.04 0.91 3.47 67 69.3 0.063 0.108 0.206 100351 0 60
PROP2 GCA_020161755.1 d__Bacteria;p__Actinobacteriota;c__Actinobacteria;o__Propionibacteriales;f__Propionibacteriaceae;g__Propionicimonas;s__ 93.63 3.02 4.08 61 70.7 0.094 0.046 0.413 130384 3 52
PROP3 GCA_020161015.1 d__Bacteria;p__Actinobacteriota;c__Actinobacteria;o__Propionibacteriales;f__Propionibacteriaceae;g__Propionicimonas;s__ 94.14 3.15 3.67 65 71.6 0.074 0.176 0.249 96105 0 51
FIMBRI1 GCA_020161505.1 d__Bacteria;p__Armatimonadota;c__Fimbriimonadia;o__Fimbriimonadales;f__Fimbriimonadaceae;g__Uphvl-Ar1;s__ 96.55 0 3.14 38 58.8 0.068 0.234 0.009 27830 3 48
BAC1 GCA_020161835.1 d__Bacteria;p__Bacteroidota;c__;o__;f__;g__;s__ 94.52 0 4.40 36 41.6 0.345 0.024 0.003 32140 4 42
BAC2 GCA_020162035.1 d__Bacteria;p__Bacteroidota;c__Bacteroidia;o__AKYH767;f__b-17BO;g__;s__ 99.05 0.48 3.17 31 29.6 0.757 0.010 0.015 46346 3 32
CHIT1 GCA_020161435.1 d__Bacteria;p__Bacteroidota;c__Bacteroidia;o__Chitinophagales;f__Chitinophagaceae;g__;s__ 99.01 0 4.19 10 46.3 0.183 0.174 3.613 3141341 0 34
CHIT2 GCA_020161535.1 d__Bacteria;p__Bacteroidota;c__Bacteroidia;o__Chitinophagales;f__Chitinophagaceae;g__Flavihumibacter;s__ 100 1.23 4.03 23 48.2 0.195 0.383 0.033 24003 3 40
SAP1 GCA_020160935.1 d__Bacteria;p__Bacteroidota;c__Bacteroidia;o__Chitinophagales;f__Saprospiraceae;g__;s__ 96.53 0.99 5.84 51 50.3 0.226 0.007 0.128 702648 3 36
SAP2 GCA_020160855.1 d__Bacteria;p__Bacteroidota;c__Bacteroidia;o__Chitinophagales;f__Saprospiraceae;g__OLB8;s__ 97.52 0.5 3.73 65 37.2 0.290 0.167 0.016 10636 3 34
LEAD1 GCA_020161355.1 d__Bacteria;p__Bacteroidota;c__Bacteroidia;o__Cytophagales;f__Spirosomaceae;g__Leadbetterella;s__ 99.11 0.6 4.81 17 37.7 0.136 0.002 0.858 1017458 2 36
RUN1 GCA_020161055.1 d__Bacteria;p__Bacteroidota;c__Bacteroidia;o__Cytophagales;f__Spirosomaceae;g__Runella;s__Runella 100 0 7.44 60 44.4 0.124 1.088 1.749 10725342 2 40
FLAVO1 GCA_020161455.1 d__Bacteria;p__Bacteroidota;c__Bacteroidia;o__Flavobacteriales;f__Flavobacteriaceae;g__Flavobacterium;s__ 99.29 0.35 3.08 18 32.5 0.030 0.002 0.742 3002991 3 36
CHRYS1 GCA_020161485.1 d__Bacteria;p__Bacteroidota;c__Bacteroidia;o__Flavobacteriales;f__Weeksellaceae;g__Chryseobacterium_A;s__Chryseobacterium_A 100 0.25 2.57 11 36.7 0.107 3.917 0.358 209940 2 35
BAC3 GCA_020162015.1 d__Bacteria;p__Bacteroidota;c__Bacteroidia;o__NS11-12g;f__UKL13-3;g__B1;s__ 100 0 3.74 45 41.1 0.445 0.892 0.693 9991372 0 34
IGNAVI1 GCA_020161395.1 d__Bacteria;p__Bacteroidota;c__Ignavibacteria;o__Ignavibacteriales;f__Ignavibacteriaceae_A;g__UTCHB3;s__ 97.27 0.55 4.07 21 42.2 0.163 0.635 0.025 58496 3 44
RTHERM1 GCA_020160835.1 d__Bacteria;p__Bacteroidota;c__Rhodothermia;o__Rhodothermales;f__;g__;s__ 98.36 1.38 3.25 36 67 0.328 0.050 0.060 116472 3 52
ANAER1 GCA_020161935.1 d__Bacteria;p__Chloroflexota;c__Anaerolineae;o__SBR1031;f__A4b;g__;s__ 98.17 0 7.64 32 54.2 0.375 0.190 0.153 910673 4 48
HERP1 GCA_020161265.1 d__Bacteria;p__Chloroflexota;c__Chloroflexia;o__Chloroflexales;f__Herpetosiphonaceae;g__Herpetosiphon;s__ 99.09 0.91 6.04 13 50.2 0.774 0.025 0.008 7917 0 55
OBS1 GCA_020161235.1 d__Bacteria;p__Cyanobacteria;c__Vampirovibrionia;o__Obscuribacterales;f__Obscuribacteraceae;g__Obscuribacter;s__Obscuribacter 98.28 0.94 5.09 17 49.2 6.272 0.681 0.197 1713299 6 42
FUSI1 GCA_020161295.1 d__Bacteria;p__Firmicutes_A;c__Clostridia;o__Peptostreptococcales;f__Fusibacteraceae;g__UBA5201;s__ 96.5 1.75 3.08 41 42.8 0.001 0.580 0.001 11649 3 57
GEMMA1 GCA_020161135.1 d__Bacteria;p__Gemmatimonadota;c__Gemmatimonadetes;o__Gemmatimonadales;f__Gemmatimonadaceae;g__;s__ 98.35 3.3 4.55 8 70.1 0.004 0.031 0.494 2624259 3 55
SACCH1 GCA_020160975.1 d__Bacteria;p__Patescibacteria;c__Saccharimonadia;o__Saccharimonadales;f__Saccharimonadaceae;g__Saccharimonas;s__ 84.48 0 0.97 1 49.6 0.637 1.437 0.035 65079 3 43
ALPHA1 GCA_020161965.1 d__Bacteria;p__Proteobacteria;c__Alphaproteobacteria;o__;f__;g__;s__ 82.43 2.65 3.94 581 64.6 0.015 0.165 0.007 1283274 3 39
CAED1 GCA_020161545.1 d__Bacteria;p__Proteobacteria;c__Alphaproteobacteria;o__Caedimonadales;f__UBA1908;g__;s__ 86.36 1.1 1.88 96 52.8 0.034 0.201 0.002 41264 3 35
BREV1 GCA_020161595.1 d__Bacteria;p__Proteobacteria;c__Alphaproteobacteria;o__Caulobacterales;f__Caulobacteraceae;g__Brevundimonas;s__Brevundimonas 97.51 3.41 3.07 155 67.2 0.011 0.254 0.004 27852 2 45
CAULO1 GCA_020161365.1 d__Bacteria;p__Proteobacteria;c__Alphaproteobacteria;o__Caulobacterales;f__Caulobacteraceae;g__Caulobacter;s__ 100 0 4.43 25 66.9 0.048 0.093 0.589 4627825 3 55
HYPHO1 GCA_020161405.1 d__Bacteria;p__Proteobacteria;c__Alphaproteobacteria;o__Caulobacterales;f__Hyphomonadaceae;g__UBA1942;s__ 98.43 0.32 2.98 6 39.4 0.844 0.006 2.208 4138107 0 33
REYR1 GCA_020160955.1 d__Bacteria;p__Proteobacteria;c__Alphaproteobacteria;o__Reyranellales;f__Reyranellaceae;g__Reyranella;s__ 89.96 7.34 5.08 210 70 0.057 0.090 0.238 224063 3 53
REYR2 GCA_020160995.1 d__Bacteria;p__Proteobacteria;c__Alphaproteobacteria;o__Reyranellales;f__Reyranellaceae;g__Reyranella;s__Reyranella 91.04 6.01 5.71 258 65.3 0.074 0.102 0.134 62018 1 53
ANDERS1 GCA_020161855.1 d__Bacteria;p__Proteobacteria;c__Alphaproteobacteria;o__Rhizobiales;f__Anderseniellaceae;g__PALSA-927;s__ 97.64 0.4 3.36 19 61.6 0.187 0.175 0.029 25238 2 46
BEIJ1 GCA_020161915.1 d__Bacteria;p__Proteobacteria;c__Alphaproteobacteria;o__Rhizobiales;f__Beijerinckiaceae;g__Bosea;s__ 81.6 8.48 4.44 777 66.3 0.156 0.319 0.423 338238 0 43
BEIJ2 GCA_020161975.1 d__Bacteria;p__Proteobacteria;c__Alphaproteobacteria;o__Rhizobiales;f__Beijerinkiaceae_A;g__;s__ 81.18 5.25 3.99 465 62.5 0.042 0.157 0.018 28432 0 42
BEIJ3 GCA_020161475.1 d__Bacteria;p__Proteobacteria;c__Alphaproteobacteria;o__Rhizobiales;f__Beijerinkiaceae_A;g__PAR1;s__ 76.21 1.72 3.08 320 63.3 0.017 1.744 0.099 77102 0 41
BEIJ4 GCA_020161575.1 d__Bacteria;p__Proteobacteria;c__Alphaproteobacteria;o__Rhizobiales;f__Beijerinkiaceae_A;g__PAR1;s__ 97.89 0 3.19 17 63.2 0.176 0.538 0.014 26820 0 47
PHREA1 GCA_020161695.1 d__Bacteria;p__Proteobacteria;c__Alphaproteobacteria;o__Rhizobiales;f__Phreatobacteraceae;g__Phreatobacter;s__ 98.35 3.96 4.69 38 67.7 0.022 0.273 0.103 133243 1 50
RHIZO1 GCA_020161035.1 d__Bacteria;p__Proteobacteria;c__Alphaproteobacteria;o__Rhizobiales;f__Rhizobiaceae;g__Aminobacter;s__Aminobacter 94.26 5.5 5.50 80 63.8 0.136 0.095 0.095 219213 3 48
RHIZO2 GCA_020161665.1 d__Bacteria;p__Proteobacteria;c__Alphaproteobacteria;o__Rhizobiales;f__Rhizobiaceae;g__QFOR01;s__ 88.41 2.12 3.39 43 60.6 0.035 0.335 0.003 24536 0 47
RHIZO3 GCA_020161625.1 d__Bacteria;p__Proteobacteria;c__Alphaproteobacteria;o__Rhizobiales;f__Rhizobiaceae;g__Shinella;s__Shinella 78.53 6.03 6.98 935 63.6 0.010 0.169 0.037 149921 0 48
RHODO1 GCA_020161655.1 d__Bacteria;p__Proteobacteria;c__Alphaproteobacteria;o__Rhodobacterales;f__Rhodobacteraceae;g__Defluviimonas;s__ 100 0.35 4.08 24 65.5 0.321 0.141 0.848 3645270 0 44
RHODO2 GCA_020161615.1 d__Bacteria;p__Proteobacteria;c__Alphaproteobacteria;o__Rhodobacterales;f__Rhodobacteraceae;g__Pararhodobacter;s__ 99.09 1.19 4.87 26 67.9 0.084 0.534 0.009 25807 1 49
RHODO3 GCA_020160875.1 d__Bacteria;p__Proteobacteria;c__Alphaproteobacteria;o__Rhodospirillales_C;f__Rhodospirillaceae_A;g__;s__ 91.2 2.27 3.76 236 62.2 0.153 0.046 0.185 153017 1 39
RICK1 GCA_020160775.1 d__Bacteria;p__Proteobacteria;c__Alphaproteobacteria;o__Rickettsiales;f__Rickettsiaceae;g__GCA-2402195;s__ 75.59 1.58 1.18 82 34.5 0.085 0.075 0.052 17671 2 26
SPHING1 GCA_020160755.1 d__Bacteria;p__Proteobacteria;c__Alphaproteobacteria;o__Sphingomonadales;f__Sphingomonadaceae;g__Sphingopyxis;s__ 99.98 1.56 4.31 20 65.1 0.026 0.014 0.607 600695 3 47
ALIC1 GCA_020161945.1 d__Bacteria;p__Proteobacteria;c__Gammaproteobacteria;o__Burkholderiales;f__Burkholderiaceae;g__Alicycliphilus;s__ 99.64 1.04 3.83 33 66.3 0.166 2.959 0.738 770970 1 48
OTTO1 GCA_020161215.1 d__Bacteria;p__Proteobacteria;c__Gammaproteobacteria;o__Burkholderiales;f__Burkholderiaceae;g__Ottowia;s__ 93.66 5.56 4.52 250 67.1 0.011 0.276 0.004 26717 1 46
OTTO2 GCA_020161715.1 d__Bacteria;p__Proteobacteria;c__Gammaproteobacteria;o__Burkholderiales;f__Burkholderiaceae;g__Ottowia;s__Ottowia 99.26 0.62 3.40 35 69.1 0.372 4.140 0.424 121379 1 50
RAM1 GCA_020161775.1 d__Bacteria;p__Proteobacteria;c__Gammaproteobacteria;o__Burkholderiales;f__Burkholderiaceae;g__Ramlibacter;s__ 99.84 0.06 4.36 32 66.1 0.778 0.536 1.814 1832037 1 45
RUBRI1 GCA_020161065.1 d__Bacteria;p__Proteobacteria;c__Gammaproteobacteria;o__Burkholderiales;f__Burkholderiaceae;g__Rubrivivax;s__ 99.52 0.05 6.29 41 71.2 0.236 0.347 0.306 1259737 1 73
VITREO1 GCA_020161145.1 d__Bacteria;p__Proteobacteria;c__Gammaproteobacteria;o__Burkholderiales;f__Burkholderiaceae;g__Vitreoscilla_A;s__ 100 0.7 3.51 13 68.9 0.397 4.498 0.530 382529 1 46
CAPIA NA d__Bacteria;p__Proteobacteria;c__Gammaproteobacteria;o__Burkholderiales;f__Rhodocyclaceae;g__Accumulibacter;s__Accumulibacter 100 0.03 4.59 61 63.8 18.797 10.533 0.106 2411395 0 46
CAPIIA NA d__Bacteria;p__Proteobacteria;c__Gammaproteobacteria;o__Burkholderiales;f__Rhodocyclaceae;g__Accumulibacter;s__Accumulibacter 99.84 0.24 4.64 81 64.3 33.479 26.824 49.334 102762132 0 44
ZOO1 GCA_020161115.1 d__Bacteria;p__Proteobacteria;c__Gammaproteobacteria;o__Burkholderiales;f__Rhodocyclaceae;g__Zoogloea;s__ 91.62 3.51 4.99 501 65.7 0.090 0.026 0.106 913411 4 59
LEG1 GCA_020161725.1 d__Bacteria;p__Proteobacteria;c__Gammaproteobacteria;o__Legionellales;f__Legionellaceae;g__;s__ 92.74 1.07 2.58 182 36.1 0.094 0.126 0.006 19591 1 27
LUTEI1 GCA_020161335.1 d__Bacteria;p__Proteobacteria;c__Gammaproteobacteria;o__Xanthomonadales;f__Xanthomonadaceae;g__Luteimonas;s__ 96.89 0.71 3.56 252 69.9 0.002 0.309 0.011 49418 1 39
PSEUDO1 GCA_020160895.1 d__Bacteria;p__Proteobacteria;c__Gammaproteobacteria;o__Xanthomonadales;f__Xanthomonadaceae;g__Pseudoxanthomonas_A;s__ 99.95 0.89 3.67 28 67.8 0.416 0.730 3.125 3964795 2 50
PSEUDO2 GCA_020161075.1 d__Bacteria;p__Proteobacteria;c__Gammaproteobacteria;o__Xanthomonadales;f__Xanthomonadaceae;g__Pseudoxanthomonas;s__ 99.02 0 2.99 6 69.6 1.750 6.111 1.228 515369 3 52
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Table 2.  1019 
 1020 

1021 

Module Description Number of Attributes
 Citrate cycle, second carbon oxidation, 2-oxoglutarate => oxaloacetate [PATH:map00020 map01200 map01100] 13
 Citrate cycle (TCA cycle, Krebs cycle) [PATH:map00020 map01200 map01100] 10
 Shikimate pathway, phosphoenolpyruvate + erythrose-4P => chorismate [PATH:map00400 map01230 map01100 map01110] 8
 Fatty acid biosynthesis, initiation [PATH:map00061 map01212 map01100] 7
 Glycolysis, core module involving three-carbon compounds [PATH:map00010 map01200 map01230 map01100] 7
 Adenine ribonucleotide biosynthesis, IMP => ADP,ATP [PATH:map00230 map01100] 4
 Guanine ribonucleotide biosynthesis IMP => GDP,GTP [PATH:map00230 map01100] 4
 Inosine monophosphate biosynthesis, PRPP + glutamine => IMP [PATH:map00230 map01100] 4
 Isoleucine biosynthesis, threonine => 2-oxobutanoate => isoleucine [PATH:map00290 map01230 map01100] 3
 NADH:quinone oxidoreductase, prokaryotes [PATH:map00190] 3
 beta-Oxidation, acyl-CoA synthesis [PATH:map00061 map00071 map01212 map01100] 2
 F-type ATPase, prokaryotes and chloroplasts [PATH:map00190 map00195] 2
 Valine/isoleucine biosynthesis, pyruvate => valine / 2-oxobutanoate => isoleucine [PATH:map00290 map00770 map01210 map01230 map01100 map01110] 2
 CAM (Crassulacean acid metabolism), dark [PATH:map00620 map00710 map01200 map01100 map01120] 1
 Cytochrome c oxidase, cbb3-type [PATH:map00190] 1
 Cytochrome c oxidase, prokaryotes [PATH:map00190] 1
 dTDP-L-rhamnose biosynthesis [PATH:map00521 map00523 map01100 map01130] 1
 Leucine biosynthesis, 2-oxoisovalerate => 2-oxoisocaproate [PATH:map00290 map01210 map01230 map01100 map01110] 1
 Phosphatidylethanolamine (PE) biosynthesis, PA => PS => PE [PATH:map00564 map01100] 1
 PRPP biosynthesis, ribose 5P => PRPP [PATH:map00030 map00230 map01200 map01230 map01100] 1
 Pyruvate oxidation, pyruvate => acetyl-CoA [PATH:map00010 map00020 map00620 map01200 map01100] 1
 Semi-phosphorylative Entner-Doudoroff pathway, gluconate => glycerate-3P [PATH:map00030 map01200 map01100 map01120] 1
 Threonine biosynthesis, aspartate => homoserine => threonine [PATH:map00260 map01230 map01100 map01110] 1
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Table 3.  1022 
 1023 

 1024 

Module_description Number of Attributes
 Glycolysis (Embden-Meyerhof pathway), glucose => pyruvate [PATH:map00010 map01200 map01100] 279
 Citrate cycle (TCA cycle, Krebs cycle) [PATH:map00020 map01200 map01100] 208
 Gluconeogenesis, oxaloacetate => fructose-6P [PATH:map00010 map00020 map01100] 76
 Inosine monophosphate biosynthesis, PRPP + glutamine => IMP [PATH:map00230 map01100] 45
 Citrate cycle, second carbon oxidation, 2-oxoglutarate => oxaloacetate [PATH:map00020 map01200 map01100] 31
 Heme biosynthesis, plants and bacteria, glutamate => heme [PATH:map00860 map01100 map01110] 27
 Tetrahydrofolate biosynthesis, GTP => THF [PATH:map00790 map00670 map01100] 25
 Tryptophan biosynthesis, chorismate => tryptophan [PATH:map00400 map01230 map01100 map01110] 25
 Ornithine biosynthesis, glutamate => ornithine [PATH:map00220 map01210 map01230 map01100] 24
 Histidine biosynthesis, PRPP => histidine [PATH:map00340 map01230 map01100 map01110] 17
 Pentose phosphate pathway (Pentose phosphate cycle) [PATH:map00030 map01200 map01100 map01120] 16
 Lysine biosynthesis, succinyl-DAP pathway, aspartate => lysine [PATH:map00300 map01230 map01100] 12
 Uridine monophosphate biosynthesis, glutamine (+ PRPP) => UMP [PATH:map00240 map01100] 11
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