

1 Multiplexed high-throughput immune cell imaging reveals 2 molecular health-associated phenotypes

3 Yannik Severin¹, Benjamin D. Hale¹, Julien Mena¹, David Goslings², Beat M. Frey², Berend Snijder^{1*}

4 ¹ Institute of Molecular Systems Biology, Department of Biology, ETH Zurich, 8049 Zurich, Switzerland

5 ² Blood Transfusion Service Zürich, SRC, 8952 Schlieren, Switzerland

6 * Correspondence: Prof. Dr. Berend Snijder

7 Institute of Molecular Systems Biology

8 Department of Biology

9 ETH Zürich

10 Otto-Stern-Weg 3, building HPM office H44

11 CH-8093 Zürich, Switzerland

12 +41 44 633 71 49

13 snijder@imsb.biol.ethz.ch

14 www.imsb.ethz.ch

15 www.snijderlab.org

16 **Summary**

17 Phenotypic plasticity is essential to the immune system, yet the factors that shape it are not
18 fully understood. Here, we comprehensively analyze immune cell phenotypes including morphology
19 across human cohorts by single-round multiplexed immunofluorescence, automated microscopy, and
20 deep learning. Using the uncertainty of convolutional neural networks to cluster the phenotypes of 8
21 distinct immune cell subsets, we find that the resulting maps are influenced by donor age, gender, and
22 blood pressure, revealing distinct polarization and activation-associated phenotypes across immune
23 cell classes. We further associate T-cell morphology to transcriptional state based on their joint donor
24 variability, and validate an inflammation-associated polarized T-cell morphology, and an age-
25 associated loss of mitochondria in CD4⁺ T-cells. Taken together, we show that immune cell phenotypes
26 reflect both molecular and personal health information, opening new perspectives into the deep
27 immune phenotyping of individual people in health and disease.

31 **Introduction**

32 The morphology of a cell closely reflects its state, as it adapts to dynamic functional requirements and
33 thereby constrains future behavior (Bakal et al. 2007; Folkman and Moscona 1978; Lecuit and Lenne
34 2007; Boutros, Heigwer, and Laufer 2015). This feedback mechanism has been shown to influence
35 many cellular events, including cell differentiation (McBeath et al. 2004; Discher, Mooney, and
36 Zandstra 2009), cell division (Carlton, Jones, and Eggert 2020; Ramkumar and Baum 2016; Folkman
37 and Moscona 1978), adaptation to the microenvironment (Snijder et al. 2009; Snijder and Pelkmans
38 2011; Liberali, Snijder, and Pelkmans 2014), and malignant transformation (Hanahan and Weinberg
39 2011; Wu et al. 2020). Few differentiated healthy human cells change their phenotype as drastically
40 as immune cells: a plasticity that is critical to the correct function of the immune system as a whole
41 (Zhou, Chong, and Littman 2009; Galli, Borregaard, and Wynn 2011; Sica and Mantovani 2012). As a
42 consequence, studying immune cellular heterogeneity at the molecular level has been transformative
43 for our understanding of the immune system, measured for example by flow cytometry (Maecker,
44 McCoy, and Nussenblatt 2012; Craig and Foon 2008), single-cell mass cytometry (Spitzer and Nolan
45 2016; Bendall et al. 2011), and single-cell RNA sequencing (Papalexi and Satija 2018; Jaitin et al. 2014;
46 Shalek et al. 2013; Villani et al. 2017; Giladi and Amit 2018). Complementary to these molecular
47 measurements, microscopy has shown the importance of immune cell morphology in multiple
48 settings: distinct cellular morphologies are associated with, and influence the outcome of, monocyte
49 polarization (Bertani et al. 2017; McWhorter et al. 2013) and T- and B-cell activation (Gómez-Moutón,
50 Abad, and Mira 2001; K. B. L. Lin et al. 2008; van Panhuys, Klauschen, and Germain 2014; Russell 2008;
51 Faure et al. 2004; W. Lin et al. 2015), and label-free imaging of hematopoietic cells has enabled
52 predicting the outcome of future lineage choices (Buggenthin et al. 2017). Additionally, a recent study,
53 using organelle marker abundance as a proxy for cell morphology, found extensive evidence for
54 morphological heterogeneity in both healthy and diseased immune cells (Tsai et al. 2020). Due to their
55 mixed adherent nature, however, primary immune cells such as peripheral blood mononuclear cells
56 (PBMCs) were long considered incompatible with automated fluorescence microscopy, the tool of
57 choice to characterize cellular morphology with spatial resolution across millions of cells (Snijder et al.
58 2009; Liberali, Snijder, and Pelkmans 2014; Perlman et al. 2004; Boutros, Heigwer, and Laufer 2015;
59 Wawer et al. 2014; Young et al. 2008; Caicedo et al. 2017). This has hampered the comprehensive
60 measurement and study of morphological heterogeneity present in the immune system, and thus has
61 left unanswered the question of which molecular and health factors globally shape the compendium
62 of human immune cell morphologies.

63 **Results**

64 To be able to comprehensively measure immune cell phenotypes, we developed a multiplexed
65 immunofluorescence approach for peripheral blood mononuclear cells (PBMCs) that extends our
66 previously developed protocol for high-throughput image-based screening in human biopsies
67 compatible with mixed non-adherent cells (Vladimer et al. 2017; Snijder et al. 2017; Kornauth et al.
68 2021) (Figure 1). In contrast to previously reported cyclical multiplexed immunofluorescence protocols
69 (J.-R. Lin, Fallahi-Sichani, and Sorger 2015; Gerdes et al. 2013; Gut, Herrmann, and Pelkmans 2018),
70 we stain once with a comprehensive immune cell marker panel that multiplexes 8 surface markers
71 and a nuclear dye, which is imaged by automated confocal microscopy and brightfield imaging in a
72 single run (Figure 1i and Supplementary Table 1). A deep convolutional neural network (LeCun, Bengio,
73 and Hinton 2015) with custom architecture (Figure S1A) was subsequently used to classify each cell,
74 making use of distinct marker expression patterns, lineage-specific labeling encoded by the staining
75 panel, and likely differences in immune cell morphology (Figure 1i). The CNN was trained across eight
76 immune cell classes, using 89'483 manually curated 5-channel sub-images (4 fluorescent channels and
77 brightfield) centered on individual cells sampled from 15 healthy donors (available at
78 <https://doi.org/10.3929/ethz-b-000343106>). The eight immune classes capture the predominant
79 immune lineages present in PBMCs, including three distinct T-cell subsets (CD4⁺, CD8⁺ and CD4⁻CD8⁻),
80 monocytes, dendritic cells, natural killer cells, B-cells, and nucleated immune cells negative for all 8
81 surface markers (Figure 1).

82 CNN performance was stable across retraining, showed no sign of overfitting, and was 97%
83 accurate for unseen donors systematically left out of the training data (Figure S1B and S1C). The
84 network further achieved 97.7% classification accuracy (Figure 1ii) on a previously unseen test dataset
85 of 24'000 curated cells comprising PBMCs from the same 15 healthy donors (Figure S1D). The
86 classification efficiently demultiplexed the mixed marker signals such that the resulting abundances
87 of each subpopulation matched our expectations (Figure S1E and F), and both the class fractions
88 (Figure S1G) and class probabilities (Figure S1H) showed good reproducibility over different
89 experimental replicates (median $r = 0.90$ and 0.95 respectively). Whilst marker expression likely
90 contributed towards the classification accuracy between morphologically similar classes (such as T4
91 vs T8), cell morphology likely contributed to the separation of distinct cell types whose markers were
92 multiplexed in the same channel, such as CD14⁺ monocytes and CD3⁺ T-cells both stained in the APC
93 channel. Supporting this interpretation, a 2-class CNN could separate T-cells and monocytes with 95%
94 accuracy based on just the label-free brightfield and DAPI channels (Figure S1I and J). Thus, the 8-class
95 CNN learned to generalize immune phenotypes across individual donors and experiments, presenting
96 a robust, efficient, and data-rich high-throughput screening strategy with broad applicability.

97 Both supervised and unsupervised deep learning algorithms are increasingly used for image
98 clustering (Xie, Girshick, and Farhadi 2016; Aljalbout et al. 2018), which we here explored for the
99 purpose of clustering immune cell phenotypes. The CNN returns a confidence vector for each cell that
100 creates an 8-dimensional feature space, which we visualized by t-distributed stochastic neighbor
101 embedding (t-SNE) (Maaten and Hinton 2008) (Figure 2A). To minimize possible batch effects and
102 confounding factors from *ex vivo* culturing, we analyzed a subset of 10 of the 15 donors on which the
103 CNN was trained, whose blood had been simultaneously processed, and incubated for just 1 hour
104 before fixing and imaging across replicate wells and plates. Visualization of unperturbed immune cells
105 from these 10 donors suggested considerable cell-to-cell variability, particularly among monocytes,
106 even just within the cells classified with high CNN confidence (Figure 2A). Projecting molecular and
107 morphological cell features measured by conventional image analysis on the t-SNE embedding
108 revealed that the CNN had separated monocytes based on their CD16 and CD11c expression levels,
109 even though it was not trained explicitly to do so (Figure 2A insert). Moreover, this showed that even
110 for high-confidence cells the CNN class probabilities reflected marker expression and morphological
111 heterogeneity for all 8 immune cell classes, with nuclear size and brightfield intensity differences
112 observed within each class (Figure 2A and B). Thus, while the 8-class CNN was strictly trained in a
113 supervised manner, its neural network uncertainty additionally allowed further grouping of previously
114 unannotated cellular phenotypes, capturing recurrent phenotypes present in primary human immune
115 cells.

116 We next tested if this deep learning uncertainty could also be used to quantify and categorize
117 extrinsically induced changes in immune cell phenotypes. To this end, we stimulated PBMCs from a
118 single donor with 12 immune modulators *ex vivo* across concentrations and replicates, measuring 5
119 million multiplexed stained and imaged PBMCs (Supplementary Table 2). First, we visualized the
120 structure in the CNNs confidence by t-SNE (Figure 2C), equally sampling cells from across all 8 classes
121 and 12 perturbations. This revealed monocytes to be divided into three clusters associated with
122 distinct CNN confidence profiles, not trivially explained by marker expression differences (Figure S2A,
123 B and C). To identify the contribution of distinct immune modulators to the morphological landscape
124 of immune cells, we developed a method called K-nearest neighbor local enrichment analysis by
125 hypergeometric testing (LEA, Figure 2D and methods). For each cell, LEA identifies the nearest
126 neighbors in the original 8-class probability space and calculates the hypergeometric significance of
127 enrichment for cells with a certain property in this neighborhood. LEA next assigns this significance
128 back to the original starting cell. Projecting the LEA results back on the t-SNE embedding revealed that
129 the monocyte subcluster with the lowest CNN confidence were enriched for monocytes exposed to
130 M1-type inducing agents *E. coli* lipopolysaccharides (LPS) and GM-CSF (Figure 2E and Figure S2D)

131 (Martinez and Gordon 2014), or cytotoxic agents causing the release of danger-associated molecular
132 patterns. The second monocyte cluster was strongly enriched for cells exposed to M2-type associated
133 dexamethasone or IL4, while the third, highest confidence, monocyte cluster was not enriched for
134 most perturbations, thus likely reflecting unperturbed monocyte phenotypes (Figure 2F).

135 Stimulation with microbial compounds like LPS can selectively alter immune cell crosstalk, for
136 example through the induction of cell-cell contacts. We therefore suspected that phenotypes in the
137 M1-type cluster could in part reflect changes in the multi-cellular context. To verify this, we performed
138 spatially resolved single-cell analysis across the 8 classified immune cell types, allowing the high-
139 throughput screening of 36 distinct immune cell-cell interactions simultaneously, a significant increase
140 compared to our previous non-multiplexed efforts (Vladimer et al. 2017) (Figure S3A-B). Indeed,
141 analysis of all 43 million cell-cell interactions measured in this experiment (Figure S3A) confirmed the
142 M1-like monocyte cluster to be enriched for monocyte-to-monocyte interactions (Figure S3C). Thus,
143 LPS-mediated monocyte activation led to distinct M1-like monocyte phenotypes, defined in part by
144 an altered multi-cellular context. Collectively, LEA revealed that the uncertainty of the deep neural
145 network reconstituted previously established monocyte M1/M2-type polarization phenotypes in a
146 fully unsupervised manner (Fig 2), while exposing considerably phenotypic complexity, with most
147 immunomodulatory perturbations simultaneously affecting the phenotype of multiple immune cell
148 class (Figure 2C and Figure S2D).

149 The phenotypic heterogeneity of circulating immune cells captured by our image-based
150 measurements could reflect both genetic and non-genetic influences (Melé et al. 2015; Galli,
151 Borregaard, and Wynn 2011). To explore this we analyzed commonalities and differences in the
152 unperturbed immune phenotypes across the discovery cohort of the 10 donors shown in Figure 2. We
153 first used LEA to measure enrichment of cells from the same donor in the nearest-neighborhood in
154 the 8-dimensional CNN class probability space. This identified distinct cellular phenotype-regions
155 significantly enriched for each of the 10 donors across several immune cell classes (Figure 3A). As these
156 enriched phenotypes were measured across technical repeats, they potentially indicated donor-
157 individual characteristics of immune cell morphologies, but could also reflect batch effects acting
158 upstream of our sample processing and imaging. Repeating the analysis with randomized donor labels
159 and comparing the sum of enrichments showed that the actual donor-enrichment in nearest
160 neighbors of the latent space was well above what would be expected by random ($P < 1.1 \times 10^{-308}$,
161 Figure 3A insert). We next looked for phenotypes that were enriched in donors with the same
162 biological gender, with the 10 donors including 4 women and 6 men. This revealed strong gender
163 associations with various immune cell morphologies ($P < 1.1 \times 10^{-308}$; Figure 3B), with NK- and Negative-

164 cell class phenotypes particularly enriched in female donors, and not explained by enrichment in any
165 individual female donor (Figure S4A).

166 We next explored immune phenotype associations with continuous health parameters such
167 as donor age, which has been described to dramatically alter the immune phenotypic landscape (Carr
168 et al. 2016; Alpert et al. 2019) (Figure 3C, Figure 2D and methods). A modification of LEA for continuous
169 variables calculates the significance of the rank correlation between the fraction of cells per donor in
170 the nearest neighborhood and any continuous variable of each donor (Figure 2D). As before, the LEA
171 analysis was run in the 8-dimensional CNN class probability space. To correct for spurious associations,
172 we compare the association strength with those observed in many repeats with the same health
173 parameter randomized across the donors. Testing donor age, height, weight, body mass index, blood
174 pressure, and hemoglobin levels revealed significant associations with donor age ($P < 1.3 \times 10^{-9}$) and
175 systolic blood pressure ($P < 4.5 \times 10^{-4}$; Figure 3C), but not to any of the other measured health
176 parameters. The age-associated phenotype map revealed bimodal age associations for several
177 immune subpopulations, particularly striking for CD4⁺ T-cells (Figure 3D). Across the cells that make
178 up the phenotype map, the age associations were mutually exclusive of the single donor enrichments
179 ($r = -0.002$; Figure S4B).

180 To investigate the above identified phenotypic and health associations we next used LEA to
181 associate molecular pathway expression as measured by transcriptomics with immune cell
182 phenotypes. Focusing on T-cells, we performed bulk RNA-sequencing of CD3 positive cells purified
183 from the same 10 healthy donor blood samples, detecting on average around 15'000 expressed
184 transcripts (Figure S5A). LEA rank-correlated local phenotype abundance (in the 8-dimensional CNN
185 class probability space) with transcript abundance, analyzing T-cells randomly subsampled from each
186 donor to match the population composition measured by RNA-sequencing (Figure 4A). To benchmark
187 these phenotype-to-transcriptome associations, we first compared the LEA associations of CD4 and
188 CD8A transcript abundance (Figure 4A) with the CD4 and CD8 protein expression levels explicitly
189 measured by immunofluorescence for each T-cell (Figure S5B). Validating the approach, LEA achieved
190 excellent results for these proof-of-concept benchmarks, with areas under the receiver operating
191 curve of 0.93 and 0.89 for CD4 and CD8 positive cells, respectively (Figure 4B).

192 We next sought to validate these pathway-phenotype associations by querying the
193 associations the other way round: Starting from well-known pathways, and seeing what phenotypes
194 are associated with it. To this end we inspected the associations with the T-cell receptor (TCR) signaling
195 pathway as proxy for T-cell activation. TCR-signaling was strongly associated with distinct subregions
196 of the phenotype map, including the cluster-periphery of CD8⁺ T-cells (Figure 4C). This pattern was

197 recapitulated by the LEA associations with *MAPK1* (*ERK2*), part of the TCR-induced signaling cascade,
198 which largely, but not exclusively, overlapped with regions enriched for cells from Donor 2 (Figure 4C).
199 Visual inspection of cells residing in TCR-signaling and *MAPK1*-associated phenotypic regions revealed
200 a striking polarized and activated T-cell morphology, henceforth referred to as T_{ACT} cells. In contrast,
201 randomly sampled cells from adjacent and non-enriched regions contained conventional small and
202 round T-cell morphologies, which we refer to as T_{CON} cells (Figure 4D). To robustly quantify the T_{ACT}
203 morphology further, we trained a dedicated CNN on manually curated T_{ACT} and T_{CON} phenotypes,
204 which achieved 94.6% validation accuracy on images from donors and experiments it was not trained
205 on (Figure 4E and S5C). This allowed us to retroactively detect the T_{ACT} morphology for all imaged T-
206 cells, which confirmed that the phenotype was present in all donors, and most enriched in the cells of
207 Donor 2 (Figure 4F and Supplementary Figure S5D). Coming full circle, the T_{ACT} enriched regions
208 associated with tumor necrosis factor (TNF) and MAPK-signaling as most-enriched pathways after
209 multiple testing correction (Figure 4G).

210 To confirm that the T_{ACT} morphology is associated with inflammation and T-cell activation in
211 an independent validation cohort, we stimulated PBMCs derived from 15 additional healthy donors
212 with pro-inflammatory cytokine IL-2, superantigen *Staphylococcus aureus* Enterotoxin B (SEB), or LPS,
213 which all led to significant increases in the fraction of T-cells adopting a T_{ACT} morphology (Figure 4H
214 and S5E). Exposure to the anti-inflammatory synthetic glucocorticoid Dexamethasone, in contrast,
215 reduced the relative abundance of T_{ACT} cells across the 15 donors (Figure 4H and S5E). To rule out the
216 possibility that the T_{ACT} morphology was induced by cellular fixation prior to imaging, we further
217 conducted live cell imaging of SEB stimulated PBMCs and visually confirmed the induction of the T_{ACT}
218 cell phenotype (Figure S5F). We next measured by immunofluorescence the levels of phosphorylated
219 NFkB (Ser529) and ERK (Thr202 and Tyr204) as a function of T-cell morphology, at baseline and upon
220 SEB-stimulation in PBMCs. At baseline, T_{ACT} cells showed slightly but significantly higher levels of
221 phosphorylated ERK. SEB-stimulation increased phosphorylated levels of ERK significantly higher in
222 T_{ACT} than T_{CON} cells. Taken together, these results experimentally validated the LEA-based pathway
223 enrichment analysis with the polarized T_{ACT} morphology. Thus, part of the donor unique fingerprints
224 we previously observed had resulted from differences in T-cell activation between the donors, with
225 15% of T-cells from Donor 2 adopting the T_{ACT} morphology, predominantly in CD8 $^{+}$ T-cell compartment,
226 while on the other end of the spectrum, only 7% of Donor 1 T-cells were T_{ACT} cells, here mostly in CD4 $^{+}$
227 T-cells (Figure S5D).

228 Having validated the phenotype-to-pathway association approach and its ability to discover
229 and correctly describe new cellular phenotypes, we explored the pathway enrichments for age-
230 associated T-cell phenotypes (Figure 5A and S6A). Pathways enriched in phenotypes that were

231 reduced with age included nucleotide excision repair, telomere maintenance (Roth et al. 2003), cilia
232 assembly (Stephen et al. 2018) and propanoate metabolism (Figure S6A). In contrast, pathways
233 associated with T-cell phenotypes that increased with age included inflammation and stress-related
234 pathways, particularly for the CD8⁺ compartment, and lysosome and vesicle-associated pathways in
235 CD4⁺ T-cells (Figure 5A right). Inflammation is a well described risk factor for age-associated diseases
236 (Franceschi, Bonafè, and Valensin 2000), and, consistently, the age-associated phenotypes overlapped
237 partially with the above validated phenotype for activated CD8⁺ T-cells (Figure 5A right). Furthermore,
238 impaired organelle and lysosome homeostasis in aged CD4⁺ T-cells has been previously described as a
239 relevant process in aging of T-cells (Jin et al. 2020).

240 Pathway enrichments for oxidative phosphorylation and mitochondrial respiration in age-
241 associated T-cell phenotypes were in line with reports of defective respiration in CD4⁺ T-cells of aged
242 mice (Ron-Harel et al. 2018; Gomes et al. 2013), and suggested that the neural network might have
243 identified a phenotypic T-cell signature associated with both donor age and mitochondrial abundance.
244 Interestingly, the CD4⁺ T-cells showed strong brightfield intensity differences, a measure of
245 intracellular granularity (Figure 2A,B and S5B). This brightfield-trend followed the age-associations we
246 observed, with CD4⁺ T-cells enriched in younger people measured to be more granular (referred to as
247 T4_{BFD} for ‘brightfield dark’ CD4⁺ T-cells; Figure 2A,B and 3C). Quantifying this association across all
248 subpopulations, CD4⁺ T-cells indeed showed the most significant age-associated brightfield intensity
249 differences ($P < 10^{-70}$), followed by the CD8⁺ T-cells ($P < 10^{-40}$), and less for the other immune cell
250 classes (Figure 5B).

251 To reproduce this association we sampled an additional validation cohort of 15 healthy donors
252 (Figure 5C), and trained a different neural network architecture on a new set of images generated only
253 from this validation cohort (Figure S6B). This independent repetition of the workflow revealed that
254 the age-associated T4_{BFD} phenotype was independent of the donor cohort and neural network and
255 experimental batch (Figure 5C and Figure S6B). The age-associated brightfield intensity differences
256 and mitochondrial pathway association might reflect loss of mitochondrial abundance in age in CD4⁺
257 T-cells (Murera et al. 2018). To support this interpretation we analysed if BF intensity reflects
258 mitochondrial abundance using the natural heterogeneity observed within CD4⁺ T-cells of a single
259 donor (Figure 5D). Indeed, those cells that were darkest by brightfield imaging displayed significantly
260 higher mitochondrial abundance as measured by image-based quantification of the MitoTracker dye
261 (Figure 5D). The deep learning uncertainty thus had revealed a label-free phenotype reflecting an age-
262 associated mitochondrial decline in CD4⁺ T-cells, explaining in part how immune cell phenotypes
263 measured by our high-throughput single-cell imaging pipeline capture donor information such as age.

264 **Discussion**

265 We here explore the molecular health determinants of human immune cell phenotypes using
266 a workflow that combines automated high-throughput microscopy, single-round multiplexed
267 immunofluorescence, and deep learning-based phenotypic analysis. The presented method for
268 phenotyping of immune cells distinguishes itself for its ability to integrate cell morphology, protein
269 levels and localization, and multi-cellular context into a quantitative metric across 8 major immune
270 cell classes, hundreds of conditions, and millions of cells. The resulting single-cell phenotype space,
271 derived from the CNN's uncertainty, reflected both genetic and non-genetic donor health information.
272 We find age, gender, blood pressure, and inflammatory state to be significantly associated with human
273 immune cell phenotypes, yet many more influences likely exist and more phenotype-associations
274 captured by our approach remain unexplored.

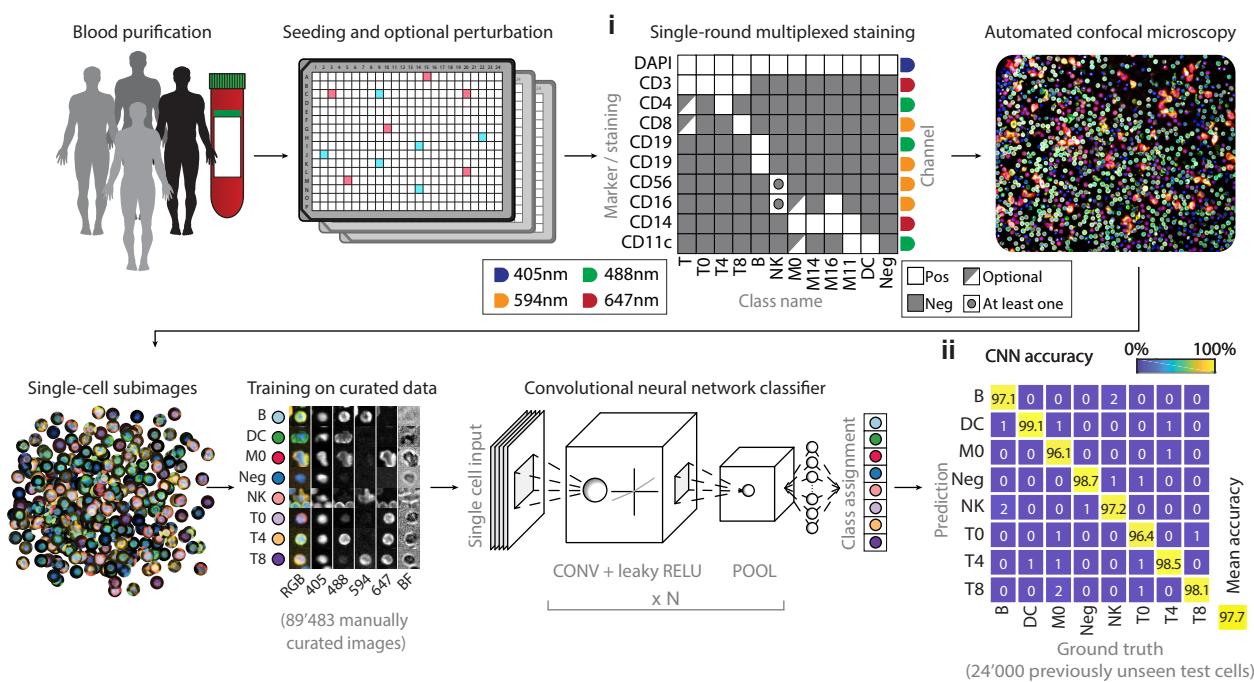
275 Our workflow is tailored to make use of two large sources of biological heterogeneity: the
276 heterogeneity observed between individuals, and heterogeneity observed within cells of the same
277 class and donor. That dependency however is at the same time its limitation: The single-round
278 multiplexed staining strategy benefits from the presence of multiple cell types with variable cell
279 morphologies and marker profiles, and LEA requires donor or condition heterogeneity to power its
280 associations. Furthermore, while the marker panel shown here reliably captures the predominant
281 immune cell classes present in PBMCs, it does not resolve certain smaller subpopulations, such as
282 Natural Killer T-cells (Bendelac, Savage, and Teyton 2007). However, the approach is flexible as the
283 panel composition can readily be tailored to the identification of additional subpopulations, or
284 adapted to different tissues, building on the same logic developed here.

285 Whilst this is not the first work which deploys CNN-based cell classification (Moen et al. 2019;
286 Kraus et al. 2017; Kraus, Ba, and Frey 2016; Pärnamaa and Parts 2017; Dürr and Sick 2016; Sommer et
287 al. 2017; Kandaswamy et al. 2016; Godinez et al. 2017; Hussain et al. 2019) and feature extraction
288 (Pärnamaa and Parts 2017; Kraus et al. 2017; Jackson et al. 2019; Godinez et al. 2017), to our
289 knowledge, this is the first work where deep learning is applied in high-throughput screening and
290 phenotypic analyses of primary human PBMCs. By training the CNN on curated cells from across
291 independent experiments, multiple donors, and conventional and multiplexed staining panels, we
292 could prevent overfitting on phenotypes of single donors and technical bias stemming from
293 experimental conditions. However, the CNN class probability space, which we here successfully
294 employ as a phenotype discovery tool, is sensitive to different phenotypes resulting from different
295 experimental conditions. As such, while CNN classification can be trained to be robust, experimental
296 care needs to be taken when interpreting the CNN class probability space.

297 Once new phenotypes are discovered, as we demonstrate for the inflammation-associated
298 T_{ACT} cell morphology, the ability to retroactively re-classify cells based on their morphology with
299 dedicated CNNs allows robust morphological sub-classification of previously imaged cells even in
300 absence of tailored marker panels. Attesting to the robustness of the discovered phenotypes, the
301 inflammation-associated T_{ACT} and age-associated $T4_{BFD}$ phenotypes could be validated in independent
302 experiments, in an independent validation cohort, using distinct neural network architectures, and,
303 for the T_{ACT} morphology, in both live-cell and fixed sample imaging.

304 In the future, repeated profiling of individual donors will allow to further stratify temporally
305 stable from dynamic immune cell phenotypes. Furthermore, comparative studies across larger patient
306 and donor cohorts, and identifying clinically relevant cell morphologies in the context of personalized
307 treatment identification for hematological malignancies (Snijder et al. 2017; Kornauth et al. 2021), will
308 be additionally attractive avenues of study. This will inevitably define the boundaries of the personal
309 health information reflected by immune cell phenotypes. Given that the workflow allows
310 simultaneous phenotype discovery combined with the molecular and personal health associations, it
311 is well positioned to lead to the discovery of more as yet undescribed and clinically relevant immune
312 cell phenotypes.

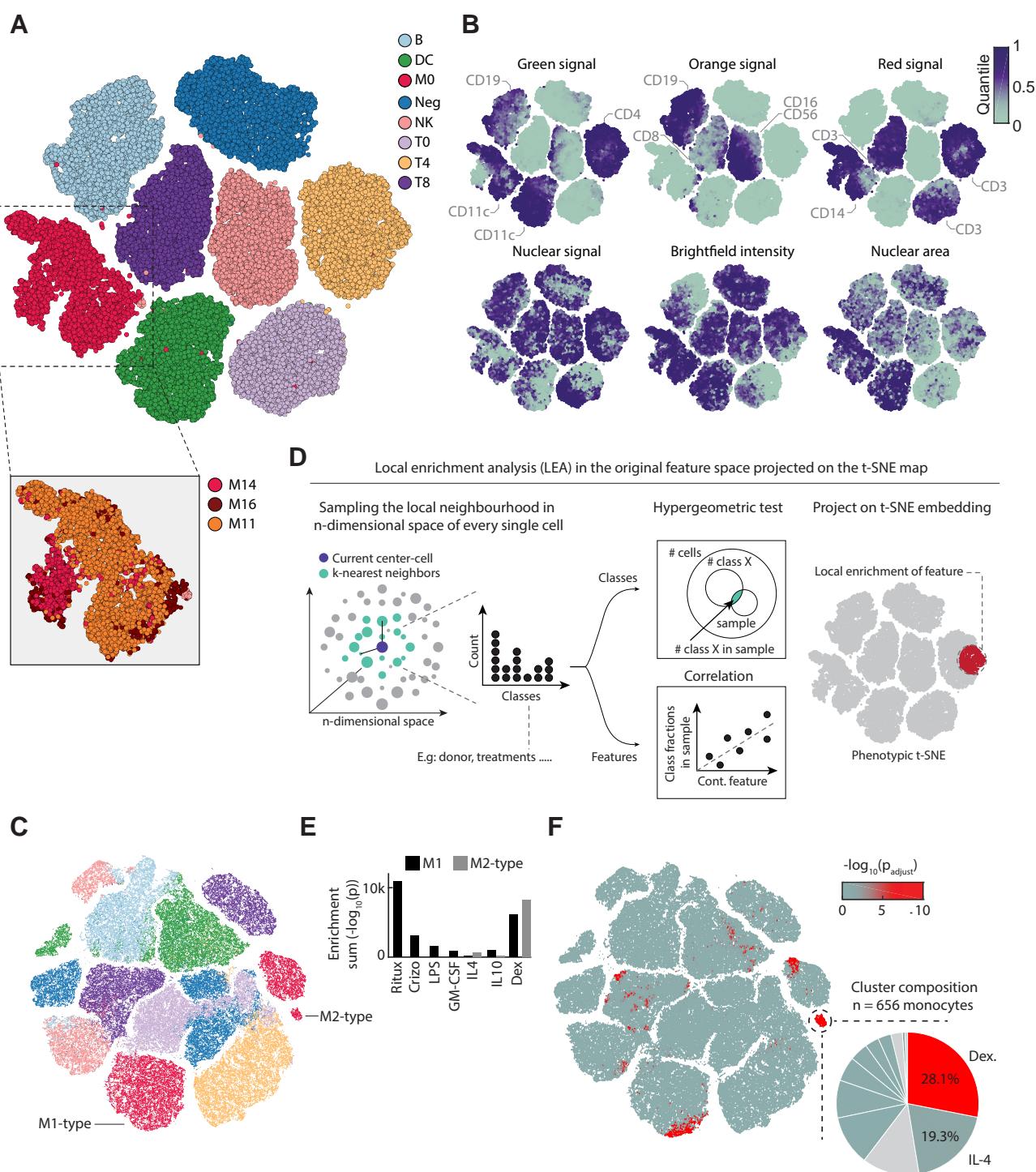
Fig. 1



313 **Figure Legends**

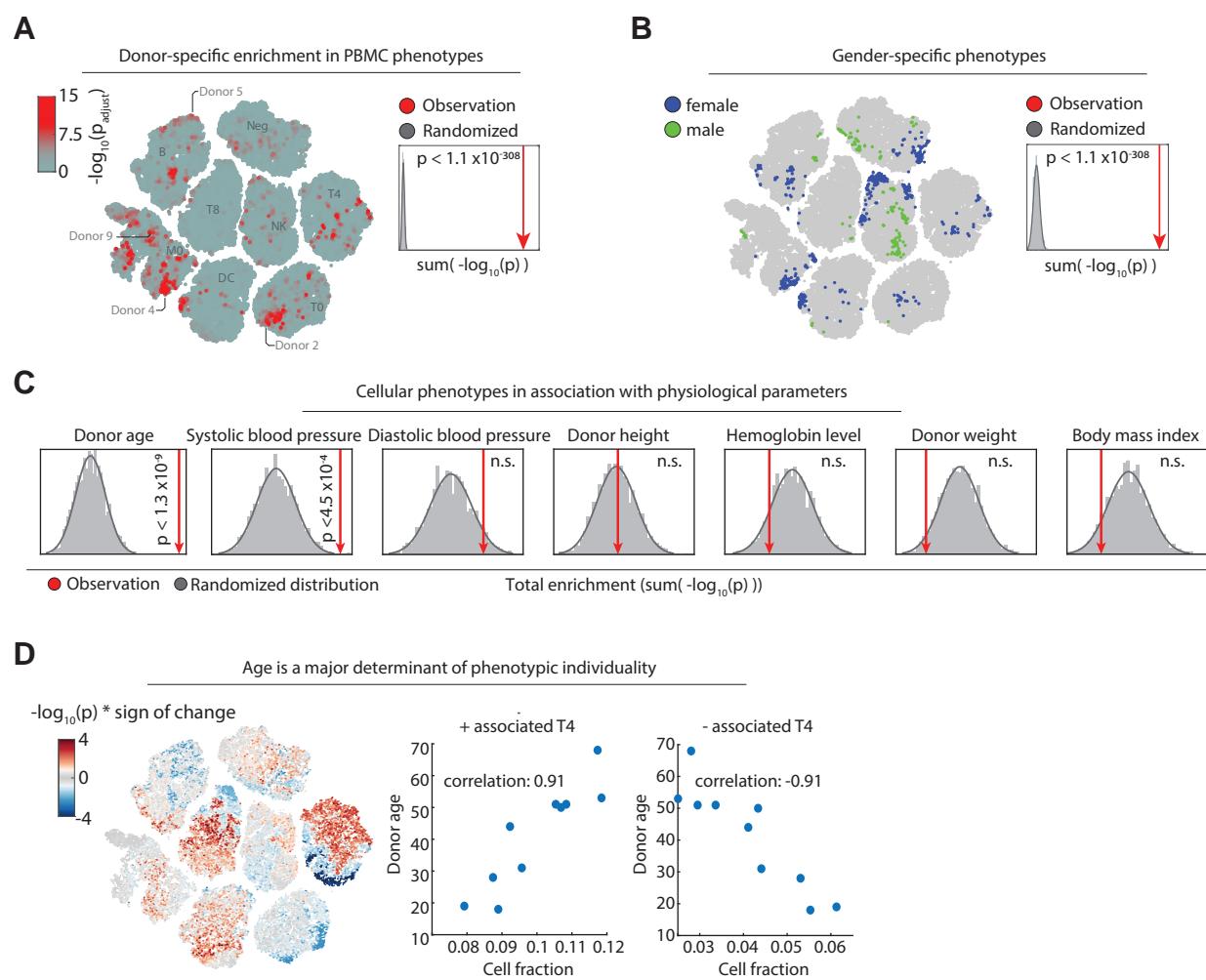
314 **Figure 1.** Workflow for the single-round multiplexed immunofluorescence, image-based screening,
315 and associated deep learning-based classification of human peripheral blood mononuclear cells
316 (PBMCs). PBMCs of healthy human donors are seeded in 384-well plates, optionally containing drugs
317 or immune stimuli. Cells are fixed and stained with a comprehensive antibody panel (**1i**) and imaged
318 by automated confocal microscopy. A convolutional neural network (CNN) is trained on 89483
319 manually curated sub-images to distinguish eight different immune cell classes, and subsequently
320 classifies all cells in the experiment. The curated test set contains 100 cells per class per donor per
321 staining condition. **1ii**, Confusion matrix of CNN performance across all 24'000 cells that the CNN did
322 not see before.

Fig. 2



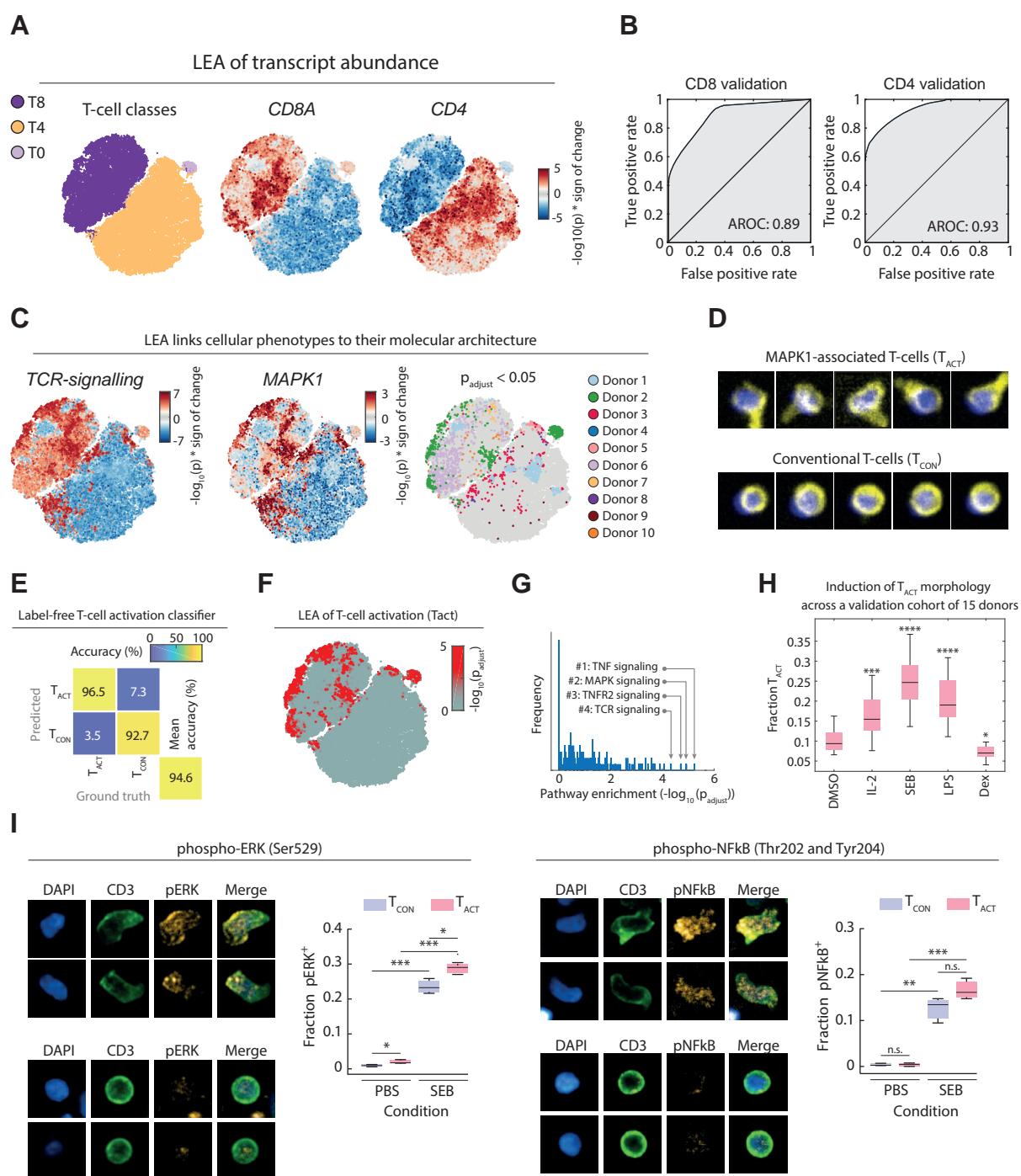
323 **Figure 2. (A)** Phenotypic landscape of the unperturbed immune system across ten healthy donors. t-
324 Distributed Stochastic Neighbor Embedding (t-SNE) embedding of the 8-class CNN probabilities of up
325 to 1000 randomly subsampled high-confidence multiplexed cells per class and per donor (class
326 probability > 0.7). Monocytes are further divided into three subpopulations by thresholding the
327 immunofluorescence (IF) intensity of CD16 and CD11c stainings, respectively (insert). Figure depicts a
328 total of 78850 cells, randomly sampled from 40 wells for each of the 10 donors. All donors were
329 processed and measured together in a single experiment, across 40 replicate wells per donor
330 distributed over two 384-well plates. **(B)** Selected single-cell features projected onto the t-SNE shown
331 in **2A**. Median value of overlapping data points is calculated and color is assigned accordingly. Points
332 are plotted in order of intensity, with the lowest intensity on top. **(C)** Phenotypic landscape of the *ex*
333 *vivo* perturbed immune system of a single donor. The CNN class probability t-SNE map on the left
334 shows 600 randomly chosen single cells per cell class and drug treatment, colored by class assignment.
335 **(D)** Overview of the local enrichment analysis (LEA) workflow. LEA probes the k-nearest neighbors of
336 each single cell in a multidimensional space for enrichment of either continuous or discrete features.
337 For discrete features, the baseline probability of finding n cells of condition X in the probed
338 neighborhood follows a hypergeometric distribution, from which an enrichment p-value is calculated
339 (taking into account the total number of drawn cells, the total number of cells in the t-SNE and the
340 total number of cells of condition X in the dataset). For continuous features, the relative fraction of
341 cells of each donor in the probed local neighborhood is calculated. These fractions are then rank-
342 correlated with a continuous feature that was measured across donors. The enrichment probability
343 for continuous features corresponds to the p-value of the correlation. In both cases, the enrichment
344 probability is assigned to the center-cell and the approach is iterated for each single cell in the analysis.
345 **(E)** Bar graph depicting the sum total $\log_{10}(\text{LEA P-values})$ for selected perturbations in the M1-type
346 (black bars) and M2-type (grey bars) monocyte clusters. **(F)** LEA analysis reveals regions in the
347 phenotypic space that are significantly enriched for dexamethasone-treated PBMCs. Cells in the t-SNE
348 embedding are colored by their enrichment significance of the LEA analysis run in the original 8-class
349 probability space ($-\log_{10}(p_{\text{adjust}})$; see colorbar). Insert highlights the contribution of different
350 perturbations to the selected M2-type monocyte cluster. Figure depicts a total of 199375 cells,
351 randomly sampled from across 240 wells for a single donor.

Fig. 3



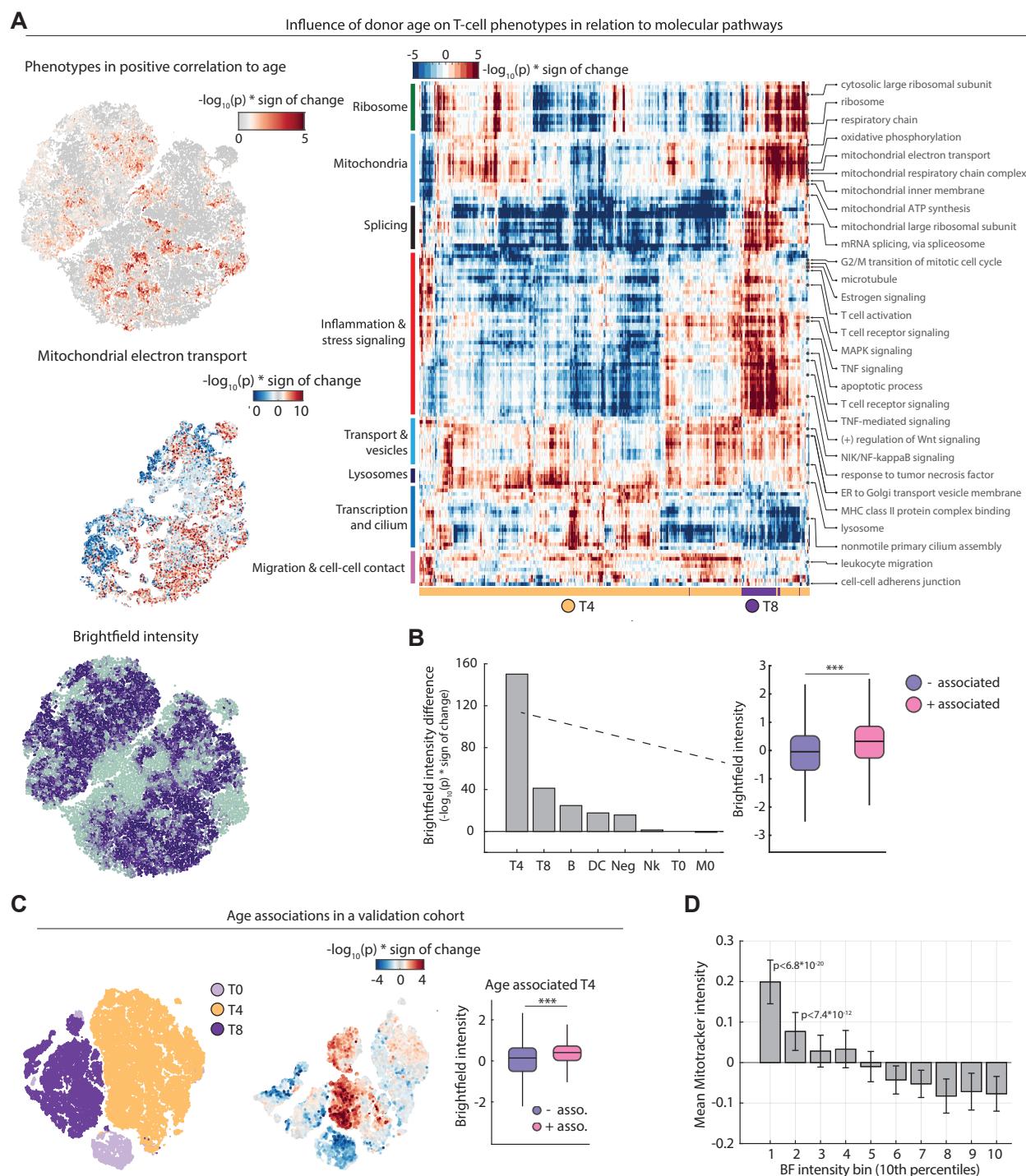
352 **Figure 3. (A)** LEA of donor-specific cells across 10 donors, visualized on the t-SNE of Figure 2A. The
353 cells are colored by their maximum LEA significance across the 10 donors ($-\log_{10}(p_{\text{adjust}})$; see colorbar).
354 Insert: A randomized null distribution of donor enrichments was generated by randomizing the donor
355 labels 2000 times and summing up all single-cell enrichments calculated by LEA per randomized run
356 (grey bars). Sum enrichment of the actual data is shown in red, and the significance compared to the
357 randomized runs is calculated by a one-sided t-test. **(B)** LEA of biological gender-specific phenotypes
358 projected onto the t-SNE embedding. Cells are colored by their significant enrichment in female (blue)
359 or male (green) specific phenotypes. Insert: A null distribution of random gender enrichment (grey)
360 was generated by randomizing the donor labels 2000 times and summing up all single-cell enrichments
361 calculated by LEA. Sum enrichment of the actual data is shown in red, as in 3A. **(C)** Association analysis
362 of various health parameters with cellular phenotypes calculated by LEA. Null distributions of random
363 correlation significance (grey) were generated by randomizing the donor labels 2000 times and
364 summing up the all single-cell enrichments calculated by LEA per randomized run. Enrichment of the
365 actual data is shown in red (one-sided t-test). **(D)** LEA Age-associations projected onto the t-SNE
366 embedding. Single-cells are colored by their signed significance of correlation ($-\log_{10}(p) * \text{sign of the}$
367 correlation; see colorbar). Insert: Fraction of all significantly positive and negative age-associated CD4 $^{+}$
368 T-cells with donor age ($p < 0.05$).

Fig. 4



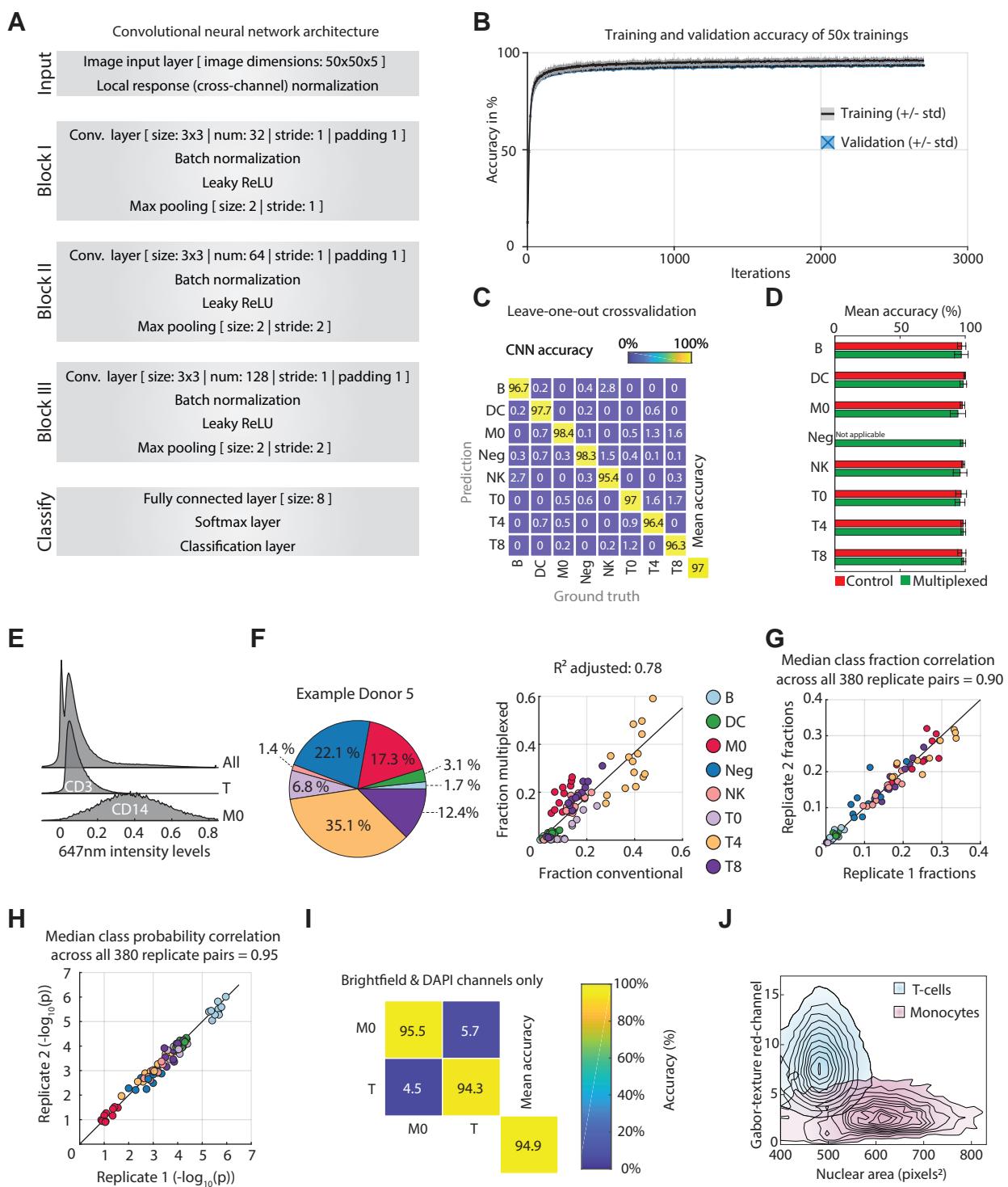
369 **Figure 4. (A)** t-SNE embedding of the CNN class probability across T-cells of ten healthy donors. 10000
370 T-cells are shown per donor, selected without confidence threshold to reflect the original abundance
371 of T0, T4, and T8 subpopulations per donor. Left panel: t-SNE color-coded per T-cell class (see legend);
372 Middle panel: t-SNE map colored by LEA-based associations with *CD8A* transcript abundance; Right
373 panel: t-SNE map colored by LEA-based associations with *CD4* transcript abundance ($-\log_{10}(p)$ * sign
374 of the correlation; see legend). **(B)** Receiver operating characteristic (ROC) curves for the consistency
375 between the *CD8A* transcript abundance LEA associations with CD8 expression levels by IF (left panel),
376 and the *CD4* transcript abundance LEA associations with CD4 expression levels by IF (right panel). **(C)**
377 LEA-based associations of TCR-signalling (left), *MAPK1* transcript abundance (middle) and donor
378 enriched regions (right, $p_{\text{adjust}} < 0.05$ colored per donor) projected onto the T-cell phenotype map of
379 **A.** **(D)** Examples of morphologically representative CD8⁺ T-cells from the positively MAPK1-associated
380 regions (T_{ACT}), and conventional CD8⁺ T-cells of other regions (T_{CON}). Crops are 15 x 15 μm in size. Yellow
381 = CD3, blue = DAPI. **(E)** Confusion matrix assessing the accuracy of the label-free T-cell activation (T_{ACT})
382 classifier. The test set comprises 369 randomly selected T_{ACT} cells, and 738 randomly selected T_{CON} cells
383 across multiple donors (including the 10 depicted donors). **(F)** LEA of the T_{ACT} phenotype projected on
384 the t-SNE map (see colorbar). **(G)** Distribution of pathway significance across all retro-actively
385 classified T_{ACT} cell morphologies. Pathway enrichments were calculated using a hypergeometric test
386 on positively associated genes (top 0.95 percentile), and p-values were corrected for multiple testing.
387 Significance of the top four most enriched pathways are indicated by grey arrows. **(H)** Induction and
388 suppression of the T_{ACT} phenotype with immunomodulatory agents across an independent validation
389 cohort of 15 individual donors. All compounds were screened at a concentration of 100ng/ml.
390 Boxplots show the mean relative fraction of T_{ACT} cells in the T-cell compartment across all wells of each
391 condition per donor. Stars indicate significance of T_{ACT} fraction per condition, compared with controls
392 calculated with an unpaired t-test. **(I)** Immunofluorescence quantification of phospho-NFkB and
393 phospho-ERK levels in T_{ACT} and T_{CON} cells. Boxplots show the fraction of phospho-signaling marker
394 positive T_{ACT} (red) and T_{CON} cells (blue) after 48h incubation in the presence or absence of SEB. Boxplots
395 show distributions of three technical repeats. Images show representative T_{ACT} and T_{CON} cell
396 morphologies at 40X magnification. Crops are 15 x 15 μm in size.

Fig. 5



397 **Figure 5. (A)** Upper left: positive LEA associations with donor age projected on the t-SNE embedding
398 as in Figure 4A (colored by $-\log_{10}(p)$). Middle left: LEA associations of Mitochondrial electron transport
399 projected on the t-SNE embedding. Lower left: Brightfield single-cell intensity projected onto the t-
400 SNE embedding. Median value of overlapping data points is calculated and color is assigned
401 accordingly. Points are plotted in order of intensity, with the lowest intensity on top. Right: Heatmap
402 overview of all significantly enriched pathways in positive age-associated T-cells ($-\log_{10}(p) > 5$). **(B)**
403 Comparison of the significance in difference in brightfield intensity of positively- vs negatively-
404 associated immune cells per population (with an association cutoff of $-\log_{10}(p) > 1.3$). Bar plots show
405 the $-\log_{10}(p) * \text{sign of the change}$ ($1 - (\text{median(positive enrichment}) / \text{median(negative enrichment)})$).
406 **(C)** Negative and positive age associations with cellular T-cell phenotypes and donor age in an
407 independent validation cohort of 15 healthy individuals calculated by LEA (left and middle). t-SNE
408 depicts a total of 5000 cells per donor. Right: Comparison of differences in brightfield intensity of
409 positively vs negatively age-associated CD4 $^{+}$ T-cells (with an association cutoff of $-\log_{10}(p) > 1.3$). **(D)**
410 Mitochondrial content (as measured by MitoTracker) of CD4 $^{+}$ T-cells decreases with increased
411 brightfield intensity. Bar-plots display the mean MitoTracker intensity of CD4-T-cells per well per 10-
412 percentile bins of BF intensity within each well. Mean and standard deviations across 10 repeat wells
413 with a combined total of n=78095 CD4+ T-cells are shown. P-values are from a two-tailed t-test of all
414 replicate wells per bin against those of the brightest BF(right most) bin.

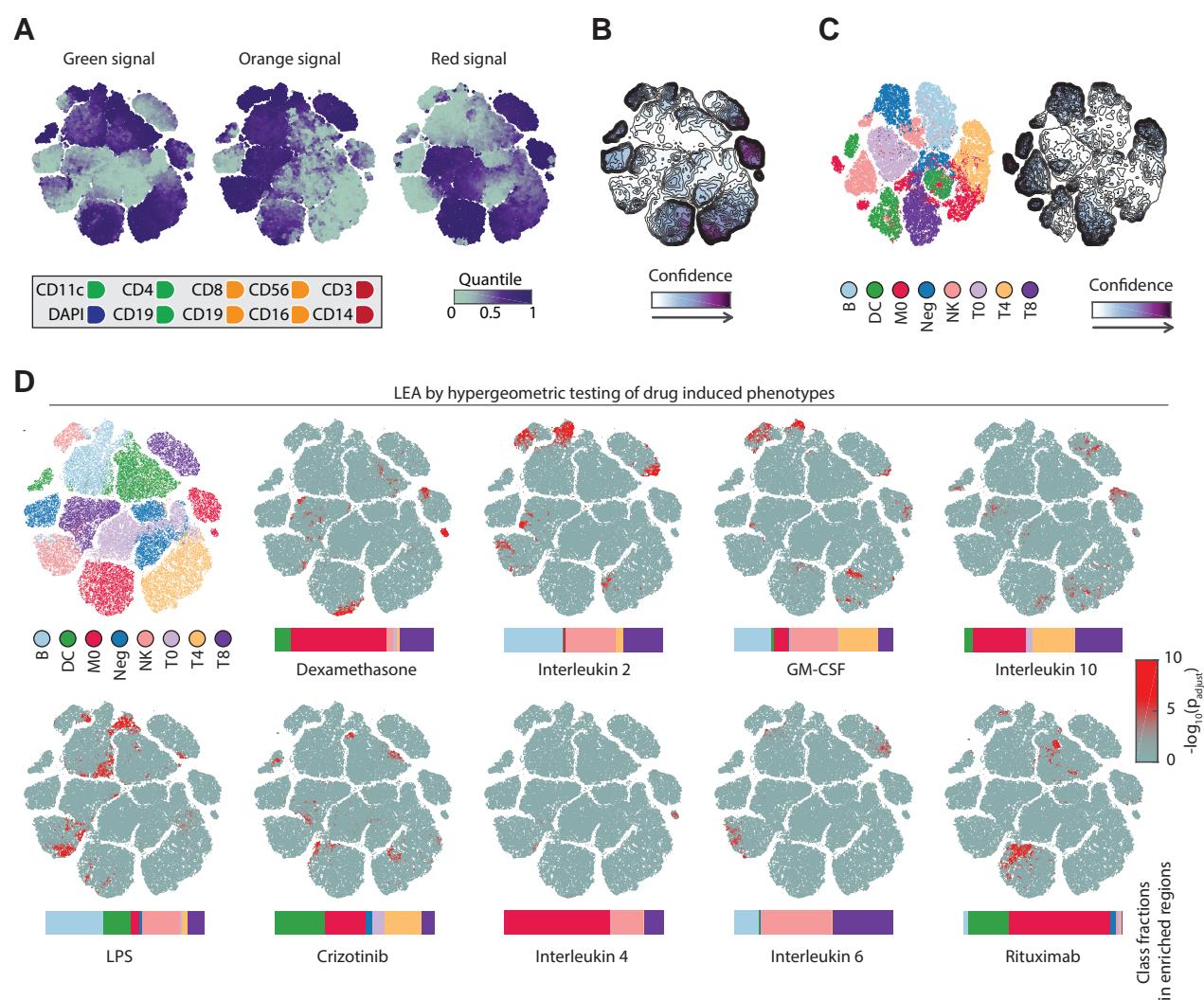
Fig. S1



415 **Supplementary Figure Legends**

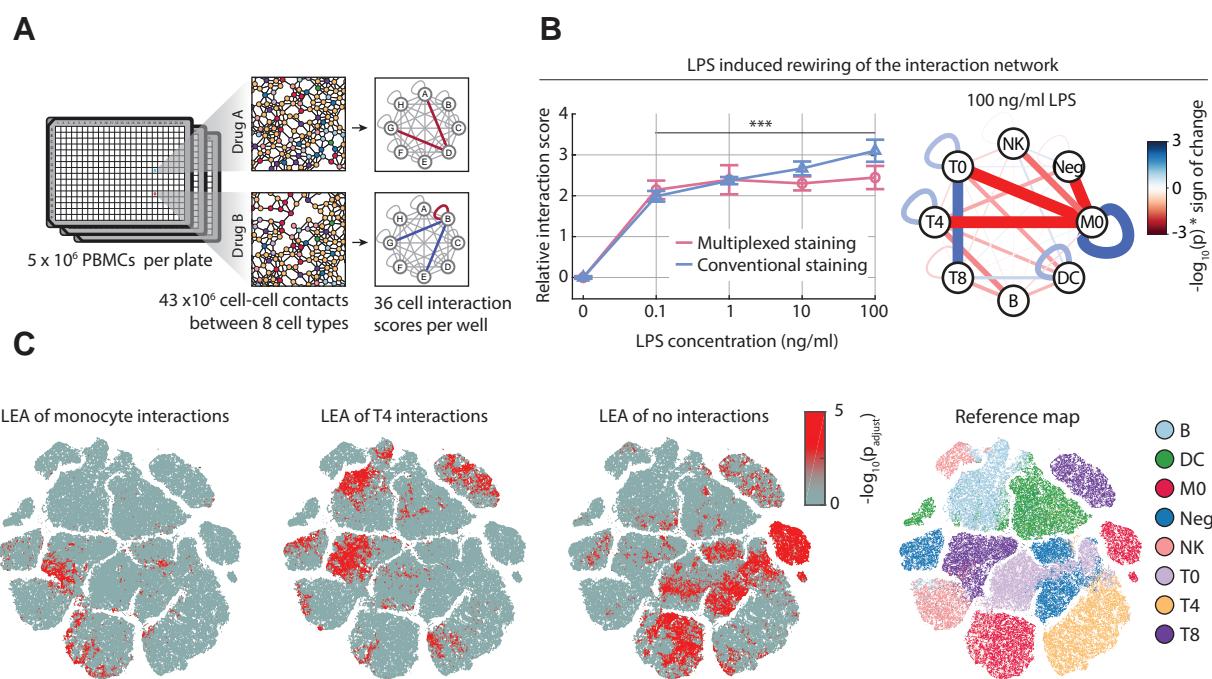
416 **Figure S1. (A)** Overview of the convolutional neural network architecture. **(B)** Average and standard
417 deviation of training and validation accuracies over 20 randomly initialized CNN instances. Validation
418 set represents 10% of the initial training set (n=8948). Network training after 20 epoches. **(C)**
419 Confusion matrix of CNN performance on a leave-one-out cross validation per donor. The CNN was
420 trained with 14 donors and subsequently tested on an unseen donor not included in the training
421 dataset. The confusion matrix shows the mean accuracies after iterating across all donors. **(D)**
422 Comparison of prediction accuracy on conventionally stained and multiplexed cells. Bar plots show
423 the mean accuracy (in %) and the standard deviation of the CNN prediction across all donors
424 individually per class and staining. **(E)** Distribution of 647nm intensity levels across all cells (upper),
425 classified CD3⁺ T-cells (middle) and classified CD14⁺ monocytes (lowest) of Donor 1. A cell class
426 probability threshold of 0.8 was applied. **(F)** Population percentages for Donor 5 (left) and class
427 fraction comparison of conventionally stained and multiplexed cells across 15 healthy donors.
428 Negative cell class is excluded due to its unavailability in conventional stainings. **(G)** Class fraction
429 comparison of two single replicates (plate wells) across all 10 donors. Each dot corresponds to a
430 replicate pair from a single donor. Color indicates the cell type. The median pairwise correlation across
431 all technical replicates is indicated. **(H)** Median class probability comparison of two single replicates
432 (plate wells) across all 15 donors. Shown statistic depicts the median class probability correlation of
433 all pairwise replicate combinations per donor across two individual 384 well plates. **(I)** Confusion
434 matrix of CNN performance on brightfield and DAPI channels only. An adapted CNN architecture (2-
435 channel input and 2 class output) was trained with 1900 2-channel images of T-cells and monocytes.
436 Network performance was evaluated in the curated test set containing 750 cells per class. **(J)**
437 Comparison of selected morphological and staining-pattern parameters divergent between T-cells and
438 monocytes. Conventionally stained T-cells and monocytes from Donor 1 were identified by
439 immunofluorescence gating for CD3 and CD14, respectively. Morphological features were extracted
440 by CellProfiler.

Fig. S2



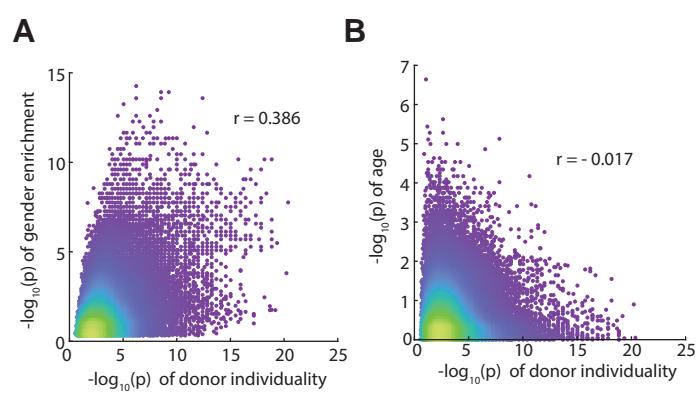
441 **Figure S2. (A)** Selected single-cell features mapped onto the same t-SNE map as depicted in Figure 2D.
442 Median value of overlapping data points is calculated and color is assigned accordingly. Points are
443 plotted in order of intensity, from highest to lowest. **(B)** Associated CNN probability contour plot of
444 the phenotypic landscape of the immune system depicted in Figure 2D. **(C)** Left: Phenotypic landscape
445 of the immune system across ten healthy donors. t-SNE embedding of the 8-class CNN probabilities
446 without a confidence threshold of up to 1000 randomly subsampled multiplexed cells per class and
447 per donor. Right: Associated CNN probability contour plot of the phenotypic landscape depicted left.
448 **(D)** LEAs visualized by t-SNE of drug induced phenotypes. Horizontal bar graphs indicate the class
449 fractions in enriched regions (at $p_{\text{adjust}} < 0.01$).

Fig. S3



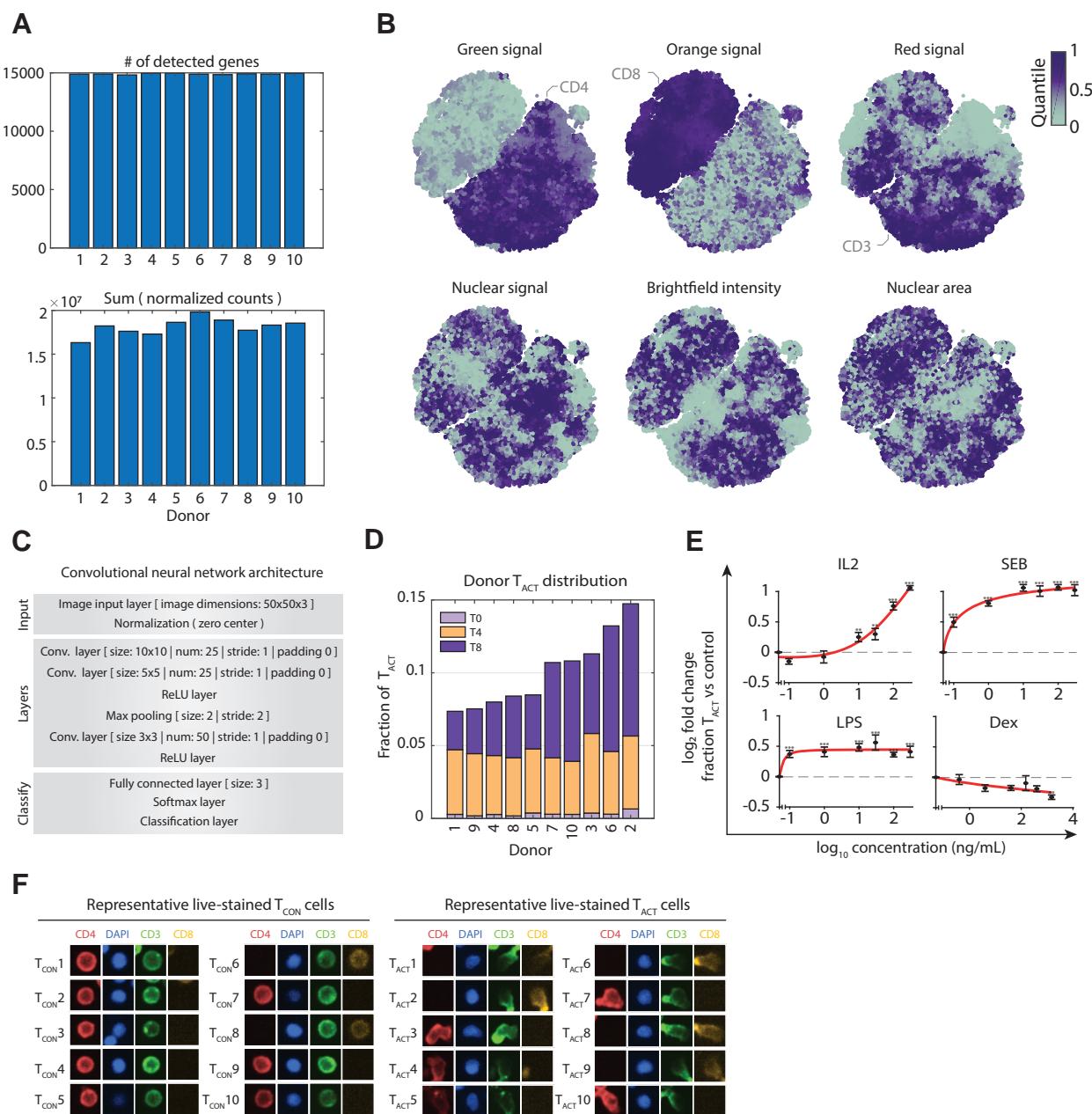
450 **Figure S3. (A)** Overview of cell-cell contact analysis over five million PBMCs. Cell-to-cell interaction
451 networks between eight different immune cell populations with a total of 36 cell type interactions
452 were generated per well, and compared across treatments. **(B)** LPS-induced rewiring of the cell-to-cell
453 interaction network. Relative monocyte-to-monocyte interaction scores of multiplexed and
454 conventionally stained wells as a function of increasing LPS concentration (left). Mean interaction
455 score across all replicates is calculated and normalized against control treatment. Example LPS
456 interaction network for 100ng/ml LPS (right). Significance of interaction ($-\log_{10}(p)$, multiplied times
457 the sign of the phenotype (either positive or negative interaction score)). **(C)** LEA of cells with
458 monocytes (left), T-cells (middle) or no-nearest neighbor (right).

Fig. S4



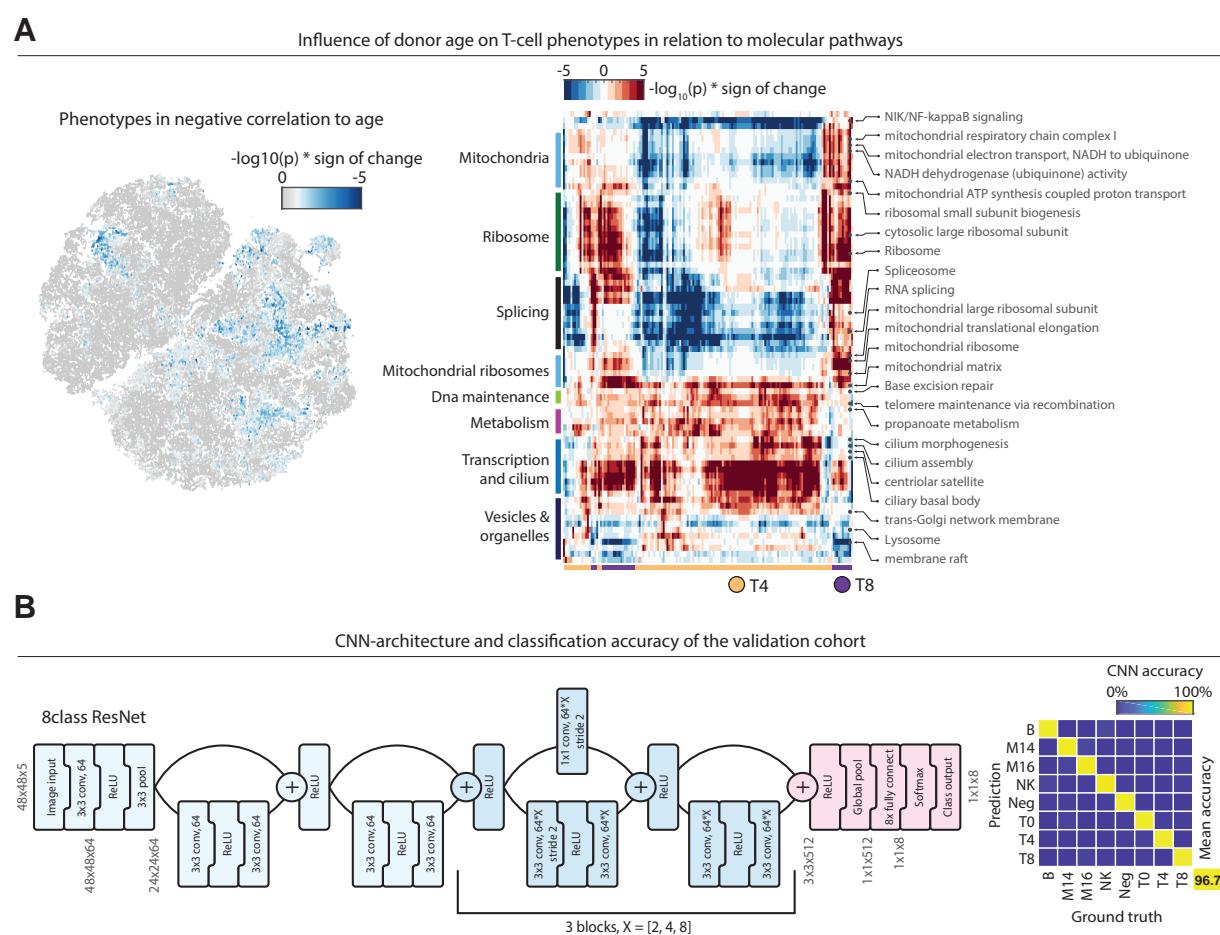
459 **Figure S4. (A)** Comparison of donor LEA enrichments vs gender LEA enrichments per single cell (as in
460 **Figure 3D**). r values represent Pearson correlations. **(B)** Comparison of donor LEA enrichments vs age
461 LEA enrichments per single cell (as in Figure 3D). r values represent Pearson correlations.

Fig. S5



462 **Figure S5. (A)** Upper: Bar graphs indicate the number of detected transcripts (protein coding and long
463 non-coding RNAs) after applying a threshold of 20 raw counts. Lower: Bar graphs indicated the sum of
464 transcript counts after DESeq2 normalization (Love, Huber, and Anders 2014). **(B)** Selected single-cell
465 features projected onto the t-SNE depicted in Figure 4A. Median value of overlapping data points is
466 calculated and color is assigned accordingly. Points are plotted in ascending order with the lowest
467 intensity on top. **(C)** Overview of the label-free T-cell activation (T_{ACT}) convolutional neural network
468 architecture. **(D)** Fraction of T_{ACT} cells per class and per donor. Stacked bar plots show the mean
469 fraction of all T-cells per donor classified as T_{ACT} , within their respective T-cell subclass (T0, T4 or T8)
470 in control (DMSO) conditions. **(E)** Induction and suppression of the T_{ACT} cell phenotype by
471 immunomodulatory agents. Plotted are the \log_2 fold changes of the mean fraction of T-cells classified
472 as T_{ACT} across all wells of each drug condition compared to control treatments. Cells were incubated
473 with immunomodulatory agents at 0.1, 1, 10, 30, 100 and 300 ng/ml. Error bars show the standard
474 error of the mean across wells for each drug condition. A custom Hill function (adjusted to different
475 minima and maxima) was used to fit the data (red line). **(F)** Representative live-stained T_{ACT} and T_{CON}
476 cell morphologies. Crop-size is 15 x 15 μ m.

Fig. S6



477 **Figure S6. (A)** Left: negative LEA associations with donor age projected onto the t-SNE (colored by -
478 $\log_{10}(p)$). Right: Heatmap overview of all significantly enriched pathways in positive age-associated T-
479 cells ($-\log_{10}(p) < -5$). Rows are annotations, columns are significantly age-associated cells. **(B)** Left:
480 Schematic of the 8-class ResNet architecture used for the 15 donor validation cohort. Right: Confusion
481 matrix of the CNN. CNN was tested on 1000 cells per class that the CNN did not see before.

482 **Methods**

483

484 **Experimental model**

485 Buffy coats or whole blood tubes were obtained from coded healthy donors provided by the
486 Blutspende Zurich, under a study protocol approved by the cantonal ethical committee Zurich (KEK
487 Zurich, BASEC-Nr 2019-01579). Detailed donor information can be found in **Supplementary Table 3**.

488

489 **Experimental details**

490 *Collection and purification of human peripheral blood mononuclear cells (PBMCs)*

491 Buffy coats or whole blood tubes were obtained from coded healthy donors provided by the
492 Blutspende Zurich, under a study protocol approved by the cantonal ethical committee Zurich (KEK
493 Zurich, BASEC-Nr 2019-01579). Healthy donor buffy coats or blood samples were diluted 1:1 in PBS
494 (Gibco) and PBMCs were isolated with a Histopaque-1077 density gradient (Sigma-Aldrich) according
495 to the manufacturer's instructions. PBMCs at the interface were collected, washed once in PBS and
496 resuspended in media. In all experiments, immune cells were cultured in RPMI 1640 + GlutaMax
497 medium (Gibco) supplemented with 10% fetal bovine serum (FBS, Gibco) and incubated at 37°C with
498 5% CO₂. Cell number and viability was determined utilizing a Countess II Cell Counter from Thermo
499 Fisher according to the manufacturer's instructions.

500 *Non-adherent PBMC monolayer formation and drug screening and cell fixation*

501 In the proof-of-concept drug screen, 5 μ l of a selected screening compounds (10x stock), and all
502 respective controls (as outlined in **Supplementary Table 2**) were transferred to CellCarrier 384 Ultra,
503 clear-bottom, tissue-culture-treated plates (PerkinElmer) with five replicates per condition. All
504 conditions were screened in four concentrations: Cytokines (0.1, 1, 10, 100ng/ml); Rituximab (0.05,
505 0.1, 0.5, 1 μ g/ml); LPS (0.1, 1, 10, 100 ng/ml); Dexamethasone (0.4, 4, 40, 400ng/ml); Crizotinib (0.01,
506 0.1, 1, 10 μ M). 50 μ l of medium containing approximately 4*10⁵ cells/ml was pipetted into each well
507 of a 384-well compound plate and cells were allowed to settle to the bottom. The whole blood samples
508 of the discovery cohort (shown in **Figure 2A-B**, **Figure 3-5**) were incubated for 1h, whereas all buffy
509 coat samples, including all samples from the validation cohort (**Figure 4H** and **Figure 5C**) were
510 incubated for 24 hours. All assays were terminated by fixing and permeabilizing the cells with 20 μ l of
511 a solution containing 0.5% (w/v) formaldehyde (Sigma-Aldrich), 0.05% (v/v) Triton X-100 (Sigma-
512 Aldrich), 10mM Sodium(meta)periodate (Sigma-Aldrich) and 75mM L-Lysine monohydrochloride

513 (Sigma-Aldrich), for 20 minutes at room temperature. For Mitotracker staining (Thermo Fisher), cells
514 were stained live with 500nM Mitotracker Red, prior to fixation. Fixative-containing medium was
515 subsequently removed, and cells were blocked and photobleached in 5% FBS/PBS overnight at 4°C.
516 Photobleaching was used to reduce background fluorescence and was performed by illuminating the
517 fixed cells with conventional white light LED panels.

518 *Immunostaining and Imaging*

519 All fluorescent primary antibodies utilized in this work (outlined in [Supplementary Table 1](#)) were used
520 at a 1:300 dilution in PBS. All antibody cocktails for immunohistochemistry (IHC) contained 6µM DAPI
521 (Sigma-Aldrich) for nuclear detection. Before IHC staining, the blocking solution was removed and 20µl
522 of the antibody cocktail was added per well and incubated for 1h at room temperature. Besides fully-
523 multiplexed wells, each plate additionally contained several staining-control wells with a reduced
524 number of antibodies ([Supplementary Table 1](#)). The staining-control wells served for evaluating
525 antibody functionality and the generation of the CNN-training data (see below). For imaging, a
526 PerkinElmer Opera Phenix automated spinning-disk confocal microscope was used. Each well of a 384-
527 well plate was imaged at 20x magnification with 5x5 non-overlapping images, covering the whole well
528 surface. The images were taken sequentially from the brightfield (650-760 nm), DAPI/Nuclear signal
529 (435-480 nm), GFP/Green signal (500-550 nm), PE/Orange signal (570-630 nm) and APC/Red signal
530 (650-760 nm) channels. Subsequently, the raw .tiff images were transferred from the microscope for
531 further analysis.

532 *Conventional image analysis and quality filtering*

533 Cell detection and single-cell image analysis was performed using CellProfiler v2 (Carpenter et al.
534 2006). Nuclear segmentation was performed via thresholding on DAPI intensity. Cellular outlines were
535 estimated by a circular expansion from the outlines of the nucleus. Additionally, a second and larger
536 expansion from the nuclei was performed to measure the local area around each single cell (local
537 cellular background). Standard CellProfiler based intensity-, shape- and texture features of the
538 nucleus, cytoplasm and the local cell proximity were extracted for each measured channel. Raw
539 fluorescent intensities were \log_{10} transformed and normalized towards the local cellular background
540 as described in Vladimer et. al., 2017 (Vladimer et al. 2017).

541 *Convolutional Neural Networks*

542 Convolutional neural networks used in this work were implemented using *MATLAB's Neural Network*
543 *Toolbox Version R2020a*. The curated dataset used in training, validation and testing of the CNN
544 framework contains images of cells from fully multiplexed stainings and images from staining controls.

545 Staining controls were designed to contain only a subset of the antibodies used in the multiplexed
546 setting (Supplementary Table 1). This reduced complexity first enables to evaluate the functionality of
547 the selected antibody and the presence of the targeted antigen in each sample. Furthermore, antibody
548 combinations in the staining-controls were picked to mirror the staining of the selected subpopulation
549 in the multiplexed setting (e.g. staining-control 1 only contained antibodies marking T-cell specific
550 antigens; T-cells in the multiplexed setting will have the same staining pattern). The same staining
551 patterns in the controls and the mostly-non-overlapping emission spectra of the chosen antibodies
552 allow an easy, marker-intensity-based identification of subpopulations. This facilitates a fast and
553 unbiased selection of training examples. For the generation of single cell images, the center of each
554 cell was determined by its nuclear staining via the software CellProfiler (see above). Around each
555 nuclei-center, a 50x50 pixel (or 39.5x39.5 μm) wide subimage was generated across all 5 measured
556 channels. Single-cell sub-images were then manually annotated and sorted for their respective class
557 using custom Matlab scripts. For training and validation of the discovery cohort CNN, a dataset of
558 89483 cells was manually annotated (containing both multiplexed and control staining cells). In the
559 separate test datasets, each donor-associated set is independently split in multiplexed and control
560 staining cells, resulting in a total of 30 independent test-datasets with each 100 cells per class. This
561 test-setup allows inferring the network performance towards each donor, experiment and staining
562 type independently.

563 Discovery cohort (10 donors): A 17-layer deep convolutional neural network with an adapted 'Alex-
564 Net' architecture (Krizhevsky, Sutskever, and Hinton 2012) with 50x50 pixel and 5 channel input
565 images was used. Before training, the labeled 8-class dataset was randomly split in a training set
566 containing 90% and a validation set with the remaining 10% of all images. Network-layers weights and
567 biases were initialized randomly before the CNN network was trained. Networks were trained up to
568 20 epochs with a mini batch size of 512 images. The learning rate was fixed to 0.0001. To avoid
569 overfitting, L2 regularization with 0.005 was applied. Furthermore, in each iteration, input images
570 were randomly rotated in 45-degree steps with an additional possibility to be also flipped vertically or
571 horizontally. Performance of the trained network was tested on the separate test-sets of staining
572 control and multiplexed images of all 15 donors. Stochastic gradient descent with momentum of 0.9
573 is defined as the optimization algorithm. Finally, we trained 20 differently initialized networks with
574 differently split training and validation sets. For the final classification of the complete unlabeled
575 dataset the best performing network was used. As in the generation of the labeled dataset, 50x50
576 pixel sub-images around each nuclei-center were generated. Cells closer than 25 pixels to the border
577 of an image were excluded from classification.

578 Validation cohort (15 donors): A 71-layer deep convolutional neural network with an adapted ResNet
579 architecture (He et al. 2016) with 48x48 pixel and 5 channel input images was used. Before
580 classification and training, all intensity values were first \log_{10} transformed and then channel-wise
581 normalized to a 0 to 1 range. The 8-class CNN was trained using randomly initialized weights and biases
582 and the adaptive learning rate optimization 'ADAM'. The network was trained for 20 epochs with an
583 initial learning rate of 0.001 which was dropped every 5 epochs with a factor of 0.1. Furthermore, a
584 mini batch size of 512 images and L2 regularization with 0.001 was applied. To further strengthen
585 generalization, input images were augmented in each iteration. Here images were randomly rotated
586 in 45-degree steps with an additional possibility to be also flipped vertically or horizontally. To block
587 an over-reliance on absolute intensity values, channel intensity shifts were simulated via a
588 multiplication with a random fixed factor. This used factor was randomly drawn out of a normal
589 distribution with a mean of 1 and a standard deviation of 0.2. Furthermore, images were augmented
590 with random noise (specifically salt and pepper noise, speckle noise, gaussian noise or image blurring).
591 In all CNN classifications, 48x48 pixel sub-images around each nuclei-center were generated. Cells
592 closer than 24 pixels to the border of an image were excluded from all classifications.

593 Label-free T-cell activation (T_{ACT}) classifier: Convolutional neural networks and single cell images were
594 generated as described above. The labelled training and validation dataset comprised a total of 8862
595 cells (1:2 T_{ACT} : T_{CON} ratio). CNNs were trained with a mini batch size of 200 images to a maximum of
596 100 epochs, which could be terminated if validation loss was greater than the previous smallest loss
597 for five consecutive times. Additionally, the images were randomly rotated by 45-degrees and
598 mirrored vertically or horizontally per iteration to limit orientation bias towards polarised Tact cells.
599 The CNN performance was assessed by classifying 1107 test cells (1:2 T_{ACT} Tact: T_{CON} Tc ratio) that had
600 neither been used in CNN training nor in validation.

601 *RNA sequencing*

602 T-cell isolation and RNA extraction: T-cells were isolated from fresh PMBCs directly after obtaining
603 them via density centrifugation, as described above. Isolation was performed via a column based
604 extraction method with CD3 Microbeads as described in the manufacturer's instructions (Miltenyi
605 Biotec). RNA extraction of the isolated cells was performed with a Quick-RNA MiniPrep Kit by Zymo
606 according to manufacturer's instructions.

607

608 RNA sequencing: RNA sequencing was performed by the Functional Genomics Center Zurich. In short,
609 cDNA libraries were obtained according to protocols published by Picelli et al, 2014(Picelli et al. 2014).
610 Illumina library was obtained via tagmentation using Illumina Nextera Kit. All samples were sequenced
611 in a single run on a NovaSeq6000 (single read, 100bp, depth 20 Mio reads per sample).

612

613 Data processing and normalization: Illumina adapters, sequences of poor quality as well as polyA and
614 polyT sequences were removed from the raw reads using TrimGalore v.0.6.0 with cutadapt v.2.0 prior
615 to alignment. Reads were then aligned to the human reference genome GRCh38, v93 (Ensembl) using
616 STAR v. 2.5.3a. Reads per gene were counted using the –quantMode GeneCounts flag in STAR. Gene
617 counts below a threshold of 20 raw counts were filtered and raw counts were normalized
618 (DESeq2(Love, Huber, and Anders 2014)). Only transcripts annotated as 'protein coding' or 'long non-
619 coding RNA' were considered in the subsequent analysis.

620

621

622 **Statistical analysis**

623 Significance calculation: If not stated otherwise all significance scores were calculated based on a two-
624 tailed Student's *t*-test with mean 0.

625 Cell-cell interaction analysis: For cell-cell interaction analysis, a simplified version of Vladimer et. al.,
626 2017 (Vladimer et al. 2017) interaction method was used. Here, cell-cell interaction analysis was
627 conducted over all different image sites within the same well. Cells were scored as interacting if their
628 nuclear centroids were within a euclidean distance of 40 pixels. To calculate the interaction-score of
629 a cell with type A interacting with a cell of type B, we first calculated specific interactions and total
630 interactions per well. We define specific-interactions, as the total count of "B"-cells within the defined
631 radius around a cell of type "A". Total-interactions are considered as the total count of all interacting
632 cells in that well. To calculate the final interaction score, specific-interactions were divided by the
633 product of (the fraction of type A cells of all cells) × (the fraction of type B cells of all cells) × total-
634 interactions. In contrast to the previously published method, this approach is simplified as the

635 interactions scores are non-directed, which reduces the number of edges from 72 to 36. Mean
636 interaction score over all replicates was calculated, \log_2 -transformed and normalized towards its
637 respective control (see [Supplementary Table 2](#)).

638 t-Distributed Stochastic Neighbor Embedding (t-SNE): All t-SNE visualizations were calculated on the
639 $-\log_{10}(\text{class-probability matrices})$. In the t-SNE calculation a mahalanobis distance metric, a perplexity
640 of 30, and an exaggeration parameter of 4 was applied. To reduce calculation time, the Barnes-Hut
641 algorithm with a theta of 0.5 was used.

642 Local enrichment analysis (LEA): To calculate whether a certain condition displays local enrichment in
643 the 8-dimensional class probability space, we developed local enrichment analysis by hypergeometric
644 testing or rank-based correlation (LEA). Here, we probe the local neighborhood around each single
645 cell, which is defined as the k-nearest neighbors in the original CNN class probability space. For
646 discrete variables (such as donor identity), we calculate the probability to randomly find at least n cells
647 of condition X in a certain neighborhood using a hypergeometric cumulative distribution function. This
648 takes into account the total number of cells in the probed neighborhood, the total number of cells in
649 the tested class probability space, and the total number of cells of condition X . In case of continuous
650 variables (like donor age or gene transcript counts), the relative fraction of cells of each donor in the
651 probed local neighborhood is calculated. The fractions are then correlated (Spearman's rank
652 correlation) with a continuous variable and the significance of the correlation is calculated. In both
653 cases, the enrichment-probability is assigned to center-cell of the probed region and the approach is
654 iterated for each single cell in the selected n-dimensional space. If not stated otherwise,
655 neighborhoods were defined as $k = 400$ nearest neighbours for figures 2-3 and S2-S4 and $k=200$ for
656 the T-cell figures 4-5 and S5-S6. P-values were corrected for multiple testing, i.e. by the number of
657 total cells (i.e. tests) in the analysis.

658 Pathway enrichment analysis: Pathway annotations were obtained utilizing the David Database
659 (Huang, Sherman, and Lempicki 2009). Gene enrichments per single cell were calculated via LEA (see
660 above). To calculate pathway enrichments per single cell the LEA gene enrichments of all genes
661 belonging to a certain pathway annotation were compared against the enrichment of all other genes.
662 Significance scores were calculated based on a two-tailed Student's t -test and directionality was
663 calculated by the difference of the means of both populations.

664 **Data and Code availability**

665 Further information and requests for resources and reagents should be directed to and will be fulfilled
666 by the Lead Contact, Berend Snijder (bsnijder@ethz.ch). This study did not create new unique reagents
667 and all used reagents are commercially available.

668 CNN training and test datasets as well as the custom algorithm for local enrichment analysis by
669 hypergeometric testing (LEA) will be available upon publication of this manuscript. The CNN dataset
670 and relevant metadata is additionally available at the FAIR principles ([Wilkinson et al. 2016](#)) compliant
671 repository <https://doi.org/10.3929/ethz-b-000343106>. Raw image data is available from the Lead
672 Contact, upon request. T-cell RNA-seq measurements used in the study are available at
673 <https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE155093>.

674

675

676 **References**

677 Aljalbout, Elie, Vladimir Golkov, Yawar Siddiqui, Maximilian Strobel, and Daniel Cremers. 2018.
678 “Clustering with Deep Learning: Taxonomy and New Methods.” *arXiv [cs.LG]*. arXiv.
679 <http://arxiv.org/abs/1801.07648>.

680 Alpert, Ayelet, Yishai Pickman, Michael Leipold, Yael Rosenberg-Hasson, Xuhuai Ji, Renaud Gaujoux,
681 Hadas Rabani, et al. 2019. “A Clinically Meaningful Metric of Immune Age Derived from High-
682 Dimensional Longitudinal Monitoring.” *Nature Medicine* 25 (3): 487–95.

683 Bakal, Chris, John Aach, George Church, and Norbert Perrimon. 2007. “Quantitative Morphological
684 Signatures Define Local Signaling Networks Regulating Cell Morphology.” *Science* 316 (5832):
685 1753–56.

686 Bendall, Sean C., Erin F. Simonds, Peng Qiu, El-Ad D. Amir, Peter O. Krutzik, Rachel Finck, Robert V.
687 Bruggner, et al. 2011. “Single-Cell Mass Cytometry of Differential Immune and Drug Responses
688 across a Human Hematopoietic Continuum.” *Science* 332 (6030): 687–96.

689 Bendelac, Albert, Paul B. Savage, and Luc Teyton. 2007. “The Biology of NKT Cells.” *Annual Review of
690 Immunology* 25: 297–336.

691 Bertani, Francesca R., Pamela Mozetic, Marco Fioramonti, Michele Iuliani, Giulia Ribelli, Francesco
692 Pantano, Daniele Santini, et al. 2017. “Classification of M1/M2-Polarized Human Macrophages
693 by Label-Free Hyperspectral Reflectance Confocal Microscopy and Multivariate Analysis.”
694 *Scientific Reports* 7 (1): 8965.

695 Boutros, Michael, Florian Heigwer, and Christina Laufer. 2015. “Microscopy-Based High-Content

696 Screening." *Cell* 163 (6): 1314–25.

697 Buggenthin, Felix, Florian Buettner, Philipp S. Hoppe, Max Endele, Manuel Kroiss, Michael Strasser,
698 Michael Schwarzfischer, et al. 2017. "Prospective Identification of Hematopoietic Lineage
699 Choice by Deep Learning." *Nature Methods* 14 (4): 403–6.

700 Caicedo, Juan C., Sam Cooper, Florian Heigwer, Scott Warchal, Peng Qiu, Csaba Molnar, Aliaksei S.
701 Vasilevich, et al. 2017. "Data-Analysis Strategies for Image-Based Cell Profiling." *Nature
702 Methods* 14 (9): 849–63.

703 Carlton, Jeremy G., Hannah Jones, and Ulrike S. Eggert. 2020. "Membrane and Organelle Dynamics
704 during Cell Division." *Nature Reviews. Molecular Cell Biology* 21 (3): 151–66.

705 Carpenter, Anne E., Thouis R. Jones, Michael R. Lamprecht, Colin Clarke, In Han Kang, Ola Friman,
706 David A. Guertin, et al. 2006. "CellProfiler: Image Analysis Software for Identifying and
707 Quantifying Cell Phenotypes." *Genome Biology* 7 (10): R100.

708 Carr, Edward J., James Dooley, Josselyn E. Garcia-Perez, Vasiliki Lagou, James C. Lee, Carine Wouters,
709 Isabelle Meyts, et al. 2016. "The Cellular Composition of the Human Immune System Is Shaped
710 by Age and Cohabitation." *Nature Immunology* 17 (4): 461–68.

711 Craig, Fiona E., and Kenneth A. Foon. 2008. "Flow Cytometric Immunophenotyping for Hematologic
712 Neoplasms." *Blood* 111 (8): 3941–67.

713 Discher, Dennis E., David J. Mooney, and Peter W. Zandstra. 2009. "Growth Factors, Matrices, and
714 Forces Combine and Control Stem Cells." *Science* 324 (5935): 1673–77.

715 Dürr, Oliver, and Beate Sick. 2016. "Single-Cell Phenotype Classification Using Deep Convolutional
716 Neural Networks." *Journal of Biomolecular Screening* 21 (9): 998–1003.

717 Faure, Sophie, Laura Inés Salazar-Fontana, Monique Semichon, Victor L. J. Tybulewicz, Georges
718 Bismuth, Alain Trautmann, Ronald N. Germain, and Jérôme Delon. 2004. "ERM Proteins
719 Regulate Cytoskeleton Relaxation Promoting T Cell-APC Conjugation." *Nature Immunology* 5 (3):
720 272–79.

721 Folkman, J., and A. Moscona. 1978. "Role of Cell Shape in Growth Control." *Nature* 273 (5661): 345–
722 49.

723 Franceschi, C., M. Bonafè, and S. Valensin. 2000. "Inflamm-aging: An Evolutionary Perspective on
724 Immunosenescence." *Annals of the New York Academy of Sciences*.
725 <https://onlinelibrary.wiley.com/doi/pdf/10.1111/j.1749-6632.2000.tb06651.x>.

726 Galli, Stephen J., Niels Borregaard, and Thomas A. Wynn. 2011. "Phenotypic and Functional Plasticity
727 of Cells of Innate Immunity: Macrophages, Mast Cells and Neutrophils." *Nature Immunology* 12
728 (11): 1035–44.

729 Gerdes, Michael J., Christopher J. Sevinsky, Anup Sood, Sudeshna Adak, Musodiq O. Bello, Alexander

730 Bordwell, Ali Can, et al. 2013. "Highly Multiplexed Single-Cell Analysis of Formalin-Fixed,
731 Paraffin-Embedded Cancer Tissue." *Proceedings of the National Academy of Sciences of the*
732 *United States of America* 110 (29): 11982–87.

733 Giladi, Amir, and Ido Amit. 2018. "Single-Cell Genomics: A Stepping Stone for Future Immunology
734 Discoveries." *Cell* 172 (1-2): 14–21.

735 Godinez, William J., Imtiaz Hossain, Stanley E. Lazic, John W. Davies, and Xian Zhang. 2017. "A Multi-
736 Scale Convolutional Neural Network for Phenotyping High-Content Cellular Images."
737 *Bioinformatics* 33 (13): 2010–19.

738 Gomes, Ana P., Nathan L. Price, Alvin J. Y. Ling, Javid J. Moslehi, Magdalene K. Montgomery, Luis
739 Rajman, James P. White, et al. 2013. "Declining NAD(+) Induces a Pseudohypoxic State
740 Disrupting Nuclear-Mitochondrial Communication during Aging." *Cell* 155 (7): 1624–38.

741 Gómez-Moutón, C., J. L. Abad, and E. Mira. 2001. "Segregation of Leading-Edge and Uropod
742 Components into Specific Lipid Rafts during T Cell Polarization." *Proceedings of the*.
743 <https://www.pnas.org/content/98/17/9642.short>.

744 Gut, Gabriele, Markus D. Herrmann, and Lucas Pelkmans. 2018. "Multiplexed Protein Maps Link
745 Subcellular Organization to Cellular States." *Science* 361 (6401).
746 <https://doi.org/10.1126/science.aar7042>.

747 Hanahan, Douglas, and Robert A. Weinberg. 2011. "Hallmarks of Cancer: The next Generation." *Cell*
748 144 (5): 646–74.

749 He, K., X. Zhang, S. Ren, and J. Sun. 2016. "Deep Residual Learning for Image Recognition." In 2016
750 *IEEE Conference on Computer Vision and Pattern Recognition (CVPR)*, 770–78.

751 Huang, Da Wei, Brad T. Sherman, and Richard A. Lempicki. 2009. "Systematic and Integrative
752 Analysis of Large Gene Lists Using DAVID Bioinformatics Resources." *Nature Protocols* 4 (1): 44–
753 57.

754 Hussain, S., A. Das, B. P. Nguyen, M. Marzuki, S. Lin, A. Kumar, G. Wright, and A. Singhal. 2019.
755 "DeLHCA: Deep Transfer Learning for High-Content Analysis of the Effects of Drugs on Immune
756 Cells." In *TENCON 2019 - 2019 IEEE Region 10 Conference (TENCON)*, 796–801.

757 Jackson, P. T., Y. Wang, S. Knight, H. Chen, T. Dorval, M. Brown, C. Bendtsen, and B. Obara. 2019.
758 "Phenotypic Profiling of High Throughput Imaging Screens with Generic Deep Convolutional
759 Features." In *2019 16th International Conference on Machine Vision Applications (MVA)*, 1–4.

760 Jaitin, Diego Adhemar, Ephraim Kenigsberg, Hadas Keren-Shaul, Naama Elefant, Franziska Paul, Irina
761 Zaretsky, Alexander Mildner, et al. 2014. "Massively Parallel Single-Cell RNA-Seq for Marker-
762 Free Decomposition of Tissues into Cell Types." *Science* 343 (6172): 776–79.

763 Jin, Jun, Xuanying Li, Bin Hu, Chulwoo Kim, Wenqiang Cao, Huimin Zhang, Cornelia M. Weyand, and

764 Jorg J. Goronzy. 2020. "FOXO1 Deficiency Impairs Proteostasis in Aged T Cells." *Science*
765 *Advances* 6 (17): eaba1808.

766 Kandaswamy, Chetak, Luís M. Silva, Luís A. Alexandre, and Jorge M. Santos. 2016. "High-Content
767 Analysis of Breast Cancer Using Single-Cell Deep Transfer Learning." *Journal of Biomolecular*
768 *Screening* 21 (3): 252–59.

769 Kornauth, Christoph, Tea Pemovska, Gregory I. Vladimer, Günther Bayer, Michael Bergmann, Sandra
770 Eder, Ruth Eichner, et al. 2021. "Functional Precision Medicine Provides Clinical Benefit in
771 Advanced Aggressive Hematological Cancers and Identifies Exceptional Responders." *Cancer*
772 *Discovery*, October. <https://doi.org/10.1158/2159-8290.CD-21-0538>.

773 Kraus, Oren Z., Jimmy Lei Ba, and Brendan J. Frey. 2016. "Classifying and Segmenting Microscopy
774 Images with Deep Multiple Instance Learning." *Bioinformatics* 32 (12): i52–59.

775 Kraus, Oren Z., Ben T. Grys, Jimmy Ba, Yolanda Chong, Brendan J. Frey, Charles Boone, and Brenda J.
776 Andrews. 2017. "Automated Analysis of High-Content Microscopy Data with Deep Learning."
777 *Molecular Systems Biology* 13 (4): 924.

778 Krizhevsky, Alex, Ilya Sutskever, and Geoffrey E. Hinton. 2012. "ImageNet Classification with Deep
779 Convolutional Neural Networks." In *Advances in Neural Information Processing Systems*, edited
780 by F. Pereira, C. J. C. Burges, L. Bottou, and K. Q. Weinberger. Vol. 25. Curran Associates, Inc.
781 <https://proceedings.neurips.cc/paper/2012/file/c399862d3b9d6b76c8436e924a68c45b-Paper.pdf>.

782 Lecuit, Thomas, and Pierre-François Lenne. 2007. "Cell Surface Mechanics and the Control of Cell
783 Shape, Tissue Patterns and Morphogenesis." *Nature Reviews. Molecular Cell Biology* 8 (8): 633–
784 44.

785 LeCun, Yann, Yoshua Bengio, and Geoffrey Hinton. 2015. "Deep Learning." *Nature* 521 (7553): 436–
786 44.

787 Liberali, Prisca, Berend Snijder, and Lucas Pelkmans. 2014. "A Hierarchical Map of Regulatory
788 Genetic Interactions in Membrane Trafficking." *Cell* 157 (6): 1473–87.

789 Lin, Jia-Ren, Mohammad Fallahi-Sichani, and Peter K. Sorger. 2015. "Highly Multiplexed Imaging of
790 Single Cells Using a High-Throughput Cyclic Immunofluorescence Method." *Nature*
791 *Communications* 6 (September): 8390.

792 Lin, Kevin B. L., Spencer A. Freeman, Saba Zabetian, Hayley Brugger, Michele Weber, Victor Lei, May
793 Dang-Lawson, et al. 2008. "The Rap GTPases Regulate B Cell Morphology, Immune-Synapse
794 Formation, and Signaling by Particulate B Cell Receptor Ligands." *Immunity* 28 (1): 75–87.

795 Lin, Wei, Yuanzhen Suo, Yuting Deng, Zhichao Fan, Yijie Zheng, Xunbin Wei, and Yiwei Chu. 2015.
796 "Morphological Change of CD4(+) T Cell during Contact with DC Modulates T-Cell Activation by

798 Accumulation of F-Actin in the Immunology Synapse.” *BMC Immunology* 16 (August): 49.

799 Love, Michael I., Wolfgang Huber, and Simon Anders. 2014. “Moderated Estimation of Fold Change
800 and Dispersion for RNA-Seq Data with DESeq2.” *Genome Biology* 15 (12): 550.

801 Maaten, L., and G. Hinton. 2008. “Visualizing Data Using T-SNE.” *Journal of Machine Learning
802 Research: JMLR*. <http://www.jmlr.org/papers/v9/vandermaaten08a.html>.

803 Maecker, Holden T., J. Philip McCoy, and Robert Nussenblatt. 2012. “Standardizing
804 Immunophenotyping for the Human Immunology Project.” *Nature Reviews. Immunology* 12 (3):
805 191–200.

806 Martinez, Fernando O., and Siamon Gordon. 2014. “The M1 and M2 Paradigm of Macrophage
807 Activation: Time for Reassessment.” *F1000prime Reports* 6 (March): 13.

808 McBeath, Rowena, Dana M. Pirone, Celeste M. Nelson, Kiran Bhadriraju, and Christopher S. Chen.
809 2004. “Cell Shape, Cytoskeletal Tension, and RhoA Regulate Stem Cell Lineage Commitment.”
810 *Developmental Cell* 6 (4): 483–95.

811 McWhorter, Frances Y., Tingting Wang, Phoebe Nguyen, Thanh Chung, and Wendy F. Liu. 2013.
812 “Modulation of Macrophage Phenotype by Cell Shape.” *Proceedings of the National Academy of
813 Sciences of the United States of America* 110 (43): 17253–58.

814 Melé, Marta, Pedro G. Ferreira, Ferran Reverter, David S. DeLuca, Jean Monlong, Michael Sammeth,
815 Taylor R. Young, et al. 2015. “Human Genomics. The Human Transcriptome across Tissues and
816 Individuals.” *Science* 348 (6235): 660–65.

817 Moen, Erick, Dylan Bannon, Takamasa Kudo, William Graf, Markus Covert, and David Van Valen.
818 2019. “Deep Learning for Cellular Image Analysis.” *Nature Methods* 16 (12): 1233–46.

819 Murera, Diane, Florent Arbogast, Johan Arnold, Delphine Bouis, Sylviane Muller, and Frédéric Gros.
820 2018. “CD4 T Cell Autophagy Is Integral to Memory Maintenance.” *Scientific Reports* 8 (1): 5951.

821 Panhuyse, Nicholas van, Frederick Klauschen, and Ronald N. Germain. 2014. “T-Cell-Receptor-
822 Dependent Signal Intensity Dominantly Controls CD4+ T Cell Polarization In Vivo.” *Immunity* 41
823 (1): 63–74.

824 Papalexis, Efthymia, and Rahul Satija. 2018. “Single-Cell RNA Sequencing to Explore Immune Cell
825 Heterogeneity.” *Nature Reviews. Immunology* 18 (1): 35–45.

826 Pärnamaa, Tanel, and Leopold Parts. 2017. “Accurate Classification of Protein Subcellular
827 Localization from High-Throughput Microscopy Images Using Deep Learning.” *G3* 7 (5): 1385–
828 92.

829 Perlman, Zachary E., Michael D. Slack, Yan Feng, Timothy J. Mitchison, Lani F. Wu, and Steven J.
830 Altschuler. 2004. “Multidimensional Drug Profiling by Automated Microscopy.” *Science* 306
831 (5699): 1194–98.

832 Picelli, Simone, Asa K. Björklund, Björn Reinius, Sven Sagasser, Gösta Winberg, and Rickard Sandberg.
833 2014. "Tn5 Transposase and Tagmentation Procedures for Massively Scaled Sequencing
834 Projects." *Genome Research* 24 (12): 2033–40.

835 Ramkumar, Nitya, and Buzz Baum. 2016. "Coupling Changes in Cell Shape to Chromosome
836 Segregation." *Nature Reviews. Molecular Cell Biology* 17 (8): 511–21.

837 Ron-Harel, Noga, Giulia Notarangelo, Jonathan M. Ghergurovich, Joao A. Paulo, Peter T. Sage, Daniel
838 Santos, F. Kyle Satterstrom, et al. 2018. "Defective Respiration and One-Carbon Metabolism
839 Contribute to Impaired Naïve T Cell Activation in Aged Mice." *Proceedings of the National
840 Academy of Sciences of the United States of America* 115 (52): 13347–52.

841 Roth, Alexander, Hans Yssel, Jerome Pene, Elizabeth A. Chavez, Mike Schertzer, Peter M. Lansdorp,
842 Hergen Spits, and Rosalie M. Luiten. 2003. "Telomerase Levels Control the Lifespan of Human T
843 Lymphocytes." *Blood* 102 (3): 849–57.

844 Russell, Sarah. 2008. "How Polarity Shapes the Destiny of T Cells." *Journal of Cell Science* 121 (Pt 2):
845 131–36.

846 Shalek, Alex K., Rahul Satija, Xian Adiconis, Rona S. Gertner, Jellert T. Gaublomme, Rakimma
847 Raychowdhury, Schraga Schwartz, et al. 2013. "Single-Cell Transcriptomics Reveals Bimodality in
848 Expression and Splicing in Immune Cells." *Nature* 498 (7453): 236–40.

849 Sica, Antonio, and Alberto Mantovani. 2012. "Macrophage Plasticity and Polarization: In Vivo
850 Veritas." *The Journal of Clinical Investigation* 122 (3): 787–95.

851 Snijder, Berend, and Lucas Pelkmans. 2011. "Origins of Regulated Cell-to-Cell Variability." *Nature
852 Reviews. Molecular Cell Biology* 12 (2): 119–25.

853 Snijder, Berend, Raphael Sacher, Pauli Rämö, Eva-Maria Damm, Prisca Liberali, and Lucas Pelkmans.
854 2009. "Population Context Determines Cell-to-Cell Variability in Endocytosis and Virus
855 Infection." *Nature* 461 (7263): 520–23.

856 Snijder, Berend, Gregory I. Vladimer, Nikolaus Krall, Katsuhiro Miura, Ann-Sofie Schmolke, Christoph
857 Kornauth, Oscar Lopez de la Fuente, et al. 2017. "Image-Based Ex-Vivo Drug Screening for
858 Patients with Aggressive Haematological Malignancies: Interim Results from a Single-Arm,
859 Open-Label, Pilot Study." *The Lancet. Haematology* 4 (12): e595–606.

860 Sommer, Christoph, Rudolf Hoefer, Matthias Samwer, and Daniel W. Gerlich. 2017. "A Deep
861 Learning and Novelty Detection Framework for Rapid Phenotyping in High-Content Screening."
862 *Molecular Biology of the Cell* 28 (23): 3428–36.

863 Spitzer, Matthew H., and Garry P. Nolan. 2016. "Mass Cytometry: Single Cells, Many Features." *Cell*
864 165 (4): 780–91.

865 Stephen, Louise A., Yasmin ElMaghloob, Michael J. McIlwraith, Tamas Yelland, Patricia Castro

866 Sanchez, Pedro Roda-Navarro, and Shehab Ismail. 2018. "The Ciliary Machinery Is Repurposed
867 for T Cell Immune Synapse Trafficking of LCK." *Developmental Cell* 47 (1): 122–32.e4.

868 Tsai, Albert G., David R. Glass, Marisa Juntilla, Felix J. Hartmann, Jean S. Oak, Sebastian Fernandez-
869 Pol, Robert S. Ohgami, and Sean C. Bendall. 2020. "Multiplexed Single-Cell Morphometry for
870 Hematopathology Diagnostics." *Nature Medicine* 26 (3): 408–17.

871 Villani, Alexandra-Chloé, Rahul Satija, Gary Reynolds, Siranush Sarkizova, Karthik Shekhar, James
872 Fletcher, Morgane Griesbeck, et al. 2017. "Single-Cell RNA-Seq Reveals New Types of Human
873 Blood Dendritic Cells, Monocytes, and Progenitors." *Science* 356 (6335).
874 <https://doi.org/10.1126/science.aah4573>.

875 Vladimer, Gregory I., Berend Snijder, Nikolaus Krall, Johannes W. Bigenzahn, Kilian V. M. Huber,
876 Charles-Hugues Lardeau, Kumar Sanjiv, et al. 2017. "Global Survey of the Immunomodulatory
877 Potential of Common Drugs." *Nature Chemical Biology* 13 (6): 681–90.

878 Wawer, Mathias J., Kejie Li, Sigrun M. Gustafsdottir, Vebjorn Ljosa, Nicole E. Bodycombe, Melissa A.
879 Marton, Katherine L. Sokolnicki, et al. 2014. "Toward Performance-Diverse Small-Molecule
880 Libraries for Cell-Based Phenotypic Screening Using Multiplexed High-Dimensional Profiling."
881 *Proceedings of the National Academy of Sciences of the United States of America* 111 (30):
882 10911–16.

883 Wilkinson, Mark D., Michel Dumontier, I. J. S. brand Jan Aalbersberg, Gabrielle Appleton, Myles Axton,
884 Arie Baak, Niklas Blomberg, et al. 2016. "The FAIR Guiding Principles for Scientific Data
885 Management and Stewardship." *Scientific Data* 3 (March): 160018.

886 Wu, Pei-Hsun, Daniele M. Gilkes, Jude M. Phillip, Akshay Narkar, Thomas Wen-Tao Cheng, Jorge
887 Marchand, Meng-Horng Lee, Rong Li, and Denis Wirtz. 2020. "Single-Cell Morphology Encodes
888 Metastatic Potential." *Science Advances* 6 (4): eaaw6938.

889 Xie, Junyuan, Ross Girshick, and Ali Farhadi. 2016. "Unsupervised Deep Embedding for Clustering
890 Analysis." In *International Conference on Machine Learning*, 478–87.

891 Young, Daniel W., Andreas Bender, Jonathan Hoyt, Elizabeth McWhinnie, Gung-Wei Chirn, Charles Y.
892 Tao, John A. Tallarico, et al. 2008. "Integrating High-Content Screening and Ligand-Target
893 Prediction to Identify Mechanism of Action." *Nature Chemical Biology* 4 (1): 59–68.

894 Zhou, Liang, Mark M. W. Chong, and Dan R. Littman. 2009. "Plasticity of CD4+ T Cell Lineage
895 Differentiation." *Immunity* 30 (5): 646–55.

Supplementary Table 1

Epitope	Vendour	Fluorophore	Clone	Host	Staining Control	Used in multiplexed	Lot
CD3	BioLegend	Alexa Fluor 647	UCHT1	Mouse	1	yes	B246715
CD4	BioLegend	FITC	SK3	Mouse	1	yes	B244280
CD8	BioLegend	Alexa Fluor 594	RPA-T8	Mouse	1	yes	B200099
CD19	BioLegend	FITC	SJ25C1	Mouse	3	yes	B239447
CD19	BioLegend	PE	SJ25C1	Mouse	3	yes	B237928
CD56	Beckman Coulter	PE	N901	Mouse	2	yes	52
CD16	BioLegend	PE	3G8	Mouse	2	yes	B238510
CD14	BioLegend	Alexa Fluor 647	HCD14	Mouse	2&3	yes	B260484
CD11c	BioLegend	Alexa Fluor 488	3.9	Mouse	2&3	yes	B209841
CD3	BioLegend	Alexa Fluor 488	UCHT1	Mouse	/	no	B278994
CD4	Biolegend	Alexa Fluor 647	SK3	Mouse	/	no	B293054
CD8	Biolegend	Alexa Fluor 594	RPA-T8	Mouse	/	no	B200099
pNFkB p65 (Ser529)	eBioscience	PE	B33B4WP	Mouse	/	no	4303324
pERK1/2 (Thr202 Tyr204)	Thermo Fisher Scientific	PE	MILAN8R	Mouse	/	no	4337535

Supplementary Table 2

Compound name	Vendour	Assay conc.	Carrier solution and control
Crizotinib	Sigma-Aldrich	10uM	1% DMSO
		1uM	0.1% DMSO
		0.1uM	0.01% DMSO
		0.01uM	0.001% DMSO
Dexamethasone	Sigma-Aldrich	400ng/ml	1% DMSO
		40ng/ml	0.1% DMSO
		4ng/ml	0.01% DMSO
		0.4ng/ml	0.001% DMSO
Lipopolysaccharide from Escherichia coli	Sigma-Aldrich	100ng/ml	PBS
		10ng/ml	PBS
		1ng/ml	PBS
		0.1ng/ml	PBS
Rituximab	Absolute antibody	1ug/ml	PBS
		0.5ug/ml	PBS
		0.1ug/ml	PBS
		0.05ug/ml	PBS
Recombinant Human IL-2	PeproTech	100ng/ml	0.001% (w/v) BSA in PBS
		10ng/ml	0.0001% (w/v) BSA in PBS
		1ng/ml	0.00001% (w/v) BSA in PBS
		0.1ng/ml	0.000001% (w/v) BSA in PBS
Recombinant Human IL-4	PeproTech	100ng/ml	0.001% (w/v) BSA in PBS
		10ng/ml	0.0001% (w/v) BSA in PBS
		1ng/ml	0.00001% (w/v) BSA in PBS
		0.1ng/ml	0.000001% (w/v) BSA in PBS
Recombinant Human IL-6	PeproTech	100ng/ml	0.001% (w/v) BSA in PBS
		10ng/ml	0.0001% (w/v) BSA in PBS
		1ng/ml	0.00001% (w/v) BSA in PBS
		0.1ng/ml	0.000001% (w/v) BSA in PBS
Recombinant Human IL-10	PeproTech	100ng/ml	0.001% (w/v) BSA in PBS
		10ng/ml	0.0001% (w/v) BSA in PBS
		1ng/ml	0.00001% (w/v) BSA in PBS
		0.1ng/ml	0.000001% (w/v) BSA in PBS
Recombinant Human G-MCSF	PeproTech	100ng/ml	0.001% (w/v) BSA in PBS
		10ng/ml	0.0001% (w/v) BSA in PBS
		1ng/ml	0.00001% (w/v) BSA in PBS
		0.1ng/ml	0.000001% (w/v) BSA in PBS

Supplementary Table 3

Discovery cohort (Figure 1, Figure 2 A-B, Figure 3, Figure 4 A-G, Figure 5 A-B)

Whole Blood Donor	Year of birth	Blood type	weight in kg	Height in cm	Gender	Blood pressure	Hb level
1	1999	A+	68	174 m		128/70	156
2	1987	A+	66	170 m		173/99	147
3	1990	A+	50	163 f		114/80	148
4	2000	A+	63	168 f		122/74	133
5	1968	0-	58	165 f		158/90	151
6	1974	B+	95	176 m		156/98	177
7	1950	0+	72	175 f		126/78	130
8	1967	A+	95	178 m		146/86	161
9	1967	0+	80	180 m		160/106	167
10	1965	A+	80	180 m		130/82	167

Immuno-modulatory screen (Figure 2 C-F)

Buffy coat donor	Year of birth	Blood type	weight in kg	Height in cm	Gender	Blood pressure	Hb level
1	1968	AB+		73	180 m	146/92	153

Validation cohort (Figure 4H, Figure 5C)

Buffy coat Donor	Year of birth	Blood type	weight in kg	Height in cm	Gender	Blood pressure	Hb level
1	1994	B+		65	183 m	135/77	152
2	1970	B+		69	177 f	148/92	147
3	1996	B+		75	192 m	138/91	157
4	1994	B+		85	180 m	124/74	159
5	1953	B-		65	178 m	142/95	168
6	1971	AB-		65	171 f	114/72	141
7	1991	B+		67	180 f	135/94	145
8	1963	B+		65	157 f	146/99	157
9	1963	B+	\	\ m		170/90	169
10	1953	0-		76	158 f	142/100	149
11	1999	AB+		61	169 f	131/74	136
12	1960	B+		90	182 m	155/98	151
13	1999	B+		66	173 m	171/103	157
14	1967	B+		80	182 m	162/102	174
15	1989	AB-		72	178 f	108/63	138