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Summary

Phenotypic plasticity is essential to the immune system, yet the factors that shape it are not
fully understood. Here, we comprehensively analyze immune cell phenotypes including morphology
across human cohorts by single-round multiplexed immunofluorescence, automated microscopy, and
deep learning. Using the uncertainty of convolutional neural networks to cluster the phenotypes of 8
distinct immune cell subsets, we find that the resulting maps are influenced by donor age, gender, and
blood pressure, revealing distinct polarization and activation-associated phenotypes across immune
cell classes. We further associate T-cell morphology to transcriptional state based on their joint donor
variability, and validate an inflammation-associated polarized T-cell morphology, and an age-
associated loss of mitochondria in CD4* T-cells. Taken together, we show that immune cell phenotypes
reflect both molecular and personal health information, opening new perspectives into the deep

immune phenotyping of individual people in health and disease.
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Introduction

The morphology of a cell closely reflects its state, as it adapts to dynamic functional requirements and
thereby constrains future behavior (Bakal et al. 2007; Folkman and Moscona 1978; Lecuit and Lenne
2007; Boutros, Heigwer, and Laufer 2015). This feedback mechanism has been shown to influence
many cellular events, including cell differentiation (McBeath et al. 2004; Discher, Mooney, and
Zandstra 2009), cell division (Carlton, Jones, and Eggert 2020; Ramkumar and Baum 2016; Folkman
and Moscona 1978), adaptation to the microenvironment (Snijder et al. 2009; Snijder and Pelkmans
2011; Liberali, Snijder, and Pelkmans 2014), and malignant transformation (Hanahan and Weinberg
2011; Wu et al. 2020). Few differentiated healthy human cells change their phenotype as drastically
as immune cells: a plasticity that is critical to the correct function of the immune system as a whole
(Zhou, Chong, and Littman 2009; Galli, Borregaard, and Wynn 2011; Sica and Mantovani 2012). As a
consequence, studying immune cellular heterogeneity at the molecular level has been transformative
for our understanding of the immune system, measured for example by flow cytometry (Maecker,
McCoy, and Nussenblatt 2012; Craig and Foon 2008), single-cell mass cytometry (Spitzer and Nolan
2016; Bendall et al. 2011), and single-cell RNA sequencing (Papalexi and Satija 2018; Jaitin et al. 2014;
Shalek et al. 2013; Villani et al. 2017; Giladi and Amit 2018). Complementary to these molecular
measurements, microscopy has shown the importance of immune cell morphology in multiple
settings: distinct cellular morphologies are associated with, and influence the outcome of, monocyte
polarization (Bertani et al. 2017; McWhorter et al. 2013) and T- and B-cell activation (Gémez-Moutdn,
Abad, and Mira 2001; K. B. L. Lin et al. 2008; van Panhuys, Klauschen, and Germain 2014; Russell 2008;
Faure et al. 2004; W. Lin et al. 2015), and label-free imaging of hematopoietic cells has enabled
predicting the outcome of future lineage choices (Buggenthin et al. 2017). Additionally, a recent studly,
using organelle marker abundance as a proxy for cell morphology, found extensive evidence for
morphological heterogeneity in both healthy and diseased immune cells (Tsai et al. 2020). Due to their
mixed adherent nature, however, primary immune cells such as peripheral blood mononuclear cells
(PBMCs) were long considered incompatible with automated fluorescence microscopy, the tool of
choice to characterize cellular morphology with spatial resolution across millions of cells (Snijder et al.
2009; Liberali, Snijder, and Pelkmans 2014; Perlman et al. 2004; Boutros, Heigwer, and Laufer 2015;
Wawer et al. 2014; Young et al. 2008; Caicedo et al. 2017). This has hampered the comprehensive
measurement and study of morphological heterogeneity present in the immune system, and thus has
left unanswered the question of which molecular and health factors globally shape the compendium

of human immune cell morphologies.
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Results

To be able to comprehensively measure immune cell phenotypes, we developed a multiplexed
immunofluorescence approach for peripheral blood mononuclear cells (PBMCs) that extends our
previously developed protocol for high-throughput image-based screening in human biopsies
compatible with mixed non-adherent cells (Vladimer et al. 2017; Snijder et al. 2017; Kornauth et al.
2021) (Figure 1). In contrast to previously reported cyclical multiplexed immunofluorescence protocols
(J.-R. Lin, Fallahi-Sichani, and Sorger 2015; Gerdes et al. 2013; Gut, Herrmann, and Pelkmans 2018),
we stain once with a comprehensive immune cell marker panel that multiplexes 8 surface markers
and a nuclear dye, which is imaged by automated confocal microscopy and brightfield imaging in a
single run (Figure 1i and Supplementary Table 1). A deep convolutional neural network (LeCun, Bengio,
and Hinton 2015) with custom architecture (Figure S1A) was subsequently used to classify each cell,
making use of distinct marker expression patterns, lineage-specific labeling encoded by the staining
panel, and likely differences in immune cell morphology (Figure 1i). The CNN was trained across eight
immune cell classes, using 89’483 manually curated 5-channel sub-images (4 fluorescent channels and
brightfield) centered on individual cells sampled from 15 healthy donors (available at

https://doi.org/10.3929/ethz-b-000343106). The eight immune classes capture the predominant

immune lineages present in PBMCs, including three distinct T-cell subsets (CD4*, CD8* and CD4°CDS8),
monocytes, dendritic cells, natural killer cells, B-cells, and nucleated immune cells negative for all 8

surface markers (Figure 1).

CNN performance was stable across retraining, showed no sign of overfitting, and was 97%
accurate for unseen donors systematically left out of the training data (Figure S1B and S1C). The
network further achieved 97.7% classification accuracy (Figure 1ii) on a previously unseen test dataset
of 24’000 curated cells comprising PBMCs from the same 15 healthy donors (Figure S1D). The
classification efficiently demultiplexed the mixed marker signals such that the resulting abundances
of each subpopulation matched our expectations (Figure S1E and F), and both the class fractions
(Figure S1G) and class probabilities (Figure S1H) showed good reproducibility over different
experimental replicates (median r = 0.90 and 0.95 respectively). Whilst marker expression likely
contributed towards the classification accuracy between morphologically similar classes (such as T4
vs T8), cell morphology likely contributed to the separation of distinct cell types whose markers were
multiplexed in the same channel, such as CD14+ monocytes and CD3+ T-cells both stained in the APC
channel. Supporting this interpretation, a 2-class CNN could separate T-cells and monocytes with 95%
accuracy based on just the label-free brightfield and DAPI channels (Figure S1l and J). Thus, the 8-class
CNN learned to generalize immune phenotypes across individual donors and experiments, presenting

a robust, efficient, and data-rich high-throughput screening strategy with broad applicability.
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Both supervised and unsupervised deep learning algorithms are increasingly used for image
clustering (Xie, Girshick, and Farhadi 2016; Aljalbout et al. 2018), which we here explored for the
purpose of clustering immune cell phenotypes. The CNN returns a confidence vector for each cell that
creates an 8-dimensional feature space, which we visualized by t-distributed stochastic neighbor
embedding (t-SNE) (Maaten and Hinton 2008) (Figure 2A). To minimize possible batch effects and
confounding factors from ex vivo culturing, we analyzed a subset of 10 of the 15 donors on which the
CNN was trained, whose blood had been simultaneously processed, and incubated for just 1 hour
before fixing and imaging across replicate wells and plates. Visualization of unperturbed immune cells
from these 10 donors suggested considerable cell-to-cell variability, particularly among monocytes,
even just within the cells classified with high CNN confidence (Figure 2A). Projecting molecular and
morphological cell features measured by conventional image analysis on the t-SNE embedding
revealed that the CNN had separated monocytes based on their CD16 and CD11c expression levels,
even though it was not trained explicitly to do so (Figure 2A insert). Moreover, this showed that even
for high-confidence cells the CNN class probabilities reflected marker expression and morphological
heterogeneity for all 8 immune cell classes, with nuclear size and brightfield intensity differences
observed within each class (Figure 2A and B). Thus, while the 8-class CNN was strictly trained in a
supervised manner, its neural network uncertainty additionally allowed further grouping of previously
unannotated cellular phenotypes, capturing recurrent phenotypes present in primary human immune

cells.

We next tested if this deep learning uncertainty could also be used to quantify and categorize
extrinsically induced changes in immune cell phenotypes. To this end, we stimulated PBMCs from a
single donor with 12 immune modulators ex vivo across concentrations and replicates, measuring 5
million multiplexed stained and imaged PBMCs (Supplementary Table 2). First, we visualized the
structure in the CNNs confidence by t-SNE (Figure 2C), equally sampling cells from across all 8 classes
and 12 perturbations. This revealed monocytes to be divided into three clusters associated with
distinct CNN confidence profiles, not trivially explained by marker expression differences (Figure S2A,
B and C). To identify the contribution of distinct immune modulators to the morphological landscape
of immune cells, we developed a method called K-nearest neighbor local enrichment analysis by
hypergeometric testing (LEA, Figure 2D and methods). For each cell, LEA identifies the nearest
neighbors in the original 8-class probability space and calculates the hypergeometric significance of
enrichment for cells with a certain property in this neighborhood. LEA next assigns this significance
back to the original starting cell. Projecting the LEA results back on the t-SNE embedding revealed that
the monocyte subcluster with the lowest CNN confidence were enriched for monocytes exposed to

M1-type inducing agents E. coli lipopolysaccharides (LPS) and GM-CSF (Figure 2E and Figure S2D)
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(Martinez and Gordon 2014), or cytotoxic agents causing the release of danger-associated molecular
patterns. The second monocyte cluster was strongly enriched for cells exposed to M2-type associated
dexamethasone or IL4, while the third, highest confidence, monocyte cluster was not enriched for

most perturbations, thus likely reflecting unperturbed monocyte phenotypes (Figure 2F).

Stimulation with microbial compounds like LPS can selectively alter immune cell crosstalk, for
example through the induction of cell-cell contacts. We therefore suspected that phenotypes in the
M1-type cluster could in part reflect changes in the multi-cellular context. To verify this, we performed
spatially resolved single-cell analysis across the 8 classified immune cell types, allowing the high-
throughput screening of 36 distinct immune cell-cell interactions simultaneously, a significant increase
compared to our previous non-multiplexed efforts (Vladimer et al. 2017) (Figure S3A-B). Indeed,
analysis of all 43 million cell-cell interactions measured in this experiment (Figure S3A) confirmed the
M1-like monocyte cluster to be enriched for monocyte-to-monocyte interactions (Figure S3C). Thus,
LPS-mediated monocyte activation led to distinct M1-like monocyte phenotypes, defined in part by
an altered multi-cellular context. Collectively, LEA revealed that the uncertainty of the deep neural
network reconstituted previously established monocyte M1/M2-type polarization phenotypes in a
fully unsupervised manner (Fig 2), while exposing considerably phenotypic complexity, with most
immunomodulatory perturbations simultaneously affecting the phenotype of multiple immune cell

class (Figure 2C and Figure S2D).

The phenotypic heterogeneity of circulating immune cells captured by our image-based
measurements could reflect both genetic and non-genetic influences (Melé et al. 2015; Galli,
Borregaard, and Wynn 2011). To explore this we analyzed commonalities and differences in the
unperturbed immune phenotypes across the discovery cohort of the 10 donors shown in Figure 2. We
first used LEA to measure enrichment of cells from the same donor in the nearest-neighborhood in
the 8-dimensional CNN class probability space. This identified distinct cellular phenotype-regions
significantly enriched for each of the 10 donors across several immune cell classes (Figure 3A). As these
enriched phenotypes were measured across technical repeats, they potentially indicated donor-
individual characteristics of immune cell morphologies, but could also reflect batch effects acting
upstream of our sample processing and imaging. Repeating the analysis with randomized donor labels
and comparing the sum of enrichments showed that the actual donor-enrichment in nearest
neighbors of the latent space was well above what would be expected by random (P < 1.1x103%;
Figure 3A insert). We next looked for phenotypes that were enriched in donors with the same
biological gender, with the 10 donors including 4 women and 6 men. This revealed strong gender

associations with various immune cell morphologies (P < 1.1x1073%; Figure 3B), with NK- and Negative-
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cell class phenotypes particularly enriched in female donors, and not explained by enrichment in any

individual female donor (Figure S4A).

We next explored immune phenotype associations with continuous health parameters such
as donor age, which has been described to dramatically alter the immune phenotypic landscape (Carr
et al. 2016; Alpert et al. 2019) (Figure 3C, Figure 2D and methods). A modification of LEA for continuous
variables calculates the significance of the rank correlation between the fraction of cells per donor in
the nearest neighborhood and any continuous variable of each donor (Figure 2D). As before, the LEA
analysis was run in the 8-dimensional CNN class probability space. To correct for spurious associations,
we compare the association strength with those observed in many repeats with the same health
parameter randomized across the donors. Testing donor age, height, weight, body mass index, blood
pressure, and hemoglobin levels revealed significant associations with donor age (P < 1.3 x 10°) and
systolic blood pressure (P < 4.5 x 10% Figure 3C), but not to any of the other measured health
parameters. The age-associated phenotype map revealed bimodal age associations for several
immune subpopulations, particularly striking for CD4* T-cells (Figure 3D). Across the cells that make
up the phenotype map, the age associations were mutually exclusive of the single donor enrichments

(r=-0.002; Figure S4B).

To investigate the above identified phenotypic and health associations we next used LEA to
associate molecular pathway expression as measured by transcriptomics with immune cell
phenotypes. Focusing on T-cells, we performed bulk RNA-sequencing of CD3 positive cells purified
from the same 10 healthy donor blood samples, detecting on average around 15’000 expressed
transcripts (Figure S5A). LEA rank-correlated local phenotype abundance (in the 8-dimensional CNN
class probability space) with transcript abundance, analyzing T-cells randomly subsampled from each
donor to match the population composition measured by RNA-sequencing (Figure 4A). To benchmark
these phenotype-to-transcriptome associations, we first compared the LEA associations of CD4 and
CD8A transcript abundance (Figure 4A) with the CD4 and CD8 protein expression levels explicitly
measured by immunofluorescence for each T-cell (Figure S5B). Validating the approach, LEA achieved
excellent results for these proof-of-concept benchmarks, with areas under the receiver operating

curve of 0.93 and 0.89 for CD4 and CD8 positive cells, respectively (Figure 4B).

We next sought to validate these pathway-phenotype associations by querying the
associations the other way round: Starting from well-known pathways, and seeing what phenotypes
are associated with it. To this end we inspected the associations with the T-cell receptor (TCR) signaling
pathway as proxy for T-cell activation. TCR-signaling was strongly associated with distinct subregions

of the phenotype map, including the cluster-periphery of CD8* T-cells (Figure 4C). This pattern was
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recapitulated by the LEA associations with MAPK1 (ERK2), part of the TCR-induced signaling cascade,
which largely, but not exclusively, overlapped with regions enriched for cells from Donor 2 (Figure 4C).
Visual inspection of cells residing in TCR-signaling and MAPK1-associated phenotypic regions revealed
a striking polarized and activated T-cell morphology, henceforth referred to as Tacr cells. In contrast,
randomly sampled cells from adjacent and non-enriched regions contained conventional small and
round T-cell morphologies, which we refer to as Tcon cells (Figure 4D). To robustly quantify the Tacr
morphology further, we trained a dedicated CNN on manually curated Tacr and Tcon phenotypes,
which achieved 94.6% validation accuracy on images from donors and experiments it was not trained
on (Figure 4E and S5C). This allowed us to retroactively detect the Tacr morphology for all imaged T-
cells, which confirmed that the phenotype was present in all donors, and most enriched in the cells of
Donor 2 (Figure 4F and Supplementary Figure S5D). Coming full circle, the Tacr enriched regions
associated with tumor necrosis factor (TNF) and MAPK-signaling as most-enriched pathways after

multiple testing correction (Figure 4G).

To confirm that the Tacr morphology is associated with inflammation and T-cell activation in
an independent validation cohort, we stimulated PBMCs derived from 15 additional healthy donors
with pro-inflammatory cytokine IL-2, superantigen Staphylococcus aureus Enterotoxin B (SEB), or LPS,
which all led to significant increases in the fraction of T-cells adopting a Tacr morphology (Figure 4H
and S5E). Exposure to the anti-inflammatory synthetic glucocorticoid Dexamethasone, in contrast,
reduced the relative abundance of Tacr cells across the 15 donors (Figure 4H and S5E). To rule out the
possibility that the Tacr morphology was induced by cellular fixation prior to imaging, we further
conducted live cell imaging of SEB stimulated PBMCs and visually confirmed the induction of the Tacr
cell phenotype (Figure S5F). We next measured by immunofluorescence the levels of phosphorylated
NFkB (Ser529) and ERK (Thr202 and Tyr204) as a function of T-cell morphology, at baseline and upon
SEB-stimulation in PBMCs. At baseline, Tacr cells showed slightly but significantly higher levels of
phosphorylated ERK. SEB-stimulation increased phosphorylated levels of ERK significantly higher in
Tact than Tcon cells. Taken together, these results experimentally validated the LEA-based pathway
enrichment analysis with the polarized Tacr morphology. Thus, part of the donor unique fingerprints
we previously observed had resulted from differences in T-cell activation between the donors, with
15% of T-cells from Donor 2 adopting the Tacr morphology, predominantly in CD8* T-cell compartment,
while on the other end of the spectrum, only 7% of Donor 1 T-cells were Tacr cells, here mostly in CD4*

T-cells (Figure S5D).

Having validated the phenotype-to-pathway association approach and its ability to discover
and correctly describe new cellular phenotypes, we explored the pathway enrichments for age-

associated T-cell phenotypes (Figure 5A and S6A). Pathways enriched in phenotypes that were
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reduced with age included nucleotide excision repair, telomere maintenance (Roth et al. 2003), cilia
assembly (Stephen et al. 2018) and propanoate metabolism (Figure S6A). In contrast, pathways
associated with T-cell phenotypes that increased with age included inflammation and stress-related
pathways, particularly for the CD8* compartment, and lysosome and vesicle-associated pathways in
CD4* T-cells (Figure 5A right). Inflammation is a well described risk factor for age-associated diseases
(Franceschi, Bonafé, and Valensin 2000), and, consistently, the age-associated phenotypes overlapped
partially with the above validated phenotype for activated CD8* T-cells (Figure 5A right). Furthermore,
impaired organelle and lysosome homeostasis in aged CD4* T-cells has been previously described as a

relevant process in aging of T-cells (Jin et al. 2020).

Pathway enrichments for oxidative phosphorylation and mitochondrial respiration in age-
associated T-cell phenotypes were in line with reports of defective respiration in CD4* T-cells of aged
mice (Ron-Harel et al. 2018; Gomes et al. 2013), and suggested that the neural network might have
identified a phenotypic T-cell signature associated with both donor age and mitochondrial abundance.
Interestingly, the CD4* T-cells showed strong brightfield intensity differences, a measure of
intracellular granularity (Figure 2A,B and S5B). This brightfield-trend followed the age-associations we
observed, with CD4* T-cells enriched in younger people measured to be more granular (referred to as
T4erp for ‘brightfield dark’ CD4* T-cells; Figure 2A,B and 3C). Quantifying this association across all
subpopulations, CD4* T-cells indeed showed the most significant age-associated brightfield intensity
differences (P < 1079), followed by the CD8* T-cells (P < 10%°), and less for the other immune cell

classes (Figure 5B).

To reproduce this association we sampled an additional validation cohort of 15 healthy donors
(Figure 5C), and trained a different neural network architecture on a new set of images generated only
from this validation cohort (Figure S6B). This independent repetition of the workflow revealed that
the age-associated T4grpp phenotype was independent of the donor cohort and neural network and
experimental batch (Figure 5C and Figure S6B). The age-associated brightfield intensity differences
and mitochondrial pathway association might reflect loss of mitochondrial abundance in age in CD4*
T-cells (Murera et al. 2018). To support this interpretation we analysed if BF intensity reflects
mitochondrial abundance using the natural heterogeneity observed within CD4" T-cells of a single
donor (Figure 5D). Indeed, those cells that were darkest by brightfield imaging displayed significantly
higher mitochondrial abundance as measured by image-based quantification of the MitoTracker dye
(Figure 5D). The deep learning uncertainty thus had revealed a label-free phenotype reflecting an age-
associated mitochondrial decline in CD4* T-cells, explaining in part how immune cell phenotypes

measured by our high-throughput single-cell imaging pipeline capture donor information such as age.
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Discussion

We here explore the molecular health determinants of human immune cell phenotypes using
a workflow that combines automated high-throughput microscopy, single-round multiplexed
immunofluorescence, and deep learning-based phenotypic analysis. The presented method for
phenotyping of immune cells distinguishes itself for its ability to integrate cell morphology, protein
levels and localization, and multi-cellular context into a quantitative metric across 8 major immune
cell classes, hundreds of conditions, and millions of cells. The resulting single-cell phenotype space,
derived from the CNN’s uncertainty, reflected both genetic and non-genetic donor health information.
We find age, gender, blood pressure, and inflammatory state to be significantly associated with human
immune cell phenotypes, yet many more influences likely exist and more phenotype-associations

captured by our approach remain unexplored.

Our workflow is tailored to make use of two large sources of biological heterogeneity: the
heterogeneity observed between individuals, and heterogeneity observed within cells of the same
class and donor. That dependency however is at the same time its limitation: The single-round
multiplexed staining strategy benefits from the presence of multiple cell types with variable cell
morphologies and marker profiles, and LEA requires donor or condition heterogeneity to power its
associations. Furthermore, while the marker panel shown here reliably captures the predominant
immune cell classes present in PBMCs, it does not resolve certain smaller subpopulations, such as
Natural Killer T-cells (Bendelac, Savage, and Teyton 2007). However, the approach is flexible as the
panel composition can readily be tailored to the identification of additional subpopulations, or

adapted to different tissues, building on the same logic developed here.

Whilst this is not the first work which deploys CNN-based cell classification (Moen et al. 2019;
Kraus et al. 2017; Kraus, Ba, and Frey 2016; Parnamaa and Parts 2017; Diirr and Sick 2016; Sommer et
al. 2017; Kandaswamy et al. 2016; Godinez et al. 2017; Hussain et al. 2019) and feature extraction
(Parnamaa and Parts 2017; Kraus et al. 2017; Jackson et al. 2019; Godinez et al. 2017), to our
knowledge, this is the first work where deep learning is applied in high-throughput screening and
phenotypic analyses of primary human PBMCs. By training the CNN on curated cells from across
independent experiments, multiple donors, and conventional and multiplexed staining panels, we
could prevent overfitting on phenotypes of single donors and technical bias stemming from
experimental conditions. However, the CNN class probability space, which we here successfully
employ as a phenotype discovery tool, is sensitive to different phenotypes resulting from different
experimental conditions. As such, while CNN classification can be trained to be robust, experimental

care needs to be taken when interpreting the CNN class probability space.
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Once new phenotypes are discovered, as we demonstrate for the inflammation-associated
Tacr cell morphology, the ability to retroactively re-classify cells based on their morphology with
dedicated CNNs allows robust morphological sub-classification of previously imaged cells even in
absence of tailored marker panels. Attesting to the robustness of the discovered phenotypes, the
inflammation-associated Tacr and age-associated T4grp phenotypes could be validated in independent
experiments, in an independent validation cohort, using distinct neural network architectures, and,

for the Tacr morphology, in both live-cell and fixed sample imaging.

In the future, repeated profiling of individual donors will allow to further stratify temporally
stable from dynamic immune cell phenotypes. Furthermore, comparative studies across larger patient
and donor cohorts, and identifying clinically relevant cell morphologies in the context of personalized
treatment identification for hematological malignancies (Snijder et al. 2017; Kornauth et al. 2021), will
be additionally attractive avenues of study. This will inevitably define the boundaries of the personal
health information reflected by immune cell phenotypes. Given that the workflow allows
simultaneous phenotype discovery combined with the molecular and personal health associations, it
is well positioned to lead to the discovery of more as yet undescribed and clinically relevant immune

cell phenotypes.
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Figure Legends

Figure 1. Workflow for the single-round multiplexed immunofluorescence, image-based screening,
and associated deep learning-based classification of human peripheral blood mononuclear cells
(PBMCs). PBMCs of healthy human donors are seeded in 384-well plates, optionally containing drugs
or immune stimuli. Cells are fixed and stained with a comprehensive antibody panel (1i) and imaged
by automated confocal microscopy. A convolutional neural network (CNN) is trained on 89483
manually curated sub-images to distinguish eight different immune cell classes, and subsequently
classifies all cells in the experiment. The curated test set contains 100 cells per class per donor per
staining condition. 1ii, Confusion matrix of CNN performance across all 24’000 cells that the CNN did

not see before.
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Figure 2. (A) Phenotypic landscape of the unperturbed immune system across ten healthy donors. t-
Distributed Stochastic Neighbor Embedding (t-SNE) embedding of the 8-class CNN probabilities of up
to 1000 randomly subsampled high-confidence multiplexed cells per class and per donor (class
probability > 0.7). Monocytes are further divided into three subpopulations by thresholding the
immunofluorescence (IF) intensity of CD16 and CD11c stainings, respectively (insert). Figure depicts a
total of 78850 cells, randomly sampled from 40 wells for each of the 10 donors. All donors were
processed and measured together in a single experiment, across 40 replicate wells per donor
distributed over two 384-well plates. (B) Selected single-cell features projected onto the t-SNE shown
in 2A. Median value of overlapping data points is calculated and color is assigned accordingly. Points
are plotted in order of intensity, with the lowest intensity on top. (C) Phenotypic landscape of the ex
vivo perturbed immune system of a single donor. The CNN class probability t-SNE map on the left
shows 600 randomly chosen single cells per cell class and drug treatment, colored by class assignment.
(D) Overview of the local enrichment analysis (LEA) workflow. LEA probes the k-nearest neighbors of
each single cell in a multidimensional space for enrichment of either continuous or discrete features.
For discrete features, the baseline probability of finding n cells of condition X in the probed
neighborhood follows a hypergeometric distribution, from which an enrichment p-value is calculated
(taking into account the total number of drawn cells, the total number of cells in the t-SNE and the
total number of cells of condition X in the dataset). For continuous features, the relative fraction of
cells of each donor in the probed local neighborhood is calculated. These fractions are then rank-
correlated with a continuous feature that was measured across donors. The enrichment probability
for continuous features corresponds to the p-value of the correlation. In both cases, the enrichment
probability is assigned to the center-cell and the approach is iterated for each single cell in the analysis.
(E) Bar graph depicting the sum total log10(LEA P-values) for selected perturbations in the M1-type
(black bars) and M2-type (grey bars) monocyte clusters. (F) LEA analysis reveals regions in the
phenotypic space that are significantly enriched for dexamethasone-treated PBMCs. Cells in the t-SNE
embedding are colored by their enrichment significance of the LEA analysis run in the original 8-class
probability space (-logio(padjust); See colorbar). Insert highlights the contribution of different
perturbations to the selected M2-type monocyte cluster. Figure depicts a total of 199375 cells,

randomly sampled from across 240 wells for a single donor.
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Figure 3. (A) LEA of donor-specific cells across 10 donors, visualized on the t-SNE of Figure 2A. The
cells are colored by their maximum LEA significance across the 10 donors (—logio(padijust); see colorbar).
Insert: A randomized null distribution of donor enrichments was generated by randomizing the donor
labels 2000 times and summing up all single-cell enrichments calculated by LEA per randomized run
(grey bars). Sum enrichment of the actual data is shown in red, and the significance compared to the
randomized runs is calculated by a one-sided t-test. (B) LEA of biological gender-specific phenotypes
projected onto the t-SNE embedding. Cells are colored by their significant enrichment in female (blue)
or male (green) specific phenotypes. Insert: A null distribution of random gender enrichment (grey)
was generated by randomizing the donor labels 2000 times and summing up all single-cell enrichments
calculated by LEA. Sum enrichment of the actual data is shown in red, as in 3A. (C) Association analysis
of various health parameters with cellular phenotypes calculated by LEA. Null distributions of random
correlation significance (grey) were generated by randomizing the donor labels 2000 times and
summing up the all single-cell enrichments calculated by LEA per randomized run. Enrichment of the
actual data is shown in red (one-sided t-test). (D) LEA Age-associations projected onto the t-SNE
embedding. Single-cells are colored by their signed significance of correlation (-logio(p) * sign of the
correlation; see colorbar). Insert: Fraction of all significantly positive and negative age-associated CD4*

T-cells with donor age (p<0.05).
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Figure 4. (A) t-SNE embedding of the CNN class probability across T-cells of ten healthy donors. 10000
T-cells are shown per donor, selected without confidence threshold to reflect the original abundance
of TO, T4, and T8 subpopulations per donor. Left panel: t-SNE color-coded per T-cell class (see legend);
Middle panel: t-SNE map colored by LEA-based associations with CD8A transcript abundance; Right
panel: t-SNE map colored by LEA-based associations with CD4 transcript abundance (-logio(p) * sign
of the correlation; see legend). (B) Receiver operating characteristic (ROC) curves for the consistency
between the CD8A transcript abundance LEA associations with CD8 expression levels by IF (left panel),
and the CD4 transcript abundance LEA associations with CD4 expression levels by IF (right panel). (C)
LEA-based associations of TCR-signalling (left), MAPK1 transcript abundance (middle) and donor
enriched regions (right, pagjust < 0.05 colored per donor) projected onto the T-cell phenotype map of
A. (D) Examples of morphologically representative CD8* T-cells from the positively MAPK1-associated
regions (Tacr), and conventional CD8* T-cells of other regions (Tcon). Crops are 15 x 15 um in size. Yellow
= CD3, blue = DAPI. (E) Confusion matrix assessing the accuracy of the label-free T-cell activation (Tacr)
classifier. The test set comprises 369 randomly selected Tacrcells, and 738 randomly selected Tconcells
across multiple donors (including the 10 depicted donors). (F) LEA of the Tacr phenotype projected on
the t-SNE map (see colorbar). (G) Distribution of pathway significance across all retro-actively
classified Tacr cell morphologies. Pathway enrichments were calculated using a hypergeometric test
on positively associated genes (top 0.95 percentile), and p-values were corrected for multiple testing.
Significance of the top four most enriched pathways are indicated by grey arrows. (H) Induction and
suppression of the Tacr phenotype with immunomodulatory agents across an independent validation
cohort of 15 individual donors. All compounds were screened at a concentration of 100ng/ml.
Boxplots show the mean relative fraction of Tacr cells in the T-cell compartment across all wells of each
condition per donor. Stars indicate significance of Tacr fraction per condition, compared with controls
calculated with an unpaired t-test. (I) Immunofluorescence quantification of phospho-NFkB and
phospho-ERK levels in Tacr and Tcon cells. Boxplots show the fraction of phospho-signaling marker
positive Tacr (red) and Tcon cells (blue) after 48h incubation in the presence or absence of SEB. Boxplots
show distributions of three technical repeats. Images show representative Tacr and Tcon cell

morphologies at 40X magnification. Crops are 15 x 15 um in size.
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Figure 5. (A) Upper left: positive LEA associations with donor age projected on the t-SNE embedding
as in Figure 4A (colored by -logio(p)). Middle left: LEA associations of Mitochondrial electron transport
projected on the t-SNE embedding. Lower left: Brightfield single-cell intensity projected onto the t-
SNE embedding. Median value of overlapping data points is calculated and color is assigned
accordingly. Points are plotted in order of intensity, with the lowest intensity on top. Right: Heatmap
overview of all significantly enriched pathways in positive age-associated T-cells (-logio(p)>5). (B)
Comparison of the significance in difference in brightfield intensity of positively- vs negatively-
associated immune cells per population (with an association cutoff of -logio(p)>1.3). Bar plots show
the -logio(p) * sign of the change (1-(median(positive enrichment) / median (negative enrichment))).
(C) Negative and positive age associations with cellular T-cell phenotypes and donor age in an
independent validation cohort of 15 healthy individuals calculated by LEA (left and middle). t-SNE
depicts a total of 5000 cells per donor. Right: Comparison of differences in brightfield intensity of
positively vs negatively age-associated CD4* T-cells (with an association cutoff of -logio(p)>1.3). (D)
Mitochondrial content (as measured by MitoTracker) of CD4* T-cells decreases with increased
brightfield intensity. Bar-plots display the mean MitoTracker intensity of CD4-T-cells per well per 10-
percentile bins of BF intensity within each well. Mean and standard deviations across 10 repeat wells
with a combined total of n=78095 CD4+ T-cells are shown. P-values are from a two-tailed t-test of all

replicate wells per bin against those of the brightest BF(right most) bin.
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Supplementary Figure Legends

Figure S1. (A) Overview of the convolutional neural network architecture. (B) Average and standard
deviation of training and validation accuracies over 20 randomly initialized CNN instances. Validation
set represents 10% of the initial training set (n=8948). Network training after 20 epoches. (C)
Confusion matrix of CNN performance on a leave-one-out cross validation per donor. The CNN was
trained with 14 donors and subsequently tested on an unseen donor not included in the training
dataset. The confusion matrix shows the mean accuracies after iterating across all donors. (D)
Comparison of prediction accuracy on conventionally stained and multiplexed cells. Bar plots show
the mean accuracy (in %) and the standard deviation of the CNN prediction across all donors
individually per class and staining. (E) Distribution of 647nm intensity levels across all cells (upper),
classified CD3* T-cells (middle) and classified CD14* monocytes (lowest) of Donor 1. A cell class
probability threshold of 0.8 was applied. (F) Population percentages for Donor 5 (left) and class
fraction comparison of conventionally stained and multiplexed cells across 15 healthy donors.
Negative cell class is excluded due to its unavailability in conventional stainings. (G) Class fraction
comparison of two single replicates (plate wells) across all 10 donors. Each dot corresponds to a
replicate pair from a single donor. Color indicates the cell type. The median pairwise correlation across
all technical replicates is indicated. (H) Median class probability comparison of two single replicates
(plate wells) across all 15 donors. Shown statistic depicts the median class probability correlation of
all pairwise replicate combinations per donor across two individual 384 well plates. (1) Confusion
matrix of CNN performance on brightfield and DAPI channels only. An adapted CNN architecture (2-
channel input and 2 class output) was trained with 1900 2-channel images of T-cells and monocytes.
Network performance was evaluated in the curated test set containing 750 cells per class. (J)
Comparison of selected morphological and staining-pattern parameters divergent between T-cells and
monocytes. Conventionally stained T-cells and monocytes from Donor 1 were identified by
immunofluorescence gating for CD3 and CD14, respectively. Morphological features were extracted

by CellProfiler.
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Figure S2. (A) Selected single-cell features mapped onto the same t-SNE map as depicted in Figure 2D.
Median value of overlapping data points is calculated and color is assigned accordingly. Points are
plotted in order of intensity, from highest to lowest. (B) Associated CNN probability contour plot of
the phenotypic landscape of the immune system depicted in Figure 2D. (C) Left: Phenotypic landscape
of the immune system across ten healthy donors. t-SNE embedding of the 8-class CNN probabilities
without a confidence threshold of up to 1000 randomly subsampled multiplexed cells per class and
per donor. Right: Associated CNN probability contour plot of the phenotypic landscape depicted left.
(D) LEAs visualized by t-SNE of drug induced phenotypes. Horizontal bar graphs indicate the class

fractions in enriched regions (at padjust < 0.01).
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Figure S3. (A) Overview of cell-cell contact analysis over five million PBMCs. Cell-to-cell interaction
networks between eight different immune cell populations with a total of 36 cell type interactions
were generated per well, and compared across treatments. (B) LPS-induced rewiring of the cell-to-cell
interaction network. Relative monocyte-to-monocyte interaction scores of multiplexed and
conventionally stained wells as a function of increasing LPS concentration (left). Mean interaction
score across all replicates is calculated and normalized against control treatment. Example LPS
interaction network for 100ng/ml LPS (right). Significance of interaction (-logio(p), multiplied times
the sign of the phenotype (either positive or negative interaction score)). (C) LEA of cells with

monocytes (left), T-cells (middle) or no-nearest neighbor (right).
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Figure S4. (A) Comparison of donor LEA enrichments vs gender LEA enrichments per single cell (as in
Figure 3D). r values represent Pearson correlations. (B) Comparison of donor LEA enrichments vs age

LEA enrichments per single cell (as in Figure 3D). r values represent Pearson correlations.
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Figure S5. (A) Upper: Bar graphs indicate the number of detected transcripts (protein coding and long
non-coding RNAs) after applying a threshold of 20 raw counts. Lower: Bar graphs indicated the sum of
transcript counts after DESeq2 normalization (Love, Huber, and Anders 2014). (B) Selected single-cell
features projected onto the t-SNE depicted in Figure 4A. Median value of overlapping data points is
calculated and color is assigned accordingly. Points are plotted in ascending order with the lowest
intensity on top. (C) Overview of the label-free T-cell activation (Tacr) convolutional neural network
architecture. (D) Fraction of Tacr cells per class and per donor. Stacked bar plots show the mean
fraction of all T-cells per donor classified as Tacr, within their respective T-cell subclass (TO, T4 or T8)
in control (DMSO) conditions. (E) Induction and suppression of the Tacr cell phenotype by
immunomodulatory agents. Plotted are the log; fold changes of the mean fraction of T-cells classified
as Tacr across all wells of each drug condition compared to control treatments. Cells were incubated
with immunomodulatory agents at 0.1, 1, 10, 30, 100 and 300 ng/ml. Error bars show the standard
error of the mean across wells for each drug condition. A custom Hill function (adjusted to different
minima and maxima) was used to fit the data (red line). (E) Representative live-stained Tacr and Tcon

cell morphologies. Crop-size is 15 x 15 um.
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Fig. 56
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Figure S6. (A) Left: negative LEA associations with donor age projected onto the t-SNE (colored by -
logio(p)). Right: Heatmap overview of all significantly enriched pathways in positive age-associated T-
cells (-logio(p)<-5). Rows are annotations, columns are significantly age-associated cells. (B) Left:
Schematic of the 8-class ResNet architecture used for the 15 donor validation cohort. Right: Confusion

matrix of the CNN. CNN was tested on 1000 cells per class that the CNN did not see before.
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Methods

Experimental model

Buffy coats or whole blood tubes were obtained from coded healthy donors provided by the
Blutspende Zurich, under a study protocol approved by the cantonal ethical committee Zurich (KEK

Zurich, BASEC-Nr 2019-01579). Detailed donor information can be found in Supplementary Table 3.

Experimental details
Collection and purification of human peripheral blood mononuclear cells (PBMCs)

Buffy coats or whole blood tubes were obtained from coded healthy donors provided by the
Blutspende Zurich, under a study protocol approved by the cantonal ethical committee Zurich (KEK
Zurich, BASEC-Nr 2019-01579). Healthy donor buffy coats or blood samples were diluted 1:1 in PBS
(Gibco) and PBMCs were isolated with a Histopaque-1077 density gradient (Sigma-Aldrich) according
to the manufacturer's instructions. PBMCs at the interface were collected, washed once in PBS and
resuspended in media. In all experiments, immune cells were cultured in RPMI 1640 + GlutaMax
medium (Gibco) supplemented with 10% fetal bovine serum (FBS, Gibco) and incubated at 37°C with
5% CO;. Cell number and viability was determined utilizing a Countess Il Cell Counter from Thermo

Fisher according to the manufacturer's instructions.
Non-adherent PBMC monolayer formation and drug screening and cell fixation

In the proof-of-concept drug screen, 5ul of a selected screening compounds (10x stock), and all
respective controls (as outlined in Supplementary Table 2) were transferred to CellCarrier 384 Ultra,
clear-bottom, tissue-culture-treated plates (PerkinElmer) with five replicates per condition. All
conditions were screened in four concentrations: Cytokines (0.1, 1, 10, 100ng/ml); Rituximab (0.05,
0.1, 0.5, 1pug/ml); LPS (0.1, 1, 10, 100 ng/ml); Dexamethasone (0.4, 4, 40, 400ng/ml); Crizotinib (0.01,
0.1, 1, 10uM). 50 pl of medium containing approximately 4*10° cells/ml was pipetted into each well
of a 384-well compound plate and cells were allowed to settle to the bottom. The whole blood samples
of the discovery cohort (shown in Figure 2A-B, Figure 3-5) were incubated for 1h, whereas all buffy
coat samples, including all samples from the validation cohort (Figure 4H and Figure 5C) were
incubated for 24 hours. All assays were terminated by fixing and permeabilizing the cells with 20ul of
a solution containing 0.5% (w/v) formaldehyde (Sigma-Aldrich), 0.05% (v/v) Triton X-100 (Sigma-

Aldrich), 10mM Sodium(meta)periodate (Sigma-Aldrich) and 75mM L-Lysine monohydrochloride
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(Sigma-Aldrich), for 20 minutes at room temperature. For Mitotracker staining (Thermo Fisher), cells
were stained live with 500nM Mitotracker Red, prior to fixation. Fixative-containing medium was
subsequently removed, and cells were blocked and photobleached in 5% FBS/PBS overnight at 4°C.
Photobleaching was used to reduce background fluorescence and was performed by illuminating the

fixed cells with conventional white light LED panels.
Immunostaining and Imaging

All fluorescent primary antibodies utilized in this work (outlined in Supplementary Table 1) were used
at a 1:300 dilution in PBS. All antibody cocktails for immunohistochemistry (IHC) contained 6M DAPI
(Sigma-Aldrich) for nuclear detection. Before IHC staining, the blocking solution was removed and 20yl
of the antibody cocktail was added per well and incubated for 1h at room temperature. Besides fully-
multiplexed wells, each plate additionally contained several staining-control wells with a reduced
number of antibodies (Supplementary Table 1). The staining-control wells served for evaluating
antibody functionality and the generation of the CNN-training data (see below). For imaging, a
PerkinElmer Opera Phenix automated spinning-disk confocal microscope was used. Each well of a 384-
well plate was imaged at 20x magnification with 5x5 non-overlapping images, covering the whole well
surface. The images were taken sequentially from the brightfield (650-760 nm), DAPI/Nuclear signal
(435-480 nm), GFP/Green signal (500-550 nm), PE/Orange signal (570-630 nm) and APC/Red signal
(650-760 nm) channels. Subsequently, the raw .tiff images were transferred from the microscope for

further analysis.
Conventional image analysis and quality filtering

Cell detection and single-cell image analysis was performed using CellProfiler v2 (Carpenter et al.
2006). Nuclear segmentation was performed via thresholding on DAPI intensity. Cellular outlines were
estimated by a circular expansion from the outlines of the nucleus. Additionally, a second and larger
expansion from the nuclei was performed to measure the local area around each single cell (local
cellular background). Standard CellProfiler based intensity-, shape- and texture features of the
nucleus, cytoplasm and the local cell proximity were extracted for each measured channel. Raw
fluorescent intensities were logio transformed and normalized towards the local cellular background

as described in Vladimer et. al., 2017 (Vladimer et al. 2017).
Convolutional Neural Networks

Convolutional neural networks used in this work were implemented using MATLAB’s Neural Network
Toolbox Version R2020a. The curated dataset used in training, validation and testing of the CNN

framework contains images of cells from fully multiplexed stainings and images from staining controls.
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Staining controls were designed to contain only a subset of the antibodies used in the multiplexed
setting (Supplementary Table 1). This reduced complexity first enables to evaluate the functionality of
the selected antibody and the presence of the targeted antigen in each sample. Furthermore, antibody
combinations in the staining-controls were picked to mirror the staining of the selected subpopulation
in the multiplexed setting (e.g. staining-control 1 only contained antibodies marking T-cell specific
antigens; T-cells in the multiplexed setting will have the same staining pattern). The same staining
patterns in the controls and the mostly-non-overlapping emission spectra of the chosen antibodies
allow an easy, marker-intensity-based identification of subpopulations. This facilitates a fast and
unbiased selection of training examples. For the generation of single cell images, the center of each
cell was determined by its nuclear staining via the software CellProfiler (see above). Around each
nuclei-center, a 50x50 pixel (or 39.5x39.5 um) wide subimage was generated across all 5 measured
channels. Single-cell sub-images were then manually annotated and sorted for their respective class
using custom Matlab scripts. For training and validation of the discovery cohort CNN, a dataset of
89483 cells was manually annotated (containing both multiplexed and control staining cells). In the
separate test datasets, each donor-associated set is independently split in multiplexed and control
staining cells, resulting in a total of 30 independent test-datasets with each 100 cells per class. This
test-setup allows inferring the network performance towards each donor, experiment and staining

type independently.

Discovery cohort (10 donors): A 17-layer deep convolutional neural network with an adapted ‘Alex-
Net’ architecture (Krizhevsky, Sutskever, and Hinton 2012) with 50x50 pixel and 5 channel input
images was used. Before training, the labeled 8-class dataset was randomly split in a training set
containing 90% and a validation set with the remaining 10% of all images. Network-layers weights and
biases were initialized randomly before the CNN network was trained. Networks were trained up to
20 epochs with a mini batch size of 512 images. The learning rate was fixed to 0.0001. To avoid
overfitting, L2 regularization with 0.005 was applied. Furthermore, in each iteration, input images
were randomly rotated in 45-degree steps with an additional possibility to be also flipped vertically or
horizontally. Performance of the trained networked was tested on the separate test-sets of staining
control and multiplexed images of all 15 donors. Stochastic gradient descent with momentum of 0.9
is defined as the optimization algorithm. Finally, we trained 20 differently initialized networks with
differently split training and validation sets. For the final classification of the complete unlabeled
dataset the best performing network was used. As in the generation of the labeled dataset, 50x50
pixel sub-images around each nuclei-center were generated. Cells closer than 25 pixels to the border

of an image were excluded from classification.
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Validation cohort (15 donors): A 71-layer deep convolutional neural network with an adapted ResNet
architecture (He et al. 2016) with 48x48 pixel and 5 channel input images was used. Before
classification and training, all intensity values were first logio transformed and then channel-wise
normalized to a O to 1 range. The 8-class CNN was trained using randomly initialized weights and biases
and the adaptive learning rate optimization ‘ADAM’. The network was trained for 20 epochs with an
initial learning rate of 0.001 which was dropped every 5 epochs with a factor of 0.1. Furthermore, a
mini batch size of 512 images and L2 regularization with 0.001 was applied. To further strengthen
generalization, input images were augmented in each iteration. Here images were randomly rotated
in 45-degree steps with an additional possibility to be also flipped vertically or horizontally. To block
an over-reliance on absolute intensity values, channel intensity shifts were simulated via a
multiplication with a random fixed factor. This used factor was randomly drawn out of a normal
distribution with a mean of 1 and a standard deviation of 0.2. Furthermore, images were augmented
with random noise (specifically salt and pepper noise, speckle noise, gaussian noise or image blurring).
In all CNN classifications, 48x48 pixel sub-images around each nuclei-center were generated. Cells

closer than 24 pixels to the border of an image were excluded from all classifications.

Label-free T-cell activation (Tacr) classier: Convolutional neural networks and single cell images were
generated as described above. The labelled training and validation dataset comprised a total of 8862
cells (1:2 Tacr :Tcon ratio). CNNs were trained with a mini batch size of 200 images to a maximum of
100 epochs, which could be terminated if validation loss was greater than the previous smallest loss
for five consecutive times. Additionally, the images were randomly rotated by 45-degrees and
mirrored vertically or horizontally per iteration to limit orientation bias towards polarised Tact cells.
The CNN performance was assessed by classifying 1107 test cells (1:2 Tacr Tact:TconTc ratio) that had

neither been used in CNN training nor in validation.
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RNA sequencing

T-cell isolation and RNA extraction: T-cells were isolated from fresh PMBCs directly after obtaining
them via density centrifugation, as described above. Isolation was performed via a column based
extraction method with CD3 Microbeads as described in the manufacturer's instructions (Miltenyi
Biotec). RNA extraction of the isolated cells was performed with a Quick-RNA MiniPrep Kit by Zymo

according to manufacturer's instructions.

RNA sequencing: RNA sequencing was performed by the Functional Genomics Center Zurich. In short,
cDNA libraries were obtained according to protocols published by Picelli et al, 2014(Picelli et al. 2014).
[llumina library was obtained via tagmentation using Illumina Nextera Kit. All samples were sequenced

in a single run on a NovaSeq6000 (single read, 100bp, depth 20 Mio reads per sample).

Data processing and normalization: Illumina adapters, sequences of poor quality as well as polyA and
polyT sequences were removed from the raw reads using TrimGalore v.0.6.0 with cutadapt v.2.0 prior
to alignment. Reads were then aligned to the human reference genome GRCh38, v93 (Ensembl) using
STAR v. 2.5.3a. Reads per gene were counted using the —quantMode GeneCounts flag in STAR. Gene
counts below a threshold of 20 raw counts were filtered and raw counts were normalized
(DESeg2(Love, Huber, and Anders 2014)). Only transcripts annotated as ‘protein coding’ or ‘long non-

coding RNA’ were considered in the subsequent analysis.

Statistical analysis

Significance calculation: If not stated otherwise all significance scores were calculated based on a two-

tailed Student's t-test with mean 0.

Cell-cell interaction analysis: For cell-cell interaction analysis, a simplified version of Vladimer et. al.,
2017 (Vladimer et al. 2017) interaction method was used. Here, cell-cell interaction analysis was
conducted over all different image sites within the same well. Cells were scored as interacting if their
nuclear centroids were within a euclidean distance of 40 pixels. To calculate the interaction-score of
a cell with type A interacting with a cell of type B, we first calculated specific interactions and total
interactions per well. We define specific-interactions, as the total count of “B”-cells within the defined
radius around a cell of type “A”. Total-interactions are considered as the total count of all interacting
cells in that well. To calculate the final interaction score, specific-interactions were divided by the
product of (the fraction of type A cells of all cells) x (the fraction of type B cells of all cells) x total-

interactions. In contrast to the previously published method, this approach is simplified as the
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interactions scores are non-directed, which reduces the number of edges from 72 to 36. Mean
interaction score over all replicates was calculated, log,-transformed and normalized towards its

respective control (see Supplementary Table 2).

t-Distributed Stochastic Neighbor Embedding (t-SNE): All t-SNE visualizations were calculated on the
—logao(class-probability matrices). In the t-SNE calculation a mahalanobis distance metric, a perplexity
of 30, and an exaggeration parameter of 4 was applied. To reduce calculation time, the Barnes-Hut

algorithm with a theta of 0.5 was used.

Local enrichment analysis (LEA): To calculate whether a certain condition displays local enrichment in
the 8-dimensional class probability space, we developed local enrichment analysis by hypergeometric
testing or rank-based correlation (LEA). Here, we probe the local neighborhood around each single
cell, which is defined as the k-nearest neighbors in the original CNN class probability space. For
discrete variables (such as donor identity), we calculate the probability to randomly find at least n cells
of condition Xin a certain neighborhood using a hypergeometric cumulative distribution function. This
takes into account the total number of cells in the probed neighborhood, the total number of cells in
the tested class probability space, and the total number of cells of condition X. In case of continuous
variables (like donor age or gene transcript counts), the relative fraction of cells of each donor in the
probed local neighborhood is calculated. The fractions are then correlated (Spearman’s rank
correlation) with a continuous variable and the significance of the correlation is calculated. In both
cases, the enrichment-probability is assigned to center-cell of the probed region and the approach is
iterated for each single cell in the selected n-dimensional space. If not stated otherwise,
neighborhoods were defined as k = 400 nearest neighbours for figures 2-3 and S2-S4 and k=200 for
the T-cell figures 4-5 and S5-S6. P-values were corrected for multiple testing, i.e. by the number of

total cells (i.e. tests) in the analysis.

Pathway enrichment analysis: Pathway annotations were obtained utilizing the David Database
(Huang, Sherman, and Lempicki 2009). Gene enrichments per single cell were calculated via LEA (see
above). To calculate pathway enrichments per single cell the LEA gene enrichments of all genes
belonging to a certain pathway annotation were compared against the enrichment of all other genes.
Significance scores were calculated based on a two-tailed Student's t-test and directionality was

calculated by the difference of the means of both populations.
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Data and Code availability

Further information and requests for resources and reagents should be directed to and will be fulfilled
by the Lead Contact, Berend Snijder (bsnijder@ethz.ch). This study did not create new unique reagents

and all used reagents are commercially available.

CNN training and test datasets as well as the custom algorithm for local enrichment analysis by
hypergeometric testing (LEA) will be available upon publication of this manuscript. The CNN dataset

and relevant metadata is additionally available at the FAIR principles (Wilkinson et al. 2016) compliant

repository https://doi.org/10.3929/ethz-b-000343106. Raw image data is available from the Lead

Contact, upon request. T-cell RNA-seq measurements used in the study are available at

https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE155093.
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Supplementary Table 1

Epitope

CD3

CcDh4

CD8

CD19
CD19
CD56
CD16
CD14
CD11c

CD3

CDh4

CD8

pNFkB p65 (Ser529)
PERK1/2 (Thr202 Tyr204)

Vendour

BioLegend
BioLegend
BioLegend
BioLegend
BioLegend
Beckman Coulter
BioLegend
BioLegend
BioLegend
BioLegend
Biolegend
Biolegend
eBioscience

Thermo Fisher Scientific

Fluorophore

Alexa Fluor 647
FITC
Alexa Fluor 594
FITC
PE
PE
PE
Alexa Fluor 647
Alexa Fluor 488
Alexa Fluor 488
Alexa Fluor 647
Alexa Fluor 594
PE
PE

Clone

UCHT1
SK3
RPA-T8
SJ25C1
SJ25C1
N901
3G8
HCD14
3.9
UCHT1
SK3
RPA-T8
B33B4WP
MILANSR

Host

Mouse
Mouse
Mouse
Mouse
Mouse
Mouse
Mouse
Mouse
Mouse
Mouse
Mouse
Mouse
Mouse
Mouse

Staining
Control
1

N N W WPR -

28&3
28&3

~ SN SN N

Used in
muliplexed
yes
yes
yes
yes
yes
yes
yes
yes
yes
no
no
no
no
no

Lot

B246715
B244280
B200099
B239447
B237928
52
B238510
B260484
B209841
B278994
B293054
B200099
4303324
4337535
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Supplementary Table 2

Assay conc. Carrier solution
Compound name Vendour o

and control
Crizotinib Sigma-Aldrich 10uM 1% DMSO
1uM 0.1% DMSO
0.1uM 0.01% DMSO
0.01uM 0.001% DMSO
Dexamethasone Sigma-Aldrich 400ng/ml 1% DMSO
40ng/ml 0.1% DMSO
4ng/ml 0.01% DMSO
0.4ng/ml 0.001% DMSO
Lipopolysaccharide from Escherichia coli Sigma-Aldrich 100ng/ml PBS
10ng/ml PBS
1ng/ml PBS
0.1ng/ml PBS
Rituximab Absolute antibody  1ug/ml PBS
0.5ug/ml PBS
0.1ug/ml PBS
0.05ug/ml  PBS
Recombinant Human IL-2 PeproTech 100ng/ml  0.001% (w/v) BSA in PBS
10ng/ml  0.0001% (w/v) BSA in PBS
1ng/ml 0.00001% (w/v) BSA in PBS
0.1ng/ml  0.000001% (w/v) BSA in PBS
Recombinant Human IL-4 PeproTech 100ng/ml  0.001% (w/v) BSA in PBS
10ng/ml  0.0001% (w/v) BSA in PBS
1ng/ml 0.00001% (w/v) BSA in PBS
0.1ng/ml  0.000001% (w/v) BSA in PBS
Recombinant Human IL-6 PeproTech 100ng/ml  0.001% (w/v) BSA in PBS
10ng/ml  0.0001% (w/v) BSA in PBS
1ng/ml 0.00001% (w/v) BSA in PBS
0.1ng/ml  0.000001% (w/v) BSA in PBS
Recombinant Human IL-10 PeproTech 100ng/ml  0.001% (w/v) BSA in PBS
10ng/ml  0.0001% (w/v) BSA in PBS
1ng/ml 0.00001% (w/v) BSA in PBS
0.1ng/ml  0.000001% (w/v) BSA in PBS
Recombinant Human G-MCSF PeproTech 100ng/ml  0.001% (w/v) BSA in PBS
10ng/ml  0.0001% (w/v) BSA in PBS
1ng/ml 0.00001% (w/v) BSA in PBS

0.1ng/ml  0.000001% (w/v) BSA in PBS
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Supplementary Table 3

Discovery cohort (Figure 1, Figure 2 A-B, Figure 3, Figure 4 A-G, Figure 5 A-B)

1 1999 A+ 68 174 m 128/70 156
2 1987 A+ 66 170 m 173/99 147
3 1990 A+ 50 163 f 114/80 148
4 2000 A+ 63 168 f 122/74 133
5 1968 0- 58 165 f 158/90 151
6 1974 B+ 95 176 m 156/98 177
7 1950 0+ 72 175 f 126/78 130
8 1967 A+ 95 178 m 146/86 161
9 1967 0+ 80 180 m 160/106 167
10 1965 A+ 80 180 m 130/82 167
Immuno-modulatory screen (Figure 2 C-F)
1 1968 AB+ 73 180 m 146/92 153
Validation cohort (Figure 4H, Figure 5C)
1 1994 B+ 65 183 m 135/77 152
2 1970 B+ 69 177 f 148/92 147
3 1996 B+ 75 192 m 138/91 157
4 1994 B+ 85 180 m 124/74 159
5 1953 B- 65 178 m 142/95 168
6 1971 AB- 65 171 f 114/72 141
7 1991 B+ 67 180 f 135/94 145
8 1963 B+ 65 157 f 146/99 157
9 1963 B+ m 170/90 169
10 1953 0- 76 158 f 142/100 149
11 1999 AB+ 61 169 f 131/74 136
12 1960 B+ 90 182 m 155/98 151
13 1999 B+ 66 173 m 171/103 157
14 1967 B+ 80 182 m 162/102 174
15 1989 AB- 72 178 f 108/63 138
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