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Summary 19 

Phenotypic plasticity is essential to the immune system, yet the factors that shape it are not 20 

fully understood. Here, we comprehensively analyze immune cell phenotypes including morphology 21 

across human cohorts by single-round multiplexed immunofluorescence, automated microscopy, and 22 

deep learning. Using the uncertainty of convolutional neural networks to cluster the phenotypes of 8 23 

distinct immune cell subsets, we find that the resulting maps are influenced by donor age, gender, and 24 

blood pressure, revealing distinct polarization and activation-associated phenotypes across immune 25 

cell classes. We further associate T-cell morphology to transcriptional state based on their joint donor 26 

variability, and validate an inflammation-associated polarized T-cell morphology, and an age-27 

associated loss of mitochondria in CD4+ T-cells. Taken together, we show that immune cell phenotypes 28 

reflect both molecular and personal health information, opening new perspectives into the deep 29 

immune phenotyping of individual people in health and disease.   30 
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Introduction 31 

The morphology of a cell closely reflects its state, as it adapts to dynamic functional requirements and 32 

thereby constrains future behavior (Bakal et al. 2007; Folkman and Moscona 1978; Lecuit and Lenne 33 

2007; Boutros, Heigwer, and Laufer 2015). This feedback mechanism has been shown to influence 34 

many cellular events, including cell differentiation (McBeath et al. 2004; Discher, Mooney, and 35 

Zandstra 2009), cell division (Carlton, Jones, and Eggert 2020; Ramkumar and Baum 2016; Folkman 36 

and Moscona 1978), adaptation to the microenvironment (Snijder et al. 2009; Snijder and Pelkmans 37 

2011; Liberali, Snijder, and Pelkmans 2014), and malignant transformation (Hanahan and Weinberg 38 

2011; Wu et al. 2020). Few differentiated healthy human cells change their phenotype as drastically 39 

as immune cells: a plasticity that is critical to the correct function of the immune system as a whole 40 

(Zhou, Chong, and Littman 2009; Galli, Borregaard, and Wynn 2011; Sica and Mantovani 2012). As a 41 

consequence, studying immune cellular heterogeneity at the molecular level has been transformative 42 

for our understanding of the immune system, measured for example by flow cytometry (Maecker, 43 

McCoy, and Nussenblatt 2012; Craig and Foon 2008), single-cell mass cytometry (Spitzer and Nolan 44 

2016; Bendall et al. 2011), and single-cell RNA sequencing (Papalexi and Satija 2018; Jaitin et al. 2014; 45 

Shalek et al. 2013; Villani et al. 2017; Giladi and Amit 2018). Complementary to these molecular 46 

measurements, microscopy has shown the importance of immune cell morphology in multiple 47 

settings: distinct cellular morphologies are associated with, and influence the outcome of, monocyte 48 

polarization (Bertani et al. 2017; McWhorter et al. 2013) and T- and B-cell activation (Gómez-Moutón, 49 

Abad, and Mira 2001; K. B. L. Lin et al. 2008; van Panhuys, Klauschen, and Germain 2014; Russell 2008; 50 

Faure et al. 2004; W. Lin et al. 2015), and label-free imaging of hematopoietic cells has enabled 51 

predicting the outcome of future lineage choices (Buggenthin et al. 2017). Additionally, a recent study, 52 

using organelle marker abundance as a proxy for cell morphology, found extensive evidence for 53 

morphological heterogeneity in both healthy and diseased immune cells (Tsai et al. 2020). Due to their 54 

mixed adherent nature, however, primary immune cells such as peripheral blood mononuclear cells 55 

(PBMCs) were long considered incompatible with automated fluorescence microscopy, the tool of 56 

choice to characterize cellular morphology with spatial resolution across millions of cells (Snijder et al. 57 

2009; Liberali, Snijder, and Pelkmans 2014; Perlman et al. 2004; Boutros, Heigwer, and Laufer 2015; 58 

Wawer et al. 2014; Young et al. 2008; Caicedo et al. 2017). This has hampered the comprehensive 59 

measurement and study of morphological heterogeneity present in the immune system, and thus has 60 

left unanswered the question of which molecular and health factors globally shape the compendium 61 

of human immune cell morphologies.  62 
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Results 63 

To be able to comprehensively measure immune cell phenotypes, we developed a multiplexed 64 

immunofluorescence approach for peripheral blood mononuclear cells (PBMCs) that extends our 65 

previously developed protocol for high-throughput image-based screening in human biopsies 66 

compatible with mixed non-adherent cells (Vladimer et al. 2017; Snijder et al. 2017; Kornauth et al. 67 

2021) (Figure 1). In contrast to previously reported cyclical multiplexed immunofluorescence protocols 68 

(J.-R. Lin, Fallahi-Sichani, and Sorger 2015; Gerdes et al. 2013; Gut, Herrmann, and Pelkmans 2018), 69 

we stain once with a comprehensive immune cell marker panel that multiplexes 8 surface markers 70 

and a nuclear dye, which is imaged by automated confocal microscopy and brightfield imaging in a 71 

single run (Figure 1i and Supplementary Table 1). A deep convolutional neural network (LeCun, Bengio, 72 

and Hinton 2015) with custom architecture (Figure S1A) was subsequently used to classify each cell, 73 

making use of distinct marker expression patterns, lineage-specific labeling encoded by the staining 74 

panel, and likely differences in immune cell morphology (Figure 1i). The CNN was trained across eight 75 

immune cell classes, using 89’483 manually curated 5-channel sub-images (4 fluorescent channels and 76 

brightfield) centered on individual cells sampled from 15 healthy donors (available at 77 

https://doi.org/10.3929/ethz-b-000343106). The eight immune classes capture the predominant 78 

immune lineages present in PBMCs, including three distinct T-cell subsets (CD4+, CD8+ and CD4-CD8-), 79 

monocytes, dendritic cells, natural killer cells, B-cells, and nucleated immune cells negative for all 8 80 

surface markers (Figure 1).  81 

 CNN performance was stable across retraining, showed no sign of overfitting, and was 97% 82 

accurate for unseen donors systematically left out of the training data (Figure S1B and S1C). The 83 

network further achieved 97.7% classification accuracy (Figure 1ii) on a previously unseen test dataset 84 

of 24’000 curated cells comprising PBMCs from the same 15 healthy donors (Figure S1D). The 85 

classification efficiently demultiplexed the mixed marker signals such that the resulting abundances 86 

of each subpopulation matched our expectations (Figure S1E and F), and both the class fractions 87 

(Figure S1G) and class probabilities (Figure S1H) showed good reproducibility over different 88 

experimental replicates (median r = 0.90 and 0.95 respectively). Whilst marker expression likely 89 

contributed towards the classification accuracy between morphologically similar classes (such as T4 90 

vs T8), cell morphology likely contributed to the separation of distinct cell types whose markers were 91 

multiplexed in the same channel, such as CD14+ monocytes and CD3+ T-cells both stained in the APC 92 

channel. Supporting this interpretation, a 2-class CNN could separate T-cells and monocytes with 95% 93 

accuracy based on just the label-free brightfield and DAPI channels (Figure S1I and J). Thus, the 8-class 94 

CNN learned to generalize immune phenotypes across individual donors and experiments, presenting 95 

a robust, efficient, and data-rich high-throughput screening strategy with broad applicability. 96 

.CC-BY 4.0 International licenseperpetuity. It is made available under a
preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in 

The copyright holder for thisthis version posted December 4, 2021. ; https://doi.org/10.1101/2021.12.03.471105doi: bioRxiv preprint 

https://paperpile.com/c/AJo3wz/g6SK4+JzlVp+w4T8
https://paperpile.com/c/AJo3wz/g6SK4+JzlVp+w4T8
https://paperpile.com/c/AJo3wz/CFoO5+PLvi9+er4vu
https://paperpile.com/c/AJo3wz/nuWll
https://paperpile.com/c/AJo3wz/nuWll
https://doi.org/10.3929/ethz-b-000343106
https://doi.org/10.1101/2021.12.03.471105
http://creativecommons.org/licenses/by/4.0/


Page 4 of 34 
 

Both supervised and unsupervised deep learning algorithms are increasingly used for image 97 

clustering (Xie, Girshick, and Farhadi 2016; Aljalbout et al. 2018), which we here explored for the 98 

purpose of clustering immune cell phenotypes. The CNN returns a confidence vector for each cell that 99 

creates an 8-dimensional feature space, which we visualized by t-distributed stochastic neighbor 100 

embedding (t-SNE) (Maaten and Hinton 2008) (Figure 2A). To minimize possible batch effects and 101 

confounding factors from ex vivo culturing, we analyzed a subset of 10 of the 15 donors on which the 102 

CNN was trained, whose blood had been simultaneously processed, and incubated for just 1 hour 103 

before fixing and imaging across replicate wells and plates. Visualization of unperturbed immune cells 104 

from these 10 donors suggested considerable cell-to-cell variability, particularly among monocytes, 105 

even just within the cells classified with high CNN confidence (Figure 2A). Projecting molecular and 106 

morphological cell features measured by conventional image analysis on the t-SNE embedding 107 

revealed that the CNN had separated monocytes based on their CD16 and CD11c expression levels, 108 

even though it was not trained explicitly to do so (Figure 2A insert). Moreover, this showed that even 109 

for high-confidence cells the CNN class probabilities reflected marker expression and morphological 110 

heterogeneity for all 8 immune cell classes, with nuclear size and brightfield intensity differences 111 

observed within each class (Figure 2A and B). Thus, while the 8-class CNN was strictly trained in a 112 

supervised manner, its neural network uncertainty additionally allowed further grouping of previously 113 

unannotated cellular phenotypes, capturing recurrent phenotypes present in primary human immune 114 

cells. 115 

We next tested if this deep learning uncertainty could also be used to quantify and categorize 116 

extrinsically induced changes in immune cell phenotypes. To this end, we stimulated PBMCs from a 117 

single donor with 12 immune modulators ex vivo across concentrations and replicates, measuring 5 118 

million multiplexed stained and imaged PBMCs (Supplementary Table 2). First, we visualized the 119 

structure in the CNNs confidence by t-SNE (Figure 2C), equally sampling cells from across all 8 classes 120 

and 12 perturbations. This revealed monocytes to be divided into three clusters associated with 121 

distinct CNN confidence profiles, not trivially explained by marker expression differences (Figure S2A, 122 

B and C). To identify the contribution of distinct immune modulators to the morphological landscape 123 

of immune cells, we developed a method called K-nearest neighbor local enrichment analysis by 124 

hypergeometric testing (LEA, Figure 2D and methods). For each cell, LEA identifies the nearest 125 

neighbors in the original 8-class probability space and calculates the hypergeometric significance of 126 

enrichment for cells with a certain property in this neighborhood. LEA next assigns this significance 127 

back to the original starting cell. Projecting the LEA results back on the t-SNE embedding revealed that 128 

the monocyte subcluster with the lowest CNN confidence were enriched for monocytes exposed to 129 

M1-type inducing agents E. coli lipopolysaccharides (LPS) and GM-CSF (Figure 2E and Figure S2D) 130 
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(Martinez and Gordon 2014), or cytotoxic agents causing the release of danger-associated molecular 131 

patterns. The second monocyte cluster was strongly enriched for cells exposed to M2-type associated 132 

dexamethasone or IL4, while the third, highest confidence, monocyte cluster was not enriched for 133 

most perturbations, thus likely reflecting unperturbed monocyte phenotypes (Figure 2F).  134 

Stimulation with microbial compounds like LPS can selectively alter immune cell crosstalk, for 135 

example through the induction of cell-cell contacts. We therefore suspected that phenotypes in the 136 

M1-type cluster could in part reflect changes in the multi-cellular context. To verify this, we performed 137 

spatially resolved single-cell analysis across the 8 classified immune cell types, allowing the high-138 

throughput screening of 36 distinct immune cell-cell interactions simultaneously, a significant increase 139 

compared to our previous non-multiplexed efforts (Vladimer et al. 2017) (Figure S3A-B). Indeed, 140 

analysis of all 43 million cell-cell interactions measured in this experiment (Figure S3A) confirmed the 141 

M1-like monocyte cluster to be enriched for monocyte-to-monocyte interactions (Figure S3C). Thus, 142 

LPS-mediated monocyte activation led to distinct M1-like monocyte phenotypes, defined in part by 143 

an altered multi-cellular context. Collectively, LEA revealed that the uncertainty of the deep neural 144 

network reconstituted previously established monocyte M1/M2-type polarization phenotypes in a 145 

fully unsupervised manner (Fig 2), while exposing considerably phenotypic complexity, with most 146 

immunomodulatory perturbations simultaneously affecting the phenotype of multiple immune cell 147 

class (Figure 2C and Figure S2D). 148 

The phenotypic heterogeneity of circulating immune cells captured by our image-based 149 

measurements could reflect both genetic and non-genetic influences (Melé et al. 2015; Galli, 150 

Borregaard, and Wynn 2011). To explore this we analyzed commonalities and differences in the 151 

unperturbed immune phenotypes across the discovery cohort of the 10 donors shown in Figure 2. We 152 

first used LEA to measure enrichment of cells from the same donor in the nearest-neighborhood in 153 

the 8-dimensional CNN class probability space. This identified distinct cellular phenotype-regions 154 

significantly enriched for each of the 10 donors across several immune cell classes (Figure 3A). As these 155 

enriched phenotypes were measured across technical repeats, they potentially indicated donor-156 

individual characteristics of immune cell morphologies, but could also reflect batch effects acting 157 

upstream of our sample processing and imaging. Repeating the analysis with randomized donor labels 158 

and comparing the sum of enrichments showed that the actual donor-enrichment in nearest 159 

neighbors of the latent space was well above what would be expected by random (P < 1.1x10-308; 160 

Figure 3A insert). We next looked for phenotypes that were enriched in donors with the same 161 

biological gender, with the 10 donors including 4 women and 6 men. This revealed strong gender 162 

associations with various immune cell morphologies (P < 1.1x10-308; Figure 3B), with NK- and Negative-163 
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cell class phenotypes particularly enriched in female donors, and not explained by enrichment in any 164 

individual female donor (Figure S4A). 165 

We next explored immune phenotype associations with continuous health parameters such 166 

as donor age, which has been described to dramatically alter the immune phenotypic landscape (Carr 167 

et al. 2016; Alpert et al. 2019) (Figure 3C, Figure 2D and methods). A modification of LEA for continuous 168 

variables calculates the significance of the rank correlation between the fraction of cells per donor in 169 

the nearest neighborhood and any continuous variable of each donor (Figure 2D). As before, the LEA 170 

analysis was run in the 8-dimensional CNN class probability space. To correct for spurious associations, 171 

we compare the association strength with those observed in many repeats with the same health 172 

parameter randomized across the donors. Testing donor age, height, weight, body mass index, blood 173 

pressure, and hemoglobin levels revealed significant associations with donor age (P < 1.3 x 10-9) and 174 

systolic blood pressure (P < 4.5 x 10-4; Figure 3C), but not to any of the other measured health 175 

parameters. The age-associated phenotype map revealed bimodal age associations for several 176 

immune subpopulations, particularly striking for CD4+ T-cells (Figure 3D). Across the cells that make 177 

up the phenotype map, the age associations were mutually exclusive of the single donor enrichments 178 

(r = -0.002; Figure S4B).  179 

 To investigate the above identified phenotypic and health associations we next used LEA to 180 

associate molecular pathway expression as measured by transcriptomics with immune cell 181 

phenotypes. Focusing on T-cells, we performed bulk RNA-sequencing of CD3 positive cells purified 182 

from the same 10 healthy donor blood samples, detecting on average around 15’000 expressed 183 

transcripts (Figure S5A). LEA rank-correlated local phenotype abundance (in the 8-dimensional CNN 184 

class probability space) with transcript abundance, analyzing T-cells randomly subsampled from each 185 

donor to match the population composition measured by RNA-sequencing (Figure 4A). To benchmark 186 

these phenotype-to-transcriptome associations, we first compared the LEA associations of CD4 and 187 

CD8A transcript abundance (Figure 4A) with the CD4 and CD8 protein expression levels explicitly 188 

measured by immunofluorescence for each T-cell (Figure S5B). Validating the approach, LEA achieved 189 

excellent results for these proof-of-concept benchmarks, with areas under the receiver operating 190 

curve of 0.93 and 0.89 for CD4 and CD8 positive cells, respectively (Figure 4B).  191 

We next sought to validate these pathway-phenotype associations by querying the 192 

associations the other way round: Starting from well-known pathways, and seeing what phenotypes 193 

are associated with it. To this end we inspected the associations with the T-cell receptor (TCR) signaling 194 

pathway as proxy for T-cell activation. TCR-signaling was strongly associated with distinct subregions 195 

of the phenotype map, including the cluster-periphery of CD8+ T-cells (Figure 4C). This pattern was 196 
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recapitulated by the LEA associations with MAPK1 (ERK2), part of the TCR-induced signaling cascade, 197 

which largely, but not exclusively, overlapped with regions enriched for cells from Donor 2 (Figure 4C). 198 

Visual inspection of cells residing in TCR-signaling and MAPK1-associated phenotypic regions revealed 199 

a striking polarized and activated T-cell morphology, henceforth referred to as TACT cells. In contrast, 200 

randomly sampled cells from adjacent and non-enriched regions contained conventional small and 201 

round T-cell morphologies, which we refer to as TCON cells (Figure 4D). To robustly quantify the TACT 202 

morphology further, we trained a dedicated CNN on manually curated TACT and TCON  phenotypes, 203 

which achieved 94.6% validation accuracy on images from donors and experiments it was not trained 204 

on (Figure 4E and S5C). This allowed us to retroactively detect the TACT morphology for all imaged T-205 

cells, which confirmed that the phenotype was present in all donors, and most enriched in the cells of 206 

Donor 2 (Figure 4F and Supplementary Figure S5D). Coming full circle, the TACT enriched regions 207 

associated with tumor necrosis factor (TNF) and MAPK-signaling as most-enriched pathways after 208 

multiple testing correction (Figure 4G). 209 

To confirm that the TACT morphology is associated with inflammation and T-cell activation in 210 

an independent validation cohort, we stimulated  PBMCs derived from 15 additional healthy donors 211 

with pro-inflammatory cytokine IL-2, superantigen Staphylococcus aureus Enterotoxin B (SEB), or LPS, 212 

which all led to significant increases in the fraction of T-cells adopting a TACT morphology (Figure 4H 213 

and S5E). Exposure to the anti-inflammatory synthetic glucocorticoid Dexamethasone, in contrast, 214 

reduced the relative abundance of TACT cells across the 15 donors (Figure 4H and S5E). To rule out the 215 

possibility that the TACT morphology was induced by cellular fixation prior to imaging, we further 216 

conducted live cell imaging of SEB stimulated PBMCs and visually confirmed the induction of the TACT 217 

cell  phenotype (Figure S5F). We next measured by immunofluorescence the levels of phosphorylated 218 

NFkB (Ser529) and ERK (Thr202 and Tyr204) as a function of T-cell morphology, at baseline and upon 219 

SEB-stimulation in PBMCs. At baseline, TACT cells showed slightly but significantly higher levels of 220 

phosphorylated ERK. SEB-stimulation increased phosphorylated levels of ERK significantly higher in 221 

TACT than TCON cells. Taken together, these results experimentally validated the LEA-based pathway 222 

enrichment analysis with the polarized TACT morphology. Thus, part of the donor unique fingerprints 223 

we previously observed had resulted from differences in T-cell activation between the donors, with 224 

15% of T-cells from Donor 2 adopting the TACT morphology, predominantly in CD8+ T-cell compartment, 225 

while on the other end of the spectrum, only 7% of Donor 1 T-cells were TACT cells, here mostly in CD4+ 226 

T-cells (Figure S5D). 227 

 Having validated the phenotype-to-pathway association approach and its ability to discover 228 

and correctly describe new cellular phenotypes, we explored the pathway enrichments for age-229 

associated T-cell phenotypes (Figure 5A and S6A). Pathways enriched in phenotypes that were 230 
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reduced with age included nucleotide excision repair, telomere maintenance (Roth et al. 2003), cilia 231 

assembly (Stephen et al. 2018) and propanoate metabolism (Figure S6A). In contrast, pathways 232 

associated with T-cell phenotypes that increased with age included inflammation and stress-related 233 

pathways, particularly for the CD8+ compartment, and lysosome and vesicle-associated pathways in 234 

CD4+ T-cells (Figure 5A right). Inflammation is a well described risk factor for age-associated diseases 235 

(Franceschi, Bonafè, and Valensin 2000), and, consistently, the age-associated phenotypes overlapped 236 

partially with the above validated phenotype for activated CD8+ T-cells (Figure 5A right). Furthermore, 237 

impaired organelle and lysosome homeostasis in aged CD4+ T-cells has been previously described as a 238 

relevant process in aging of T-cells (Jin et al. 2020). 239 

Pathway enrichments for oxidative phosphorylation and mitochondrial respiration in age-240 

associated T-cell phenotypes were in line with reports of defective respiration in CD4+ T-cells of aged 241 

mice (Ron-Harel et al. 2018; Gomes et al. 2013), and suggested that the neural network might have 242 

identified a phenotypic T-cell signature associated with both donor age and mitochondrial abundance. 243 

Interestingly, the CD4+ T-cells showed strong brightfield intensity differences, a measure of 244 

intracellular granularity (Figure 2A,B and S5B). This brightfield-trend followed the age-associations we 245 

observed, with CD4+ T-cells enriched in younger people measured to be more granular (referred to as 246 

T4BFD for ‘brightfield dark’ CD4+ T-cells; Figure 2A,B and 3C). Quantifying this association across all 247 

subpopulations, CD4+ T-cells indeed showed the most significant age-associated brightfield intensity 248 

differences (P < 10-70), followed by the CD8+ T-cells (P < 10-40),  and less for the other immune cell 249 

classes (Figure 5B).  250 

To reproduce this association we sampled an additional validation cohort of 15 healthy donors 251 

(Figure 5C), and trained a different neural network architecture on a new set of images generated only 252 

from this validation cohort (Figure S6B). This independent repetition of the workflow revealed that 253 

the age-associated T4BFD phenotype was independent of the donor cohort and neural network and 254 

experimental batch (Figure 5C and Figure S6B). The age-associated brightfield intensity differences 255 

and mitochondrial pathway association might reflect loss of mitochondrial abundance in age in CD4+ 256 

T-cells (Murera et al. 2018). To support this interpretation we analysed if BF intensity reflects 257 

mitochondrial abundance using the natural heterogeneity observed within CD4+ T-cells of a single 258 

donor (Figure 5D). Indeed, those cells that were darkest by brightfield imaging displayed significantly 259 

higher mitochondrial abundance as measured by image-based quantification of the MitoTracker dye 260 

(Figure 5D). The deep learning uncertainty thus had revealed a label-free phenotype reflecting an age-261 

associated mitochondrial decline in CD4+ T-cells, explaining in part how immune cell phenotypes 262 

measured by our high-throughput single-cell imaging pipeline capture donor information such as age. 263 
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Discussion 264 

We here explore the molecular health determinants of human immune cell phenotypes using 265 

a workflow that combines automated high-throughput microscopy, single-round multiplexed 266 

immunofluorescence, and deep learning-based phenotypic analysis. The presented method for 267 

phenotyping of immune cells distinguishes itself for its ability to integrate cell morphology, protein 268 

levels and localization, and multi-cellular context into a quantitative metric across 8 major immune 269 

cell classes, hundreds of conditions, and millions of cells. The resulting single-cell phenotype space, 270 

derived from the CNN’s uncertainty, reflected both genetic and non-genetic donor health information. 271 

We find age, gender, blood pressure, and inflammatory state to be significantly associated with human 272 

immune cell phenotypes, yet many more influences likely exist and more phenotype-associations 273 

captured by our approach remain unexplored. 274 

Our workflow is tailored to make use of two large sources of biological heterogeneity: the 275 

heterogeneity observed between individuals, and heterogeneity observed within cells of the same 276 

class and donor. That dependency however is at the same time its limitation: The single-round 277 

multiplexed staining strategy benefits from the presence of multiple cell types with variable cell 278 

morphologies and marker profiles, and LEA requires donor or condition heterogeneity to power its  279 

associations. Furthermore, while the marker panel shown here reliably captures the predominant 280 

immune cell classes present in PBMCs, it does not resolve certain smaller subpopulations, such as 281 

Natural Killer T-cells (Bendelac, Savage, and Teyton 2007). However, the approach is flexible as the 282 

panel composition can readily be tailored to the identification of additional subpopulations, or 283 

adapted to different tissues, building on the same logic developed here. 284 

 Whilst this is not the first work which deploys CNN-based cell classification (Moen et al. 2019; 285 

Kraus et al. 2017; Kraus, Ba, and Frey 2016; Pärnamaa and Parts 2017; Dürr and Sick 2016; Sommer et 286 

al. 2017; Kandaswamy et al. 2016; Godinez et al. 2017; Hussain et al. 2019) and feature extraction 287 

(Pärnamaa and Parts 2017; Kraus et al. 2017; Jackson et al. 2019; Godinez et al. 2017), to our 288 

knowledge, this is the first work where deep learning is applied in high-throughput screening and 289 

phenotypic analyses of primary human PBMCs. By training the CNN on curated cells from across 290 

independent experiments, multiple donors, and conventional and multiplexed staining panels, we 291 

could prevent overfitting on phenotypes of single donors and technical bias stemming from 292 

experimental conditions. However, the CNN class probability space, which we here successfully 293 

employ as a phenotype discovery tool, is sensitive to different phenotypes resulting from different 294 

experimental conditions. As such, while CNN classification can be trained to be robust, experimental 295 

care needs to be taken when interpreting the CNN class probability space. 296 
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Once new phenotypes are discovered, as we demonstrate for the inflammation-associated 297 

TACT cell morphology, the ability to retroactively re-classify cells based on their morphology with 298 

dedicated CNNs allows robust morphological sub-classification of previously imaged cells even in 299 

absence of tailored marker panels. Attesting to the robustness of the discovered phenotypes, the 300 

inflammation-associated TACT and age-associated T4BFD phenotypes could be validated in independent 301 

experiments, in an independent validation cohort, using distinct neural network architectures, and, 302 

for the TACT morphology, in both live-cell and fixed sample imaging. 303 

In the future, repeated profiling of individual donors will allow to further stratify temporally 304 

stable from dynamic immune cell phenotypes. Furthermore, comparative studies across larger patient 305 

and donor cohorts, and identifying clinically relevant cell morphologies in the context of personalized 306 

treatment identification for hematological malignancies (Snijder et al. 2017; Kornauth et al. 2021), will 307 

be additionally attractive avenues of study. This will inevitably define the boundaries of the personal 308 

health information reflected by immune cell phenotypes. Given that the workflow allows 309 

simultaneous phenotype discovery combined with the molecular and personal health associations, it 310 

is well positioned to lead to the discovery of more as yet undescribed and clinically relevant immune 311 

cell phenotypes.  312 
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Figure Legends 313 

Figure 1. Workflow for the single-round multiplexed immunofluorescence, image-based screening, 314 

and associated deep learning-based classification of human peripheral blood mononuclear cells 315 

(PBMCs). PBMCs of healthy human donors are seeded in 384-well plates, optionally containing drugs 316 

or immune stimuli. Cells are fixed and stained with a comprehensive antibody panel (1i) and imaged 317 

by automated confocal microscopy. A convolutional neural network (CNN) is trained on 89483 318 

manually curated sub-images to distinguish eight different immune cell classes, and subsequently 319 

classifies all cells in the experiment. The curated test set contains 100 cells per class per donor per 320 

staining condition. 1ii, Confusion matrix of CNN performance across all 24’000 cells that the CNN did 321 

not see before.  322 
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Figure 2. (A) Phenotypic landscape of the unperturbed immune system across ten healthy donors.  t-323 

Distributed Stochastic Neighbor Embedding (t-SNE) embedding of the 8-class CNN probabilities of up 324 

to 1000 randomly subsampled high-confidence multiplexed cells per class and per donor (class 325 

probability > 0.7). Monocytes are further divided into three subpopulations by thresholding the 326 

immunofluorescence (IF) intensity of CD16 and CD11c stainings, respectively (insert). Figure depicts a 327 

total of 78850 cells, randomly sampled from 40 wells for each of the 10 donors. All donors were 328 

processed and measured together in a single experiment, across 40 replicate wells per donor 329 

distributed over two 384-well plates. (B) Selected single-cell features projected onto the t-SNE shown 330 

in 2A. Median value of overlapping data points is calculated and color is assigned accordingly. Points 331 

are plotted in order of intensity, with the lowest intensity on top. (C) Phenotypic landscape of the ex 332 

vivo perturbed immune system of a single donor. The CNN class probability t-SNE map on the left 333 

shows 600 randomly chosen single cells per cell class and drug treatment, colored by class assignment. 334 

(D) Overview of the local enrichment analysis (LEA) workflow. LEA probes the k-nearest neighbors of 335 

each single cell in a multidimensional space for enrichment of either continuous or discrete features. 336 

For discrete features, the baseline probability of finding n cells of condition X in the probed 337 

neighborhood follows a hypergeometric distribution, from which an enrichment p-value is calculated 338 

(taking into account the total number of drawn cells, the total number of cells in the t-SNE and the 339 

total number of cells of condition X in the dataset). For continuous features, the relative fraction of 340 

cells of each donor in the probed local neighborhood is calculated. These fractions are then rank-341 

correlated with a continuous feature that was measured across donors. The enrichment probability 342 

for continuous features corresponds to the p-value of the correlation. In both cases, the enrichment 343 

probability is assigned to the center-cell and the approach is iterated for each single cell in the analysis. 344 

(E) Bar graph depicting the sum total log10(LEA P-values) for selected perturbations in the M1-type 345 

(black bars) and M2-type (grey bars) monocyte clusters. (F) LEA analysis reveals regions in the 346 

phenotypic space that are significantly enriched for dexamethasone-treated PBMCs. Cells in the t-SNE 347 

embedding are colored by their enrichment significance of the LEA analysis run in the original 8-class 348 

probability space (−log10(padjust); see colorbar). Insert highlights the contribution of different 349 

perturbations to the selected M2-type monocyte cluster. Figure depicts a total of 199375 cells, 350 

randomly sampled from across 240 wells for a single donor.  351 
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Figure 3. (A) LEA of donor-specific cells across 10 donors, visualized on the t-SNE of Figure 2A. The 352 

cells are colored by their maximum LEA significance across the 10 donors (−log10(padjust); see colorbar). 353 

Insert: A randomized null distribution of donor enrichments was generated by randomizing the donor 354 

labels 2000 times and summing up all single-cell enrichments calculated by LEA per randomized run 355 

(grey bars). Sum enrichment of the actual data is shown in red, and the significance compared to the 356 

randomized runs is calculated by a one-sided t-test. (B) LEA of biological gender-specific phenotypes 357 

projected onto the t-SNE embedding. Cells are colored by their significant enrichment in female (blue) 358 

or male (green) specific phenotypes. Insert: A null distribution of random gender enrichment (grey) 359 

was generated by randomizing the donor labels 2000 times and summing up all single-cell enrichments 360 

calculated by LEA. Sum enrichment of the actual data is shown in red, as in 3A. (C) Association analysis 361 

of various health parameters with cellular phenotypes calculated by LEA. Null distributions of random 362 

correlation significance (grey) were generated by randomizing the donor labels 2000 times and 363 

summing up the all single-cell enrichments calculated by LEA per randomized run. Enrichment of the 364 

actual data is shown in red (one-sided t-test). (D) LEA Age-associations projected onto the t-SNE 365 

embedding. Single-cells are colored by their signed significance of correlation (−log10(p) * sign of the 366 

correlation; see colorbar). Insert: Fraction of all significantly positive and negative age-associated CD4+ 367 

T-cells with donor age (p<0.05).  368 

.CC-BY 4.0 International licenseperpetuity. It is made available under a
preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in 

The copyright holder for thisthis version posted December 4, 2021. ; https://doi.org/10.1101/2021.12.03.471105doi: bioRxiv preprint 

https://doi.org/10.1101/2021.12.03.471105
http://creativecommons.org/licenses/by/4.0/


A

C

E F G H

I

D

B

Fig. 4

96.5 7.3

3.5 92.7

94.6

0 50 100
Accuracy (%)

TACT

TCON

T AC
T

T CO
N

M
ea

n 
ac

cu
ra

cy
 (%

)

Ground truth

Pr
ed

ic
te

d

Label-free T-cell activation classi�er LEA of T-cell activation (Tact)

phospho-ERK (Ser529)  phospho-NFkB (Thr202 and Tyr204)

Donor 1
Donor 2
Donor 3
Donor 4
Donor 5
Donor 6
Donor 7
Donor 8
Donor 9
Donor 10

padjust < 0.05

-5

0

5

-lo
g1

0(
p)

 *
 s

ig
n 

of
 c

ha
ng

e

-lo
g 10

(p
) *

 s
ig

n 
of

 c
ha

ng
e

-lo
g 10

(p
) *

 s
ig

n 
of

 c
ha

ng
e

-3

0

3

-7

0

7

T0
T4
T8

LEA links cellular phenotypes to their molecular architecture

LEA of transcript abundance

MAPK1-associated T-cells (TACT)

Conventional T-cells (TCON)

-lo
g 10

(p
ad

ju
st
) 

0

5

CD4

MAPK1TCR-signalling

CD8AT-cell classes 

#3: TNFR2 signaling

#1: TNF signaling
#2: MAPK signaling

#4: TCR signaling

Fr
eq

ue
nc

y

Pathway enrichment (-log10 (padjust))

CD4 validation

AROC: 0.93

False positive rate False positive rate

Tr
ue

 p
os

iti
ve

 ra
te

Tr
ue

 p
os

iti
ve

 ra
te

CD8 validation

AROC: 0.89

***
***

***

**
n.s.

n.s.*

*

0

0.1

0.2

0.3

0

0.1

0.2

0.3

0.4

Fr
ac

tio
n 

 p
N

Fk
B+

Fr
ac

tio
n 

 p
ER

K+

PBS
ConditionCondition

SEBPBS SEB

TCON TACTTCON TACT

0 0.2 0.4 0.6 0.8 10

0.2

0.4

0.6

0.8

1

0 0.2 0.4 0.6 0.8 10

0.2

0.4

0.6

0.8

1

0 2 4 6
D

M
SO IL
-2

SE
B

LP
S

D
ex

Fr
ac

tio
n 

T AC
T

Induction of TACT morphology 
across a validation cohort of 15 donors

DAPI CD3 pERK Merge

DAPI CD3 pERK Merge

DAPI CD3 pNFkB Merge

DAPI CD3 pNFkB Merge

0.05
0.1

0.15
0.2

0.25
0.3

0.35

***

****

****

*

.CC-BY 4.0 International licenseperpetuity. It is made available under a
preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in 

The copyright holder for thisthis version posted December 4, 2021. ; https://doi.org/10.1101/2021.12.03.471105doi: bioRxiv preprint 

https://doi.org/10.1101/2021.12.03.471105
http://creativecommons.org/licenses/by/4.0/


Page 14 of 34 
 

Figure 4. (A) t-SNE embedding of the CNN class probability across T-cells of ten healthy donors. 10000 369 

T-cells are shown per donor, selected without confidence threshold to reflect the original abundance 370 

of T0, T4, and T8 subpopulations per donor. Left panel: t-SNE color-coded per T-cell class (see legend); 371 

Middle panel: t-SNE map colored by LEA-based associations with CD8A transcript abundance; Right 372 

panel: t-SNE map colored by LEA-based associations with CD4 transcript abundance (−log10(p) * sign 373 

of the correlation; see legend). (B) Receiver operating characteristic (ROC) curves for the consistency 374 

between the CD8A transcript abundance LEA associations with CD8 expression levels by IF (left panel), 375 

and the CD4 transcript abundance LEA associations with CD4 expression levels by IF (right panel). (C) 376 

LEA-based associations of TCR-signalling (left), MAPK1 transcript abundance (middle) and donor 377 

enriched regions (right, padjust < 0.05 colored per donor) projected onto the T-cell phenotype map of 378 

A. (D) Examples of morphologically representative CD8+ T-cells from the positively MAPK1-associated 379 

regions (TACT), and conventional CD8+ T-cells of other regions (TCON). Crops are 15 x 15 µm in size. Yellow 380 

= CD3, blue = DAPI. (E) Confusion matrix assessing the accuracy of the label-free T-cell activation (TACT) 381 

classifier. The test set comprises 369 randomly selected TACT cells, and 738 randomly selected TCON cells 382 

across multiple donors (including the 10 depicted donors). (F) LEA of the TACT phenotype projected on 383 

the t-SNE map (see colorbar). (G) Distribution of pathway significance across all retro-actively 384 

classified TACT cell morphologies. Pathway enrichments were calculated using a hypergeometric test 385 

on positively associated genes (top 0.95 percentile), and p-values were corrected for multiple testing. 386 

Significance of the top four most enriched pathways are indicated by grey arrows. (H) Induction and 387 

suppression of the TACT phenotype with immunomodulatory agents across an independent validation 388 

cohort of 15 individual donors. All compounds were screened at a concentration of 100ng/ml. 389 

Boxplots show the mean relative fraction of TACT cells in the T-cell compartment across all wells of each 390 

condition per donor. Stars indicate significance of TACT fraction per condition, compared with controls 391 

calculated with an unpaired t-test.  (I) Immunofluorescence quantification of phospho-NFkB and 392 

phospho-ERK levels in TACT  and TCON cells. Boxplots show the fraction of phospho-signaling marker 393 

positive TACT (red) and TCON cells (blue) after 48h incubation in the presence or absence of SEB. Boxplots 394 

show distributions of three technical repeats. Images show representative TACT and TCON cell 395 

morphologies at 40X magnification.  Crops are 15 x 15 µm in size.   396 
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Figure 5. (A) Upper left: positive LEA associations with donor age projected on the t-SNE embedding 397 

as in Figure 4A (colored by -log10(p)). Middle left: LEA associations of Mitochondrial electron transport 398 

projected on the t-SNE embedding. Lower left: Brightfield single-cell intensity projected onto the t-399 

SNE embedding. Median value of overlapping data points is calculated and color is assigned 400 

accordingly. Points are plotted in order of intensity, with the lowest intensity on top. Right: Heatmap 401 

overview of all significantly enriched pathways in positive age-associated T-cells (-log10(p)>5). (B) 402 

Comparison of the significance in difference in brightfield intensity of positively- vs negatively-403 

associated immune cells per population (with an association cutoff of -log10(p)>1.3). Bar plots show 404 

the -log10(p) * sign of the change (1-(median(positive enrichment) / median (negative enrichment))). 405 

(C) Negative and positive age associations with cellular T-cell phenotypes and donor age in an 406 

independent validation cohort of 15 healthy individuals calculated by LEA (left and middle). t-SNE 407 

depicts a total of 5000 cells per donor. Right: Comparison of differences in brightfield intensity of 408 

positively vs negatively age-associated CD4+ T-cells (with an association cutoff of -log10(p)>1.3). (D) 409 

Mitochondrial content (as measured by MitoTracker) of CD4+ T-cells decreases with increased 410 

brightfield intensity. Bar-plots display the mean MitoTracker intensity of CD4-T-cells per well per 10-411 

percentile bins of BF intensity within each well. Mean and standard deviations across 10 repeat wells 412 

with a combined total of n=78095 CD4+ T-cells are shown. P-values are from a two-tailed t-test of all 413 

replicate wells per bin against those of the brightest BF(right most) bin.  414 
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Supplementary Figure Legends 415 

Figure S1. (A) Overview of the convolutional neural network architecture. (B) Average and standard 416 

deviation of training and validation accuracies over 20 randomly initialized CNN instances. Validation 417 

set represents 10% of the initial training set (n=8948). Network training after 20 epoches. (C) 418 

Confusion matrix of CNN performance on a leave-one-out cross validation per donor. The CNN was 419 

trained with 14 donors and subsequently tested on an unseen donor not included in the training 420 

dataset. The confusion matrix shows the mean accuracies after iterating across all donors. (D) 421 

Comparison of prediction accuracy on conventionally stained and multiplexed cells. Bar plots show 422 

the mean accuracy (in %) and the standard deviation of the CNN prediction across all donors 423 

individually per class and staining. (E)  Distribution of 647nm intensity levels across all cells (upper), 424 

classified CD3+ T-cells (middle) and classified CD14+ monocytes (lowest) of Donor 1. A cell class 425 

probability threshold of 0.8 was applied. (F) Population percentages for Donor 5 (left) and class 426 

fraction comparison of conventionally stained and multiplexed cells across 15 healthy donors. 427 

Negative cell class is excluded due to its unavailability in conventional stainings.  (G) Class fraction 428 

comparison of two single replicates (plate wells) across all 10 donors. Each dot corresponds to a 429 

replicate pair from a single donor. Color indicates the cell type. The median pairwise correlation across 430 

all technical replicates is indicated. (H) Median class probability comparison of two single replicates 431 

(plate wells) across all 15 donors. Shown statistic depicts the median class probability correlation of 432 

all pairwise replicate combinations per donor across two individual 384 well plates. (I) Confusion 433 

matrix of CNN performance on brightfield and DAPI channels only. An adapted CNN architecture (2-434 

channel input and 2 class output) was trained with 1900 2-channel images of T-cells and monocytes. 435 

Network performance was evaluated in the curated test set containing 750 cells per class. (J) 436 

Comparison of selected morphological and staining-pattern parameters divergent between T-cells and 437 

monocytes. Conventionally stained T-cells and monocytes from Donor 1 were identified by 438 

immunofluorescence gating for CD3 and CD14, respectively. Morphological features were extracted 439 

by CellProfiler.   440 
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Figure S2. (A) Selected single-cell features mapped onto the same t-SNE map as depicted in Figure 2D. 441 

Median value of overlapping data points is calculated and color is assigned accordingly. Points are 442 

plotted in order of intensity, from highest to lowest. (B) Associated CNN probability contour plot of 443 

the phenotypic landscape of the immune system depicted in Figure 2D. (C) Left: Phenotypic landscape 444 

of the immune system across ten healthy donors.  t-SNE embedding of the 8-class CNN probabilities 445 

without a confidence threshold of up to 1000 randomly subsampled multiplexed cells per class and 446 

per donor. Right: Associated CNN probability contour plot of the phenotypic landscape depicted left. 447 

(D) LEAs visualized by t-SNE of drug induced phenotypes. Horizontal bar graphs indicate the class 448 

fractions in enriched regions (at padjust < 0.01).  449 
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Figure S3. (A) Overview of cell-cell contact analysis over five million PBMCs. Cell-to-cell interaction 450 

networks between eight different immune cell populations with a total of 36 cell type interactions 451 

were generated per well, and compared across treatments. (B) LPS-induced rewiring of the cell-to-cell 452 

interaction network. Relative monocyte-to-monocyte interaction scores of multiplexed and 453 

conventionally stained wells as a function of increasing LPS concentration (left). Mean interaction 454 

score across all replicates is calculated and normalized against control treatment. Example LPS 455 

interaction network for 100ng/ml LPS (right). Significance of interaction (−log10(p), multiplied times 456 

the sign of the phenotype (either positive or negative interaction score)). (C) LEA of cells with 457 

monocytes (left), T-cells (middle) or no-nearest neighbor (right).   458 
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Figure S4. (A) Comparison of donor LEA enrichments vs gender LEA enrichments per single cell (as in 459 

Figure 3D). r values represent Pearson correlations. (B) Comparison of donor LEA enrichments vs age 460 

LEA enrichments per single cell (as in Figure 3D). r values represent Pearson correlations.  461 
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Figure S5. (A) Upper: Bar graphs indicate the number of detected transcripts (protein coding and long 462 

non-coding RNAs) after applying a threshold of 20 raw counts. Lower: Bar graphs indicated the sum of 463 

transcript counts after DESeq2 normalization (Love, Huber, and Anders 2014). (B) Selected single-cell 464 

features projected onto the t-SNE depicted in Figure 4A. Median value of overlapping data points is 465 

calculated and color is assigned accordingly. Points are plotted in ascending order with the lowest 466 

intensity on top. (C) Overview of the label-free T-cell activation (TACT) convolutional neural network 467 

architecture. (D) Fraction of TACT cells per class and per donor. Stacked bar plots show the mean 468 

fraction of all T-cells per donor classified as TACT, within their respective T-cell subclass (T0, T4 or T8) 469 

in control (DMSO) conditions. (E) Induction and suppression of the TACT cell phenotype by 470 

immunomodulatory agents. Plotted are the log2 fold changes of the mean fraction of T-cells classified 471 

as TACT across all wells of each drug condition compared to control treatments. Cells were incubated 472 

with immunomodulatory agents at 0.1, 1, 10, 30, 100 and 300 ng/ml. Error bars show the standard 473 

error of the mean across wells for each drug condition. A custom Hill function (adjusted to different 474 

minima and maxima) was used to fit the data (red line). (E) Representative live-stained TACT and TCON 475 

cell morphologies.  Crop-size is 15 x 15 µm.   476 
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Figure S6. (A) Left: negative LEA associations with donor age projected onto the t-SNE (colored by -477 

log10(p)). Right: Heatmap overview of all significantly enriched pathways in positive age-associated T-478 

cells (-log10(p)<-5). Rows are annotations, columns are significantly age-associated cells. (B) Left: 479 

Schematic of the 8-class ResNet architecture used for the 15 donor validation cohort. Right: Confusion 480 

matrix of the CNN. CNN was tested on 1000 cells per class that the CNN did not see before.  481 
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Methods 482 

 483 

Experimental model 484 

Buffy coats or whole blood tubes were obtained from coded healthy donors provided by the 485 

Blutspende Zurich, under a study protocol approved by the cantonal ethical committee Zurich (KEK 486 

Zurich, BASEC-Nr 2019-01579). Detailed donor information can be found in Supplementary Table 3.  487 

 488 

Experimental details 489 

Collection and purification of human peripheral blood mononuclear cells (PBMCs) 490 

Buffy coats or whole blood tubes were obtained from coded healthy donors provided by the 491 

Blutspende Zurich, under a study protocol approved by the cantonal ethical committee Zurich (KEK 492 

Zurich, BASEC-Nr 2019-01579). Healthy donor buffy coats or blood samples were diluted 1:1 in PBS 493 

(Gibco) and PBMCs were isolated with a Histopaque-1077 density gradient (Sigma-Aldrich) according 494 

to the manufacturer's instructions. PBMCs at the interface were collected, washed once in PBS and 495 

resuspended in media. In all experiments, immune cells were cultured in RPMI 1640 + GlutaMax 496 

medium (Gibco) supplemented with 10% fetal bovine serum (FBS, Gibco) and incubated at 37°C with 497 

5% CO2. Cell number and viability was determined utilizing a Countess II Cell Counter from Thermo 498 

Fisher according to the manufacturer's instructions. 499 

Non-adherent PBMC monolayer formation and drug screening and cell fixation  500 

In the proof-of-concept drug screen, 5μl of a selected screening compounds (10x stock), and all 501 

respective controls (as outlined in Supplementary Table 2) were transferred to CellCarrier 384 Ultra, 502 

clear-bottom, tissue-culture-treated plates (PerkinElmer) with five replicates per condition. All 503 

conditions were screened in four concentrations: Cytokines (0.1, 1, 10, 100ng/ml); Rituximab (0.05, 504 

0.1, 0.5, 1μg/ml); LPS (0.1, 1, 10, 100 ng/ml); Dexamethasone (0.4, 4, 40, 400ng/ml); Crizotinib (0.01, 505 

0.1, 1, 10μM). 50 μl of medium containing approximately 4*105 cells/ml was pipetted into each well 506 

of a 384-well compound plate and cells were allowed to settle to the bottom. The whole blood samples 507 

of the discovery cohort (shown in Figure 2A-B, Figure 3-5) were incubated for 1h, whereas all buffy 508 

coat samples, including all samples from the validation cohort (Figure 4H and Figure 5C) were 509 

incubated for 24 hours. All assays were terminated by fixing and permeabilizing the cells with 20μl of 510 

a solution containing 0.5% (w/v) formaldehyde (Sigma-Aldrich), 0.05% (v/v) Triton X-100 (Sigma-511 

Aldrich), 10mM Sodium(meta)periodate (Sigma-Aldrich) and 75mM L-Lysine monohydrochloride 512 
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(Sigma-Aldrich), for 20 minutes at room temperature.  For Mitotracker staining (Thermo Fisher), cells 513 

were stained live with 500nM Mitotracker Red, prior to fixation. Fixative-containing medium was 514 

subsequently removed, and cells were blocked and photobleached in 5% FBS/PBS overnight at 4°C. 515 

Photobleaching was used to reduce background fluorescence and was performed by illuminating the 516 

fixed cells with conventional white light LED panels.  517 

Immunostaining and Imaging  518 

All fluorescent primary antibodies utilized in this work (outlined in Supplementary Table 1) were used 519 

at a 1:300 dilution in PBS. All antibody cocktails for immunohistochemistry (IHC) contained 6µM DAPI 520 

(Sigma-Aldrich) for nuclear detection. Before IHC staining, the blocking solution was removed and 20μl 521 

of the antibody cocktail was added per well and incubated for 1h at room temperature. Besides fully-522 

multiplexed wells, each plate additionally contained several staining-control wells with a reduced 523 

number of antibodies (Supplementary Table 1). The staining-control wells served for evaluating 524 

antibody functionality and the generation of the CNN-training data (see below). For imaging, a 525 

PerkinElmer Opera Phenix automated spinning-disk confocal microscope was used. Each well of a 384-526 

well plate was imaged at 20× magnification with 5×5 non-overlapping images, covering the whole well 527 

surface. The images were taken sequentially from the brightfield (650-760 nm), DAPI/Nuclear signal 528 

(435-480 nm), GFP/Green signal (500-550 nm), PE/Orange signal (570-630 nm) and APC/Red signal 529 

(650-760 nm) channels. Subsequently, the raw .tiff images were transferred from the microscope for 530 

further analysis. 531 

Conventional image analysis and quality filtering 532 

Cell detection and single-cell image analysis was performed using CellProfiler v2 (Carpenter et al. 533 

2006). Nuclear segmentation was performed via thresholding on DAPI intensity. Cellular outlines were 534 

estimated by a circular expansion from the outlines of the nucleus.  Additionally, a second and larger 535 

expansion from the nuclei was performed to measure the local area around each single cell (local 536 

cellular background). Standard CellProfiler based intensity-, shape- and texture features of the 537 

nucleus, cytoplasm and the local cell proximity were extracted for each measured channel. Raw 538 

fluorescent intensities were log10 transformed and normalized towards the local cellular background 539 

as described in Vladimer et. al., 2017 (Vladimer et al. 2017). 540 

Convolutional Neural Networks  541 

Convolutional neural networks used in this work were implemented using MATLAB’s Neural Network 542 

Toolbox Version R2020a. The curated dataset used in training, validation and testing of the CNN 543 

framework contains images of cells from fully multiplexed stainings and images from staining controls. 544 
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Staining controls were designed to contain only a subset of the antibodies used in the multiplexed 545 

setting (Supplementary Table 1). This reduced complexity first enables to evaluate the functionality of 546 

the selected antibody and the presence of the targeted antigen in each sample. Furthermore, antibody 547 

combinations in the staining-controls were picked to mirror the staining of the selected subpopulation 548 

in the multiplexed setting (e.g. staining-control 1 only contained antibodies marking T-cell specific 549 

antigens; T-cells in the multiplexed setting will have the same staining pattern). The same staining 550 

patterns in the controls and the mostly-non-overlapping emission spectra of the chosen antibodies 551 

allow an easy, marker-intensity-based identification of subpopulations. This facilitates a fast and 552 

unbiased selection of training examples. For the generation of single cell images, the center of each 553 

cell was determined by its nuclear staining via the software CellProfiler (see above). Around each 554 

nuclei-center, a 50x50 pixel (or 39.5x39.5 µm) wide subimage was generated across all 5 measured 555 

channels. Single-cell sub-images were then manually annotated and sorted for their respective class 556 

using custom Matlab scripts. For training and validation of the discovery cohort CNN, a dataset of 557 

89483 cells was manually annotated (containing both multiplexed and control staining cells). In the 558 

separate test datasets, each donor-associated set is independently split in multiplexed and control 559 

staining cells, resulting in a total of 30 independent test-datasets with each 100 cells per class. This 560 

test-setup allows inferring the network performance towards each donor, experiment and staining 561 

type independently.  562 

Discovery cohort (10 donors):  A 17-layer deep convolutional neural network with an adapted ‘Alex-563 

Net’ architecture (Krizhevsky, Sutskever, and Hinton 2012) with 50x50 pixel and 5 channel input 564 

images was used. Before training, the labeled 8-class dataset was randomly split in a training set 565 

containing 90% and a validation set with the remaining 10% of all images. Network-layers weights and 566 

biases were initialized randomly before the CNN network was trained. Networks were trained up to 567 

20 epochs with a mini batch size of 512 images. The learning rate was fixed to 0.0001. To avoid 568 

overfitting, L2 regularization with 0.005 was applied. Furthermore, in each iteration, input images 569 

were randomly rotated in 45-degree steps with an additional possibility to be also flipped vertically or 570 

horizontally. Performance of the trained networked was tested on the separate test-sets of staining 571 

control and multiplexed images of all 15 donors. Stochastic gradient descent with momentum of 0.9 572 

is defined as the optimization algorithm. Finally, we trained 20 differently initialized networks with 573 

differently split training and validation sets. For the final classification of the complete unlabeled 574 

dataset the best performing network was used. As in the generation of the labeled dataset, 50x50 575 

pixel sub-images around each nuclei-center were generated. Cells closer than 25 pixels to the border 576 

of an image were excluded from classification.  577 
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Validation cohort (15 donors): A 71-layer deep convolutional neural network with an adapted ResNet 578 

architecture (He et al. 2016) with 48x48 pixel and 5 channel input images was used. Before 579 

classification and training, all intensity values were first log10 transformed and then channel-wise 580 

normalized to a 0 to 1 range. The 8-class CNN was trained using randomly initialized weights and biases 581 

and the adaptive learning rate optimization ‘ADAM’.  The network was trained for 20 epochs with an 582 

initial learning rate of 0.001 which was dropped every 5 epochs with a factor of 0.1. Furthermore, a 583 

mini batch size of 512 images and L2 regularization with 0.001 was applied. To further strengthen 584 

generalization, input images were augmented in each iteration. Here images were randomly rotated 585 

in 45-degree steps with an additional possibility to be also flipped vertically or horizontally. To block 586 

an over-reliance on absolute intensity values, channel intensity shifts were simulated via a 587 

multiplication with a random fixed factor. This used factor was randomly drawn out of a normal 588 

distribution with a mean of 1 and a standard deviation of 0.2. Furthermore, images were augmented 589 

with random noise (specifically salt and pepper noise, speckle noise, gaussian noise or image blurring). 590 

In all CNN classifications, 48x48 pixel sub-images around each nuclei-center were generated. Cells 591 

closer than 24 pixels to the border of an image were excluded from all classifications. 592 

Label-free T-cell activation (TACT) classier: Convolutional neural networks and single cell images were 593 

generated as described above. The labelled training and validation dataset comprised a total of 8862 594 

cells (1:2 TACT :TCON ratio). CNNs were trained with a mini batch size of 200 images to a maximum of 595 

100 epochs, which could be terminated if validation loss was greater than the previous smallest loss 596 

for five consecutive times. Additionally, the images were randomly rotated by 45-degrees and 597 

mirrored vertically or horizontally per iteration to limit orientation bias towards polarised Tact cells. 598 

The CNN performance was assessed by classifying 1107 test cells (1:2 TACT Tact:TCONTc ratio) that had 599 

neither been used in CNN training nor in validation.  600 
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RNA sequencing 601 

T-cell isolation and RNA extraction: T-cells were isolated from fresh PMBCs directly after obtaining 602 

them via density centrifugation, as described above. Isolation was performed via a column based 603 

extraction method with CD3 Microbeads as described in the manufacturer's instructions (Miltenyi 604 

Biotec). RNA extraction of the isolated cells was performed with a Quick-RNA MiniPrep Kit by Zymo 605 

according to manufacturer's instructions. 606 

 607 

RNA sequencing: RNA sequencing was performed by the Functional Genomics Center Zurich. In short, 608 

cDNA libraries were obtained according to protocols published by Picelli et al, 2014(Picelli et al. 2014). 609 

Illumina library was obtained via tagmentation using Illumina Nextera Kit. All samples were sequenced 610 

in a single run on a NovaSeq6000 (single read, 100bp, depth 20 Mio reads per sample).  611 

 612 

Data processing and normalization: Illumina adapters, sequences of poor quality as well as polyA and 613 

polyT sequences were removed from the raw reads using TrimGalore v.0.6.0 with cutadapt v.2.0 prior 614 

to alignment. Reads were then aligned to the human reference genome  GRCh38, v93 (Ensembl) using 615 

STAR v. 2.5.3a. Reads per gene were counted using the –quantMode GeneCounts flag in STAR. Gene 616 

counts below a threshold of 20 raw counts were filtered and raw counts were normalized 617 

(DESeq2(Love, Huber, and Anders 2014)). Only transcripts annotated as ‘protein coding’ or ‘long non-618 

coding RNA’ were considered in the subsequent analysis. 619 

 620 

 621 

Statistical analysis 622 

Significance calculation: If not stated otherwise all significance scores were calculated based on a two-623 

tailed Student's t-test with mean 0. 624 

Cell-cell interaction analysis: For cell-cell interaction analysis, a simplified version of Vladimer et. al., 625 

2017 (Vladimer et al. 2017) interaction method was used. Here, cell-cell interaction analysis was 626 

conducted over all different image sites within the same well. Cells were scored as interacting if their 627 

nuclear centroids were within a euclidean distance of 40 pixels. To calculate the interaction-score of 628 

a cell with type A interacting with a cell of type B, we first calculated specific interactions and total 629 

interactions per well. We define specific-interactions, as the total count of “B”-cells within the defined 630 

radius around a cell of type “A”. Total-interactions are considered as the total count of all interacting 631 

cells in that well. To calculate the final interaction score, specific-interactions were divided by the 632 

product of (the fraction of type A cells of all cells) × (the fraction of type B cells of all cells) × total-633 

interactions. In contrast to the previously published method, this approach is simplified as the 634 
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interactions scores are non-directed, which reduces the number of edges from 72 to 36. Mean 635 

interaction score over all replicates was calculated, log2-transformed and normalized towards its 636 

respective control (see Supplementary Table 2).  637 

t-Distributed Stochastic Neighbor Embedding (t-SNE): All t-SNE visualizations were calculated on the 638 

–log10(class-probability matrices). In the t-SNE calculation a mahalanobis distance metric, a perplexity 639 

of 30, and an exaggeration parameter of 4 was applied. To reduce calculation time, the Barnes-Hut 640 

algorithm with a theta of 0.5 was used.  641 

Local enrichment analysis (LEA): To calculate whether a certain condition displays local enrichment in 642 

the 8-dimensional class probability space, we developed local enrichment analysis by hypergeometric 643 

testing or rank-based correlation (LEA). Here, we probe the local neighborhood around each single 644 

cell, which is defined as the k-nearest neighbors in the original CNN class probability space. For 645 

discrete variables (such as donor identity), we calculate the probability to randomly find at least n cells 646 

of condition X in a certain neighborhood using a hypergeometric cumulative distribution function. This 647 

takes into account the total number of cells in the probed neighborhood, the total number of cells in 648 

the tested class probability space, and the total number of cells of condition X. In case of continuous 649 

variables (like donor age or gene transcript counts), the relative fraction of cells of each donor in the 650 

probed local neighborhood is calculated. The fractions are then correlated (Spearman’s rank 651 

correlation) with a continuous variable and the significance of the correlation is calculated. In both 652 

cases, the enrichment-probability is assigned to center-cell of the probed region and the approach is 653 

iterated for each single cell in the selected n-dimensional space. If not stated otherwise, 654 

neighborhoods were defined as k = 400 nearest neighbours for figures 2-3 and S2-S4 and k=200 for 655 

the T-cell figures 4-5 and S5-S6. P-values were corrected for multiple testing, i.e. by the number of 656 

total cells (i.e. tests) in the analysis. 657 

Pathway enrichment analysis: Pathway annotations were obtained utilizing the David Database 658 

(Huang, Sherman, and Lempicki 2009). Gene enrichments per single cell were calculated via LEA (see 659 

above). To calculate pathway enrichments per single cell the LEA gene enrichments of all genes 660 

belonging to a certain pathway annotation were compared against the enrichment of all other genes. 661 

Significance scores were calculated based on a two-tailed Student's t-test and directionality was 662 

calculated by the difference of the means of both populations.   663 
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Data and Code availability 664 

Further information and requests for resources and reagents should be directed to and will be fulfilled 665 

by the Lead Contact, Berend Snijder (bsnijder@ethz.ch). This study did not create new unique reagents 666 

and all used reagents are commercially available.  667 

CNN training and test datasets as well as the custom algorithm for local enrichment analysis by 668 

hypergeometric testing (LEA) will be available upon publication of this manuscript. The CNN dataset 669 

and relevant metadata is additionally available at the FAIR principles (Wilkinson et al. 2016) compliant 670 

repository https://doi.org/10.3929/ethz-b-000343106. Raw image data is available from the Lead 671 

Contact, upon request. T-cell RNA-seq measurements used in the study are available at 672 

https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE155093.  673 

 674 

 675 
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Supplementary Table 1

Epitope Vendour Fluorophore Clone Host 
Staining 
Control 

Used in
 muliplexed

Lot

CD3 BioLegend Alexa Fluor 647 UCHT1 Mouse  1 yes B246715
CD4 BioLegend FITC SK3 Mouse  1 yes B244280
CD8 BioLegend Alexa Fluor 594 RPA-T8 Mouse  1 yes B200099

CD19 BioLegend FITC SJ25C1 Mouse  3 yes B239447
CD19 BioLegend PE SJ25C1 Mouse  3 yes B237928
CD56 Beckman Coulter PE N901 Mouse  2 yes 52
CD16 BioLegend PE 3G8 Mouse  2 yes B238510
CD14 BioLegend Alexa Fluor 647 HCD14 Mouse  2&3 yes B260484

CD11c BioLegend Alexa Fluor 488 3.9 Mouse  2&3 yes B209841
CD3 BioLegend Alexa Fluor 488 UCHT1 Mouse  / no B278994
CD4 Biolegend Alexa Fluor 647 SK3 Mouse  / no B293054
CD8 Biolegend Alexa Fluor 594 RPA-T8 Mouse  / no B200099

pNFkB p65 (Ser529) eBioscience PE B33B4WP Mouse  / no 4303324
pERK1/2 (Thr202 Tyr204) Thermo Fisher Scientific PE MILAN8R Mouse  / no 4337535
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Supplementary Table 2

Compound name Vendour
Assay conc. Carrier solution

and control
Crizotinib Sigma-Aldrich 10uM 1% DMSO

1uM 0.1% DMSO
0.1uM 0.01% DMSO
0.01uM 0.001% DMSO

Dexamethasone Sigma-Aldrich 400ng/ml 1% DMSO
40ng/ml 0.1% DMSO
4ng/ml 0.01% DMSO
0.4ng/ml 0.001% DMSO

Lipopolysaccharide from Escherichia coli Sigma-Aldrich 100ng/ml PBS
10ng/ml PBS
1ng/ml PBS
0.1ng/ml PBS

Rituximab Absolute antibody 1ug/ml PBS
0.5ug/ml PBS
0.1ug/ml PBS
0.05ug/ml PBS

Recombinant Human IL-2 PeproTech 100ng/ml 0.001% (w/v) BSA in PBS
10ng/ml 0.0001% (w/v) BSA in PBS
1ng/ml 0.00001% (w/v) BSA in PBS
0.1ng/ml 0.000001% (w/v) BSA in PBS

Recombinant Human IL-4 PeproTech 100ng/ml 0.001% (w/v) BSA in PBS
10ng/ml 0.0001% (w/v) BSA in PBS
1ng/ml 0.00001% (w/v) BSA in PBS
0.1ng/ml 0.000001% (w/v) BSA in PBS

Recombinant Human IL-6 PeproTech 100ng/ml 0.001% (w/v) BSA in PBS
10ng/ml 0.0001% (w/v) BSA in PBS
1ng/ml 0.00001% (w/v) BSA in PBS
0.1ng/ml 0.000001% (w/v) BSA in PBS

Recombinant Human IL-10 PeproTech 100ng/ml 0.001% (w/v) BSA in PBS
10ng/ml 0.0001% (w/v) BSA in PBS
1ng/ml 0.00001% (w/v) BSA in PBS
0.1ng/ml 0.000001% (w/v) BSA in PBS

Recombinant Human G-MCSF PeproTech 100ng/ml 0.001% (w/v) BSA in PBS
10ng/ml 0.0001% (w/v) BSA in PBS
1ng/ml 0.00001% (w/v) BSA in PBS
0.1ng/ml 0.000001% (w/v) BSA in PBS
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Supplementary Table 3

Whole Blood Donor Year of birth Blood type weight in kg Height in cm Gender Blood pressure Hb level
1 1999 A+ 68 174 m 128/70 156
2 1987 A+ 66 170 m 173/99 147
3 1990 A+ 50 163 f 114/80 148
4 2000 A+ 63 168 f 122/74 133
5 1968 0- 58 165 f 158/90 151
6 1974 B+ 95 176 m 156/98 177
7 1950 0+ 72 175 f 126/78 130
8 1967 A+ 95 178 m 146/86 161
9 1967 0+ 80 180 m 160/106 167

10 1965 A+ 80 180 m 130/82 167

Buffy coat donor Year of birth Blood type weight in kg Height in cm Gender Blood pressure Hb level
1 1968 AB+ 73 180 m 146/92 153

Buffy coat Donor Year of birth Blood type weight in kg Height in cm Gender Blood pressure Hb level
1 1994 B+ 65 183 m 135/77 152
2 1970 B+ 69 177 f 148/92 147
3 1996 B+ 75 192 m 138/91 157
4 1994 B+ 85 180 m 124/74 159
5 1953 B- 65 178 m 142/95 168
6 1971 AB- 65 171 f 114/72 141
7 1991 B+ 67 180 f 135/94 145
8 1963 B+ 65 157 f 146/99 157
9 1963 B+ \ \ m 170/90 169

10 1953 0- 76 158 f 142/100 149
11 1999 AB+ 61 169 f 131/74 136
12 1960 B+ 90 182 m 155/98 151
13 1999 B+ 66 173 m 171/103 157
14 1967 B+ 80 182 m 162/102 174
15 1989 AB- 72 178 f 108/63 138

Discovery cohort (Figure 1, Figure 2 A-B, Figure 3, Figure 4 A-G, Figure 5 A-B)

Immuno-modulatory screen (Figure 2 C-F)

Validation cohort (Figure 4H, Figure 5C)
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