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Abstract: Microorganisms can adopt a quiescent physiological condition which acts as a survival
strategy under unfavourable conditions. Quiescent cells are characterized by slow or non-prolifer-
ation and deep down-regulation of processes related to biosynthesis. Although quiescence has been
described mostly in bacteria, this survival skill is widespread, including in eukaryotic microorgan-
isms. In Leishmania, a digenetic parasitic protozoan that causes a major infectious disease, quiescence
has been demonstrated, but molecular and metabolic features enabling its maintenance are un-
known. Here we quantified the transcriptome and metabolome of Leishmania promastigotes and
amastigotes where quiescence was induced in vitro either through drug pressure or by stationary
phase. Quiescent cells have a global and coordinated reduction in overall transcription, with levels
dropping to as low as 0.4% of those in proliferating cells. However, a subset of transcripts did not
follow this trend and were relatively upregulated in quiescent populations, including those encod-
ing membrane components such as amastins and GP63 or processes like autophagy. The metabo-
lome followed a similar trend of overall downregulation albeit to a lesser magnitude than the tran-
scriptome. Noteworthy, among the commonly upregulated metabolites were those involved in car-
bon sources as an alternative to glucose. This first integrated two omics layers affords novel insights
into cell regulation and shows commonly modulated features across stimuli and stages.
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1. Introduction

Leishmania spp. are parasitic protozoa with two overarching life-cycle stages. Extra-
cellular flagellated promastigotes reside in the gut of the sandfly vector, where the prolif-
erative procyclics differentiate into the infective but non-proliferative metacyclics that are
transmitted during the sandfly bite [1]. Within the mammalian host, the metacyclics enter
macrophages where they differentiate into ovoid aflagellated amastigotes adapted to live
in the parasitophorous vacuole of phagocytic cells. Within this inhospitable environment,
Leishmania amastigotes activate mechanisms that allow them to survive and proliferate
and propagate the infection [2]. However, in addition to entering a slowly proliferating
phase characterised by a stringent metabolism [3], subpopulations can enter a non-prolif-
erative quiescent state [4-6]. Understanding of quiescence in Leishmania is of great signifi-
cance given the roles the process probably plays in chronic and asymptomatic infections
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and the recrudescence of the disease after therapy without associated development of 47
drug resistance [7-10]. 48

Quiescence is a reversible condition in which a cell does not divide but retains the 49
potential to re-enter the replicative state [11]. Quiescent cells emerge spontaneously or at 50
enhanced rates in response to different stresses such as drug pressure, nutrient limitations, 51
or host immunity [12-16]. During quiescence, cells modulate their molecular processes 52
and metabolic pathways to save energy and shut-down metabolic pathways that may be 53
vulnerable to stress responses or provide products that can stimulate effective host im- 54
munity. [12, 17]. Biosynthesis of macromolecules is reduced but processes important for 55
survival such as carbon storage, autophagy, and host manipulation are activated [12, 17]. 56
In Leishmania, quiescence has been reported in three species: L. mexicana, L. major, and L. 57
braziliensis [4-6]. It has also been inferred in L. donovani [18]. In L. mexicana and L. 58
braziliensis quiescent amastigotes showed downregulated synthesis of ATP, ribosomal 59
components and proteins and alterations in membrane lipids [5, 6, 19]. These preliminary 60
reports allowed the development of negative biomarkers such as the expression of GFP 61
integrated into the ribosomal locus, which allows active cells to be distinguished from 62
quiescent ones in vitro and ex vivo [6]. However, in Leishmania, several key knowledge gaps 63
remain, including understanding whether quiescence can be induced by drug pressure, 64
how quiescence is maintained, and the degree to which quiescent cells derived through 65
different means may share molecular and metabolic traits in response to different envi- 66
ronmental insults. 67

Here we undertook a first integrated transcriptomic and metabolomic study of qui- 68
escence in two life stages of L. lainsoni (promastigotes and amastigotes), upon in vitro in- 69
duction by stationary phase or drug pressure. The integrations of two quiescence models 70
and two life stages allowed us to identify modulations independent of the environmental 71
insults and the parasite stage. These core changes in quiescent Leishmania parasites may 72
represent an essential set of traits that allow their survival. Moreover, these core changes 73
could also point to the molecular and metabolic landscape appearing in other forms of 74
quiescence and provide positive markers to track quiescence and targets to enable phar- 75

macological disruption of the process. 76

77
2. Results 78
2.1. PAT drug pressure and stationary phase as models of quiescence 79

In several microorganisms, a quiescent state can be induced by stressful conditions 80
such as drug pressure or changes associated with the stationary phase of the growth 81
curve, such as nutrient limitation and accumulation of waste products, including acidifi- 82
cation of the medium [13, 15]. Here we implemented these two distinct models in which 83
parasites become quiescent for the further molecular characterization of quiescence. The 84
advantage of integrating molecular and metabolic traits in two quiescence models is that 85
it discriminates changes inherent to a quiescent condition from changes related to the 86
stimuli. We chose Potassium antimonyl tartrate (PAT) because: i) it represents the active 87
form of a drug still used as first-line treatment in many endemic areas, and ii) there is 88
striking evidence of therapeutic failure without the development of drug resistance [10, 89
20]. L. (Viannia) lainsoni clone PER091 EGFP Cl1 was used as a model because it has been 90
adapted to grow axenically as amastigotes a feature that may be challenging for L. (V.) 91
species. To monitor proliferation, growth curves in the absence or presence of PAT were 92
monitored microscopically. Quiescence in viable cells was tracked by quantifying the 93
rEGFP expression: its expression is high in proliferative and metabolically active cellsand 94
substantially downregulated in non-proliferating cells with stringent metabolism [6]. 95

The growth curves showed that in the absence of PAT both promastigotes and 96
amastigotes had an exponential increment in cell density during the first two days of 97
growth in vitro, reaching a stationary phase by day 4 (Figure 1a). In both stages, a contin- 98
uous PAT exposure (1 pg/mL, ~10 fold IC50) had a negative effect in their proliferation, 99
causing a substantially decreased or arrested growth from day 1, with this repression 100
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Figure 1. Evaluation of stationary phase and drug pressure as models of quiescence. Four parameters with associated
downregulation in quiescent cells in addition to cell viability were evaluated. (a) Assessment of proliferation as indicated
by growth curve of promastigotes and amastigotes in absence (solid lines) and presence (dashed lines) of Potassium An-
timonyl tartrate (PAT). (b) rEGFP expression in proliferative (Log) and non-proliferative (Sta, Log_PAT) conditions. (c)
Quantification of the total RNA content per million cells. (d) Quantification of the mitochondrial membrane potential as
indicated by the fluorescence of Mitotracker. In figures b-d, the results represent the mean + SEM of three biological rep-
licates. The asterisks represent statistically significant differences after Tukey post hoc test; *p <0.05, **p <0.01, **p <0.001.
The asterisks in black and red represent statistically significant differences compared to promastigotes and amastigotes in
Log respectively. e, Confocal images of Leishmania cells under the evaluated conditions (after enrichment of viable cells
for condition Sta and Log_PAT ). The pictures show their morphology, size, and cell viability as indicated by their mem-
brane integrity and absence of cytoplasmatic staining with the non-permeable dye LIVE/DEAD™ Fixable Red Stain. The
maintenance of their nuclear and kinetoplast DNA is shown with DAPI staining. The sale bar represents 5 uM.

maintained over the following 5 days (two way ANOVA, Stage; p=0.15, PAT p=2.8 x
10-). Besides an apparent cytostatic effect, PAT was also cytotoxic, and cell viability was
~77.2 and ~47% after 2 days of exposure to 1 ug/mL of PAT in promastigotes and
amastigotes respectively. After enrichment for viable cells using density gradients, cell
viability rose to ~87 and ~90 % for promastigotes and amastigotes respectively (despite
several attempts, higher enrichments were not feasible). When cells were placed in a fresh
medium without PAT pressure, both Leishmania stages resumed their proliferative condi-
tion. The reversibility was also tested with Leishmania cells recovered from 9 pg /mL of
PAT pressure (~90 fold ICso), indicating that at least a fraction of the whole population
endures pharmacologically relevant concentrations of PAT. The regrown proliferative
population emerging after the release of the 9 ug /mL of PAT exposure retained high sus-
ceptibility to PAT (IC50 ~ 0.05 ug / mL), similar to the population without exposure to
drug pressure ruling out that the survival was due to a selected drug resistance mecha-
nism

For each life stage, the expression of rEGFP was monitored by flow cytometry in a
replicative condition represented by parasites harvested in the exponential phase of the
growth curve (Log, no drug pressure) and two non-proliferative conditions: parasites har-
vested in the stationary phase (Sta, no drug pressure) and parasites in the exponential
phase of the growth curve that have arrested their growth in response to PAT drug pres-
sure over 48 hrs (Log_PAT) (Figure 1b). In promastigotes the rEGFP expression dropped
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from 11.8 x 10° relative fluorescent units (RFUs) in Log to 1.0 x 10° (~ 8 %) and 1.4 x 10° 135
(~12%) in Sta and Log_PAT, respectively. In amastigotes the rEGFP expression decreased 136
from 5.9 x 10°in Log to 3.6 x 10% (61%) and 3.3 x 10° (56 %) in Sta and Log_PAT, respectively 137
(two-way ANOVA, Stage p=1.0 x 104, Condition p = 8.3 x 10%). The arrested growth and 138
the decreased levels of rEGFP expression indicated that both Leishmania stages in condi- 139
tions Sta and Log_PAT had adopted a quiescent state. 140

141
2.2. Evaluation of additional quiescence indicators: total RNA content and mitochondrial activity — 142

Quiescent cells downregulate their total RNA content and reduce mitochondrial activity = 143
[21, 22]. We also analysed these two parameters to monitor quiescence in conditions Sta 144
and Log_PAT post enrichment of viable cells. The total content of RNA dropped dramat- 145
ically in both conditions, as indicated by the fluorometric quantification of the isolated 146
RNA (Figure 1c). In promastigotes, the RNA content/ 10° cells dropped significantly from 147
~1010 ngin Log to 121 ng (~12 %) and 24 ng (~2.4 %) in Sta and Log_PAT, respectively.In 148
amastigotes, the RNA content/ 10¢ cells decreased from 563 ng in Log to 440 (78.6 %)and 149
314 (55.0 %) in Sta and Log_PAT respectively (two-way ANOVA, Stage p=2.1x10°¢, Con- 150
dition p = 6.9 x 10#%). In most eukaryotes, rRNAs are the most abundant component of 151
total RNA (up to 80 %). Gel electrophoresis of total RNA indicated that this is also the case 152
in Leishmania, and the rRNAs remained the most abundant RNAs in Sta and Log_PAT 153
cells (Figure S1). 154
Mitochondrial activity was evaluated by the MitoTracker RFU (Figure 1d). In pro- 155
mastigotes the signal dropped from 47.3 x10® RFU in Log to 3.6 x 103 (7.6 %) and 13.1x 156
10% (34.4 %) in Sta and Log_PAT respectively. In amastigotes the MitoTracker RFUs de- 157
creased from 26.1 x10° in Log to 12.4 x 103 (47.5 %) and 3.2 x 103 (12.1 %) in Sta and 158

Log_PAT respectively (two-way ANOVA, Stage p =<0.0001, Condition p <0.0001). Under 159
the evaluated quiescent conditions, viable cells did not demonstrate substantial changes 160
in their body size compared to the proliferative condition (Figure le). The following 161
experiments outline the transcriptomic and metabolic characterization of both quiescent 162
conditions compared to proliferative cells of each Leishmania life-cycle stage as non- 163

quiescent controls. An outline of the experimental setup and analysis is in Figure S2. 164
165
2.3. Evaluation of the mRNAs transcriptome size and global shift in the levels of mRNAs 166

The sum of all mRNA molecules per cell in this article will be referred to as transcriptome 167
size. While a global shift in the mRNA transcriptome refers to a change in the average 168
number of individual mRNA molecules per cell, which follows a similar trend across most 169
genomic locations in the whole genome. In Schizosaccharomyces pombe, quiescent cells 170
diminish their transcriptome size for RNA polymerase I transcribed rRNAs and RNA 171
polymerase II transcribed mRNAs, to 11 and 18 % the levels in replicative cells, 172
respectively [23]. Similarly, Leishmania quiescent amastigotes diminish their expression 173
and content of rRNAs [19], a finding also reported here in response to both stationary 174
phase and PAT pressure. In order to evaluate changes in the transcriptome size for 175
mRNAs, we performed bulk RNAseq coupled with ERCC spikes-in (these are a set of 176
external non-Leishmania RNAs that can be used to calculate a per-sample normalization 177
factor (NF), which corrects the inherent variation of the total RNA content/cell under 178
different conditions and the errors accumulated during the library preparation and 179
sequencing [24], Figure S3 a, b). This approach allows robust identification of changes in 180
transcriptome size and the identification of transcripts with altered abundance (number 181
of mRNAs per cell) when comparing different conditions [25]. The samples had a good 182
correlation between the expected and experimental fold changes for the ERCC spikes-in, 183
which is indicative of their good performance in our experimental setup (Figures. S3 ¢, d). 184
After normalization, principal component analysis (PCA) showed that most of the varia- 185
tion in the number of mRNAs per cell (PC1, 98%, PC2 1%) was explained by the 186

187
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Figure 2. mRNA transcriptome size and global down-shift during quiescence. a, Principal component analysis showing
that most of the variability in the abundance of the mRNAs can be explained by the proliferative condition of Leishmania
with quiescent cells induced by PAT drug pressure being the most dissimilar compared to proliferative cells in both pro-
mastigotes and amastigotes. b, Sum of normalized mRNAs in each condition and stage of Leishmania showing the dimin-
ished transcriptome size in quiescent cells compared to proliferative cells. The bars represent the mean + SE of three bio-
logical replicates. The asterisks in black color represent statistically significant differences after the Tukey post hoc test; *
indicates p <0.05, indicates *** p <0.01. Black and red colors represent statistically significant differences in quiescent cells
compared to promastigotes and amastigotes in Log, respectively. ¢, Volcano plots showing the magnitude of change in
the relative abundance of each mRNA in quiescent cells compared to proliferative cells. The plots show the global down-
shift of the transcriptome in quiescent cells induced by both PAT or stationary phase in both Leishmania stages as most
of the mRNAs have substantially decreased levels and are located in the top left side of the plots. On each plot, the differ-
ence is represented by the log2 fold change between two conditions, and its significance is represented by the negative
logarithm of the p value. The two vertical lines in each plot represent the log2 fold change cutoff of 1 and -1 for increased
or decreased levels, respectively. The horizontal line represents a 0.05 cutoff for the p value. d, Venn diagram representing
the number of mRNAs with decreased or increased abundance in quiescent cells compared to proliferative cells. e, Pearson
correlation between the abundance of mRNAs in quiescent conditions compared to proliferating cells. The color indicates
the number of mRNAs within a particular bin.

experimental condition: parasites in Log_PAT are most dissimilar to parasites in Log (for
both promastigotes and amastigotes (Figure 2a)). The stage or condition of the parasite
did not have an effect in the number of genes being expressed with an average of 8,014
out of the 8295 annotated CDS in the reference genome being detected (two-way
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ANOVA, Stage p = 0.96, Condition p = 0.15). Of those genes not detected 34% were anno- 210
tated to encode putative proteins. The results also indicated that the mRNA transcriptome 211
size undergoes a dramatic decrease in quiescent cells compared to proliferative cells (Fig- 212
ure 2b). In promastigotes the sum of normalized mRNAs dropped from 1.8 x 108 in Log 213
to 2.1 x 107 (~11.7 %) and 7.2 x 10° (~0.4 %) in Sta and Log_PAT respectively. In 214
amastigotes the sum of normalized mRNAs decreased from 1.4 x 108 in Log to 6.1 x 107 215
(~45.1 %) and 7.9 x 10¢ (~5.8 %) in Sta and Log_PAT respectively (two-way ANOVA, 216
Stage p = 0.96, Condition p < 0.0001). We then evaluated the impact of diminished mRNA 217
transcriptome size in the levels of each mRNA encoded in the genome by comparing qui- 218
escent cells against proliferating cells. On each dichotomic comparison, the vast majority = 219
of mRNAs had decreased levels indicating the occurrence of a global down-shift in the 220
mRNA transcriptome of quiescent cells (Figure 2¢c, Table S1). The abundance of 1,509 tran- 221
scripts (18.2 % of all transcripts) was decreased in all quiescent cells across conditions and 222
stages when compared to proliferative cells (cutoff log2 FC <-1 and BH adjusted p value 223
<0.05). The number of decreased transcripts was 7,847 (94.6 %) if only the overlap between 224
quiescent promastigotes (Sta and Log_PAT) and amastigotes under PAT pressure were 225
considered (Figure 2d). Quiescent cells across stages and conditions had a negligible num- 226
ber of mRNAs with increased abundance compared to proliferative cells, and none of 227
them were shared across conditions (Figure 2d). We also evaluated if the impact of the 228
transcriptome down-shift was uniform or differential at the level of individual mRNAs 229
by calculating the correlation between the mRNA transcriptome of proliferative and qui- 230
escent cells. A very similar effect over most mRNAs in the transcriptome was indicated 231
by the high pairwise correlations between quiescent vs. proliferative cells (r values ranged 232
from 0.86 in Pro Log_PAT to 0.97 in Pro Sta, Figure 2 c-d). The results here show that 233
during quiescence, Leishmania has a diminished transcriptome size and global down-shift. 234

235
2.4. Evaluation of the transcriptome composition 236

Although much lower, the absolute abundance of most of the mRNAs in non-prolif- 237
erative cells was generally highly correlated with the abundance of mRNAs in prolifera- 238
tive cells. However, the abundance of some specific mRNAs did not follow the global 239
trend, indicating that the proportion of individual mRNAs relative to their transcriptome 240
(which we will refer to as transcriptome composition) remained unchanged for most of 241
the mRNAs but with changes for those not following the global trend. To evaluate the 242
transcriptome composition, the transcripts per million of reads (TPM) of each mRNA in 243
all conditions and each stage of the parasite were calculated. When using TPM, the sum 244
of all TPM values in each sample is the same. This makes it easier to calculate the propor- 245
tion of each mRNA in relationships to its own transcriptome and allows further compar- 246
ison between samples [26]. The PCA showed that most of the variability in the transcrip- 247
tome composition was explained by the biological condition of the parasite. For condi- 248
tions Log and Sta, both promastigotes and amastigotes clustered very closely. For the 249
Log_PAT condition, each stage may be considered as an independent cluster (Figure 3a). 250
To identify the differentially modulated transcripts, we compared the TPM values of qui- 251
escent promastigotes and amastigotes against their respective proliferative condition (Ta- 252
ble S2a). The number of transcripts with modulated TPMs ranged from 800 (~ 9.6 % of all 253
transcripts) in stationary promastigotes to 2,239 (~ 26.9 %) in amastigotes under PAT pres- 254
sure. The number of transcripts and their directional modulation in each stage and condi- 255
tion are shown in Figure 3b. When compared to proliferative cells, both Leishmania stages 256
under PAT drug pressure revealed a higher number of modulated transcripts (Pro=1,703, 257
Ama=2,239) than corresponding stationary cells do (Pro=800, Ama=1,488), with the larg- 258
est fraction showing downregulated TPMs (Pro=1,383, Ama= 1,799). This indicates that 259
both stages under PAT drug pressure have additional suppression for a set of transcripts 260
beyond the overall transcriptome down-shift. The further data integration identified a to- 261
tal of 135 mRNAs (down=87, up=48) that were modulated and shared across quiescent 262
conditions and stages of Leishmania (Figure 3.c). 263
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Figure 3. Transcriptome composition and its modulations during quiescence. a, Principal component analysis shows qui- 265
escent cells induced by stationary phase and PAT pressure differ in their transcriptome composition compared to prolif- 266
erating cells in both promastigotes and amastigotes. b, Summary of mRNAs modulated in each Leishmania stage and 267
condition. ¢, Venn Diagrams showing the number of mRNAS with modulated TPMs in the conditions Sta and Log_PAT 268
compared to Log in each Leishmania stage. Pro, promastigotes; Ama, Amastigotes. 269

These transcripts are candidates for involvement in quiescence irrespective of Leishmania 270
developmental stage or the stimulus triggering the phenotype (Figure S4). Additional in- 271
formation about their abundance relative to other transcripts (TPM distribution) and 272
broad genomic location is shown in Figure S5. Besides the core set of mRNAs modulated 273
in all quiescent conditions, the set of mRNAs modulated in both promastigotes and 274
amastigotes but specific to the stationary phase (conditions STA: down=0, up=130) or the 275
drug pressure (Log_PAT: down=711, up=50) are shown in (Table S2 b). These sets of mod- 276
ulated transcripts are likely essential and involved in the mechanisms that allow quiescent 277
cells to adapt to the special needs encountered during these different stressful environ- 278

ments. 279
280
2.5. GO and GSEA analysis 281

To evaluate which biological features are altered during quiescence, we performed 282
functional enrichment analysis, also known as overrepresentation analysis (ORA). The 283
ORA and its network analysis for the core set of mRNAs modulated in all quiescent con- 284
ditions and stages revealed several biological changes as indicated by many significantly 285
enriched gene ontology (GO) terms corresponding to several cell processes/components 286
(Table S2b, Figure 4). Among the downregulated biological processes in quiescent cells 287
were mitochondrial transmembrane transport and ATP biosynthesis in the mitochondria, 288
including the cellular components electron carrier cytochrome c and the complex cyto- 289
chrome c reductase as well as several subunits of the ATP synthase complex, being among 290
the most representant transcripts: ATP synthase F1, ATP synthase alpha, ATP synthase 291
beta and ATP synthase gamma. Within the nucleus, the process of regulation of DNA 292
replication and components of the DNA packaging complex were also downregulated in 293
quiescent cells. Within the category DNA replication, the transcript encodes the prolifer- 294
ative cell nuclear antigen (PCNA), an essential positive regulator of nuclear DNA replica- 295
tion [27, 28]. For DNA packaging, the transcripts encoded copies of histones H2A and 29
histones H2B. The translation process is inferred to be diminished since transcripts encod- 297
ing three elongation factors: elongation factor 1-beta, elongation factor 1-gamma and elon- 298
gation factor 2 were all downregulated. For the list of genes with upregulated TPM values, = 299
the processes of autophagy and amino acid catabolism via the Ehrlich pathway were en- 300
riched (Figure 4). Two copies of the gene ATG8/AUT7/APG8/PAZ2 encoding an ubiqui- 301
tin-like protein that has a plethora of roles during the biogenesis of autophagosomes from 302
early stages until the final event of fusion with lysosomes were upregulated [29]. In the 303
process of catabolism of amino acids via the Ehrlich pathway the gene encoding a putative 304
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Figure 4. ORA and GSEA analysis. a, ORA and network analysis for the core set of mMRNAs modulated and shared among 306
all quiescent conditions. ORA indicates many biosynthetic processes are downregulated while few processes related to 307
“cell host modulation” and the recycling of nutrients are upregulated. The color of the bubble from yellow to orange indi- 308
cates more significant adjusted p values (cutoff adj p <0.05). b, GSEA shows the major set of mRNAs upregulated and 309
shared among all quiescent cells correspond to: leishmanolysin (GP63), amastin and amastin-like proteins, and autophagy- 310
related genes. On the contrary, among other processes, the biosynthesis of several amino acids and biosynthesis of ami- 311
noacyl tRNA are downregulated in all quiescent cells regardless of the stimuli. The absolute value in each cell of the 312
heatmap measures the magnitude of gene-set changes in log?2 scale, and its sign indicates the direction of the change. The 313
modulation of a particular set was considered up in all (red) or down in all (blue) if the p values were statistically signifi- 314
cant in all conditions. While it was considered unchanged (grey) if the p value in all conditions were non-significant. 315

Additional details are in Table S2 c-d 316
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alpha keto acid decarboxylase was upregulated. This pathway is a source of alpha keto 317
acids such as pyruvate during conditions of nutritional starvation [30]. The biological pro- 318
cess, “modulation of process of other organism”, represented by genes encoding a major 319
metalloendopeptidase called Leishmanolysin/GP63 was also upregulated. It should be 320
highlighted that among the core set of upregulated transcripts, a high proportion had 321
membrane localization (n=12, ~25%), including 4 copies for a “surface antigen-like pro- 322
tein”. Another considerable proportion of transcripts were encoding hypothetical proteins 323
(n=19, ~40 %). Therefore, it is not yet possible to infer a biological function. 324
To complement the GO enrichment analysis, we also performed gene set enrichment anal- 325
ysis (GSEA), which does not analyse separate lists of upregulated or downregulated genes 326
according to an pre- established cutoff, instead analysing all genes belonging to a func- 327
tional category. GSEA showed similar results to ORA, indicating that many biosynthetic =~ 328
processes are significantly diminished in all quiescent conditions and stages and ex- 329
tended the results to the metabolism of amino acids such as alanine, aspartate, gluta- 330
mate, arginine, proline, tryptophan, cysteine, and methionine. Among others, processes 331
such as glycolysis/ gluconeogenesis, pyruvate metabolism, citric acid cycle (TCA cycle), 332
fatty acid metabolism, and aminoacyl-tRNA biosynthesis were all down-regulated (Fig- 333
ure 4b, Table S2 d-e). Regarding the upregulated categories, GSEA confirmed that in ad- 334
dition to autophagy and GP63 the expression of genes encoding amastins and amastin- 335
like surface proteins were upregulated in all quiescent conditions (Figure 4b, Table S2d). 336
In a stringent biological state of overall downregulation, unchanged pathways or pro- 337
cesses across conditions may indicate they are essential for quiescent and proliferative 338
cells. Among these were: inositol phosphate metabolism, N glycan biosynthesis, ubiqui- 339

tin-mediated proteolysis, and homologous recombination. 340
341
2.5. Metabolomics 342

Metabolite identification and relative quantification was performed on the same cell sam- 343
ples as those used for transcriptomics, with an untargeted LC-MS approach. A total of 344
689 metabolites were putatively annotated. Quiescent cells had a diminished metabolome 345
compared to proliferative cells, as indicated by the decrease in the sum of the total ion 346
content (TIC) per equivalent amount of cells. In promastigotes the total signal decreased 347
from 2.28 x10" in Log to 1.02 x10%° (~44.8 %) and 0.99 x101° (43.6%) in Sta and Log_PAT 348
respectively. In amastigotes the total signal decreased from 1.86 x10' to 0.63 x10%° (~33.9 349
%) and 1.09 x10' (58.8 % ) in Sta and Log_PAT respectively. The main factor for this de- 350
crease was the condition of the parasite (two-way ANOVA, Stage p= 0.068, Condition p 351
<0.0001) (Fig 5. a). We then evaluated the metabolome with two approaches (i) changesin 352
abundance of metabolites per equivalent number of cells (cell normalized data) and (ii) 353
changes in the metabolome composition by normalizing the intensity of each metabolite 354
to the TIC of its respective sample (IPT normalized data) (Table S3a, b). Both analyses gave 355
complementary insights into metabolism during quiescence. The cell normalized data in- 356
dicated quiescent cells have multiple metabolites of decreased abundance compared to 357
proliferative cells (up to 166 in Ama Sta). In contrast, fewer metabolites had increased 358
abundance (up to 44 in Ama Sta) (Figure 5b). However, when normalizing to the TIC, the 359
metabolome composition revealed that quiescent cells have up to 56 metabolites (in Ama 360
Sta) with decreased IPT levels and up to 277 metabolites (also in Ama Sta) withincreased 361
IPT levels (Figure 5b). A principal component analysis (PCA) showed that variability in 362
metabolite abundance and composition were explained in large part by both the parasite 363
stage separated by the PC1 (Cell 38 %, IPT, 42 %) and the parasite conditions separated by 364
the PC2 (Cell 23%, IPT 22%) (Figure 5c). As indicated by the PCAs, many changes in me- 365
tabolite levels and the metabolome composition in response to stressful stimuli were as- 366
sociated with the developmental stage of Leishmania. Therefore, the number of commonly 367
modulated metabolites was higher between Sta and Log_PAT within the same stage than 368
between Sta (or Log_PAT ) in different Leishmania stages. However, a core set of 369

370
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Figure 5. Quiescent cells have a distinct metabolic profile when compared to proliferating cells. The figures represent 689
putatively annotated metabolites. a) In all quiescent cells of each Leishmania stage, there is an overall downregulation in
the levels of metabolites (either in condition Sta or Log_PAT) as indicated by the decrease in the sum of the peaks intensi-
ties of all annotated features constituting their metabolome. The asterisks in the top of each bar in black color represent
significant differences after Tukey’s test; * p <0.05, ** p <0.001. The asterisks in black and red represent differences in com-
parison to promastigotes and amastigotes in Log respectively. b) Summary of the number of modulated metabolites in
quiescent cells induced by condition Sta or Log_PAT in both promastigotes and amastigotes. The results after normaliz-
ing by equivalent amount of cells or by IPT are shown (cutoff |log2 FC| >1 and BH adjusted p <0.05). ¢) Quiescent cells in
both stages have a distinct metabolic profile as indicated by the clear separation of quiescent and non quiescent cells by
the PCA 2. d-e) Venn Diagrams showing the relationship between the set of modulated metabolites (panel b) across the
different condition and stages of the Leishmania. Pro, promastigotes; Ama, amastigotes.

metabolites were modulated across all quiescent conditions regardless of the stage (abun-
dance: down=20, up= 8; composition: down=2, up=17; Figure 5d, e).Within the cell nor-
malized dataset, quiescent parasites of both stages had lower abundance of several me-
tabolites involved in the metabolism of amino acids (Figure 6). Nucleotide metabolism
was also modulated with all detected nucleotides being decreased, while the abundance
of some intermediary metabolites involved in the salvage or degradation of purines were
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Figure 6. Main metabolic categories having metabolites with modulated abundance in quiescent cells induced by station-
ary or drug pressure compared to proliferating cell. The numbers represent the log2 FC in comparison to condition Log
(cell normalized dataset). Only metabolites for which at least one of the conditions has an |log2 FC| >1 and a BH adjusted
p <0.05 are shown. Pro, promastigotes; Ama, amastigotes.

increased. The abundance of several carbohydrates involved in the pentose phosphate
pathway that leads to the synthesis of pentoses such as ribose 5-phosphate (precursor for
the synthesis of nucleotides) were also decreased. While the abundance of carbon sources
such as sucrose and 3 hexose-multimers (labelled as cellopentaose, cellohexaose and cel-
loheptaose) were identified as increasing in quiescent cells. These penta, hexa and hepta-
hexoses have previously been inferred [31] to derive from mannogen, a poly-mannose
carbohydrate reserve used by Leishmania [32]. Interestingly, while most structural phos-
pholipids were not modulated, a number of free fatty acyls and also sphingolipids were
increased in quiescent promastigotes, while no clear trend was observed in amastigotes.

When evaluating the composition of each metabolome (IPT normalized data), the trend
observed with the cell normalized data set was maintained for nucleotide and carbohy-
drate metabolism. For quiescent cells, the metabolites within these categories had overall
decreased IPT levels compared to proliferative cells. Additional information was also cap-
tured. For instance, uric acid that is the end product of purine degradation had increased
IPT levels in quiescent amastigotes indicating they may have an enhanced purine nucleo-
tides degradation (Figure S6). Within carbohydrates, potential carbon sources including
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mannose derivatives such as Mannose 6-phosphate and GDP-mannose had increased IPT 411
levels in all quiescent cells compared to proliferative cells. Finally, all quiescent conditions 412
showed that overall fatty acids had increased IPT levels (Figure S6). 413

3. Discussion 414

Quiescence in microorganisms describes a state in which cells alter their metabolic 415
status and cease to divide. Quiescence appears to be an ancient evolutionary trait that 416
enables cells to transiently lose susceptibility to environmental stresses that are harmful 417
to proliferating cells; nowadays this includes insusceptibility to therapeutic drugs. In this 418
study, we show that L. lainsoni can adopt a quiescent state in response to PAT drug pres- 419
sure as well as when reaching the stationary phase in cell culture. We went on to charac- 420
terise the transcriptomes and metabolomes of cells in both quiescent states and compared 421
them with the same data-types derived from proliferative cells, using both the pro- 422
mastigote and amastigote stages of the parasite. We show L. lainsoni quiescent cells have 423
multiple differences at both transcriptomic and metabolomic levels compared to their pro- 424
liferative counterparts. Moreover, we found that quiescent cells exhibit common traits that =~ 425
are independent of the stressful stimuli associated with their derivation, namely: a dimin- 426
ished transcriptome size with global down-shift, considerable compositional changes in 427
their mRNAs, and metabolic changes including a possible shift towards increased utilisa- 428
tion of the carbohydrate storage molecule mannogen. 429

At the transcriptomic level, we evaluated, for the first time in Leishmania, the differ- 430
ences in the transcriptome size in response to different conditions. The diminished tran- 431
scriptome size with global down-shift during quiescence under PAT to 0.4 % and 5.8% of 432
their levels of proliferative cells for promastigotes and amastigotes respectively suggesta 433
general mechanism of transcriptional repression. A similar decrease in transcriptome size 434
has been described in early quiescent cells of Schizosaccharomyces pombe after just 12 hrs of 435
nitrogen deprivation (down to 18 % compared to proliferative cells) [23]. In Saccharomyces 436
cerevisiae, fully differentiated quiescent cells revealed a massive 30-fold drop in their 437
mRNA levels [33, 34]. The global transcriptional down-shift we note in L. lainsoni is also 438
comparable to the decreased turnover of RNA reported during quiescence in L. mexicana 439
amastigotes [5]. Our results suggest a central control mechanism regulating the overall 440
transcription by RNA pol II at the level of initiation. We propose that during Leishmania 441
quiescence a factor (or factors) are positively modulated in response to stressful stimuli to 442
limit overall gene transcription. In Saccharomyces cerevisiae, histone deacetylation appears 443
to play such a role during quiescence by rendering regions of transcription initiation less 444
accessible to RNA pol II [34]. Of note is the fact that in Leishmania, like other Kinetoplastid =~ 445
protozoa, there is a widely held view that regulation of Pol II transcribed genes occurs at 446
a post-transcriptional level with differential stability of mRNA responsible for much of 447
the altered RNA levels throughout the life cycle. However, these cells do have histones 448
and a dynamic process of histone post-translational modification. For instance, L. donovani 449
predominantly shows euchromatin at transcription start regions in fast-growing pro- 450
mastigotes, but mostly heterochromatin in the slowly proliferating amastigotes, reflecting 451
a previously shown increase of histone synthesis in the latter stage [35]. Another mecha- 452
nism behind diminished RNA levels involves an alteration of the transcription machinery. 453
For instance, in quiescent myoblasts, RNA pol II has a cytoplasmatic rather than nuclear 454
localization [36]. Roles for these processes in the diminished transcriptome size associated =~ 455
with quiescence in Leishmania will be a topic of fruitful future research. A mechanism for 456
transcriptional repression in quiescent cells is an inter-kingdom feature compatible with 457
a power-saving mode program. Moreover, transcriptional repression protects the genetic 458
material of quiescent cells against intrinsic DNA damage that can occur as a result of tran- 459
scription, especially if in the presence of agents capable of damaging DNA such as those 460
that might occur during a transient exposure to noxious environmental agents [37, 38]. 461
Despite the substantially decreased transcriptome size, we found that the levels of most 462
transcripts in quiescent cells were closely correlated to those in proliferative cells (rup to 463
0.97), with most genes transcribed irrespective of the condition. This contrasts with yeast 464
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quiescent models in stationary phase cultures where up to 10% of all genes were tran- 465
scribed in quiescent cells only and 27 % of all genes were exclusive to proliferative cells 466
[39]. This may relate to the apparent absence of Pol II promoters in Leishmania. 467

Although the transcriptome size was diminished in all quiescent states measured 468
compared to proliferative cells, the transcriptome composition revealed particular 469
mRNAs whose proportion increased or decreased relative to others during quiescence. 470
Since the transcriptome has a moderate correlation with levels of protein expression [40, 471
41], comparative transcriptome composition can provide insights into the biological pro- 472
cesses associated with quiescence. We specifically sought changes found in quiescent cells 473
irrespective of the life cycle stage or stimulus, and using GO/GSEA analysis identified 474
three main functional categories as being upregulated: autophagy, proteolysis associated 475
with leishmanolysin (GP63), and amastin/amastin-like proteins. An active autophagy pro- 476
cess is a trait shared among quiescent eukaryotic cells that facilitates the non-specific ly- 477
sosomal degradation of cytoplasmic components (microautophagy) and the recycling of 478
unnecessary or damaged organelles, protein aggregates, lipid droplets, and lysosomes in =~ 479
a  cargo-specific = manner (macroautophagy) [42, 43]. We identified 480
ATG8/AUT7/APG8/PAZ?2 as the gene with the highest levels of TPM upregulation. ATG8 481
forms part of the LC3 conjugation system that is involved in the steps of pre-phagosome 482
elongation, cargo recognition, and recruitment in macroautophagy [44]. Interestingly, one 483
copy of the gene encoding an ‘FYVE zinc finger containing protein” was also upregulated 484
in all quiescent conditions. This protein forms part of the ATG12 conjugation system that 485
facilitates the incorporation of the LC3 complex into the growing phagophore [45]. The 486
enrichment of transcripts for ATG8 and FYVE suggests macroautophagy remains very 487
active during quiescence. It was previously shown in L. major promastigotes that the num- 488
ber of cells containing autophagosomes, as well as the average number of autophago- 489
somes per cell increases during the transition from logarithmic to stationary cultures. 490
Moreover, mutants with impaired autophagy were defective in their ability to differenti- 491
ate to non-proliferative metacyclic forms and less able to withstand starvation [46]. In 492
yeast, it has also been shown that autophagy is increased during transition to a quiescent 493
form [47]. During starvation, autophagy allows the recycling of crucial nutrients and un- 494
der drug pressure or other environmental stress, the process can remove unnecessary or- 495
ganelles [48]. Indeed, L. major metacyclics recovered from the nutritionally challenging 496
environment of stationary phase have a significantly reduced number of organelles com- 497
pared to proliferative cells [49], pointing to an active mechanism of macroautophagy for 498
their degradation. 499

Transcripts encoding GP63 were also upregulated across quiescent conditions. GP63 500
is a plasma membrane localized metalloprotease in both promastigotes and amastigotes 501
[49], with secondary localisations within the reticulum endoplasmic, flagellar pocket, and 502
with a secreted form known too [50, 51]. In promastigotes, GP63 increases during the tran- 503
sition to the stationary phase and is abundant in the infective non-proliferative metacy- 504
clics [52, 53]. Upon transmission to a mammalian host, GP63 plays a key role in the evasion 505
and inactivation of the host innate immune system [54]. In L. major, GP63 modulates the 506
normal course of phagocytosis by hampering the acidification of the phagolysosome [55], 507
and it also prevents the ROS burst by proteolytically impairing the assembly of the NOX2 508
complex [54]. In amastigotes, GP63 is critical for their survival [51], being abundant in the 509
flagellar pocket which is the major site of exocytosis [51]. Amastigotes secrete GP63 to 510
cleave host proteins such as fibronectin in the extracellular matrix that in turn decreases 511
the production of ROS by other parasite-infected macrophages [56]. Thus, GP63 upregu- 512
lation in quiescent cells could be related to its many mechanisms to protect against innate 513
immune responses to facilitate an effective infection and long-term survival within the 514
mammalian and insect hosts [57, 58]. 515

The other substantially upregulated gene set common to all quiescent forms corre- 516
sponded to the amastins, a family of genes encoding cell membrane localised glycopro- 517
teins which are related to claudins that associate with tight junctions in metazoa [59]. 518
Amastins were initially discovered in Leishmania amastigotes, however they are are also 519
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expressed in the insect form of trypanosomatids including the epimastigote of Trypano- 520
soma cruzi, and are upregulated in metacyclic promastigotes of L. infantun isolated from 521
the sand fly [60, 61]. Although the molecular function of amastins is unknown in L. 522
braziliensis their knockdown decrease the infectivity of promastigotes towards macro- 523
phages in vitro and in vivo [59]. Amastin surface like-proteins (ALSP), low molecular 524
weight proteins analogous to amastins, were also upregulated during quiescence. In L. 525
donovani amastigotes ALSPs have been proposed to function as triglyceride lipases gener- 526
ating glycerol and fatty acids that can be transported into the parasite to support energy 527
generation and the synthesis of specialised lipids [62]. Intriguingly, despite their name 528
ALSP have a cytoplasmatic localization near to the flagellar pocket and, as is true for other 529
lipases in Leishmania, they can be secreted. In Saccharomyces, quiescent cells under starva- 530
tion accumulate triacyl glycerides within lipid droplets that can be metabolized to fatty 531
acids by TAG lipases for the rapid resumption of growth following the replenishment of 532
nutrients [63]. It will be of interest to see if a similar role of ALSP can be uncovered in 533
Leishmania. 534

Metabolomics analysis also revealed quiescent cells had a decrease in the overall 535
abundance of low molecular weight metabolites being among the most representative nu- 536
cleotides and amino acids. These results are consistent with the GSEA that identified qui- 537
escent cells compared to those in proliferation downregulate transcripts involved in the 538
metabolism of nucleotides and many amino acids de novo and salvage. Similar downreg- 539
ulation in amino acids was already reported in L. brazileinsis and L. mexicana quiescent 540
amastigotes, a trait that matches their diminished protein synthesis and turnover [5, 19]. 541
The downregulation in the levels of amino acids under PAT pressure is remarkable as 542
they were still in an environment without nutrient limitations suggesting an active nega- 543
tive regulation instead of the lower levels resulting from a lack of carbon or nitrogen 544
sources for their synthesis or scarcity for their salvage. A closer inspection in pro- 545
mastigotes and amastigotes revealed that at a transcriptional level only quiescent cells 546
under PAT pressure downregulate four proteins related to the amino acid permease fam- 547
ily, which suggests that decreased amino acid intake could be an important mechanism 548
of regulation. A low level of amino acids is a hallmark of quiescence among bacteria and 549
in Mycobacterium, the addition of glutamine sensitises quiescent forms to rifampicin since 550
it alters their TCA cycle [64]. Against the overall down trend, quiescent cells across condi- 551
tions had a clear increase in polyhexoses inferred to be part of the mannogen complex in 552
these parasites, and a carbohydrate reserve already shown to be increased in stationary 553
promastigotes and quiescent amastigotes of L. mexicana [32, 65]. The genome annotation 554
of genes involved in the metabolism of mannose is not yet complete in Leishmania models. 555
Very recently L. mexicana knockout lines for an array of multicopy genes encoding 7 ‘man- 556
nosyltransferase/phosphorylases’ (MSPs) have proved them essential for the survival of 557
promastigotes under stress induced by elevated temperatures or acidification of the me- 558
dium as well as for the survival of amastigotes in vivo [65]. Although MSPs are not yet 559
annotated in the reference genome used in this study, we identified several modulated 560
transcripts involved in the metabolism of mannose in a condition-specific manner (Table 561
S2f). The gene GDP mannose 4-6 dehydratase (GMD) is of particular relevance because it 562
was significantly upregulated in all quiescent cells across conditions (although only more 563
than 2 fold in stationary promastigotes and amastigotes). GMD participates in the conver- 564
sion of GDP-mannose to GDP-fucose, a metabolite that has been found to be essential for 565
the survival of L. major [66]. As GDP-fucose is a source of sugar for glycosylation, the 566
availability of mannose may be relevant not only as an alternative source of energy but 567
also as a donor for the synthesis of glycosylated proteins. In Trypanosoma brucei a condi- 568
tional null mutant for GMD has shown GMD is essential for the long term survival of both 569
the procyclic and bloodstream forms [67]. Quiescent cells also had a trend of increased 570
levels of free fatty acids despite the downregulation of transcripts associated with the fatty 571
acid biosynthesis across all quiescent conditions. This is not all surprising as Leishmania 572
can switch from de novo synthesis to salvage from the host (or the medium in vitro) for the 573
maintenance of their pool of fatty acids and lipids [68]. Moreover, the potential of a link 574
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between ALSP and the levels of fatty acids is another possible association between our 575
transcriptomics and metabolomics findings that requires further exploration. 576

Our study shows common traits of Leishmania quiescent cells that contribute to the 577
understanding of the maintenance of quiescence at molecular and metaboliclevels regard- 578
less of the stimuli inducing this phenotype. We show for the first time quiescence can be 579
induced in response to antimonial drug pressure. This will have a big impact in the field 580
of drug development as new therapies should prove to be effective against the resilient 581
quiescent forms. Considering the limited resources for drug development we recommend 582
that drug targets with evidence of being essential for proliferative and quiescent forms 583
should be ranked first. Combination therapies between existing drugs and a metabolite 584
causing a metabolic unbalance in quiescent subpopulations like in the case of glutamine 585
plus rifampicin for Mycobacterium could be also tested for Leishmania. It will also be of 586
interest to investigate if the capability to become quiescent in response to drug pressure 587
varies among clinical isolates and if quiescent features could be associated with therapeu- 588

tic failure. 589
4. Materials and Methods 590
4.1. Leishmania clinical isolate and cell culture 591

The clinical isolate MHOM/PE/04/PER091 (provided by the Institute of Tropical 592
Medicine Alexander von Humboldt) was used to generate the transgenic clone 593
MHOM/PE/04/PER091 EGFP CI1 on which all the further experimental work was per- 594
formed. Promastigotes were maintained in complete M199 (M199 medium at pH 7.2 sup- 595
plemented with 20% fetal bovine serum, hemin 5 mg/L, 50 pg/mL of hygromycin Gold, 5%
100 units/mL of penicillin and 100 pg/mL of streptomycin) at 26 °C with passages done 597
twice per week. To obtain axenic amastigotes, 1 mL of stationary promastigotes was cen- 598
trifuged (1500 g, 5 min) and the pellet was re-suspended in 5 mL of complete MAA (M199 599
at pH 5.5, supplemented with 20% fetal bovine serum, glucose 2.5 g/L, 5 g of tryptic soy 600
broth, hemin 5 mg/L, 25 ug/mL of hygromycin Gold, 100 units/mL of penicillin and 100 601
ug/mL of streptomycin) and incubated at 34 °C. Morphological amastigogenesis was ob- 602
served at day 3 and the strain was maintained indefinitely as amastigotes with passages 603
done twice per week. Samples for experimental analysis were prepared in complete M199 604
and MAA but without hygromycin. For the preparation of parasites under drug pressure, 605
an equal volume of exponentially growing parasites were mixed with complete M199 or 606
MAA containing 2 ug/mL of potassium antimonyl tartrate trihydrate (PAT) (sigma Al- 607
drich 383376). The final concentration represented ~10 x the PAT IC50 in promastigotes as 608
measured by the resazurin test. 609

4.2. Development of an EGFP clonal line. 610

Enhanced GFP (EGFP) was integrated within the 18S ribosomal DNA locus with the 611
use of the pLEXSY-neo2 system (Jena Bioscience) as previously reported elsewhere [6, 69, 612
70]. A clonal line was obtained from the transgenic rEGFP parasites with the ‘micro-drop” 613
method [6]. 614

4.3. Promastigotes and amastigotes enrichment with Ficoll and Percoll gradients. 615

Leishmania cells with good viability were enriched with Ficoll and Percoll gradients 616
[71]. Briefly, promastigotes in stationary phase or after 48 hrs of PAT pressure were har- 617
vested and centrifuged at 2000 g for 5 min. The pellet was resuspended in 4 mL of non- 618
supplemented M199. The suspension of cells were added as the last layer of a Ficoll gra- 619
dient (Ficoll Type 400) prepared in 15 mL tubes containing 2 mL of Ficoll 20% at the bot- 620
tom and Ficoll 10 % on top. Gradients were centrifuged at 1300 g for 15 min at RT. After 621
centrifugation, the fraction of Ficoll 10% was recovered and washed with 10 mL of cold 622
PBS. After centrifugation at 2500 g for 5 min the pellet was resuspended in 1 mL of cold 623
PBS. Cell numbers per mL were calculated and aliquots for both RN Aseq (2 x 10 “cells) or 624
metabolomics (4 x 10 "cells) were prepared. The pellets for RNAseq were stored at -80 °C 625
while samples for metabolomics were processed immediately after harvesting. An extra 626
aliquot of each sample was taken for monitoring of EGFP expression and cell viability. 627
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Amastigotes in stationary phase or after 48 hrs of PAT pressure were harvested and cen- 628
trifuged at 2000 g for 5 min. Viable amastigotes in stationary phase or under drug pressure 629
were enriched with a Percoll gradient. Briefly, cells were harvested and resuspended in5 630
mL of M199. The cellular clusters were disrupted by passing the medium through a26 G = 631
needle over 3 times. The suspension was centrifuged at 2000 g for 5 min and the pellet 632
was eluted in 6 ml of Percoll 45 %. The gradient was formed by placing 1.5 mL of Percoll 633
70 % at the bottom of a 15 mL tube, overlayed with the suspension of cells in Percol 45 % 634
and a final gradient of Percoll 25% on top. The gradient was centrifuged at 2300 g for 45 635
min at 4 °C. The fraction of Percoll 45 % and the intersection with Percoll 70 % was recov- 636
ered and washed with 10 mL of cold PBS. After centrifugation, the pellet was resuspended 637
in 1 mL of cold PBS. Counting and aliquots were prepare as in promastigotes. 638

4.4. Monitoring rEGFP expression and cell viability by flow cytometry 639

rEGFP expression and cell viability at single cell level were monitored by flow cy- 640
tometry. Briefly, EGFP expression was quantified as an indicator of quiescence while the 641
cell viability was evaluated by using the NucRed dead 647 (Thermo fisher scientific) for 642
the staining of dead cells and Vybrant Dye Cycle violet (Thermo fisher scientific) for the 643
staining of cells with nucleus and kinetoplast. The samples were analysed with a cali- 644
brated flow cytometer BD FACS VerseTM in the medium flow rate mode. A wild-type 645
(non rEGFP) line and a non-stained sample were included in each experiment as negative 646
controls. In order to compare the relative fluorescence units (RFU) among samples the 647
acquisitions were made with the same settings during all the experiments. The FCS files 648
were analyzed with the FCS 5 express Plus research edition. Gates were created as de- 649
scribed elsewhere [6], with an additional step where a gate for cells negative for NucRed 650
but positive for Vybrant Dye cycle violet (Vybrant DC) was created. The levels of rEGFP 651
expression were evaluated in the populations of viable cells being NucRed - and Vybrant 652
DC-. 653

4.5. RNA and library preparation 654

An amount of 2 x 107 parasites per condition and stage were harvested, and the total 655
RNA was isolated with the RNeasy Micro Kit (Qiagen). The RNA was eluted in a total 656
volume of 22 pL and quantified with the Qubit™ RNA BR Assay Kit. The integrity of the 657
RNA was evaluated by electrophoretic separation with the RNA ScreenTape system (Ag- 658
ilent). For absolute normalization (to correct for the differences in total RNA content per 659
cell across conditions), samples were divided into two groups and mixed with 1 pl (pre 660
eluted 1:500 in H20) of one of two predefined mixtures of external RNA controls for which 661
their identity and fold change when comparing Mix1/Mix2 are known (ERCC ExFold 662
RNA Spike-In Mixes). Strand-Specific RNA-Seq service was provided by Genewiz where 663
up to 250 ng of RNA was used to prepare the library with a polyA selection and the NEB- 664
next ultra II directional RNA library preparation kit. The library was then sequenced us- 665
ing Illumina NovaSeq 2 x 150 pb sequencing configuration. 666

4.6. RNAseq data analysis 667

Fastq files were analysed using Chipster server. Briefly, The reads were mappedtoa 668
combined genome containing the reference nuclear and kinetoplast (maxicircle) genome 669
of L. braziliensis ( MHOM/BR/75/M2904 ) reported by Gonzales et al 2018 [72] and the 670
ERCC spikes-in using the BWA aligner mem command with default parameters. The 671
aligned reads were counted with HTSeq using the htseq-count command considering the 672
features ID from all the CDS in the kinetoplast maxicircle (18), nuclear genome (8277), and 673
ERCC spikes-in (92). After evaluating the transcriptome coverage, that ranged between 674
~19 X in Ama Log_PAT to ~65 X in Ama Log (Supplementary Table S1b), the raw 675
counts table was processed with two approaches. 676
Firstly, relative quantification representing differences in the number of molecules of each 677
transcript per cell were calculated. For this purpose, the raw counts table was normalized 678
using the counts coming from the external ERCC spikes-in controls. This step was done 679
independently for all samples having the same ERCC Spikes-in mixture (Mix 1 or Mix2). 680
Briefly, for each spike a positive detection across samples and a cutoff of minimum 5 reads 681
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per sample were used as parameters to filter out spikes with low and likely random num- 682
ber of reads. Subsequently, the per-sample normalization factor was obtained with the 683

following formula: 684
NFz=}( read count of spike i in sample Z / median read count of spike i over all samples) 685
/n. Where n represents the number of spikes passing the prefiltering. 686

The normalized count were then analysed with the DESeq?2 package. The size factors were 687
calculated using the ERCC spikes-in belonging to the group B (spikes with expected log2 688
FC equal to 0 across samples) and the formula for the negative binomial model included 689
the condition and stage of the parasite as explanatory variables including also an interac- 690
tion term for both factors. Differences between dichotomic comparisons were considered 691
significant when Log 2 FC was higher than 1 or lower than -1 with a Benjamini-Hochberg 692
adjusted p value lower than 0.05. The VennDiagram package was used to generated plots 693
that show the interrelationship of modulated genes across conditions. 694
Secondly, we evaluated the transcriptome composition by performing relative quantifica- 695
tion representing the abundance of each transcript with respect to its own transcriptome. 696
For this purpose, the data was normalized with the TPM method (transcripts per million). 697
The following formula was used: TPM= (reads mapped to transcript/ transcript length) x 698
106/ )" (reads mapped to transcript/ transcript length). The data was then analysed with 699
the DESeq?2 package. Because the normalization was already done, the normalization fac- 700
tor we set to 1 during DEseq?2 calculations. The formula and criteria for significant differ- 701
ences were as described above. 702

4.7. Transcriptomics functional enrichment and network analysis 703

Gene ontology (GO) and Gene Set enrichment analysis were performed to identify 704
which functional categories were modulated in quiescent conditions compared to prolif- 705
erative cells. g:Profiler tools were used to map the list of genes with modulated TPM to 706
known gene ontology terms [73]. g:Profiler performs a cumulative hypergeometric test 707
and multiple testing correction (Benjamini-Hochberg FDR) to detect statistically signifi- 708
cantly enriched biological processes, pathways, regulatory motifs, and protein complexes. 709
The statistical domain scope was set to all known genes and the input data consisted of 710
independent lists of genes with either upregulated TPM (adjusted p <0.05, log2 FC>1) or 711
down regulated TPM (adjusted p < 0.05, log2 FC < -1). The summarization and network 712
analysis for the significant GO terms with an adjusted p < 0.05 were performed with Rev- 713
igo and Cytoscape [74, 75], respectively. The threshold for redundancy reduction was set 714
to small (0.5). Per each condition, GSEA was performed using GAGE version 2.42.0 and 715
the list of log2 FC of all genes [76]. Two independent One sample Z tests were performed, 716
one for upregulation and another for downregulation. A gene set was considered signifi- 717
cantly modulated if the global p value for the One sample Z test was lower than 0.05. Data 718
for individual tests across conditions were then integrated as follow: up or down in all if 719
the p values for a particular set across conditions were <0.05. Unchanged in all if the p = 720
values across conditions were > 0.05 and other for sets without significant change across 721
conditions. After integration, the changes for each set were visualized in a heatmap for- 722
mat. 723

4.8. Metabolomics 724

Per each condition, 4 biological replicates were prepared and an amount of 4 x 107 725
cells were harvested for metabolites extraction with a mixture of CHCl;/MeOH/H20 726
(1:3:1) as previously described (Berg et al., 2015). Samples were analysed with Liquid chro- 727
matography and mass spectrometry using an Orbitrap Exactive mass spectrometer 728
(Thermo Fisher) coupled to a 2.1mm ZIC-HILIC column at Glasgow Polyomics (Univer- 729
sity of Glasgow, Scotland). Two quality control samples were included: 1) Authentic 730
standard mixes containing in total 178 metabolites (76-516 Da) representing a wide array 731
of metabolic classes and pathways and 2) pooled sample of all extracts for which MS2 732
fragment analysis was also performed. The peaks were detected and annotated with 733
IDEOM [77]. Subsequently, features were visually verified and filtered out when they had 734
multiple peaks or a not well-defined shape. The feature with the highest average intensity 735
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across samples was kept when a putative metabolite had duplicated entries. The TIC was
calculated per sample as the sum of all annotated features. The clean data was analysed
with two methods of normalization. The first, used as reference the input of cells that was
equivalent in all conditions. Therefore, further process was not needed. The second
method adjusted the intensities of each feature by the TIC of its corresponding sample.
For the purpose of differentiation, we will refer to this method as IPT. After normalization,
all missing values were replaced by 1/5 of the minimum value across samples and trans-
formed to a logarithmic scale. The metabolomics package was used to perform the statis-
tical analysis and calculate the fold changes [78]. Briefly, within each stage and for each
metabolite, the mean of each quiescent condition was compared to the mean of the prolif-
erative condition using a paired T-Test. The Benjamini-Hochberg method was used to
control for the false discovery rate and calculate the adjusted p values. Metabolites
changes were considered to be significant if they had a |log2 FC| >1 and a BH adjusted p
value <0.05.

Supplementary Materials: The following are available online, Figure S1: Conditions Sta and Log_PAT
drop their total RNA content, Figure S2: Experimental outline for the transcriptomic analysis, Figure S3:
Normalization of samples with the use of ERCC spikes-in, Figure S4: Overview of the 135 genes with mod-
ulated TPM in all quiescent conditions, Figure 54: Quiescent cells have changes in the composition of their
metabolome when compared to proliferating cells, Table S1: Transcriptome ERCC spike in normalized, Table
S2; Transcriptome TPM normalized, Table S3: Metabolomics with Cell and IPT normalization.
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