

1 **Phage resistance accompanies reduced fitness of uropathogenic *E. coli* in the urinary  
2 environment**

3

4 Jacob J. Zulk<sup>1</sup>, Justin R. Clark<sup>1</sup>, Samantha Ottinger<sup>1</sup>, Mallory B. Ballard<sup>1</sup>, Marlyd E. Mejia<sup>1</sup>,  
5 Vicki Mercado-Evans<sup>1,2</sup>, Emmaline R. Heckmann<sup>1</sup>, Belkys C. Sanchez<sup>1</sup>, Barbara W. Trautner<sup>3,4</sup>,  
6 Anthony W. Maresso<sup>1#</sup>, Kathryn A. Patras<sup>1,5#</sup>

7

8 <sup>1</sup>Department of Molecular Virology and Microbiology, Baylor College of Medicine, Houston,  
9 TX, 77030

10 <sup>2</sup>Medical Scientist Training Program, Baylor College of Medicine, Houston, TX 77030

11 <sup>3</sup>Center for Innovations in Quality, Effectiveness, and Safety (IQuEST), Michael E. DeBakey  
12 Veterans Affairs Medical Center, Houston, Texas, 77030

13 <sup>4</sup>Section of Health Services Research, Department of Medicine, Baylor College of Medicine,  
14 Houston, Texas, 77030

15 <sup>5</sup>Alkek Center for Metagenomics and Microbiome Research, Baylor College of Medicine,  
16 Houston, TX, 77030

17

18 **#Corresponding authors:** Kathryn Patras, PhD, email: katy.patras@bcm.edu or Anthony  
19 Maresso, PhD, email: maresso@bcm.edu

20

21 **Abstract:** 222 words

22 **Importance:** 144 words

23 **Main text:** 4991 words

24 **ABSTRACT**

25 Urinary tract infections (UTIs) are among the most common infections treated worldwide each  
26 year and are primarily caused by uropathogenic *E. coli* (UPEC). Rising rates of antibiotic  
27 resistance among uropathogens have spurred consideration of alternative strategies such as  
28 bacteriophage (phage) therapy; however, phage-bacterial interactions within the urinary  
29 environment are poorly defined. Here, we assess the activity of two phages, HP3 and ES17,  
30 against clinical UPEC isolates using *in vitro* and *in vivo* models of UTI. In both bacteriologic  
31 medium and pooled human urine, we identified phage resistance arising within the first 6-8 hours  
32 of coincubation. Whole genome sequencing revealed that UPEC resistant to HP3 and ES17  
33 harbored mutations in genes involved in lipopolysaccharide (LPS) biosynthesis. These mutations  
34 coincided with several *in vitro* phenotypes, including alterations to adherence to and invasion of  
35 human bladder epithelial HTB-9 cells, and increased biofilm formation. Interestingly, these  
36 phage-resistant UPEC demonstrated reduced growth in pooled human urine, which could be  
37 partially rescued by nutrient supplementation, and were more sensitive to several outer  
38 membrane targeting antibiotics than parental strains. Additionally, these phage-resistant UPEC  
39 were attenuated in a murine UTI model. In total, our findings suggest that while resistance to  
40 phages, such as LPS-targeted HP3 and ES17, may readily arise in the urinary environment,  
41 phage resistance is accompanied by fitness costs rendering UPEC more susceptible to host  
42 immunity or antibiotics.

43

44 **IMPORTANCE**

45 UTIs are one of the most common causes of outpatient antibiotic use, and rising antibiotic  
46 resistance threatens the ability to control these infections unless alternative treatments are

47 developed. Bacteriophage (phage) therapy is gaining renewed interest, however, much like  
48 antibiotics, bacteria can readily become resistant to phage. For successful UTI treatment, we  
49 must predict how bacteria will evade killing by phage and identify the downstream consequences  
50 of phage-resistant bacterial infections. In our current study, we found that while phage-resistant  
51 mutant bacteria quickly emerged, these mutations left bacteria less capable of growing in human  
52 urine and colonizing the murine bladder. These results suggest that phage therapy poses a viable  
53 UTI treatment if phage resistance confers fitness costs for the uropathogen. These results have  
54 implications for developing cocktails of phage with multiple different bacterial targets, each of  
55 which is only evaded at the cost of bacterial fitness.

56

## 57 **INTRODUCTION**

58 Urinary tract infections (UTIs) are extremely common bacterial infections, causing nearly 10  
59 million infections in the United States alone each year(1, 2). These infections disproportionately  
60 affect women, with approximately one half of women experiencing at least one UTI during their  
61 lifetime(3). Uropathogenic *E. coli* (UPEC) are the leading cause of UTIs worldwide, causing  
62 upwards of 75% of infections each year. UTIs are one of the most common causes of antibiotic  
63 prescription in the outpatient setting(4, 5). While antibiotics are the current standard of care, the  
64 rise of antibiotic resistance among UPEC isolates threatens existing treatments for UTIs(6, 7).  
65 Current technological and economic challenges limit the development of novel antibiotics, and  
66 antibiotic resistance develops rapidly once they are introduced(8-10). Because of these  
67 challenges, several new non-antibiotic alternatives to treat UPEC UTI have been proposed(11-  
68 17). One such alternative are bacteriophages (phages); viruses that use bacteria as their natural  
69 host.

70 Soon after their discovery in the early 20<sup>th</sup> century, phage therapy was applied to bacterial  
71 infections(18). In as early as 1928, phage therapy was applied to UTIs caused by UPEC(19).  
72 Despite this early interest, phage therapy was largely abandoned in favor of antibiotics starting in  
73 the mid-20<sup>th</sup> century. As the incidence of antibiotic resistant infections increases, phage therapy  
74 is seeing a resurgence in interest(20, 21). Phage therapy holds several promises as an avenue to  
75 treat antibiotic resistant infections. Bacteriophages outnumber bacteria by an estimated 10:1 ratio  
76 worldwide(22), and phages which target human pathogens are readily isolated from  
77 environmental and human sources(23-25). Additionally, phages replicate within the bacterial  
78 host, generating a source of new phage which is limited to the duration of the pathogen presence  
79 (self-dosing). Moreover, phage may have fewer adverse or non-targeted impacts on the host  
80 microbiota(26). To date, most applications of phage therapy for UTIs, including those caused by  
81 UPEC, have been confined to compassionate care use(27-31) and have shown generally  
82 favorable results. The wide variety of pathogens and phages tested, as well as variable routes and  
83 dosage regimens limits the ability to define the clinical efficacy of phage for UTI. Clinical trials  
84 testing dosing and administration methods for UTI phage therapy are currently in the early stages  
85 of development(32, 33). The only completed randomized clinical trial conducted on UPEC UTI  
86 phage therapy described results that were non-inferior to standard-of-care antibiotics but were  
87 also non-superior to the placebo treatment(34). Factors in the urinary environment or specifically  
88 with urinary pathogens such as UPEC may impact phage efficacy and understanding phage-  
89 bacterial interactions in the urinary tract is critical to drive development of UTI phage therapies.  
90  
91 A key challenge to development of phage therapy for UPEC UTI is the emergence of bacterial  
92 resistance towards phage killing. Similar to the situation in which bacteria are exposed to low

93 levels of antibiotics, bacteria can rapidly develop resistance to phage. Reported resistance  
94 mechanisms include bacterial blocking of phage adsorption through mutation of phage receptors,  
95 masking of phage targets, and producing competitive inhibitors(35, 36). Additionally, even after  
96 internalizing the phage, bacteria can resist phage infection by blocking DNA entry or degrading  
97 viral DNA once inside the cell(37). However, phage resistance has also been associated with  
98 reduction in bacterial fitness, particularly related to phage receptor modification(35, 38). These  
99 fitness costs include reduced bacterial virulence and increased susceptibility to  
100 antimicrobials(35, 39-42) or host immune clearance(43). This reduction in virulence associated  
101 with phage resistance suggests that “steering” bacteria towards this phenotype may be a viable  
102 approach for treating infections(43). Despite the current knowledge on phage resistance and its  
103 potential fitness costs, the effect of phage resistance by uropathogens in the urinary tract has not  
104 been assessed.

105  
106 In this study, we evaluate the mechanisms by which UPEC evade killing by two bacteriophages  
107 that are genetically quite distinct(24) and assess the hypothesis that bacterial resistance to phage  
108 may bring associated fitness costs to the bacteria. We have found that UPEC resistance to phage  
109 killing converges on development of mutations in lipopolysaccharide (LPS) biosynthesis  
110 pathway which has detrimental effects on UPEC growth, resistance to membrane targeting  
111 antibiotics, and reduced colonization of the urinary tract *in vivo*. Together, these findings provide  
112 insight into mechanisms and associated impacts of bacterial resistance to phage in the context of  
113 uropathogenesis, and suggest phage-dependent loss of LPS reduces UPEC fitness in the urinary  
114 tract. These findings provide a critical knowledge base upon which to further develop phage  
115 therapy for UTI.

116 **MATERIALS AND METHODS**

117 **Bacterial strains and mammalian cell lines**

118 Uropathogenic *E. coli* strains UTI89 (O18:K1:H7)(44), CFT073 (O6:K2:H1; ATCC  
119 #700928)(45), DS515, and DS566 were used in isolating bacteriophage resistant bacteria. DS515  
120 and DS566 were isolated from the urine of patients with neurogenic bladders from spinal cord  
121 injury at the Michael E. DeBakey VA Medical Center (Houston, TX). All bacterial strains were  
122 grown overnight in shaking culture at 37°C prior to experiments. Phages HP3 (accession:  
123 KY608967) and ES17 (accession: MN508615) were isolated from environmental sources and  
124 wastewater, respectively, and have been thoroughly described(24, 31). HTB-9 cells (ATCC  
125 #5367) are a human urinary bladder epithelium carcinoma cell line. Cells were grown in RPMI-  
126 1640 medium (Corning) containing 10% heat inactivated fetal bovine serum (FBS) at 37°C with  
127 5% CO<sub>2</sub> and were passaged every three to five days.

128

129 **Bacteriophage preparation**

130 Purified stocks of phages HP3 and ES17 were prepared as previously described(46), titered, and  
131 stored in phage buffer(35) at 4°C until use.

132

133 **Human urine pool preparation**

134 Urine samples were collected from six healthy male and female volunteers, 20-50 years-old,  
135 under approval of BCM Institutional Review Board (Protocol H-47537). Following collection,  
136 urine was warmed to 37°C and filtered using a 0.22μm filter before storage at 4°C.

137

138 **Isolation of phage-resistant bacteria**

139 Overnight bacterial cultures were diluted in fresh LB or pooled human urine and approximately  
140  $10^8$  CFU UPEC was added to 96-well microtiter plate wells and were challenged with  $10^7$  PFU  
141 phage (MOI = 0.1) in a total volume of 150 $\mu$ L. PBS without phage was used to assess non-  
142 infected bacterial growth. Optical density was measured every 15 minutes using a Tecan Infinite  
143 200 plate reader (Tecan i-control version 1.7). After 18 hours, phage-treated wells with bacterial  
144 growth were streaked onto soft agar overlay plates containing  $1 \times 10^8$  PFU of phage. This process  
145 was repeated once for colonies which grew on phage top agar to isolate clonal populations.  
146 Resistance to phage was confirmed by spot assay onto lawns of UPEC.

147

#### 148 **Purification and visualization of LPS**

149 UPEC LPS was isolated through hot aqueous-phenol extraction following previously described  
150 methods(47). Extracted LPS samples were run on 4-12% SDS-polyacrylamide gels with 15 $\mu$ L of  
151 extracted sample loaded into each well. Samples were run at 120V for 1.5h and were stained  
152 using the Pro-Q Emerald 300 Lipopolysaccharide Gel Stain Kit (Molecular Probes) following  
153 manufacturer directions. Gels were visualized utilizing the ProteinSimple AlphaImager HP  
154 system and associated software.

155

#### 156 **Generating bacterial growth curves**

157 Overnight cultures of UPEC were diluted 1:100 in either LB or pooled human urine and added to  
158 96-well microtiter plates. For phage challenge growth curves, bacteriophage preparations diluted  
159 in PBS were added at MOI of 0.1, 0.001, or 0.00001 to reach a final volume of 150 $\mu$ L. Control  
160 bacterial growth wells were treated with PBS alone and all conditions were tested in technical  
161 duplicate. Growth curves were generated using a Tecan Infinite 200 plate reader at 37°C

162 measuring OD<sub>600</sub> every 15 minutes for 18h. “Relative bacterial growth” was determined by  
163 calculating the percent OD<sub>600</sub> of a given well compared to the mean of untreated wells at that  
164 same timepoint. For growth assessments of phage-resistant bacterial growth, overnight cultures  
165 were diluted 1:100 in LB media or pooled human urine and added to 96-well microtiter plates in  
166 a total volume of 100 $\mu$ L. Plates were grown in a shaking BioTek Cytation 5 plate reader (Gen5  
167 software version 3.10) at 37°C measuring OD<sub>600</sub> every 15 minutes for 16h.

168

### 169 **Biofilm assays**

170 Bacterial biofilms were quantified as previously described with minor adaptations(48). Briefly,  
171 overnight cultures were diluted to OD<sub>600</sub> 0.1 in either LB, urine, or RPMI-1640 before adding  
172 200 $\mu$ L to 96-well tissue culture plates. Plates were incubated in stationary conditions at 37°C for  
173 24 h. The following day, OD<sub>600</sub> was measured to quantify overall bacterial growth. Non-adherent  
174 bacteria were removed, and washed three times with PBS. Biofilms were then dried at 55°C for  
175 1h. Afterwards, 200 $\mu$ L of 0.2% crystal violet solution was added to each well and plates were  
176 incubated at room temperature for 30 minutes. Crystal violet was removed, and plates were  
177 washed five times with PBS. To release crystal violet, 200 $\mu$ L of an 80:20 mixture of ethanol and  
178 acetone was added to each well. The released crystal violet solution (100  $\mu$ L) was transferred to  
179 a new 96-well plate and absorbance was measured at OD<sub>595</sub> on a BioTek Cytation 5.

180

### 181 **Adherence and invasion assays**

182 Adherence and invasion assays were performed using previously described methods(49, 50). The  
183 day prior to adherence and invasion assays, HTB-9 cells were passaged from a T-75 tissue  
184 culture flask into 24-well tissue culture plates and grown at 37°C with 5% CO<sub>2</sub> overnight.

185 Confluence was assessed the following day prior to experiment. The day of the experiment,  
186 overnight bacterial cultures were subcultured and allowed to reach mid-log phase ( $OD_{600} = 0.4 -$   
187 0.6). Thirty minutes prior to adding bacteria, HTB-9 cells were washed and 400 $\mu$ L of fresh  
188 RPMI-1640 media was added. Bacterial inoculum was prepared by diluting mid-log phase  
189 cultures 1:10 in PBS. 100 $\mu$ L of bacterial dilution was added to wells and plates were spun at 200  
190 x g for two minutes to facilitate bacterial-cell contact. Plates were then incubated at 37°C in a 5%  
191 CO<sub>2</sub> incubator. For adherence assays, after 30 minutes of incubation, cells were washed six times  
192 with PBS before the addition of 100 $\mu$ L of 0.025% Trypsin-EDTA. Cells were incubated at 37°C  
193 for seven minutes, after which time, 400 $\mu$ L of 0.025% Triton X-100 was added to each well to  
194 lyse HTB-9 cells. Wells were pipetted up and down 25 times before being diluted and plated to  
195 assess bacterial burden. For invasion assays, infected HTB-9 cells were incubated with bacteria  
196 for two hours, after which time, media was removed and replaced with 500 $\mu$ L of RPMI-1640  
197 media containing 50 $\mu$ g/mL gentamycin. The cells were again incubated for two hours before  
198 being washed and lysed as described for adherence assays.

199

## 200 **Minimum inhibitory concentration (MIC) assays**

201 MIC assays were conducted as described previously(51). Briefly, overnight cultures of bacteria  
202 were subcultured in LB media and allowed to reach mid-log phase ( $OD_{600} = 0.4 - 0.6$ ) before  
203 being pelleted and resuspended 1:10 in PBS. Antibiotic stocks were diluted in LB or urine and  
204 added to the top row of 96-well plates before being diluted twofold down the plate. Bacteria  
205 were added at a 1:10 dilution to each well before being incubated at 37°C overnight. The  
206 following day, absorbance at  $OD_{600}$  was measured using a BioTek Cytation 5 plate reader. To  
207 generate a greater dynamic range to assess bacterial growth, resazurin was added at 6.75  $\mu$ g/mL

208 to each well and plates were incubated for an additional three hours at 37°C in the dark.  
209 Following this incubation, fluorescence was measured using excitation/emission of 550/600 on a  
210 BioTek Cytation 5, and MIC was determined as the lowest antibiotic concentration at which 90%  
211 growth suppression occurred.

212

## 213 **Animals**

214 All animal experiments were approved by the Baylor College of Medicine (BCM) Institutional  
215 Animal Care and Use Committee (Protocol AN-8233) and were performed under accepted  
216 veterinary standards. Female C57BL/6J mice (Strain #000664) were purchased from Jackson  
217 Laboratories or from BCM vivarium stock and all experiments were conducted when mice were  
218 aged 8 to 12 weeks. Animals were allowed to eat and drink *ad libitum* throughout the duration of  
219 experiments.

220

## 221 **Murine UTI model experiments**

222 An established murine UTI model was used as previously described(50, 51). Mice were  
223 anesthetized with inhaled isoflurane and approximately  $1 \times 10^8$  CFU of bacteria were  
224 transurethrally instilled into the bladders of mice in 50 $\mu$ L liquid volume. Transurethral infection  
225 was achieved by inserting polyethylene tubing (inner dimension: 0.28 mm; outer dimension:  
226 0.61 mm) covering a 30-gauge hypodermic needle into the urethra of anesthetized mice. At 24  
227 hours post infection, bladders and kidneys were removed from each mouse and homogenized in  
228 tubes containing 1.0mm diameter zirconia/silica beads (Biospec Products, catalog no.  
229 11079110z) using a MagNA Lyser (Roche Diagnostics). Serial dilutions of homogenized organs  
230 were plated on LB agar and enumerated the following day.

231 **Sequencing and analysis of phage resistant UPEC**

232 Bacterial DNA was isolated from overnight bacterial cultures using the E.Z.N.A. bacterial DNA  
233 kit (Omega Bio-Tek) following manufacturer instructions. Sequencing was performed by  
234 Novogene using the Illumina Platform. Reads were trimmed to Q30 and a minimum length of 50  
235 bp using BBduk (version 38.84). Phage-resistant isolates were compared to wild-type strains  
236 using three comparison methods: (1) reads were independently assembled *de novo* using  
237 Geneious assembler in Geneious 2022.0.1. Contigs of resistant bacteria were then compared to  
238 parental contigs using progressiveMauve (version 2015-02-26) and disagreements were  
239 extracted(52); (2) Reads from phage-resistant bacteria were mapped to the wild-type bacteria  
240 from method 1, followed by variant analysis using Geneious 2022.0.1 variant finder; (3)  
241 Resistant bacteria were compared to parental bacteria using snippy-multi script in Snippy(53).  
242 Snippy results agreed with results from methods 1 and 2 and are presented here. For reference  
243 selection in Snippy, bacterial reads were validated through EDGE Bioinformatic (version 2.4.0)  
244 software's phylogenetic analysis module, using RAxML and a pre-built *E. coli* SNP database(54,  
245 55). The published UTI89 genome (accession: CP000243.1) was used as a reference. Since  
246 DS566 did not cluster with another strain closely enough for that strain to be used as a reference,  
247 it was further categorized using the Center for Genomic Epidemiology's MLST 2.0 software  
248 (version 2.0.4; database version 2021-10-18) which predicted it belonged to ST1193(56, 57). *E.*  
249 *coli* MCJCHV-1 (accession: CP030111.1) was chosen as a reference for DS566. Variants that  
250 were present in both parental strains and resistant progenies were discarded. Circular diagrams  
251 were made using CGView Server and modified using Microsoft PowerPoint(58).

252

253 **Statistics**

254 *In vitro* experiments were performed at least twice in at least technical duplicate. Mean values of  
255 independent experiments were used to represent biological replicates for statistical analyses. *In*  
256 *vivo* experiments were conducted at least twice independently with individual mice serving as  
257 biological replicates. Experimental data was combined prior to statistical analyses. Mann-  
258 Whitney tests were used to compare AUC measurements (Fig. 1E-F), and murine bladder  
259 colonization (Fig. 6A-B). Friedman test using Dunn's multiple comparisons was used to assess  
260 changes in bacterial adherence and invasion (Fig. 3A-D), while two-way repeated measures  
261 ANOVA with Geisser-Greenhouse correction and Dunnett's multiple comparisons was used for  
262 biofilm experiments (Fig. 3E-F). Statistical analyses were performed using GraphPad Prism,  
263 version 9.2.0 (GraphPad Software Inc., La Jolla, CA). *P* values of <0.05 were considered  
264 statistically significant.

265

## 266 RESULTS

### 267 **UPEC resistant to phage rapidly emerge *in vitro* in both LB and human urine**

268 Conventionally, bacteria-phage interactions are studied in bacteriologic medium, however, more  
269 recent work has begun to assess these interactions in the context of the host environment  
270 including *ex vivo* blood or *in vivo* tissues(43, 59, 60). To assess how phage activity could be  
271 influenced by the urinary environment, we compared 18h bacterial growth curves in LB medium  
272 and human urine. We selected two phages(24, 31) to test against four UPEC strains. UTI89 and  
273 CFT073 are well-characterized UPEC cystitis and pyelonephritis isolates respectively, while  
274 DS515 and DS566 are recently isolates from patients with neurogenic bladders from spinal cord  
275 injury. HP3 and ES17 are phages with demonstrated efficacy against extraintestinal pathogenic  
276 *E. coli* (ExPEC) including UPEC(24, 31, 35, 46, 61).

277

278 Approximately  $10^8$  CFU of UPEC were challenged with  $10^7$ ,  $10^5$ , or  $10^3$  PFU of phage (MOI of  
279  $10^{-1}$ ,  $10^{-3}$ , and  $10^{-5}$  respectively) in 96-well microtiter plates. Within the first 1-2h of phage  
280 challenge, relative growth of phage treated wells rapidly declined. Minimal growth (< 25%  
281 growth of OD<sub>600</sub> in treated vs untreated wells) was observed for the first approximately 6h in the  
282 presence of the two higher MOIs for both phages (**Fig. 1A-D**). After this time, many of the  
283 cultures began to “rebound” their relative growth, representing bacterial resistance towards  
284 phage. This activity was observed most strongly in strains UTI89 (**Fig. 1A**) and DS515 (**Fig.**  
285 **1C**). There were no clear differences in relative growth based on medium used (LB vs urine),  
286 although decreasing phage MOI caused less suppression of relative growth. Bacterial strains  
287 UTI89 and DS566 were selected for further investigation of the mechanisms of phage resistance  
288 due to their differential growth kinetics observed during *in vitro* phage challenge. While relative  
289 growth was quick to rebound when UTI89 was challenged with phage (**Fig. 1E**), DS566 relative  
290 growth was slow, reaching only ~20% of no phage control growth after 18h of incubation (**Fig.**  
291 **1F**).

292

293 **Rebound in bacterial growth is due to resistance to phage through mutations of LPS**

294 To isolate phage-resistant UPEC, bacteria were passaged twice in the presence of phage in liquid  
295 culture and on agar containing phage (**Fig. 2A**). Three UTI89 isolates resistant to HP3 or ES17  
296 and two DS566 isolates resistant to ES17 were collected for whole-genome sequencing.  
297 Sequencing revealed that all UTI89 resistant to phage, regardless of which phage, had mutations  
298 in the transcription factor rfaH (locus tag: b3842, **Fig. 2B**). DS566 mutants had mutations in  
299 galactotransferase rfaI/waaO (locus tag: b3627). DS566-2 had an additional mutation in

300 rfaE/hldE (locus tag: b3052, **Fig. 2C-D**). Several non-LPS related mutations were also observed  
301 (**Supp. Table 1**). When LPS was isolated through hot aqueous-phenol extraction, the loss of LPS  
302 O-antigen was apparent in all phage-resistant strains (**Fig. 2E**). These results agree with LPS  
303 structure prediction with mutations in rfaH and rfaE/hldE predicted to result in truncation of the  
304 inner core of LPS while rfaI/waaO is likely to result truncation of the outer core of LPS(62) (**Fig.**  
305 **2F**).

306

307 **LPS mutation leads to changes in biofilm formation, adherence and invasion of bladder  
308 cells, and antibiotic susceptibility**

309 UPEC adheres to and invades the bladder epithelium to form intracellular bacterial reservoirs  
310 capable of reseeding infection(63, 64), thus, we assessed if LPS mutations confer changes in the  
311 ability of UPEC to adhere to and invade HTB-9 bladder cells. No change in adherence was seen  
312 in any of the UTI89 phage resistant mutants (**Fig. 3A**), however, both DS566 mutants had  
313 modestly increased adherence relative to the wild-type strain (**Fig. 3B**). Invasion of HTB-9 cells  
314 was increased 50 to 100-fold in two of three UTI89 mutants, UTI89-1 and UTI89-3 (**Fig. 3C**),  
315 while increased invasion was only detected in one of the DS566 mutants, DS566-1 (**Fig. 3D**).

316

317 As LPS mutations are likely to change bacterial surface properties(65, 66), we evaluated the  
318 ability of these bacteria to form biofilms in LB as well as more physiologically relevant  
319 conditions of pooled human urine and RPMI-1640 medium. In general, biofilm formation by  
320 phage-resistant UPEC was increased relative to the parental strain although not all conditions  
321 achieved statistical significance as indicated in figure panels. UTI89-1 and UTI89-3  
322 demonstrated significantly increased biofilm formation in LB medium while UTI89-2

323 demonstrated enhanced biofilm formation in RPMI-1640 (**Fig. 3E**). DS566-1 displayed  
324 increased biofilm formation in both LB and RPMI-1640 compared to its wild-type strain,  
325 whereas DS566-2 had increased biofilm formation in pooled human urine (**Fig. 3F**).  
326  
327 LPS truncation may allow antimicrobials to access the bacterial surface more easily. We tested if  
328 the antibiotics colistin (polymyxin E) and polymyxin B, which both interact with the bacterial  
329 outer membrane, had lower minimum inhibitory concentration (MIC) values for LPS-mutant  
330 UPEC compared to wild-type strains in pooled human urine. We observed a 2-fold decrease in  
331 the colistin MIC in UTI89 LPS mutants UTI89-2 and UTI89-3 (**Fig. 4A**), and a non-significant  
332 change in MIC versus polymyxin B (**Fig. 4B**). In DS566, we observed a 2-fold reduction in MIC  
333 for LPS mutant DS566-1 to both colistin and polymyxin B while DS566-2 had colistin and  
334 polymyxin B MICs that were 8 to 16-fold lower than the wild-type strain (0.1875  $\mu$ g/mL and  
335 0.09375  $\mu$ g/mL, respectively) (**Fig. 4C-D**). In LB medium, differences between phage-resistant  
336 mutants and parental strains were largely absent (**Supp. Fig. 1**).  
337

### 338 **LPS-mutant UPEC growth is attenuated in urine**

339 To evaluate the impact of LPS modifications on bacterial growth, bacteria were grown in either  
340 LB medium or pooled human urine for 16h. While growth of LPS mutants was similar to the  
341 wild-type strain in LB medium (**Fig. 5A-B**), bacterial growth was severely attenuated in urine,  
342 regardless of specific LPS mutations (**Fig. 5C-D**).  
343

344 Defective growth in urine suggests that urine either contains active inhibitory factors for these  
345 phage-resistant bacteria or that LPS is important for growth in nutrient poor conditions. To

346 delineate the reason for this growth defect, we supplemented urine with yeast extract, a primary  
347 nutrient source in LB medium. When bacteria were exposed to these conditions, their growth  
348 was partially rescued to levels resembling their growth in LB medium (**Fig. 5E-F**). This suggests  
349 that LPS is important for nutrient acquisition in nutrient-deplete conditions such as human urine.

350

351 **LPS mutations decrease murine bladder colonization**

352 Because phage resistant mutants had comparable or increased biofilm formation, adherence, and  
353 internalization *in vitro*, we evaluated the ability of two LPS mutants (UTI89-2 and DS566-2) to  
354 colonize the mouse urinary tract compared to their parental strains. Bacteria were transurethrally  
355 instilled into the bladders of mice and, at 24 hours post-infection, bladder bacterial burdens were  
356 quantified. Wild-type UTI89 were capable of colonizing murine bladders while UTI89-2 was  
357 significantly attenuated in its colonization (**Fig. 6A**). While wild-type DS566 achieved lower  
358 bacterial burdens in the bladder than wild-type UTI89, LPS-mutant DS566-2 displayed a similar  
359 colonization defect, with bacterial burdens below the limit of detection in bladders at 24h post  
360 infection in all mice (**Fig. 6B**).

361

362 **DISCUSSION**

363 Although well-characterized in bacteriologic media, phage-bacterial dynamics are not well-  
364 defined in the urinary environment. Through our investigation, we identified (i) resistance arising  
365 to two genetically distinct phages, HP3 and ES17, in both bacteriologic medium and pooled  
366 human urine driven by mutations in LPS; (ii) that LPS truncation attenuates the growth of UPEC  
367 in urine, but that this phenotype can be partially rescued by supplementation with additional  
368 nutrients; (iii) that phage-resistant bacteria may be sensitized to membrane-interacting

369 antibiotics; and finally, (iv) although LPS mutation may lead to increased adherence, invasion,  
370 and biofilm formation *in vitro*, this does not result in successful bladder colonization *in vivo*. In  
371 total, these finding suggest that phage-resistant bacteria may arise during phage therapy but that  
372 the resulting bacteria may be less capable of causing disease and may be sensitized to other  
373 treatment options.

374

375 Phage resistance is a well-documented phenomenon during bacterial infection with phage;  
376 however, few studies to date have assessed phage resistance outside of bacteriologic media and  
377 in the environment relevant to human medicine. Since human urine is a significantly more  
378 complex and dynamic than bacteriologic media, understanding phage-bacterial interactions in  
379 this environment is critical for assessing treatment efficacy. Our results demonstrate that UPEC  
380 killing by phages HP3 and ES17 is not determined solely by environmental conditions, but is  
381 highly influenced by the genetics of the bacterial host as revealed by differences among UPEC  
382 strains. In both environments, phage resistance developed in a short time frame. ExPEC have  
383 previously been shown to evade phage killing by HP3 via mutating LPS(35). Indeed, the HP3-  
384 resistant UPEC isolated in our current study harbors a mutation in transcription factor rfaH,  
385 which is involved in the assembly of the LPS(67). Interestingly, ES17-resistant UPEC also  
386 harbored mutations in LPS biosynthesis and assembly pathways. LPS is a major component of  
387 the Gram-negative outer membrane and provides stability to the outer membrane while  
388 anchoring other outer membrane proteins in place(68). Studies have previously shown that LPS  
389 mutation in *E. coli* attenuates several cellular processes, including cellular membrane integrity,  
390 resistance to antibiotics, and growth in low pH and high detergent conditions(65, 69-71). Here,  
391 we demonstrate that these same detrimental effects occur in the urinary environment.

392 The urinary tract is complex and dynamic with changing nutrient and solute concentrations  
393 throughout the day and from person to person(72-74). UPEC resistant to HP3 and ES17 isolated  
394 were equally capable of growth in LB as their parental strains but grew poorly in urine. This  
395 suggests that LPS mutation as a consequence of phage resistance may either lead to a sensitivity  
396 to host urinary conditions, or that LPS is important for effective growth in a nutrient-limited  
397 environment. When we introduced yeast extract into urine, bacterial growth was rescued to  
398 levels resembling bacterial growth in LB. This suggests that the growth defect observed in urine  
399 is not due to an existing antimicrobial factor but is instead primarily due to an inability of LPS-  
400 mutant UPEC to effectively acquire key nutrients in deplete conditions. Outer membrane  
401 proteins are needed in Gram negative bacteria to take up nutrients through the outer membrane.  
402 Several of these proteins require LPS for their assembly and insertion into the membrane(65, 68,  
403 75). The decreased efficacy or number of these outer membrane proteins may account for the  
404 need to increase the nutrient availability to overcome growth defects, however, this topic is  
405 outside the scope of this study.

406

407 Increased biofilm formation has been described in *E. coli* harboring LPS "deep-rough" mutations  
408 *in vitro*(76). While biofilms *in vitro* may differ from those *in vivo*, since enhanced biofilms could  
409 lead to worse outcomes in patients treated with phages, we assessed if the phage-resistant UPEC  
410 displayed this same increased biofilm formation. Partially aligning with previous literature,  
411 we observed *in vitro* biofilm increases in all three of our UTI89 strains containing *rfaH*  
412 mutations, although increased biofilm formation was not uniformly observed across all  
413 conditions. In previous literature, biofilm formation was increased in *E. coli* containing *rfaH*  
414 mutations when grown in M63B1 minimal media, although differing *E. coli* strains, biofilm

415 generation, and enumeration methods were used(77). Additionally, we observed increased  
416 biofilm formation in both DS566 strains harboring LPS mutations. This increase appears to be  
417 most pronounced in bacteria DS566-2, which has the most severely attenuated LPS structure.  
418 Although *in vitro* biofilm assays may not fully reflect capacity to form biofilms *in vivo*, our  
419 results correlate with those observed by Nakao et al. who demonstrated enhanced biofilm  
420 production by *E. coli* defective in LPS heptose biosynthesis and found increased cell surface  
421 hydrophobicity relative to the parental strain(76). A limitation of our study is that all phage-  
422 resistant mutants identified were isolated *in vitro*, yet previous work by our lab suggests that  
423 resistance is likely to develop *in vivo* as well(35).

424

425 As well as adhering to implanted devices such as catheters, UPEC adhere to and invade the  
426 bladder epithelium and establish intracellular bacterial reservoirs capable of reinitiating infection  
427 after treatment. We observed minimal impact of LPS modification on adherence to and invasion  
428 of HTB-9 cells in the UTI89 background, although adherence was significantly increased in  
429 phage-resistant mutants in the DS566 background. These results echo work done by Nagy *et al.*  
430 who found no changes in adherence to HCT-8 or INT407 intestinal cells in ExPEC lacking  
431 *rfaH*(78). In contrast to the adherence results, two of three UTI89 mutants showed increased  
432 invasion of HTB-9 cells. Avian pathogenic *E. coli* lacking *rfaH* are more readily engulfed by  
433 chicken macrophages than the wild-type strain, however, these bacteria are poor at growing after  
434 being engulfed(79). The mechanism for this increased uptake was not further investigated but  
435 could explain the increased invasion of HTB-9 cells in our study.

436

437 Since our results suggested that LPS modification could alter host-pathogen interactions, we  
438 used a mouse model of UTI to investigate *in vivo* infection outcomes. We found that LPS  
439 mutants in both UTI89 and DS566 backgrounds were worse at colonizing the murine bladder  
440 than the wild-type strains. RfaH, a regulator of LPS, capsule, and alpha-hemolysin, is critical for  
441 bladder colonization as inactivation of *rfaH* dramatically lowers recovery of UPEC strain 536  
442 from the urinary tract by 21 days after infection(80). Additionally, Aguiniga *et al.* used targeted  
443 gene deletions to identify LPS domains essential for colonization bladder using UPEC strain  
444 NU14(81). They showed that LPS-deficient UPEC were not only worse at colonizing murine  
445 bladders after 24 hours, but they were also less likely to be present in bladders two weeks post-  
446 infection, a measure of bacterial reservoir formation. While the LPS mutations assessed by this  
447 group are not identical to those observed in our study, the functional consequences (outer  
448 membrane truncation, inner membrane truncation, etc.) are likely similar. Although our study  
449 does not investigate the immune response to LPS-modified UPEC, others have observed the  
450 “rough” LPS phenotype in several asymptomatic bacteriuria strains, suggesting that these  
451 pathogens may be less virulent in humans(82). In fact, asymptomatic bacteriuria isolates with  
452 truncated LPS, among other virulence gene mutations, have been suggested as possible  
453 competitors which would be intentionally introduced in patients to prevent UPEC infection(83-  
454 86). In agreement with our study, bladder colonization using these UPEC was not always  
455 achieved despite frequent bacterial inoculations, suggesting a possible colonization defect of  
456 these strains(86).

457

458 Phage and antibiotics have the potential to work together synergistically, with one sensitizing  
459 bacteria to the other and vice versa(87). We wondered if LPS mutant UPEC may be more

460 sensitive to antibiotics which target the bacterial membrane in urine, a condition which has not  
461 been investigated previously. Colistin and polymyxin B both act to permeabilize the bacterial  
462 outer membrane by interacting with the lipid A portion of LPS(88). Through MIC assays, we  
463 determined an increased sensitivity to these two antibiotics for most phage-resistant strains  
464 tested. As observed in the biofilm and adherence and invasion assays, this increase was most  
465 pronounced in DS566-2, the strain with the most significant predicted LPS truncation. Other  
466 groups have shown an increased resistance to colistin in Gram negative pathogens lacking the  
467 lipid A portion of LPS(89, 90). Our phage-driven mutants retain lipid A, explaining their  
468 sensitivity to colistin.

469

470 In summary, as is often the case with antibiotics, bacteria quickly become resistant to phage  
471 under physiologic conditions, an apparent threat to their use. However, as demonstrated here,  
472 mutations providing phage resistance may come at the cost of bacterial fitness and ultimately  
473 reduce pathogenesis. Many other phage targets exist in addition to LPS(38) raising the appealing  
474 possibility that combining phages with distinct targets could both reduce bacterial burden and  
475 attenuate bacterial virulence of emerging resistant bacteria. These findings expand our  
476 knowledge of phage resistance of UPEC in the context of the urinary tract and support their  
477 continued development as a target for controlling UTI.

478

## 479 **AUTHOR CONTRIBUTIONS**

480 JZ, AM, and KP conceived and designed experiments. JZ, JC, SO, MB, MM, VME, EH and BS  
481 performed experiments. JZ, AM, and KP analyzed and interpreted results. BT provided clinical

482 isolates and BT, AM, and KP acquired funding. JZ, AM, and KP drafted the manuscript. All  
483 authors contributed the discussion and manuscript edits.

484

## 485 **ACKNOWLEDGEMENTS**

486 We are grateful to Dr. Sabrina Green for providing phage for experiments. JZ and MM were  
487 supported by an NIH T32 award (T32GM136554), and VME was supported by a scholarship  
488 from Baylor Research Advocates for Student Scientists (BRASS). Studies were supported by an  
489 NIH NIAID U19 award (U19 AI157981) to AM and KP. The funders had no role in study  
490 design, data collection and interpretation, or the decision to submit the work for publication.

491

## 492 **REFERENCES**

- 493 1. Foxman B. 2014. Urinary tract infection syndromes: occurrence, recurrence,  
494 bacteriology, risk factors, and disease burden. *Infect Dis Clin North Am* 28:1-13.
- 495 2. Schappert SM, Rechtsteiner EA. 2011. Ambulatory medical care utilization estimates for  
496 2007. *Vital Health Stat* 13:1-38.
- 497 3. Foxman B, Brown P. 2003. Epidemiology of urinary tract infections: transmission and  
498 risk factors, incidence, and costs. *Infect Dis Clin North Am* 17:227-41.
- 499 4. Ronald A. 2002. The etiology of urinary tract infection: traditional and emerging  
500 pathogens. *Am J Med* 113 Suppl 1A:14S-19S.
- 501 5. Shapiro DJ, Hicks LA, Pavia AT, Hersh AL. 2014. Antibiotic prescribing for adults in  
502 ambulatory care in the USA, 2007-09. *J Antimicrob Chemother* 69:234-40.
- 503 6. Kot B. 2019. Antibiotic Resistance Among Uropathogenic Escherichia coli. *Pol J  
504 Microbiol* 68:403-415.
- 505 7. Bunduki GK, Heinz E, Phiri VS, Noah P, Feasey N, Musaya J. 2021. Virulence factors  
506 and antimicrobial resistance of uropathogenic Escherichia coli (UPEC) isolated from  
507 urinary tract infections: a systematic review and meta-analysis. *BMC Infect Dis* 21:753.
- 508 8. Conly J, Johnston B. 2005. Where are all the new antibiotics? The new antibiotic  
509 paradox. *Can J Infect Dis Microbiol* 16:159-60.
- 510 9. Boucher HW. 2020. Bad Bugs, No Drugs 2002-2020: Progress, Challenges, and Call to  
511 Action. *Trans Am Clin Climatol Assoc* 131:65-71.
- 512 10. Wagenlehner FME, Bjerklund Johansen TE, Cai T, Koves B, Kranz J, Pilatz A,  
513 Tandogdu Z. 2020. Epidemiology, definition and treatment of complicated urinary tract  
514 infections. *Nat Rev Urol* 17:586-600.
- 515 11. Mahlapuu M, Hakansson J, Ringstad L, Bjorn C. 2016. Antimicrobial Peptides: An  
516 Emerging Category of Therapeutic Agents. *Front Cell Infect Microbiol* 6:194.

517 12. Ghosh C, Sarkar P, Issa R, Haldar J. 2019. Alternatives to Conventional Antibiotics in  
518 the Era of Antimicrobial Resistance. *Trends Microbiol* 27:323-338.

519 13. Cotter PD, Ross RP, Hill C. 2013. Bacteriocins - a viable alternative to antibiotics? *Nat*  
520 *Rev Microbiol* 11:95-105.

521 14. Lemire JA, Harrison JJ, Turner RJ. 2013. Antimicrobial activity of metals: mechanisms,  
522 molecular targets and applications. *Nat Rev Microbiol* 11:371-84.

523 15. Kortright KE, Chan BK, Koff JL, Turner PE. 2019. Phage Therapy: A Renewed  
524 Approach to Combat Antibiotic-Resistant Bacteria. *Cell Host Microbe* 25:219-232.

525 16. Gordillo Altamirano FL, Barr JJ. 2019. Phage Therapy in the Postantibiotic Era. *Clin*  
526 *Microbiol Rev* 32.

527 17. Greene SE, Pinkner JS, Chorell E, Dodson KW, Shaffer CL, Conover MS, Livny J,  
528 Hadjifrangiskou M, Almqvist F, Hultgren SJ. 2014. Pilicide ec240 disrupts virulence  
529 circuits in uropathogenic *Escherichia coli*. *mBio* 5:e02038.

530 18. Abedon ST, Kuhl SJ, Blasdel BG, Kutter EM. 2011. Phage treatment of human  
531 infections. *Bacteriophage* 1:66-85.

532 19. Caldwell JA. 1928. BACTERIOPHAGY IN URINARY INFECTIONS FOLLOWING  
533 THE ADMINISTRATION OF THE BACTERIOPHAGE THERAPEUTICALLY. *Arch*  
534 *Intern Med (Chic)* 2:189-197.

535 20. Pires DP, Costa AR, Pinto G, Meneses L, Azeredo J. 2020. Current challenges and future  
536 opportunities of phage therapy. *FEMS Microbiol Rev* 44:684-700.

537 21. Melo LDR, Oliveira H, Pires DP, Dabrowska K, Azeredo J. 2020. Phage therapy  
538 efficacy: a review of the last 10 years of preclinical studies. *Crit Rev Microbiol* 46:78-99.

539 22. Chibani-Chennoufi S, Bruttin A, Dillmann ML, Brussow H. 2004. Phage-host  
540 interaction: an ecological perspective. *J Bacteriol* 186:3677-86.

541 23. Chaudhary N, Narayan C, Mohan B, Taneja N. 2021. Characterization and in vitro  
542 activity of a lytic phage RDN37 isolated from community sewage water active against  
543 MDR Uropathogenic *E. coli*. *Indian J Med Microbiol* 39:343-348.

544 24. Gibson SB, Green SI, Liu CG, Salazar KC, Clark JR, Terwilliger AL, Kaplan HB,  
545 Maresso AW, Trautner BW, Ramig RF. 2019. Constructing and Characterizing  
546 Bacteriophage Libraries for Phage Therapy of Human Infections. *Front Microbiol*  
547 10:2537.

548 25. Chibeau A, Lingohr EJ, Masson L, Manges A, Harel J, Ackermann HW, Kropinski AM,  
549 Boerlin P. 2012. Bacteriophages with the ability to degrade uropathogenic *Escherichia*  
550 *coli* biofilms. *Viruses* 4:471-87.

551 26. Sarker SA, Berger B, Deng Y, Kieser S, Foata F, Moine D, Descombes P, Sultana S, Huq  
552 S, Bardhan PK, Vuillet V, Praplan F, Brussow H. 2017. Oral application of *Escherichia*  
553 *coli* bacteriophage: safety tests in healthy and diarrheal children from Bangladesh.  
554 *Environ Microbiol* 19:237-250.

555 27. Rostkowska OM, Miedzybrodzki R, Miszewska-Szyszkowska D, Gorski A, Durlak M.  
556 2021. Treatment of recurrent urinary tract infections in a 60-year-old kidney transplant  
557 recipient. The use of phage therapy. *Transpl Infect Dis* 23:e13391.

558 28. Ujmajuridze A, Chanishvili N, Goderdzishvili M, Leitner L, Mehnert U, Chkhotua A,  
559 Kessler TM, Sybesma W. 2018. Adapted Bacteriophages for Treating Urinary Tract  
560 Infections. *Front Microbiol* 9:1832.

561 29. Aslam S, Lampley E, Wooten D, Karris M, Benson C, Strathdee S, Schooley RT. 2020.  
562 Lessons Learned From the First 10 Consecutive Cases of Intravenous Bacteriophage

563 Therapy to Treat Multidrug-Resistant Bacterial Infections at a Single Center in the United  
564 States. *Open Forum Infect Dis* 7:ofaa389.

565 30. Khawaldeh A, Morales S, Dillon B, Alavidze Z, Ginn AN, Thomas L, Chapman SJ,  
566 Dublanchet A, Smithyman A, Iredell JR. 2011. Bacteriophage therapy for refractory  
567 *Pseudomonas aeruginosa* urinary tract infection. *J Med Microbiol* 60:1697-1700.

568 31. Terwilliger A, Clark J, Karris M, Hernandez-Santos H, Green S, Aslam S, Maresso A.  
569 2021. Phage Therapy Related Microbial Succession Associated with Successful Clinical  
570 Outcome for a Recurrent Urinary Tract Infection. *Viruses* 13.

571 32. ClinicalTrials.gov. Safety, Tolerability, and PK of LBP-EC01 in Patients With Lower  
572 Urinary Tract Colonization Caused by *E. Coli*.  
573 <https://ClinicalTrials.gov/show/NCT04191148>.

574 33. ClinicalTrials.gov. Bacteriophage Therapy in Patients With Urinary Tract Infections.  
575 <https://ClinicalTrials.gov/show/NCT04287478>.

576 34. Leitner L, Ujmajuridze A, Chanishvili N, Goderdzishvili M, Chkonia I, Rigvava S,  
577 Chkhhotua A, Changashvili G, McCallin S, Schneider MP, Liechti MD, Mehnert U,  
578 Bachmann LM, Sybesma W, Kessler TM. 2021. Intravesical bacteriophages for treating  
579 urinary tract infections in patients undergoing transurethral resection of the prostate: a  
580 randomised, placebo-controlled, double-blind clinical trial. *Lancet Infect Dis* 21:427-436.

581 35. Salazar KC, Ma L, Green SI, Zulk JJ, Trautner BW, Ramig RF, Clark JR, Terwilliger  
582 AL, Maresso AW. 2021. Antiviral Resistance and Phage Counter Adaptation to  
583 Antibiotic-Resistant Extraintestinal Pathogenic *Escherichia coli*. *mBio* 12.

584 36. Labrie SJ, Samson JE, Moineau S. 2010. Bacteriophage resistance mechanisms. *Nat Rev  
585 Microbiol* 8:317-27.

586 37. Deveau H, Garneau JE, Moineau S. 2010. CRISPR/Cas system and its role in phage-  
587 bacteria interactions. *Annu Rev Microbiol* 64:475-93.

588 38. Leon M, Bastias R. 2015. Virulence reduction in bacteriophage resistant bacteria. *Front  
589 Microbiol* 6:343.

590 39. Chart H, Row B, Threlfall EJ, Ward LR. 1989. Conversion of *Salmonella enteritidis*  
591 phage type 4 to phage type 7 involves loss of lipopolysaccharide with concomitant loss of  
592 virulence. *FEMS Microbiol Lett* 51:37-40.

593 40. Seed KD, Yen M, Shapiro BJ, Hilaire IJ, Charles RC, Teng JE, Ivers LC, Boncy J, Harris  
594 JB, Camilli A. 2014. Evolutionary consequences of intra-patient phage predation on  
595 microbial populations. *Elife* 3:e03497.

596 41. Chan BK, Sistrom M, Wertz JE, Kortright KE, Narayan D, Turner PE. 2016. Phage  
597 selection restores antibiotic sensitivity in MDR *Pseudomonas aeruginosa*. *Sci Rep*  
598 6:26717.

599 42. Gordillo Altamirano F, Forsyth JH, Patwa R, Kostoulias X, Trim M, Subedi D, Archer  
600 SK, Morris FC, Oliveira C, Kiely L, Korneev D, O'Bryan MK, Lithgow TJ, Peleg AY,  
601 Barr JJ. 2021. Bacteriophage-resistant *Acinetobacter baumannii* are resensitized to  
602 antimicrobials. *Nat Microbiol* 6:157-161.

603 43. Roach DR, Leung CY, Henry M, Morello E, Singh D, Di Santo JP, Weitz JS, Debarbieux  
604 L. 2017. Synergy between the Host Immune System and Bacteriophage Is Essential for  
605 Successful Phage Therapy against an Acute Respiratory Pathogen. *Cell Host Microbe*  
606 22:38-47 e4.

607 44. Mulvey MA, Schilling JD, Hultgren SJ. 2001. Establishment of a persistent *Escherichia  
608 coli* reservoir during the acute phase of a bladder infection. *Infect Immun* 69:4572-9.

609 45. Mobley HL, Green DM, Trifillis AL, Johnson DE, Chippendale GR, Lockatell CV, Jones  
610 BD, Warren JW. 1990. Pyelonephritogenic *Escherichia coli* and killing of cultured  
611 human renal proximal tubular epithelial cells: role of hemolysin in some strains. *Infect*  
612 *Immun* 58:1281-9.

613 46. Green SI, Kaelber JT, Ma L, Trautner BW, Ramig RF, Maresco AW. 2017.  
614 Bacteriophages from ExPEC Reservoirs Kill Pandemic Multidrug-Resistant Strains of  
615 Clonal Group ST131 in Animal Models of Bacteremia. *Sci Rep* 7:46151.

616 47. Davis MR, Jr., Goldberg JB. 2012. Purification and visualization of lipopolysaccharide  
617 from Gram-negative bacteria by hot aqueous-phenol extraction. *J Vis Exp*  
618 doi:10.3791/3916.

619 48. Patras KA, Derieux J, Al-Bassam MM, Adiletta N, Vrbanac A, Lapek JD, Zengler K,  
620 Gonzalez DJ, Nizet V. 2018. Group B *Streptococcus* Biofilm Regulatory Protein A  
621 Contributes to Bacterial Physiology and Innate Immune Resistance. *J Infect Dis*  
622 218:1641-1652.

623 49. Patras KA, Wescombe PA, Rosler B, Hale JD, Tagg JR, Doran KS. 2015. *Streptococcus*  
624 salivarius K12 Limits Group B *Streptococcus* Vaginal Colonization. *Infect Immun*  
625 83:3438-44.

626 50. Patras KA, Ha AD, Rooholfada E, Olson J, Ramachandra Rao SP, Lin AE, Nizet V.  
627 2019. Augmentation of Urinary Lactoferrin Enhances Host Innate Immune Clearance of  
628 Uropathogenic *Escherichia coli*. *J Innate Immun* 11:481-495.

629 51. Patras KA, Coady A, Babu P, Shing SR, Ha AD, Rooholfada E, Brandt SL, Geriak M,  
630 Gallo RL, Nizet V. 2020. Host Cathelicidin Exacerbates Group B *Streptococcus* Urinary  
631 Tract Infection. *mSphere* 5.

632 52. Darling AC, Mau B, Blattner FR, Perna NT. 2004. Mauve: multiple alignment of  
633 conserved genomic sequence with rearrangements. *Genome Res* 14:1394-403.

634 53. Seemann T. Rapid Haplod Variant Calling and Core Genome Alignment.  
635 <https://github.com/tseemann/snippy>. Accessed 12 September.

636 54. Li PE, Lo CC, Anderson JJ, Davenport KW, Bishop-Lilly KA, Xu Y, Ahmed S, Feng S,  
637 Mokashi VP, Chain PS. 2017. Enabling the democratization of the genomics revolution  
638 with a fully integrated web-based bioinformatics platform. *Nucleic Acids Res* 45:67-80.

639 55. Stamatakis A. 2014. RAxML version 8: a tool for phylogenetic analysis and post-analysis  
640 of large phylogenies. *Bioinformatics* 30:1312-3.

641 56. Larsen MV, Cosentino S, Rasmussen S, Friis C, Hasman H, Marvig RL, Jelsbak L,  
642 Sicheritz-Ponten T, Ussery DW, Aarestrup FM, Lund O. 2012. Multilocus sequence  
643 typing of total-genome-sequenced bacteria. *J Clin Microbiol* 50:1355-61.

644 57. Wirth T, Falush D, Lan R, Colles F, Mensa P, Wieler LH, Karch H, Reeves PR, Maiden  
645 MC, Ochman H, Achtman M. 2006. Sex and virulence in *Escherichia coli*: an  
646 evolutionary perspective. *Mol Microbiol* 60:1136-51.

647 58. Grant JR, Stothard P. 2008. The CGView Server: a comparative genomics tool for  
648 circular genomes. *Nucleic Acids Res* 36:W181-4.

649 59. Ma L, Green SI, Trautner BW, Ramig RF, Maresco AW. 2018. Metals Enhance the  
650 Killing of Bacteria by Bacteriophage in Human Blood. *Sci Rep* 8:2326.

651 60. Moses S, Vagima Y, Tidhar A, Aftalion M, Mamroud E, Rotem S, Steinberger-Levy I.  
652 2021. Characterization of *Yersinia pestis* Phage Lytic Activity in Human Whole Blood  
653 for the Selection of Efficient Therapeutic Phages. *Viruses* 13.

654 61. Green SI, Gu Liu C, Yu X, Gibson S, Salmen W, Rajan A, Carter HE, Clark JR, Song X,  
655 Ramig RF, Trautner BW, Kaplan HB, Maresso AW. 2021. Targeting of Mammalian  
656 Glycans Enhances Phage Predation in the Gastrointestinal Tract. *mBio* 12.  
657 62. Schnaitman CA, Klena JD. 1993. Genetics of lipopolysaccharide biosynthesis in enteric  
658 bacteria. *Microbiol Rev* 57:655-82.  
659 63. Martinez JJ, Mulvey MA, Schilling JD, Pinkner JS, Hultgren SJ. 2000. Type 1 pilus-  
660 mediated bacterial invasion of bladder epithelial cells. *EMBO J* 19:2803-12.  
661 64. Justice SS, Lauer SR, Hultgren SJ, Hunstad DA. 2006. Maturation of intracellular  
662 *Escherichia coli* communities requires SurA. *Infect Immun* 74:4793-800.  
663 65. Pagnout C, Sohm B, Razafitianamaharavo A, Caillet C, Offroy M, Leduc M, Gendre H,  
664 Jomini S, Beaussart A, Bauda P, Duval JFL. 2019. Pleiotropic effects of rfa-gene  
665 mutations on *Escherichia coli* envelope properties. *Sci Rep* 9:9696.  
666 66. Zhang G, Meredith TC, Kahne D. 2013. On the essentiality of lipopolysaccharide to  
667 Gram-negative bacteria. *Curr Opin Microbiol* 16:779-85.  
668 67. Klein G, Stupak A, Biernacka D, Wojtkiewicz P, Lindner B, Raina S. 2016. Multiple  
669 Transcriptional Factors Regulate Transcription of the *rpoE* Gene in *Escherichia coli*  
670 under Different Growth Conditions and When the Lipopolysaccharide Biosynthesis Is  
671 Defective. *J Biol Chem* 291:22999-23019.  
672 68. Nikaido H, Vaara M. 1985. Molecular basis of bacterial outer membrane permeability.  
673 *Microbiol Rev* 49:1-32.  
674 69. Vivijs B, Aertsen A, Michiels CW. 2016. Identification of Genes Required for Growth of  
675 *Escherichia coli* MG1655 at Moderately Low pH. *Front Microbiol* 7:1672.  
676 70. Ebbengaard A, Mordhorst H, Aarestrup FM, Hansen EB. 2018. The Role of Outer  
677 Membrane Proteins and Lipopolysaccharides for the Sensitivity of *Escherichia coli* to  
678 Antimicrobial Peptides. *Front Microbiol* 9:2153.  
679 71. Yethon JA, Heinrichs DE, Monteiro MA, Perry MB, Whitfield C. 1998. Involvement of  
680 *waaY*, *waaQ*, and *waaP* in the modification of *Escherichia coli* lipopolysaccharide and  
681 their role in the formation of a stable outer membrane. *J Biol Chem* 273:26310-6.  
682 72. Koopman MG, Krediet RT, Koomen GC, Strackee J, Arisz L. 1989. Circadian rhythm of  
683 proteinuria: consequences of the use of urinary protein:creatinine ratios. *Nephrol Dial  
684 Transplant* 4:9-14.  
685 73. Zhang T, Chang X, Liu W, Li X, Wang F, Huang L, Liao S, Liu X, Zhang Y, Zhao Y.  
686 2017. Comparison of sodium, potassium, calcium, magnesium, zinc, copper and iron  
687 concentrations of elements in 24-h urine and spot urine in hypertensive patients with  
688 healthy renal function. *J Trace Elem Med Biol* 44:104-108.  
689 74. Taylor EN, Curhan GC. 2007. Differences in 24-hour urine composition between black  
690 and white women. *J Am Soc Nephrol* 18:654-9.  
691 75. Arunmanee W, Pathania M, Solovyova AS, Le Brun AP, Ridley H, Basle A, van den  
692 Berg B, Lakey JH. 2016. Gram-negative trimeric porins have specific LPS binding sites  
693 that are essential for porin biogenesis. *Proc Natl Acad Sci U S A* 113:E5034-43.  
694 76. Nakao R, Ramstedt M, Wai SN, Uhlin BE. 2012. Enhanced biofilm formation by  
695 *Escherichia coli* LPS mutants defective in Hep biosynthesis. *PLoS One* 7:e51241.  
696 77. Beloin C, Michaelis K, Lindner K, Landini P, Hacker J, Ghigo JM, Dobrindt U. 2006.  
697 The transcriptional antiterminator RfaH represses biofilm formation in *Escherichia coli*. *J  
698 Bacteriol* 188:1316-31.

699 78. Nagy G, Dobrindt U, Grozdanov L, Hacker J, Emody L. 2005. Transcriptional regulation  
700 through RfaH contributes to intestinal colonization by *Escherichia coli*. *FEMS Microbiol  
701 Lett* 244:173-80.

702 79. Gao Q, Xu H, Wang X, Zhang D, Ye Z, Gao S, Liu X. 2013. RfaH promotes the ability  
703 of the avian pathogenic *Escherichia coli* O2 strain E058 to cause avian colibacillosis. *J  
704 Bacteriol* 195:2474-80.

705 80. Nagy G, Dobrindt U, Schneider G, Khan AS, Hacker J, Emody L. 2002. Loss of  
706 regulatory protein RfaH attenuates virulence of uropathogenic *Escherichia coli*. *Infect  
707 Immun* 70:4406-13.

708 81. Aguiniga LM, Yaggie RE, Schaeffer AJ, Klumpp DJ. 2016. Lipopolysaccharide Domains  
709 Modulate Urovirulence. *Infect Immun* 84:3131-3140.

710 82. Zdziarski J, Svanborg C, Wullt B, Hacker J, Dobrindt U. 2008. Molecular basis of  
711 commensalism in the urinary tract: low virulence or virulence attenuation? *Infect Immun*  
712 76:695-703.

713 83. Hull R, Rudy D, Donovan W, Svanborg C, Wieser I, Stewart C, Darouiche R. 2000.  
714 Urinary tract infection prophylaxis using *Escherichia coli* 83972 in spinal cord injured  
715 patients. *J Urol* 163:872-7.

716 84. Darouiche RO, Donovan WH, Del Terzo M, Thornby JI, Rudy DC, Hull RA. 2001. Pilot  
717 trial of bacterial interference for preventing urinary tract infection. *Urology* 58:339-44.

718 85. Trautner BW, Hull RA, Thornby JI, Darouiche RO. 2007. Coating urinary catheters with  
719 an avirulent strain of *Escherichia coli* as a means to establish asymptomatic colonization.  
720 *Infect Control Hosp Epidemiol* 28:92-4.

721 86. Darouiche RO, Green BG, Donovan WH, Chen D, Schwartz M, Merritt J, Mendez M,  
722 Hull RA. 2011. Multicenter randomized controlled trial of bacterial interference for  
723 prevention of urinary tract infection in patients with neurogenic bladder. *Urology* 78:341-  
724 6.

725 87. Tagliaferri TL, Jansen M, Horz HP. 2019. Fighting Pathogenic Bacteria on Two Fronts:  
726 Phages and Antibiotics as Combined Strategy. *Front Cell Infect Microbiol* 9:22.

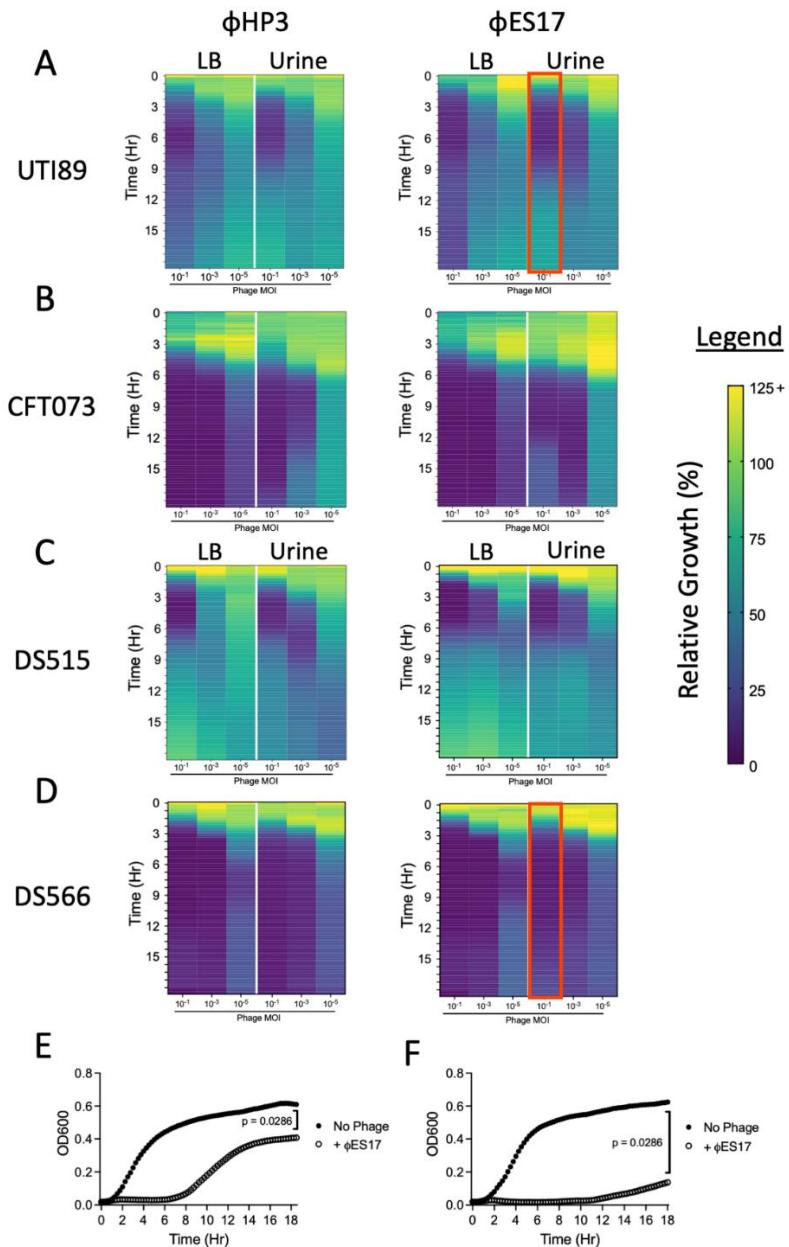
727 88. Velkov T, Thompson PE, Nation RL, Li J. 2010. Structure--activity relationships of  
728 polymyxin antibiotics. *J Med Chem* 53:1898-916.

729 89. Trebosc V, Gartenmann S, Totzl M, Lucchini V, Schellhorn B, Pieren M, Lociuro S,  
730 Gitzinger M, Tigges M, Bumann D, Kemmer C. 2019. Dissecting Colistin Resistance  
731 Mechanisms in Extensively Drug-Resistant *Acinetobacter baumannii* Clinical Isolates.  
732 *mBio* 10.

733 90. Moosavian M, Emam N, Pletzer D, Savari M. 2020. Rough-type and loss of the LPS due  
734 to lpx genes deletions are associated with colistin resistance in multidrug-resistant  
735 clinical *Escherichia coli* isolates not harbouring mcr genes. *PLoS One* 15:e0233518.

736

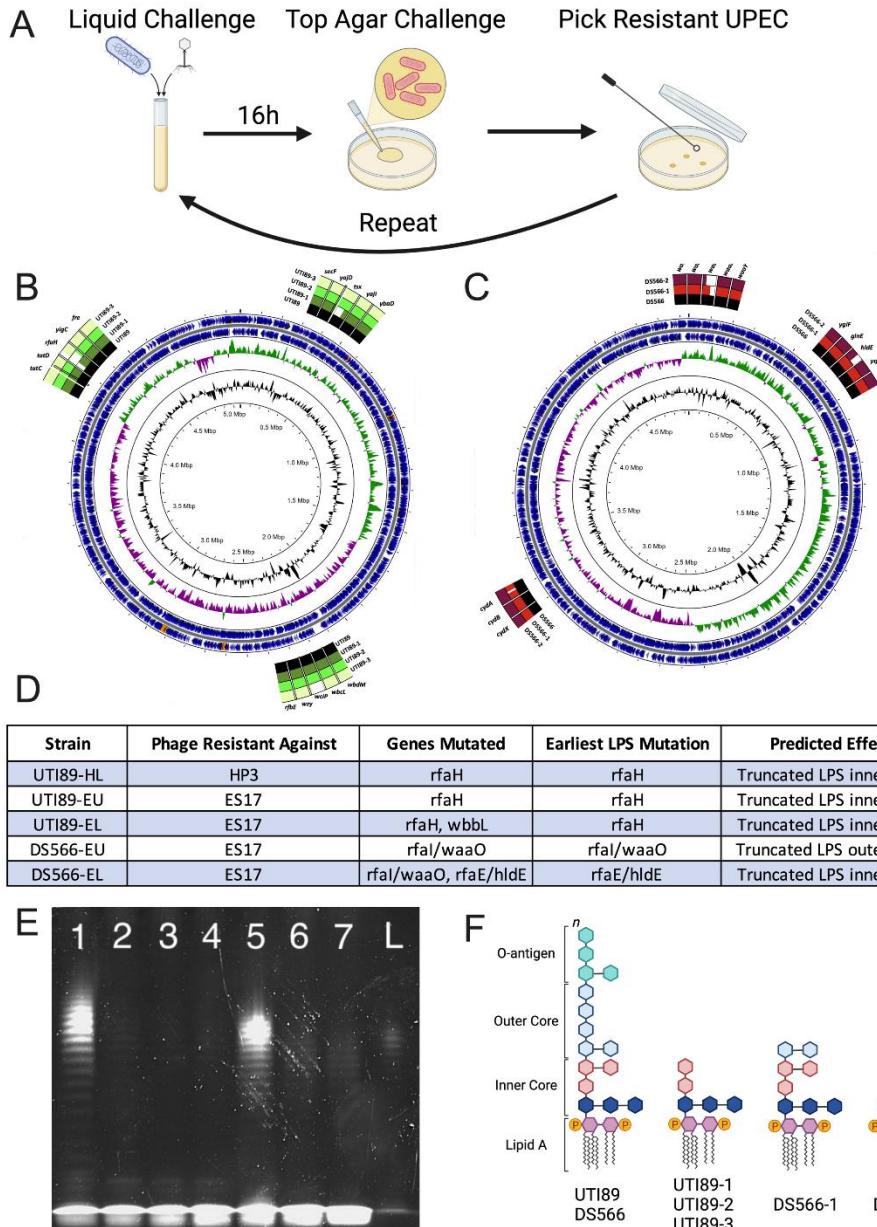
737


738

739

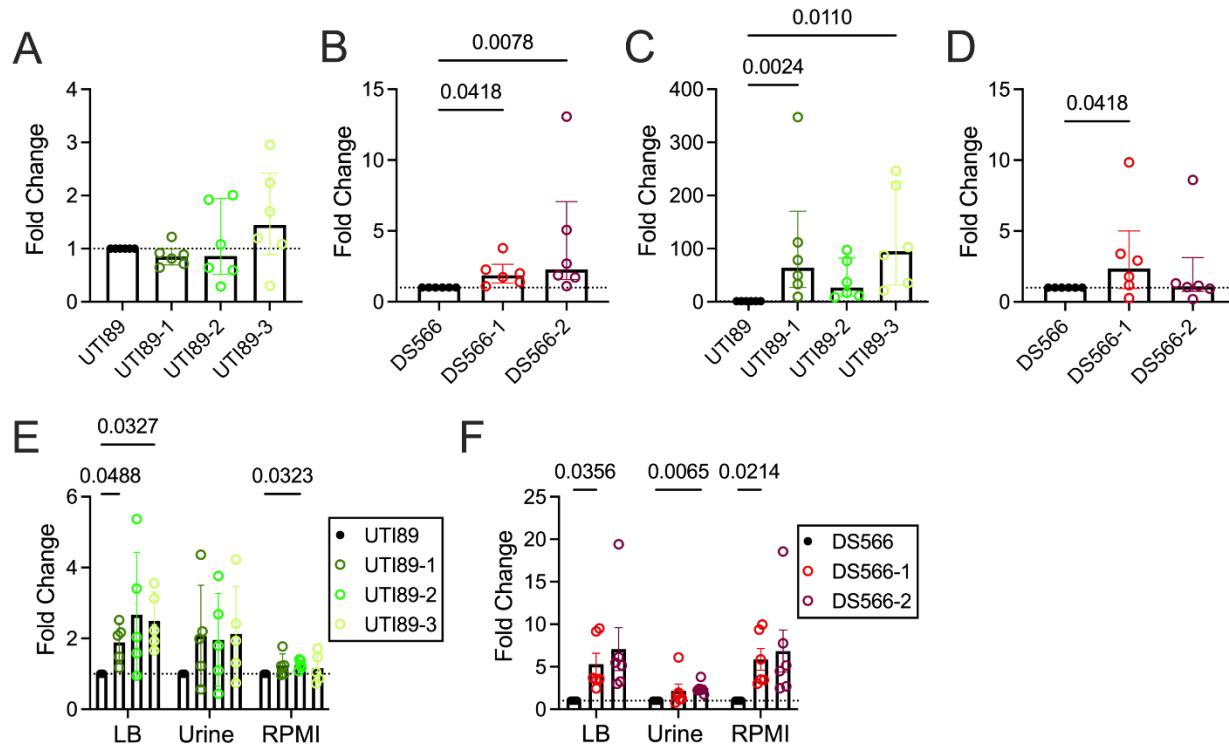
740

741


742 **FIGURES & FIGURE LEGENDS**



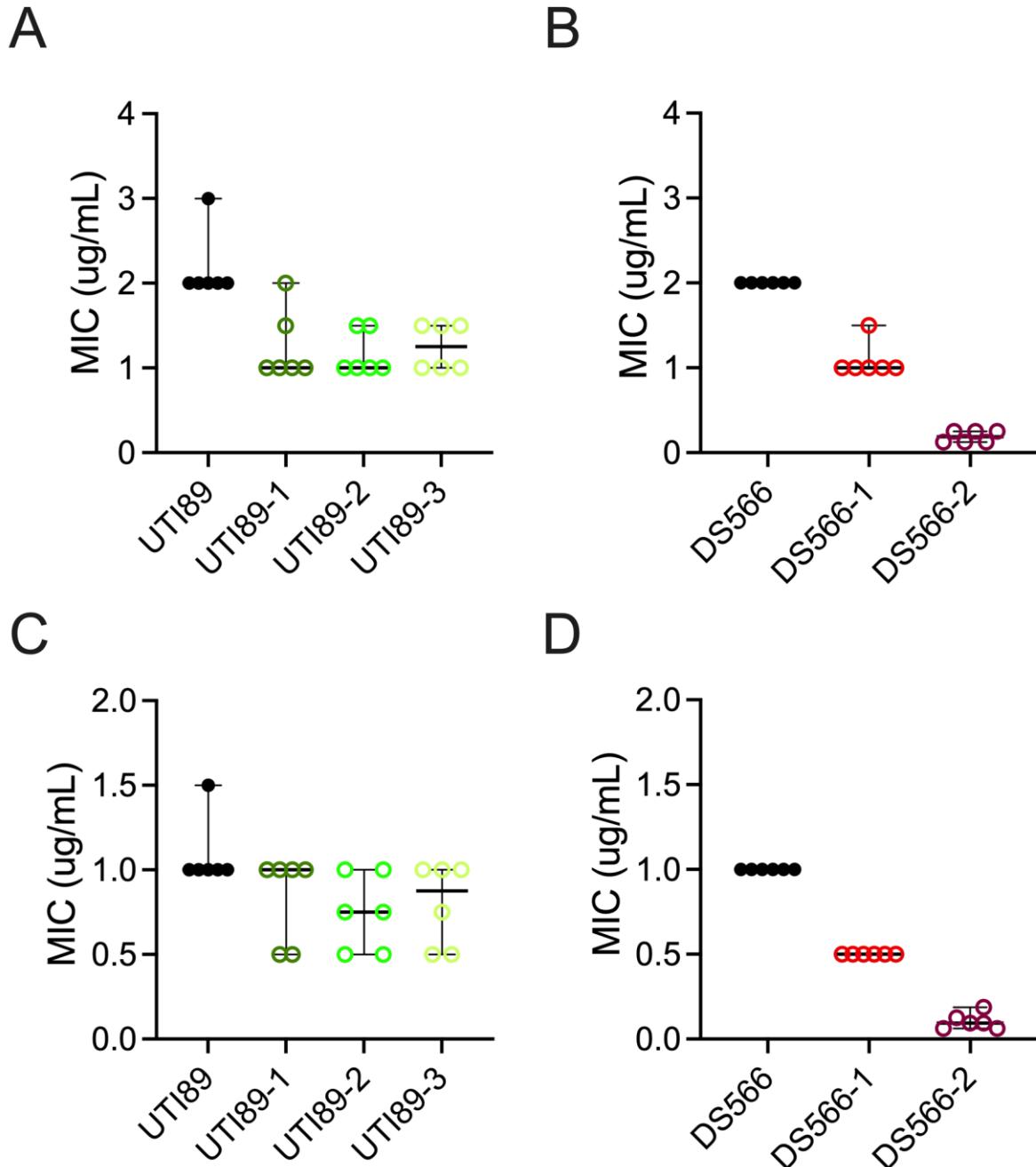
743


744 **Figure 1: Phage-bacterial dynamics are similar in LB and pooled human urine with resistance**  
745 **developing in both conditions.** Heatmaps of relative bacterial growth (OD<sub>600</sub> of phage  
746 treated well/OD<sub>600</sub> of untreated well) of bacteria challenged with HP3 (left column) or ES17 (right  
747 column) in LB media and pooled human urine during 18h of growth. Conventional UPEC strains UTI89  
748 (A) and CFT073 (B) were used as well as recently isolated catheter associated UTI isolates DS515 (C)  
749 and DS566 (D). All bacteria were challenged at multiplicities of infection (MOI) of 10<sup>-1</sup>, 10<sup>-3</sup>, and 10<sup>-5</sup>. (E)  
750 Representative growth curve of UTI89 challenged with ES17 at MOI 10<sup>-1</sup> in urine highlighted in red in  
751 (A). (F) Representative growth curve of DS566 challenged with ES17 at MOI 10<sup>-1</sup> in urine highlighted in  
752 red in (D). All heatmaps are representative of two to three independent experiments performed in  
753 duplicate or triplicate. Area under the curve (AUC) was measured for each growth curve and analyzed by  
754 Mann-Whitney test.

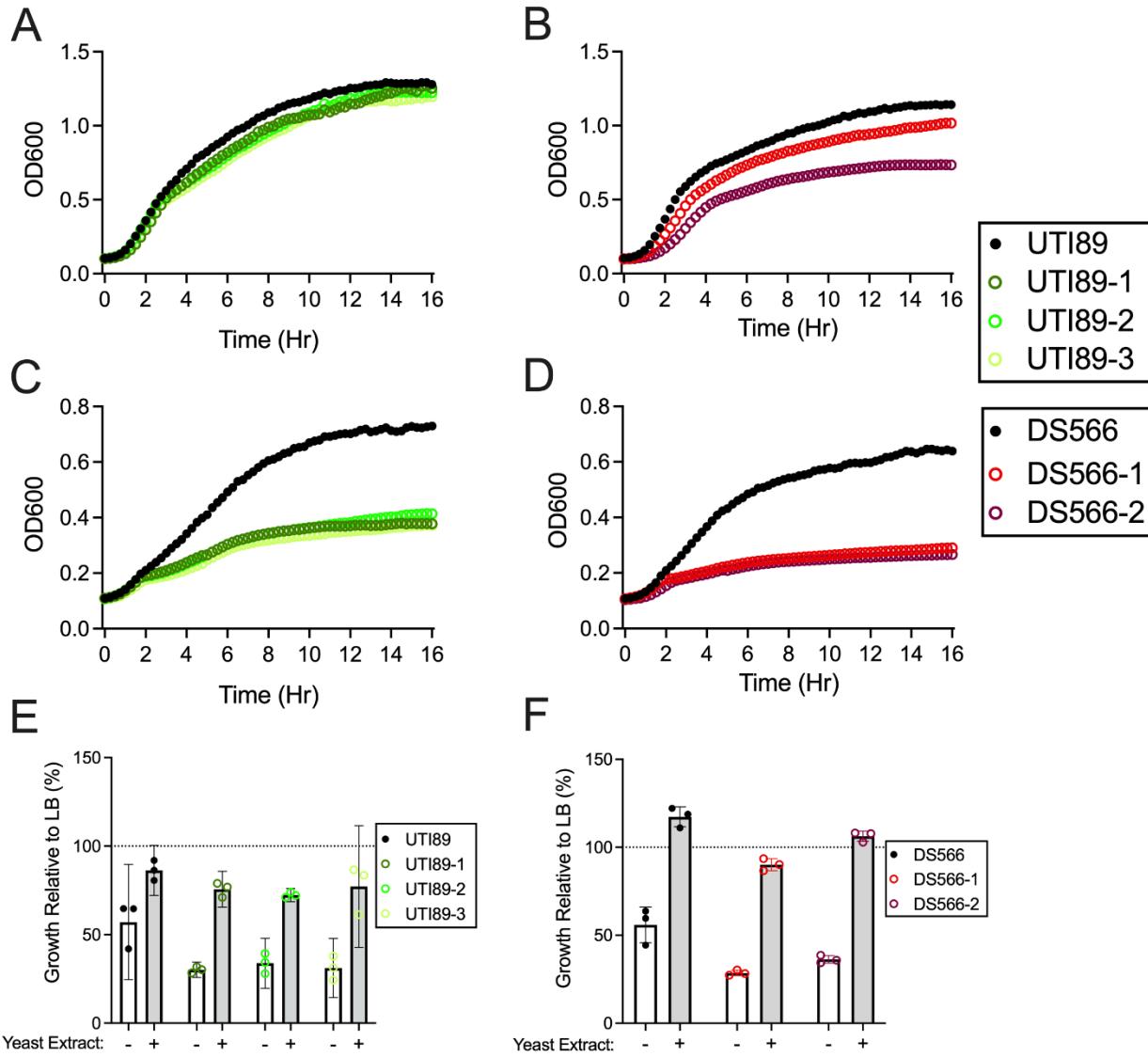
755



756


757 **Figure 2: Isolation and sequencing of phage resistant bacteria indicates mutations**  
758 **to LPS biosynthesis confer resistance to phages HP3 and ES17.** (A) Schematic demonstrating the  
759 selection protocol for identifying clonal phage-resistant mutant UPEC through serial phage  
760 challenges. (B) Diagrams depicting mutations identified in UTI89 phage-resistant mutants and (C) DS566  
761 phage-resistant mutants. (D) Summaries of mutations identified through whole genome sequencing. (E)  
762 Representative SDS-page image of wild-type and phage resistant UPEC LPS isolated through  
763 hot aqueous-phenol extraction run on a 4-12% SDS-polyacrylamide gel loaded with 15 $\mu$ L of isolated  
764 product. Lane 1: Wild-type UTI89, lane 2: UTI89-1, lane 3: UTI89-2, lane 4: UTI89-3, lane 5: Wild-type  
765 DS566, lane 6: DS566-1, lane 7: DS566-2, L: LPS standard. Isolation and visualization of LPS was  
766 performed in two independent experiments with comparable results. (F) Predicted LPS structures based  
767 on LPS mutations noted in sequencing analysis. Images for panels A and F were created  
768 using BioRender software.

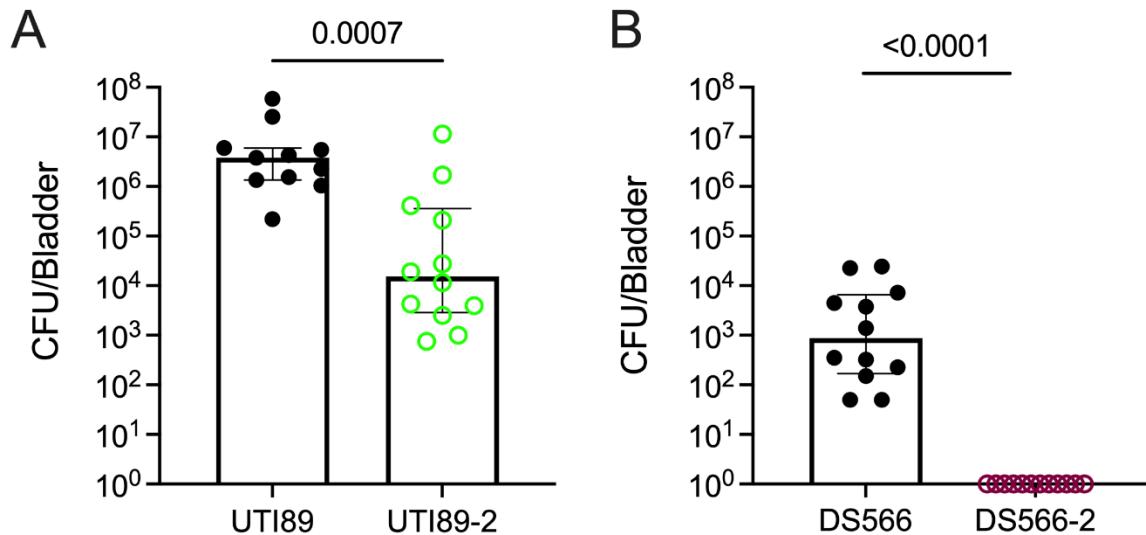



769

770

771 **Figure 3: Adherence and invasion of HTB-9 cells as well as biofilm formation is altered in LPS**  
772 **mutant UPEC. (A) UTI89 and (B) DS566 and respective LPS mutant bacterial adherence to HTB-9 cells**  
773 **after 30 min of infection, MOI = 1. (C) HTB-9 cells were infected with UTI89 or (D) DS566 and their**  
774 **LPS mutants (MOI = 1) for two hours before being media was changed to RPMI-1640 containing**  
775 **50 $\mu$ g/mL gentamycin to kill extracellular bacteria. After two hours of antibiotic treatment, cells**  
776 **were lysed, and intracellular bacteria enumerated. (E) Biofilm formation of UTI89 or (F) DS566 and their**  
777 **LPS mutants in LB, urine, or RPMI-1640 quantified by crystal violet uptake. All adherence, invasion, and**  
778 **biofilm assays were performed in five to six independent experiments. Adherence (A,B) and**  
779 **invasion (C,D) assays were performed in technical duplicate or triplicate while biofilm (E,F) assays were**  
780 **performed with six to eight technical replicates. Data was analyzed by Friedman test using Dunn's**  
781 **multiple comparisons test (A-D), or two-way repeated measures ANOVA with Geisser-Greenhouse**  
782 **correction and Dunnett's multiple comparisons test (E,F).**




784 **Figure 4: LPS mutation renders UPEC more susceptible to antibiotics that target the bacterial**  
785 **outer membrane.** Colistin MICs of (A) UTI89 and (B) DS566 and their LPS mutants in pooled human  
786 urine. Polymyxin B MICs of (C) UTI89 and (D) DS566 and their LPS mutants in pooled human urine.  
787 Individual points are representative of independent experiments performed in duplicate. Bars represent  
788 median and 95% confidence intervals.



789

790

791 **Figure 5: Phage resistant UPEC growth is attenuated in urine but can be partially restored with**  
792 **nutrient supplementation.** (A) Mutants of UTI89 and (B) DS566 grow similar to their parental strain in  
793 LB media, but their growth is heavily attenuated in pooled human urine (C, D respectively). (E) UTI89  
794 and (F) DS566 and their phage-resistant mutants were grown in urine with or without yeast  
795 extract supplementation or LB media 16h. Percent growth relative to LB for urine (white bar) and  
796 supplemented urine (grey bar) is displayed. Growth in LB (A,B) and urine (C,D) are representative of  
797 three independent experiments performed with four technical replicates. Growth in urine supplemented  
798 with yeast extract (E,F) is representative of three independent experiments performed in technical  
799 triplicate.



800  
801 **Figure 6: Phage resistant UPEC have decreased bladder colonization in a murine model of**  
802 **UTI.** (A) Female C57BL/6J mice were transurethrally infected with  $10^8$  CFU of UTI89 or UTI89-2 or (B)  
803 DS566 or DS566-2. After 24h bladders were removed, and bladder colonization was assessed. Points  
804 represent individual biological replicates performed over two separate experiments. (A) UTI89  $n = 11$ ,  
805 UTI89-2  $n = 12$ ; (B) DS566  $n = 12$ , DS566-2  $n = 12$ . Lines represent median and interquartile range. Data  
806 were analyzed by Mann-Whitney test.