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Abstract1

Recent deep learning models that predict the Hi-C contact map from DNA sequence achieve promising2

accuracy but cannot generalize to new cell types and indeed do not capture cell-type-specific differences3

among training cell types. We propose Epiphany, a neural network to predict cell-type-specific Hi-C contact4

maps from five epigenomic tracks that are already available in hundreds of cell types and tissues: DNase I5

hypersensitive sites and ChIP-seq for CTCF, H3K27ac, H3K27me3, and H3K4me3. Epiphany uses 1D6

convolutional layers to learn local representations from the input tracks, a bidirectional long short-term7

memory (Bi-LSTM) layers to capture long term dependencies along the epigenome, as well as a generative8

adversarial network (GAN) architecture to encourage contact map realism. To improve the usability of9

predicted contact matrices, we trained and evaluated models using multiple normalization and matrix10

balancing techniques including KR, ICE, and HiC-DC+ Z-score and observed-over-expected count ratio.11

Epiphany is trained with a combination of MSE and adversarial (i.a., a GAN) loss to enhance its ability12

to produce realistic Hi-C contact maps for downstream analysis. Epiphany shows robust performance and13

generalization to held-out chromosomes within and across cell types and species, and its predicted contact14

matrices yield accurate TAD and significant interaction calls. At inference time, Epiphany can be used to15

study the contribution of specific epigenomic peaks to 3D architecture and to predict the structural changes16

caused by perturbations of epigenomic signals.17

Introduction18

In vertebrate genomes, the three-dimensional (3D) hierarchical folding of chromatin in the nucleus plays a critical19

role in the regulation of gene expression, replication timing, and cellular differentiation [1, 2]. This 3D chromatin20

architecture has been elucidated through genome-wide chromosome conformation capture (3C) assays such as21

Hi-C, Micro-C, HiChIP, and ChIA-PET [3, 4, 5, 6] followed by next generation sequencing, yielding a contact22

matrix representation of pairwise chromatin interactions. Early Hi-C analyses revealed an organization of ∼1Mb23

self-interacting topologically associating domains (TADs) that may insulate within-TAD genes from enhancers24

outside of TAD boundaries [7]. High-resolution 3C-based studies have mapped regulatory interactions, often25

falling within TADs, that connect regulatory elements to target gene promoters [8, 9].26

Over the past decade, large consortium projects as well as individual labs have extensively used 1D epigenomic27

assays to map regulatory elements and chromatin states across numerous human and mouse cell types. These28

include methods to identify chromatin accessible regions (DNase I hypersensitive site mapping, ATAC-seq)29

as well as transcription factor occupancy and histone modifications (ChIP-seq, CUT&RUN). While at least30

some of these 1D assays have become routine, mapping 3D interactions with Hi-C remains relatively difficult31

and prohibitively costly, and high-resolution contact maps (5 kb resolution, 2 billion read pairs) are still only32

available for a small number of cell types. This raises the question of whether it is possible to train a model to33

accurately predict the Hi-C contact matrix from more easily obtained 1D epigenomic data in a cell-type-specific34
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fashion. Such a model could ultimately be used to predict how perturbations in the 1D epigenome—including35

deletion of TAD boundaries or inactivation of distal regulatory elements—would impact 3D organization.36

Initial machine learning methods to predict Hi-C interactions from 1D epigenomic data or DNA sequence took a37

pairwise approach, treating each interacting or non-interacting pair of genomic bins as an independent training38

example [10, 11, 12]. For example, HiC-Reg [10] used a random forest regression model to predict the Hi-C39

contact signal from epigenomic features of the pair of anchoring genomic intervals. Two more recent models,40

DeepC [13] and Akita [14], respectively predict ‘stripes’ or submatrices of the Hi-C contact matrix from DNA41

sequence, capturing the non-independence of interaction bins. Neither method uses epigenomic data as an input42

signal. DeepC [13] presented a transfer learning framework by pre-training a model to predict epigenomic marks43

from DNA sequence in order to learn useful local sequence representations, then fine-tuning the model to predict44

the Hi-C contact map. Akita [14] designed a deep convolutional neural network to predict the Hi-C contact maps45

of multiple cell types from DNA sequence. These prior studies represent a significant advance in predicting 3D46

genomic structure, and the DeepC and Akita models demonstrated some success in predicting the impact of47

sequence perturbations like structural genetic variants on local chromatin folding. However, there are also clear48

limitations to these approaches. Models that start with DNA sequence need considerable computational resources49

to extract and propagate useful information from base-pair resolution to megabase scale. More importantly, by50

learning mappings from only DNA sequence to Hi-C contact map data in the training cell types—and therefore51

lacking any cell-type-specific feature inputs—the resulting models cannot generalize to new cell types that52

are not seen in training. In fact, it has also been observed that sequence-based models capture very limited53

cell-type-specific information about 3D genomic architecture even across the training data and instead predict54

similar structures in every cell type [14].55

Here we propose a novel neural network model called Epiphany to predict the cell-type-specific Hi-C contact map56

from five commonly generated epigenomic tracks that are already available for a wide number of cell types and57

tissues: DNase I hypersensitive sites and CTCF, H3K27ac, H3K27me3, and H3K4me3 ChIP-seq. Epiphany uses58

1D convolutional layers to learn local representations from the input tracks as well as bidirectional long short term59

memory (Bi-LSTM) layers to capture long term dependencies along the epigenome and a generative adversarial60

network (GAN) architecture to encourage realism. One goal of our study is to predict contact maps that are61

usable for downstream computational analyses such as TAD and interaction calls. To this end, we assessed model62

performance using multiple normalization and matrix balancing techniques including Knight-Ruiz (KR) [15],63

iterative correction (ICE) [16], and HiC-DC+ [17] Z-score and observed-over-expected count ratio. Epiphany is64

trained with a combination of mean-squared error (MSE) and adversarial loss to enhance its ability to produce65

realistic Hi-C contact maps for downstream analysis. The adversarial loss is calculated using a simultaneously66

trained GAN-style discriminator network, which distinguishes real contact maps from predicted ones, and helps67

the model to improve its prediction quality. Epiphany shows robust performance and generalization abilities to68

held-out chromosomes within and across cell types and species, and its predicted contact matrices yield accurate69

TAD and significant interaction calls. At inference time, Epiphany can be used to study the contribution of70

specific epigenomic signals to 3D architecture and to predict the structural changes caused by perturbations of71

epigenomic signals.72

Results73

Epiphany: A CNN-LSTM trained with an adversarial loss accurately predicts Hi-C74

contact maps75

Epiphany uses epigenomic signals (DNaseI, CTCF, H3K27ac, H3K27me3, H3K4me3) to predict normalized76

Hi-C contact maps. Epigenomic signals are extracted at 100bp resolution from normalized .bigWig files without77

applying a peak calling step. Hi-C contact maps were initially binned at 10 kb resolution and normalized using78

the HiC-DC+ package [17] to produce Z-scores and observed-over-expected count ratios, Juicer Tools [18] for79

KR normalization, and HiCExplorer [19] for ICE normalization. The normalization approaches provided by80

HiC-DC+ are estimated from a negative binomial regression that is estimated directly from count data and81

adjusts for genomic distance and other covariates.82

2

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted December 3, 2021. ; https://doi.org/10.1101/2021.12.02.470663doi: bioRxiv preprint 

https://doi.org/10.1101/2021.12.02.470663
http://creativecommons.org/licenses/by-nc-nd/4.0/


Epiphany consists of two parts: a generator to extract information and make predictions, and a discriminator to83

introduce adversarial loss into the training process (Fig. 1A and Methods). In the generator, we first used a84

series of convolution modules to featurize epigenomic information in a sliding window fashion. For one output85

vector, which covers a distance of 1Mb orthogonal to the diagonal, we used a window size of 1.4 Mb centered at86

the corresponding region as input (Fig. 1B). Then a Bi-LSTM layer was employed to capture the dependencies87

between output vectors, so that a total of 3.4 Mb input were processed in one pass for prediction of 200 output88

vectors. At the end, a fully connected layer was used to integrate signals and make the final prediction. We89

also introduced an adversarial loss and a discriminator, which consists of several convolution modules that are90

applied during training and pushes the generator to produce realistic samples (Fig. 1C).91

Given the sequential nature of Hi-C contact maps, interactions on consecutive output vectors are unlikely to92

be independent from one another. We found that Bi-LSTM layers introduce strong dependencies between the93

output vectors, which allows Epiphany to leverage structures that span multiple genomic positions in Hi-C maps94

(such as edges of TADs). Furthermore, Bi-LSTM layers overcome the limitation of convolutional neural networks95

(CNNs) by enabling each output vector to make use of important signals beyond the input window. This is96

conducive to studying the contribution of distal regulatory elements towards 3D genome structures and reduces97

the sensitivity of model performance to the choice of window size.98

Past approaches that predict the 3D genome structure from 1D inputs use pixel-wise MSE to quantify the99

similarity between predicted and ground truth Hi-C maps. However, pixel-wise losses for images have been shown100

by the computer vision community to be overly sensitive to noise [20] and to yield blurry results when used as101

objectives for image synthesis [21, 22]. In the context of predicting Hi-C maps, MSE loss can over-penalize poor102

performance on featureless, noisy regions while failing to penalize underestimation of significant interactions.103

These issues can be mitigated with an adversarial loss, which enables the model to generate highly realistic104

samples while circumventing the need to explicitly define similarity metrics for complex modalities of data. Thus,105

Epiphany is trained using a convex combination of MSE loss and adversarial loss. A parameter λ was introduced106

to balance the proportion of MSE loss and adversarial loss, and the loss function was defined as107

min
θG

max
θD

(1− λ)Ladv(θG , θD) + λLMSE(θ
G) (1)

where λLadv(θG , θD) is the adversarial loss, and LMSE(θ
G) is the MSE between the predicted contact map and108

ground truth. Intuitively, the MSE loss ensures that the Hi-C maps predicted by Epiphany are aligned with109

their corresponding epigenomic tracks, while the adversarial loss ensures that the predictions are realistic. We110

find that using this customized training objective yields Hi-C maps that can be directly processed by commonly111

used downstream analysis tools.112

Epiphany accurately predicts the Hi-C contact map113

We first benchmarked the model at 10 kb resolution to compare between two loss functions: MSE only and114

the convex combination of MSE and adversarial loss. Both losses use the observed-over-expected count ratio115

normalization based on HiC-DC+. Models were trained on data from the GM12878 ENCODE cell line, with116

chr3, 11, and 17 as completely held-out chromosomes. Epiphany demonstrates good performance for both the117

Pearson and Spearman correlation metrics using the observed-over-expected count ratio (Table 1), while MSE118

produced higher correlations than the convex combination of MSE and adversarial loss. However, we observed119

that the high correlations from MSE trained models were associated with blurriness in the predicted contact maps120

(Fig. 2B), whereas the correlations produced by the combined loss models may have been slightly diminished121

due to small deviations in the sharper predictions. We also found that downstream algorithms such as TAD or122

significant loop callers would not function properly on such blurry maps. Therefore, we reasoned that correlation123

may not be an appropriate evaluation metric and decided to use the combined loss (MSE+adversarial loss) for124

downstream analysis.125

We then tested the robustness of Epiphany with various normalization methods, including KR normalization,126

ICE normalization, and Z-scores from HiC-DC+. All models were set up with the same training approach as127

before, where chr3, 11, and 17 were used as held-out chromosomes and models were trained with the combined128

3

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted December 3, 2021. ; https://doi.org/10.1101/2021.12.02.470663doi: bioRxiv preprint 

https://doi.org/10.1101/2021.12.02.470663
http://creativecommons.org/licenses/by-nc-nd/4.0/


loss. Epiphany shows robust performance in all normalization methods (Fig. 2A). ICE normalization obtained129

the highest correlations, with an average Pearson correlation of 0.7028 and Spearman correlation of 0.5303 on130

completely held-out chromosomes (Table 1).131

Normalization Pearson Pearson Pearson Spearman Spearman Spearman
Method λ (all) (train) (test) (all) (train) (test)
Obs/Exp 0.95 0.7408 0.7687 0.5636 0.6899 0.7191 0.5048
Obs/Exp 1 (MSE only) 0.7833 0.8045 0.6494 0.7381 0.7605 0.5963
Z-score 0.95 0.6881 0.7222 0.4722 0.6695 0.7034 0.4544
KR 0.35 0.7289 0.7510 0.5889 0.5909 0.6135 0.4477
ICE 0.35 0.8108 0.8288 0.7028 0.6631 0.6852 0.5303

Table 1: Mean Pearson and Spearman correlation for different normalization methods

To explore the capacity of Epiphany to capture key structures in genome architecture, we next evaluated the132

ability of Epiphany predictions to recover TAD boundaries. For all normalization methods and their predictions,133

we called TAD boundaries using TopDom [23] with window sizes ranging from 10 to 50 (corresponding to 100 kb to134

500 kb regions). Because TAD calls depend on the normalization method, we first used KR normalization as the135

gold standard and compared TAD insulation scores computed on ground truth data on the test chromosomes using136

different normalization methods. Note that we chose to compare insulation scores rather than TAD boundaries,137

since the latter relies on finding local extrema in the insulation score signal and therefore can be unstable. Among138

all these methods, ICE had the highest consistency with KR, followed by Z-scores calculated from HiC-DC+.139

The observed-over-expected count ratios had the least consistency and showed large variation over the three test140

chromosomes (Fig. 2C, left). We then compared the insulation score calculated from the Epiphany-predicted141

contact maps trained with different normalization methods vs. the corresponding ground truth on the test142

chromosomes. ICE showed robust predictions on all test chromosomes, whereas HiC-DC+ observed-over-expected143

count ratio normalization displayed strong mean performance but had larger variance, especially for larger144

window sizes. HiC-DC+ Z-scores and KR normalization showed lower consistency between predicted vs. ground145

truth insulation scores (Fig. 2C, right). From a visual comparison of ground truth and predicted contact maps146

with different normalization approaches, we could see Epiphany consistently predicts accurate TAD structures147

(Fig. 2D). Overall, this analysis suggests that, for accurate prediction of TAD structure, Epiphany trained on148

ICE normalized contact maps gave the best performance, with HiC-DC+ observed-over-expected count ratio as149

runner-up.150

One advantage of HiC-DC+ normalization is that it readily allows the comparison of significant interactions151

between predicted contact maps and ground truth. HiC-DC+ [17] fits a negative binomial regression using152

genomic distance, GC content, mappability and effective bin size based on restriction enzyme sites to estimate153

the expected read count for each interaction bin, which allows an assessment of significance of the observed count.154

For convenience, we defined the significant interactions as ground truth Z-scores greater than 2. Significant155

interactions were called with various thresholds from test chromosomes on predicted contact maps using Z-scores156

and observed-over-expected count ratio, yielding the ROC curves for each test chromosome (Fig. 2E). The157

average AUC is 0.7639 for the two models, suggesting solid performance at a difficult task.158

Epiphany shows robust performance at finer resolution159

Due to good overall performance and the ability to directly identify significant interactions, we chose observed-160

over-expected count ratios rather than Z-score from HiC-DC+ for further analysis. We again trained Epiphany161

to predict interactions within 1Mb from the diagonal at 5 kb resolution. Epiphany showed robust performance162

at 5 kb resolution, with an average Pearson correlation of 0.5625 and Spearman correlation of 0.5270. In163

addition to the distance-dependent correlations, we also used both MSE loss and insulation scores calculated164

from HiCExplorer [19] to evaluate model performance. Since Epiphany jointly predicts multiple interaction165

vectors, the model can predict a submatrix of the contact map that covers a 2Mb distance along the diagonal166

(400 vectors for 5 kb resolution) and up to 1Mb from the diagonal. We calculated the average MSE loss between167
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the predicted submatrix vs. ground truth as well as Pearson correlation between insulation scores calculated from168

the corresponding submatrices. Results for all 2Mb submatrices from the three held-out chromosomes (chr3, 11,169

17, Fig. 3B) show that Epiphany displays consistent prediction performance across held-out chromosomes with170

diverse length and gene densities. In particular, 84.4% (173 out of 203) of submatrices have insulation correlation171

higher than 0.50. Epiphany showed robust performance in most regions along the genome but sometimes172

produced inaccurate predictions at regions without clear signals or in low mappability regions. (Fig. 3A).173

We also compared Epiphany with Akita [14] on common test regions, restricting our evaluation to regions that174

were held out by Akita and overlap with our test chromosomes. We binned the Hi-C contact map at 5 kb175

resolution and followed the normalization approaches suggested in the Akita study (Methods). Epiphany was176

re-trained using the training chromosomes as before (all chromosomes except for chr3, 11, 17) and evaluated on177

the 42 test regions from Akita’s held-out set falling in our test chromosomes. Akita’s predictions at 2048 bp178

resolution were average-pooled to 4096 bp in order to obtain relatively consistent resolution. For each test region,179

we calculated the Pearson correlation between predicted contact matrices and ground truth for both Akita and180

Epiphany (Fig. 3C). We also visually compared the predictions of Akita and Epiphany with ground truth on181

the held-out examples (Fig. 3D). Quantitatively and qualitatively, both models showed similar performance.182

Epiphany predicts cell-type specific 3D structure183

Since Epiphany uses epigenomic marks as input, it can potentially generalize to predict cell-type-specific 3D184

structures in a new cell type. We first compared Epiphany’s cell-type-specific predictions with those of Akita,185

where five different cell types were simultaneously predicted in a multi-task framework. We selected H1ESC and186

GM12878 from these five cell types for the comparison. Akita’s cell-type-specific predictions were directly obtained187

from its multi-task output. Epiphany was trained on GM12878 and evaluated on H1ESC test chromosomes188

(chr3, 11, 17) at inference time. We checked the visual comparison of Akita and Epiphany cell-type-specific189

predictions relative to their respective ground truths and also calculated the absolute difference for ground truth190

and predictions between the two cell types (Fig. 4A). The results suggest that Epiphany, which was trained only191

on GM12878 data, can generalize to a new cell type and accurately predict the differential structure between192

cell types based on cell-type-specific 1D epigenomic data. By contrast, the DNA-sequence-based Akita model,193

although trained on Hi-C/Micro-C data in these and other cell types, largely predicts the same 3D structure in194

GM12878 and H1ESC.195

We next explored the ability of Epiphany to identify the contribution of cell-type-specific epigenomic input196

features to differential 3D structures using feature attribution. In recent years, feature attribution has become a197

powerful tool to study the contribution of input features to prediction of a specific output. For each interaction198

bin in the predicted contact map, we first calculated the saliency score [24], which is a gradient-based attribution199

on input values. We then calculated the SHAP value [25] with baseline signals equal to zero, which highlights the200

contribution of epigenomic peaks to a specific output. We compared a region (chr17:70,500,000-73,500,000) with201

differential interactions between GM12878 and K562 (Fig. 4B). Epigenomic signals between chr17:72,000,000-202

72,500,000 in GM12878 contributed to the prediction of the highlighted interaction, while the absence of signals203

in K562 input led to the correct prediction of a weak interaction.204

Ablation analyses suggests redundancies between 1D inputs205

In the previous cell-type-specific analysis, distal H3K4me3 peaks gained importance in the K562 prediction when206

there were no signals at the anchors of the investigated interaction (Fig. 4B). We wondered whether features207

from different epigenomic tracks could compensate for each other in predicting interactions and more generally208

whether there exist redundancies between the input tracks.209

We performed a feature ablation experiment to address these questions. Instead of including all five epigenomic210

tracks as input, we re-trained the model with one or several of the tracks completely masked as zero. We reasoned211

that re-training the model rather than masking a specific input region at test time could better serve our goal.212

For example, using a model trained on all five input tracks, if we simply masked one important peak from213
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DNaseI track during test time, we expected that the model would inevitably fail to predict the corresponding214

interactions. However, if we re-trained the model with the entire DNaseI track masked, we expected the model215

to identify alternative signals from other tracks during training and potentially retain the ability to predict these216

interactions.217

Indeed, this idea matched our observations from the ablation analysis. We re-trained Epiphany with a) an218

additional SMC3 ChIP-seq track, b) CTCF track masked as zero, c) DNaseI track masked as zero, d) only219

CTCF and H3K27ac tracks as training inputs, and compared their predictions with the results using all input220

(Fig. 5A). We found that by removing DNaseI, the model achieved similar performance as using all input tracks.221

Models with CTCF masked or using only two tracks (CTCF+H3K27ac) showed weaker performance.222

As we have seen in previous example (Fig. 4B), DNaseI and H3K27ac contributed to the differential predictions223

between GM12878 and K562 at the region chr17:70,670,000-73,880,000. We therefore compared the prediction224

for this region using a model trained with all input tracks, without DNaseI, or with CTCF+H3K27ac only225

(Fig. 5B). Epiphany was still able to accurately predict interactions in this region after ablating DNaseI; feature226

attribution indicated that in place of the DNaseI signal (Fig. 5B, grey box), the model gave higher importance227

to H3K27me3 peaks (purple box) in order to predict the interaction. However, after ablating all signals except228

for CTCF and H3K27ac, the model failed to find alternative predictive signals and missed the boundary.229

Bi-LSTM layers capture the contribution of distal elements230

Given the sequential nature of Hi-C contact maps, interactions on consecutive output vectors are unlikely to231

be independent from one another. We tested whether the Bi-LSTM layers in Epiphany indeed captured the232

dependencies between the output vectors better than regular convolutional layers. We made predictions using233

Epiphany with Bi-LSTM layers and compared with a modified Epiphany where the Bi-LSTM layers were replaced234

by convolutional layers. We also calculated the saliency score and SHAP values for the bin chr17:57,140,000-235

57,750,000 (Fig. 5C). The interaction at chr17:57,140,000-57,750,000 was better predicted by Epiphany with236

Bi-LSTM layers, and feature attribution showed that one distal peak at around chr17:58,350,000-58,400,000237

contributed to the prediction. Compared with regular convolutional layers, Bi-LSTM layers introduce stronger238

dependencies between the output vectors and overcome the limitation of CNNs by enabling each output vector239

to make use of important signals beyond the input window.240

Epiphany predicts perturbations in 3D architecture241

Since Epiphany models the contribution of epigenomic signals to 3D structures, we explored whether Epiphany242

could predict 3D structural changes caused by perturbations to the epigenome. In particular, we considered243

examples where structural variations eliminate important epigenomic features. Despang et al. [26] studied the244

TAD fusion caused by deletion of CTCF sites in vivo in the mouse embryonic limb bud at the Sox9-Kcnj2245

locus. They used the promoter capture Hi-C data in the E12.5 mouse limb bud to show the structural changes246

after deleting major CTCF sites (mm9, GSE78109, GSE125294). In WT TAD structures, Kcnj2 and Sox9247

are separated into two TADs. After deleting four consecutive CTCF sites within a 15 kb boundary region248

(C1 site mm9 chr11:111,384,818–111,385,832, C2-C4 site chr11:111,393,908-111,399,229), the TAD boundaries249

disappeared and the two TADs fused together. When all CTCF binding sites between Kcnj2 and Sox9 were250

deleted, they observed a more complete TAD fusion (Fig. 6A). These experiments revealed a TAD fusion caused251

by the deletion of major CTCF sites at the boundaries and within the TAD.252

We then tested Epiphany’s ability to predict these structural changes after we perturbed the CTCF input track.253

Epiphany was trained on data from the human cell line GM12878 and used to make cross-species prediction in254

the mouse embryo. Epigenomic tracks were downloaded from ENCODE [27] and BioSamples [28] for mouse limb255

tissue aligned to the mm10 assembly. In the WT prediction, Epiphany predicted a strong boundary separating256

Kcnj2 and Sox9 into two TADs. Upon masking the C1-4 CTCF peaks (mm10 chr11:111,520,000-111,540,000) at257

the boundary and further masking all CTCF sites, Epiphany predicted behavior consistent with the ground258

truth experiments, where the two TADs gradually merged together (Fig. 6B, top). We further explored the259
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relationship between the CTCF peaks and TAD formation using feature attribution methods (Fig. 6B, bottom).260

The SHAP values are calculated and averaged for the bins in the vertical highlighted dashed lines. We can see261

that CTCF peaks at the boundary contribute to TAD separation in unperturbed prediction, while with the262

masked CTCF track, the feature attribution scores focus on more distal regions at the boundaries of the fused263

TAD.264

We also evaluated whether Epiphany could predict structural changes caused by genomic deletions. Yang et al.265

[29] observed upregulation of the FLT3 gene in acute lymphoblastic leukemia (ALL) patients with a 13q12.2266

deletion and attributed this gene expression change to chromatin structural reorganization and enhancer hijacking.267

FLT3 was found to be controlled by three regulatory elements in the 13q12.2 region: DS1 (chr13:28100363-268

28100863), the promoter of FLT3 ; DS2 (chr13:28,135,863-28,140,863); and DS3 (chr13:28,268,863-28,269,363) in269

the intron of PAN3. In normal hematopoietic cells, FLT3 is primarily controlled by the interaction of DS1 and270

DS2 due to the separation of two TADs (Fig. 6C, top, highlighted with dashed lines), where DS2 overlaps with271

the TAD boundary, and DS3 is located in a nearby TAD. In patients with the 13q12.2 deletion where DS2 was272

lost, they observed a fusion of the two nearby TADs and a strengthened long-range interaction between DS1 and273

DS3.274

We simulated this deletion by excising the DS2 region from all epigenomic input tracks and predicted the275

resulting contact matrix with Epiphany. That is, epigenomic signals in all five input tracks for the corresponding276

region were deleted, and the up- and downstream tracks were concatenated together. Epiphany predicted TAD277

structures consistent with reported observations. Before 13q12.2 deletion, Epiphany predicted a small TAD278

separation between FLT3 and PAN3 genes at (chr13:27,600,000-28,600,000) region, consistent with the ground279

truth in GM12878 (Fig. 6C, top and middle). After the deletion, Epiphany shows the fusion of the two TADs280

and increased interactions between the FLT3 and PAN3 gene regions (Fig. 6C, bottom).281

Discussion282

In this study, we developed Epiphany, a neural network model to predict the cell-type specific Hi-C contact map283

for entire chromosomes up to a fixed genomic distance using commonly generated epigenomic tracks that are284

already available for diverse cell types and tissues. We showed that Epiphany accurately predicts cell-type-specific285

3D genome architecture and shows robust performance for Hi-C different normalization procedures and at different286

resolutions. Epiphany was able to accurately predict cross-chromosome, cross-cell type and even cross-species287

3D genomic structures. From feature ablation and attribution experiments, we showed that Epiphany could288

be used to interpret the contribution of specific epigenomic signals to local 3D structures. Through in silico289

perturbations of epigenomic tracks followed by contact map prediction with Epiphany, we were able to accurately290

predict the cell-type-specific impact of epigenetic alterations and structural variants on TAD organization in291

previously studied loci.292

Although we used five specific epigenomic tracks (DNase I, CTCF, H3K27ac, H3K27me3, H3K4me3) and Hi-C293

data in this study, we believe that Epiphany could be used as a more general framework to link cell-type-specific294

epigenomic signals to 3D genomic structures. In the future, we plan to explore different combinations of the295

epigenomic input tracks to assess their biological and statistical relevance for prediction of 3D structure.296

In addition to using the epigenomic information, we also tried to incorporate DNA information into the model.297

Previous models have used a one-hot encoding of long genomic DNA sequences (1̃Mb), incurring significant298

computational costs [14, 13]. We therefore tried an alternative strategy of extracting DNA representations from299

a pre-trained DNABERT model [30], a new method that adapts the state-of-the-art natural language processing300

model BERT [31] to the setting of genomic DNA. During the pre-training phase, DNA sequences were first301

truncated to 510 bp length sequences as the ‘sentences’ and further divided into k-mers as the ‘words’ of the302

vocabulary. The model learns the basic syntax and grammar of DNA sequences by self-supervised training to303

predict randomly masked k-mers within each sentence. After pre-training, each 510 bp sequence was represented304

by a 768-length numerical vector. However, since Epiphany covers a 3.4 Mb region as input during training, it was305

still extremely computationally intensive to directly incorporate the pre-trained representations from DNABERT.306

We therefore excluded the DNABERT component in order to keep the model relatively light-weighted and307
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concise, although we do not rule out its utility in the future.308

Beyond these computational issues, a more conceptual modeling challenge is retaining the ability to generalize to309

new cell types while also incorporating DNA sequence information. In principle, training on genomic sequence310

may learn DNA sequence features that are specific to the training cell types and do not generalize to other311

cell types. Epiphany learns a general model for predicting the Hi-C contact map in a cell type of interest from312

cell-type-specific 1D epigenomic data, giving state-of-the-art prediction accuracy while allowing generalization313

across cell types and across species.314

Methods315

Data sources and pre-processing316

Training and test sets. We used three human cell lines (GM12878, H1ESc, K562) and one mouse cell line317

(mES) for training and testing the model. All human data (Hi-C, ChIP-seq) were processed using the hg38318

assembly and mouse data with mm10. For all experiments, chromosome 3, 11, 17 were used as completely319

held-out data for testing.320

Epigenomic data. All input epigenomic tracks including DNaseI, CTCF, H3K4me3, H3K27ac, H3K27me3 for321

genome assembly hg38 were downloaded from the ENCODE data portal [27]. Data were downloaded as bam322

files, and the replicates for each epigenomic track were merged using the pysam (https://github.com/pysam-323

developers/pysam) python module. We then converted merged bam files into bigWig files with deepTools [32]324

bamCoverage (binSize 10, RPGC normalization, other parameters as default). Genome-wide coverage bigWig325

tracks were later binned into 100-bp bins, and bin-level signals for the 5 epigenomic tracks were extracted as326

input data for the model.327

Hi-C data. High quality and deeply sequenced Hi-C data as .hic format for all human and mouse cell lines328

were downloaded from 4DN data portal [1]. Data were binned at 5 kb and 10 kb resolution and normalized329

using multiple approaches. KR normalization was calculated by Juicer tools [18] and ICE normalization by the330

HiCExplorer package [19]. Observed-over-expected count ratio and Z-score normalizations were calculated by331

HiC-DC+ [17]. ICE normalization for 5 kb resolution was calculated using Cooler [33], and all additional matrix332

balancing steps followed the Akita pipeline [14]. For the observed-over-expected count ratios from HiC-DC+, raw333

counts for interaction bins are modeled using negative binomial regression to estimate a background model, giving334

an expected count value based on the genomic distance and other covariates associated with the anchor bins335

(GC content, mappability, effective size due to restriction enzyme site distribution). The observed-over-expected336

count ratio is then calculated using observed raw counts divided by the expected counts from the HiC-DC+337

model.338

Biological validation data. Capture Hi-C and corresponding CTCF tracks from Despang et al. [26] were339

downloaded from (GSE78109, GSE125294). Data were visualized using Coolbox [34].340

Model and training341

CNN layers. The input epigenomic tracks were divided into overlapping windows, with a window length of342

m = 14, 000 bins (1.4Mb) and a stride of 1,000 bins (100 kb). We refer to the windowed inputs as X = {x1, ..., xn},343

where xi ∈ Rc×m corresponds to window i, n is the total number of windows, and c is the number of epigenomic344

tracks. A series of four convolution modules were used to featurize each window into a vector of dimension345

d = 900 (after flattening), where each convolution module consists of a convolutional layer with ReLU activation,346

max pooling, and dropout. We define Z = {z1, ..., zn} as the flattened output of the final convolution module347

where zi ∈ Rd is the representation for window xi.348

Bi-LSTM layers. The Bi-LSTM layers receive sequence Z = {z1, ..., zn} as an input and generate a new349
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sequence Z̃ = {z̃1, ..., z̃n}, where z̃i ∈ R2d. To produce the final output, every element of Z̃ is passed through350

a fully connected layer yielding the output sequence Ŷ = {ŷ1, ..., ŷn}. Each ŷi ∈ Rd′ is a vector of dimension351

d′ = 100 (or d′ = 200 if predicting 5 kb resolution Hi-C) and corresponds to a zig-zag stripe in a Hi-C matrix,352

similar to DeepC (shown in Fig. 1). Epiphany uses multiple Bi-LSTM layers, with skip connections between353

successive layers.354

Adversarial loss. Generative adversarial networks (GAN) consist of two networks, a generator G with355

parameters θG and a discriminator D with parameters θD, that are adversarially trained in a zero-sum game356

[22, 35]. During training, the generator learns to fool the discriminator by synthesizing realistic samples from a357

given input, while the discriminator learns to distinguish real samples from synthetic samples. To train Epiphany,358

we employed a convex combination of pixel-wise MSE and adversarial loss. Given a dataset D and a trade-off359

parameter λ, Epiphany solves the following optimization problem during training:360

min
θG

max
θD

λLadv(θG , θD) + (1− λ)LMSE(θ
G) (2)

361

Ladv(θG , θD) = E(X,Y )∼D [log(D(Y )) + log(1−D(G(X)))] (3)

362

LMSE(θ
G) = E(X,Y )∼D

∑
i∈[n]

∑
j∈[d′]

(Yij − [G(X)]ij)
2

 , (4)

where X corresponds to epigenomic tracks and Y the corresponding Hi-C matrix.363

In our framework, G is the CNN-LSTM architecture described in the previous sections while D is a simple four364

layer 2D CNN. Note that in practice, many tricks and heuristics are used in order to speed up convergence when365

training GANs, as described below.366

Training. In Algorithm 1, we show the specific procedure used to approximately solve the optimization problem367

described above. Note that rather than setting LD to −LG , we employ the target flipping heuristic outlined in368

[22] (Section 3.2.3) for faster convergence. The parameter updates (lines 5 and 8) are computed via the Adam369

optimizer [36]. We determine when to conclude training based on when LG ceases to decrease.370

Algorithm 1 Epiphany Training
Require: G,D, λ
1: while not converged do
2: for (X,Y ) ∼ D do . X is the set of tracks, Y is the Hi-C
3: LMSE ←MSE(G(X), Y ) . Update generator
4: Ladv ← − log(D(G(X)))
5: LG ← λLadv + (1− λ)Lmse
6: Update G using LG
7:
8: LD ← − log(D(Y ))− log(1−D(G(X ))) . Update discriminator
9: Update D using LD

10: end for
11: end while

Performance evaluation and application371

Model performance. We evaluated the model performance using Pearson and Spearman correlation of the372

predicted contact map vs. ground truth, computed as a function of genomic distance from the diagonal. Predicted373

contact maps were saved as .hic files for downstream analysis. We visualized Hi-C matrices and epigenomic374

tracks using CoolBox [34]. The insulation score was calculated using the TAD-separation score from HiCExplorer375

[37]. Then a correlation of these scores between ground truth vs. predicted contact maps was calculated. For376
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each 2Mb length submatrix (200 bin matrix), we calculated MSE loss and insulation score correlation between377

the predicted and true maps.378

TAD boundaries and significant interactions. We identified TAD structures and significant interactions379

in the predicted contact maps vs. ground truth. TAD structures were identified using TopDom [23], with380

various window sizes of 10, 20, 30, 40, 50. Since the binary TAD boundaries would be less robust towards381

hyper-parameter selection and small value perturbations on the contact maps, we used insulation score for382

the comparisons. In this evaluation, we first ran TopDom on all ground truth contact maps with different383

normalization methods, and used KR normalization as the gold standard, to compare the agreement between384

these normalization approaches (e.g. ICE vs. KR, Z-score vs. KR). We then compared TopDom results called385

from predicted contact map vs. the ground truth with their corresponding normalization approach (e.g. predicted386

Z-score vs. ground truth Z-score), to evaluate Epiphany’s ability to predict key structures. These experiments387

were all run on test chromosomes 3, 11, 17.388

HiC-DC+ [17] used interaction bin counts to fit a negative binomial regression with genomic distance, GC389

content, mappability and effective bin size based on restriction enzyme sites, providing an estimated expected390

read count for each interaction bins. Z-scores and observed-over-expected count ratios are then computed to391

evaluate the significance of the observed counts. We defined significant interactions as ground truth Z-score392

greater than or equal to 2. For test chromosomes 3, 11, 17 with Z-score and observed-over-expected count ratio393

normalization, we called significant interactions with various cut-off thresholds ranging from 0.5 to 3.5 and394

plotted the ROC curve.395

Comparison with Akita. We followed provided tutorials and extracted the pre-trained Akita model from396

(Akita repository). Hi-C contact maps were first balanced using ICE normalization, followed by additional steps397

including adaptive coarse-grain, distance adjustment, rescaling and 2D Gaussian filter suggested by Akita. Test398

matrices were extracted from Akita held-out test regions that overlapped with Epiphany’s test chromosomes (42399

regions in total). For calculating the Pearson correlation between the predicted contact map vs. ground truth,400

we average-pooled Akita matrices from 2048 bp into 4096 bp, in order to keep relative consistency with our 5401

kb resolution. For extracting cell-type-specific predictions, we extracted the multi-task output from Akita for402

H1ESc and GM12878.403

Prediction of cell-type-specific structurea. In these experiments, Epiphany was trained on the training404

chromosomes in GM12878, and tested on test chromosomes chr 3, 11, 17 on H1ESc and K562. Therefore, the405

predictions were cross-chromosome and cross-cell-type. Feature attributions were calculated using Captum406

[38], with saliency score to show the gradient attribution on input regions and SHAP values to calculate the407

contribution of specific epigenomic peaks for predicting 3D structure. The baseline was set to zero when408

calculating SHAP values.409

Feature ablation models. Feature ablation experiments were performed by re-training the model with one or410

several input epigenomic tracks completely masked as zero. We tested three ablation models: CTCF masked;411

DNaseI masked; only CTCF and H3K27ac not masked. In addition, we also re-trained Epiphany with an412

additional SMC3 ChIP-seq track to include cohesin occupancy information. Whole chromosome predictions were413

generated with trained models and compared to ground truth using Pearson and Spearman correlations as a414

function of genomic distance. Feature attributions were calculated as described above.415

Biological application on mouse data. Epigenomic tracks for mouse limb bud tissue using genome assembly416

mm10 were downloaded from the ENCODE portal. In the CTCF deletion experiments, CTCF peaks were417

masked with the average value for the entire CTCF track (masked with the background). Epiphany was trained418

on the human cell line GM12878 and tested on mouse limb bud data (E11.5 for DNaseI and CTCF tracks, and419

E12.5 for H3K27ac, H3K27me3 and H3K4me3). Data were visualized using CoolBox [34].420

Data Availability421

Datasets in this study are all publicly available.422
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Hi-C data423

Hi-C data are available from 4DN data portal. All human data are with hg38 assembly, and mouse with mm10.424

GM12878 H1ESc K562 mES
4DNFI1UEG1HD 4DNFIQYQWPF5 4DNFITUOMFUQ 4DNFI8KBXYNL

Table 2: Hi-C data source

Epigenomic data425

Epigenomic tracks for human are available from ENCODE. Cohesin for GM12878 is available at ENCSR000DZP.426

Cell type Dnase I CTCF H3K27ac H3K27me3 H3K4me3
GM12878 ENCSR000EMT ENCSR000DRZ ENCSR000DRY ENCSR000DRX ENCSR000AKC
H1ESc ENCSR000EMU ENCSR000AMF ENCSR000ANP ENCSR216OGD ENCSR019SQX
K562 ENCSR000EOT ENCSR000DWE ENCSR000AKP ENCSR000AKQ ENCSR000DWD

Table 3: Epigenomic data source

Experimental validation data427

Capture Hi-C data and CTCF tracks for mES E12.5 with mm9 assembly for biological validation from Despang428

et al. [26] are publicly available at GSE78109, GSE125294.429

Epigenomic tracks for mouse limb validation are available at ENCODE [27] and BioSamples [28]. All data are430

aligned with mm10.431

Track Cell type Days Accession Number Source
DNaseI Mouse limb buds E11.5 ENCSR661HDP ENCODE
CTCF Mouse limb buds E11.5 SAMD00019977 BioSamples

H3K27ac Mouse limb buds E12.5 ENCSR737QWV ENCODE
H3K27me3 Mouse limb buds E12.5 ENCSR229LTY ENCODE
H3K4me3 Mouse limb buds E12.5 ENCSR938MUD ENCODE

Table 4: Hi-C data source

11

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted December 3, 2021. ; https://doi.org/10.1101/2021.12.02.470663doi: bioRxiv preprint 

https://data.4dnucleome.org/
https://data.4dnucleome.org/files-processed/4DNFI1UEG1HD/
https://data.4dnucleome.org/files-processed/4DNFIQYQWPF5/
https://data.4dnucleome.org/files-processed/4DNFITUOMFUQ/
https://data.4dnucleome.org/files-processed/4DNFI8KBXYNL/
https://www.encodeproject.org/experiments/ENCSR000DZP/
https://www.encodeproject.org/experiments/ENCSR000EMT/
https://www.encodeproject.org/experiments/ENCSR000DRZ/
https://www.encodeproject.org/experiments/ENCSR000DRY/
https://www.encodeproject.org/experiments/ENCSR000DRX/
https://www.encodeproject.org/experiments/ENCSR000AKC/
https://www.encodeproject.org/experiments/ENCSR000EMU/
https://www.encodeproject.org/experiments/ENCSR000AMF/
https://www.encodeproject.org/experiments/ENCSR000ANP/
https://www.encodeproject.org/experiments/ENCSR216OGD/
https://www.encodeproject.org/experiments/ENCSR019SQX/
https://www.encodeproject.org/experiments/ENCSR000EOT/
https://www.encodeproject.org/experiments/ENCSR000DWE/
https://www.encodeproject.org/experiments/ENCSR000AKP/
https://www.encodeproject.org/experiments/ENCSR000AKQ/
https://www.encodeproject.org/experiments/ENCSR000DWD/
https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE78109
https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE125294
https://www.encodeproject.org/experiments/ENCSR661HDP/
https://www.encodeproject.org/
https://www.ebi.ac.uk/biosamples/samples/SAMD00019977
http://www.ebi.ac.uk/biosamples
https://www.encodeproject.org/experiments/ENCSR737QWV/
https://www.encodeproject.org/
https://www.encodeproject.org/experiments/ENCSR229LTY/
https://www.encodeproject.org/
https://www.encodeproject.org/experiments/ENCSR938MUD/
https://www.encodeproject.org/
https://doi.org/10.1101/2021.12.02.470663
http://creativecommons.org/licenses/by-nc-nd/4.0/


Figure 1: Epiphany employs long short-term memory and adversarial loss to predict the Hi-C
contact map. (A) Architecture of Epiphany. Epigenomic signal track are first presented to the model in a
sliding window fashion, with window size of 1.4 Mb and step size of 10 kb. During training, we take a total length
of 3.4 Mb of the input (200 windows) in one pass. In the generator, the processed input data are first featurized
by convolution modules, followed by a Bi-LSTM layer to capture the dependencies between nearby bins. After a
fully connected layer, the predicted contact map is generated. An MSE loss between the predicted map and
the ground truth is calculated in order to train the generator to predict correct structures. To mitigate the
overly-smoothed predictions by the pixel-wise losses, we further introduced a discriminator and adversarial loss.
The discriminator consists of several convolution modules, and an adversarial loss was calculated to enable the
model to generate highly realistic samples. We trained Epiphany with a combined loss of these two components.
(B) An illustration of prediction scheme. The first window of input data (blue horizontal line, 1.4 Mb) is used to
predict a vector on the Hi-C contact map that is orthogonal to the diagonal (blue bin vector, covers 1Mb from
the diagonal). During training, a 3.4 Mb length of input are processed using sliding windows (200 windows) in
one pass, and 200 consecutive vectors are being predicted. (C) An example region of input epigenomic tracks
(bottom), target Hi-C map (top row), and predicted Hi-C map (second row).
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Figure 2: Epiphany-predicted contact maps identify TADs and significant interactions. (A)
Epiphany performance using correlation by genomic distance for different normalization approaches. From left
to right: Pearson correlation on training chromosomes, on testing chromosomes (chr3, 11, 17), and Spearman
correlation on training and on testing chromosomes. Dark blue shows the performance of HiC-DC+ observed-
over-expected count ratio, light blue shows HiC-DC+ Z-score, pink shows KR normalization, and yellow shows
ICE normalization. (B) A visual comparison of the ground truth contact map (chr17:70,670,000-73,880,000, top
row), blurry prediction made by MSE trained model (middle row), and more realistic prediction by combined
loss (bottom row). (C) Top: Agreement of insulation score between different normalization methods vs. KR
normalization on test chromosomes. Insulation scores were calculated using TopDom with different window sizes
(X-axis) on ground truth contact maps with different normalization methods. KR normalization was used as
the gold standard, and a Pearson correlation (Y-axis) was calculated to measure the agreement between each
normalization method vs. KR (red: ICE vs. KR, blue: HiC-DC+ Z-score vs. KR, green: HiC-DC+ obs/exp vs.
KR). Bottom: Pearson correlation of insulation score between predicted contact map vs. corresponding ground
truth of the same normalization (red: ICE, blue: HiC-DC+ Z-score, green: HiC-DC+ obs/exp, purple: KR).
(D) Left: Ground truth contact maps of different normalization methods (from top to bottom: ICE, HiC-DC+
obs/exp, HiC-DC+ Z-score, KR). Blue dashed lines denotes the TAD calls with window size of 50 on each
contact map, and black dashed lines are the TAD boundaries called from KR normalized contact map. Right:
Predicted contact maps of different normalization. (E) ROC curve of significant interactions between prediction
contact maps vs. ground truth for the three test chromosomes for HiC-DC+ obs/exp ratios (green) and for
Z-scores (orange).
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Figure 3: Epiphany achieves state-of-the-art performance at fine resolution. (A) Epiphany perfor-
mance evaluation at 5 kb resolution. Top: one of the best predicted submatrices (chr3:188,610,000-190,610,000)
with ground truth matrix on the top, and predicted matrix on the bottom. Bottom: one of the problematic
matrices (chr17:28,705,000-30,705,000) predicted by Epiphany. (B) Evaluation of predicted submatrices. X-axis
denotes the average MSE loss between predicted matrix and ground truth, and Y-axis shows the Pearson
correlation of insulation score of the 2 Mb region. Dots are colored by chromosomes, and density plots for dot
distribution are added on the side. (C) Model performance comparison between Epiphany and Akita on 42
common regions between Akita held-out test regions and our test chromosomes (chr3, 11, 17). X-axis shows the
Pearson correlation of Akita prediction vs. ground truth, and Y-axis shows the correlation of Epiphany. Epiphany
was re-trained using data with the same normalization steps of Akita at 5 kb resolution, and Akita predictions
were average-pooled into 4096 bp resolution for better comparison. Dots are colored by chromosomes. (D)
Visual comparison of Akita prediction (2048 bp resolution, top row), ground truth matrices (2048 bp resolution,
middle row), and Epiphany prediction (5 kb, bottom row).
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A
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Figure 4: Epiphany accurately predicts cell-type-specific 3D structures. (A) Two examples
(chr3:188,727,296-189,775,872) and (chr3:185,057,280-186,105,856) of cell-type specific predictions in H1ESc and
GM12878. Two regions are selected from the overlapped region of Akita held-out test set and Epiphany’s test
chromosomes. Columns from left to right: contact map in H1ESc, same region in GM12878, and the absolute
difference between the two cell types (H1ESc-GM12878). Rows from top to bottom: Ground truth matrices
with Akita normalization, Akita prediction, ground truth with HiC-DC+ observed-over-expected count ratio,
Epiphany prediction of observed-over-expected count ratio. Akita predictions were obtained from the multi-task
output, and Epiphany predictions were generated with model trained on GM12878. (B) Cell type specific
prediction at a differential region between GM12878 and K562. On the left is the ground truth matrix (top) and
predicted matrix (middle), followed by epigenomic input tracks (blue), Saliency score (green), and SHAP values
(yellow) for feature attributions. On the right is the predictions for K562. Epiphany was trained in GM12878 in
training chromosomes, and predicted both cell types for test chromosomes.
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A

B

C

Figure 5: Feature ablation and attribution identify the contribution of epigenomic marks to 3D
structure. (A) Correlation by distance for feature ablation experiments. Top: Pearson correlation for training
chromosomes. Bottom: Pearson correlation for test chromosomes. Blue track for model performance using all
5 epigenomic input tracks; green for training with an additional track SMC3; pink for model trained without
CTCF; yellow for without DNaseI, and dark red for model trained with only CTCF and H3K27ac tracks. (B)
Feature attribution for bin (chr17:72,030,000-72,540,000) with full model (left), model without DNaseI (middle),
model with only CTCF and H3K27ac (right). (C) Feature attribution for bin (chr17:57,140,000-57,750,000)
with Epiphany with Bi-LSTM layer (left) vs. modified Epiphany with convolution layer (right).
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Figure 6: Epiphany predicts TAD boundary changes due to epigenomic perturbations. (A) Mouse
ES E12.5 Capture Hi-C data from Despang et al. [26] for WT (top), 4 CTCF sites depletion (middle), and all
CTCF depletion between gene Kcnj2 and Sox9 (bottom). Data are publicly available at (GSE78109, GSE125294).
Four CTCF sites depleted in the middle figure were at region (C1 site(mm9 chr11:111,384,818–111,385,832),
C2-C4 site (chr11:111,393,908-111,399,229), marked with black dashed lines). Data are mapped relative to
mm9. (B) Epiphany cross-species prediction of structural changes caused by CTCF perturbation. Epiphany
was trained using human cell line GM12878, and predicted using mouse limb bud epigenomic data mapped
relative to the mm10 assembly. The panel shows Epiphany prediction of WT mES Hi-C map with HiC-DC+
obs/exp ratio normalization (top row), the prediction of TAD fusion after masking CTCF sites at (mm10
chr11:111,520,000-111,540,000) (middle row), and the prediction of further TAD fusion after masking all CTCF
peaks between Kcnj2 and Sox9 genes (bottom row). Epigenomic tracks at the bottom are showing feature
attribution (SHAP value) for highlighted vertical vector in the Hi-C contact map. The upper two tracks
are the original CTCF track and corresponding SHAP values. The lower two tracks are CTCF tracks with
peaks between Kcnj2 and Sox9 masked to the background and the corresponding SHAP values. (C) Human
GM12878 Hi-C contact map at 5 kb resolution at chr13:27,600,000-28,600,000. Ground truth contact map (top),
predicted contact map with unperturbed input (middle), predicted contact map with 20 kb deletion at region
chr13:28,130,000-28,150,000 (bottom, deleted region highlighted in dashed line).
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Supplementary Information432

Model Architecture Details433

In the following tables, we describe in detail Epiphany’s architecture. In each table, n is the total number of434

Hi-C stripes we seek to predict.435

Operation Number of Filters Filter Size Stride Activation Output Shape

Input - - - - n x 5 x 14000
Convolution 70 5 x 17 1 ReLU n x 70 x 13984
Max Pool 1 1 x 4 1 - n x 70 x 3496

Dropout (p = .1) - - - - n x 70 x 3496
Convolution 90 70 x 7 1 ReLU n x 90 x 3490
Max Pool 1 1 x 4 1 - n x 90 x 872

Dropout (p = .1) - - - - n x 90 x 872
Convolution 70 90 x 5 1 ReLU n x 70 x 868
Max Pool 1 1 x 4 1 - n x 70 x 217

Dropout (p = .1) - - - - n x 70 x 217
Convolution 20 70 x 5 1 ReLU n x 20 x 213

Adaptive Max Pool 1 - 1 - n x 20 x 45
Dropout (p = .1) - - - - n x 20 x 45

Flatten - - - - n x 900

Table 5: Parameterization for 1D CNN for 5kb and 10kb Hi-C prediction

Operation Hidden Layer Size Activation Output Shape

Bi-LSTM 1200 ReLU n x 2400
Bi-LSTM 1200 ReLU n x 2400
Bi-LSTM 2400 ReLU n x 2400
Dense - ReLU n x 900
Dense - None n x 100

Table 6: Parameterization for Bi-LSTM for 10kb Hi-C prediction

Operation Hidden Layer Size Activation Output Shape

Bi-LSTM 2400 ReLU n x 4800
Bi-LSTM 2400 ReLU n x 4800
Dense - ReLU n x 1200
Dense - None n x 200

Table 7: Parameterization for Bi-LSTM for 5kb Hi-C prediction
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