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Abstract

Madagascar is home to many endemic plant and animal species owing to its ancient
isolation from other landmasses. This unique fauna includes several lineages of termites, a
group of insects known for their key role in organic matter decomposition in many
terrestrial ecosystems. How and when termites colonised Madagascar remains unknown. In
this study, we used 601 mitochondrial genomes, 93 of which were generated from
Madagascan samples, to infer the global historical biogeography of Neoisoptera, a lineage
containing upwards of 80% of described termite species. Our results indicate that
Neoisoptera colonised Madagascar between seven to ten times independently during the
Miocene, between 8.4-16.6 Ma (95% HPD: 6.1-19.9 Ma). This timing matches that of the
colonization of Australia by Neoisoptera. Furthermore, the taxonomic composition of the
Neoisopteran fauna of Madagascar and Australia are strikingly similar, with Madagascar
harbouring an additional two lineages absent from Australia. Therefore, akin to Australia,
Neoisoptera colonised Madagascar during the global expansion of grasslands, possibly

helped by the ecological opportunities arising from the spread of this new biome.
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1 Introduction

Madagascar is the world’s fourth largest island and is home to a great many endemic plant
and animal species [1,2]. One important reason for the peculiarity of its biota is its ancient
isolation from other landmasses [2]. Madagascar, together with India, broke away from
Africa ~160 million years ago {Ma) and has retained a distance of ~400 km from East Africa
coast for the last 120 million years [3,4]. India subsequently broke away from Madagascar
and started drifting northward, leaving Madagascar separated from other continental
landmasses for the last ~88 Ma [5]. This long isolation is the source of Madagascar’s unique

biota.

The fauna of Madagascar has either been interpreted as resulting from vicariance or
dispersal origin. Early biogeographers, unaware of the motion of continental landmasses,
explained the origin of Madagascar fauna by long-distance over-water dispersals (e.g.,
Matthew 1915, Simpson 1940) [6,7]. Subsequently, the validation of the continental drift
hypothesis [8] in the 1960s initiated a paradigm shift, and vicariance became widely
accepted as the dominant mechanism responsible for the Madagascar unique fauna [9,10].
However, the time-calibrated phylogenies produced during the last two decades have
revealed that the majority of animal lineages found in Madagascar are younger than the
split of Madagascar from continental Africa and India (e.g., Crottini et al. 2012) [11]. This
timing implies that Madagascar predominantly acquired its fauna by means of long-distance
over-water dispersals after its separation from other landmasses [12]. For instance, the
distributions of the extinct elephant bird [13] and the iconic chameleons [14] are explained
by such dispersals. Long-distance over-water dispersals also explain the distribution of
several Malagasy insect lineages, such as the millipede assassin bugs [15], the beetle tribe
Scarabaeini [16], and the hissing cockroaches [17]. Only a few insect lineages, such as the
Malagasy alderfly genus Haplosialis [18], the cascade beetles [19], and the whirligig beetles
[20] are ancient enough to have their modern distribution potentially resulting from

vicariance.

Termites are a group of social cockroaches feeding on lignocellulose at various stages of
decomposition, from hard wood to the organic matter present in the soil [21]. They include
~3000 described species mostly distributed across the tropical and subtropical regions

[22,23]. The oldest known fossils of termites are ~130 million years old (Myo) and date back
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from the early Cretaceous [24,25]. Time-calibrated phylogenies provide slightly older age
estimates and suggest that the last common ancestor of modern termites roamed the Earth
140-150 Ma [25-29]. The origin of termites therefore predates the breakup of Gondwana,
indicating vicariance may explain the current distribution of early-diverging termite lineages.
However, the termite fauna of Madagascar is known to comprise derived genera of
Kalotermitidae and Neoisoptera [30—-36] and appears to lack early-diverging termite
lineages, such as Stolotermitidae and Archotermopsidae, whose distribution may bear the
signature of vicariance. Madagascar therefore acquired its modern termite fauna by means
of long-distance over-water dispersals, presumably via rafting in floating wood pieces or

vegetative rafts that contained parts of termite colonies [37].

The pathways and timing of the spread of termites across continents have been studied in
detail in Neoisoptera [38-41]. However, the historical biogeography of Neoisoptera in
Madagascar has been largely overlooked. Neoisoptera is composed of four families,
Stylotermitidae, Rhinotermitidae, Serritermitidae, and Termitidae, and contains upwards of
80% of described termite species [23,26]. The Neoisoptera are represented in Madagascar
by a handful of endemic genera and by a few genera also found in continental Africa and in
the Oriental region [30,31,33,35]. The only Malagasy termite lineage whose historical
biogeography has been studied in detail is the fungus-growing termite genus Microtermes,
which colonised Madagascar from continental Africa via a single long-distance over-water
dispersal ~13 Ma [42,43]. This dispersal event was presumably facilitated by the acquisition
of a vertical mode of transmission of Termitomyces fungal symbionts in Microtermes [44].
The timing and geographic origin of other dispersal events, so well as the number of these

dispersal events, are presently unknown and require further investigations.

In this study, we reconstructed robust time-calibrated phylogenetic trees of termites using
the mitochondrial genomes of 586 Neoisoptera (including 93 Madagascan samples) and 14
outgroups. Our dataset is representative of the worldwide distribution of Neoisoptera and
includes species from the Afrotropical, Australian, Madagascan, Nearctic, Neotropical
(including Panamanian), Oriental {(including Sino-Japanese), Palaearctic, Saharo-Arabian, and
Oceanian realms, as defined by Holt et al. (2013) [45]. We used our time-calibrated
phylogenetic trees to shed light on the evolution of Neoisoptera, the main termite lineage

found in the Madagascan realm. Our specific aims were (i) to provide the first
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comprehensive phylogenetic tree of Malagasy Neoisoptera; and (ii) to investigate the
geographic origin and the timing of dispersal and diversification of the Neoisoptera lineages

present in Madagascar.

2 Material and Methods
(a) Biological Samples and Mitochondrial Genome Sequencing

We sequenced the mitochondrial genomes of 92 termite samples from Madagascar. We
also sequenced an additional 30 mitochondrial genomes from termite samples collected
outside Madagascar, including 13 samples from the Afrotropical realm, two samples from
the Saharo-Arabian realm, nine Neotropical samples, one Oceanian sample, and five
Nearctic samples (Table S1). These 30 samples mostly belonged to termite lineages present
in Madagascar and underrepresented in previous studies, such as Amitermes,
Psammotermes, and Prorhinotermes. Their inclusion improves our reconstructions of
ancestral ranges globally and for the Madagascan realm. We combined the 122
mitochondrial genomes sequenced in this study with 478 termite mitochondrial genomes
previously published, including the mitochondrial genome of the Madagascan
Prorhinotermes canalifrons from Reunion Island [27,39-41,46—48]. We also obtained the
mitochondrial genome of the cockroach Cryptocercus relictus [47], a representative of
Cryptocercidae, the sister group of termites. Specimens were tentatively identified based on
available taxonomic works and similarity to publicly available COIl sequences

[23,30,31,36,49,50].

We extracted DNA from two or three individuals preserved in RNA-later® or in 80% ethanol.
Samples preserved in RNA-later® were stored at -20°C or -80°C until DNA extraction.
Samples preserved in 80% ethanol were stored at room temperature for upwards of 20
years. We used one of the following three sequencing strategies: (i) long-range PCR
followed by high-throughput DNA sequencing for samples stored in RNA-later®; (ii) whole-
genome shotgun sequencing for samples stored in RNA-later®; and (iii) whole-genome
shotgun sequencing for samples stored in 80% ethanol. In all three cases, DNA was
extracted with the DNeasy Blood & Tissue extraction kit (Qiagen); and libraries were

prepared using the NEBNext® Ultra ™ 1l FS DNA Library Preparation Kit (New England
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Biolabs) and the Unique Dual Indexing Kit (New England Biolabs). Libraries were prepared

with one-fifteenth of the reagent volumes recommended by the manufacturer.

For the (i) first strategy, DNA was extracted using specimens from which the digestive tract
was removed. The whole mitochondrial genomes were amplified in two long-range PCR
reactions using the TakKaRa LA Taq polymerase and the primer sets and PCR conditions
previously described in Bourguignon et al. (2016)[41]. We mixed both amplicons in
equimolar concentration and prepared one library for each sample separately. Libraries
were pooled in equimolar concentration and paired-end sequenced using the lllumina
Miseq2000 platform. For the (ii) second strategy, whole genomic DNA was extracted from
whole body of termite workers including guts. Libraries were pooled in equimolar
concentration and paired-end sequenced using the lllumina Hiseq2500 or Hiseq4000
platforms. For the (iii) third strategy, whole genomic DNA was extracted from whole body of
termite workers including gut. Libraries were prepared without enzymatic fragmentation
step. Libraries were pooled in equimolar concentration and paired-end sequenced using the

[llumina HiSeq X or Novaseq platforms.

(b) Assembly and Alignment

Raw reads were quality-checked with Fastp v0.20.1 [51]. Read adaptors were trimmed.
Filtered reads were assembled using metaSPAdes v3.13.0 [52], and retrieved and annotated
with MitoFinder v1.4 [53]. IMRA was used as an attempt to elongate mitochondrial
genomes that were not assembled in one contig [54]. The control regions were omitted

because they present repetitive patterns difficult to assemble with short reads.

All genes were aligned separately. The 22 transfer RNA genes and the two ribosomal RNA
genes were aligned as DNA sequences with MAFFT v7.305 [55]. The 13 protein-coding genes
were translated into amino acid sequences using EMBOSS v6.6.0 [56]and aligned using
MAFFT. Amino acid sequence alignments were back-translated into DNA sequences using

Pal2Nal [57]. The 37 gene alignments were concatenated with FASconCAT-G_v1.04.pl [58].

(c) Phylogenetic Analyses
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The concatenated sequence alignment was partitioned into five subsets: one for the
combined transfer RNA genes, one for the combined ribosomal RNA genes, and one for
each codon position of the protein-coding genes. The phylogenetic analyses were
performed with and without third codon positions. Phylogenetic relationships were inferred
using maximum likelihood and Bayesian inference methods. We used IQ-TREE v1.6.12 [59]
to reconstruct maximum likelihood phylogenetic trees. The best-fit nucleotide substitution
model was determined with the Bayesian Information Criterion using ModelFinder [60]
implemented in IQ-TREE. Branch supports were estimated using 1000 bootstrap replicates
[61]. Bayesian analyses were implemented in MrBayes v3.2.3 using a GTR+G model of
nucleotide substitution [62]. The tree and the posterior distribution of parameters were
estimated from MCMC samplings. Each analysis was run with four chains, three hot and one
cold. Each analysis was run in four replicates to ensure the convergence of the chains. For
the analyses with third codon positions included, the chains were run for 40 million
generations with a 25% burn-in fraction. For the analyses without third codon positions, the
chains were run for 20 million generations with burn-in fraction set to 10%. All the chains
were sampled every 5,000 generations. The mixing of the chains and the behaviour of all
parameters were examined in Tracer v1.7.1 [63]. For all analyses, the topology was
constrained to harbour a sister relationship between the subfamilies Sphaerotermitinae and

Macrotermitinae, as supported by transcriptome-based phylogenies [28].

(d) Divergence time estimation

We analysed the concatenated sequence alignments with and without third codon positions
and reconstructed time-calibrated phylogenetic trees using BEAST v2.6.2 [64]. Each analysis
was run twice to ensure the convergence of the chain. The rate variation across branches
was modelled using an uncorrelated lognormal relaxed clock. We used the Yule model for
the tree prior. A GTR+G model of nucleotide substitution was assigned to each partition. For
the analyses without third codon positions, we sampled the tree and parameter values of
the chain every 50,000 steps over a total of 350 million generations. The first 10% of
generations were discarded as burn-in. For the analyses with third codon positions included,

the chain was run over 600 million generations and the first 20% sampled trees were
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discarded. The mixing of the chains and the behaviour of all parameters were examined

with Tracer v1.7.1 [63].

The molecular clock was calibrated using 14 fossils as minimum age constraints (Table S2).
We used the youngest possible age for each fossil as reported in the Fossilworks database
[65] (last accessed on January 2021, 31%). We used the criteria described by Parham et al.
(2012) to select fossils. For each fossil calibration, we also determined a soft maximum
bound using the phylogenetic bracketing approach [66,67]. Each calibration was
implemented as exponential priors on node time. We previously justified the use of every
fossil calibration used in this study [28]. We used TreeAnnotator to generate a maximum

clade credibility consensus tree.

(e) Biogeographic analyses

We reconstructed the historical biogeography of Neoisoptera using the R package
BioGeoBEARS [68]. The Madagascan realm includes Madagascar and neighbouring islands:
Comoros, Mascarenes, and Seychelles. We used sampling locations to assign each tip to a
biogeographic realm. A total of six phylogenetic reconstructions, estimated with IQ-TREE,
MrBayes, and BEAST2 (with and without third codon positions), were subjected to ancestral
range reconstructions with BioGeoBEARS. For each phylogenetic tree, we carried out
ancestral range reconstructions with the DEC model (Dispersal-Extinction-Cladogenesis), the
DIVALIKE model {Dispersal-Vicariance Analysis), and the BAYAREALIKE model. We run each
model with and without the parameter “+ j” allowing jump dispersals, which correspond to
speciation events following long-distance dispersals [69]. The best-fit model was
determined for each phylogenetic reconstruction using AlCc (Akaike Information Criterion

with sample size corrected).

3 Results
(a) Topology of the phylogenetic trees

Our six phylogenetic trees were largely congruent with respect to interfamily and

intergeneric relationships, with the exception of a few nodes with low posterior
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probabilities and bootstrap supports (Figures 1, S1-6). They showed that the Neoisoptera
were represented by species belonging to ten lineages of Rhinotermitidae and Termitidae in
the Madagascan realm (Figures 1, $1-S6). The Rhinotermitidae were represented by three
species: Prorhinotermes canalifrons, Coptotermes truncatus, and Psammotermes voeltzkowi.
All three species belonged to genera also present in other biogeographic realms. The seven
remaining lineages were part of the Termitidae and formed clades endemic to the
Madagascan realm, including one clade of Macrotermitinae, two clades of Nasutitermitinae,
and four clades of Termitinae. The only Madagascan clade of Macrotermitinae included
several species of Microtermes that formed the sister group of a clade composed of African
Microtermes and the Oriental Ancistrotermes pakistanicus. One of the two Madagascan
clades of Nasutitermitinae contained Malagasitermes milloti, Coarctotermes, and several
species assigned to the polyphyletic Nasutitermes. The sister group of this clade varied
among analyses. The other Madagascan clade of Nasutitermitinae only included
Nasutitermes sp. 1, retrieved as sister to a group of Oriental species. The four Madagascan
clades of Termitinae belonged to Microcerotermes, Amitermes, and the Termes group,
which contained two Madagascan clades. The Madagascan Microcerotermes included
upwards of nine species with an unresolved sister group. Amitermes was represented by
two species forming the sister group of a lineage including African, Saharo-Arabian, Oriental,
and Australian Amitermes. One of the two Madagascan clades of the Termes group included
Quasitermes, Capritermes, and a species resembling Quasitermes. This first clade was sister
to a clade containing the Malagasy and Oriental species of Termes as well as the Australian

members of the Termes group.

(b) Divergence times

The time-calibrated phylogenetic trees reconstructed with and without third codon
positions of protein-coding genes diverged in their age estimates by up to 5 million years
(Figures 1, S1-2). The divergences were smaller than 2.2 million years for the nodes
representing the splits between Madagascan clades and their sister groups (Figures 1, S1-2).
Given the similar divergence age estimates obtained with both analyses, we will only discuss

the results of the analysis with third codon positions excluded for the sake of simplicity.
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All Madagascan clades of Neoisoptera diverged from their sister groups during the Miocene
(Figure 2). Within the Rhinotermitidae, the Madagascan Prorhinotermes, Psammotermes,
and Coptotermes diverged from their sister groups 9.0 Ma (95% height posterior density
(HPD): 6.0-12.1 Ma), 9.0 Ma (95% HPD: 5.0-13.2 Ma), and 8.4 Ma (95% HPD: 6.1-10.8 Ma),
respectively. Within the Termitidae, the Madagascan macrotermitine Microtermes diverged
from their sister group 16.6 Ma (95% HPD: 13.4-19.9 Ma). The Madagascan nasutitermitine
clade containing Malagasitermes milloti and Coarctotermes diverged from its sister 14.4 Ma
(95% HPD: 12.3-16.5 Ma). The other Madagascan nasutitermitine clade, composed of
Nasutitermes sp. 1, diverged from its Oriental sister group 10.7 Ma {95% HPD: 8.2-13.2 Ma).
Within the termitines, we dated the divergence between the Madagascan Amitermes and
other Amitermes species at 13.1 Ma (95% HPD: 11.3-15.1 Ma). The most recent common
ancestor of all Madagascan Microcerotermes and their sister group was estimated at 14.8
Ma (95% HPD: 12.5-17.2 Ma). The Madagascan Quasitermes + Capritermes clade diverged
from its sister group 14.0 Ma (95% HPD: 11.6-16.5 Ma), while the Madagascan Termes sp. B
diverged from its sister group 11.7 Ma (95% HPD: 9.5-13.9 Ma).

(c) Biogeographic reconstruction

We reconstructed the ancestral range distribution of Neoisoptera on our six phylogenetic
trees using six different models. The DEC + j model was the best-fit model for all trees,
except for the Bl tree without third positions for which the best-fit model was the DIVALIKE
+ j model (for details, see Table S3). The models with the parameter + j fit the data better
than the models without this parameter, indicating that jump dispersals played a major role

in the biogeographic history of Neoisoptera.

Our analyses indicated that the Madagascan realm was colonised by seven to ten long-
distance over-water dispersals (Figure 2). Four Neoisopteran lineages unambiguously
colonised the Madagascan realm once: Coptotermes truncatus colonised the Madagascan
realm from the Oriental realm; Microtermes from the Afrotropical realm; and
Microcerotermes and Amitermes from an unidentified realm. The colonization of the
Madagascan realm by Prorhinotermes + Psammotermes, the Nasutitermitinae, and the
Termes group involved one or two long-distance over-water dispersals. Following the most

likely scenario, Prorhinotermes and Psammotermes independently colonised the
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Madagascan realm through long-distance over-water dispersals from undetermined
biogeographic realms. The alternative scenario of an early arrival of the common ancestor
of Prorhinotermes and Psammotermes, followed by subsequent long-distance over-water
dispersals to other biogeographic realms, was less likely but could not be excluded. Similarly,
the two Madagascan clades of Nasutitermitinae probably originated from two independent
dispersals from Africa to the Madagascan realm. A less likely alternative featured one long-
distance over-water dispersal from Africa to the Madagascan realm followed by two
dispersal events from Madagascar to the Afrotropical and Oriental realms. Lastly, the
Madagascan realm was either colonised once by the Termes group followed by one or
several dispersal events out of the Madagascan realm, or it was independently colonised

twice, once by each Malagasy lineage of the Termes group.

4 Discussion

(a) Long-distance over-water dispersals of Neoisoptera to and from the Madagascan

realm: taxonomic identity, timing, and origin of the dispersers

We reconstructed the most comprehensive phylogenetic tree of Neoisoptera to date. The
relationships among the main lineages of Neoisoptera were largely congruent with earlier
molecular studies based on mitochondrial genome and transcriptome data [27,28,40]. Our
time estimates were generally younger than those found by these studies, but remained
congruent, with overlapping HPD intervals. These differences may pertain to the use of
different fossil calibrations and/or to the changes of fossil age estimations at the time of
publication of these studies. For example, we previously used the ~110 Myo
Cratokalotermes santanensis [70] to calibrate Kalotermitidae + Neoisoptera [27,40] while

we now use the ~95 Myo Archeorhinotermes rossi [71] to calibrate the same node.

Before this study, three genera of Rhinotermitidae —Coptotermes, Prorhinotermes, and
Psammotermes— and four groups of Termitidae —Microtermes, Microcerotermes, the
Nasutitermitinae, and the Termes group— were known to be represented by species native
to the Madagascan realm[23,30,31,33,35,72]. We sequenced upward of 40 Malagasy
species, while Eggleton and Davies (2003) listed 33 species of Neoisoptera described from

Madagascar, implying the existence of several new species among our samples [72]. The
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most notable species were two new species of Amitermes, a genus previously unknown
from the Madagascan realm. We also found that the Malagasy species of Nasutitermitinae
and of the Termes group do not form monophyletic groups. Therefore, the Madagascan

termite fauna is more phylogenetically diverse than previously envisioned.

Our ancestral state reconstructions indicated that Neoisoptera colonised the Madagascan
realm seven to ten times independently and possibly dispersed out of the Madagascan
realm up to four times. The dispersal events to and from the Madagascan realm took place
8.4-16.6 Ma (95% HPD: 6.1-19.9 Ma), between the mid-Miocene climatic optimum [73] and
the end of the Miocene. Therefore, our results indicate that the Madagascan realm acquired

its fauna of Neoisoptera through long-distance over-water dispersal events.

Our ancestral range reconstructions also revealed one long-distance over-water dispersal
event within the Madagascan realm, that of Prorhinotermes canalifrons between
Madagascar and the Reunion Island 2.1 Ma (95% HPD: 1.3-3.0 Ma). This species is also
known from Mauritius, Comoros, and Seychelles [23], potentially indicating additional over-
water dispersals among islands of the Madagascan realm for this genus with high dispersal
abilities and tolerance to salinity [74,75]. Two other species, Coptotermes truncatus and
Microcerotermes subtilis, as well as the nasutitermitine genus Kaudernitermes, are also
known from Madagascar and several neighbouring islands [23], indicating further dispersals
between islands. Whether these dispersals were mediated by human activities or were long-
distance over-water dispersals, as was the case for P. canalifrons in Madagascar and the
Reunion islands, is unclear. Additional sequence data from the termite fauna of the Reunion
Island, Mauritius, Comoros, and Seychelles are needed to identify the processes of

colonization of these islands.

We were able to identify the source of three dispersal events to the Madagascan realm:
Coptotermes truncatus has Oriental origin, Microtermes has African origin [42], and the
nasutitermitines arrived from Africa at least once. The origin of other Madagascan lineages
remains unresolved. Therefore, our results do not provide a global picture of the origin of
the Madagascan Neoisoptera, although we show that some lineages have African and
Oriental origins, as is the case for many other taxa [12,76]. Our ancestral range
reconstructions also point to the possibility that Neoisoptera dispersed out of the

Madagascan realm on multiple occasions, although these events remain speculative.
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Additional sequences from other biogeographical realms are required to identify the origin

of Madagascan Neoisoptera lineages with yet unresolved origin.

(b) The colonization of the Madagascan and Australian realms by Neoisoptera coincides

with the global expansion of grasslands

The colonization of the Madagascan realm by Neoisoptera coincides with the colonization of
the Australian realm [39—41,77] (Figure 2). The colonization of both realms was initiated
around the Miocene climatic optimum, 15-17 Ma, and continued over the next five to ten
million years while the world climate gradually cooled down [73] and grasslands expanded
worldwide [78]. It is therefore tempting to attribute this coincidental timing to shared

historical climatic and ecological changes in Australia and Madagascar.

The climate of Australia became drier during the Middle Miocene ~14 Ma, and new biomes
composed of flora and fauna adapted to arid conditions expended [79,80]. The expansion of
the arid-adapted biomes in Australia was accompanied by the opening of new ecological
opportunities for local Australian taxa and for colonisers arriving from other continents [79],
which included a dozen of lineages of Neoisoptera [39—41,77] (Figure 2) . Unlike in Australia,
the origin of grasslands in Madagascar is still debated. Human activities have undoubtedly
contributed to the expansion of modern Madagascar’s grasslands, and some authors have
argued that, prior to human arrival, the areas presently covered by grasslands were forested
and only contained patches of grasslands [81,82]. The alternative view is that Madagascar’s
grassland first appeared during the Miocene and gradually expanded, an expansion that was
accelerated by human arrival [83—85]. Whichever scenario turns out to be correct, the
arrival of Neoisoptera in the Madagascan realm was concurrent to the diversification of
grasses in Madagascar, whose number of species exponentially increased since around 20
Ma [86]. The divergence between the two grass-feeding species Coarctotermes pauliani and
Coarctotermes baharaensis 6.5 Ma (95% HPD: 4.2-8.8 Ma) indicates an early adaptation of
some termite species to grassland in Madagascar. However, the bulk of the termite diversity
in Madagascar is associated with forested areas [72]. The colonization of Madagascar and

Australia by Neoisoptera therefore coincides with the global spread of grasses.
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In addition to the timing of colonization, another parallel that can be made between the
Neoisopteran fauna of the Madagascan and Australian realms is the similarity of their
taxonomic composition. The Madagascan realm was colonised by two genera not found in
Australia, the rhinotermitid Psammotermes and the termitid Microtermes [30], while the
Australian realm was colonised by three genera absent from Madagascar, the rhinotermitids
Schedorhinotermes, Parrhinotermes, and Heterotermes [87]. Note that Heterotermes
philippinensis was introduced in Madagascar and in Mauritius [88,89]. In contrast, both
realms were colonised by the rhinotermitid genera Coptotermes and Prorhinotermes and by
the termitid genera Microcerotermes, Amitermes, Termes, and Nasutitermes [30,87]. Of
note, the latter three genera are paraphyletic and include a number of genera endemic to
the Madagascan and Australian realms nested within them. Therefore, these two realms
host taxonomically similar communities of Neoisoptera, acquired within the same geological
time interval. These observations suggest the existence of ecological preadaptations in the
Neoisopteran lineages that colonised Madagascar and Australia, two distant landmasses

presently dominated by grasslands and savannah biomes.

We previously reconstructed the global spread of Neoisoptera without samples from
Madagascar [38-41]. The sequencing of 92 termite samples from Madagascar provides an
opportunity to refine the picture of the global spread of Neoisoptera. The higher termites,
which make up over 80% of species of Neoisoptera [23], originated from Africa and
dispersed worldwide in two phases [40]. During the first phase, which spanned the
Oligocene and the early Miocene, ~34-20 Ma, higher termites colonised the Neotropical and
Oriental realms via a dozen of over-water dispersal events [40]. Our results show that the
second phase, which took place during the Miocene, ~20-8 Ma, was characterised by the
colonization of Australia and Madagascar by higher termites and coincides with the global

expansion of grasslands.
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Figure 1. Time-calibrated Bayesian phylogeny inferred from 601 mitochondrial genomes,
with the third codon position excluded. Node labels provide a summary of node supports
across the six phylogenetic analyses: red stars indicate topology conflicts for at least one
analysis; and black diamond indicate support value <90% for at least one analysis. Nodes
without labels have support values >90% for all analyses. Node bars indicate the 95% HPD
intervals estimated with BEAST 2. Tips and node circles are color-coded to indicate
biogeographic realms. The colours of node circles indicate ancestral ranges reconstructed
with probabilities higher than 65% for the six phylogenetic trees inferred with IQ-TREE,
MrBayes, and BEAST 2, with and without third codon positions. White circles indicate
undetermined ancestral distribution. Clades containing species collected in the same
biogeographic realm are collapsed, except for species collected in the Madagascan realm.
The map shows the biogeographic realms recognised in this study (modified from Holt et al.

2013).

Figure 2. Summary of Madagascar and Australia colonization events. The scenario with 10
dispersal events is displayed. Node bars indicate the 95% HPD intervals estimated with
BEAST 2. The colours of node circles indicate ancestral ranges reconstructed with
probabilities higher than 65% for the six phylogenetic trees inferred with IQ-TREE, MrBayes,
and BEAST 2, with and without third codon positions. White circles indicate undetermined
ancestral distribution. The map shows the biogeographic realms recognised in this study

(modified from Holt et al. 2013). Asterisks indicate ambiguous dispersal events.
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