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Abstract

Fundamental to elucidating the functional organization of the brain is the assessment of causal
interactions between different brain regions. Multivariate autoregressive (MVAR) modeling techniques
applied to multisite electrophysiological recordings are a promising avenue for identifying such causal
links. They estimate the degree to which past activity in one or more brain regions is predictive of another
region’s present activity, while simultaneously accounting for the mediating effects of other regions.
Including in the model as many mediating variables as possible has the benefit of drastically reducing the
odds of detecting spurious causal connectivity. However, effective bounds on the number of MVAR model
coefficients that can be estimated reliably from limited data make exploiting the potential of MVAR
models challenging. Here, we utilize well-established dimensionality-reduction techniques to fit MVAR
models to human intracranial data from ~100 — 200 recording sites spanning dozens of anatomically and
functionally distinct cortical regions. First, we show that high dimensional MVAR models can be
successfully estimated from long segments of data and yield plausible connectivity profiles. Next, we use
these models to generate synthetic data with known ground-truth connectivity to explore the utility of
applying principal component analysis and group least absolute shrinkage and selection operator (LASSO)
to reduce the number of parameters (connections) during model fitting to shorter data segments. We
show that group LASSO is highly effective for recovering ground truth connectivity in the limited data
regime, capturing important features of connectivity for high-dimensional models with as little as 10 s of
data. The methods presented here have broad applicability to the analysis of high-dimensional time series
data in neuroscience, facilitating the elucidation of the neural basis of sensation, cognition, and arousal.
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Introduction

Measuring causal relationships between activity in different regions of the brain is fundamental to
understanding its functional organization. Standard measures of these causal interactions (i.e., effective
connectivity) such as Granger Causality (GC) (Granger, 1969; Seth et al., 2015 and generalized partial
directed coherence (gPDC) {Baccala, 2007 #9350) can be obtained by fitting linear multivariate
autoregressive (MVAR) models to data recorded simultaneously from different locations in the brain.
MVAR models estimate the present value measured at a target location using a weighted sum of past
values from all other measurement locations. Importantly, because of their multivariate nature, MVAR
models represent the interactions between any two locations while simultaneously accounting for the
mediating effects of other sites (Blinowska et al., 2004). However, these models are difficult to implement
in practice for even modest numbers of recording sites because of the number of parameters that need
to be estimated. To fit an MVAR model to a dataset with M recording sites and model order (i.e., the
number of past values used to estimate present values) of p, the number of parameters that must be
estimated is equal to M?p. The length of stationary data required to reliably estimate MVAR models using
ordinary least-squares (OLS) has been estimated previously to be 10Mp (Schlogl and Supp, 2006); we
show here that this data length is closer to 100Mp when M is large. The difficulty of reliably estimating
MVAR model coefficients from available data appears to have limited previously reported applications in
human electrophysiology to <~30 electrodes (e.g. see (Korzeniewska et al., 2011) for a relatively high-
dimensional example; (Brovelli et al., 2004) are more representative and use four and six channel
models). The primary contribution of this paper is to explore MVAR model estimation methods that
enable modeling of much larger networks from practical data lengths.

Intracranial encephalographic (iEEG) recordings from neurosurgical patients can simultaneously
sample neural activity from hundreds of locations in the brain with high spatial and temporal resolution,
and thus are a rich source of multivariate data for exploring causal interactions in brain networks.
However, exploiting the opportunity afforded by MVAR modeling with hundreds of electrodes is
challenging due to limited data availability. For example, with typical iEEG recording parameters of M =
200 and sampling frequency of 250 Hz, and a model order of p = 8, 100Mp translates into a required data
length of >10 minutes for a single static estimate of connectivity; dynamic connectivity analysis (Preti et
al., 2017) in this scenario would be impractical. Furthermore, even when working with longer duration
recordings, additional limitations such as the presence of artifacts and nonstationarity can limit the total
duration of data available for estimating an accurate MVAR model. These considerations motivate the
development of methods to fit MVAR models in the limited data regime. In the past, the standard
workaround for this problem has been to estimate MVAR models using smaller subsets of selected
recording sites. Unfortunately, this removes potential mediating variables and connections and distorts
the true causal network underlying brain activity, drastically increasing the likelihood of detecting
spurious effective connections (Granger, 1980; Kus et al., 2004; Olejarczyk et al., 2017).

There have been several attempts to implement dimensionality-reduction techniques to more
accurately fit MVAR models to large multivariate datasets. Principal component analysis (PCA) has been
used previously to fit MVAR models to scalp EEG data (Joliffe and Morgan, 1992). In this approach, PCA is
applied to the electrode-by-electrode covariance matrix to yield “virtual scalp electrodes”, i.e., electrodes
projected onto an orthogonalized basis set that more efficiently captures the spatial variability across
electrodes. To retain greater spatial information, PCA has also been applied separately to regions of
interest (ROIs) on the scalp determined a priori, prior to concatenating the full set of principal
components across ROIs as input to the MVAR model (Wang et al., 2016). We will refer to this approach
as rPCA. Connections between ROIls and their virtual electrodes can then be aggregated and summarized
using “block” measures of connectivity (Faes et al., 2012; Faes and Nollo, 2013).
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Sparse regression is another common method to reduce the effective number of estimated
parameters in MVAR models (Antonacci et al., 2019; Valdes-Sosa et al., 2005). Unlike PCA, which is a
processing step implemented prior to model-fitting, sparse regression approaches use a regularizer
during the model-fitting step. The Least Absolute Shrinkage and Selection Operator (LASSO) method
(Tibshirani, 1996) regularizes the OLS problem with a penalty based on the L1 norm of the MVAR
coefficients. This retains essential coefficients, i.e., those explaining the most variance in the training
data, while setting smaller coefficients or those with less explanatory power to zero. The group LASSO
(gLASSO) approach encourages sparse connections between nodes by shrinking all the coefficients
associated with smaller node-node interactions in the model to zero simultaneously (Bolstad et al., 2011).
The gLASSO enhances the interpretability of the resulting sparse model since it focuses on sparsity of
connections rather than isolated coefficients.

While both rPCA and gLASSO methods have been used separately in previous studies, they have
yet to be combined or systematically compared. In this work, we first show that high dimensional iEEG
data (117 — 216 electrodes) can be fit successfully using MVAR models provided sufficient data is
available. We then explore the performance of different approaches for recovering connectivity profiles
in the limited data regime. Physiologically realistic simulated data is created using network models
estimated from high dimensional human intracranial EEG (iEEG) data. The simulated network provides
ground truth for evaluation of various estimation methods. We use these data to assess how the
combination of gLASSO and rPCA methods compares with rPCA-only, gLASSO-only, and standard OLS
methods, showcasing the relative performance of each modeling strategy. Specifically, we measure each
modeling strategy’s ability to recover known ground-truth regional connectivity, based on a new block
gPDC measure that has superior properties to previously used block gPDC measures. We show that
gLASSO can capture essential features of connectivity even in very limited data regimes, motivating an
illustration of using gLASSO to assess dynamic connectivity. In addition to these simulation experiments,
we apply each method to resting-state data derived from high-dimensional iEEG recordings to
demonstrate their relative abilities to recover plausible connectivity profiles.
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Methods
Overview

Our goal was to develop methods for reliably fitting MVAR models to high dimensional neural data. The
performance of rPCA and gLASSO estimation methods were objectively evaluated on simulated data
generated by physiologically realistic “ground truth” networks. Data-predictive and network connectivity
metrics were employed to assess estimation fidelity as a function of data length. The physiologically
realistic networks used as ground truth benchmarks in the simulation study were estimated using long
segments of resting state iEEG data recorded from neurosurgical patients. The Methods section is divided
into five sub-sections: (1) human subjects and iEEG recordings; (2) overview of MVAR models; (3) ground
truth network estimation; (4) methods for estimating MVAR models from simulated data, including rPCA,
gLASSO, and rPCA-gLASSO; (5) details of the metrics used for assessing estimator performance, including
the block gPDC measure we employed to evaluate regional connectivity.

Human subjects and iEEG recordings
Subjects

iEEG data were used to derive ground-truth networks for simulation and to demonstrate that plausible
connectivity profiles could be recovered using the approach described here. These data were obtained
from ten neurosurgical patients (6 female, ages 21 - 48 years old, median age 34.5 years old; Table 1).
The patients had been diagnosed with medically refractory epilepsy and were undergoing chronic
invasive iEEG monitoring to identify potentially resectable seizure foci. All human subjects experiments
were carried out in accordance with The Code of Ethics of the World Medical Association (Declaration of
Helsinki) for experiments involving humans. The research protocols were approved by the University of
lowa Institutional Review Board and the National Institutes of Health. Written informed consent was
obtained from all subjects. Research participation did not interfere with acquisition of clinically required
data. Subjects could rescind consent at any time without interrupting their clinical evaluation. All subjects
were native English speakers, right-handed, and had left hemisphere language dominance, as determined
by Wada test.

Table 1. Subject demographics.

Subject | Age | Sex Seizure focus
L307 32| M| Linsula

L357 36 | M | L medial temporal

R369 30| M | R medial temporal

R376 48 F | R medial temporal

R429 32 F | R anterior and medial temporal
R434 39 F | R medial temporal

L442 33 F | Rtemporal (multiple medial and neocortical)
L514 46 | M | Linsula (anterior)

R515 21 F | R medial temporal

R532 42 F | R ventral frontal (posterior)
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F, female; L, left; M; male; R, right. The hemisphere with predominant electrode coverage is indicated by
the prefix of the subject code.

IEEG recordings

Recordings were made using subdural and depth electrodes (Ad-Tech Medical, Oak Creek, WI) (Figure 1A,
Supplementary Figure 1). After rejecting electrodes that were located in seizure foci, white matter, or
outside the brain, or for noise reasons (see below), the median number of recording sites across the 10
subjects was 174 (range 117 — 216; Supplementary Figure 2; Table 2). Subdural arrays consisted of
platinum-iridium discs (2.3 mm diameter, 5-10 mm inter-electrode distance), embedded in a silicon
membrane. These arrays provided extensive coverage of temporal, frontal, and parietal cortex
(Supplementary Figure 1). Depth arrays (8-12 electrodes, 5 mm inter-electrode distance) targeted insular
cortex, hippocampus, and amygdala, and additionally provided coverage of the superior temporal plane
and superior temporal sulcus. (Note that because of the extensive coverage of auditory cortical structures
in the temporal lobe, and adjacent auditory-related cortical structures in parietal and frontal lobes, our
scheme for organizing ROls is auditory-centric.) A subgaleal electrode, placed over the cranial vertex near
midline, was used as a reference in all subjects. All electrodes were placed solely on the basis of clinical
requirements, as determined by the team of epileptologists and neurosurgeons (Nourski and Howard,
2015).

No-task, resting-state (RS) data were recorded in the dedicated, electrically shielded suite in The
University of lowa Clinical Research Unit while the subjects lay in the hospital bed. Resting state data
were collected a median of 5.5 days [range 2 — 11 days] after electrode implantation surgery. In the first
two subjects (L307 and L357), data were recorded using a TDT RZ2 real-time processor (Tucker-Davis
Technologies, Alachua, FL). In the remaining 8 subjects (R369 through R532), data acquisition was
performed using a Neuralynx Atlas System (Neuralynx Inc., Bozeman, MT). Recorded data were amplified,
filtered (0.1-500 Hz bandpass, 5 dB/octave rolloff for TDT-recorded data; 0.7-800 Hz bandpass, 12
dB/octave rolloff for Neuralynx-recorded data) and digitized at a sampling rate of 2034.5 Hz (TDT) or 2000
Hz (Neuralynx). For 8/10 subjects, the duration of recordings was 10 mins. For the other two subjects
(429R, 532R), the duration was 11 minutes.
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Figure 1. Raw data and ground truth networks. A. Example of electrode coverage of the left hemisphere in
a representative subject (L442). Top-to-bottom: Lateral view of the left hemisphere, top-down view of
the superior temporal plane, ventral view of the left hemisphere. Recording sites are color-coded
according to the ROI group. Sites identified as seizure foci or characterized by excessive noise, and depth
electrode contacts localized to the white matter are denoted by white symbols. Insertion points of depth
electrodes implanted in the superior temporal plane are shown on the lateral view as black symbols. B.
Example raw data from the subject in A. Data is shown for one recording site in each ROI. C. Connectivity
for the subject in A estimated from 4 minutes of data fit via a ridge-regression model, A =10*. Scalar
(electrode level) broad-band gPDC shown. D. Block (ROI) connectivity (bgPDC; Eqg. 18) for the same
subject. Color bars in panels C and D represent ROl groups, color-coded as shown in the legend of panel
A. See Table 2 for list of ROl abbreviations.
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Table 2. Electrode coverage.

ROI group ROI ROl abbreviation | Msubjects hsites
Auditory core Heschl’s gyrus, posteromedial HGPM 10 50
Auditory non-core Heschl’s gyrus, anterolateral HGAL 9 34
Planum temporale PT 5 18
Planum polare PP 8 18
Superior temporal gyrus, posterior STGP 10 109
Superior temporal gyrus, middle STGM 10 55
Auditory-related Superior temporal gyrus, anterior STGA 7 16
Insula, posterior InsP 10 37
Superior temporal sulcus, upper bank STSU 6 34
Superior temporal sulcus, lower bank STSL 6 24
Middle temporal gyrus, posterior MTGP 10 137
Middle temporal gyrus, middle MTGM 9 89
Middle temporal gyrus, anterior MTGA 7 29
Supramarginal gyrus SMG 9 107
Angular gyrus, anterior AGA 7 46
Angular gyrus, posterior AGP 5 22
Prefrontal Inferior frontal gyrus, pars opercularis IFGop 9 29
Inferior frontal gyrus, pars triangularis IFGtr 10 63
Inferior frontal gyrus, pars orbitalis IFGor 7 17
Middle frontal gyrus MFG 9 102
Superior frontal gyrus SFG 2 2
Anterior cingulate cortex ACC 5 5
Orbital gyrus 0G 9 103
Transverse frontopolar gyrus TFG 3 10
Sensorimotor Precentral gyrus PreCG 9 84
Postcentral gyrus PostCG 9 54
Paracentral lobule ParaCL 1 2
Other Premotor cortex PMC 10 37
Cingulate gyrus CingG 4 25
Parahippocampal gyrus PHG 7 27
Fusiform gyrus FG 10 39
Inferior temporal gyrus, posterior ITGP 6 17
Inferior temporal gyrus,middle ITGM 8 28
Inferior temporal gyrus, anterior ITGA 8 34
Temporal pole TP 8 70
Insula, anterior InsA 10 28
Frontal operculum fOperc 3 6
Parietal operculum pOperc 2 4
Gyrus rectus GR 5 11
Superior parietal lobule SPL 2 8
Precuneus PreCun 1 1
Lingual gyrus LingG 2 4
Middle occipital gyrus MOG 4 10
Inferior occipital gyrus 10G 1 1
Amygdala Amyg 7 19
Hippocampus Hipp 5 16
Putamen Put 3 6
Caudate nucleus Caud 1 1
Substantia innominata Sublnn 1 2
Ventral striatum vStr 1 2
Total 10 | 1692
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iEEG data analysis

Anatomical reconstruction and ROI parcellation

Electrode localization relied on post-implantation T1-weighted structural MR images and post-
implantation CT images. All images were initially aligned with pre-operative T1 images using linear
coregistration implemented in the FMRIB Software Library (FSL; FLIRT) (Jenkinson et al., 2002). Electrodes
were identified in the post-implantation MRI as magnetic susceptibility artifacts and in the CT as metallic
hyperdensities. Electrode locations were further refined within the space of the pre-operative MRI using
three-dimensional non-linear thin-plate spline warping (Rohr et al., 2001), which corrected for post-
operative brain shift and distortion. The warping was constrained with 50-100 control points, manually
selected throughout the brain, which aligned to visibly corresponding landmarks in the pre- and post-
implantation MRIs.

Regional connectivity was assessed by grouping electrodes based on location. Electrodes were
assigned to one of 50 ROIs organized into 6 ROl groups (Figure 1A; Supplementary Figure 1;
Supplementary Table 1) based upon anatomical reconstructions of electrode locations in each subject.
For subdural arrays, it was informed by automated parcellation of cortical gyri (Destrieux et al., 2010;
Destrieux et al., 2017) as implemented in the FreeSurfer software package. For depth arrays, ROI
assignment was informed by MRI sections along sagittal, coronal, and axial planes. Heschl’s gyrus (HG)
was subdivided into the posteromedial (HGPM) and anterolateral (HGAL) portions (core auditory cortex
and adjacent non-core areas, respectively). This division was made using physiological criteria
(characteristic short-latency evoked responses to click trains and frequency-following responses in HGPM
but not HGAL; see (Brugge et al., 2009) and (Nourski et al., 2016). Superior temporal gyrus (STG) was
subdivided into posterior and middle non-core auditory cortex ROIs (STGP and STGM), and auditory-
related anterior ROI (STGA) using the transverse temporal sulcus and ascending ramus of the Sylvian
fissure as macroanatomical boundaries. Middle and inferior temporal gyrus (MTG and ITG) were each
divided into posterior, middle, and anterior ROI by diving the gyrus into three approximately equal thirds
along its length. The insula was subdivided into posterior and anterior ROls, with the former considered
within the auditory-related ROl group (Zhang et al., 2019). Within cingulate gyrus, anterior cingulate
cortex (as identified by automatic parcellation in FreeSurfer) was considered a prefrontal ROI. Angular
gyrus (AG) was divided into posterior and anterior ROIs (AGP and AGA) using the angular sulcus as a
macroanatomical boundary. Recording sites identified as seizure foci or characterized by excessive noise,
and depth electrode contacts localized to the white matter or outside brain, were excluded from analyses
and are not listed in Supplementary Table 1.

Preprocessing of IEEG data

For each subject, iEEG data were downsampled to 250 Hz and divided into segments of varying length (10
—960 s). Artifact rejection involved three steps. First, outlier electrodes were identified based on the
average log amplitude in one-minute segments across seven frequency bands computed using the
demodulated band transform (DBT; (Kovach and Gander, 2016): delta (1-4 Hz), theta (4-8 Hz), alpha (8-14
Hz), beta (14-30 Hz), gamma (30-50 Hz), high gamma (70-110 Hz), and total (sum of all others). Analytical
amplitude measured in each band was z-scored across electrodes in each segment and averaged across
segments. Electrodes with a mean z-score > 3.5 in any band were removed, including from further artifact
rejection methods.

Second, intervals containing artifacts in the raw voltage traces were rejected on every electrode.
We identified times when any electrode had extreme absolute raw voltage >10 SD for that electrode and
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marked as artifact the surrounding time until that electrode returned to zero voltage, plus an additional
100 ms before and after. Note that because we were measuring connectivity, any data interval identified
on a single electrode was excluded for all electrodes. For each subject, if this procedure identified >1% of
recording time as artifact, we optimized the total data kept for that subject (= electrodes % non-artifact
time) by further excluding electrodes if retaining those electrodes caused more loss of data on the
remaining electrodes via artifact rejection than they themselves contributed.

Third, we applied a specific additional noise criterion to eliminate brief power spikes in the high
gamma band, a band that in some subjects was particularly sensitive to noise in our recording
environment. We excluded all intervals containing segments in which high gamma power averaged across
electrodes was greater than five standard deviations after excluding electrodes and times already
removed in steps 1 and 2.

Multivariate autoregressive models

Multivariate autoregressive (MVAR) models represent the present value at each electrode as a weighted
combination of past values at all other electrodes. Let y(n) be the voltage in electrode m at time n. The
MVAR model is for y™(n) is

M p
y™(n) = ZZam,j(k)y](n— k)+u"™(n), m=1,2,...,.M;n=1,2,...,N

J=1 k=1 (1)
where amj(k) is the weight applied to electrode j at lag k to predict electrode m, u™(n) is the model error
or innovations process in electrode m, p is the memory or maximum lag considered by the model, N is the
number of data samples, and M is the number of electrodes. The innovations are typically assumed to be
white noise that is uncorrelated for different electrodes. Note that although MVAR models are linear,
they can detect both linear and nonlinear causal interactions and may be more robust to noise than
methods that explicitly capture nonlinearities (Astolfi et al., 2009; Freiwald et al., 1999; Gourévitch et al.,
2006; Korzeniewska et al., 2011; Netoff et al., 2004).

In the large data regime (N large) the MVAR model coefficients amj(k) may be estimated from
data using the OLS method (Lutkepohl, 2005). Define

y'=[y"(N) y(N=1) - ymp+1) ]
yi(N =1 y'(N-p) (N -1) yM (N —1) y" (N —p)
v_ y (N —2) y'(N-p—1) »*(N-2) yM(N -2) yM(N—p—1)
y'(p) y'(1) y? :(p) y™ (p) y™M(1)
& = [ apa(l) - i@ ama) o amar(l) o ama(p) | 2

so that the least squares problem for estimating a” is written in matrix form as
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a™ = argmin |y™ — Ya™|?
am

The solution to Eq. (3) is given by

~ T —1 T

aj's = (Y Y) Yiy™ (4)
assuming Y'Y is an invertible matrix, which requires N-p > Mp.

In practice, the number of stationary data samples must be significantly larger than the minimum
to avoid large errors in the MVAR parameter estimates. A rule of thumb of N > 10Mp has been suggested
(see, e.g., (Schlogl and Supp, 2006)). It is important to note that such guidelines assume the data samples
have some degree of statistical independence. Thus, the effective number of samples available is
determined by the bandwidth of the signal, not the absolute sampling rate. Oversampling the data does
not improve estimation quality. For example, if the data has a bandwidth of 50 Hz, then the number of
effective samples available for estimation is approximately 100 samples/s. In our data set we had several
subjects with more than 200 electrodes. If we assume a modest memory of p = 8, then the N > 10Mp rule
of thumb suggests we need at least 16,000 statistically independent samples of data. If, for example, we
assume an approximate 50 Hz bandwidth, then 16,000 samples map to 160 s or nearly three minutes of
data. The strong 1/f characteristic of EEG data may reduce the effective bandwidth of the data in many
situations, especially when strong lower frequency rhythmic activity is present, and thus significantly
more data may be required in some situations.

The requirement of long, stationary data segments significantly limits the utility of the OLS
approach to MVAR model estimation for large networks and is the primary motivation for the evaluation
of the rPCA and gLASSO approaches described below.

Ground-truth network estimation

The “true” networks associated with our human subject data were unknown, which makes it impossible
to evaluate objectively the performance of any MVAR model estimation algorithm from measured data.
Hence, we used our human subject data to obtain physiologically realistic ground-truth MVAR models.
The ground truth models were then used to generate simulated data for objective evaluation of the
performance of MVAR model estimation algorithms as a function of data duration.

Exploration of our data revealed that the OLS solution for the MVAR model coefficients gave
spurious results in some electrodes even with data record lengths exceeding four minutes, so we
employed ridge regression (Hoerl and Kennard, 2000) to regularize the estimates for the ground-truth
models. That is, instead of Eq. (3), we chose the ground truth models according to

Am o . m m |2 m |2
a™ = argmin [y —Ya™ " +y[a"™|

where the regularization parameter 7 is chosen as

v =10"*trace{ Y'Y}
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This value for 7 was chosen empirically to provide sufficient regularization in electrodes that had spurious
connectivity in the OLS approach without significantly altering the connectivity in the remaining
electrodes. The solution to Eq. (5) is given by

am, = (YIY +41) YTy (6)

We chose a model order p = 8 for all ground-truth models for several reasons. First, initial
evaluation suggested that the quality of the model predictive performance did not improve appreciably
using larger values of p. Second, we wanted the physiologically inspired ground-truth models - derived
from different subjects - to use the same model order to facilitate evaluation of algorithm performance
across different ground-truth models. Commonly used methods such as Akaike Information Criterion or
cross-validation give different optimal values of p for different subjects. Third, the data required for
model estimation is proportional to p, so we chose to work with smallest plausible value. Fourth, and
perhaps most importantly, the main goal of this process is to create physiologically inspired models for
the simulation study. Achieving this goal does not require precise determination of model order.

One ground-truth network model was created for each subject for a total of ten different models.
Simulated data was created from the network model by applying white noise input as the innovations

u™ (n) . . 2 . - .
process with variance 9m given by the estimated prediction error variance
1
2 m Am |2
oo = —Ya m=12...M
m N _ p |y RR Y » =

m A~
where ¥ and Y are defined based on thirty s of test data after the four minutes used to estimate a7
from each subject.

Model estimation methods

Simulated data from the ten ground-truth models was used to evaluate the performance of four different
model MVAR estimation methods as a function of data record length: 1) OLS (Eq. (3)); ROIl-based principal
component analysis (rPCA) with OLS; 3) Self-connected group LASSO (gLASSO); and 4) rPCA with gLASSO
(rPCA-gLASSO). The rPCA, gLASSO, and rPCA-gLASSO methods are described next.

ROI-Based Principal Component Analysis (rPCA)

One of the approaches we employed to reduce model dimension —and consequently data requirements
— was applying PCA to the collection of electrode signals associated with each ROI. Let y;(n) be an M-by-1
vector containing the M; electrodes of data associated with the M; electrodes in the j ROI. We map y;(n)
into an L-by-1 (L;< M) vector of PCA signals xj(n) as

xi(n) = W;yj(n) (7)

where W; is an L-by- M; matrix whose rows are the eigenvectors corresponding to the largest eigenvalues
of the covariance matrix of yj(n). The number of PCA components L; was chosen so that x;(n) represents a
specified fraction of the variance associated with y;(n). We chose L; to represent 95% variance in the
results shown later. In our data, these thresholds reduced the total number of electrodes by a factor of
approximately two. Note that given PCA signals xj(n) and W; one can project back to identify the
corresponding approximated electrode data as


https://doi.org/10.1101/2021.12.01.470804
http://creativecommons.org/licenses/by-nc-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2021.12.01.470804; this version posted December 3, 2021. The copyright holder for this preprint
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY-NC-ND 4.0 International license.

yi(n) = Wix;(n) = W1 W,y,(n) (8)

rPCA is an aggregation approach that creates virtual electrodes representing the unique components in
the ROI. This approach to reducing the dimensionality of the network is depicted in Figure 2, which also
illustrates a segment of the original data signals ¥ ("), the virtual (PCA) signals XJ (n) and the back-
projected data signals Y; (n) from HGAL in one subject. While the connectivity between the original
physical electrodes is modified when operating in the rPCA space, the connectivity between ROlIs is
preserved to the extent that all significant components of the electrode data y;(n) are retained. It is
straightforward to show that if 100% of the variance is retained in all regions, then Wiis an invertible
matrix and the connectivity between ROIs is identical between electrode and PCA spaces (see
Supplementary Methods). As the fractional variance retained decreases, model complexity decreases,
resulting in reduced computation and data requirements, but the potential for distortion of connectivity
between ROIs increases.
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Figure 2. Illustration of rPCA method. A: PCA was applied to electrodes within pre-assigned ROls (see
Figure 1) to create virtual electrodes. B: lllustration of rPCA applied to one ROl (HGAL) in one subject,
showing original data (/eft), virtual electrode representation of these data (middle), and data

backprojected into original data space (right).
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The MVAR model for the rPCA data is obtained by rewriting Eq. (1) as

Mpca p _
:cm(n): Z Z(Zlm7j(k)$J(n—k)+Um(n)’ m:172>"-7MPCA;n:1727"'7N
j=1 k=1

(9)

/

mJ(k) is the rPCA MVAR model coefficient representing the influence of PCA electrode j at lag k
m

on PCA electrode m, v (n) is the innovation or model error in PCA electrode m, and Mpcais the

number of virtual electrodes in the model. OLS estimates for the rPCA MVAR model coefficients are
obtained analogously to Egs. (3) and (4).

where ¢

Self-Connected Group LASSO (gLASSO)

The self-connected gLASSO (Bolstad et al., 2011) was evaluated to determine the reduction in data
requirements possible using a penalty that encouraged sparse connectivity between physical or virtual
electrodes. Define a p-by-1 vector of coefficients associated with the connection from electrodes jto m

a0 = [ (1) anj(2) o amy(p) | 10)

so that a™in Eq. (2) is expressed as

a™ = [ am,lT am,ZT . am,MT }T (11)
The gLASSO problem is then expressed as
M
N : mo_ m|2 m,j
a™ —argmin|y™ - Ya"[F+ A Y0 [fam ],
J=1
Jj#Fm (12)

Use of the two-norm of @7 in the regularization term ensured that coefficients relating electrode j to
electrode m were penalized as a group, that is, they were set to zero as a group. Note that self-
connections were not penalized, which is why j=m was excluded from the regularizer. Larger values of the
regularization parameter A resulted in a smaller number of nonzero connections at the expense of larger
modeling error.

The solution to Eq. (12) was obtained using standard convex optimization methods based on the code
of (Bolstad et al., 2011). Five-fold cross validation was used to select A:

1. Split available data into five equal portions or folds.

2. Use all folds but the k™ fold of data to train different models for a range of 11 candidate A values.
The candidate values for A were chosen by first finding the smallest A which guarantees all
coefficients are zero (Bolstad et al., 2011). The 11 candidate values were chosen evenly spaced
between 0% (OLS) and 40% of this value. This maximum was chosen based on the observation
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that the models have very few nonzero connections at and beyond 40% of A that guarantees all
zero connections .

3. Use the k™ fold to determine the squared prediction error of each candidate model when applied
to data not used to train the model.

4. Repeat steps 2 and 3 five times with different folds held out from training and average the
resulting squared errors.

5. Choose the model corresponding to the value A that results in the minimum averaged error.

This process was repeated for each target electrode m in the model. Thus, the coefficient vectors used to
predict different electrodes may have had different levels of sparsity. Some areas of the brain are more
densely connected than others, so it is plausible that the connectivity to different electrode locations has
varying levels of sparsity.

Note that the gLASSO regularizer in Eq. (12) is known to shrink the model coefficients in a manner
that depends on A (Bolstad et al., 2011). Hence, after determining which connections were present using
the gLASSO procedure, we estimated the coefficients associated with the active connections by solving a
least-squares problem involving only those connections. That is, the gLASSO was used for subset selection
—to determine which subset of the connections should be included in the model —and least squares was
used to estimate the corresponding coefficients of the reduced complexity model.

The acronym rPCA-gLASSO refers to the process of applying the gLASSO method to the rPCA
model described in Eq. (9).

Performance characterization

The performance of four different modeling approaches was evaluated using simulated data. We
simulated the specified length of data for each of ten subjects using the corresponding ground truth
model and estimate model coefficients from the simulated data. All estimated MVAR models assumed
the correct model order of p=8 so that we could evaluate estimation algorithm performance independent
of model order selection. This process was repeated ten times for each ground truth model and data
length and the performance averaged over these ten trials. Two different measures were employed to
characterize model performance: the model prediction error on data not used to train the model and
comparison between the connectivity estimated from the estimated MVAR model coefficients and the
ground-truth network connectivity of the MVAR process used to create the simulated data.

It is useful to rewrite Eq. (1) in matrix form as

y(n) =) A(k)y(n—k)+u(n)

k=1 (13)

where y(n) is the M-by-1 vector of data at all M electrodes, A(k) is an M-by-M matrix of model coefficients
at lag k whose i,j element is a;j(k), and u(n) is the M-by-1 vector of model errors or innovations. We shall
assume that Eq. (13) represents the rPCA case as well, with the appropriate substitutions of the virtual
electrode data.
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Mean-square Prediction Error

Let z(n) denote new simulated data and A(k) the estimated MVAR model coefficients. The mean square
prediction error is

Nt D 2
Y |
= —— z(n) — Y A(k)z(n — k)
NT - P n=p+1 k=1 2 (14)

where Nris the number of simulated test samples corresponding to 16 minutes of data.
Partially Directed Coherence Measures

Many different measures of connectivity have been proposed for MVAR models. Here, we used a variant
of the generalized partial directed coherence (gPDC) to characterize the connectivity between ROls, i.e.,
vector time series, with a scalar metric. Eq. (13) may be expressed in the frequency domain as

A(NY(f) =U(f) (15)

A(f) =1- Y A(k)e s

k=1 (16)

HereJ = V—1 and fis frequency normalized by the sampling frequency, i.e., -0.5 < f < 0.5 with units of
cycles per sample. Further, let superscript H denote the complex conjugate transpose operator,

_ H
X=F {U(f)U <f)}denote the error covariance matrix, assumed constant over frequency, and
® = ¥ 'the inverse error covariance matrix. The gPDC metric (Baccala et al., 2007) from electrode j to
electrode i is written

i | Ai; ()]
Zn]\le ¢mm ‘Am](f>‘2 (17)

W?j(f) =

where @kk is the k' diagonal element of ® and Aij (f) is the i,j element of A(f). Similarly, we define
the block gPDC for the relationship from the j% vector time series to the it vector time series as

o(T'r)

227 () = Trace {AZH](f)cI)“A”(f)}
i, M, Trace {ZkRzl AkH,j (f)‘I’kkAkJ(f)}

(18)

where Ai;(f) is the block of A(f) associated with the connection from the j to i vector time series,
@i is the block of ® associated with the it vector time series, and the matrix trace operation is the sum
of the diagonal elements. Note that the factor M; normalizes the block gPDC metric by the number of
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electrodes associated with the target ROI. The relationship between the measure in Eq. (18) and the
previously proposed vector connectivity measures of (Faes and Nollo, 2013) is described in
Supplementary Methods.

o(TT)
We computed broad band connectivity by integrating i (f) over frequency. Define the

ground truth broad band connectivity from electrode j to i as ©i.J and the estimated broad band
(k)
connectivity in trial k as .j . The acronym bgPDC (block gPDC) is used to refer to broadband connectivity
(k)
Cijand %i.d . We compared the ground truth bgPDC to the mean estimated bgPDC over ten trials visually

(e.g., see Figure 4, Supplementary Figures 3-6). As a global quantitative measure of fidelity, for each
subject and data length we computed the mean-absolute-difference connectivity between the ground
truth and estimated bgPDC connectivity, defined as

(k)

10 R <R
D k1 Die1 2 j=1 |“3 7 %y
JF
10(R? — R) (19)

A —
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Results
Effective connectivity in ground truth networks

Resting state iEEG recordings were obtained in ten neurosurgical patients (Figure 1A; Supplementary
Figure 1; Table 2). MVAR model fits to 4-minute data segments were used to derive effective connectivity
profiles (Figure 1C-D). Connectivity matrices at the single electrode and ROl levels displayed strong
symmetry. In the connectivity matrices of Figure 1, the electrode locations and ROls are ordered in a
roughly hierarchical fashion, so as expected, connectivity was strongest along the diagonal.

To explore further the consistency of these results with previous reports, we evaluated the
connectivity patterns in all subjects to and from the anterior and posterior subdivisions of the insula
(Figure 3), areas that are anatomically close to each other with distinct functions but strong
interconnectivity (Augustine, 1996; Cauda et al., 2011; Cloutman et al., 2012; Zhang et al., 2019). The
results of Figure 3 are consistent with these previous reports. InsP is considered a sensory region, both
interoceptive and exteroceptive, and in the ROIs sampled would be expected to have strong connections
to early auditory cortical structures. This is evident in the analyzed dataset as strong bright yellow vertical
bands in Figure 3A corresponding to ROIs (HGPM, HGAL) on Heschl’s gyrus, the location of primary
auditory cortex. By contrast, InsA is a higher order structure with strong connectivity to the higher order
auditory cortical structure planum polare (PP; Figure 3B). Both InsP and InsA sent strong projections to
amygdala. Additionally, bidirectional connectivity was observed between InsP and InsA, with a higher
connection strength from InsA to InsP.

A InsP — Target bgPDC: 0 I ] 9x10* B InsA — Target

bgPDC: 0 BT 9x10

Source —InsP

Figure 3. Summary of connectivity of insula for all subjects. A: Posterior insula (InsP). B: Anterior insula
(InsA). Only ROIs with coverage in 6 or more subjects are shown. Color bars underneath each panel
represent ROl groups, color-coded as shown in the legend of Figure 1A. See Table 2 for list of ROI
abbreviations.
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Simulation Experiment

The performance of the four MVAR model estimation methods was evaluated using model fits to data of
varying lengths simulated from ground truth models (Figure 4). We report the data length Tin s to
simplify the application of the results to the original subject data; with the sampling rate fixed at 250 s,
the number of samples N = 250T. In the example shown, the OLS and rPCA estimates failed to capture any
features of the ground truth connectivity matrix for T=10's, in contrast to rPCA-gLASSO and gLASSO.
Modest improvement was observed for PCA at T=30s. When T was increased to 60 s, the performance
of the OLS and rPCA estimates improved, but connectivity tended to be substantially overestimated for
both methods (Figure 3). Comparable results were observed in the ground truth models from all subjects
(Supplementary Figures 3-6). This is illustrated more directly in Figure 5, which shows scatterplots of
estimated vs. true connectivity for a single subject for T = 10, 30, and 60 s. Only the strongest connections
were estimated correctly with OLS and rPCA estimates even for T = 60 s. There was a slight
overestimation of connectivity values for rPCA-gLASSO and gLASSO estimates as well, but in general these
estimates were much more accurate. An example from a second subject is shown in Supplementary
Figure 7. Model performance was quantified across subjects using mean-square prediction error (Eq. 14)
and bgPDC fidelity CM AD (Eq. 19) as shown in Figure 6. As T increased, both metrics improved for all
estimators. However, the rPCA-gLASSO and gLASSO estimates performed substantially better than the
OLS estimate in the most data-limited case (T =10 s). In fact, a data length of T =960 s was required for
OLS to show superior one-step prediction error compared to gLASSO (Figure 6B). We note as well that
while the rPCA-gLASSO and gLASSO estimates performed comparably to each other on these metrics, the
gLASSO model required significantly more computation to estimate.

Plausibility Analysis

The data of Figures 4 — 6 indicate that gLASSO and rPCA-gLASSO estimates provided superior
performance in capturing known connectivity from ground-truth models. We next explored the
performance of OLS, gLASSO, and rPCA-gLASSO estimation methods when applied to one-minute
segments of the original human subject data that was used to generate the ground-truth models. Each
estimation method was applied to four 1-minute segments of the human subject data. The ground truth
connectivity was not known, so in Figure 7 we compare bgPDC connectivity profiles to and from the
anterior and posterior subdivisions of the insula in all subjects to assess consistency with the results for
longer data segments shown in Figure 1 and with previous reports from the literature. The severe
overestimation of connectivity associated with the OLS method was clearly evident, as was the more
modest overestimation with gLASSO and rPCA-gLASSO. In general, the latter two approaches captured
the differential connectivity of InsP and InsA to early (HGPM, HGAL) versus higher order (PP) auditory
structures and the amygdala, indicating that results were plausible even in the absence of ground truth
knowledge.

Dynamics of iEEG connectivity

The data of Figure 5 and Supplementary Figure 7 indicate that gLASSO and rPCA-gLASSO can reliably
estimate connectivity even for short data lengths (7= 10 s). The possibility of estimating high-dimensional
network models from relatively short data segments enables the study of changes in connectivity that
occur over time, a growing area of interest in research on brain networks (Preti et al., 2017). To illustrate
the importance of performing dynamic connectivity analysis with high temporal resolution, we explored
dynamic connectivity during ten minutes of resting state iEEG data in two subjects using the gLASSO
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estimation method with models based on T =60 and 10 s (Figure 8). To visualize changes in connectivity
over time, we stacked the connectivity estimates between all ROls into a single vector and sorted the
connectivity from smallest to largest mean connectivity over the ten minutes. Sorted connectivity is
displayed on the vertical axis and time on the horizontal axis. Thus, each row depicts the temporal
evolution of connectivity between two ROIs. To further identify potential temporal patterns, we applied
singular value decomposition to this matrix of vectorized connectivity vs time and extracted the dominant
component. The right-most figure in each panel shows the dominant component with the time course of
the dominant component depicted beneath. The results based on a 10-s segment revealed temporal
patterns that were smoothed over by the longer 60-s window. In some cases, rapid changes in
connectivity were completely obscured for the 60-s models. Thus, methods to facilitate accurate
representations of network connectivity over short times scales are essential to capture the dynamics of
the brain in resting state.
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Figure 4. Recovery of ground-truth ROI connectivity (bgPDC) in subject 442L. Adjacency matrices show
rows as origin ROIs, and columns as target ROls. Each connectivity matrix depicts the average result
over ten trials, except for the T = 960 s case, which represents an average of two. The delta values
displayed above each recovery matrix represent the mean absolute error of the average recovery
matrix compared to the ground-truth (GT) matrix as defined in Eqg. (19). The same color scale is used
for all adjacency matrices shown. The maximum color value is based off of the 95" percentile of the

ground-truth matrix. Color bars next to the connectivity matrices represent ROl groups, color-coded as
shown in the legend of Figure 1A.
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Figure 5. Comparison of ground-truth vs recovered bgPDC connectivity. Scatter plots of average (10
trials) estimated versus ground truth connectivity for subject 442L for different estimation methods.
The rPCA-gLASSO and gLASSO estimation results include histogram of connections that are pruned to
zero by the gLASSO procedure. The dashed vertical line in the histograms denotes the median of the
ground truth connectivity values that have been pruned. A Connectivity estimated for T=10 s of
simulated data. BT=30s.C. T=60s.
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Figure 6. Model performance. Summary of estimation performance as a function of data length across all
simulated ground truth models. The results for each model are averaged over ten trials and the box plots

characterize average performance across the ten models. A. Mean-absolute-difference connectivity
between the ground truth and estimated bgPDC connectivity (A; Eg. 19). B. One-step mean-square

prediction error (Eq. 14). Box and whiskers plots depict medians (horizontal lines), means (white
symbols), quartiles (boxes), ranges (whiskers) and outliers (red crosses).
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Figure 7. Connectivity estimated from human subject data. Estimated bgPDC connectivity from (left) and to
(right) posterior insula (A) and anterior insula (B). Each column subplot represents a different modeling
strategy applied to recorded data that was used to estimate the original 10 GT models. The RIDGE models
were fit to four minutes of resting-state data. To determine if we can recover these models using limited
data, we applied each modeling approach to four one-minute segments of the human subject data.
Results are averaged across all four segments for each subject/model-type. Highlighted ROls are
discussed specifically in the text. Color bars underneath each panel represent ROl groups, color-coded as
shown in the legend of Figure 1A. See Table 2 for list of ROl abbreviations.
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Figure 8. Connectivity dynamics. Each panel depicts the gLASSO-estimated sorted dynamic connectivity
matrix on the left and the best rank-1 approximation on the right. In each panel, the line plot below the
rank-1 approximation depicts the mean across connectivity indices to illustrate the overall temporal
evolution. The estimates are derived from T=60s (A, B) and T= 10 s (C, D) segments of human subject
data. A,C: Subject L403. B,D: Subject R369.
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Discussion

It has been widely noted in the literature that long recording durations are needed to estimate high-
dimensional MVAR models in time series data. For example, Schlogl and Supp (Schlogl and Supp, 2006)
propose that the number of data samples should exceed ten times the product of the memory times the
number of electrodes (10Mp). Such requirements likely explain why MVAR models have not been
reported in the literature for more than ~30 electrodes. Our human subject and experimental results with
OLS model estimation indicate that the factor of ten suggested may be too small for networks in the 100-
200 electrode range. We found that four minutes (~60,000 samples) of human subject based resting-
state data proved inadequate for OLS estimation of MVAR models with ~100-200 electrodes and memory
of eight (Mp ~ 1600), which is why we employed ridge regression to estimate ground-truth models from
four minutes of data. Our simulation studies show that the OLS approach consistently overestimates
connectivity for T=60 s (Figures 4 and 5; Supplementary Figures 3-6), corresponding to a data length of
15,000 samples. For this dataset, 10Mp ranged from 9360 to 17,280 (average = 13,520. Clearly there is a
need for estimation methods that are effective with less data.

The overestimation of connectivity observed with the OLS approach is indicative that the matrix
inverse required to compute Eq. (4) is ill-conditioned. The Mp-by-Mp matrix Y 1Y is an estimate of the
covariance matrix of the data. Few statistical results are available for the properties of this matrix due to
the temporal dependence of the columns of Y. However, if the columns of Y are independent —a more
stringent condition —and multivariate Gaussian, then Y'Yisa sample covariance matrix with a Wishart
distribution (Muirhead, 1982). Such matrices have been studied extensively and the distributions of the
eigenvalues are known (Muirhead, 1982), though they are complex and challenging to interpret.
Asymptotic distributions of eigenvalues follow the Marchenko-Pastur law (Pastur and Marchenko, 1967).
For our purposes, it is sufficient to note that the small eigenvalues of a sample covariance matrix require
much more data for reliable estimation than the large eigenvalues. Inversion of Y Yinvolves inverting

Ty —1
the eigenvalues, so the small, underestimated eigenvalues of Y 7Y become dominant in (Y Y) ,
resulting in potentially very large noisy contributions to the OLS weights in Eq. (4). This effect is mitigated
by ridge regression, which is why we chose ridge regression for estimating ground truth models. Addition
of YLin Eq. (6) ensures all eigenvalues of the matrix being inverted exceed 7, thus limiting the
magnification of noisy contributions in the model weights. The downside of using ridge regression is that
the model squared error increases as 7V increases.

One approach to enabling MVAR modeling of large networks is to reduce the inherent
dimensionality of the problem. We applied PCA to regional collections of electrodes to create a smaller
number virtual electrodes that represent the regional activity. While the rPCA approach modifies
interelectrode connectivity, it preserves regional connectivity provided relevant activity is represented in
the principal components. Although rPCA maximizes the variance represented in the region for a given
dimension, interregional connectivity bias is not necessarily proportional to variance represented. It is
theoretically possible that a smaller PCA component discarded in the rPCA process makes a significant
contribution to interregional connectivity. This potential is illustrated by the 960-s results shown in Figure
6. The performance of rPCA is noticeably worse than the OLS estimates, reflecting the bias incurred by
discarding five percent of the variance. The rPCA approach cannot predict components that have been
discarded. However, Figures 4-6 indicate that the rPCA approach is less sensitive to overestimation
artifacts than the OLS method with shorter data record lengths. Hence, there is a tradeoff between the
connectivity bias incurred by discarding dimensions and the reduction in estimator variance associated
with smaller problem size. Concerns over connectivity bias led us to explore retention of 95 percent of
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the variance in each region, which limited the dimensionality reduction achieved via rPCA to a factor of
about two in our data.

The gLASSO regularizer is motivated by the expectation of sparse connectivity in the brain, such
as that associated with small world networks (Achard et al., 2006; Bullmore and Sporns, 2009; Sporns and
Zwi, 2004), and effectively reduces the dimensionality of the problem by “turning off” or pruning
connections that do not have a significant impact on the squared error for a given data length. The
potential connectivity bias associated with pruning connections is justified because these connections
have the weakest impact on the squared error for the available data as determined by cross validation.
This procedure ensures that the reduction in estimator variability due to reduced dimensionality
outweighs potential bias for the data set. The histograms in Figure 5 indicate that weaker connections are
most likely to be turned off by gLASSO. Note that the gLASSO approach results in sparser models as the
data length decreases (see, e.g., Figures 4 and 5) because it becomes more difficult to establish the
significance or presence of additional connections as the data length available for training the model
decreases. We note, however, that these benefits of the gLASSO method accrue at the expense of
significant computational cost.

The rPCA-gLASSO approach has a lower computational burden than the gLASSO method due to
the reduction in dimensionality associated with rPCA. Since the model coefficients associated with
predicting any one electrode can be estimated as an individual optimization problem, reducing the
effective number of electrodes by a factor of two will cut the total computational runtime of solving an
MVAR model in half—independent of the method used to solve for each electrode’s associated
coefficients. This improvement becomes considerably more noticeable when hyperparameter tuning
methods are incorporated into the model-fitting step, such as cross-validation, to optimize the sparsity
hyperparameter (A) for each electrode in a gLASSO model. However, the rPCA-gLASSO method is subject
to the connectivity bias discussed in the rPCA approach. Furthermore, rPCA methods only apply to
regional connectivity estimation involving multiple electrodes sampling a region. If electrode-by-electrode
connectivity is needed, then rPCA is not applicable.

Our simulation study enables objective evaluation of estimator performance by comparison to
the ground truth for a biologically realistic model. We chose to quantify performance using mean-square
prediction error (Eq. 14), mean absolute deviation of bgPDC connectivity (Eg. 19), and estimated versus
ground truth bgPDC (Figure 5). There are many different metrics that could be used to measure
performance as well, and different metrics may show different sensitivity to estimation errors. For
example, the mean absolute deviation of bgPDC connectivity is more sensitive to data length than the
one-step mean-square prediction error. Overestimation of connectivity affects bgPDC more than mean-
square prediction error on the test data, which is to be expected since the OLS procedure minimizes the
prediction error on the training data. It is likely that multiple connectivity patterns could produce
comparable prediction error, especially with relatively short data records. The OLS estimator is biased
toward overestimation of connectivity. In effect it produces large connectivity values that tend to offset
one another and give reasonable squared prediction error.

We chose to consider only a fixed model order of p=8. This simplified comparison of results for
ground truth models associated with different subjects and reduces potential difficulties of interpreting
performance across ground-truth models with different model order. Model order has a direct impact on
model complexity and model-order selection can be viewed as a form of regularization. Low data
scenarios call for lower model orders than those supported by higher data scenarios. This dependence is
reflected in commonly used order-selection strategies such as the Akaike Information Criterion
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(Cavanaugh and Neath, 2019) and in the recommendation that the data length be >10Mp (Schlogl and
Supp, 2006). By fixing the order of our estimated models, we can isolate the impact of the estimation
method on estimation quality.

We implemented rPCA to reduce dimensionality in the data but still retain spatial information.
Alternatively, PCA can be run on the full time-series dataset followed by projecting the PCA-based model
residuals back to a full-dimensional representation (Schmidt et al., 2016). The disadvantage of the latter
approach is that it precludes considering the regional structure, which is needed to assess regional
connectivity. Additionally, the benefit of the rPCA method over the projection method arises due to the
inability to project the model’s coefficients back to a high-dimensional state—meaning that only the error
terms of the projected model can be used for estimation of connectivity. Since the calculation of the very
popular connectivity metric—the gPDC—requires the use of model coefficients, the rPCA method is
advantageous in this domain of work.

Application of these estimation methods to human subject data suggests that plausible
connectivity estimates are obtained with 7 =60 s and M = 200 electrodes (Figure 7). We chose to explore
connectivity to and from anterior versus posterior insula, due to this region’s importance in intero- and
exteroceptive sensory processing, salience, emotion, homeostasis, and consciousness (Huang et al., 2021;
Zhang et al., 2019). Although anatomically adjacent, anterior and posterior insula have distinct functional
roles and connectivity profiles (Cauda et al., 2011). For example, the anterior portion of the insula is
thought to couple tightly with prefrontal regions and amygdala. The posterior portion, on the other hand,
is more closely linked to activity propagated from early auditory regions—including Heschl’s gyrus (Zhang
et al., 2019). The results of Figure 3 are consistent with these functional distinctions. The strong
connections identified in the present analysis are also consistent with results of tracer injection studies
(reviewed in (Augustine, 1996)). In addition, the relatively strong connectivity of InsA with the IFG and
rostral superior temporal regions STGA and PP is consistent with previous probabilistic tractography
results (Cloutman et al., 2012). Effective connectivity derived from MVAR model fits was consistent with
these previous studies. Even for shorter data lengths, model fits relying on gLASSO were able to capture
expected connectivity profiles and community structure in brain networks, for example demonstrating
strong connectivity between auditory cortical structures (upper left quadrants in the hierarchically-sorted
adjacency matrices shown in Figure 4 and Supplementary Figures 3-6). Motivated by the reasonable
recovery of GT connectivity for T =10 s demonstrated in Figure 5 and Supplementary Figure 7, we also
show that models fit to short data lengths (7= 10 s) can capture rapid dynamics of network connectivity
that are obscured at a resolution of T =60 s. Importantly, given the likelihood that brain activity is
nonstationary except over very brief intervals, the capability to fit models to short data segments allows
for more accurate piecewise-stationary estimates of dynamic brain activity.

The results indicate that the rPCA-gLASSO and gLASSO methods reliably estimate MVAR models
for large networks with far less data than previously thought possible. The capability to estimate models
for networks with large numbers of electrodes reduces the likelihood of detecting spurious effective
connections resulting from removed or missing mediating electrode channels and leads to improved
connectivity analyses. Furthermore, reducing data requirements reduces concerns about nonstationarity
in the data, and creates new analysis opportunities, such as assessment of dynamic connectivity.
Consequently, the methods presented here will have broad application and substantial impact for
interpreting resting state data recorded from human subjects, as well as large scale multielectrode
recordings in experimental animals.
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Data and code availability

Data is available via a request to the Authors pending establishment of a formal data sharing agreement,
submission of a formal project outline, and agreement about co-authorship. All software developed for
this study will be freely available via Git repository. Please contact Bryan Krause (bmkrause@wisc.edu) for
details.
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