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Abstract 

Fundamental to elucidating the functional organization of the brain is the assessment of causal 
interactions between different brain regions. Multivariate autoregressive (MVAR) modeling techniques 
applied to multisite electrophysiological recordings are a promising avenue for identifying such causal 
links. They estimate the degree to which past activity in one or more brain regions is predictive of another 
region’s present activity, while simultaneously accounting for the mediating effects of other regions. 
Including in the model as many mediating variables as possible has the benefit of drastically reducing the 
odds of detecting spurious causal connectivity. However, effective bounds on the number of MVAR model 
coefficients that can be estimated reliably from limited data make exploiting the potential of MVAR 
models challenging. Here, we utilize well-established dimensionality-reduction techniques to fit MVAR 
models to human intracranial data from ∼100 – 200 recording sites spanning dozens of anatomically and 
functionally distinct cortical regions. First, we show that high dimensional MVAR models can be 
successfully estimated from long segments of data and yield plausible connectivity profiles. Next, we use 
these models to generate synthetic data with known ground-truth connectivity to explore the utility of 
applying principal component analysis and group least absolute shrinkage and selection operator (LASSO) 
to reduce the number of parameters (connections) during model fitting to shorter data segments. We 
show that group LASSO is highly effective for recovering ground truth connectivity in the limited data 
regime, capturing important features of connectivity for high-dimensional models with as little as 10 s of 
data. The methods presented here have broad applicability to the analysis of high-dimensional time series 
data in neuroscience, facilitating the elucidation of the neural basis of sensation, cognition, and arousal. 
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Introduction 

Measuring causal relationships between activity in different regions of the brain is fundamental to 
understanding its functional organization. Standard measures of these causal interactions (i.e., effective 
connectivity) such as Granger Causality (GC) (Granger, 1969; Seth et al., 2015 and generalized partial 
directed coherence (gPDC) {Baccala, 2007 #9350) can be obtained by fitting linear multivariate 
autoregressive (MVAR) models to data recorded simultaneously from different locations in the brain. 
MVAR models estimate the present value measured at a target location using a weighted sum of past 
values from all other measurement locations. Importantly, because of their multivariate nature, MVAR 
models represent the interactions between any two locations while simultaneously accounting for the 
mediating effects of other sites (Blinowska et al., 2004). However, these models are difficult to implement 
in practice for even modest numbers of recording sites because of the number of parameters that need 
to be estimated. To fit an MVAR model to a dataset with M recording sites and model order (i.e., the 
number of past values used to estimate present values) of p, the number of parameters that must be 
estimated is equal to M2p. The length of stationary data required to reliably estimate MVAR models using 
ordinary least-squares (OLS) has been estimated previously to be 10Mp (Schlogl and Supp, 2006); we 
show here that this data length is closer to 100Mp when M is large. The difficulty of reliably estimating 
MVAR model coefficients from available data appears to have limited previously reported applications in 
human electrophysiology to <~30 electrodes (e.g. see (Korzeniewska et al., 2011) for a relatively high-
dimensional example; (Brovelli et al., 2004) are more representative and use four and six channel 
models). The primary contribution of this paper is to explore MVAR model estimation methods that 
enable modeling of much larger networks from practical data lengths. 

Intracranial encephalographic (iEEG) recordings from neurosurgical patients can simultaneously 
sample neural activity from hundreds of locations in the brain with high spatial and temporal resolution, 
and thus are a rich source of multivariate data for exploring causal interactions in brain networks. 
However, exploiting the opportunity afforded by MVAR modeling with hundreds of electrodes is 
challenging due to limited data availability. For example, with typical iEEG recording parameters of M = 
200 and sampling frequency of 250 Hz, and a model order of p = 8, 100Mp translates into a required data 
length of >10 minutes for a single static estimate of connectivity; dynamic connectivity analysis (Preti et 
al., 2017) in this scenario would be impractical. Furthermore, even when working with longer duration 
recordings, additional limitations such as the presence of artifacts and nonstationarity can limit the total 
duration of data available for estimating an accurate MVAR model. These considerations motivate the 
development of methods to fit MVAR models in the limited data regime. In the past, the standard 
workaround for this problem has been to estimate MVAR models using smaller subsets of selected 
recording sites. Unfortunately, this removes potential mediating variables and connections and distorts 
the true causal network underlying brain activity, drastically increasing the likelihood of detecting 
spurious effective connections (Granger, 1980; Kus et al., 2004; Olejarczyk et al., 2017).  

There have been several attempts to implement dimensionality-reduction techniques to more 
accurately fit MVAR models to large multivariate datasets. Principal component analysis (PCA) has been 
used previously to fit MVAR models to scalp EEG data (Joliffe and Morgan, 1992). In this approach, PCA is 
applied to the electrode-by-electrode covariance matrix to yield “virtual scalp electrodes”, i.e., electrodes 
projected onto an orthogonalized basis set that more efficiently captures the spatial variability across 
electrodes. To retain greater spatial information, PCA has also been applied separately to regions of 
interest (ROIs) on the scalp determined a priori, prior to concatenating the full set of principal 
components across ROIs as input to the MVAR model (Wang et al., 2016). We will refer to this approach 
as rPCA. Connections between ROIs and their virtual electrodes can then be aggregated and summarized 
using “block” measures of connectivity (Faes et al., 2012; Faes and Nollo, 2013).  
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Sparse regression is another common method to reduce the effective number of estimated 
parameters in MVAR models (Antonacci et al., 2019; Valdes-Sosa et al., 2005). Unlike PCA, which is a 
processing step implemented prior to model-fitting, sparse regression approaches use a regularizer 
during the model-fitting step. The Least Absolute Shrinkage and Selection Operator (LASSO) method 
(Tibshirani, 1996) regularizes the OLS problem with a penalty based on the L1 norm of the MVAR 
coefficients. This retains essential coefficients, i.e., those explaining the most variance in the training 
data, while setting smaller coefficients or those with less explanatory power to zero. The group LASSO 
(gLASSO) approach encourages sparse connections between nodes by shrinking all the coefficients 
associated with smaller node-node interactions in the model to zero simultaneously (Bolstad et al., 2011). 
The gLASSO enhances the interpretability of the resulting sparse model since it focuses on sparsity of 
connections rather than isolated coefficients. 

While both rPCA and gLASSO methods have been used separately in previous studies, they have 
yet to be combined or systematically compared. In this work, we first show that high dimensional iEEG 
data (117 – 216 electrodes) can be fit successfully using MVAR models provided sufficient data is 
available. We then explore the performance of different approaches for recovering connectivity profiles 
in the limited data regime. Physiologically realistic simulated data is created using network models 
estimated from high dimensional human intracranial EEG (iEEG) data. The simulated network provides 
ground truth for evaluation of various estimation methods. We use these data to assess how the 
combination of gLASSO and rPCA methods compares with rPCA-only, gLASSO-only, and standard OLS 
methods, showcasing the relative performance of each modeling strategy. Specifically, we measure each 
modeling strategy’s ability to recover known ground-truth regional connectivity, based on a new block 
gPDC measure that has superior properties to previously used block gPDC measures. We show that 
gLASSO can capture essential features of connectivity even in very limited data regimes, motivating an 
illustration of using gLASSO to assess dynamic connectivity. In addition to these simulation experiments, 
we apply each method to resting-state data derived from high-dimensional iEEG recordings to 
demonstrate their relative abilities to recover plausible connectivity profiles.  
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Methods 

Overview 

Our goal was to develop methods for reliably fitting MVAR models to high dimensional neural data. The 
performance of rPCA and gLASSO estimation methods were objectively evaluated on simulated data 
generated by physiologically realistic “ground truth” networks. Data-predictive and network connectivity 
metrics were employed to assess estimation fidelity as a function of data length. The physiologically 
realistic networks used as ground truth benchmarks in the simulation study were estimated using long 
segments of resting state iEEG data recorded from neurosurgical patients. The Methods section is divided 
into five sub-sections: (1) human subjects and iEEG recordings; (2) overview of MVAR models; (3) ground 
truth network estimation; (4) methods for estimating MVAR models from simulated data, including rPCA, 
gLASSO, and rPCA-gLASSO; (5) details of the metrics used for assessing estimator performance, including 
the block gPDC measure we employed to evaluate regional connectivity. 

Human subjects and iEEG recordings  

Subjects 

iEEG data were used to derive ground-truth networks for simulation and to demonstrate that plausible 
connectivity profiles could be recovered using the approach described here. These data were obtained 
from ten neurosurgical patients (6 female, ages 21 - 48 years old, median age 34.5 years old; Table 1). 
The patients had been diagnosed with medically refractory epilepsy and were undergoing chronic 
invasive iEEG monitoring to identify potentially resectable seizure foci. All human subjects experiments 
were carried out in accordance with The Code of Ethics of the World Medical Association (Declaration of 
Helsinki) for experiments involving humans. The research protocols were approved by the University of 
Iowa Institutional Review Board and the National Institutes of Health. Written informed consent was 
obtained from all subjects. Research participation did not interfere with acquisition of clinically required 
data. Subjects could rescind consent at any time without interrupting their clinical evaluation. All subjects 
were native English speakers, right-handed, and had left hemisphere language dominance, as determined 
by Wada test. 

Table 1. Subject demographics. 

Subject Age Sex Seizure focus 
L307 32 M L insula 
L357 36 M L medial temporal 
R369 30 M R medial temporal 
R376 48 F R medial temporal 
R429 32 F R anterior and medial temporal 
R434 39 F R medial temporal 
L442 33 F R temporal (multiple medial and neocortical)  
L514 46 M L insula (anterior) 
R515 21 F R medial temporal 
R532 42 F R ventral frontal (posterior) 
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F, female; L, left; M; male; R, right. The hemisphere with predominant electrode coverage is indicated by 
the prefix of the subject code.  

iEEG recordings  

Recordings were made using subdural and depth electrodes (Ad-Tech Medical, Oak Creek, WI) (Figure 1A; 
Supplementary Figure 1). After rejecting electrodes that were located in seizure foci, white matter, or 
outside the brain, or for noise reasons (see below), the median number of recording sites across the 10 
subjects was 174 (range 117 – 216; Supplementary Figure 2; Table 2). Subdural arrays consisted of 
platinum-iridium discs (2.3 mm diameter, 5-10 mm inter-electrode distance), embedded in a silicon 
membrane. These arrays provided extensive coverage of temporal, frontal, and parietal cortex 
(Supplementary Figure 1). Depth arrays (8-12 electrodes, 5 mm inter-electrode distance) targeted insular 
cortex, hippocampus, and amygdala, and additionally provided coverage of the superior temporal plane 
and superior temporal sulcus. (Note that because of the extensive coverage of auditory cortical structures 
in the temporal lobe, and adjacent auditory-related cortical structures in parietal and frontal lobes, our 
scheme for organizing ROIs is auditory-centric.) A subgaleal electrode, placed over the cranial vertex near 
midline, was used as a reference in all subjects. All electrodes were placed solely on the basis of clinical 
requirements, as determined by the team of epileptologists and neurosurgeons (Nourski and Howard, 
2015).  

No-task, resting-state (RS) data were recorded in the dedicated, electrically shielded suite in The 
University of Iowa Clinical Research Unit while the subjects lay in the hospital bed. Resting state data 
were collected a median of 5.5 days [range 2 – 11 days] after electrode implantation surgery. In the first 
two subjects (L307 and L357), data were recorded using a TDT RZ2 real-time processor (Tucker-Davis 
Technologies, Alachua, FL). In the remaining 8 subjects (R369 through R532), data acquisition was 
performed using a Neuralynx Atlas System (Neuralynx Inc., Bozeman, MT). Recorded data were amplified, 
filtered (0.1–500 Hz bandpass, 5 dB/octave rolloff for TDT-recorded data; 0.7–800 Hz bandpass, 12 
dB/octave rolloff for Neuralynx-recorded data) and digitized at a sampling rate of 2034.5 Hz (TDT) or 2000 
Hz (Neuralynx). For 8/10 subjects, the duration of recordings was 10 mins. For the other two subjects 
(429R, 532R), the duration was 11 minutes.  
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Figure 1. Raw data and ground truth networks. A. Example of electrode coverage of the left hemisphere in 
a representative subject (L442). Top-to-bottom: Lateral view of the left hemisphere, top-down view of 
the superior temporal plane, ventral view of the left hemisphere. Recording sites are color-coded 
according to the ROI group. Sites identified as seizure foci or characterized by excessive noise, and depth 
electrode contacts localized to the white matter are denoted by white symbols. Insertion points of depth 
electrodes implanted in the superior temporal plane are shown on the lateral view as black symbols. B. 
Example raw data from the subject in A. Data is shown for one recording site in each ROI. C. Connectivity 
for the subject in A estimated from 4 minutes of data fit via a ridge-regression model,  =10-4. Scalar 
(electrode level) broad-band gPDC shown. D. Block (ROI) connectivity (bgPDC; Eq. 18) for the same 
subject. Color bars in panels C and D represent ROI groups, color-coded as shown in the legend of panel 
A. See Table 2 for list of ROI abbreviations. 
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Table 2. Electrode coverage. 

ROI group ROI ROI abbreviation Nsubjects nsites 
Auditory core Heschl’s gyrus, posteromedial HGPM 10 50 
Auditory non-core Heschl’s gyrus, anterolateral HGAL 9 34 

Planum temporale PT 5 18 
Planum polare PP 8 18 
Superior temporal gyrus, posterior STGP 10 109 
Superior temporal gyrus, middle STGM 10 55 

Auditory-related Superior temporal gyrus, anterior STGA 7 16 
Insula, posterior InsP 10 37 
Superior temporal sulcus, upper bank STSU 6 34 
Superior temporal sulcus, lower bank STSL 6 24 
Middle temporal gyrus, posterior MTGP 10 137 
Middle temporal gyrus, middle MTGM 9 89 
Middle temporal gyrus, anterior MTGA 7 29 
Supramarginal gyrus SMG 9 107 
Angular gyrus, anterior AGA 7 46 
Angular gyrus, posterior AGP 5 22 

Prefrontal Inferior frontal gyrus, pars opercularis IFGop 9 29 
Inferior frontal gyrus, pars triangularis IFGtr 10 63 
Inferior frontal gyrus, pars orbitalis IFGor 7 17 
Middle frontal gyrus MFG 9 102 
Superior frontal gyrus SFG 2 2 
Anterior cingulate cortex ACC 5 5 
Orbital gyrus OG 9 103 
Transverse frontopolar gyrus TFG 3 10 

Sensorimotor  Precentral gyrus PreCG 9 84 
Postcentral gyrus PostCG 9 54 
Paracentral lobule ParaCL 1 2 

Other Premotor cortex PMC 10 37 
Cingulate gyrus CingG 4 25 
Parahippocampal gyrus PHG 7 27 
Fusiform gyrus FG 10 39 
Inferior temporal gyrus, posterior ITGP 6 17 
Inferior temporal gyrus,middle ITGM 8 28 
Inferior temporal gyrus, anterior ITGA 8 34 
Temporal pole TP 8 70 
Insula, anterior InsA 10 28 
Frontal operculum fOperc 3 6 
Parietal operculum pOperc 2 4 
Gyrus rectus GR 5 11 
Superior parietal lobule SPL 2 8 
Precuneus PreCun 1 1 
Lingual gyrus LingG 2 4 
Middle occipital gyrus MOG 4 10 
Inferior occipital gyrus IOG 1 1 
Amygdala Amyg 7 19 
Hippocampus Hipp 5 16 
Putamen Put 3 6 
Caudate nucleus Caud 1 1 
Substantia innominata  SubInn 1 2 
Ventral striatum vStr 1 2 

Total 10 1692 
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iEEG data analysis 

Anatomical reconstruction and ROI parcellation  
Electrode localization relied on post-implantation T1-weighted structural MR images and post-
implantation CT images. All images were initially aligned with pre-operative T1 images using linear 
coregistration implemented in the FMRIB Software Library (FSL; FLIRT) (Jenkinson et al., 2002). Electrodes 
were identified in the post-implantation MRI as magnetic susceptibility artifacts and in the CT as metallic 
hyperdensities. Electrode locations were further refined within the space of the pre-operative MRI using 
three-dimensional non-linear thin-plate spline warping (Rohr et al., 2001), which corrected for post-
operative brain shift and distortion. The warping was constrained with 50-100 control points, manually 
selected throughout the brain, which aligned to visibly corresponding landmarks in the pre- and post-
implantation MRIs. 

Regional connectivity was assessed by grouping electrodes based on location. Electrodes were 
assigned to one of 50 ROIs organized into 6 ROI groups (Figure 1A; Supplementary Figure 1; 
Supplementary Table 1) based upon anatomical reconstructions of electrode locations in each subject. 
For subdural arrays, it was informed by automated parcellation of cortical gyri (Destrieux et al., 2010; 
Destrieux et al., 2017) as implemented in the FreeSurfer software package. For depth arrays, ROI 
assignment was informed by MRI sections along sagittal, coronal, and axial planes. Heschl’s gyrus (HG) 
was subdivided into the posteromedial (HGPM) and anterolateral (HGAL) portions (core auditory cortex 
and adjacent non-core areas, respectively). This division was made using physiological criteria 
(characteristic short-latency evoked responses to click trains and frequency-following responses in HGPM 
but not HGAL; see (Brugge et al., 2009) and (Nourski et al., 2016). Superior temporal gyrus (STG) was 
subdivided into posterior and middle non-core auditory cortex ROIs (STGP and STGM), and auditory-
related anterior ROI (STGA) using the transverse temporal sulcus and ascending ramus of the Sylvian 
fissure as macroanatomical boundaries. Middle and inferior temporal gyrus (MTG and ITG) were each 
divided into posterior, middle, and anterior ROI by diving the gyrus into three approximately equal thirds 
along its length. The insula was subdivided into posterior and anterior ROIs, with the former considered 
within the auditory-related ROI group (Zhang et al., 2019). Within cingulate gyrus, anterior cingulate 
cortex (as identified by automatic parcellation in FreeSurfer) was considered a prefrontal ROI. Angular 
gyrus (AG) was divided into posterior and anterior ROIs (AGP and AGA) using the angular sulcus as a 
macroanatomical boundary. Recording sites identified as seizure foci or characterized by excessive noise, 
and depth electrode contacts localized to the white matter or outside brain, were excluded from analyses 
and are not listed in Supplementary Table 1.  

Preprocessing of iEEG data 

For each subject, iEEG data were downsampled to 250 Hz and divided into segments of varying length (10 
– 960 s). Artifact rejection involved three steps. First, outlier electrodes were identified based on the 
average log amplitude in one-minute segments across seven frequency bands computed using the 
demodulated band transform (DBT; (Kovach and Gander, 2016): delta (1-4 Hz), theta (4-8 Hz), alpha (8-14 
Hz), beta (14-30 Hz), gamma (30-50 Hz), high gamma (70-110 Hz), and total (sum of all others). Analytical 
amplitude measured in each band was z-scored across electrodes in each segment and averaged across 
segments. Electrodes with a mean z-score > 3.5 in any band were removed, including from further artifact 
rejection methods.  

Second, intervals containing artifacts in the raw voltage traces were rejected on every electrode. 
We identified times when any electrode had extreme absolute raw voltage >10 SD for that electrode and 
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marked as artifact the surrounding time until that electrode returned to zero voltage, plus an additional 
100 ms before and after. Note that because we were measuring connectivity, any data interval identified 
on a single electrode was excluded for all electrodes. For each subject, if this procedure identified >1% of 
recording time as artifact, we optimized the total data kept for that subject (= electrodes × non-artifact 
time) by further excluding electrodes if retaining those electrodes caused more loss of data on the 
remaining electrodes via artifact rejection than they themselves contributed.  

Third, we applied a specific additional noise criterion to eliminate brief power spikes in the high 
gamma band, a band that in some subjects was particularly sensitive to noise in our recording 
environment. We excluded all intervals containing segments in which high gamma power averaged across 
electrodes was greater than five standard deviations after excluding electrodes and times already 
removed in steps 1 and 2. 

 

Multivariate autoregressive models 

Multivariate autoregressive (MVAR) models represent the present value at each electrode as a weighted 
combination of past values at all other electrodes. Let ym(n) be the voltage in electrode m at time n. The 
MVAR model is for ym(n) is 
 

  (1) 
where am,j(k) is the weight applied to electrode j at lag k to predict electrode m, um(n) is the model error 
or innovations process in electrode m, p is the memory or maximum lag considered by the model, N is the 
number of data samples, and M is the number of electrodes. The innovations are typically assumed to be 
white noise that is uncorrelated for different electrodes. Note that although MVAR models are linear, 
they can detect both linear and nonlinear causal interactions and may be more robust to noise than 
methods that explicitly capture nonlinearities (Astolfi et al., 2009; Freiwald et al., 1999; Gourévitch et al., 
2006; Korzeniewska et al., 2011; Netoff et al., 2004).  

In the large data regime (N large) the MVAR model coefficients am,j(k) may be estimated from 
data using the OLS method (Lutkepohl, 2005). Define 

  

 

 (2) 

so that the least squares problem for estimating am is written in matrix form as 
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 (3) 

The solution to Eq. (3) is given by  

 (4) 

assuming  is an invertible matrix, which requires N-p ≥ Mp.  

In practice, the number of stationary data samples must be significantly larger than the minimum 
to avoid large errors in the MVAR parameter estimates. A rule of thumb of N > 10Mp has been suggested 
(see, e.g., (Schlogl and Supp, 2006)). It is important to note that such guidelines assume the data samples 
have some degree of statistical independence. Thus, the effective number of samples available is 
determined by the bandwidth of the signal, not the absolute sampling rate. Oversampling the data does 
not improve estimation quality. For example, if the data has a bandwidth of 50 Hz, then the number of 
effective samples available for estimation is approximately 100 samples/s. In our data set we had several 
subjects with more than 200 electrodes. If we assume a modest memory of p = 8, then the N > 10Mp rule 
of thumb suggests we need at least 16,000 statistically independent samples of data. If, for example, we 
assume an approximate 50 Hz bandwidth, then 16,000 samples map to 160 s or nearly three minutes of 
data. The strong 1/f characteristic of EEG data may reduce the effective bandwidth of the data in many 
situations, especially when strong lower frequency rhythmic activity is present, and thus significantly 
more data may be required in some situations. 

The requirement of long, stationary data segments significantly limits the utility of the OLS 
approach to MVAR model estimation for large networks and is the primary motivation for the evaluation 
of the rPCA and gLASSO approaches described below. 

Ground-truth network estimation 

The “true” networks associated with our human subject data were unknown, which makes it impossible 
to evaluate objectively the performance of any MVAR model estimation algorithm from measured data. 
Hence, we used our human subject data to obtain physiologically realistic ground-truth MVAR models. 
The ground truth models were then used to generate simulated data for objective evaluation of the 
performance of MVAR model estimation algorithms as a function of data duration.  

Exploration of our data revealed that the OLS solution for the MVAR model coefficients gave 
spurious results in some electrodes even with data record lengths exceeding four minutes, so we 
employed ridge regression (Hoerl and Kennard, 2000) to regularize the estimates for the ground-truth 
models. That is, instead of Eq. (3), we chose the ground truth models according to 

 (5) 

where the regularization parameter  is chosen as 
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This value for  was chosen empirically to provide sufficient regularization in electrodes that had spurious 
connectivity in the OLS approach without significantly altering the connectivity in the remaining 
electrodes. The solution to Eq. (5) is given by 

 (6) 

We chose a model order p = 8 for all ground-truth models for several reasons. First, initial 
evaluation suggested that the quality of the model predictive performance did not improve appreciably 
using larger values of p. Second, we wanted the physiologically inspired ground-truth models - derived 
from different subjects - to use the same model order to facilitate evaluation of algorithm performance 
across different ground-truth models. Commonly used methods such as Akaike Information Criterion or 
cross-validation give different optimal values of p for different subjects. Third, the data required for 
model estimation is proportional to p, so we chose to work with smallest plausible value. Fourth, and 
perhaps most importantly, the main goal of this process is to create physiologically inspired models for 
the simulation study. Achieving this goal does not require precise determination of model order. 
 

One ground-truth network model was created for each subject for a total of ten different models. 
Simulated data was created from the network model by applying white noise input as the innovations 

process  with variance  given by the estimated prediction error variance 

  
where  and  are defined based on thirty s of test data after the four minutes used to estimate 
from each subject. 

Model estimation methods 

Simulated data from the ten ground-truth models was used to evaluate the performance of four different 
model MVAR estimation methods as a function of data record length: 1) OLS (Eq. (3)); ROI-based principal 
component analysis (rPCA) with OLS; 3) Self-connected group LASSO (gLASSO); and 4) rPCA with gLASSO 
(rPCA-gLASSO). The rPCA, gLASSO, and rPCA-gLASSO methods are described next. 

ROI-Based Principal Component Analysis (rPCA) 

One of the approaches we employed to reduce model dimension – and consequently data requirements 
– was applying PCA to the collection of electrode signals associated with each ROI. Let yj(n) be an Mj-by-1 
vector containing the Mj electrodes of data associated with the Mj electrodes in the jth ROI. We map yj(n) 
into an Lj-by-1 (Lj ≤ Mj) vector of PCA signals xj(n) as  

xj(n) = Wj yj(n) (7) 

where Wj is an Lj-by- Mj matrix whose rows are the eigenvectors corresponding to the largest eigenvalues 
of the covariance matrix of yj(n). The number of PCA components Lj was chosen so that xj(n) represents a 
specified fraction of the variance associated with yj(n). We chose Lj to represent 95% variance in the 
results shown later. In our data, these thresholds reduced the total number of electrodes by a factor of 
approximately two. Note that given PCA signals xj(n) and Wj one can project back to identify the 
corresponding approximated electrode data as 
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 (8) 

rPCA is an aggregation approach that creates virtual electrodes representing the unique components in 
the ROI. This approach to reducing the dimensionality of the network is depicted in Figure 2, which also 
illustrates a segment of the original data signals , the virtual (PCA) signals , and the back-
projected data signals  from HGAL in one subject. While the connectivity between the original 
physical electrodes is modified when operating in the rPCA space, the connectivity between ROIs is 
preserved to the extent that all significant components of the electrode data yj(n) are retained. It is 
straightforward to show that if 100% of the variance is retained in all regions, then  is an invertible 
matrix and the connectivity between ROIs is identical between electrode and PCA spaces (see 
Supplementary Methods). As the fractional variance retained decreases, model complexity decreases, 
resulting in reduced computation and data requirements, but the potential for distortion of connectivity 
between ROIs increases. 
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Figure 2. Illustration of rPCA method. A: PCA was applied to electrodes within pre-assigned ROIs (see 
Figure 1) to create virtual electrodes. B: Illustration of rPCA applied to one ROI (HGAL) in one subject, 
showing original data (left), virtual electrode representation of these data (middle), and data 
backprojected into original data space (right). 
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The MVAR model for the rPCA data is obtained by rewriting Eq. (1) as 

 (9) 

where  is the rPCA MVAR model coefficient representing the influence of PCA electrode j at lag k 
on PCA electrode m,  is the innovation or model error in PCA electrode m, and  is the 
number of virtual electrodes in the model. OLS estimates for the rPCA MVAR model coefficients are 
obtained analogously to Eqs. (3) and (4). 

Self-Connected Group LASSO (gLASSO)  

The self-connected gLASSO (Bolstad et al., 2011) was evaluated to determine the reduction in data 
requirements possible using a penalty that encouraged sparse connectivity between physical or virtual 
electrodes. Define a p-by-1 vector of coefficients associated with the connection from electrodes j to m 

 (10) 

so that am in Eq. (2) is expressed as 

 (11) 

The gLASSO problem is then expressed as 

 (12) 

Use of the two-norm of  in the regularization term ensured that coefficients relating electrode j to 
electrode m were penalized as a group, that is, they were set to zero as a group. Note that self-
connections were not penalized, which is why j=m was excluded from the regularizer. Larger values of the 
regularization parameter λ resulted in a smaller number of nonzero connections at the expense of larger 
modeling error.  

The solution to Eq. (12) was obtained using standard convex optimization methods based on the code 
of (Bolstad et al., 2011). Five-fold cross validation was used to select λ: 

1. Split available data into five equal portions or folds.  
2. Use all folds but the kth fold of data to train different models for a range of 11 candidate λ values. 

The candidate values for λ were chosen by first finding the smallest λ which guarantees all 
coefficients are zero (Bolstad et al., 2011). The 11 candidate values were chosen evenly spaced 
between 0% (OLS) and 40% of this value. This maximum was chosen based on the observation 
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that the models have very few nonzero connections at and beyond 40% of λ that guarantees all 
zero connections . 

3. Use the kth fold to determine the squared prediction error of each candidate model when applied 
to data not used to train the model.  

4. Repeat steps 2 and 3 five times with different folds held out from training and average the 
resulting squared errors.  

5. Choose the model corresponding to the value λ that results in the minimum averaged error. 

This process was repeated for each target electrode m in the model. Thus, the coefficient vectors used to 
predict different electrodes may have had different levels of sparsity. Some areas of the brain are more 
densely connected than others, so it is plausible that the connectivity to different electrode locations has 
varying levels of sparsity.  

Note that the gLASSO regularizer in Eq. (12) is known to shrink the model coefficients in a manner 
that depends on λ (Bolstad et al., 2011). Hence, after determining which connections were present using 
the gLASSO procedure, we estimated the coefficients associated with the active connections by solving a 
least-squares problem involving only those connections. That is, the gLASSO was used for subset selection 
– to determine which subset of the connections should be included in the model – and least squares was 
used to estimate the corresponding coefficients of the reduced complexity model. 

The acronym rPCA-gLASSO refers to the process of applying the gLASSO method to the rPCA 
model described in Eq. (9). 

Performance characterization 

The performance of four different modeling approaches was evaluated using simulated data. We 
simulated the specified length of data for each of ten subjects using the corresponding ground truth 
model and estimate model coefficients from the simulated data. All estimated MVAR models assumed 
the correct model order of p=8 so that we could evaluate estimation algorithm performance independent 
of model order selection. This process was repeated ten times for each ground truth model and data 
length and the performance averaged over these ten trials. Two different measures were employed to 
characterize model performance: the model prediction error on data not used to train the model and 
comparison between the connectivity estimated from the estimated MVAR model coefficients and the 
ground-truth network connectivity of the MVAR process used to create the simulated data. 

It is useful to rewrite Eq. (1) in matrix form as 

 (13) 

where y(n) is the M-by-1 vector of data at all M electrodes, A(k) is an M-by-M matrix of model coefficients 
at lag k whose i,j element is ai,j(k), and u(n) is the M-by-1 vector of model errors or innovations. We shall 
assume that Eq. (13) represents the rPCA case as well, with the appropriate substitutions of the virtual 
electrode data.  
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Mean-square Prediction Error 

Let z(n) denote new simulated data and 𝐀𝐀�(k) the estimated MVAR model coefficients. The mean square 
prediction error is  

 (14) 

where NT is the number of simulated test samples corresponding to 16 minutes of data.  

Partially Directed Coherence Measures  

Many different measures of connectivity have been proposed for MVAR models. Here, we used a variant 
of the generalized partial directed coherence (gPDC) to characterize the connectivity between ROIs, i.e., 
vector time series, with a scalar metric. Eq. (13) may be expressed in the frequency domain as  

 (15) 

where 

 (16) 

Here  and f is frequency normalized by the sampling frequency, i.e., -0.5 < f ≤ 0.5 with units of 
cycles per sample. Further, let superscript H denote the complex conjugate transpose operator, 

 denote the error covariance matrix, assumed constant over frequency, and 
 the inverse error covariance matrix. The gPDC metric (Baccala et al., 2007) from electrode j to 

electrode i is written 

 (17) 

where  is the kth diagonal element of  and  is the i,j element of . Similarly, we define 
the block gPDC for the relationship from the jth vector time series to the ith vector time series as 

 (18) 

where  is the block of  associated with the connection from the jth to ith vector time series, 
 is the block of  associated with the ith vector time series, and the matrix trace operation is the sum 

of the diagonal elements. Note that the factor  normalizes the block gPDC metric by the number of 
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electrodes associated with the target ROI. The relationship between the measure in Eq. (18) and the 
previously proposed vector connectivity measures of (Faes and Nollo, 2013) is described in 
Supplementary Methods. 

We computed broad band connectivity by integrating  over frequency. Define the 
ground truth broad band connectivity from electrode j to i as  and the estimated broad band 

connectivity in trial k as . The acronym bgPDC (block gPDC) is used to refer to broadband connectivity 

 and . We compared the ground truth bgPDC to the mean estimated bgPDC over ten trials visually 
(e.g., see Figure 4, Supplementary Figures 3-6). As a global quantitative measure of fidelity, for each 
subject and data length we computed the mean-absolute-difference connectivity between the ground 
truth and estimated bgPDC connectivity, defined as 

 (19) 

  

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted December 3, 2021. ; https://doi.org/10.1101/2021.12.01.470804doi: bioRxiv preprint 

https://doi.org/10.1101/2021.12.01.470804
http://creativecommons.org/licenses/by-nc-nd/4.0/


Results 

Effective connectivity in ground truth networks 

Resting state iEEG recordings were obtained in ten neurosurgical patients (Figure 1A; Supplementary 
Figure 1; Table 2). MVAR model fits to 4-minute data segments were used to derive effective connectivity 
profiles (Figure 1C-D). Connectivity matrices at the single electrode and ROI levels displayed strong 
symmetry. In the connectivity matrices of Figure 1, the electrode locations and ROIs are ordered in a 
roughly hierarchical fashion, so as expected, connectivity was strongest along the diagonal.  

To explore further the consistency of these results with previous reports, we evaluated the 
connectivity patterns in all subjects to and from the anterior and posterior subdivisions of the insula 
(Figure 3), areas that are anatomically close to each other with distinct functions but strong 
interconnectivity (Augustine, 1996; Cauda et al., 2011; Cloutman et al., 2012; Zhang et al., 2019). The 
results of Figure 3 are consistent with these previous reports. InsP is considered a sensory region, both 
interoceptive and exteroceptive, and in the ROIs sampled would be expected to have strong connections 
to early auditory cortical structures. This is evident in the analyzed dataset as strong bright yellow vertical 
bands in Figure 3A corresponding to ROIs (HGPM, HGAL) on Heschl’s gyrus, the location of primary 
auditory cortex. By contrast, InsA is a higher order structure with strong connectivity to the higher order 
auditory cortical structure planum polare (PP; Figure 3B). Both InsP and InsA sent strong projections to 
amygdala. Additionally, bidirectional connectivity was observed between InsP and InsA, with a higher 
connection strength from InsA to InsP.  

 

Figure 3. Summary of connectivity of insula for all subjects. A: Posterior insula (InsP). B: Anterior insula 
(InsA). Only ROIs with coverage in 6 or more subjects are shown. Color bars underneath each panel 
represent ROI groups, color-coded as shown in the legend of Figure 1A. See Table 2 for list of ROI 
abbreviations.  
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Simulation Experiment 

The performance of the four MVAR model estimation methods was evaluated using model fits to data of 
varying lengths simulated from ground truth models (Figure 4). We report the data length T in s to 
simplify the application of the results to the original subject data; with the sampling rate fixed at 250 s-1, 
the number of samples N = 250T. In the example shown, the OLS and rPCA estimates failed to capture any 
features of the ground truth connectivity matrix for T = 10 s, in contrast to rPCA-gLASSO and gLASSO. 
Modest improvement was observed for PCA at T = 30 s. When T was increased to 60 s, the performance 
of the OLS and rPCA estimates improved, but connectivity tended to be substantially overestimated for 
both methods (Figure 3). Comparable results were observed in the ground truth models from all subjects 
(Supplementary Figures 3-6). This is illustrated more directly in Figure 5, which shows scatterplots of 
estimated vs. true connectivity for a single subject for T = 10, 30, and 60 s. Only the strongest connections 
were estimated correctly with OLS and rPCA estimates even for T = 60 s. There was a slight 
overestimation of connectivity values for rPCA-gLASSO and gLASSO estimates as well, but in general these 
estimates were much more accurate. An example from a second subject is shown in Supplementary 
Figure 7. Model performance was quantified across subjects using mean-square prediction error (Eq. 14) 
and bgPDC fidelity  (Eq. 19) as shown in Figure 6. As T increased, both metrics improved for all 
estimators. However, the rPCA-gLASSO and gLASSO estimates performed substantially better than the 
OLS estimate in the most data-limited case (T =10 s). In fact, a data length of T = 960 s was required for 
OLS to show superior one-step prediction error compared to gLASSO (Figure 6B). We note as well that 
while the rPCA-gLASSO and gLASSO estimates performed comparably to each other on these metrics, the 
gLASSO model required significantly more computation to estimate. 

Plausibility Analysis 

The data of Figures 4 – 6 indicate that gLASSO and rPCA-gLASSO estimates provided superior 
performance in capturing known connectivity from ground-truth models. We next explored the 
performance of OLS, gLASSO, and rPCA-gLASSO estimation methods when applied to one-minute 
segments of the original human subject data that was used to generate the ground-truth models. Each 
estimation method was applied to four 1-minute segments of the human subject data. The ground truth 
connectivity was not known, so in Figure 7 we compare bgPDC connectivity profiles to and from the 
anterior and posterior subdivisions of the insula in all subjects to assess consistency with the results for 
longer data segments shown in Figure 1 and with previous reports from the literature. The severe 
overestimation of connectivity associated with the OLS method was clearly evident, as was the more 
modest overestimation with gLASSO and rPCA-gLASSO. In general, the latter two approaches captured 
the differential connectivity of InsP and InsA to early (HGPM, HGAL) versus higher order (PP) auditory 
structures and the amygdala, indicating that results were plausible even in the absence of ground truth 
knowledge.  

Dynamics of iEEG connectivity  

The data of Figure 5 and Supplementary Figure 7 indicate that gLASSO and rPCA-gLASSO can reliably 
estimate connectivity even for short data lengths (T = 10 s). The possibility of estimating high-dimensional 
network models from relatively short data segments enables the study of changes in connectivity that 
occur over time, a growing area of interest in research on brain networks (Preti et al., 2017). To illustrate 
the importance of performing dynamic connectivity analysis with high temporal resolution, we explored 
dynamic connectivity during ten minutes of resting state iEEG data in two subjects using the gLASSO 
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estimation method with models based on T = 60 and 10 s (Figure 8). To visualize changes in connectivity 
over time, we stacked the connectivity estimates between all ROIs into a single vector and sorted the 
connectivity from smallest to largest mean connectivity over the ten minutes. Sorted connectivity is 
displayed on the vertical axis and time on the horizontal axis. Thus, each row depicts the temporal 
evolution of connectivity between two ROIs. To further identify potential temporal patterns, we applied 
singular value decomposition to this matrix of vectorized connectivity vs time and extracted the dominant 
component. The right-most figure in each panel shows the dominant component with the time course of 
the dominant component depicted beneath. The results based on a 10-s segment revealed temporal 
patterns that were smoothed over by the longer 60-s window. In some cases, rapid changes in 
connectivity were completely obscured for the 60-s models. Thus, methods to facilitate accurate 
representations of network connectivity over short times scales are essential to capture the dynamics of 
the brain in resting state. 
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Figure 4. Recovery of ground-truth ROI connectivity (bgPDC) in subject 442L. Adjacency matrices show 
rows as origin ROIs, and columns as target ROIs. Each connectivity matrix depicts the average result 
over ten trials, except for the T = 960 s case, which represents an average of two. The delta values 
displayed above each recovery matrix represent the mean absolute error of the average recovery 
matrix compared to the ground-truth (GT) matrix as defined in Eq. (19). The same color scale is used 
for all adjacency matrices shown. The maximum color value is based off of the 95th percentile of the 
ground-truth matrix. Color bars next to the connectivity matrices represent ROI groups, color-coded as 
shown in the legend of Figure 1A.  
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Figure 5. Comparison of ground-truth vs recovered bgPDC connectivity. Scatter plots of average (10 
trials) estimated versus ground truth connectivity for subject 442L for different estimation methods. 
The rPCA-gLASSO and gLASSO estimation results include histogram of connections that are pruned to 
zero by the gLASSO procedure. The dashed vertical line in the histograms denotes the median of the 
ground truth connectivity values that have been pruned. A Connectivity estimated for T = 10 s of 
simulated data. B T = 30 s. C. T = 60 s.  
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Figure 6. Model performance. Summary of estimation performance as a function of data length across all 
simulated ground truth models. The results for each model are averaged over ten trials and the box plots 
characterize average performance across the ten models. A. Mean-absolute-difference connectivity 
between the ground truth and estimated bgPDC connectivity ( ; Eq. 19). B. One-step mean-square 
prediction error (Eq. 14). Box and whiskers plots depict medians (horizontal lines), means (white 
symbols), quartiles (boxes), ranges (whiskers) and outliers (red crosses). 
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Figure 7. Connectivity estimated from human subject data. Estimated bgPDC connectivity from (left) and to 
(right) posterior insula (A) and anterior insula (B). Each column subplot represents a different modeling 
strategy applied to recorded data that was used to estimate the original 10 GT models. The RIDGE models 
were fit to four minutes of resting-state data. To determine if we can recover these models using limited 
data, we applied each modeling approach to four one-minute segments of the human subject data. 
Results are averaged across all four segments for each subject/model-type. Highlighted ROIs are 
discussed specifically in the text. Color bars underneath each panel represent ROI groups, color-coded as 
shown in the legend of Figure 1A. See Table 2 for list of ROI abbreviations. 
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Figure 8. Connectivity dynamics. Each panel depicts the gLASSO-estimated sorted dynamic connectivity 
matrix on the left and the best rank-1 approximation on the right. In each panel, the line plot below the 
rank-1 approximation depicts the mean across connectivity indices to illustrate the overall temporal 
evolution. The estimates are derived from T = 60 s (A, B) and T = 10 s (C, D) segments of human subject 
data. A,C: Subject L403. B,D: Subject R369. 
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Discussion 

It has been widely noted in the literature that long recording durations are needed to estimate high-
dimensional MVAR models in time series data. For example, Schlogl and Supp (Schlogl and Supp, 2006) 
propose that the number of data samples should exceed ten times the product of the memory times the 
number of electrodes (10Mp). Such requirements likely explain why MVAR models have not been 
reported in the literature for more than ~30 electrodes. Our human subject and experimental results with 
OLS model estimation indicate that the factor of ten suggested may be too small for networks in the 100-
200 electrode range. We found that four minutes (∼60,000 samples) of human subject based resting-
state data proved inadequate for OLS estimation of MVAR models with ∼100-200 electrodes and memory 
of eight (Mp ~ 1600), which is why we employed ridge regression to estimate ground-truth models from 
four minutes of data. Our simulation studies show that the OLS approach consistently overestimates 
connectivity for T = 60 s (Figures 4 and 5; Supplementary Figures 3-6), corresponding to a data length of 
15,000 samples. For this dataset, 10Mp ranged from 9360 to 17,280 (average = 13,520. Clearly there is a 
need for estimation methods that are effective with less data. 

The overestimation of connectivity observed with the OLS approach is indicative that the matrix 
inverse required to compute Eq. (4) is ill-conditioned. The Mp-by-Mp matrix  is an estimate of the 
covariance matrix of the data. Few statistical results are available for the properties of this matrix due to 
the temporal dependence of the columns of . However, if the columns of  are independent – a more 
stringent condition – and multivariate Gaussian, then  is a sample covariance matrix with a Wishart 
distribution (Muirhead, 1982). Such matrices have been studied extensively and the distributions of the 
eigenvalues are known (Muirhead, 1982), though they are complex and challenging to interpret. 
Asymptotic distributions of eigenvalues follow the Marchenko-Pastur law (Pastur and Marchenko, 1967). 
For our purposes, it is sufficient to note that the small eigenvalues of a sample covariance matrix require 
much more data for reliable estimation than the large eigenvalues. Inversion of involves inverting 

the eigenvalues, so the small, underestimated eigenvalues of  become dominant in , 
resulting in potentially very large noisy contributions to the OLS weights in Eq. (4). This effect is mitigated 
by ridge regression, which is why we chose ridge regression for estimating ground truth models. Addition 
of  in Eq. (6) ensures all eigenvalues of the matrix being inverted exceed , thus limiting the 
magnification of noisy contributions in the model weights. The downside of using ridge regression is that 
the model squared error increases as  increases.  

One approach to enabling MVAR modeling of large networks is to reduce the inherent 
dimensionality of the problem. We applied PCA to regional collections of electrodes to create a smaller 
number virtual electrodes that represent the regional activity. While the rPCA approach modifies 
interelectrode connectivity, it preserves regional connectivity provided relevant activity is represented in 
the principal components. Although rPCA maximizes the variance represented in the region for a given 
dimension, interregional connectivity bias is not necessarily proportional to variance represented. It is 
theoretically possible that a smaller PCA component discarded in the rPCA process makes a significant 
contribution to interregional connectivity. This potential is illustrated by the 960-s results shown in Figure 
6. The performance of rPCA is noticeably worse than the OLS estimates, reflecting the bias incurred by 
discarding five percent of the variance. The rPCA approach cannot predict components that have been 
discarded. However, Figures 4-6 indicate that the rPCA approach is less sensitive to overestimation 
artifacts than the OLS method with shorter data record lengths. Hence, there is a tradeoff between the 
connectivity bias incurred by discarding dimensions and the reduction in estimator variance associated 
with smaller problem size. Concerns over connectivity bias led us to explore retention of 95 percent of 
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the variance in each region, which limited the dimensionality reduction achieved via rPCA to a factor of 
about two in our data.  

The gLASSO regularizer is motivated by the expectation of sparse connectivity in the brain, such 
as that associated with small world networks (Achard et al., 2006; Bullmore and Sporns, 2009; Sporns and 
Zwi, 2004), and effectively reduces the dimensionality of the problem by “turning off” or pruning 
connections that do not have a significant impact on the squared error for a given data length. The 
potential connectivity bias associated with pruning connections is justified because these connections 
have the weakest impact on the squared error for the available data as determined by cross validation. 
This procedure ensures that the reduction in estimator variability due to reduced dimensionality 
outweighs potential bias for the data set. The histograms in Figure 5 indicate that weaker connections are 
most likely to be turned off by gLASSO. Note that the gLASSO approach results in sparser models as the 
data length decreases (see, e.g., Figures 4 and 5) because it becomes more difficult to establish the 
significance or presence of additional connections as the data length available for training the model 
decreases. We note, however, that these benefits of the gLASSO method accrue at the expense of 
significant computational cost. 

The rPCA-gLASSO approach has a lower computational burden than the gLASSO method due to 
the reduction in dimensionality associated with rPCA. Since the model coefficients associated with 
predicting any one electrode can be estimated as an individual optimization problem, reducing the 
effective number of electrodes by a factor of two will cut the total computational runtime of solving an 
MVAR model in half—independent of the method used to solve for each electrode’s associated 
coefficients. This improvement becomes considerably more noticeable when hyperparameter tuning 
methods are incorporated into the model-fitting step, such as cross-validation, to optimize the sparsity 
hyperparameter (λ) for each electrode in a gLASSO model. However, the rPCA-gLASSO method is subject 
to the connectivity bias discussed in the rPCA approach. Furthermore, rPCA methods only apply to 
regional connectivity estimation involving multiple electrodes sampling a region. If electrode-by-electrode 
connectivity is needed, then rPCA is not applicable. 

Our simulation study enables objective evaluation of estimator performance by comparison to 
the ground truth for a biologically realistic model. We chose to quantify performance using mean-square 
prediction error (Eq. 14), mean absolute deviation of bgPDC connectivity (Eq. 19), and estimated versus 
ground truth bgPDC (Figure 5). There are many different metrics that could be used to measure 
performance as well, and different metrics may show different sensitivity to estimation errors. For 
example, the mean absolute deviation of bgPDC connectivity is more sensitive to data length than the 
one-step mean-square prediction error. Overestimation of connectivity affects bgPDC more than mean-
square prediction error on the test data, which is to be expected since the OLS procedure minimizes the 
prediction error on the training data. It is likely that multiple connectivity patterns could produce 
comparable prediction error, especially with relatively short data records. The OLS estimator is biased 
toward overestimation of connectivity. In effect it produces large connectivity values that tend to offset 
one another and give reasonable squared prediction error. 

We chose to consider only a fixed model order of p=8. This simplified comparison of results for 
ground truth models associated with different subjects and reduces potential difficulties of interpreting 
performance across ground-truth models with different model order. Model order has a direct impact on 
model complexity and model-order selection can be viewed as a form of regularization. Low data 
scenarios call for lower model orders than those supported by higher data scenarios. This dependence is 
reflected in commonly used order-selection strategies such as the Akaike Information Criterion 
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(Cavanaugh and Neath, 2019) and in the recommendation that the data length be >10Mp (Schlogl and 
Supp, 2006). By fixing the order of our estimated models, we can isolate the impact of the estimation 
method on estimation quality.  

We implemented rPCA to reduce dimensionality in the data but still retain spatial information. 
Alternatively, PCA can be run on the full time-series dataset followed by projecting the PCA-based model 
residuals back to a full-dimensional representation (Schmidt et al., 2016). The disadvantage of the latter 
approach is that it precludes considering the regional structure, which is needed to assess regional 
connectivity. Additionally, the benefit of the rPCA method over the projection method arises due to the 
inability to project the model’s coefficients back to a high-dimensional state—meaning that only the error 
terms of the projected model can be used for estimation of connectivity. Since the calculation of the very 
popular connectivity metric—the gPDC—requires the use of model coefficients, the rPCA method is 
advantageous in this domain of work. 

Application of these estimation methods to human subject data suggests that plausible 
connectivity estimates are obtained with T = 60 s and M = 200 electrodes (Figure 7). We chose to explore 
connectivity to and from anterior versus posterior insula, due to this region’s importance in intero- and 
exteroceptive sensory processing, salience, emotion, homeostasis, and consciousness (Huang et al., 2021; 
Zhang et al., 2019). Although anatomically adjacent, anterior and posterior insula have distinct functional 
roles and connectivity profiles (Cauda et al., 2011). For example, the anterior portion of the insula is 
thought to couple tightly with prefrontal regions and amygdala. The posterior portion, on the other hand, 
is more closely linked to activity propagated from early auditory regions—including Heschl’s gyrus (Zhang 
et al., 2019). The results of Figure 3 are consistent with these functional distinctions. The strong 
connections identified in the present analysis are also consistent with results of tracer injection studies 
(reviewed in (Augustine, 1996)). In addition, the relatively strong connectivity of InsA with the IFG and 
rostral superior temporal regions STGA and PP is consistent with previous probabilistic tractography 
results (Cloutman et al., 2012). Effective connectivity derived from MVAR model fits was consistent with 
these previous studies. Even for shorter data lengths, model fits relying on gLASSO were able to capture 
expected connectivity profiles and community structure in brain networks, for example demonstrating 
strong connectivity between auditory cortical structures (upper left quadrants in the hierarchically-sorted 
adjacency matrices shown in Figure 4 and Supplementary Figures 3-6). Motivated by the reasonable 
recovery of GT connectivity for T = 10 s demonstrated in Figure 5 and Supplementary Figure 7, we also 
show that models fit to short data lengths (T = 10 s) can capture rapid dynamics of network connectivity 
that are obscured at a resolution of T = 60 s. Importantly, given the likelihood that brain activity is 
nonstationary except over very brief intervals, the capability to fit models to short data segments allows 
for more accurate piecewise-stationary estimates of dynamic brain activity. 

The results indicate that the rPCA-gLASSO and gLASSO methods reliably estimate MVAR models 
for large networks with far less data than previously thought possible. The capability to estimate models 
for networks with large numbers of electrodes reduces the likelihood of detecting spurious effective 
connections resulting from removed or missing mediating electrode channels and leads to improved 
connectivity analyses. Furthermore, reducing data requirements reduces concerns about nonstationarity 
in the data, and creates new analysis opportunities, such as assessment of dynamic connectivity. 
Consequently, the methods presented here will have broad application and substantial impact for 
interpreting resting state data recorded from human subjects, as well as large scale multielectrode 
recordings in experimental animals.  
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Data and code availability 

Data is available via a request to the Authors pending establishment of a formal data sharing agreement, 
submission of a formal project outline, and agreement about co-authorship. All software developed for 
this study will be freely available via Git repository. Please contact Bryan Krause (bmkrause@wisc.edu) for 
details. 
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