

1 **Title:** A 3D printable device allowing fast and reproducible longitudinal preparation of
2 mouse intestines

3

4 **Authors:** Beckey DeLucia^{1,2,*}, Sergey Samorezov^{3,*}, Megan T Zangara^{4,5}, Rachel L
5 Markley^{1,2}, Lucas J Osborn^{1,2,4}, Karlee B Schultz^{1,2,6}, Christine McDonald^{4,5}, Jan
6 Claesen^{1,2,4,†}

7

8 **Affiliations:**

9 ¹Department of Cardiovascular and Metabolic Sciences, Lerner Research Institute,
10 Cleveland Clinic; Cleveland, OH, USA

11 ²Center for Microbiome and Human Health, Lerner Research Institute, Cleveland Clinic;
12 Cleveland, OH, USA

13 ³Department of Biomedical Engineering, Lerner Research Institute, Cleveland Clinic,
14 Cleveland, OH, USA

15 ⁴Department of Molecular Medicine, Cleveland Clinic Lerner College of Medicine of
16 Case Western Reserve University; Cleveland, Ohio, USA

17 ⁵Department of Inflammation and Immunity, Lerner Research Institute, Cleveland Clinic;
18 Cleveland, OH, USA

19 ⁶College of Arts and Sciences, John Carroll University; University Heights, OH, USA

20 *BD and SS contributed equally to this work

21 †Correspondence to: claesej@ccf.org

22 **Abstract:**

23 Accurate and reproducible analysis of mouse small and large intestinal lumen is key for
24 research involving intestinal pathology in preclinical models. Currently, there is no easily
25 accessible, standardized method that allows researchers of different skill levels to
26 consistently dissect intestines in a time-efficient manner. Here, we describe the design
27 and use of the 3D printed “Mouse Intestinal Slicing Tool” (MIST), which can be used to
28 longitudinally prepare murine intestines for further analysis. We benchmarked the MIST
29 against a commonly used procedure involving scissors to make a longitudinal cut along
30 the intestines. Use of the MIST halved the time per mouse to prepare the intestines and
31 outperformed alternative methods in smoothness of the cutting edge and general
32 reproducibility. By sharing the plans for printing the MIST, we hope to contribute a
33 uniformly applicable method for saving time and increasing consistency in studies of the
34 mouse gastrointestinal tract.

35

36 **Main text:**

37 **Introduction**

38 In research, it is important to have uniform methods and practices to attain reliable,
39 high-quality results within and across research institutes¹⁻⁴. Histological evaluation of
40 intestinal tissue is vital for assessing pathology in many different disease models.
41 Consistent and uniform preservation of tissue samples allows for accurate assessment
42 of biological replicates and easier comparison between multiple groups. For example, in
43 fields utilizing animal preclinical models of colorectal cancer, the enumeration and
44 measurement of murine intestinal adenomas provide critical data^{5, 6}. The ability to open

45 mouse intestines longitudinally to evaluate gross pathology of the intestinal lumen is
46 therefore very important in gathering accurate adenoma data. While there is not an
47 established standard method for dissection, researchers commonly use a pair of offset
48 scissors to longitudinally cut open intestines, thereby revealing the lumen⁷⁻¹¹. However,
49 this difficult, time-consuming method leads to less than ideal visualization of
50 adenomas¹⁰. Without cleanly dissected and well arrayed tissue, the accuracy of
51 adenoma count and size could be compromised, leading to inaccurate data and varying
52 results across studies performed by different research groups. Rudling *et al.* developed
53 an alternative to the scissors method by constructing a “gut cutting” device from several
54 pieces of metal¹⁰. This device consists of four blunt-end metal rods inserted through the
55 lumens of the intestinal segments, which are then placed in a base unit. Next, a lid
56 containing slanted cutting guides is placed on top and the intestines are manually cut
57 with a scalpel along the guides. Utilization of this gut cutting device took significantly
58 less time and resulted in higher quality preparation when compared to using scissors¹⁰.
59 Later versions of this device were machined out of a solid block of duralumin¹². Based
60 on these later designs by Yoneda *et al.*¹², we developed a similar, 3D printed version we
61 call the “Intestinal Preparation Device” (IPD; Figure 1AB). In utilizing our IPD, we
62 encountered a few drawbacks that underscored areas in need of improvement. Through
63 multiple redesigns and trials, we engineered and optimized an easily 3D printed tool we
64 named the “Mouse Intestinal Slicing Tool” (MIST; Figure 1CD). We propose that our 3D
65 printable MIST provides an easily accessible and reproducible method to standardize
66 the longitudinal dissection of mouse intestinal tissue across research groups and
67 institutes.

68

69 **Optimizing design of the IPD**

70 To test the effectiveness and ease of various mouse intestine preparation methods, we
71 utilized the *Apc*^{Min/+} genetic mouse model, which contains the Min (multiple intestinal
72 neoplasia) mutant allele in its *Apc* (adenomatous polyposis coli) locus^{5, 13}. This is a
73 robust genetic model that predisposes mice to sporadic adenoma formation in both the
74 small and large intestine.

75

76 To improve upon the widely used Scissors method (Figure 2AB), we initially used the
77 IPD, our 3D printable version of the “gut cutting” device by Yoneda *et al.*¹². Our IPD
78 consisted of a base unit with indented wells for holding four metal support bars (knitting
79 needles) that were previously inserted through the intestinal lumen and a lid with slots
80 for detachable aluminum cutting guide bars (Figure 1AB). Utilizing 3D printing simplified
81 the construction of the IPD in comparison to both versions of the gut cutting device,
82 which were machined out of a series of metal plates or a duralumin block¹². In addition,
83 we utilized double pointed knitting needles for tissue stabilization, which offer an
84 advantage over metal rods with rounded off ends. The tapered and rounded needle end
85 makes insertion into the lumen easy, with a lower risk for creation of holes in the
86 intestinal tissue (Figure 2CD). In using the IPD, we identified the need for different
87 needle diameters to accommodate the narrowing lumen diameter along the intestinal
88 tract to the colon (Figure 2EH). Too large a needle diameter distorted and/or created
89 tears in the intestinal tissue. Conversely, if the needle diameter was too small, the
90 tissues were not held securely in place during cutting. Another downfall of the IPD was

91 encountered during transferring of the needles from the device onto the working surface
92 (Figure 2H). Tissues could fall off the needle, making it difficult to smoothly array the
93 intestinal lumen on our working surface. Moreover, the design of the IPD required that
94 all four intestinal segments be threaded onto needles and cut open at the same time,
95 meaning the last segment to be transferred onto the working surface was significantly
96 drier and was more difficult to handle. Notably, despite the metal slanted guide bars, we
97 found it difficult to cut in a straight line using the IPD due to the absence of a supporting
98 surface directly underneath the needles. This led to the needles bowing down in the
99 middle when pressure was applied. For this reason, we were not able to properly secure
100 the tissues with the metal slanted cutting guide, resulting in jagged cut edges. Lastly, it
101 was inconvenient and time consuming to assemble and dissemble the IPD.

102

103 To prevent the needle holding the intestine from bending, we next tried a “Needle
104 method” (Figure 2IJ). This method consists of pressing the intestine and needle against
105 a wax dissection board which provides a support surface. Then a scalpel can be run
106 down the length of the side of the needle. This removed the need for various device
107 parts and no longer required transferring of tissues from a device to the working surface
108 compared to the IPD. The largest drawback of this method is the pronounced lack of a
109 safety guard between the operator’s fingers holding the needle and the scalpel blade.
110 Additional shortcomings of this method were the lack of a cutting guide to allow for a
111 straight cut, poor visualization of the intestine, and uneven pressure along the length of
112 the intestine making the Needle method technically difficult.

113

114 Taking the aforementioned needs for improvement across the previous intestinal
115 preparation devices into consideration, we engineered the MIST- a small, lightweight,
116 cost-effective tool made with a 3D-printer. The MIST allows for easy use where one
117 hand comfortably presses the MIST against the dissection tray, sandwiching the
118 intestinal tissue in place with uniform pressure (Figure 1D, Figure 2KL). To
119 accommodate the varying needle sizes required per section of the intestine, the MIST's
120 dimensions can be quickly adjusted by altering the printing plans. For example, we
121 developed two variants of the MIST. One version has dimensions compatible with
122 needle diameters of 3.50 to 3.75 mm and the other model that fits needle diameters of
123 2.75 to 3.25 mm. At both ends of the device, we included bars to prevent the needle
124 from sliding out horizontally during the cut (Figure 1C). A built-in slanted cutting guide
125 was also incorporated to permit for safe cutting with a scalpel by acting as a guard
126 between the operator's hand and the scalpel blade. The design permits the use of the
127 device by either right- or left-handed individuals. Additionally, the design of the MIST
128 allows for clear visualization of the cutting surface, leading to clean cut lines. Since the
129 MIST does not contain excess crevices, it is easily cleanable with ethanol, surgical
130 instrument cleaner, or disinfectants. The simple, small nature of the device also allows
131 for ease of use in biosafety cabinets. Therefore, the MIST has the advantages of a
132 simple design, improved tissue stabilization, and enhanced safety features over
133 previous tissue dissection devices.

134

135 **The MIST preparation method consistently requires less time**

136 We performed objective measurements of cut time and cutting edge accuracy to
137 compare the performance of the MIST to the IPD, Needle, and Scissors dissection
138 techniques. For mouse necropsies that involve analysis of both the small intestine
139 (typically analyzed in three segments) and large bowel (analyzed as a single segment),
140 the total amount of harvest time per mouse can quickly add up when using large
141 experimental groups. Hence, we compared the amount of time required to longitudinally
142 prepare the small and large intestines per mouse using the four different techniques
143 (Figure 3). We found that the MIST, IPD, and Needle methods were all significantly
144 quicker than the benchmark Scissors method, which took an average time per mouse of
145 12.2 minutes. The IPD method decreased the average time per mouse to 7.7 minutes.
146 The Needle and MIST method further decreased the preparation time by roughly 50%
147 with averages of 6.1 minutes and 6.2 minutes, respectively. In addition to the significant
148 improvement in timing, the MIST method yielded the smallest range of preparation
149 times, indicating good reproducibility between samples.

150

151 **The MIST provides increased quality of intestine preparation**

152 The resulting quality of the intestinal preparation using the various devices is visually
153 evident (Figure 4AD). We noticed that the Needle (Figure 4C) and the MIST methods
154 (Figure 4D) have smoother, straighter cut edges, while the Scissors (Figure 4A) and
155 IPD methods (Figure 4B) yield many curves and lumps along the cut edge. To quantify
156 this observation, we determined the ratio between the total segment length (measured
157 along the middle of the tissue), and the length of the bottom cut edge (Figure 4E). A
158 ratio of one represents a ‘perfect cut’, meaning the cut edge length is equal to the actual

159 length of the segment, a greater ratio indicates a longer cut edge than the segment
160 length. Both the Needle and MIST methods yielded ratios closer to one and were
161 significantly lower than the benchmark Scissors method. Similar to the timing data, the
162 MIST method had a tight range of experimental measurements.

163

164 **The MIST device allows for high quality Swiss-roll preparation for histology**

165 The dimensions of the small and large intestine make it difficult to preserve in its native
166 form, therefore the Swiss-roll technique was created as a method to preserve the
167 integrity of large lengths of intestinal tissue for histological analysis¹⁴. This preparation
168 allows for the visualization of the entire length of the mouse small or large intestine on
169 one slide. The Swiss-roll technique is a straightforward method in which a longitudinally
170 opened section of intestinal tissue is rolled in upon itself around a stick-like implement
171 (toothpick or pin) prior to fixation. The resulting sample, once embedded, gives an
172 uninterrupted, lateral view of the entire length of embedded tissue (Figure 5AC). Proper
173 alignment of the tissue edges is important for creating a neatly rolled tissue sample, and
174 aids in optimal orientation of tissue structure for histological analysis. When compared
175 to colonic Swiss-roll samples cut using the Scissors method (Figure 5AB), MIST
176 method-prepared Swiss-rolls were not only easier to roll, but also resulted in better crypt
177 orientation (Figure 5CD). The even edge created with the MIST method decreased
178 instances of rolled sample edges, allowing for more consistent sample orientation
179 without the need to cut deeply into the paraffin block.

180

181 **Discussion:**

182 To achieve experimental data that can be reproduced with high integrity, is essential to
183 validate discoveries and help advance our knowledge. It is crucial to have uniform
184 practices to attain reliable, high-quality results within and across institutes. These
185 techniques should be easy, replicable, convenient, and efficient to allow researchers of
186 all skill levels to work with ease. Here, we have engineered and enhanced the design of
187 the 3D-printed MIST, which we propose as a tool for providing simple, straightforward,
188 and reproducible longitudinally cut mice intestines. To assess the efficacy of the MIST,
189 we benchmarked it against the widely used Scissors method and compared it to two
190 additional device-assisted methods, IPD and Needle. We objectively quantified the
191 effectiveness of these methods by measuring the amount of time it took to prepare
192 intestines and the straightness of the cut edges.

193

194 In measuring the amount of time to prepare the four intestinal segments per mouse, we
195 showed that all experimental methods were significantly faster than the conventional
196 Scissors method. Using the Scissors method, the intestines were cut and spread open a
197 couple of centimeters at a time because if a segment was cut all at once it was both
198 challenging and time consuming (due to the small, fragile tissue) to find the correct cut
199 edges to neatly spread open the lumen. Using the Needle and MIST methods, we were
200 able to prepare the intestines in half the amount of time, on average, compared to the
201 Scissors method (Figure 3). This is a substantial advantage for experiments involving a
202 large number of animals. For every ten mice that require intestinal preparations, using
203 the MIST will save an average of 60 minutes. This time can be utilized toward exploring

204 more research questions or performing additional experiments. In summary, the MIST
205 provides a more time-efficient means of longitudinally preparing mice intestines.

206

207 The resulting quality of the intestinal preparations was visually assessed across the
208 various methods. We noticed an appreciable difference between the intestine
209 preparations using the Scissors and IPD methods versus the Needle and MIST
210 methods (Figure 4AD). Based on visual observations, the Scissors and IPD resulted in
211 very rough edges, obstructing researchers from having a clear view of the lumen for
212 accurate adenoma enumeration or other macroscopic changes. For the Scissors
213 method this was likely due to the lack of any cutting guide. Regarding the IPD method,
214 the intestinal preparations had less smooth cut edges possibly due to the absence of a
215 working surface directly underneath the loaded needles and the required transfer of the
216 loaded needle from the device to the working surface. Although both the Needle and
217 MIST methods resulted in clean, smooth cut edges, we observed that occasionally the
218 Needle method resulted in a thin layer of intestine being cut off as seen on the SI-2
219 segment (Figure 4C). This was due to the lack of a cutting guide, poor visualization of
220 the tissue, and having to repeatedly run the scalpel down the length of the needle
221 simply due to the difficulty of trying to run a scalpel straight against a round needle. To
222 corroborate our visual observations with objective measures, we quantified the ratios
223 between the bottom cut edge to the actual segment length. From this, we showed that
224 the Needle and MIST methods resulted in significantly straighter cut edges compared to
225 the Scissors method, thereby upholding our visual observations (Figure 4E). In both of
226 our objective measures, the Needle and MIST techniques had similar values. Despite

227 these similar outcomes, using the MIST is more ideal for its consistency and safety.
228 Considering both visual observations and objectively measured values, we conclude
229 that the MIST method resulted in the highest quality preparation.

230

231 An important feature of any research technique is reproducibility. The MIST yielded the
232 most constant preparation times across mice (Figure 3). Equally important, the MIST
233 method produced the most consistent neat cut edges, as observed from its narrow
234 range of values (Figure 4E). All things considered, it can be appreciated that the MIST
235 is a highly dependable method for repeatedly preparing mice intestines of the same
236 high caliber.

237

238 To test the applicability of the high-quality intestine preparation provided by the MIST,
239 we formed Swiss rolls from colons cut open using Scissors or the MIST and submitted
240 the preparations for hematoxylin and eosin staining (Figure 5). The even edge obtained
241 by using the MIST resulted in better and more consistent tissue orientation when the
242 blocks were sectioned at the same depth. This will normalize histological sample
243 integrity for easier comparisons, as well as reduce waste of experimental samples. The
244 high-quality preparations resulting from the use of the MIST can also be a powerful tool
245 in making accurate gross histological observations. In the field of cancer research, the
246 accuracy of the enumeration and measurement of adenomas can be improved using
247 MIST. Additionally, researchers interested in inflammatory changes in the intestine can
248 benefit from use of the MIST to visualize gross morphological changes indicative of

249 inflammatory bowel disease. Ultimately, the MIST can be widely utilized across many
250 diverse research niches.

251

252 In designing the MIST device, we sought to not only improve upon the reproducibility
253 and efficacy of other previously established methods, but to also make it cost effective
254 and easy to procure. The use of 3D printing in the fabrication of the device makes it
255 easily reproducible and cost efficient. The device's ".STL" and design files are sharable
256 and modifiable, allowing for easy alteration to fit a range of research parameters.

257 Additionally, the minimal parts required makes the MIST quick, safe to use, and easy to
258 disinfect; for applications in a germ free setting, the MIST could be 3D printed using a
259 resin that can withstand autoclaving.

260

261 In summary, given our visual and objective measures, we support the MIST as a strong
262 candidate for a standard technique to achieve high quality longitudinal intestinal
263 preparations for application in various research areas. In sharing the printing plans for
264 the MIST we aspire to greatly enhance the resulting data for preclinical models of
265 gastrointestinal studies.

266

267 **Methods:**

268 **Design of the IPD and MIST devices**

269 The IPD device was thought of as an efficient way of handling multiple samples at one
270 time by having four support needles loaded into the device (Figure 1). The shortcoming
271 of this method was that the sample tissue was fixed/held only on the top (between the

272 top surface of the supporting needle and the bottom surface of the cutting guide) but not
273 at the bottom. In addition, the need to provide secure clamping of all four needles
274 required increased fixture rigidity, leading to increase in the fixture weight. The MIST
275 design was conceptually based on the idea that a needle with an intestine sample can
276 be secured between the wax support surface at the bottom and the MIST on the top
277 (Figure 1). The operator's hand provides the well-controlled clamping force, while the
278 sample to be cut is held in place both from the top and from the bottom. Semi-circular
279 needle holders at the bottom of the MIST secure the needle radially while additional
280 limiters on the MIST outside provide for axial stability. The MIST device as described in
281 this paper has been 3D printed using Stratasys Vero material
282 (<https://www.stratasys.com/materials/search/vero>). Other materials could be used given
283 they satisfy the researcher's requirements for cleanliness or sterility.

284

285 **Animals**

286 All animal procedures were approved by the Cleveland Clinic Institutional Animal Care
287 and Use Committee. Male C57BL/6 *Apc*^{Min/+} mice (C57BL/6J-Apc^{Min}/J, stock#002020,
288 Jackson Labs) and *Nod2*^{-/-} mice (B6.129S1-Nod2^{tm1Flv}/J, stock#005763, Jackson Labs)
289 were housed under specific pathogen-free conditions and fed a standard breeder diet
290 (Envigo Teklad Global Irradiated Rodent Diet 2018) in the Biological Resources Unit
291 within the Cleveland Clinic Lerner Research Institute, Cleveland, OH. Mice between 5-6
292 months of age were euthanized and intestinal tissue excised for device testing.

293

294 **Preparation of intestinal segments**

295 The small intestine was cut into three equal segments (proximal segment, mid segment,
296 and distal segment) and referred to as SI-1, SI-2, and SI-3 respectively. SI-1, SI-2, SI-3,
297 and the colon (C) were placed in a 150mm diameter petri dish containing 0.9% saline.
298 Luminal contents of the intestinal segments were removed by flushing with 0.9% saline.
299 Cleaned intestinal segments were lined on a black wax dissection tray for assessment
300 of longitudinal opening by the four different methods described below. Timing of each
301 method stopped once intestinal segments were spread open longitudinally on our
302 working surface. Intestinal preparations were photographed for further analysis.

303

304 **Scissors Method (Figure 2AB)**

305 1. Starting with SI-1, the intestinal segment was placed on a sheet of paper towel to
306 remove excess saline. This allowed the tissue to stay in place on the working
307 surface.

308 2. The tissue was placed onto the working surface vertically such that the proximal end
309 was closest to the operator. Starting at the proximal end, one to two centimeters of
310 the intestinal segment was cut using a pair of sharp-ball tip spring scissors (Fine
311 Science Tools, Item No. 15033-09) (Figure 2A).

312 3. Using tweezers, the inner lumen was revealed by carefully pulling the cut edges
313 apart (Figure 2B). The intestines were cut and spread open a couple of centimeters
314 at a time because it was challenging and time consuming to find the edges and
315 neatly spread open if the segment was cut all at once.

316 4. Steps 1 through 4 were repeated until all segments were laid open with the lumen
317 exposed (Figure 4A).

318

319 **Needle loading (Figure 2CD)**

320 The Needle, IPD, and MIST methods all required Needle loading as the initial step.
321 Needle loading consisted of using a pair of tweezers to lift open the lumen and then
322 inserting a needle through the lumen (Figure 2C) until the needle filled the length of the
323 intestinal segment (Figure 2D). The needles used were aluminum knitting needles,
324 double point (7 inches long, diameter Size 2-Size 5, Yarnology, MN) and were placed in
325 0.9% saline prior to loading allowing them to easily through the length of the segment.
326 Once on the needle, tissue remnants on the outside of the intestine was carefully
327 removed with scissors. The lumen size of the intestinal segments decreased as we
328 went distally from the stomach to the anus. Hence, a variety of needle diameters were
329 used depending on the diameter of the intestinal segment. For SI-1 we used needles
330 with diameters of 3.75mm (Size 5) or 3.50mm (Size 4). For SI-2 and SI-3, needle
331 diameters of 3.50mm (Size 4) or 3.25mm (Size 3) were used. With the lumen of the
332 colon being the smallest, the needle diameters used were 3.25mm (Size 3) or 2.75mm
333 (Size 2). Since the appropriate needle diameter to use is dependent on the size of the
334 lumen, the most appropriate needle diameter to use may vary based on multiple factors.
335 For example, mice model, sex, age, size, and treatment (inflammatory conditions) may
336 increase or decrease lumen diameter.

337

338 **IPD Method (Figure 2EH)**

339 1. All four intestinal segments were loaded onto needles.

340 2. The loaded needles were placed in the designated half-circle wells in the base of the
341 IPD (Figure 2E). To maintain consistent orientation, the proximal end of each
342 intestinal segment was loaded on the left side.

343 3. The lid was placed over the base containing the loaded needles. The base and lid
344 are clamped together securing the needles in place horizontally and vertically
345 (Figure 2F).

346 4. The 4 metal slanted cutting guides were inserted into the designated slots on the lid.

347 5. One hand was used to press the metal slanted cutting guide against the needle to
348 secure the tissue in place. With the other hand, a scalpel was used to longitudinally
349 cut the length of the segment (Figure 2G). This was repeated until all segments had
350 been cut.

351 6. Disassembly of the device was achieved by carefully removing the metal cutting
352 guides, unclamping, and removing the lid.

353 7. Starting with SI-1, the cut intestine around the needle was transferred to our working
354 surface (Figure 2H). Then, using a gloved finger, the intestine was gently removed
355 from the needle.

356 8. Step 7 was repeated until all segments were laid open with the lumen exposed
357 (Figure 4B).

358

359 **Needle Method (Figure 2IJ)**

360 1. All four intestinal segments were loaded onto needles.

361 2. The loaded needle containing SI-1 was placed on the working surface vertically with
362 the proximal end closest to the operator. With one hand, the tissue was secured

363 against the working surface and needle. The proximal end of the tissue was held by
364 applying pressure with the tip of the pointer finger. At the distal end of the intestine,
365 pressure was applied with the thumb. Significant pressure was applied to ensure the
366 intestines did not slide on the needle while cutting (Figure 2I).

367 3. With the free hand, using a scalpel, a longitudinal cut was carefully made along the
368 length of the needle. Extreme caution was exerted to avoid cutting fingers (Figure
369 2J).

370 4. Using a gloved finger, the intestinal segment was gently removed from the needle
371 and spread open on the working surface.

372 5. Steps 2 through 4 were repeated until all segments were laid open with the lumen
373 exposed (Figure 4C).

374

375 **MIST method (Figure 2KL)**

376 1. All four intestinal segments were loaded onto needles.

377 2. The loaded needle containing SI-1 was placed onto the working surface vertically
378 with the proximal end closest to the operator.

379 3. With one hand, the MIST was placed on top of the loaded needle. Pressure was
380 evenly applied onto the tissue in all areas from the force of the hand pressing the
381 MIST down (Figure 2K).

382 4. Using the MIST's built-in cutting guide, a scalpel was used to longitudinally cut open
383 the intestine (Figure 2L).

384 5. The MIST was removed and with a gloved finger, the intestine was gently removed
385 from the needle.

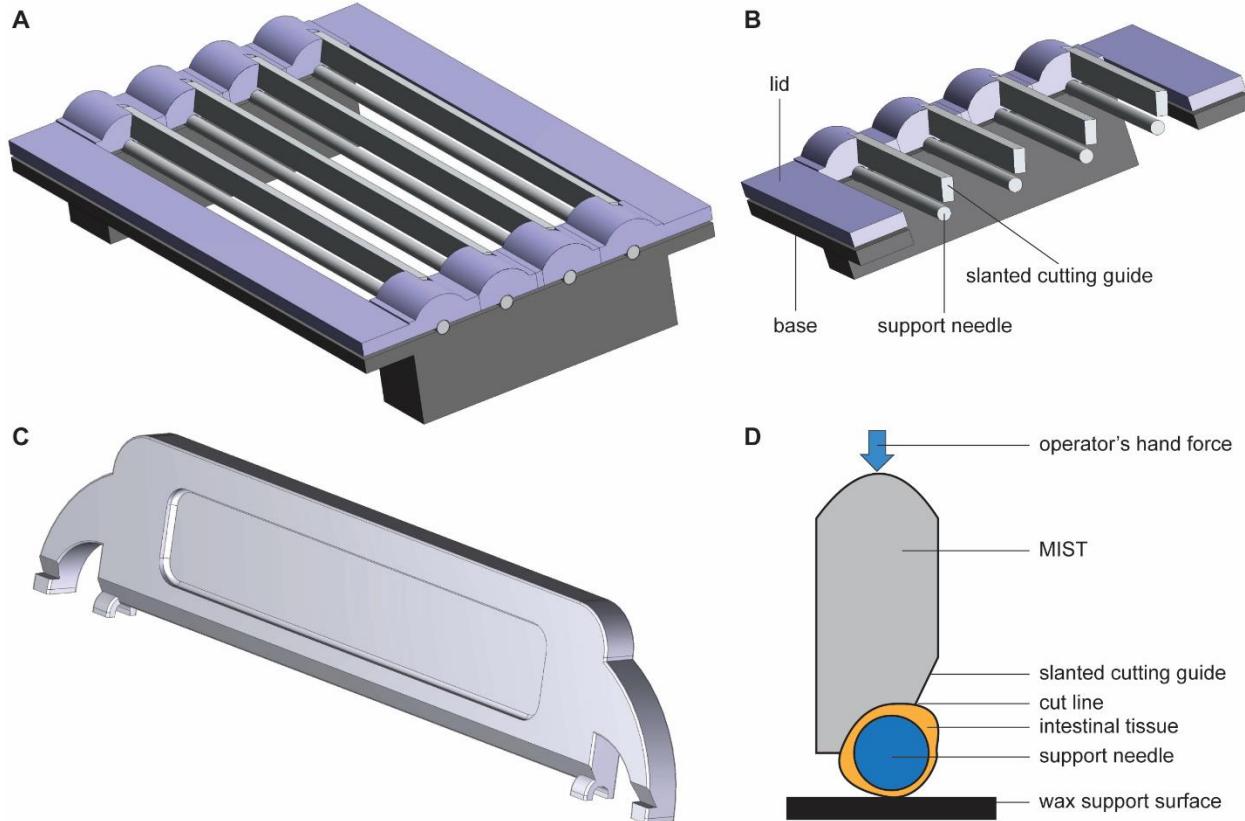
386 6. Steps 2 through 5 were repeated until all segments were laid open with the lumen
387 exposed (Figure 4D).

388

389 **Intestinal segment and cutting edge measurements**

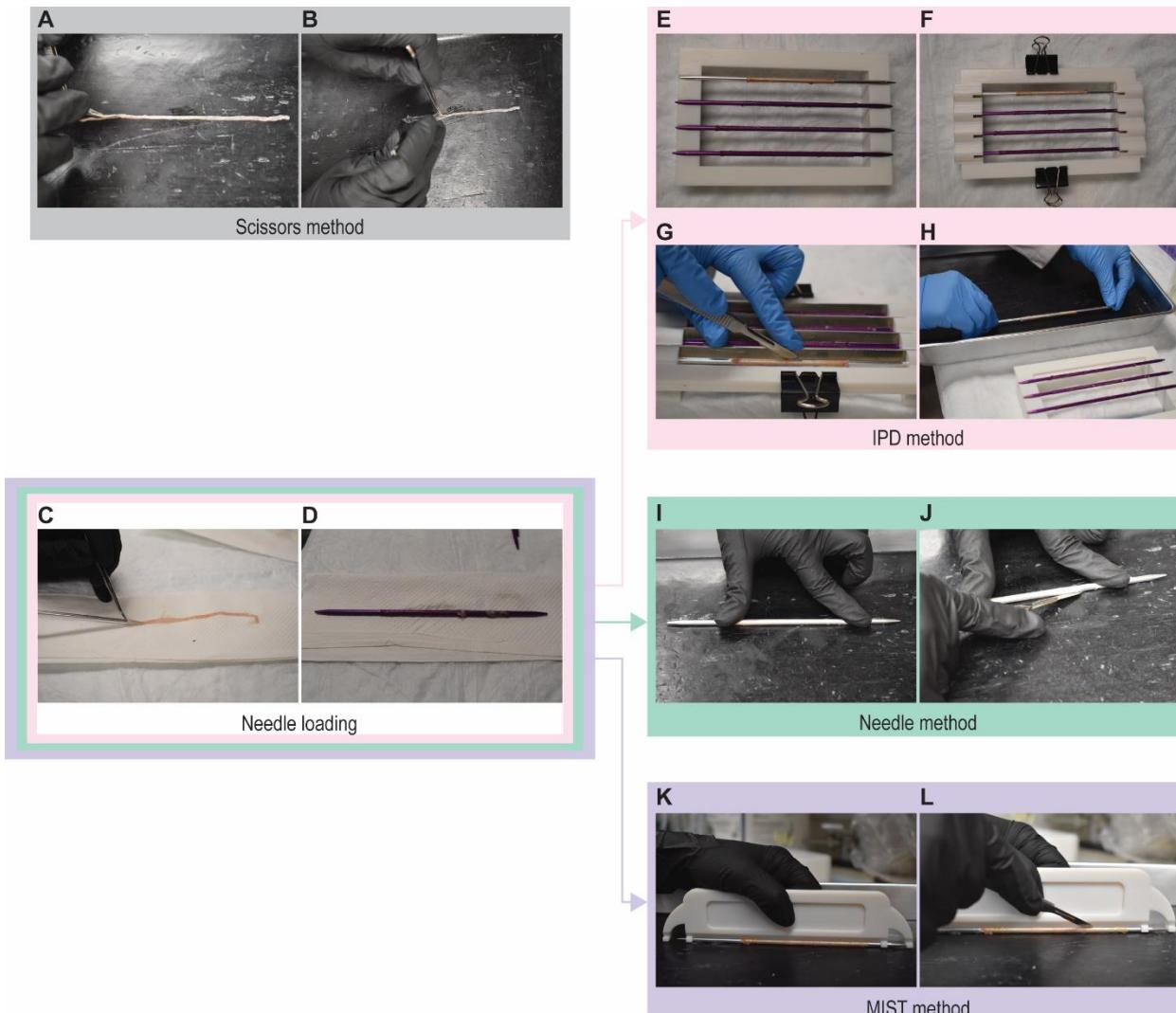
390 Measuring the neatness of the cutting edge in comparison to the middle or actual length
391 of the intestines was achieved through image analysis in ImageJ. First, the prepped
392 intestines were photographed with a reference ruler in frame. With the image opened in
393 ImageJ a scale of one centimeter was set by tracing the distance of one centimeter on
394 the reference ruler in the photograph. Using the segmented line tool, the bottom cut
395 edge of SI-1 was traced and measured. Next, using the same segmented line tool, the
396 middle length of SI-1 was measured.

397


398 **Swiss roll preparation and histology**

399 Excised and flushed colons from Nod2^{-/-} mice were opened longitudinally using either
400 the Scissor or MIST method and laid flat on the dissecting surface. The handle end of a
401 sterile cotton swab was placed across the proximal end of the tissue and used as an
402 anchor to roll the tissue around itself. Once fully rolled, the tissue roll was gently pushed
403 off the end of the handle of the cotton swab using forceps into a single-chamber
404 cassette. Rolls were fixed in Histochoice® Tissue Fixative (VWR) for 24 hours. After
405 fixation, samples were paraffin embedded in which 5 μ m sections were cut, mounted on
406 glass slides, and stained with hematoxylin and eosin. Slides were scanned into
407 electronic files using an Aperio AT2 slide scanner at 20x magnification for histological
408 evaluation.

409


410 **Acknowledgements:**

411 **Funding:** This study was supported by a Research Grant from the Prevent Cancer
412 Foundation (PCF2019-JC) and seed funding from the Cleveland Clinic Foundation (JC).
413 JC is additionally supported by a National Institutes of Health grant (R01 AI153173), an
414 American Cancer Society Institutional Research Grant (IRG-16-186-21) and a Jump
415 Start Award (CA043703) from the Case Comprehensive Cancer Center. **Author**
416 **contributions:** Conceptualization and design: BD, SS, JC. Investigation: BD, SS, MTZ,
417 RLM, LJO, KBS, CM, JC. Figures: BD, SS, MTZ, CM, JC. Writing of the original draft:
418 BD. Writing, review and interpretation: all authors. **Competing interests:** JC is a
419 Scientific Advisor for Seed Health, Inc. **Materials and correspondence:** Design and
420 .STL files for the MIST are freely available as supplementary information included with
421 the article preprint. Please address all correspondence and material requests to JC at
422 claezej@ccf.org

423

424 **Fig. 1. Schematic representations of the IPD and MIST.** (A) Drawing of the IPD fully
425 assembled with needles in place. (B) Cross section of the IPD showing the metal
426 slanted cutting guides, which are used to tightly hold down the intestinal segment onto
427 the support needle and are used to guide the scalpel during cutting. (C) Drawing of the
428 MIST without needle, showing the forks that prevent the needle from rolling and bars at
429 each end that prevent the needle from sliding longitudinally during cutting. (D)
430 Schematic cross section of the MIST technique. The intestinal tissue (orange) is loaded
431 onto the needle (dark blue) and kept in place between the device and the wax surface
432 (black) through the operator's downward hand force. The tissue is cut with a scalpel
433 along the slanted cutting guide.

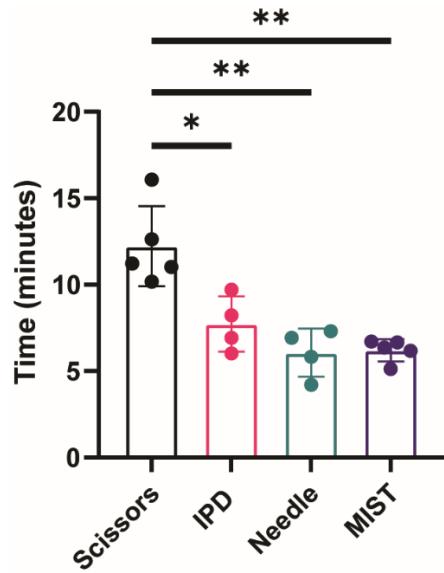
434

435 **Fig. 2. Overview of intestinal preparation methods.**

436 (A-B) **Scissors method** (A) The intestinal segment was cut open longitudinally one to
437 two centimeters at a time using a pair of scissors. (B) The lumen was spread open
438 using tweezers. (C-D) **Needle loading**, the initial step in the IPD, Needle, and MIST
439 methods was inserting a needle through the lumens of the segments. (E-H) **IPD**
440 **method** (E) loaded needles were placed into the base of the IPD and (F) secured in
441 place by the lid and binder clips. (G) Metal slanted cutting guides were inserted into the
442 lid and used to cut the tissue. (H) The device was disassembled, the loaded needles

443 with cut intestines were transferred to the working surface and spread open. (I-J)

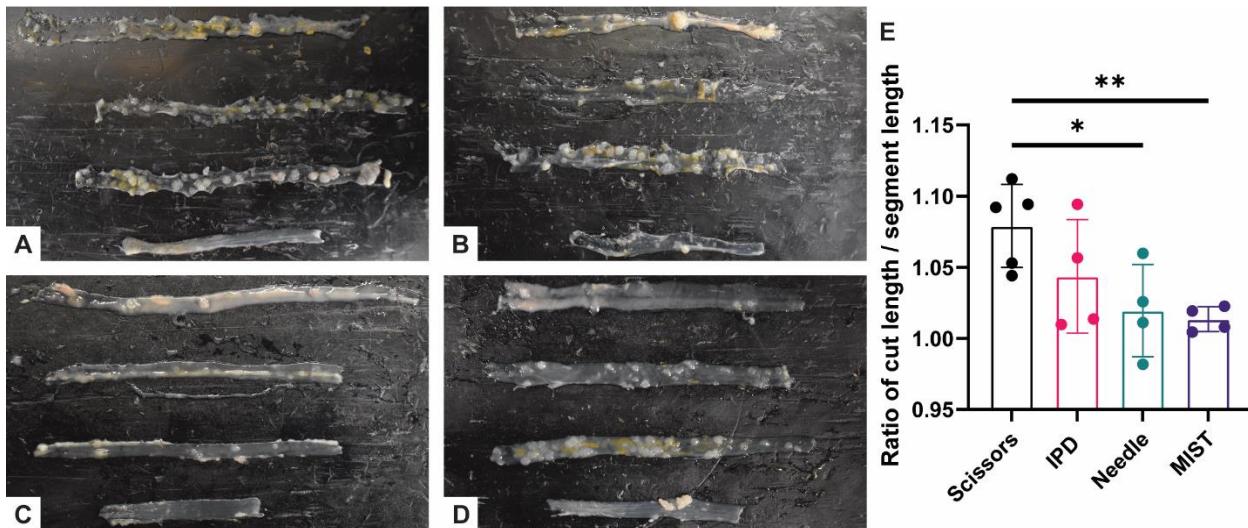
444 **Needle method** (I) Tissue is secured at the proximal and distal ends of the segment by


445 two fingers pressing the loaded needle against the working surface. (J) A scalpel is run

446 down the length of the needle cutting the intestines. (K-L) **MIST method** (K) Tissue is

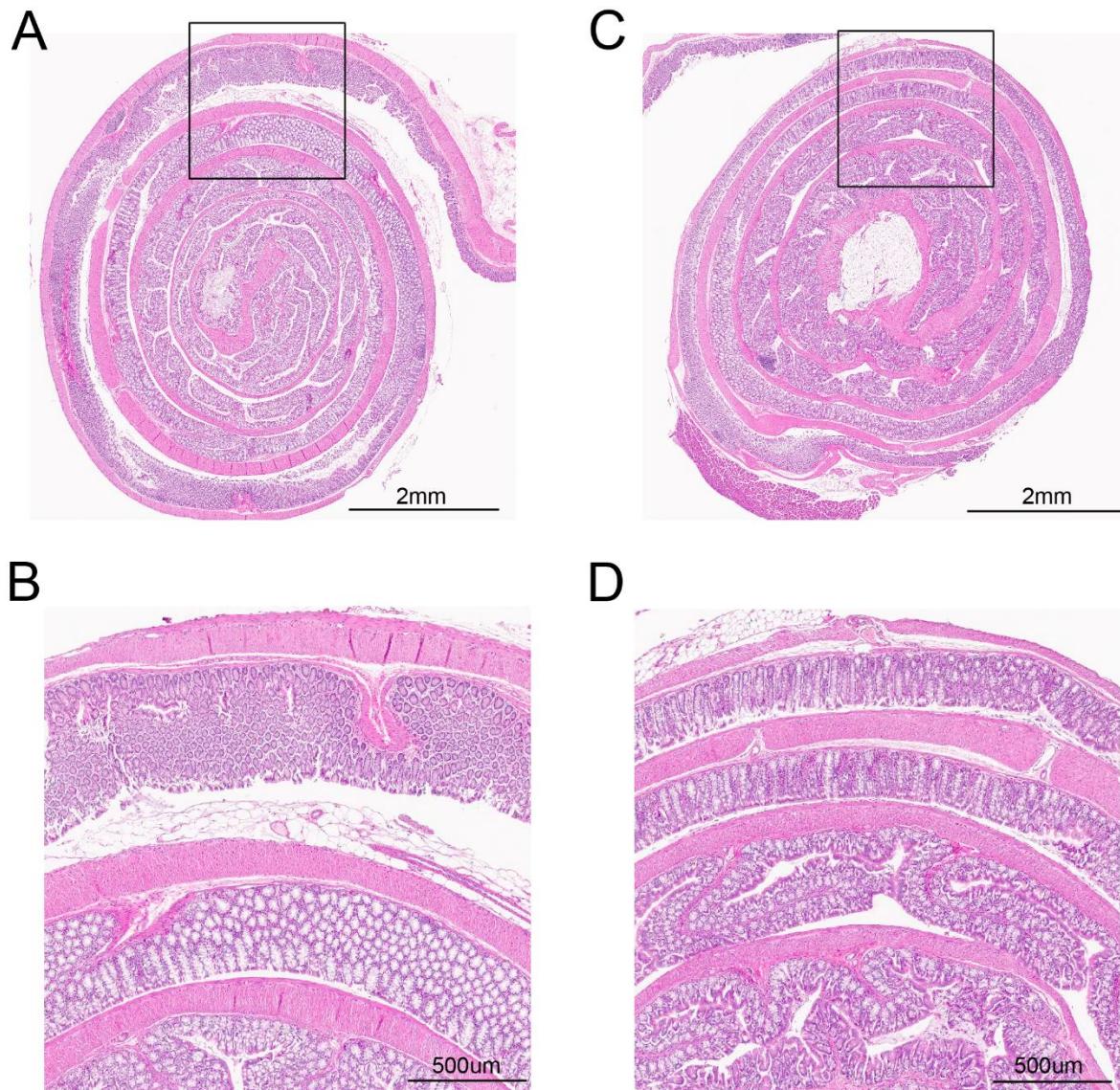
447 secured in place uniformly by placing the MIST on top of the loaded needle and

448 applying pressure with your hand. (L) The built in slanted cutting guide of the MIST is


449 used to safely cut the intestine.

450

451 **Fig. 3. Comparison of preparation times across different methods.**


452 The time to longitudinally prepare the four intestinal segments per mouse was
453 measured for the different preparation methods. While the preparation times when using
454 the IPD were only slightly improved compared to the Scissors method ($*P=0.0111$),
455 both the Needle and MIST methods had greatly improved prep times ($**P=0.0020$ and
456 $**P=0.0032$, respectively). Statistical analysis was performed using Brown-Forsythe and
457 Welch ANOVA tests uncorrected for multiple comparisons. N= 4-5 per group.

458

459 **Fig. 4. The MIST method reproducibly yields the neatest cutting edges.**

460 Representative photos of longitudinal intestine preparation using the (A) Scissors
461 method, (B) IPD method, (C) Needle method, and (D) MIST method. The topmost
462 segment is SI-1, followed by SI-2, SI-3, and Colon at the bottom. (E) The neatness of
463 the cutting edge was compared to the actual segment length for each preparation
464 method. A ratio of one represents a 'perfect cut', meaning the cut edge length is equal
465 to the actual length of the segment. Compared to the Scissors method, the cutting edge
466 quality was significantly improved for the MIST (** $P=0.0054$) and Needle (* $P=0.0277$),
467 but not for the IPD ($P=0.1915$). Statistical analysis was performed using Brown-Forsythe
468 and Welch ANOVA tests uncorrected for multiple comparisons. N= 4-5 per group.

469

470 **Fig. 5. The MIST device allows for higher quality Swiss-roll histology**

471 Representative H&E-stained colonic Swiss roll preparations using the (A-B) Scissors

472 method and (C-D) MIST method. The insets (B and D) give a higher magnification view

473 of the crypt orientation achieved by each method.

474 **References:**

475 1. Kretser, A. et al. Scientific Integrity Principles and Best Practices:
476 Recommendations from a Scientific Integrity Consortium. *Sci Eng Ethics* **25**, 327-
477 355 (2019).

478 2. Begley, C.G., Buchan, A.M. & Dirnagl, U. Robust research: Institutions must do
479 their part for reproducibility. *Nature* **525**, 25-27 (2015).

480 3. Casadevall, A., Ellis, L.M., Davies, E.W., McFall-Ngai, M. & Fang, F.C. A
481 Framework for Improving the Quality of Research in the Biological Sciences.
482 *mBio* **7** (2016).

483 4. Freedman, L.P. & Inglese, J. The increasing urgency for standards in basic
484 biologic research. *Cancer Res* **74**, 4024-4029 (2014).

485 5. Taketo, M.M. & Edelmann, W. Mouse models of colon cancer. *Gastroenterology*
486 **136**, 780-798 (2009).

487 6. Burtin, F., Mullins, C.S. & Linnebacher, M. Mouse models of colorectal cancer:
488 Past, present and future perspectives. *World J Gastroenterol* **26**, 1394-1426
489 (2020).

490 7. Tomkovich, S. et al. Locoregional Effects of Microbiota in a Preclinical Model of
491 Colon Carcinogenesis. *Cancer Res* **77**, 2620-2632 (2017).

492 8. Park, M.Y., Kim, M.Y., Seo, Y.R., Kim, J.S. & Sung, M.K. High-fat Diet
493 Accelerates Intestinal Tumorigenesis Through Disrupting Intestinal Cell
494 Membrane Integrity. *J Cancer Prev* **21**, 95-103 (2016).

495 9. Puthia, M., Storm, P., Nadeem, A., Hsiung, S. & Svanborg, C. Prevention and
496 treatment of colon cancer by peroral administration of HAMLET (human alpha-
497 lactalbumin made lethal to tumour cells). *Gut* **63**, 131-142 (2014).

498 10. Rudling, R., Hassan, A.B., Kitau, J., Mandir, N. & Goodlad, R.A. A simple device
499 to rapidly prepare whole mounts of murine intestine. *Cell Prolif* **39**, 415-420
500 (2006).

501 11. Shepherd, A.L. et al. A semi-automated technique for adenoma quantification in
502 the Apc(Min) mouse using FeatureCounter. *Sci Rep* **10**, 3064 (2020).

503 12. Yoneda, M., Molinolo, A.A., Ward, J.M., Kimura, S. & Goodlad, R.A. A Simple
504 Device to Rapidly Prepare Whole Mounts of the Mouse Intestine. *J Vis Exp*,
505 e53042 (2015).

506 13. Moser, A.R., Pitot, H.C. & Dove, W.F. A dominant mutation that predisposes to
507 multiple intestinal neoplasia in the mouse. *Science* **247**, 322-324 (1990).

508 14. Moolenbeek, C. & Ruitenberg, E.J. The "Swiss roll": a simple technique for
509 histological studies of the rodent intestine. *Lab Anim* **15**, 57-59 (1981).

510