

1 **Tadr Is an Axonal Histidine Transporter Required for Visual**
2 **Neurotransmission in *Drosophila***

3 **Yongchao Han^{1,3}, Lei Peng^{1,2} and Tao Wang^{1,3*}**

4

5 ¹National Institute of Biological Sciences, Beijing 102206, China

6

7 ²College of Biological Sciences, China Agricultural University, Beijing 100083, China

8

9 ³Tsinghua Institute of Multidisciplinary Biomedical Research, Tsinghua University, Beijing

10 100084, China

11

12 *Correspondence Author: Tao Wang, No. 7, Park Road, Zhongguancun Life Science Park,
13 Changping District, Beijing 102206, China.

14

15 Lead contact: Further information and requests for resources and reagents should be
16 directed to and will be fulfilled by the Lead Contact Tao Wang.

17

18 Email: wangtao1006@nibs.ac.cn

19 Phone: 086-010-80726675

20 Fax: 086-010-80727509

21

22 Running title: TADR is required for visual neurotransmission

23

24 Abstract

25 Neurotransmitters are generated by *de novo* synthesis and are essential for sustained,
26 high-frequency synaptic transmission. Histamine, a monoamine neurotransmitter, is
27 synthesized through decarboxylation of histidine by Histidine decarboxylase (Hdc). However,
28 little is known about how histidine is presented to Hdc as a precursor. Here, we identified a
29 specific histidine transporter, TADR (Torn And Diminished Rhabdomeres), that is required for
30 visual transmission in *Drosophila*. TADR and Hdc co-localized to neuronal terminals, and
31 mutations in *tadr* reduced levels of histamine, thus disrupting visual synaptic transmission and
32 phototaxis behavior. These results demonstrate that a specific amino acid transporter provides
33 precursors for monoamine neurotransmitters, providing the first genetic evidence that a
34 histidine amino acid transporter plays a critical role in synaptic transmission. These results
35 suggest that TADR-dependent local *de novo* synthesis of histamine is required for synaptic
36 transmission.

37 Introduction

38 Monoamine neurotransmitters including dopamine, serotonin, and histamine are formed
39 primarily by the decarboxylation of amino acids (McKinney et al., 2001; Watanabe et al., 1984).
40 Deficiencies in the biosynthesis of monoamine neurotransmitter such as dopamine contribute
41 to a range of neurological disorders, such as dystonic and parkinsonian syndromes (Kurian et
42 al., 2011). It has been proposed that precursor amino acids are taken up into synaptic
43 terminals by specific transporters, followed by the synthesis and packaging of
44 neurotransmitters within the nerve endings (Bellipanni et al., 2002; Hansson et al., 1999;
45 Lebrand et al., 1996). However, to date, amino acid transporters specific for the synthesis of
46 monoamine neurotransmitters have not been identified. Moreover, biosynthetic enzymes
47 involved in the synthesis of neurotransmitters localize to both the soma and axonal terminals.
48 Thus, it is possible that neurotransmitters are made in the cell body of presynaptic cells and
49 then packed into synaptic vesicles and transported to axonal terminals via fast axonal
50 transport (Broix et al., 2021; Roy, 2020).

51 Histamine was first identified as a neurotransmitter that localized to the tuberomamillary
52 nucleus where it was synthesized from the amino acid histidine through a reaction catalyzed
53 by the enzyme histidine decarboxylase (HDC), which removes a carboxyl group from histidine
54 (Taguchi et al., 1984; Watanabe et al., 1984). As a neurotransmitter, histamine plays important
55 roles in regulating multiple physiological processes, including cognition, sleep, synaptic
56 plasticity, and feeding behaviors (Bekkers, 1993; Haas et al., 2008; Huang et al., 2001;
57 Parmentier et al., 2002; Vorobjev et al., 1993). Disruption of histaminergic neurotransmission
58 has been linked to several neurological disorders, such as schizophrenia and multiple
59 neurodegenerative diseases (Haas and Panula, 2003; Klaips et al., 2018; Lim and Yue, 2015;
60 Olivero et al., 2018; Panula and Nuutinen, 2013; Wang et al., 2017). Moreover, loss of function
61 mutations in the HDC gene lead to Tourette syndrome, a neurological disorder characterized
62 by sudden, repetitive, rapid, and unwanted movements in both human patients and mouse
63 models (Baldan et al., 2014; Ercan-Sencicek et al., 2010). However, a specific histidine
64 transporter that maintains the histidine pool and delivers histidine to synaptic Hdc for histamine
65 synthesis has not been identified.

66 *Drosophila* photoreceptor cells use histamine as the dominant neurotransmitter to convey
67 visual signals. Thus, generation of high levels of histamine in photoreceptor neuronal terminals
68 is important for rapid and high-frequency visual signaling (Borycz et al., 2002; Hardie, 1989;
69 Stuart, 1999; Wang and Montell, 2007). Similar mechanisms of histamine synthesis, storage,
70 and release between mammals and flies make the fly a powerful molecular-genetic system for
71 studying the metabolism of neuronal histamine (Burg et al., 1993; Chaturvedi et al., 2014;
72 Deshpande et al., 2020; Gengs et al., 2002; Gisselmann et al., 2002; Hardie, 1989; Martin and
73 Krantz, 2014; Wyant et al., 2017; Xu and Wang, 2019). Histamine signals are enriched in
74 photoreceptor terminals, and disrupting histamine synthesis by *Hdc* mutation results in
75 reduced levels of axonal histamine and loss of visual transduction. This indicates that
76 histamine is synthesized directly within photoreceptor terminals (Chaturvedi et al., 2014;
77 Melzig et al., 1996). In support of this notion, LOVIT, a new vesicular transporter required for
78 the concentration of histamine in photoreceptor terminals, is exclusively found in synaptic
79 vesicles at photoreceptor terminals (Xu and Wang, 2019).

80 Given the high demand for histamine to maintain visual transmission at high frequencies, we
81 hypothesized that a histidine-specific transporter must localize to neuronal terminals, and that
82 this transporter would be required for *de novo* synthesis of histamine through *Hdc*. In support
83 of this hypothesis, we found that *Hdc* localized exclusively to photoreceptor terminals. We
84 performed a targeted RNAi screen for transporters involved in visual transmission and
85 identified TADR (Torn And Diminished Rhabdomeres), a plasma membrane transporter
86 capable of transporting histidine into cells. TADR localized predominantly to photoreceptor
87 terminals and specifically transported the amino acid histidine. Mutations in the *tadr* gene
88 disrupted photoreceptor synaptic transmission, phototaxis behaviors, and levels of axonal
89 histamine in photoreceptors. We therefore propose that a specific amino acid transporter
90 provides precursors for the synthesis of monoamine neurotransmitters. We further provide
91 evidence that neurotransmitters can be synthesized *de novo* in a specific location.

92

93 **Results**

94 **Histidine decarboxylase (Hdc) localizes to neuronal terminals**

95 Histamine acts as major neurotransmitter at photoreceptor synaptic terminals, transmitting
96 visual information to interneurons (Hardie, 1989). Further, histamine *de novo* synthesis in
97 photoreceptor cells is essential for maintaining visual transmission (Burg et al., 1993).
98 Interestingly, we have identified a vesicle transporter specific for histamine, LOVIT, which is
99 concentrated exclusively in photoreceptor terminals and helps to maintain levels of histamine
100 at synapses (Xu and Wang, 2019). Together with the fact that visual neurotransmission
101 requires rapid and high-frequency firing, we hypothesize that the fast neurotransmitter
102 histamine is synthesized directly in axon terminals. In *Drosophila* photoreceptor cells,
103 histamine is initially synthesized from histidine by the eye-specific enzyme, histidine
104 decarboxylase (Hdc). To determine the subcellular localization of Hdc in photoreceptor cells,
105 we raised an antibody against an Hdc-specific peptide. Endogenous Hdc was detected
106 predominantly in the lamina layer, which contains terminals of the R1–R6 photoreceptors, and
107 in the medulla, which contains terminals of R7- R8. In these regions, Hdc co-localized with
108 LOVIT and the pre-synaptic marker, CSP (Cysteine String Protein) (Figures 1A-B, and Figure
109 1-figure supplement 1). Moreover, Hdc was largely absent from the retina (Figures 1A and 1B).
110 Cross-sections of the lamina neuropil that contained R1–R6 terminals revealed that Hdc was
111 surrounded by the glial marker Ebony and co-localized with synaptic vesicle protein CSP
112 (Figures 1C). To confirm the sub-cellular pattern of Hdc, we expressed mCherry-tagged Hdc in
113 photoreceptor cells using the *trp* promoter (*transient receptor potential*) (Montell and Rubin,
114 1989). The chimeric Hdc was functional, as the *trp-Hdc-mCherry* transgene completely
115 restored visual transmission in *Hdc* mutant flies. Consistent with what we observed for
116 endogenous Hdc, Hdc-mCherry was also highly enriched in the lamina and medulla. In
117 contrast, GFP signals were detected in the retina, lamina, and medulla in *trp-GFP* flies (Figure
118 1D). The finding that Hdc protein was enriched in photoreceptor terminals is consistent with
119 the assumption that the neurotransmitter histamine is synthesized directly in axon terminals.

120 **TADR is required for visual synaptic transmission**

121 Given that the enzyme responsible for catalyzing the biosynthesis of histamine localized to
122 pre-synaptic regions, we next sought to determine how histidine, an Hdc substrate, is
123 transported to neuronal terminals. We hypothesized that an amino acid transporter resided on
124 the plasma membrane of photoreceptor synaptic terminals, and that this transporter would be
125 responsible for histidine uptake and required for rapid histamine synthesis and visual
126 transmission. Among ~600 putative transmembrane transporters encoded by the *Drosophila*
127 genome (Ren et al., 2007), we identified 42 genes that could potentially encode an amino acid
128 transporter. These we tested as candidate histamine transporters (Table S1).

129 To examine whether these putative transporters were involved in visual neurotransmission,
130 each candidate gene was knocked down individually via the eye-specific expression of RNAi
131 using the *GMR* (*glass multiple response element*)-*Gal4* driver. Loss-of-function alleles were
132 also used if available. We performed electroretinogram (ERG) recordings to determine which
133 putative amino acid transporters functioned in visual transmission. ERG recordings are

134 extracellular recordings that measure the summed responses of all retinal cells in response to
135 light. An ERG recording from a wild-type fly contains a sustained corneal negative response
136 resulting from photoreceptor depolarization, as well as ON and OFF transients originating from
137 synaptic transmission to laminal LMCs (large monopolar cells) at the onset and cessation of
138 light stimulation (Wang and Montell, 2007) (Figure 2A). Flies deficient for histamine exhibited
139 clear reductions in their ON and OFF transients, as shown for *Hdc*^{P217} mutant flies. We found
140 that knock-down of the putative cationic amino acid transporter gene, *tadr* (*torn and diminished*
141 *rhabdomeres*), resulted in the loss of synaptic transmission (Figures 2A and 2B). We then
142 generated a different *tadr*^{RNAi} line, which we called *tadr*^{RNAi-2}. Consistent with the results of the
143 screen, driving *tadr*^{RNAi-2} with *GMR-gal4* also affected ON and OFF transients (Figures 2A and
144 2B). Importantly, ERG transients were not affected by specific knockdown of *tadr* in glia using
145 *repo-Gal4*, confirming the specific role of TADR in photoreceptor neurons (Figures 2C and 2D).

146 To further confirm that *tadr* was the causal gene, we generated a null mutation in the *tadr* gene
147 by deleting ~700-bp genomic fragment using the CRISPR-associated single-guide RNA
148 system (Cas9) (Figure 2-figure supplement 1A). PCR amplification and sequencing of the *tadr*
149 locus from genomic DNA isolated from wild-type and *tadr*² flies revealed a complete disruption
150 of the *tadr* locus in mutant animals (Figure 2-figure supplement 1B and 1C). It has been
151 reported that *tadr* mutation leads to photoreceptor degeneration. However, homozygous *tadr*²
152 null mutants exhibited normal morphology of both the soma and axon terminal of
153 photoreceptors when examined via transmission electron microscopy (TEM). No retinal
154 degeneration was detected in aged animals (Figure 2-figure supplement 2). Consistent with
155 the RNAi results, *tadr*² mutant flies displayed a complete loss of ON and OFF transients
156 (Figure 2E). Further, expressing *tadr* in photoreceptors using the *trp* promoter restored ON and
157 OFF transients in *tadr*² mutant flies, whereas expression of GFP failed to rescue the loss of
158 ERG transients (Figures 2E and 2F). Disrupting visual transmission results in blindness, which
159 reflected in the loss of phototactic behavior (Behnia and Desplan, 2015). We next used this
160 behavioral assay to assess the vision of *tadr* mutant flies. Consistent with the ERG results,
161 knockdown of *tadr* in the retina disrupted phototactic behavior, whereas wild-type levels of
162 phototaxis were observed in flies in which *tadr* was knocked down in glia (Figure 2G). *tadr*²
163 mutant flies also exhibited defective phototaxis, which was fully restored by the *trp-tadr*
164 transgene (Figure 2H). Together, these findings reveal that TADR functions within
165 photoreceptor cells to maintain synaptic transmission but not the integrity of neurons.

166 **TADR is a *bona fide* histidine transporter**

167 Given that TADR belongs to a subfamily of cationic amino acid transporters (CATs) within the
168 solute carrier 7 (SLC7) family (Verrey et al., 2004), we performed a histidine uptake assay in
169 *Drosophila* S2 cells to determine whether TADR could transport histidine *in vitro* (Han et al.,
170 2017; Karl et al., 1989). When Flag-tagged TADR was expressed in S2 cells the Flag-TADR
171 signal localized exclusively to the plasma membrane (Figure 3A). We then transiently
172 expressed TADR in S2 cells and assessed their ability to uptake [³H]-histidine. The histidine
173 content of TADR-transfected cells was approximately 180 Bq/mg, which was 3.6-fold greater
174 than measured for RFP-transfected controls (50 Bq/mg) (Figure 3B). Human SLC38A3, which
175 is known to efficiently take up histidine, exhibited levels of histidine transport comparable to

176 TADR, suggesting that TADR is a *bona fide* plasma membrane histidine transporter (Bröer,
177 2014) (Figure 3B).

178 Considering that transporters related to histamine recycling are necessary for synaptic
179 transmission, we next sought to determine whether TADR specifically transports histidine in
180 *Drosophila*. Because a histamine transporter has not yet been identified, we first asked
181 whether TADR can transport histamine. Histamine uptake assays revealed that TADR does
182 not exhibit histamine uptake activity. As a control, the human Organic Cation Transporter
183 (OCT2), which is known to take up histamine, exhibited high levels of histamine transport
184 when expressed in S2 cells (Busch et al., 1998) (Figure 3C). Next, we found that TADR did not
185 exhibit β -alanine transporting activity when expressed in S2 cells, whereas BalaT, which
186 served as a positive control, efficiently transported β -alanine (Han et al., 2017) (Figure 3D).
187 Similarly, TADR did not transport carcinine in S2 cells compared with the positive control,
188 OCT2 (Xu et al., 2015) (Figure 3E). To further determine if the amino acid transporter TADR is
189 specific to histidine, we performed competition assays using [3 H]-histidine in combination with
190 different L-amino acids at high concentration (0.5 mM for each L-amino acid vs. 2.5 μ M
191 [3 H]-histidine). Histidine efficiently blocked [3 H]-histidine uptake, whereas the other amino
192 acids did not affect TADR-mediated histidine uptake. The only exception was lysine, which
193 slightly reduced [3 H]-histidine uptake (Figure 3-figure supplement 1). These data support the
194 conclusion that TADR is a specific histidine transporter involved in visual synaptic
195 transmission.

196 **TADR predominantly localizes to photoreceptor terminals**

197 Hdc and LOVIT mediate two steps critical for histamine synthesis and we found that both
198 localize to axonal terminals. Thus, if TADR functions as a histidine transporter epistatic to Hdc,
199 we should also detect TADR in photoreceptor axonal terminals. As we failed to generate a high
200 affinity antibody against TADR, we used CRISPR/Cas9-based genome editing to introduce a
201 GFP tag into the *tadr* locus (tagging the N-terminal), downstream of the native *tadr* promoter
202 (*GFP-tadr*) (Figure 4-figure supplement 1A and method). The reason for generating an
203 N-terminal tagged version of TADR is that expression of N-terminal tagged but not C-terminal
204 tagged TADR fully restored synaptic transmission in *tadr*^{RNAi-2} flies. We identified *GFP-tadr*
205 knock-in flies through PCR (Figure 4-figure supplement 1B). Importantly, homozygous
206 *GFP-tadr* flies displayed intact ON and OFF transients, as expected, confirming that
207 GFP-TADR retained *in vivo* function (Figure 4-figure supplement 1C). We found that TADR
208 protein was enriched in photoreceptor cells including the retina, lamina, and medulla.
209 Importantly, the GFP-TADR signal was concentrated in the lamina and medulla (marked with
210 CSP), to which the R1-R6 and R7/R8 photoreceptors project their axons (Figure 4A).
211 Moreover, TADR co-localized with Hdc at terminals of photoreceptor neurons in the lamina and
212 medulla (Figure 4B). These results demonstrated that TADR is expressed specifically in
213 photoreceptor neurons and localized primarily to photoreceptor terminals. Further, the pattern
214 of Hdc localization suggests that the *de novo* synthesis of a neurotransmitter occurs
215 specifically at the relevant synapse.

216 ***tadr* mutants exhibit reduced levels of histamine at photoreceptor terminals**

217 Given our evidence consistent with TADR-mediated transport of histidine directly into
218 photoreceptor synaptic terminals, where histidine would be converted to histamine by Hdc,
219 loss of TADR should reduce histamine levels, as has been seen for *hdc* mutants (Borycz et al.,
220 2000). We generated head longitudinal sections from *tadr*² mutants and wild-type controls and
221 labeled them with an antibody reported to label histamine (Chaturvedi et al., 2014). In control
222 flies, the histamine signal was enriched exclusively in photoreceptor terminals of both the
223 lamina and medulla, co-localizing with CSP (Figure 5A and 5C). *tadr*² mutants showed a
224 dramatic reduction in histamine labeling at photoreceptor terminals in both the lamina and
225 medulla (Figure 5B and 5C). Moreover, the apparent loss of histamine in *tadr*² mutant
226 photoreceptor terminals did not result from the loss of synaptic structures, as the density of
227 synaptic vesicles and the number of capitate projections were comparable in the lamina of
228 *tadr*² mutant and control flies (Figure 2-figure supplement 2). We next used liquid
229 chromatography-mass spectrometry (LC-MS) to examine *in vivo* levels of histamine in
230 compound eyes of *tadr*² mutant flies. As expected, eyes from *Hdc*^{P217} mutant flies exhibited
231 reduced levels of histamine, as these flies could not decarboxylate histidine into histamine
232 (Figure 5D). Similarly, *tadr*² mutants produced less histamine due to loss of histidine uptake
233 into photoreceptor terminals (Figure 5D). Consistent with previous reports, examining the
234 heads of *Hdc*^{P217} mutant flies revealed less carcinine and β-alanine due to loss of histamine
235 (Melzig et al., 1998) (Figures 5E and 5F). Importantly, *tadr*² mutants exhibited less carcinine
236 and β-alanine as well, indicating that both TADR and Hdc are essential for the *de novo*
237 synthesis of histamine. Moreover, reductions in histamine, carcinine, and β-alanine in *tadr*²
238 mutants were fully restored by expressing TADR in photoreceptor cells (Figures 5E and 5F).
239 Reduction of histamine in *tadr*² mutant flies indicates defective histamine synthesis and
240 explains why photoreceptor synaptic transmission is disrupted in *tadr*² mutants. These results
241 therefore support the hypothesis that TADR transports histidine into photoreceptor terminals
242 for the production of histamine to sustain tonic visual transmission.

243 **Ectopic expression of histidine transporters in photoreceptor cells rescues visual**
244 **synaptic transmission in *tadr*² flies.**

245 If *tadr* mutants exhibit defective visual transmission because of deficient histidine transport,
246 then replacing *tadr* with another transporter capable of transporting histidine should rescue
247 photoreceptor synaptic transmission in *tadr* mutants. We first asked whether other members of
248 the fly CAT family of transporters could efficiently transport histidine into S2 cell. We found that
249 histidine was taken up by CG13248-transfected cells, but not by Slif (Slimfast)-positive cells
250 (Figure 6A). Next, we overexpressed CG13248 or Slif in *tadr*² mutant photoreceptor cells. The
251 expression of CG13248 in *tadr*² mutant photoreceptor cells fully restored both ERG transients
252 and phototaxis, whereas Slif did not. These results are consistent with their abilities to
253 transport histidine (Figures 6B-6D). Further, expression of the human histidine transporter,
254 SLC38A3, fully restored ERG transients and phototactic behavior in *tadr*² mutant flies (Figures
255 6A-6D). These data support an essential role for the histidine transporting activity of TADR in
256 maintaining visual synaptic transmission. Taken together, we have identified a previously
257 uncharacterized histidine transporter, TADR, and shown that TADR resides (together with the
258 downstream enzyme, Hdc) in the axonal terminals of photoreceptor neurons, where it is
259 responsible for the local biosynthesis of histamine.

261 **Discussion**

262 Neurotransmitters are concentrated within presynaptic terminals and their release transmits
263 signals to postsynaptic neurons. In most cases, the enzymes necessary for neurotransmitter
264 synthesis are translated in the soma and then transported down the axon, where they then
265 generate neurotransmitters. However, Tyrosine hydroxylase and Tryptophan hydroxylase, the
266 rate-limited enzymes for dopamine and serotonin synthesis, respectively, are cytosolic and
267 reside both in the neuronal cell body and axon, suggesting that the *de novo* synthesis of these
268 neurotransmitters occurs in both the soma and axon (Cartier et al., 2010; Walther et al., 2003).
269 If neurotransmitters are generated in the cytosol of the cell body, the slow rate of diffusion for
270 these small molecules could potentially limit the pool of axonal neurotransmitters and affect
271 synaptic transmission. One possibility is that neurotransmitters are loaded into storage
272 vesicles and that these vesicles are then taken to the nerve endings through fast axonal
273 transport (Broix et al., 2021; Roy, 2020; Vallee and Bloom, 1991). In support of this, moreover,
274 in addition to existing in axonal synaptic vesicles, high levels of vesicular monoamine
275 transporters (VMATs) localize to large dense core vesicles in the soma (Liu et al., 1994;
276 Nirenberg et al., 1995). However, the recently identified vesicular transporter, LOVIT, which is
277 responsible for packaging histamine, is absolutely restricted to synaptic vesicles within the
278 photoreceptor axon. Histamine is exclusively detected in wild-type photoreceptor terminals,
279 but absent from *lovit* mutants (Xu and Wang, 2019). Consistent with this, we found that Hdc
280 and its product histamine are enriched in photoreceptor terminals, suggesting that the *de novo*
281 synthesis of histamine occurs exclusively in axons. If histidine, the substrate of Hdc, is
282 transported to axonal terminals from the cell body, the rate of histamine biosynthesis would be
283 limited. Therefore, it is possible that neurotransmitter precursors are taken up into terminals by
284 specific transporters, and that neurotransmitter synthesis and packaging take place primarily
285 within the axon. In support of this, we have characterized a new histidine transporter, TADR,
286 which localized predominantly to photoreceptor terminals and was required for the *de novo*
287 synthesis of histamine in photoreceptor terminals. Furthermore, TADR specifically transported
288 histidine *in vitro*, and *tadr*² null mutant flies exhibited normal neuronal growth and survival, but
289 disrupted visual transmission. Therefore, TADR and Hdc function synergistically within axonal
290 terminals to provide a local pool of neurotransmitters (Figure 6E).

291 Although *de novo* synthesis provides a starting pool of neurotransmitters, recycling
292 neurotransmitters after release is a critical pathway for maintaining neurotransmitter content
293 within axon terminals. Ebony, the histamine recycling pathway involved in a previously
294 identified N-β-alanyl-dopamine synthase, is expressed in epithelial glia and converts histamine
295 to carcinine. The inactive histamine conjugate, carcinine, is transported back into
296 photoreceptors where it is hydrolyzed back into histamine by Tan, an N-β-alanyl-dopamine
297 hydrolase, to restore the neurotransmitter pool (Borycz et al., 2002; Richardt et al., 2003;
298 Richardt et al., 2002; Wagner et al., 2007). Unlike Hdc, Tan localizes non-selectively to both
299 the soma and axon, suggesting that the regeneration of histamine may take place in the soma
300 as well (Aust et al., 2010). However, a recently identified transporter specific for carcinine,
301 CarT, predominantly localizes to the terminals of photoreceptor neurons, rather than to the cell
302 bodies, suggesting the regeneration of histamine from carcinine through axonal Tan

303 (Chaturvedi et al., 2016; Stenesen et al., 2015; Xu et al., 2015). Taken together, both *de novo*
304 synthesis and regeneration of the neurotransmitter histamine is restricted to neuronal
305 terminals by a similar mechanism – the transportation of substrates.

306 TADR belongs to the CAT subfamily within the SLC7 family, and is homologous to the human
307 membrane proteins, SLC7A4 and SLC7A1, which are predicted to be involved in importing
308 basic amino acids across the plasma membrane (Verrey et al., 2004). It has been reported that
309 flies carrying a missense mutation in *tadr*, namely *tadr*¹ (generated from an EMS mutagenesis
310 screen), exhibit retinal degeneration. This may indicate that TADR functions to provide amino
311 acids to support photoreceptor cells (Ni et al., 2008). However, our *tadr*² null mutant flies fail to
312 exhibit photoreceptor degeneration or growth defects. In addition, the morphologies of *tadr*²
313 somas and axons are comparable to those of wild-type flies. In support of this, we found that
314 TADR specifically transported histidine, with only a low affinity for lysine, suggesting that TADR
315 is not involved in the general metabolism of amino acids. The neurodegeneration phenotype
316 observed in *tadr*¹ mutants may be due to the nature of the *tadr*¹ point mutation, which might
317 have generated new functions. Nevertheless, it is possible that in addition to transporting
318 histidine into photoreceptors, TADR may play a role in sustaining visual synaptic transmission
319 through other functions, such as disrupting Gq signaling (Ni et al., 2008). The CG13248
320 transporter, a member of the CAT subfamily, is able to rescue the vision defects of *tadr*² mutant
321 flies, but another member of the CAT subfamily, the transporter Slif, failed to do so. This is
322 consistent with their ability to transport histidine (Colombani et al., 2003). Moreover, SLC38A3,
323 which belongs to the SLC38 subfamily, is known to mediate sodium-dependent transport of
324 multiple amino acids, including histidine, and the expression of SLC38A3 fully restores visual
325 transduction and phototactic behavior in *tadr*² mutant flies (Bröer, 2014). The lack of sequence
326 homology between SLC38A3 and TADR strongly suggests that TADR primarily acts as a
327 histidine transporter to maintain visual transduction.

328 Amino acid transporters play fundamental roles in multiple metabolic processes, including
329 mTOR activation, energy metabolism, nutritional stress, and tumor progression (Chen et al.,
330 2014; Colombani et al., 2003; Nicklin et al., 2009; Rebsamen et al., 2015; Wyant et al., 2017).
331 Consistent with these functions, the amino acid transporters SLC7A5 and SLC6A14 are
332 upregulated in tumors, making them potential targets for the pharmacological treatment of
333 cancer (Kanai, 2021; Nałęcz, 2020). Our experiments suggest that amino acid transporters
334 provide amino acids that are critical for the *de novo* synthesis of monoamine neurotransmitters.
335 Since, inhibitors of monoamine transporters have been widely used as antidepressants, amino
336 acid transporters specific for monoamine neurotransmitter synthesis (such as TADR) may
337 provide new treatment options for neurological diseases associated with the dysregulation of
338 monoamine neurotransmitters (Andersen et al., 2009).

339

340 **Figure legends**

341 **Figure 1. Histidine decarboxylase (Hdc) localizes to neuronal terminals.**

342 (A-B) Cryosections of w^{1118} and *Hdc* mutant heads were labeled with antibodies against Hdc
343 (red), 24B10 (A) (green, photoreceptor cell marker), CSP (B) (green, localized to synaptic
344 vesicles), and LOVIT (blue, labelling photoreceptor terminals). Scale bars, 50 μ m. (C) Cross
345 sections of the lamina layer showing overlapping patterns of Hdc (red) and CSP (green)
346 localization, and a complementary pattern of Hdc (red) and Ebony (blue, expressed in lamina
347 epithelial glia). Scale bars, 5 μ m. (D) Cryosections of heads from *trp-Hdc-mCherry/trp-GFP*
348 flies were labeled with antibodies against mCherry (red), GFP (green), and LOVIT (blue).
349 Scale bar, 50 μ m. La, lamina; Me, medulla; Re, retina.

350 **Figure 2. TADR is required in photoreceptors for normal visual transmission.**

351 (A–D) ERGs recorded from flies expressing various *UAS-tadr RNAi* transgenes (*tadr*^{*RNAi1*} and
352 *tadr*^{*RNAi2*}) under the control of (A) *GMR-Gal4*, a driver specific for compound eyes (*GMR-Gal4/UAS-tadr*^{*RNAi1*}
353 or *GMR-Gal4/+;UAS-tadr*^{*RNAi2*}/+) and (C) the glial-specific driver *repo-Gal4*
354 (*repo-Gal4/UAS-tadr*^{*RNAi1*} or *repo-Gal4/+;UAS-tadr*^{*RNAi2*}/+). (B) Quantitative analysis of the
355 amplitudes of ERG OFF transients shown in A compared with control flies (*GMR>GFP*^{*RNAi*},
356 *GMR-Gal4/+;UAS-GFP*^{*RNAi*}/+) (One-way ANOVA; n=5; ***p< 0.001). (D) Quantitative analysis
357 of the amplitudes of ERG OFF transients shown in C compared with control flies
358 (*repo>GFP*^{*RNAi*}, *repo-Gal4/UAS-GFP*^{*RNAi*}) (One-way ANOVA; n=10; ns, not significant).
359 Arrowheads indicate ON and OFF transients. One-day-old flies were dark adapted for 1 min
360 and subsequently exposed to a 5-s pulse of orange light. (E–F) ERG recordings (E) and
361 quantitative analysis of the amplitudes of ERG OFF transients (F) from wild-type (w^{1118}), *tadr*²,
362 *tadr*²;*trp-GFP*, and *tadr*²;*trp-tadr* flies. Displayed are comparisons to wild-type (w^{1118}) flies
363 (One-way ANOVA; n=10; ***p< 0.001; ns, not significant). (G) Phototactic behavior of flies
364 corresponding to those in (A) and (C) compared with control flies (*GMR>GFP*^{*RNAi*} or
365 *repo>GFP*^{*RNAi*} flies). (H) Phototactic behavior of flies corresponding to those in (E). Each
366 group is comprised of at least 20 3-day-old flies. Five repeats were quantified for each group
367 (One-way ANOVA, ***p< 0.001; ns, not significant).

368 **Figure 3. TADR is a plasma membrane histidine transporter.**

369 (A) TADR localized to the plasma membrane when transiently transfected into S2 cells.
370 GFP-tagged TADR was labeled with GFP antibody (green) and DAPI (blue), which stained the
371 nucleus. Scale bar, 2 μ m. (B) TADR transported histidine into S2 cells. Human SLC38A3 and
372 RFP were used as positive and negative controls, respectively. [³H]-histidine was added to the
373 DMEM solution (final concentration 2.5 μ M). (C–D) TADR did not transport histamine (C) or
374 β -alanine (D) into S2 cells. [³H]-histamine or [³H]- β -alanine was added to the ECF buffer (final
375 concentration 3.7x10⁴Bq), and OCT2 and BalaT served as positive transporter controls for
376 histamine and β -alanine, respectively. Results are the mean \pm S.D. of three experiments
377 (One-way ANOVA, ***p< 0.001; ns, not significant). (E) TADR did not transport carcinine. S2
378 cells transiently expressing mCherry, OCT2-mCherry, or TADR/mCherry. Carcinine was added

379 to the culture medium at a final concentration of 20 μ M. Cells were labeled with rabbit
380 anti-carcinine (green) antibody and DAPI (blue). The mCherry (red) signal was observed
381 directly. Scale bar, 5 μ m.

382 **Figure 4. TADR predominantly localizes to photoreceptor terminals.**

383 (A-B) Cryosections from *GFP-tadr* knock-in flies. Expression of an N-terminal GFP-tagged
384 version of TADR was driven by the native *tadr* promoter. Sections were labeled for GFP-TADR
385 with CSP (red) (A) or Hdc (red) (B) and DAPI (blue). Scale bars, 50 μ m. La, lamina; Me,
386 medulla; Re, retina.

387 **Figure 5. Loss of TADR reduces histamine levels *in vivo*.**

388 (A-C) Histamine signaling in photoreceptor terminals was disrupted. Head cryosections were
389 stained for histamine together with CSP (synaptic vesicle marker) in control (w^{1118}) (A) and
390 *tadr*² (B) flies. Sections are parallel to photoreceptor axons. Scale bars, 50 μ m. (C) Average
391 red fluorescence intensity ratio between the entire lamina and the retina immunolabeled layers.
392 (D-F) Histamine (D), β -alanine (E), and carcinine (F) levels in compound eyes of 3-day-old
393 control (w^{1118}), *Hdc*^{P217}, *tadr*², and *tadr*²;trp-*tadr* flies. Each sample included dissected
394 compound eyes from 40 flies (One-way ANOVA; n=4; ***p < 0.001; **p < 0.01; *p < 0.05). La,
395 lamina; Me, medulla; Re, retina.

396 **Figure 6. Rescue of defective visual transmission in *tadr*² mutants by expressing other
397 histidine transporters.**

398 (A) SLC38A3 and CG13248 transported histidine into S2 cells, whereas the previously
399 identified amino acid transporter, Slif, did not transport histidine. [³H]-histidine was added to
400 the DMEM solution to a final concentration 2.5 μ M. (B) ERG recordings from control (w^{1118}),
401 *tadr*², *tadr*²+*tadr* (*tadr*²;longGMR-Gal4/UAS-*tadr*), *tadr*²+CG13248
402 (*tadr*²;longGMR-Gal4/UAS-CG13248), *tadr*²+Slif (*tadr*²;longGMR-Gal4/UAS-Slif), and
403 *tadr*²+SLC38A3 (*tadr*²;longGMR-Gal4/UAS-SLC38A3) are shown. Young flies (<3 days after
404 eclosion) were dark adapted for 1 min and subsequently exposed to a 5-s pulse of orange light.
405 (C) Quantitative analysis of the amplitude of ERG OFF transients shown in B. Displayed are
406 comparisons to control (w^{1118}) flies (One-way ANOVA; n=10; ***p < 0.001; ns, not significant).
407 (D) Phototactic behaviors of 3-day-old control, *tadr*², *tadr*²+*tadr*, *tadr*²+CG13248, *tadr*²+Slif,
408 and *tadr*²+SLC38A3 flies. Five repeats were made for each group, and each group had at least
409 20 flies (One-way ANOVA, ***p < 0.001; ns, not significant). (E) Model of the pathway for local
410 histamine biosynthesis. Histidine is directly transported into photoreceptor cells at neuronal
411 terminals by TADR, where it is used as a substrate to synthesize histamine by the
412 decarboxylase, Hdc. Newly generated histamine is then loaded into synaptic vesicles by a
413 LOVIT-dependent mechanism. Histamine, serving as a neurotransmitter, is released by
414 photoreceptor cells (PR) to activate histamine-gated chloride channels (HisCIA) on
415 postsynaptic neurons (LMC) to start visual transmission.

416 **Figure 1-figure supplement 1. Histidine decarboxylase (Hdc) co-localizes with LOVIT in
417 the medulla.**

418 A longitudinal section of the distal medulla neuropil from 3-day-old w^{1118} fly was labeled with
419 antibodies against Hdc (red) and LOVIT (blue, labelling photoreceptor terminals). Scale bars,
420 20 μ m.

421 **Figure 2-figure supplement 1. Generation of *tadr*² flies.**

422 (A) Schematic for *tadr* knock-out by sgRNA targeting. Organization of the *tadr* locus and the
423 expected structure of the *tadr*² allele are shown. Boxes represent exons with the coding region
424 between ATG and TAA. The sgRNA1 and sgRNA2 primer pairs were used to generate the
425 *tadr*² allele. Arrows indicate the primers used for genomic PCR. (B) PCR products obtained
426 from *tadr*² mutants show successful gene deletions. (C) Verification of the *tadr*² locus by DNA
427 sequencing. The *tadr*² deletion mutation eliminated 665 bp.

428 **Figure 2-figure supplement 2. Ommatidia and cartridges are normal in *tadr*² mutants.**

429 (A-B) Cross-view of TEM sections of the retinal layers (A) and lamina neuropil (B) from
430 3-day-old w^{1118} and *tadr*² flies. Scale bars: 2 μ m in A; 1 μ m in B. (C-D) Quantification of capitate
431 projection (C) and synaptic vesicle density (D) from B. Sections from four different flies were
432 quantified for each genotype. (D) TEM cross sections of the retinal layers from aged (10 days
433 old) flies showed that photoreceptor structures are intact in *tadr*² mutants. Scale bars, 2 μ m.

434 **Figure 3-figure supplement 1. TADR is a specific histidine transporter.**

435 Competition assays using [³H]-histidine in combination with different L-amino acid at high
436 concentration (0.5 mM for each L-amino acid vs. 2.5 μ M [³H]-histidine). Results are the mean \pm
437 S.D. of three experiments (One-way ANOVA; ***p < 0.001; **p < 0.01; *p < 0.05; ns, not
438 significant).

439 **Figure 4-figure supplement 1. Generation of *GFP-tadr* flies.**

440 (A) Schematic for generating *GFP-tadr* flies. GFP was inserted into the *tadr* locus (tagging the
441 N-terminal) using CRISPR/Cas9-mediated homologous recombination. PCR primers (arrows,
442 pF and pR) were used to verify the *GFP-tadr* knock-in flies. (B) Genomic PCR products from
443 wild-type (w^{1118}), *attP2*, and *GFP-tadr* flies show successful gene targeting. (C) ERG
444 recordings from wild-type (w^{1118}), *nos-cas9*, and *GFP-tadr* flies. Homozygous *GFP-tadr* flies
445 showed intact ON and OFF transients.

446 **Source data**

447 **Figure 2-source data 1**

448 Source data for quantitative of ERG transients and phototaxis behaviors.

449 **Figure 2-figure supplement 1 source data 1**

450 The full raw unedited gels for PCR products obtained from *tadr*² mutants.

451 **Figure 2-figure supplement 2 source data 1**

452 Source data for quantification of capitate projection and synaptic vesicle density in *tadr*²
453 mutants.

454 **Figure 3-source data 1**

455 Source data for histidine, histamine, and β-alanine uptake assay.

456 **Figure 3-figure supplement 1 source data 1**

457 Source data for competition assays using histidine in combination with different L-amino acid.

458 **Figure 4-figure supplement 1 source data 1**

459 The full raw unedited gels for PCR products obtained from *GFP-tadr* flies.

460 **Figure 5-source data 1**

461 Source data for the levels of histamine, β-alanine, and carcinine in *w*¹¹¹⁸, *Hdc*^{P217}, *tadr*², and
462 *tadr*²;trp-*tadr* mutant fly compound eyes.

463 **Figure 6-source data 1**

464 Source data for histidine uptake assay and source data for quantitative of ERG transients and
465 phototaxis behaviors.

466 **Materials and Methods**

467 **Fly Stocks and Cultivation**

468 The *Tl*{*Tl*}*Hdc*^{attP}, *Hdc*^{P217}, and *M*(*vas-int.Dm*) *ZH-2A*;*M*(*3xP3-RFP.attP*) *ZH-86Fb* flies were
469 provided by the Bloomington *Drosophila* Stock Center (<https://bdsc.indiana.edu>). The *tdar*^{RNAi}
470 line (P{VSH330472}attP40) was obtained from the Vienna *Drosophila* Resource Center
471 (<https://stockcenter.vdrc.at>). The transgenic RNAi lines for the *in vivo* transporter screen were
472 obtained from the TsingHua Fly Center (<http://fly.redbux.cn>), the Bloomington *Drosophila* Stock
473 Center, and the Vienna *Drosophila* Resource Center. The *w*¹¹¹⁸, *nos-Cas9*, *GMR-gal4*, and
474 *Repo-Gal4* flies were maintained in the lab of Dr. T. Wang at the National Institute of Biological
475 Sciences, Beijing, China. Flies were maintained in 12-h-light–12-h-dark cycles with ~2000 lux
476 illumination at 25°C, except when mentioned differently in the text.

477 **Generation of *tadr* mutant and knock-in flies**

478 The *tadr*² mutation was generated using the Cas9/sgRNA system (Xu et al., 2015). Briefly, two
479 pairs of guide RNAs targeting the *tadr* locus were designed (sgRNA1:
480 GTGCCTGCGCTGCCCTGGCG, sgRNA2: TTTTAAGCGCCGTCGGCTGG) and cloned into
481 the *U6b*-sgRNA-short vector. The plasmids were injected into the embryos of *nos-Cas9* flies,
482 and deletions were identified by PCR using the following primers: forward primer 5'-
483 CAATGGCAGGTGGGAGTTAGG-3' and reverse primer 5'-
484 TTAGAGTCGCCGTGAATCGTC-3'. The *GFP-tadr* knock-in flies were generated as shown in

485 Figure S3. Briefly, a sgDNA sequence (ACAACAACGACAATGTCGAG) was designed and
486 cloned into the *U6b-sgRNA-short* vector. *tadr* genomic DNA (from 747 base pairs (bp)
487 upstream of the transcription starting site to 893 bp downstream of the transcription
488 termination site) was subcloned into a donor vector. GFP-tag sequence was then inserted at
489 the end of the upstream fragment sequence. The two plasmids were co-injected into the
490 embryos of *nos-Cas9* flies. The *GFP-tadr* flies were finally confirmed by PCR of genomic DNA
491 using the following primers: forward primer 5'- ATGGTGAGCAAGGGCGAGG -3' and reverse
492 primer 5'- GAATACCCACACATGCCAATCA -3'. Both *tadr*² and *GFP-tadr* flies were
493 backcrossed to wild-type flies (*w¹¹¹⁸*) for two generations before performing experiments.

494 **Generation of plasmid constructs and transgenic flies**

495 Amino acid transporters, including *tadr*, *slif*, and *CG13248* cDNA sequences were amplified
496 from LD25644, LD37241, and FI04531 cDNA clones obtained from DGRC (*Drosophila*
497 Genomics Resource Center, Bloomington, IN, USA). The human SLC38A3 cDNA sequences
498 were synthesized from GENEWIZ, China. Their entire CDS sequences were subcloned into
499 the pCDNA3 vector (Invitrogen, Carlsbad, USA) for expression in HEK293T cells or PIB vector
500 (Invitrogen, Carlsbad, USA) for expression in S2 cells. To express cDNAs in the
501 photoreceptor cells, a 1.7-kb genomic DNA fragment (-1656 to +176 base pairs 5' to the
502 transcription start site) of *trp* locus substituted the UAS sequence of *pUAST-attB* vector to
503 generate the *pTrp-attB* vector (Bischof et al., 2007; Li and Montell, 2000). To construct
504 *pTrp-tadr*, *pTrp-GFP-tadr* and *pTrp-tadr-GFP*, the entire coding region of *tadr* was subcloned
505 into the *pTrp-attB* vector with N-GFP or C-GFP-tags. To construct *pTrp-Hdc-mCherry*, the
506 entire CDS sequence of *Hdc* with a C-terminal mcherry tag was cloned into the *pTrp-attB*
507 vector. To construct *UAS-tadr*, *UAS-CG13248*, *UAS-Slif* and *UAS-SLC38A3* plasmids, cDNAs
508 of *tadr*, *CG13248*, *Slif* and *SLC38A3* were amplified, and subcloned to *UAST-attB* vector. We
509 produced a *tadr*^{RNA2i} line as described (Ni et al., 2011) by designing a 21-nucleotide short
510 hairpin RNA sequences (GCCACAAGATGAGCAGCAAAT), and cloning them into a
511 VALIUM20 vector. These constructs were injected into *M(vas-int.Dm) ZH-2A; M(3xP3-RFP.attP)*
512 *ZH-86Fb* embryos, and transformants were identified on the basis of eye color. The *3xP3-RFP*
513 and *w⁺* markers were removed by crossing with *P(Cre)* flies.

514 **Generation of anti-Hdc antibody**

515 A Hdc peptide CDFKEYRQRGKEMVDY was synthesized by ChinaPeptides (Soochow, China),
516 linked with BSA, and injected into rats by the Antibody Center at NIBS to generate anti-Hdc
517 antibodies. The animal work for generating the antisera was conducted following the National
518 Guidelines for Housing and Care of Laboratory Animals in China, and performed in
519 accordance with institutional regulations after approval by the IACUC at NIBS (Reference#
520 NIBS2016R0001).

521 **Electroretinogram recordings**

522 ERGs were recorded as described (Xu et al., 2015). Briefly, two glass microelectrodes were
523 filled with Ringer's solution, and placed on the surfaces of the compound eye and thorax (one

524 each surface). The light intensity was ~ 0.3 mW/cm², and the wavelength was ~550nm (source
525 light was filtered using a FSR-OG550 filter). The electoral signals were amplified with a Warner
526 electrometer IE-210, and were recorded with a MacLab/4 s A/D converter and Clampex 10.2
527 program (Warner Instruments, Hamden, USA). All recordings were carried out at 25°C.

528 **Histidine, β-alanine, histamine, and carcinine uptake assay**

529 [³H]-Histidine (30–60 Ci/mM, American radiolabeled chemicals, Saint Louis, USA), β-alanine,
530 [3-³H (N)] (30–60 Ci/mM, American radiolabeled chemicals, Saint Louis, USA), and Histamine,
531 histamine [ring, Methylenes-³H(N)] dihydrochloride, (10–40 Ci/mM, American radiolabeled
532 chemicals, Saint Louis, USA) uptake were measured as described (Han et al., 2017). Briefly,
533 S2 cells were cultured in Schneider's *Drosophila* medium with 10% Fetal Bovine Serum (Gibco,
534 Carlsbad, USA) in 12-well plates, and transfected with vigofect reagent (Vigorous
535 Biotechnology, Beijing, China). The transfected cells were washed with 1 mL extracellular fluid
536 (ECF) buffer consisting of 120 mM NaCl, 25 mM NaHCO₃, 3 mM KCl, 1.4 mM CaCl₂, 1.2 mM
537 MgSO₄, 0.4 mM K₂HPO₄, 10 mM D-glucose, and 10 mM Hepes (pH 7.4) at 37 °C. Uptake
538 assays were initiated by applying 200 μL DMEM (for histidine uptake) or ECF buffer (for
539 histamine and β-alanine uptake) at 37 °C. After 10 or 30 minutes, the reaction was terminated
540 by removing the solution, and cells were washed with 1 mL ice-cold ECF buffer. The cells were
541 then solubilized in 1 N NaOH and subsequently neutralized. An aliquot was taken to measure
542 radioactivity and protein content using a liquid scintillation counter and a DC protein assay kit
543 (Bio-rad, USA), respectively. To perform histidine competition assays, [³H]-histidine (30–60
544 Ci/mM, 2.5 μM) in combination with L-amino acid including serine, alanine, cysteine, glutamine,
545 asparagine, arginine and lysine, at higher concentration (0.5mM) were added into DMEM
546 buffer. Carcinine was added to the medium to yield a final concentration of 20 μM. After
547 incubation for 3h, S2 cells were transferred to poly-L-lysinecoated slices, fixed with 4%
548 paraformaldehyde, and incubated with rabbit anti-carcinine/histamine antibodies (1:100,
549 ImmunoStar, USA). Goat anti-rabbit IgG conjugated to Alexa 488 (1:500, Invitrogen, CA) was
550 used as secondary antibodies, and images were recorded with a Nikon A1-R confocal
551 microscope.

552 **Immunohistochemistry**

553 Fly head sections (10-μm thick) were prepared from adults that were frozen in OCT medium
554 (Tissue-Tek, Torrance, USA). Immunolabeling was performed on cryosections sections with
555 mouse anti-24B10 (1:100, DSHB), rat anti-LOVIT (1:100) (Xu and Wang, 2019), or anti-CSP
556 (1:100, DSHB), rat anti-RFP (1:200, Chromotek, Germany), rabbit anti-Hdc (1:50), rabbit
557 anti-GFP (1:200, Invitrogen, USA), and rabbit anti-Ebony (1:200, lab of Dr. S. Carroll,
558 University of Wisconsin, Madison, USA) as primary antibodies. For histamine immunolabeling,
559 the rabbit anti-histamine (1:100, ImmunoStar, USA) antibody was pre-adsorbed with carcinine,
560 as previously reported (Xu et al., 2015). Goat anti-rabbit IgG conjugated to Alexa 488 (1:500,
561 Invitrogen, USA), goat anti-mouse IgG conjugated to Alexa 488 (1:500, Invitrogen, USA), goat
562 anti-rabbit IgG conjugated to Alexa 568 (1:500, Invitrogen, USA), and goat anti-rat IgG
563 conjugated to Alexa 647 (1:500, Invitrogen, USA) were used as secondary antibodies. The
564 images were recorded with a Zeiss 800 confocal microscope.

565 **The phototaxis assay**

566 Flies were dark adapted for 15 min before phototaxis assay, as described (Xu et al., 2015). A
567 white light source (with an intensity of ~6,000 lux) was used, and phototaxis index was
568 calculated by dividing the total number of flies by the number of flies that walked above the
569 mark. Five groups of flies were collected for each genotype, and three repeats were made for
570 each group. Each group contained at least 20 flies. Results were expressed as the mean of
571 the mean values for the four groups.

572 **Transmission Electron Microscopy**

573 To visualize *Drosophila* retina ultrastructure, adult fly heads were dissected, fixed, dehydrated,
574 and embedded in LR White resin (Electron Microscopy Sciences) as described (Xu et al.,
575 2015). Thin sections (80 nm) at a depth of 30–40 μ m were prepared, and examined using a
576 JEM-1400 transmission electron microscope (JEOL, Tokyo, Japan) equipped with a Gatan
577 CCD (4k \times 3.7k pixels, USA). TEM of photoreceptor terminals was performed as described
578 (Xu and Wang, 2019). Adult fly heads were dissected and fixed in 4% PFA. The laminae were
579 further dissected by removing retinas, followed by fine fixation in 1% osmium tetroxide for 1.5
580 h at 4°C. Thin sections (80 nm) were stained with uranyl acetate and lead-citrate (Ted Pella)
581 and examined using a JEM-1400 transmission electron microscope (JEOL, Tokyo, Japan)
582 equipped with a Gatan CCD (4k \times 3.7k pixels, USA).

583 **Liquid chromatography–mass spectrometry (LC-MS)**

584 LC-MS was performed as previously reported (Han et al., 2017). The Dionex Ultimate 3000
585 UPLC system was coupled to a TSQ Quantiva Ultra triple-quadrupole mass spectrometer
586 (Thermo Fisher, CA), equipped with a heated electrospray ionization (HESI) probe in negative
587 ion mode. Extracts were separated by a Fusion-RP C18 column (2 \times 100 mm, 2.5 μ m,
588 phenomenex). Data acquired in selected reaction monitoring (SRM) for histamine, carcinine,
589 and β -alanine with transitions of 112/95.2, 183/95, and 90/72, respectively. Both precursor and
590 fragment ions were collected with resolution of 0.7 FWHM. The source parameters are as
591 follows: spray voltage: 3000 V; ion transfer tube temperature: 350 °C; vaporizer temperature:
592 300 °C; sheath gas flow rate: 40 Arb; auxiliary gas flow rate: 20 Arb; CID gas: 2.0 mTorr. Data
593 analysis and quantification were performed using the software Xcalibur 3.0.63 (Thermo Fisher,
594 CA). Each sample contained 50 *Drosophila* heads, and the mean values from five samples
595 were calculated.

596 **Quantification and statistical analysis**

597 All experiments were repeated as indicated in each figure legend. All statistical analyses were
598 performed using GraphPad Prism 7. The variations of data were evaluated as mean \pm SD. The
599 statistical significance of the differences between two groups was measured by the unpaired
600 two-tailed Student's t test, and one-way ANOVA or two-way ANOVA with Tukey's method,
601 two-sided were performed for multi-group comparisons. A value of $p < 0.05$ was considered

602 statistically significant (ns, not significant; *p < 0.05; **p < 0.01; ***p < 0.001). P value,
603 standard error of the mean (SD), and number are as indicated in each figure and legend.

604 **Acknowledgments**

605 We thank the Bloomington Stock Center, *Drosophila* Genomic Resource Center, the
606 Developmental Studies Hybridoma Bank, Vienna *Drosophila* Resource Center, TsingHua Fly
607 Center and Dr. S. Carroll for stocks and reagents. We thank Y. Wang and X. Liu for assistance
608 with fly injections. We are tremendously thankful for support provided by the Metabolomics
609 Facility and Image Facility at NIBS. We thank State Key Laboratory of Membrane Biology,
610 Institute of Zoology, Chinese Academy of Science for our Electron Microscopy and we would
611 be grateful to Pengyan Xia for his help of taking EM images. We thank Dr. D. O'Keefe for
612 comments on the manuscript. This work was supported by grants from the National Natural
613 Science Foundation of China (81870693 and 81670891) awarded to T. Wang.

614 **Competing interests**

615 The authors declare no competing financial interests.

616 **Author contributions**

617 Y. Han and T. Wang designed the experiments. Y. Han and L. Peng performed the
618 experiments. Y. Han and T. Wang analyzed and interpreted the data. Y. Han and T. Wang
619 wrote the manuscript.

620 **References**

621 Andersen, J., Kristensen, A.S., Bang-Andersen, B., and Strømgaard, K. (2009). Recent advances in the
622 understanding of the interaction of antidepressant drugs with serotonin and norepinephrine
623 transporters. *Chemical communications* (Cambridge, England), 3677-3692.

624 Aust, S., Brüsselbach, F., Pütz, S., and Hovemann, B.T. (2010). Alternative tasks of *Drosophila* tan in
625 neurotransmitter recycling versus cuticle sclerotization disclosed by kinetic properties. *The Journal of
626 biological chemistry* 285, 20740-20747.

627 Baldan, L.C., Williams, K.A., Gallezot, J.D., Pogorelov, V., Rapanelli, M., Crowley, M., Anderson, G.M.,
628 Loring, E., Gorczyca, R., Billingslea, E., *et al.* (2014). Histidine decarboxylase deficiency causes tourette
629 syndrome: parallel findings in humans and mice. *Neuron* 81, 77-90.

630 Behnia, R., and Desplan, C. (2015). Visual circuits in flies: beginning to see the whole picture. *Current
631 opinion in neurobiology* 34, 125-132.

632 Bekkers, J.M. (1993). Enhancement by histamine of NMDA-mediated synaptic transmission in the
633 hippocampus. *Science* (New York, NY) 261, 104-106.

634 Bellipanni, G., Rink, E., and Bally-Cuif, L. (2002). Cloning of two tryptophan hydroxylase genes
635 expressed in the diencephalon of the developing zebrafish brain. *Mechanisms of development* 119
636 *Suppl 1*, S215-220.

637 Bischof, J., Maeda, R.K., Hediger, M., Karch, F., and Basler, K. (2007). An optimized transgenesis system
638 for *Drosophila* using germ-line-specific phiC31 integrases. *Proceedings of the National Academy of
639 Sciences of the United States of America* 104, 3312-3317.

640 Borycz, J., Borycz, J.A., Loubani, M., and Meinertzhagen, I.A. (2002). tan and ebony genes regulate a
641 novel pathway for transmitter metabolism at fly photoreceptor terminals. *The Journal of
642 neuroscience : the official journal of the Society for Neuroscience* 22, 10549-10557.

643 Borycz, J., Vohra, M., Tokarczyk, G., and Meinertzhagen, I.A. (2000). The determination of histamine in
644 the *Drosophila* head. *Journal of neuroscience methods* 101, 141-148.

645 Bröer, S. (2014). The SLC38 family of sodium-amino acid co-transporters. *Pflugers Archiv : European
646 journal of physiology* 466, 155-172.

647 Broix, L., Turchetto, S., and Nguyen, L. (2021). Coordination between Transport and Local Translation in
648 Neurons. *Trends in cell biology* 31, 372-386.

649 Burg, M.G., Sarthy, P.V., Koliantz, G., and Pak, W.L. (1993). Genetic and molecular identification of a
650 *Drosophila* histidine decarboxylase gene required in photoreceptor transmitter synthesis. *The EMBO
651 journal* 12, 911-919.

652 Busch, A.E., Karbach, U., Miska, D., Gorboulev, V., Akhounova, A., Volk, C., Arndt, P., Ulzheimer, J.C.,
653 Sonders, M.S., Baumann, C., *et al.* (1998). Human neurons express the polyspecific cation transporter
654 hOCT2, which translocates monoamine neurotransmitters, amantadine, and memantine. *Molecular
655 pharmacology* 54, 342-352.

656 Cartier, E.A., Parra, L.A., Baust, T.B., Quiroz, M., Salazar, G., Faundez, V., Egaña, L., and Torres, G.E.
657 (2010). A biochemical and functional protein complex involving dopamine synthesis and transport into
658 synaptic vesicles. *The Journal of biological chemistry* 285, 1957-1966.

659 Chaturvedi, R., Luan, Z., Guo, P., and Li, H.S. (2016). *Drosophila* Vision Depends on Carcinine Uptake by
660 an Organic Cation Transporter. *Cell reports* 14, 2076-2083.

661 Chaturvedi, R., Reddig, K., and Li, H.S. (2014). Long-distance mechanism of neurotransmitter recycling
662 mediated by glial network facilitates visual function in *Drosophila*. *Proceedings of the National
663 Academy of Sciences of the United States of America* 111, 2812-2817.

664 Chen, R., Zou, Y., Mao, D., Sun, D., Gao, G., Shi, J., Liu, X., Zhu, C., Yang, M., Ye, W., *et al.* (2014). The
665 general amino acid control pathway regulates mTOR and autophagy during serum/glutamine
666 starvation. *The Journal of cell biology* **206**, 173-182.

667 Colombani, J., Raisin, S., Pantalacci, S., Radimerski, T., Montagne, J., and Léopold, P. (2003). A nutrient
668 sensor mechanism controls *Drosophila* growth. *Cell* **114**, 739-749.

669 Deshpande, S.A., Freyberg, Z., Lawal, H.O., and Krantz, D.E. (2020). Vesicular neurotransmitter
670 transporters in *Drosophila melanogaster*. *Biochimica et biophysica acta Biomembranes* **1862**, 183308.

671 Ercan-Senicek, A.G., Stillman, A.A., Ghosh, A.K., Bilguvar, K., O'Roak, B.J., Mason, C.E., Abbott, T.,
672 Gupta, A., King, R.A., Pauls, D.L., *et al.* (2010). L-histidine decarboxylase and Tourette's syndrome. *The*
673 *New England journal of medicine* **362**, 1901-1908.

674 Gengs, C., Leung, H.T., Skingsley, D.R., Iovchev, M.I., Yin, Z., Semenov, E.P., Burg, M.G., Hardie, R.C., and
675 Pak, W.L. (2002). The target of *Drosophila* photoreceptor synaptic transmission is a histamine-gated
676 chloride channel encoded by *ort* (*hclA*). *The Journal of biological chemistry* **277**, 42113-42120.

677 Gisselmann, G., Pusch, H., Hovemann, B.T., and Hatt, H. (2002). Two cDNAs coding for histamine-gated
678 ion channels in *D. melanogaster*. *Nature neuroscience* **5**, 11-12.

679 Haas, H., and Panula, P. (2003). The role of histamine and the tuberomamillary nucleus in the nervous
680 system. *Nature reviews Neuroscience* **4**, 121-130.

681 Haas, H.L., Sergeeva, O.A., and Selbach, O. (2008). Histamine in the nervous system. *Physiological*
682 *reviews* **88**, 1183-1241.

683 Han, Y., Xiong, L., Xu, Y., Tian, T., and Wang, T. (2017). The β -alanine transporter BalaT is required for
684 visual neurotransmission in *Drosophila*. *eLife* **6**.

685 Hansson, S.R., Mezey, E., and Hoffman, B.J. (1999). Serotonin transporter messenger RNA expression
686 in neural crest-derived structures and sensory pathways of the developing rat embryo. *Neuroscience*
687 **89**, 243-265.

688 Hardie, R.C. (1989). A histamine-activated chloride channel involved in neurotransmission at a
689 photoreceptor synapse. *Nature* **339**, 704-706.

690 Huang, Z.L., Qu, W.M., Li, W.D., Mochizuki, T., Eguchi, N., Watanabe, T., Urade, Y., and Hayaishi, O.
691 (2001). Arousal effect of orexin A depends on activation of the histaminergic system. *Proceedings of*
692 *the National Academy of Sciences of the United States of America* **98**, 9965-9970.

693 Kanai, Y. (2021). Amino acid transporter LAT1 (SLC7A5) as a molecular target for cancer diagnosis and
694 therapeutics. *Pharmacology & therapeutics*, 107964.

695 Karl, P.I., Tkaczevski, H., and Fisher, S.E. (1989). Characteristics of histidine uptake by human placental
696 microvillous membrane vesicles. *Pediatric research* **25**, 19-26.

697 Klaips, C.L., Jayaraj, G.G., and Hartl, F.U. (2018). Pathways of cellular proteostasis in aging and disease.
698 *The Journal of cell biology* **217**, 51-63.

699 Kurian, M.A., Gissen, P., Smith, M., Heales, S., Jr., and Clayton, P.T. (2011). The monoamine
700 neurotransmitter disorders: an expanding range of neurological syndromes. *The Lancet Neurology* **10**,
701 721-733.

702 Lebrand, C., Cases, O., Adelbrecht, C., Doye, A., Alvarez, C., El Mestikawy, S., Seif, I., and Gaspar, P.
703 (1996). Transient uptake and storage of serotonin in developing thalamic neurons. *Neuron* **17**,
704 823-835.

705 Li, H.S., and Montell, C. (2000). TRP and the PDZ protein, INAD, form the core complex required for
706 retention of the signalplex in *Drosophila* photoreceptor cells. *The Journal of cell biology* **150**,
707 1411-1422.

708 Lim, J., and Yue, Z. (2015). Neuronal aggregates: formation, clearance, and spreading. *Developmental*
709 *cell* 32, 491-501.

710 Liu, Y., Schweitzer, E.S., Nirenberg, M.J., Pickel, V.M., Evans, C.J., and Edwards, R.H. (1994). Preferential
711 localization of a vesicular monoamine transporter to dense core vesicles in PC12 cells. *The Journal of*
712 *cell biology* 127, 1419-1433.

713 Martin, C.A., and Krantz, D.E. (2014). *Drosophila melanogaster* as a genetic model system to study
714 neurotransmitter transporters. *Neurochemistry international* 73, 71-88.

715 McKinney, J., Teigen, K., Frøystein, N.A., Salaün, C., Knappskog, P.M., Haavik, J., and Martínez, A.
716 (2001). Conformation of the substrate and pterin cofactor bound to human tryptophan hydroxylase.
717 Important role of Phe313 in substrate specificity. *Biochemistry* 40, 15591-15601.

718 Melzig, J., Buchner, S., Wiebel, F., Wolf, R., Burg, M., Pak, W.L., and Buchner, E. (1996). Genetic
719 depletion of histamine from the nervous system of *Drosophila* eliminates specific visual and
720 mechanosensory behavior. *Journal of comparative physiology A, Sensory, neural, and behavioral*
721 *physiology* 179, 763-773.

722 Melzig, J., Burg, M., Gruhn, M., Pak, W.L., and Buchner, E. (1998). Selective histamine uptake rescues
723 photo- and mechanoreceptor function of histidine decarboxylase-deficient *Drosophila* mutant. *The*
724 *Journal of neuroscience : the official journal of the Society for Neuroscience* 18, 7160-7166.

725 Montell, C., and Rubin, G.M. (1989). Molecular characterization of the *Drosophila* trp locus: a putative
726 integral membrane protein required for phototransduction. *Neuron* 2, 1313-1323.

727 Nałęcz, K.A. (2020). Amino Acid Transporter SLC6A14 (ATB(0,+)) - A Target in Combined Anti-cancer
728 Therapy. *Frontiers in cell and developmental biology* 8, 594464.

729 Ni, J.-Q., Zhou, R., Czech, B., Liu, L.-P., Holderbaum, L., Yang-Zhou, D., Shim, H.-S., Tao, R., Handler, D.,
730 Karpowicz, P., et al. (2011). A genome-scale shRNA resource for transgenic RNAi in *Drosophila*. *Nat*
731 *Methods* 8, 405-407.

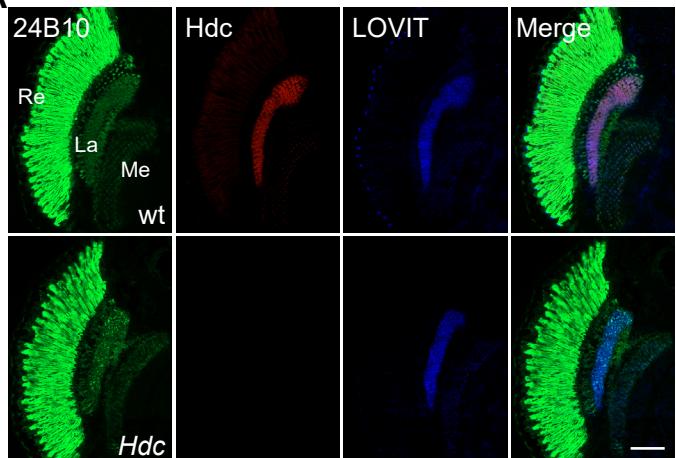
732 Ni, L., Guo, P., Reddig, K., Mitra, M., and Li, H.S. (2008). Mutation of a TADR protein leads to rhodopsin
733 and Gq-dependent retinal degeneration in *Drosophila*. *The Journal of neuroscience : the official*
734 *journal of the Society for Neuroscience* 28, 13478-13487.

735 Nicklin, P., Bergman, P., Zhang, B., Triantafellow, E., Wang, H., Nyfeler, B., Yang, H., Hild, M., Kung, C.,
736 Wilson, C., et al. (2009). Bidirectional transport of amino acids regulates mTOR and autophagy. *Cell*
737 136, 521-534.

738 Nirenberg, M.J., Liu, Y., Peter, D., Edwards, R.H., and Pickel, V.M. (1995). The vesicular monoamine
739 transporter 2 is present in small synaptic vesicles and preferentially localizes to large dense core
740 vesicles in rat solitary tract nuclei. *Proceedings of the National Academy of Sciences of the United*
741 *States of America* 92, 8773-8777.

742 Olivero, P., Lozano, C., Sotomayor-Zárate, R., Meza-Concha, N., Arancibia, M., Córdova, C.,
743 González-Arriagada, W., Ramírez-Barrantes, R., and Marchant, I. (2018). Proteostasis and
744 Mitochondrial Role on Psychiatric and Neurodegenerative Disorders: Current Perspectives. *Neural*
745 *plasticity* 2018, 6798712.

746 Panula, P., and Nuutinen, S. (2013). The histaminergic network in the brain: basic organization and role
747 in disease. *Nature reviews Neuroscience* 14, 472-487.


748 Parmentier, R., Ohtsu, H., Djebbara-Hannas, Z., Valatx, J.L., Watanabe, T., and Lin, J.S. (2002).
749 Anatomical, physiological, and pharmacological characteristics of histidine decarboxylase knock-out
750 mice: evidence for the role of brain histamine in behavioral and sleep-wake control. *The Journal of*
751 *neuroscience : the official journal of the Society for Neuroscience* 22, 7695-7711.

752 Rebsamen, M., Pochini, L., Stasyk, T., de Araújo, M.E., Galluccio, M., Kandasamy, R.K., Snijder, B.,
753 Fauster, A., Rudashevskaya, E.L., Bruckner, M., *et al.* (2015). SLC38A9 is a component of the lysosomal
754 amino acid sensing machinery that controls mTORC1. *Nature* 519, 477-481.
755 Ren, Q., Chen, K., and Paulsen, I.T. (2007). TransportDB: a comprehensive database resource for
756 cytoplasmic membrane transport systems and outer membrane channels. *Nucleic acids research* 35,
757 D274-279.
758 Richardt, A., Kemme, T., Wagner, S., Schwarzer, D., Marahiel, M.A., and Hovemann, B.T. (2003). Ebony,
759 a novel nonribosomal peptide synthetase for beta-alanine conjugation with biogenic amines in
760 *Drosophila*. *The Journal of biological chemistry* 278, 41160-41166.
761 Richardt, A., Rybak, J., Störkkuhl, K.F., Meinertzhagen, I.A., and Hovemann, B.T. (2002). Ebony protein
762 in the *Drosophila* nervous system: optic neuropile expression in glial cells. *The Journal of comparative
763 neurology* 452, 93-102.
764 Roy, S. (2020). Finding order in slow axonal transport. *Current opinion in neurobiology* 63, 87-94.
765 Stenesen, D., Moehlman, A.T., and Krämer, H. (2015). The carcinine transporter CarT is required in
766 *Drosophila* photoreceptor neurons to sustain histamine recycling. *eLife* 4, e10972.
767 Stuart, A.E. (1999). From fruit flies to barnacles, histamine is the neurotransmitter of arthropod
768 photoreceptors. *Neuron* 22, 431-433.
769 Taguchi, Y., Watanabe, T., Kubota, H., Hayashi, H., and Wada, H. (1984). Purification of histidine
770 decarboxylase from the liver of fetal rats and its immunochemical and immunohistochemical
771 characterization. *The Journal of biological chemistry* 259, 5214-5221.
772 Vallee, R.B., and Bloom, G.S. (1991). Mechanisms of fast and slow axonal transport. *Annual review of
773 neuroscience* 14, 59-92.
774 Verrey, F., Closs, E.I., Wagner, C.A., Palacin, M., Endou, H., and Kanai, Y. (2004). CATs and HATs: the
775 SLC7 family of amino acid transporters. *Pflugers Archiv : European journal of physiology* 447, 532-542.
776 Vorobjev, V.S., Sharonova, I.N., Walsh, I.B., and Haas, H.L. (1993). Histamine potentiates
777 N-methyl-D-aspartate responses in acutely isolated hippocampal neurons. *Neuron* 11, 837-844.
778 Wagner, S., Heseding, C., Szlachta, K., True, J.R., Prinz, H., and Hovemann, B.T. (2007). *Drosophila*
779 photoreceptors express cysteine peptidase tan. *The Journal of comparative neurology* 500, 601-611.
780 Walther, D.J., Peter, J.U., Bashammakh, S., Hörtnagl, H., Voits, M., Fink, H., and Bader, M. (2003).
781 Synthesis of serotonin by a second tryptophan hydroxylase isoform. *Science (New York, NY)* 299, 76.
782 Wang, T., and Montell, C. (2007). Phototransduction and retinal degeneration in *Drosophila*. *Pflugers
783 Archiv : European journal of physiology* 454, 821-847.
784 Wang, Y.C., Lauwers, E., and Verstreken, P. (2017). Presynaptic protein homeostasis and neuronal
785 function. *Current opinion in genetics & development* 44, 38-46.
786 Watanabe, T., Taguchi, Y., Shiosaka, S., Tanaka, J., Kubota, H., Terano, Y., Tohyama, M., and Wada, H.
787 (1984). Distribution of the histaminergic neuron system in the central nervous system of rats; a
788 fluorescent immunohistochemical analysis with histidine decarboxylase as a marker. *Brain research*
789 295, 13-25.
790 Wyant, G.A., Abu-Remaileh, M., Wolfson, R.L., Chen, W.W., Freinkman, E., Danai, L.V., Vander Heiden,
791 M.G., and Sabatini, D.M. (2017). mTORC1 Activator SLC38A9 Is Required to Efflux Essential Amino
792 Acids from Lysosomes and Use Protein as a Nutrient. *Cell* 171, 642-654.e612.
793 Xu, Y., An, F., Borycz, J.A., Borycz, J., Meinertzhagen, I.A., and Wang, T. (2015). Histamine Recycling Is
794 Mediated by CarT, a Carcinine Transporter in *Drosophila* Photoreceptors. *PLoS genetics* 11, e1005764.
795 Xu, Y., and Wang, T. (2019). LOVIT Is a Putative Vesicular Histamine Transporter Required in *Drosophila*

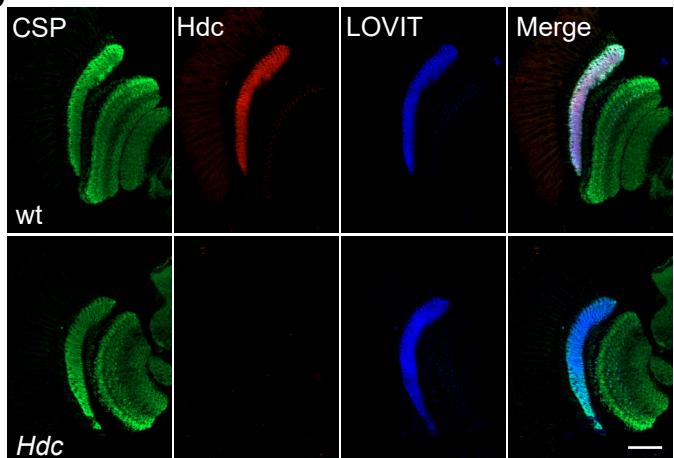
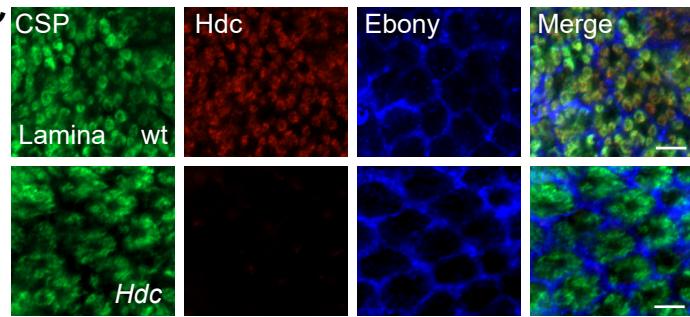

796 for Vision. Cell reports 27, 1327-1333.e1323.

Figure 1


A

B

C

D

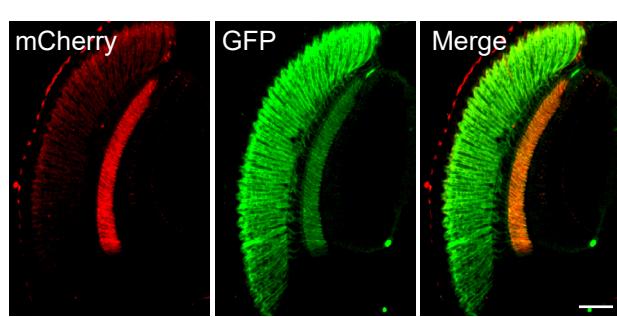


Figure 1-figure supplement 1

Figure 2

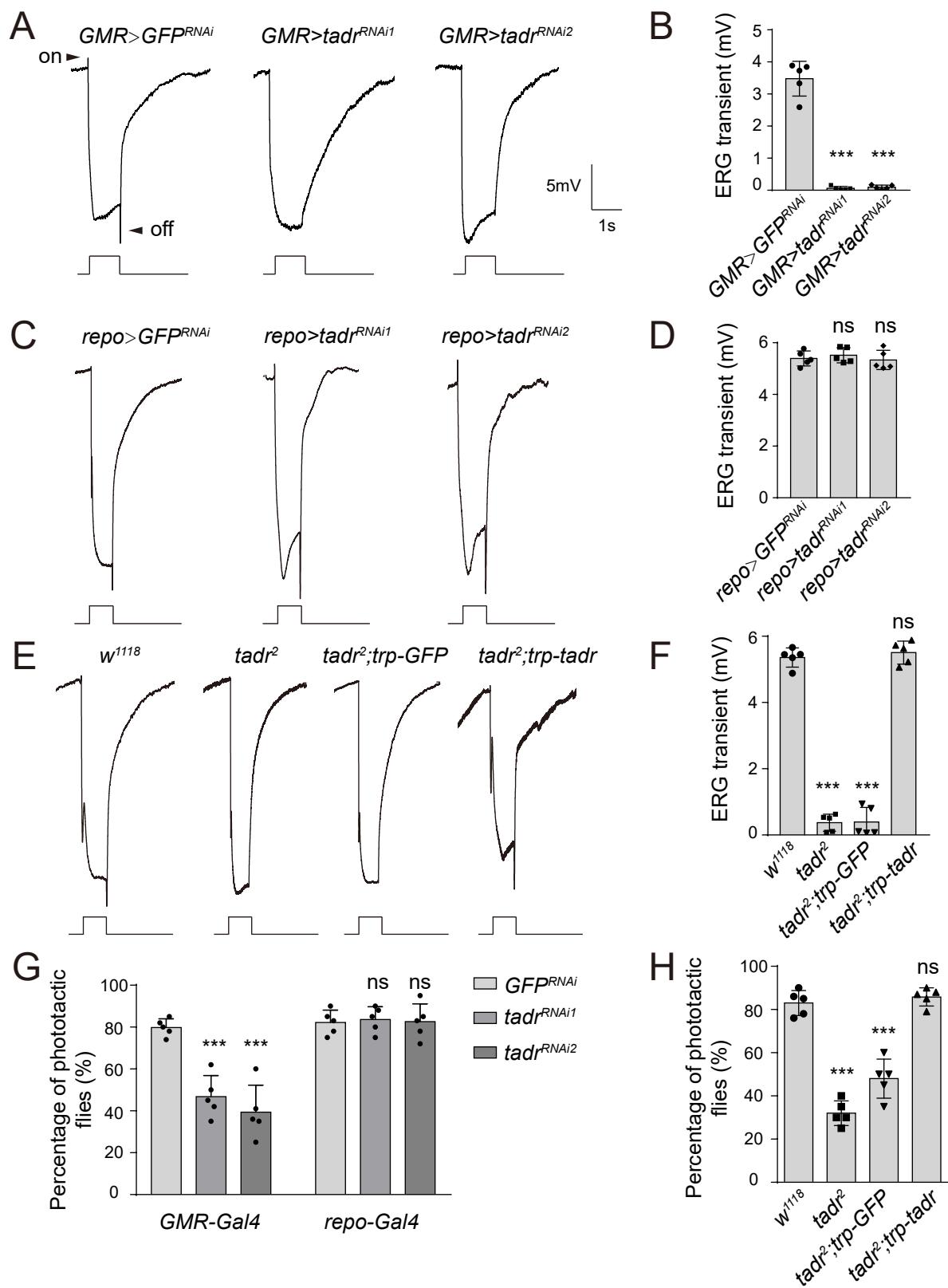


Figure 2-figure supplement 1

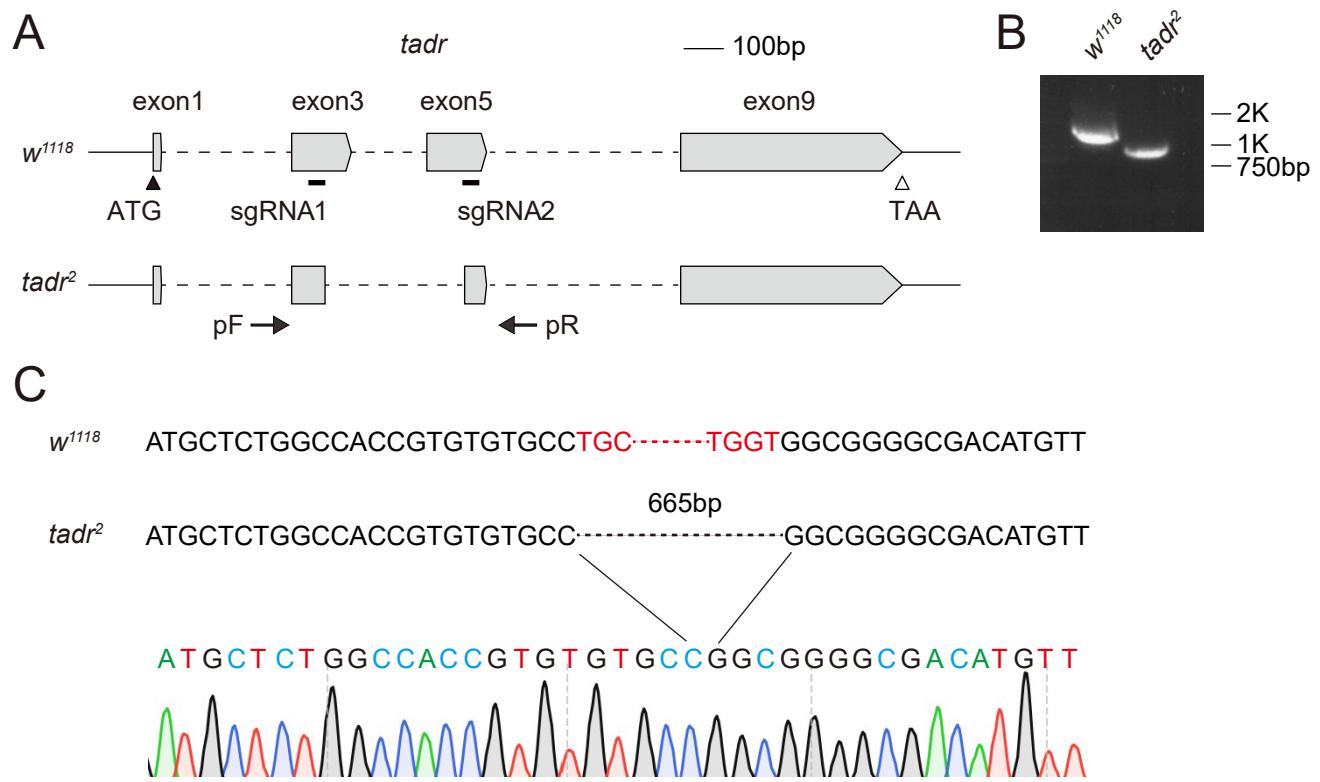


Figure 2-figure supplement 2

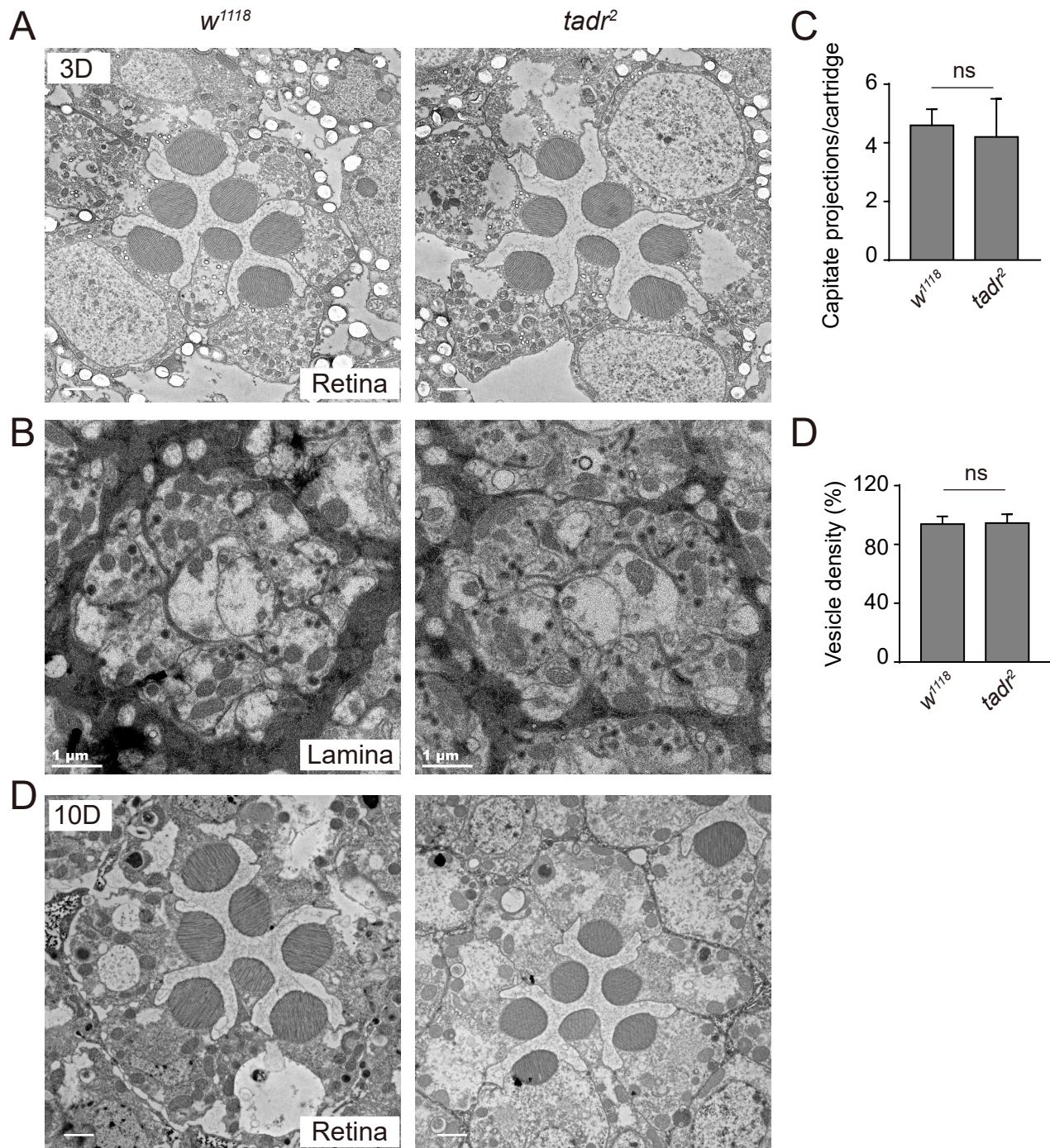


Figure 3

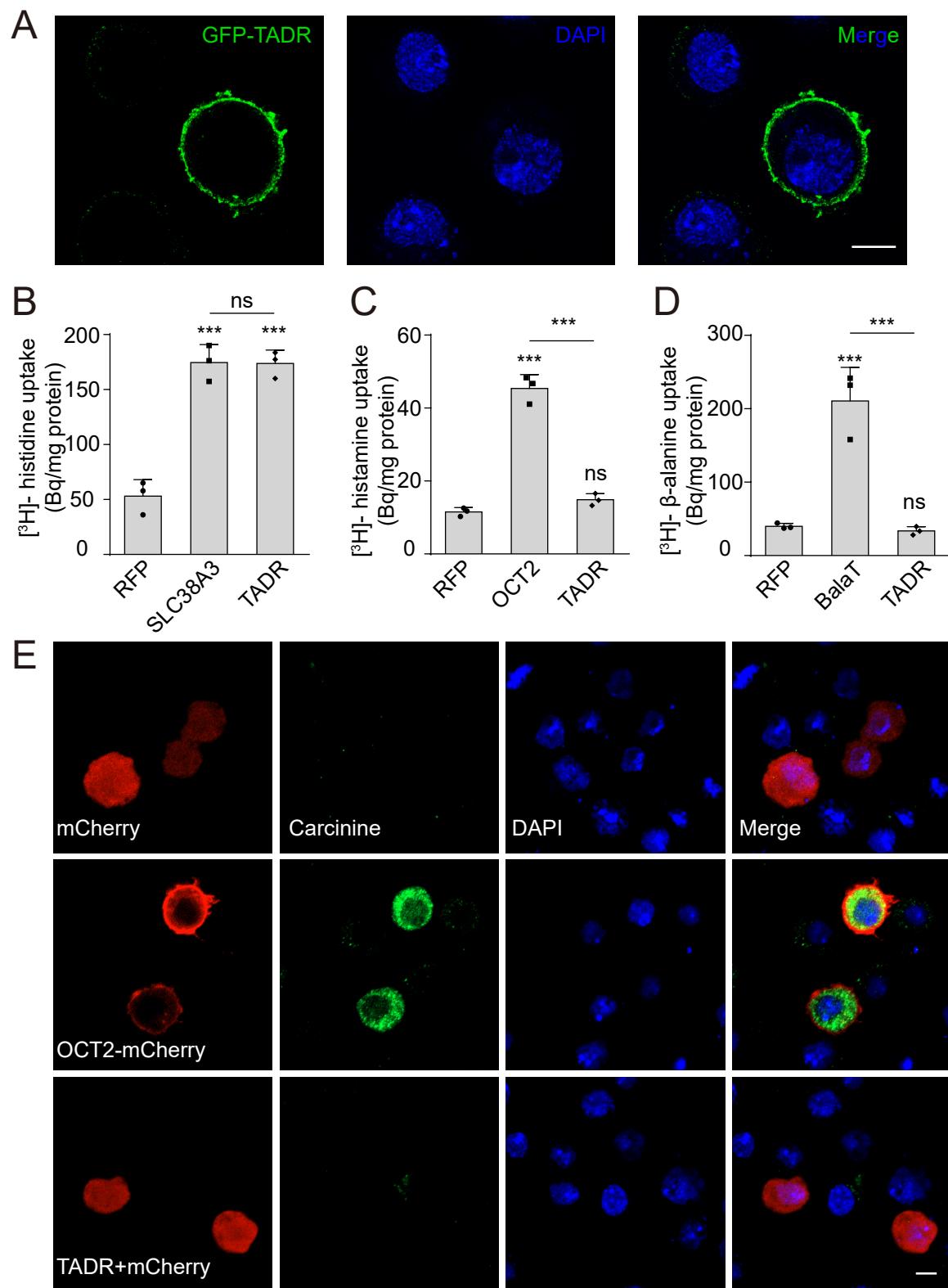


Figure 3-figure supplement 1

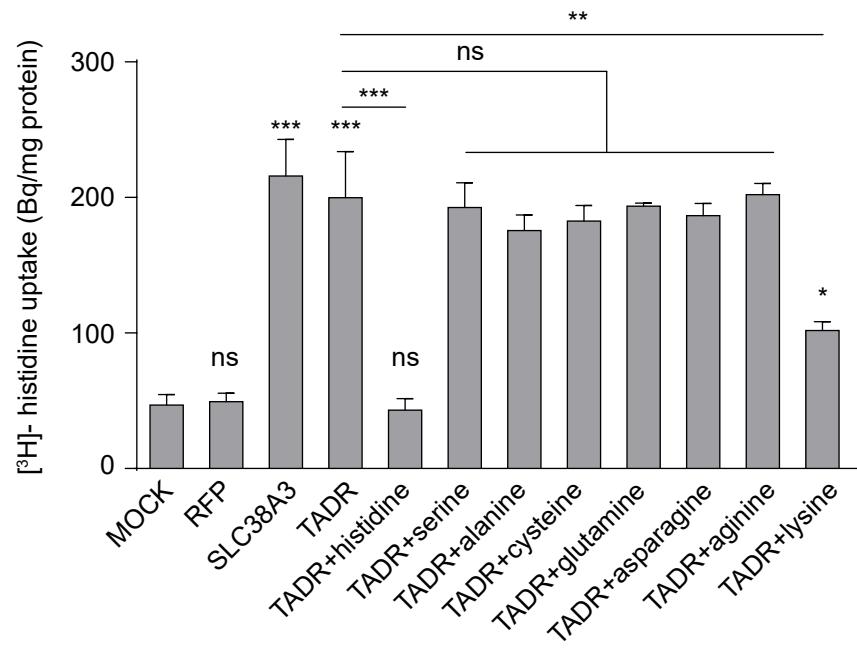


Figure 4

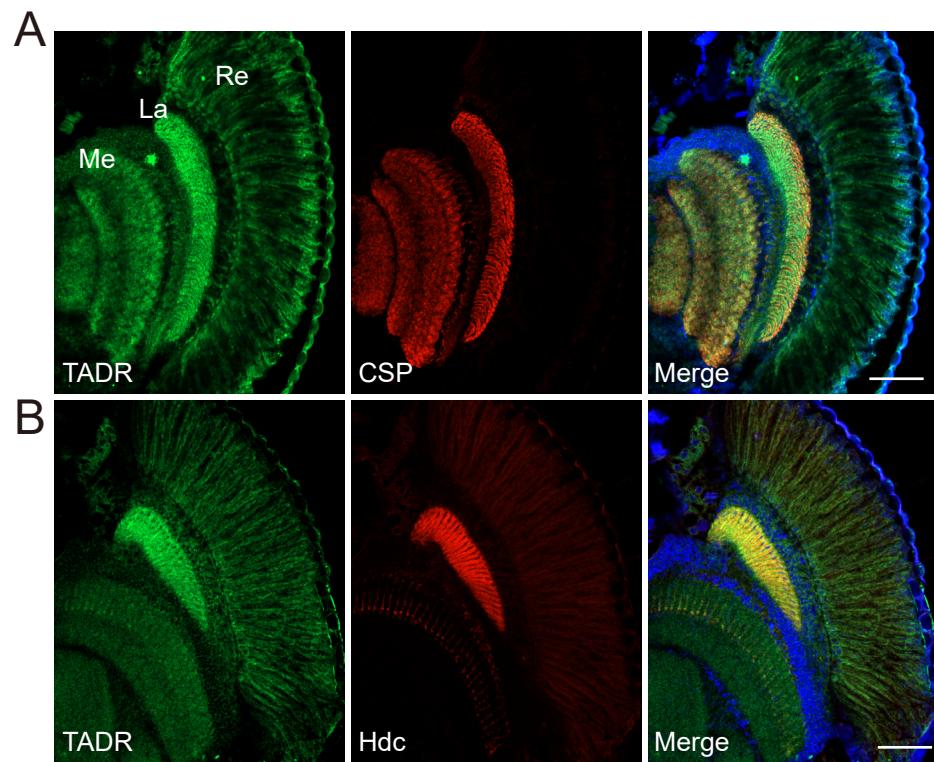


Figure 4-figure supplement 1

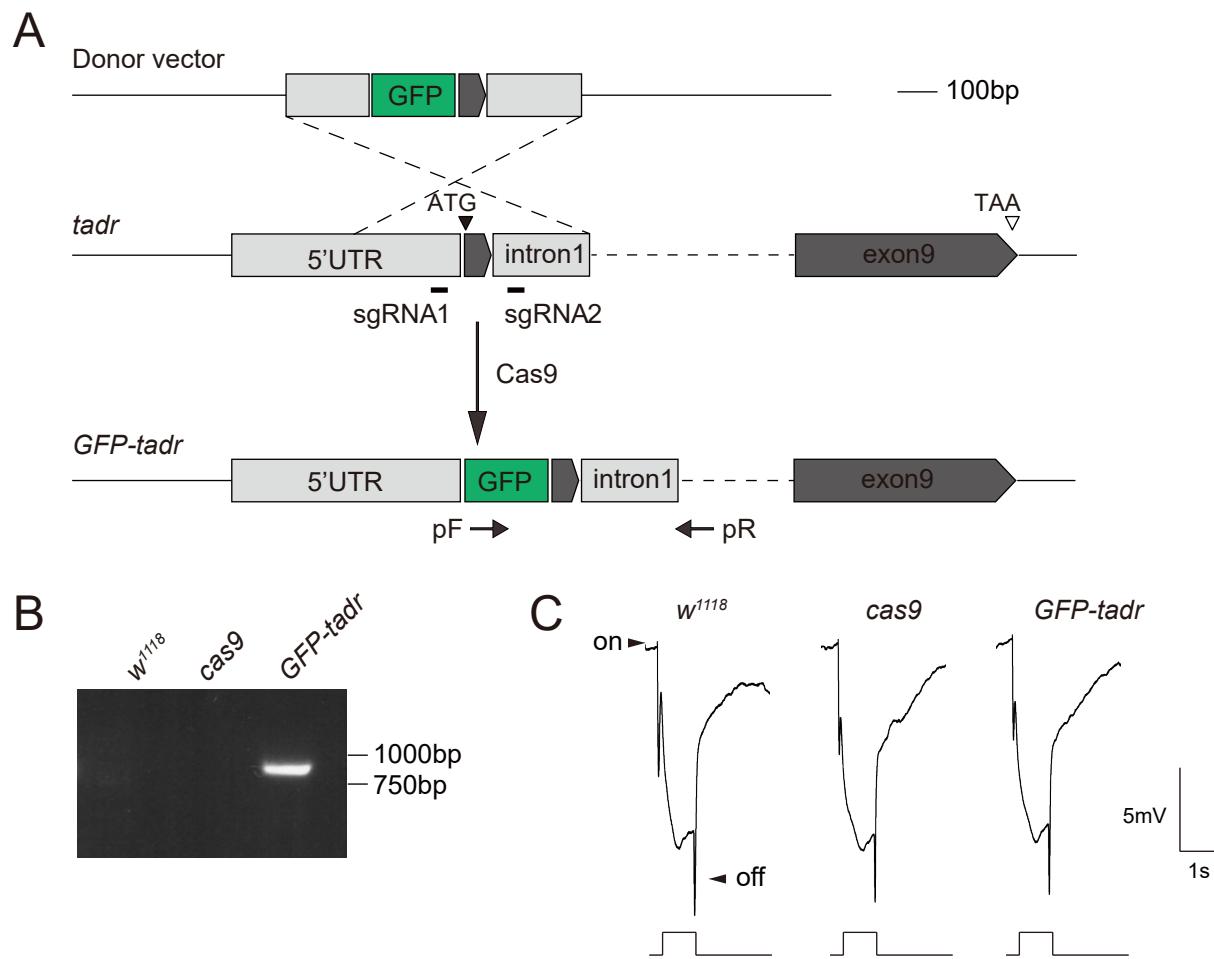


Figure 5

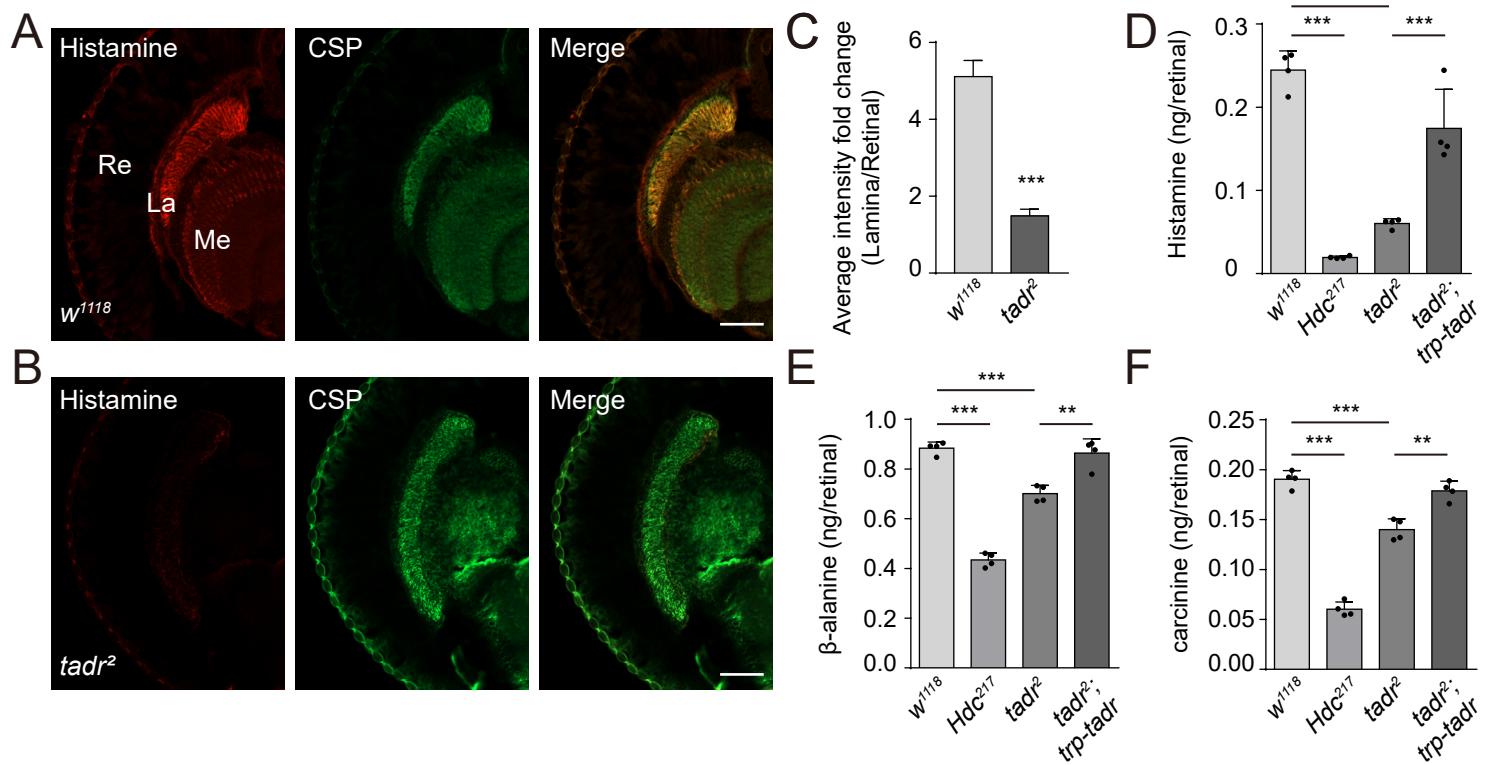


Figure 6

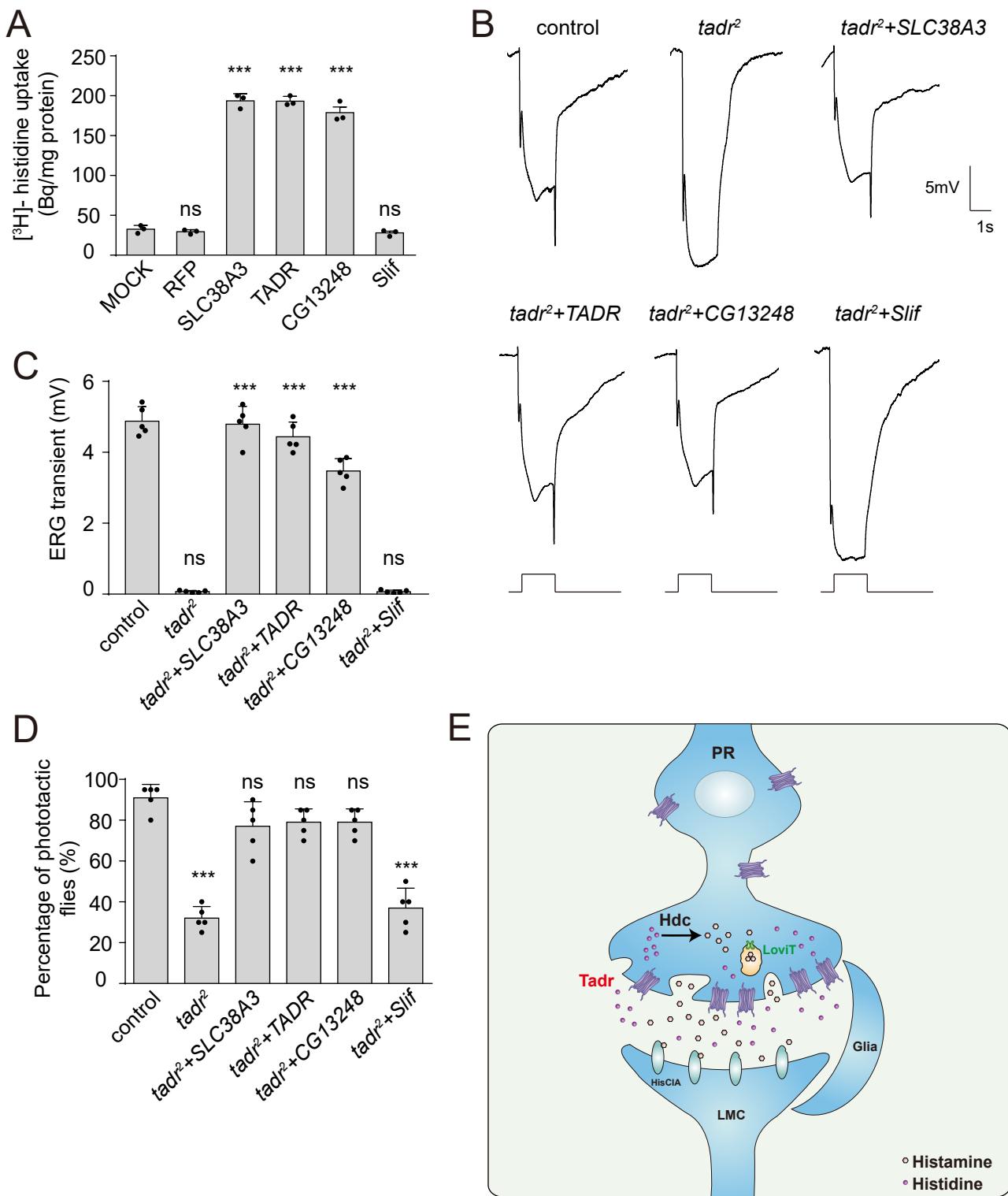


Table S1: Description of 42 amino acid transporter genes.

Gene	ON/OFF transients	Description
CG4991	Yes	Amino acid transmembrane transporter activity/SLC36A1 or A2
CG7888	Yes	Amino acid transmembrane transporter activity/SLC36A1 or A2
CG1139	Yes	Amino acid transmembrane transporter activity/SLC36A1 or A2
CG8785	Yes	Amino acid transmembrane transporter activity/SLC36A1 or A2
CG32079	Yes	Amino acid transmembrane transporter activity/SLC36A1 or A2
CG32081	Yes	Amino acid transmembrane transporter activity/SLC36A1 or A2
CG16700	Yes	Amino acid transmembrane transporter activity/SLC36A1 or A4
CG13384	Yes	Amino acid transmembrane transporter activity/SLC36A1 or A4
CG43693	Yes	Amino acid transmembrane transporter activity/SLC36A1 or A4
<i>polyph</i>	Yes	Amino acid transmembrane transporter activity/SLC36A1 or A2
<i>path</i>	Yes	Amino acid transmembrane transporter activity/SLC36A1 or A2
<i>mah</i>	Yes	Amino acid transmembrane transporter activity/SLC38A1 or A2
CG30394	Yes	Amino acid transmembrane transporter activity/SLC38A10
CG13743	Yes	Amino acid transmembrane transporter activity/SLC38A11
CG13248	Yes	Amino acid transmembrane transporter activity/SLC7A4
<i>slif</i>	Yes	Amino acid transmembrane transporter activity/SLC7A1 or A2
CG12773	Yes	Amino acid transmembrane transporter activity/SLC12A8
NKCC	Yes	Amino acid transmembrane transporter activity/SLC12A3
<i>Cht</i>	Yes	Amino acid transmembrane transporter activity/SLC5A7
NAAT1	Yes	Amino acid transmembrane transporter activity/SLC6A7 or A9
CG15279	Yes	L-amino acid transmembrane transporter activity/SLC6A7 or A9
CG4476	Yes	L-amino acid transmembrane transporter activity/SLC6A7 or A9
CG1698	Yes	L-amino acid transmembrane transporter activity/SLC6A7 or A9
<i>List</i>	Yes	L-amino acid transmembrane transporter activity/SLC6A7
<i>Jhl-21</i>	Yes	L-amino acid transmembrane transporter activity/SLC7A5
<i>mnd</i>	Yes	L-amino acid transmembrane transporter activity/SLC7A6 or A7
<i>gb</i>	Yes	L-amino acid transmembrane transporter activity/SLC7A6 or A7
CG1607	Yes	L-amino acid transmembrane transporter activity/SLC7A8
<i>sbm</i>	Yes	L-amino acid transmembrane transporter activity/SLC7A9
<i>Eaat1</i>	Yes	L-aspartate transmembrane transporter activity/SLC1A3
<i>Eaat2</i>	Yes	L-aspartate transmembrane transporter activity/SLC1A2
<i>GC1</i>	Yes	L-glutamate transmembrane transport/SLC25A18
<i>tadr</i>	No	Cationic amino acid transporter/SLC7A4 or SLC7A1
<i>VGlut</i>	Yes	Vesicular glutamate transporter/SLC17A7
<i>Gat</i>	Yes	GABA transporter activity/SLC6A1
<i>kcc</i>	Yes	Potassium:chloride symporter activity/SLC12A4
<i>Sfxn1-3</i>	Yes	Serine transmembrane transporter activity/SFXN1
<i>VGAT</i>	Yes	Vesicular GABA transporter activity/SLC32A1
<i>Ncc69</i>	Yes	Sodium:potassium:chloride symporter activity/SLC12A1 or A2
CG1265	Yes	Lysosomal amino acid transporter/SLC66A3
CG3792	Yes	Lysosomal amino acid transporter/SLC66
CG13784	Yes	Lysosomal amino acid transporter/SLC66A2